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Abstract 

 

Visual word identification requires readers to code the identity and order of the letters in 

a word and match this code against previously learned codes. Current models of this lexical 

matching process posit context-specific letter codes in which letter representations are tied either 

to specific serial positions or specific local contexts (e.g., letter clusters). The spatial coding 

model described here adopts a different approach to letter position coding and lexical matching 

based on context-independent letter representations. In this model, letter position is coded 

dynamically, using a scheme called spatial coding. Lexical matching is achieved via a method 

called superposition matching, in which input codes and learned codes are matched on the basis 

of the relative positions of their common letters. Simulations of the model illustrate its ability to 

explain a broad range of results from the masked form priming literature, as well as to capture 

benchmark findings from the unprimed lexical decision task. 
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The experimental and theoretical analysis of the processes involved in visual word 

identification has been a focus of cognitive science research in the last few decades (for reviews, 

see Carr & Pollatsek, 1985; Jacobs & Grainger, 1994; Rastle, 2007; Rayner, 1998; Taft, 1991). 

Word identification is an integral component of reading, and of language comprehension more 

generally, and hence understanding this process is critical for theories of language processing. 

Beyond that, however, the study of isolated visual word identification has attracted researchers 

because it provides a means of addressing fundamental cognitive questions pertaining to how 

information is stored and subsequently retrieved. For a variety of reasons, the domain of visual 

word identification is extremely well-suited to studying issues related to pattern recognition. 

First, printed words (particularly in alphabetic languages) have many advantages as 

experimental stimuli, given that they are well-structured, discrete stimuli with attributes (such as 

frequency of occurrence, legibility, spelling-sound consistency, etc.) that are relatively easy to 

manipulate and control in experimental designs. Secondly, a variety of tasks have been 

developed with which to measure the time that it takes to identify a word, and this has led to a 

particularly rich set of empirical findings. Finally, printed words are highly familiar patterns 

with which the great majority of literate people demonstrate considerable expertise. Skilled 

readers are able to recognise familiar words rapidly (typically within about 250 ms, e.g., 

Pammer et al., 2004; Rayner & Pollatsek, 1987; Sereno & Rayner, 2003), in spite of the fact that 

they must distinguish these words from among a pool of tens of thousands of words that are 

composed of the same restricted alphabet of letters. To the reader this process appears effortless, 

but to the cognitive scientist it remains somewhat mysterious. 

The “Lexicalist” Framework 

In models of visual word identification, the goal of processing is often referred to as 

"lexical access" or lexical retrieval. In the present article, I describe the same state as the point 

of lexical identification. Such a state has been referred to as a “magic moment” at which the 

word has been recognised as familiar, even though its meaning has not yet been retrieved (e.g., 



Spatial Coding Model  4 
 

Balota & Yap, 2006). Indeed, the point at which lexical identification occurs can be thought of 

as the gateway between visual perceptual processing and conceptual processing. In the E-Z 

Reader model of eye movements during reading (e.g., Reichle, Pollatsek, Fisher & Rayner, 

1998), the completion of lexical identification may be viewed as the point at which attention is 

shifted from the current word to the next word. At a functional level of description, at least, this 

way of thinking about lexical identification implies an internal lexicon (or word level) 

containing unitised lexical forms. As Andrews (2006) notes, a “lexicalist” perspective of this 

sort need not entail assumptions about the nature of lexical knowledge –  in particular, whether 

this knowledge is subserved by localist or distributed representations. Nevertheless, a localist 

account is the most straightforward means of implementing a lexicalist view (for discussion of 

theoretical arguments favouring localist over distributed representations, see Bowers, 2002; 

Bowers, Damian, & Davis, 2009, submitted; Davis, 1999; Page, 2000). According to such a 

localist account, lexical knowledge is underpinned by the existence of (and connections 

involving) nodes that code specific words. In the strongest version of such a localist account it 

may even be postulated that there are individual cells in the brain that code for specific words 

(e.g., an individual neuron that codes the word cat; Bowers, 2009); in support of such an 

account, recent neuroimaging evidence using fMRI rapid adaptation techniques provides 

evidence for highly selective neuronal tuning to whole words in the cortical region that has been 

labelled the “visual word form area” (Glezer, Jiang, & Riesenhuber, 2009). 

There is an alternative to the lexicalist view. Some proponents of PDP models have 

rejected not only the notion of localist word representations, but also the lexicalist view (e.g., 

Seidenberg & McClelland, 1989; Plaut, McClelland, Seidenberg & Patterson, 1996), and have 

proposed models of ostensibly “lexical” tasks that include no lexicon. Debates about whether 

such models capture the central features of lexical processing (indeed, whether such models can 

even explain how readers are able to distinguish words from nonwords) are ongoing (e.g., 

Besner, Twilley, McCann, & Seergobin, 1990; Bowers & Davis, 2009; Coltheart, 2004; Dilkina, 
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McClelland, & Plaut, 2008; Sibley et al., 2009), and will not be rehearsed here. There is no 

extant PDP model that can simulate the empirical results that form the critical database for the 

present investigation, and thus I do not consider such models further in this article. 

   Subprocesses in Visual Word Identification 

Within a lexicalist framework, successful word identification appears to involve a 

number of basic processes (e.g., Forster, 1992; Jacobs & Grainger, 1994; Taft, 1991). First, it is 

necessary for the reader to encode the input stimulus by forming some representation of the 

sensory input signal. This representation needs to encode both the identity and the order of the 

letters in the input stimulus. Secondly, this input code must be matched against abstract long-

term memory representations – lexical codes. Thirdly, the best-matching candidate must 

somehow be selected from among the tens of thousands of words in the reader’s vocabulary. 

The present article considers each of these processes. The primary focus is on the first two 

processes, investigating how sensory input codes are matched against lexical codes and the 

nature of the input and lexical codes that are used in this process. The resulting match values 

then feed into a competitive selection process. All three of these processes are modelled herein 

in a series of simulations. 

A Discrepancy between Theory and Data 

The last decade has seen a surge of interest in orthographic input coding and lexical 

matching, resulting in a large body of empirical data (e.g., Bowers, Davis & Hanley, 2005a; 

Christianson, Johnson, & Rayner, 2005;  Davis & Bowers, 2004, 2005, 2006; Davis & Lupker, 

submitted; Davis, Perea, & Acha, 2009; Davis & Taft, 2005; Duñabeitia, Perea, & Carreiras, 

2008; Frankish & Barnes, 2008; Frankish & Turner, 2007; Grainger,Granier, Farioli, Van 

Assche & van Heuven, 2006; Guerrera & Forster, 2008; Johnson, 2007; Johnson & Dunne, 

submitted; Johnson, Perea, & Rayner, 2007; Kinoshita & Norris, 2009, submitted; Lupker & 

Davis, 2009; Perea & Carreiras, 2006a, 2006b; Perea & Lupker, 2003a, 2003b, 2004; Peressotti 

& Grainger, 1999; Rayner, White, Johnson & Liversedge, 2006; Schoonbaert & Grainger, 2004; 
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Van Assche & Grainger, 2006; Van der Haegen, Brysbaert, & Grainger, 2009; Welvaert, 

Farioloi & Grainger, 2008; White, Johnson, Liversedge, & Rayner, 2008). The majority of these 

experiments have used the masked form priming paradigm (Forster, Davis, Schoknecht, & 

Carter, 1987) to investigate the perceptual similarity of pairs of letter strings that differ with 

respect to letter substitutions, transpositions, additions, and deletions; converging evidence has 

also been reported recently using the parafoveal preview technique (e.g., Johnson & Dunne, 

submitted; Johnson, Perea, & Rayner, 2007). The resulting empirical database provides strong 

constraints on models of visual word recognition.  

The literature includes a variety of computational models of visual word recognition, 

including the original interactive activation (IA) model (McClelland & Rumelhart, 1981), 

extensions of the IA model (Grainger & Jacobs, 1994, 1996), dual-route  models (DRC, CDP 

and CDP+; Coltheart, Rastle, Perry, Langdon & Ziegler, 2001, Zorzi, Houghton & Butterworth, 

1998, Perry, Ziegler & Zorzi, 2007) and PDP models (Harm & Seidenberg, 1999; Plaut et al., 

1996; Seidenberg & McClelland, 1989). However, for all their successes, none of the above 

models is able to account for the results reported in the articles cited in the above paragraph. 

This discrepancy between theory and data points to fundamental problems in the standard 

approach to orthographic input coding and lexical matching. 

In Davis (1999) and in subsequent articles I have argued that these problems stem from 

the commitment of previous models to orthographic input coding schemes that are context-

dependent (in the sense that they are either position- or context-specific), and that a satisfactory 

solution to these problems requires a context-independent coding scheme (see Bowers et al., 

2009 for a recent discussion of the same issue in a different domain, i.e., serial order memory). I 

have also argued that lexical selection involves a competitive process, and that this has 

important implications for the interpretation of experimental data (e.g., Bowers , Davis & 

Hanley, 2005b; Davis, 2003; Davis & Lupker, 2006; Lupker & Davis, 2009). In the present 

article, I show how a context-independent model of orthographic input coding  and lexical 
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matching can be embedded within a competitive network model of lexical selection. The 

resulting model, which I will refer to as the spatial coding model, provides an excellent account 

of a large set of masked primed lexical decision findings pertaining to orthographic input 

coding, as well as explaining benchmark findings from the unprimed lexical decision task. 

Additionally, the model explains a considerable proportion of the variance at the item-level in 

unprimed lexical decision. 

How the Spatial Coding Model is Related to the SOLAR and IA Models 

Davis (1999) developed the context-independent orthographic input coding scheme 

within the framework of the SOLAR (Self-Organising Lexical Acquisition and Recognition) 

model. This model was developed with the goal of explaining how visual word recognition is 

achieved in realistic input environments, that is, environments which are complex, noisy, and 

which change over time, thereby requiring the model to self-organise its internal representations. 

The SOLAR model is a competitive network model (e.g., Grossberg, 1976), and therefore part 

of the same class of models as the IA model. However, the features of the SOLAR model that 

enable it to self-organise result in a model that is considerably more complex than the IA model. 

These features include mechanisms governing the learning of excitatory and inhibitory weights, 

a novel means of encoding word frequency (and a learning mechanism that modifies internal 

representations accordingly), and a mechanism for chunking identified inputs and resetting the 

component representations. Though interesting in their own right, these features are not critical 

to the phenomena modelled here (e.g., masked priming effects are not strongly influenced by 

on-line self-organisation processes). The model that I develop in the present article draws on key 

aspects of the SOLAR model, notably the spatial coding scheme described in Davis (1999), the 

superposition matching algorithm subsequently developed in Davis (2001, 2004; see also Davis 

& Bowers, 2006), and the opponent processing model of lexical decision described in Davis 

(1999), but does not include the learning or chunking mechanisms of the SOLAR model. Thus, 
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one way to think about the spatial coding model described here is as a (slightly simplified) 

stationary (i.e., non-self-organising) version of the SOLAR model. 

Another way to think about the spatial coding model I develop here is as an exercise in 

the nested modelling strategy (Jacobs & Grainger, 1994) that has guided the development of 

many computational models of visual word recognition in recent years (e.g., Coltheart, Curtis, 

Atkins, & Haller, 1993, Coltheart et al., 2001; Davis, 1999; 2003; Davis & Lupker, 2006; 

Grainger & Jacobs, 1994, 1996; Perry et al., 2007). These models have adopted a cumulative 

approach in which the best features of existing models are preserved in new models. In 

particular, each of the models listed above has incorporated a version of the IA model. This 

choice may have been related partly to the initial success of the original model in explaining 

data from the Reicher-Wheeler task (McClelland & Rumelhart, 1981; Reicher, 1969; Rumelhart 

& McClelland, 1982), but also no doubt reflects the fact that this model captures many of the 

essential features of the localist, lexicalist framework in a way that enabled detailed modelling 

of the temporal characteristics of lexical identification. Thus, the above-cited work has 

established that extensions of the IA model can explain not only Reicher-Wheeler data (e.g., 

Grainger & Jacobs, 1994), but also a broad range of other empirical results from the perceptual 

identification task, the unprimed lexical decision task, and the masked priming variant of the 

lexical decision task (Davis, 2003; Davis & Lupker, 2006; Grainger & Jacobs, 1996; Lupker & 

Davis, 2009). Furthermore, the IA model has been used to provide the lexical route of dual-route 

models of reading aloud (Coltheart et al., 2001; Perry et al., 2007).  

While the nested modelling approach entails retaining the best features of previous 

models, features that are at odds with critical data should be replaced. To this end, the spatial 

coding model retains central assumptions of the IA model –  localist letter and word 

representations, hierarchical processing, lateral inhibition, frequency-dependent resting activities 

– while modifying the IA model’s orthographic input coding and lexical matching algorithm. In 

effect, then, the spatial coding model grafts the front-end of the SOLAR model onto a standard 
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IA model. Indeed, as is shown in the Appendix, given an appropriate parameter choice, the 

original McClelland and Rumelhart (1981) model can be specified as a special case of the 

present model (thus, although I do not consider Reicher-Wheeler data here, there is at least one 

parameterisation of the model that accommodates the same set of findings as the original 

model). Although I do not attempt it here, it would be possible to use the spatial coding model 

as the lexical route of a dual-route model of word reading, following the approach of Coltheart 

et al. (2001) and  Perry et al. (2007). 

Overview of the Present Article 

This article is arranged into two parts. The first part describes the model. I begin by 

describing the spatial coding scheme. What distinguishes this coding scheme from other 

schemes is its commitment to position and context-independent letter representations. This 

aspect of spatial coding, combined with its approach to coding letter position and identity 

uncertainty, underlies its ability to explain data that are problematic for other models. I then 

describe an algorithm (called superposition matching) for computing lexical matches based on 

spatial coding; I also discuss a possible neural implementation of superposition matching.  

The set of equations describing spatial coding and superposition matching makes it 

possible to compute a match value representing orthographic similarity for any pair of letter 

strings. The relative ordering of match values for different forms of orthographic similarity 

relations is consistent with some general criteria that have been adduced from empirical data 

(Davis, 2006). However, to properly evaluate the model it is necessary to derive predictions that 

are directly relevant to the dependent variables measured in experiments on orthographic input 

coding. To this end, I embed the spatial coding and superposition matching equations within a 

model of lexical selection, and then explain how this model can simulate lexical decision. The 

resulting model is able to make predictions concerning primed and unprimed lexical decisions.    

 In the second part of the article I demonstrate the application of the spatial coding model 

to critical data concerning orthographic input coding and lexical matching. In particular, I 
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present a set of 20 simulations that model critical data from the masked form priming paradigm, 

examining the effect of letter replacements, transpositions, reversals, and displacements. The 

results demonstrate the broad array of findings that are explained by (and in several cases were 

predicted by) the spatial coding model. I also show that the model can explain various 

benchmark findings from the unprimed lexical decision task. 

Part 1: Description of the Model 

Spatial Coding  

Davis (1999) introduced spatial orthographic coding as a means of encoding letter order 

that solves the alignment problem (i.e., that supports position-invariant identification) and 

captures the perceptual similarity of close anagrams. This general method of encoding order has 

its origins in Grossberg’s (1978) use of spatial patterns of node activity to code temporal input 

sequences, and similar coding schemes have been used by Page (1994) in a model of melody 

perception and by Page and Norris (1998) in their primacy model of serial recall. The 

fundamental principle underlying spatial orthographic coding is that visual word identification is 

based on letter representations that are abstract (position- and context-independent) symbols. 

According to this idea, the abstract letter identities used for orthographic input coding are 

abstract in an even more extensive sense than has previously been proposed in standard models: 

In addition to abstracting away from visual form (e.g., case, size, and color), these letter 

identities abstract away from positional and contextual factors. Essentially, they are mental 

symbols of the form proposed in Fodor’s representational theory of mind (e.g., Fodor, 1975). 

Thus, according to spatial coding, the same letter A node can activate in response to the words 

ape, cat, star, or opera. 

The relative order of the letters in a letter-string is encoded by the pattern of temporary 

values that are dynamically assigned (“tagged”) to these letters. Different letter orderings result 

in different spatial patterns (hence the term “spatial coding”; note that the word “spatial” does 

not refer to visuospatial coordinates). Some examples of spatial coding are shown in Figure 1. 
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These examples show the pattern of values over the O, P, S and T letter nodes for four different 

words: stop, post, opts and pots. The values assigned to letter nodes in these examples 

correspond to the serial positions of the corresponding letters in the stimulus, e.g., the first letter 

is coded by a value of 1, the second letter by a value of 2, and so on. This is the most 

straightforward version of spatial coding. In previous descriptions I have sometimes assumed a 

primacy rather than a recency gradient (i.e., the first letter is assigned the largest value, the 

second letter the next largest value, and so on). The two versions are mathematically equivalent 

when using the superposition matching algorithm: All that is critical is that the values are 

assigned so as to preserve the sequence in which the letters occurred in the input string. 

Figure 1 illustrates how anagrams may be coded by exactly the same set of letter 

representations, but by different relative patterns across these representations. For example, the 

spatial pattern used to code the word stop is quite different from that which is used to code the 

word pots, whereas pots and post are coded by quite similar patterns. Nevertheless, the fact that 

the same set of representations is used in each case is the critical difference between this 

approach and position- or context-specific coding schemes, which would code the word stop 

using an entirely different set of representations than those used to code its anagram pots. 

One point that is important to note (and which has frequently been misunderstood) is that 

the gradient of values in an orthographic spatial code is purely a positional gradient – it is not a 

weighting gradient. That is, letter nodes that are assigned larger values are not given greater 

weight in the matching process than nodes that are assigned smaller values. To use an analogy, 

the position of the notes on a treble clef indicates the pitch of those notes, not their loudness or 

duration. Thus, assigning a value of 1 to the node that codes the first letter of a stimulus and a 

value of 4 to the node that codes the last letter of a (4-letter) stimulus does not imply that the last 

letter is four times as important as the first letter: the values of the spatial code convey 

information about position only. This is not to say that all letters are in fact always given equal 
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weighting during lexical matching, but rather that coding differences in letter weighting requires 

a separate dimension, as described below. 

Coding Uncertainty Regarding Letter Position  

The perceptual coding of both letter position and letter identity is subject to a 

considerable degree of uncertainty, particularly in the earliest stages of word perception 

following the initial detection of the stimulus (e.g., Estes, Allmeyer, & Reder, 1976). Position 

uncertainty is a fundamental characteristic of the visual input to the lexical matching system, 

and any plausible model of orthographic coding needs to incorporate uncertainty in the signals 

output by letter nodes. For simplicity, the following discussion assumes that position uncertainty 

is restricted to the input code and that the learned code is error-free. In spatial coding, letter 

position uncertainty is modelled by assuming that the position codes associated with letter 

signals are scaled Gaussian functions, rather than point values. Thus, the model includes a 

parameter called , which reflects the degree of letter position uncertainty. Similar assumptions 

about the coding of letter position uncertainty have been made in other models of letter position 

coding (e.g., Gomez, Ratcliff & Perea, 2008; Grainger et al., 2006). One way to depict this 

uncertainty is to plot the spatial code with error bars for each position code, as shown in Figure 

2(a). Another way to represent the spatial code is to rotate the axes so that the horizontal axis 

represents the position code, as shown in Figure 2(b). The Gaussian-shaped uncertainty 

functions plotted in this figure are described mathematically by the equation:  

 
 – 

     (1) 

where the subscript  indexes the letters within the spatial code and  is the (veridical) serial 

position of the jth letter within the input stimulus. For example, as A is the second letter of cat, 

the function coding the letter A in Figure 2(b) has the equation: 

 
 – 
     (2) 
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Equation 2 holds wherever the word is fixated, and whichever position-specific letter features 

are activated by the A in cat. At the same time, the specific value of 2 in this example is not 

critical – what is critical is the relative pattern among the letters within the spatial code. Thus, 

adding a constant to the values shown in the horizontal axis in Figure 2(b) would not disrupt the 

spatial code (e.g., values of 5, 6, and 7 for the letters C, A, and T would work equally well). 

Factors Affecting Letter Position Uncertainty 

A number of factors are likely to affect the magnitude of the  parameter. One plausible 

assumption is that letter position uncertainty varies as a function of distance from fixation. That 

is, letters that are fixated are subject to relatively little position uncertainty, whereas letters in the 

parafovea may be associated with considerable position uncertainty. This relationship between 

letter position uncertainty and position of fixation provides the most likely explanation of the 

data of Van der Haegen et al. (2009), who observed that transposed letter priming effects 

increased considerably as the distance between the point of fixation and the transposed letters 

increased from 0 to 3 letter widths. Davis, Brysbaert, Van der Haegen, and McCormick (2009) 

showed that the spatial coding model can fit these data well if  is assumed to increase linearly 

as a function of distance from fixation.  

Thus, the assumption that  increases with distance from fixation helps to account for 

masked priming data; it is also supported by independent data from letter report tasks (Chung & 

Legge, 2009; Davis, McCormick, Van der Haegen,  & Brysbaert, 2010). In general, however, 

this assumption is not useful for modelling data from the majority of published experiments, as 

fixation position is typically not controlled. However, another variable that is likely to affect  is 

word length. Indeed, the assumption that  increases with distance from fixation implies that the 

average value of  for the letters in a word will tend to be larger for longer words than for 

shorter words, given that the letters in longer words will, on average, be further from fixation. 
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This assumption is implemented in the simulations reported below by assuming the following 

linear relation between stimulus length and : 

      (3) 

where  and  are parameters. 

Coding Uncertainty Regarding Letter Identity 

The spatial coding model also encodes uncertainty about letter identity. Letters for which 

there is considerable perceptual evidence in the input are coded by large letter activities, 

whereas letters that are only weakly supported by the perceptual input are coded by small letter 

activities. In the case where there is no ambiguity concerning letter identity, each letter in the 

input stimulus is coded by a letter activity of 1. 

The simultaneous coding of letter position and letter evidence necessitates a two-

dimensional coding scheme. An example using this scheme is depicted in Figure 2(c). Each 

letter node is associated with a two-dimensional function. The amplitude of the function 

represents the degree of letter evidence; in this example, it is assumed that there is less 

perceptual evidence supporting the middle letter than the two exterior letters.  

,   
 – 

     (4) 

As in Equation 1, the signal function in Equation 4 varies as a function of position, 

where the central tendency of the function represents the veridical letter position (posj), and the 

width of the function reflects the degree of letter position uncertainty (note that the label 

“spatial” in Equation 1 has been replaced by “signal” in Equation 4). The signal function in 

Equation 4 also varies over time (t). This reflects the fact that letter activity changes over time as 

initial letter ambiguity is resolved (the equation governing this change is described below). It 

would also be plausible to assume that position uncertainty varies over time (i.e., that 

uncertainty decreases with time), but for simplicity the present implementation assumes a fixed 
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value of  throughout time. The maximum value of the function in Equation 4 is 1, which 

occurs when the letter activity takes its maximum value of 1 ( 1  and p = .  

The Gaussian-shaped functions assumed in the spatial coding model serve the same 

function as the Gaussian distributions in Gomez et al.’s (2008) overlap model. However, in the 

latter model, the setting of  affects not only the horizontal extent of the position uncertainty 

function, but also the amplitude (height) of the function. This effect of  is inconsistent with the 

two-dimensional coding scheme assumed here, in which the amplitude of the function represents 

the degree of letter identity uncertainty (i.e., it is important in the spatial coding scheme not to 

confound the coding of position uncertainty with the coding of letter identity uncertainty). This 

point is illustrated by Figure 2(c), in which the amplitude of the letter A function is lower than 

that of the C and T functions (and the T function has a slightly lower amplitude than the C 

function), e.g., because this letter’s identity is supported by weaker perceptual evidence, 

although its position is coded just as accurately (i.e., the three functions have equivalent 

horizontal extents). Another difference between the uncertainty functions in the two models is 

that the scaling of the Gaussian functions in the spatial coding model ensures that match values 

vary on a scale from 0 to 1. 

Neural Implementation of Spatial Coding 

A neural instantiation of the two-dimensional spatial coding scheme was described by 

Davis (2001, 2004; see also Davis, in press). According to this account, the first dimension – the 

signal amplitude that is assumed to encode letter evidence – reflects the mean firing rate of a 

population of neurons that contribute to coding a given letter. The second dimension – the 

position code – reflects the phase with which the neurons within this population fire (with the  

parameter perhaps reflecting the noisy distribution of phase values). This phase coding 

hypothesis asserts that the position code is encoded in the phase structure of letter output 

signals. It is assumed that letter nodes output signals in a rhythmic fashion, such that these nodes 
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“fire” with a fixed periodicity, e.g., at times t, t + P, t + 2P, t + 3P, etc., where P is a constant 

that represents the period length. Different letter nodes may fire at different times within this 

repeating cycle, in which case they are said to have different phases. The phase of the waves 

output by letter nodes is an index of relative position information: earlier letters are coded by 

waves that are output earlier in the cycle. This is illustrated in Figure 3, which shows the letter 

signals output by the letter field when the input stimulus is the word stop (the righthand side of 

the figure is described in the next section). In this case, waves are output by the letter nodes that 

code S, T, O, and P (in that sequence); the waves are shown at a point in time soon after the P 

letter node has output its signal. Note that the wave output by the S node is the most advanced at 

this point, because it was output first, while the wave output by the T node is the second most 

advanced, and so on. As can be seen, there is some temporal overlap amongst these waves, 

reflecting letter position uncertainty.  

Construction of the Spatial (Phase) Code 

Although a phase code could be constructed via a purely parallel process, the process I 

hypothesise here involves a very rapid serial process that scans from left-to-right across 

position-specific letter channels (in languages that are read from right-to-left the scan would 

operate in that direction). This scan comprises a coding cycle that is divided into a sequence of 

phases, which correspond to the times within the cycle when a sequence coding mechanism (the 

spatial coder) sends rhythmic excitatory pulses to the letter level. This mechanism dynamically 

binds letter identity information with letter position information. I assume that this process 

ordinarily begins with an initial figure-ground segmentation process that determines the spatial 

extent of the stimulus, and identifies the letter channels corresponding to the initial and final 

letters. The identification of the initial letter channel triggers the beginning of the coding cycle. 

The spatial coder sends an excitatory signal to that channel that causes active letter nodes within 

the channel to “fire”, i.e., to output signals to the word level. Because this is the start of the 

cycle, we can denote the resulting signals as having a phase of 1, although the absolute phase 
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value is not critical. The spatial coder then moves its “attention” rightward to the next letter 

channel, so that its next rhythmic pulse causes letter nodes within that channel to fire with a 

phase of 2. This process continues until the spatial coder reaches the letter channel 

corresponding to the final letter. Thus, the spatial coder coordinates the letter output signals to 

the word level, causing active nodes within these channels to fire with a later phase for letters 

occurring later in the input stimulus. Davis (in press) discusses how a neural network 

architecture known as an avalanche network (Grossberg, 1969) could implement the serial scan. 

The phase coding account provides a plausible description of how the theoretical ideas 

underlying spatial coding and superposition matching could be implemented within the brain 

(see Davis, in press, for further discussion of the neural plausibility of this implementation). 

Nevertheless, the success of spatial coding as a functional account does not depend on this 

particular neural instantiation being correct. 

Superposition Matching 

Superposition matching is a method for computing the match between two spatial codes: 

one that represents the current input to the system and another that represents the stored 

representation of a familiar word (the template). The template word is coded in the pattern of 

weights that connects the word node to the letter level, using the same spatial orthographic 

coding scheme that is used to code the input stimulus (e.g., a weight value of 1 for the first letter 

of the template, 2 for the second letter, and so on). The spatial coding model assumes that there 

is no uncertainty associated with the positions of the letters in the stored representation of 

familiar words, and hence letter position is coded by point values rather than distributions. 

Lexical matching can thus be conceived of as an operation involving the comparison of two 

vectors: a signal vector representing the bottom-up input signals passed to the word node, and a 

weight vector representing the template. As an example of the calculations involved in 

superposition matching, Table 1(a) illustrates the case where the input stimulus is the word 

brain, and the template is also the word brain. The first column of the table lists the letters of 
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the template. The second  column of the table lists the values of the spatial code for the input 

stimulus (i.e., the position uncertainty functions are centred around these values). The third 

column of the table lists the values of the spatial code for the template. These values are 

identical to those in the first column, because the stimulus is a perfect match to the template. 

The superposition matching algorithm involves three steps. First, a signal-weight 

difference function is computed for each of the letters of the template. The central values of 

these functions are shown in the final column of Table 1(a), and the signal-weight difference 

functions themselves are shown in Figure 4(a). Signal-weight differences of zero are computed 

for each of the comparison letters (this is always the case when the stimulus is identical to the 

template), and thus the signal-weight difference functions are perfectly aligned.  

The second step is to combine these signal-weight difference functions by computing a 

superposition function. The superposition of a set of signal-weight difference functions is 

simply the sum of the functions. The superposition function for the example we have been 

discussing is the top function in Figure 4(a). Some examples of superposition functions for a 

variety of other cases are shown in Figure 4. For simplicity, these examples assume there is 

perfect letter identity information (i.e., 1). 

The final step in the computation of the match value is to divide the peak of the 

superposition function by the number of letters in the template. In the example illustrated in 

Figures 4(a), this division results in a match value of 1, which is the maximum match value. 

A critical theoretical advantage of the superposition function is that it is sensitive to the 

relative rather than the absolute values of the signal-weight differences. This is illustrated by the 

situation where the input stimulus is a superset of the template, such as wetbrain (for the 

template brain). The signal-weight difference calculations for this stimulus are shown in Table 

1(b), and the resulting difference functions are depicted in Figure 4(b). As can be seen, the five 

signal-weight difference functions are centered on 3, rather than 0. Although the difference and 

superposition functions have been shifted by three positions (reflecting the fact that the letters of 



Spatial Coding Model  19 
 

brain have been shifted three positions to the right in wetbrain), the superposition function has 

the same shape and peak, resulting in a match value of 1. This example illustrates how spatial 

coding, combined with superposition matching, supports position-invariant identification. 

The examples depicted in Figure 4(c-f) illustrate situations in which the input stimulus 

is: c) an outer-overlap superset of the template, as in the case of brahmin (for the template 

brain); d) a transposition neighbour of the template (e.g., the stimulus brian); e) a nonadjacent 

transposition neighbor of the template (e.g., the stimulus slate for the template stale); or (f) a 

backwards anagram (e.g., the stimulus lager for the template regal). Note that the superposition 

function becomes broader and shallower (and, consequently, the match value becomes smaller) 

across the latter three examples as the disruption to the relative positions of the letters increases. 

In particular, when the string is reversed none of the signal-weight difference functions are 

aligned (see Figure 4(f)), and the match value is relatively small (.25). 

Implementation of Superposition Matching 

To implement superposition matching, I assume that the transmission of the spatial code 

to the word level goes via an intermediate set of nodes called receivers. For example, the cat 

word node is connected to separate receivers for the letters C, A, and T. These nodes compute 

signal-weight difference functions and output the result to the word node. Receiver nodes also 

serve the function of resolving the competition among the different outputs emanating from the 

letter level, as described below.  

The phase coding hypothesis suggests that the connections between letter nodes and 

receiver nodes should be coded by a special kind of weight. Rather than a conventional weight, 

which multiplies the incoming input signal, these connections function as delay lines, which 

shift the phase of incoming input signals. This function is mathematically equivalent to the 

operation of computing a signal-weight difference. The mathematical operation of superposition 

is realised by assuming that word nodes integrate the inputs coming from each of their receivers 
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over relatively narrow temporal windows. In effect, word nodes act as temporal coincidence 

detectors. When there are few inputs to the node, or when multiple inputs are out of phase with 

each other (as in the case of reversal anagrams like lager-regal) the summed input is relatively 

small, but when there are multiple inputs that are in phase (i.e., when they are temporally 

coincident, arriving at the word node at the same time) the summed input is relatively strong.  

Formal Description of Match Calculation 

The following equations formalise the above description. I begin by considering a 

simplification, in which there is just one receiver node for each letter of the template, and this 

node receives input from just one letter node (below I consider the more realistic case in which 

there are multiple receiver nodes for each letter of the template, which is required to handle 

repeated letters). Each of these receiver nodes is connected to the letter level by a delay line with 

value , where the subscript i indicates that the receiver is attached to the ith word node, 

and the subscript r is used to index the different receivers attached to this node (e.g., when the 

template is cat, the subscript r takes on values of 1, 2 , or 3); in Equation 5 below, r is also used 

to index the letter node to which the receiver is attached. The value of  corresponds to 

the expected ordinal position of the corresponding letter within the template. (I note in passing 

that it would be possible to use complementary coding, in which the value of  is 

determined by subtracting the expected ordinal position of the letter from some fixed constant. 

The delay value would then be added rather than subtracted in Equation 5, which has a more 

ready physical interpretation. Nevertheless, exactly the same match values would result).  

The receiver function is calculated by subtracting this delay value from the output signal 

of the letter node to which it is connected: 

,  ,       (5) 

The superposition function is found by summing across the receiver functions for each of the 

template’s receivers: 
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, ∑ ,                                      (6) 

The value of  is then: 

 
  ,                                 (7) 

Where, leni is the length of (i.e., number of letters in) the template, and  – the 

resonating phase – is defined as follows: 

   , max ,                        (8)                      

That is, the resonating phase corresponds to the value of the signal-weight difference where the 

superposition function is at its peak; for example, for the situation depicted in Figure 4(b), the 

resonating phase is 3. Basing  on the maximum instantaneous strength of the 

incoming superposition signal at time t implies that word nodes function as temporal 

coincidence detectors, as described earlier. 

Dealing with Repeated Letters 

A critical issue that must be addressed in the description of spatial coding is how to code 

stimuli that contain letter repetitions. Handling repeated letters requires that each letter should 

be coded by multiple letter nodes. To see why, consider the alternative whereby there is just a 

single letter node for each of the letters of the alphabet. In this scenario, coding any word that 

contained a repeated letter (e.g., book) would necessitate being able to simultaneously code the 

positions of two (or more) letters with a single letter node, which is not possible in a spatial 

coding scheme (as Davis, 1999, notes, attempting to do so would interfere with veridical coding 

of letter order).  

Thus, rather than assuming a single receiver node for each letter of the template, it is 

necessary to assume there are multiple copies, or clones, of each receiver node. Critically, the 

word node treats each of these different receivers as functionally equivalent; this is the principle 

of clone equivalence. That is, each receiver is equally capable of signalling to a word node the 

presence of a letter string which includes that letter. For example, the word node that codes stop 
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activates in response to any set of S, T, O, and P receivers from which it receives temporally 

coincident (phase-aligned) signal functions. 

The receiver nodes associated with a particular word node are organised into separate 

banks, i.e., there is one bank of receiver nodes for each of the letters in the template. The present 

implementation assumes that there are position-specific letter channels (see Figure 6) and that 

each bank contains one receiver node for each letter channel, so that each of the nodes within a 

bank receives input from a corresponding letter node within a particular channel. For example, 

the cat word node is connected to three banks of receivers (for the letters C, A, and T 

respectively), with the A bank containing one node that receives inputs from A in channel 1, 

another node that receives inputs from A in channel 2, and so on. I note in passing that it is also 

possible to implement receiver banks that have far fewer receivers within each bank (e.g., four is 

sufficient to code all English words). 

The receiver function computed by an individual receiver within bank b of the ith word 

node is calculated in the same way as before, but the notation includes an additional subscript:  

,  ,              (9) 

The key difference between Equations 5 and 9 is that the latter equation embodies the possibility 

that multiple receivers could activate for the same letter of the template. In particular, this 

situation arises when the stimulus includes one or more repeated letters.  

Interactions between Receiver Nodes 

To deal with this situation appropriately, the model assumes that there are competitive-

cooperative interactions between and within receiver banks. Specifically, there is winner-take-

all competition between the receivers within each bank, and also between receivers in different 

banks that code separate occurrences of the same letter, and there are cooperative signals 

between receiver nodes that are in phase with each other (i.e., nodes that have computed 

equivalent signal-weight differences). There are also cooperative signals between receiver nodes 
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that are in phase with each other, i.e., nodes that have computed equivalent signal-weight 

differences. These competitive-cooperative interactions are weighted by letter activity, i.e., 

clones that receive strong letter signals carry greater weight than those that receive weak letter 

signals. The effect of these competitive-cooperative interactions is to select (at most) one winner 

within each bank (it is possible for a bank to contain no winners; for example, this occurs when 

the input stimulus does not contain the letter represented by that bank). We can define 

 to denote the particular receiver that activates in bank b. Equation 6 is then 

modified to become: 

, ∑ ,               (10) 

When neither the stimulus nor the template contain repeated letters, it is straightforward 

to determine the winning receiver (it is the only receiver activated in the bank), and the situation 

is the same as described in Equations 5 to 8. The principle of clone equivalence implies that it 

does not matter which of the receivers in a bank activates for a given letter. 

If the input stimulus has repeated letters, there will be at least one bank in which two or 

more receiver nodes become active. The identity of the winning receiver within this bank 

depends on the pattern of competitive and cooperative interactions between the full set of 

receivers. To illustrate, Figure 5(a) shows the signal-weight differences computed when the 

input stimulus is the word stoop and the template is also the word stoop. These differences are 

shown in a matrix, where the columns of the matrix represent the five banks of receivers 

(corresponding to the five letters of the template) and the rows represent the different receivers 

within each bank, each of which receives input from a separate letter channel (only the first five 

receivers are depicted, as this is sufficient to show all of the critical functions). For the letters S, 

T, and P, the computations are straightforward. Only one letter clone in each bank receives a 

positive output, and the signal-weight difference is equal to zero in each case, i.e., these three 

letters occur in their expected position. For the remaining two comparison letters (the repeated 

letter O), there are two active receivers in each bank. That is, the first O in the stimulus stoop 
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could represent the first or the second O in the template, and likewise for the second O in the 

stimulus. For the observer, it is self-evident that the third letter in the stimulus corresponds to 

the third (rather than the fourth) letter of the template. The network determines this based on the 

competitive-cooperative reactions among receivers. The presence of five receivers that compute 

a signal-weight difference of zero results in this being the resonating phase (see Equation 8). As 

a consequence of co-operative signals between these phase-aligned receivers, the competition 

between O receivers is won by those nodes that share the resonating phase, i.e., clone 3 in the 

first O bank (bank 3), and clone 4 in the second O bank (bank 4). The winning receivers are 

indicated in the figure by the differences shown in bold font. Here, the set of five equivalent 

signal-weight differences will result in a match value of 1, as is appropriate for a stimulus that 

perfectly matches the template. 

The present approach avoids a problem with alternative methods of dealing with 

repeated items (e.g., Bradski, Carpenter, & Grossberg, 1994; Davis, 1999) which do not obey 

the principle of clone equivalence. Such methods have trouble explaining how the embedded 

word stop can be identified in the stimulus pitstop, because the stop node attends to the first 

occurrence of the P in the stimulus, and therefore sees the input as “p  sto”. By contrast, the 

competitive-cooperative interactions among receivers described here ensure that it is the second 

P in pitstop that activates the stop template.  

Another issue relating to how the model handles repeated letters arises when the 

template, and not the stimulus, contains repeated letters. An example of this situation is depicted 

in Figure 5(b). Here the template is again the word stoop, but the stimulus is the word stop. 

Although the stimulus contains only a single O, signal-weight differences are computed in both 

of the O receiver banks. The problems, then, are a) how the network prevents the single 

occurrence of the letter O from doing “double duty” and contributing to both of the O receiver 

banks, and b) if it avoids the double-duty problem, how it chooses the correct receiver bank, so 

as to optimise the match value. These problems can be resolved by competition between 
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receiver banks, which implements a “one-letter, one-match” rule that restricts stimulus letters 

from participating in more than one signal-weight match. The resonating phase for this set of 

signal-weight differences is 0 (there are three differences of 0 versus two differences of -1). 

Consequently, the receiver in the first O bank (bank 3) attracts stronger cooperative signals than 

the receiver in the second O bank (bank 4), and this allows it to suppress the latter node. The 

assumption here is that there is winner-take-all competition not only between the receivers 

within each bank, but also between receivers in different banks that receive inputs from the 

same letter node (e.g., clone 3 in bank 3 sends inhibition to clone 3 in bank 4 but not to clone 4 

in bank 4). This competition between receivers prevents the single occurrence of the letter O 

from activating both O receiver banks. The four winning receivers are once again shown in bold, 

and the resulting signal weight differences (0, 0, 0, and -1) give rise to a match value of 0.72. 

The present implementation of the model makes the simplifying assumption that the 

competitive-cooperative interactions between receivers occur instantaneously. In practice, 

however, a few cycles of processing may be required for within and between-bank competition 

to resolve potential ambiguities in the case of words with repeated letters. This additional 

processing time may explain the inhibitory effect of repeated letters on lexical decision latency 

reported by Schoonbaert and Grainger (2004). 

Dynamic End Letter Marking   

The match calculations described thus far assign equal weight to all serial positions. 

However, there are various findings pointing to the special status of exterior letters, especially 

the initial letter. Transpositions that affect the exterior letters have a more disruptive effect on 

word identification than transpositions of interior letters (e.g., Bruner & O’Dowd, 1958; 

Chambers, 1979; Holmes & Ng, 1993; Perea & Lupker, 2003a; Schoonbaert & Grainger, 2004; 

Rayner et al., 2006; White et al., 2008). Furthermore, participants are able to report the exterior 

letters of briefly presented letter strings with relatively high accuracy, but make frequent 
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location errors for interior letters (e.g., Averbach & Coriell, 1961; Merikle, Lowe, & Coltheart, 

1971; Mewhort & Campbell, 1978).  

Different models attempt to accommodate this aspect of orthographic input coding in 

different ways, e.g., by assuming specialised end letter nodes (Jacobs, Rey, Ziegler, & Grainger, 

1998; Whitney, 2004), a smaller position uncertainty parameter for the initial letter (Gomez et 

al., 2008), or specialised receptive fields for initial letter nodes (Tydgat & Grainger, 2008). The 

approach taken here shares similarities with each of the above mechanisms, as well as with 

recent models of serial recall (e.g., Farrell & Lelièvre, 2009). 

Dynamic end letter marking is an extension of the basic spatial coding model to 

accommodate the special status of exterior letters. Conceptually, this mechanism is 

straightforward: in addition to tagging each letter with a position code, the initial and final 

letters are explicitly marked as such, e.g., the S and P in stop are tagged as the initial and final 

letters respectively. End letter marking is envisaged as a process that complements spatial 

coding, providing an additional means of constraining the set of potential lexical candidates. 

Exterior Letter Banks  

End letter marking is implemented in the spatial coding model via the assumption of 

specialised letter representations that explicitly (but temporarily) encode the exterior letters of 

the current stimulus. Thus, there is an initial letter bank which codes the initial stimulus letter, 

and a final letter bank that codes the final stimulus letter (see Figure 6). Both of these banks 

contain one node for each letter of the alphabet (the figure shows only a subset of the nodes). 

There are excitatory connections between the two exterior letter banks and the word level; the 

weight of the connection from the jth node within the initial letter bank to the ith word node is 

denoted , while the weight of the connection from the jth node within the final letter bank 

to the ith word node is denoted . It is assumed that these connections are pruned during the 
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course of learning so that, ultimately, each word node has a positive connection to exactly one 

node in the initial letter bank and one node in the final letter bank. 

Thus: 

 
1

leni 2
    if ,

  0    otherwise 
                                                    (11)  

and 

 
1

leni 2
    if ,

  0    otherwise 
                                                 (12) 

 

For example, Equation 11 implies that the weights from the initial letter bank to the cat word 

node are all zero except for the connection from the C letter node in this bank. Likewise 

Equation 12 implies that the weights from the final letter bank to the cat word node are all zero 

except for the connection from the T node within this bank.  The value of 
1

leni 2
 for the positive 

weights reflects a simplifying assumption of weight normalisation and weight equivalence. 

(recall that leni represents the length of the template). That is, the weights to the ith node are 

normalized such that the incoming weights sum to 1, and so that all positive connections are of 

equivalent strength. The same assumption implies that the weight from receiver bank b to the ith 

word node is: 

                                                  (13) 

For example, the cat word node receives five positive connections (two from the exterior letter 

banks, and one each from the C, A, and T banks), and each of these connections has a weight of 

1/5 = 0.2. The process by which these weights are learned is not modelled here, but this learning 

can be achieved quite readily with a Hebbian-type pattern learning algorithm (e.g., Grossberg, 

1973). In alternative variants the weights  could vary across receiver banks, so that greater 
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weights are assigned to letters that are more perceptually salient (e.g., the initial letter) or more 

informative with respect to lexical identity (e.g., consonants as opposed to vowels). 

The activation of nodes within the exterior letter banks can be implemented as part of the 

function of the spatial coder. As noted above, word identification is assumed to begin with an 

initial figure-ground segmentation process that determines the spatial extent of the stimulus. 

When the letter channel corresponding to the initial letter is identified a signal is sent to the 

initial letter bank, briefly opening a gate so that this bank can receive letter input signals. 

Likewise, when the letter channel corresponding to the final letter is identified a signal is sent to 

the final letter bank, briefly opening a gate so that this bank can receive letter input signals. The 

upshot of this mechanism is that the initial letter bank temporarily mirrors the activity of the 

letter channel that corresponds to the initial letter of the current stimulus and the final letter bank 

temporarily mirrors the activity of the letter channel corresponding to the final letter. Thus, the 

word identification system holds a temporary store of the initial and final letters of the stimulus 

from quite early in the identification process. 

Incorporating Exterior Letter Feedback in the Match Calculation 

The incorporation of the signals from the exterior letter banks into the match calculation 

necessitates a slight modification to the previous equation. The revised equation is of the form: 

                   (14) 

where  

∑  ,            15   

and the weights  are defined as in Equation 13. The exterior letter match is simply the dot 

product of the exterior bank letter activities with the corresponding weights to the word node: 

 ∑  ∑                   (16) 

The inclusion of the normalised weights in Equations 15 and 16 ensures that the match values 

arising from Equation 14 are constrained to lie between 0 and 1 (and thus explicit division by 
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 is unnecessary). Thus, Equations 3 through 16 define how the model assigns a spatial code 

and how it computes the match between spatial codes representing the stimulus and the template 

for a familiar word. These equations involve only two parameters, which determine how letter 

position uncertainty varies as a function of stimulus length (see Equation 3). 

Evaluating the Match Values Produced by the Model 

The set of equations presented above makes it possible to compute a match value 

representing orthographic similarity for any pair of letter strings. Table 2 lists match values for 

various types of orthographic similarity relationships, as computed by the spatial coding model 

with and without end letter marking. Each example assumes a five letter template word, though 

the input stimulus may contain fewer or more letters. As can be seen, the models with and 

without end letter marking make quite similar predictions, but the addition of end letter marking 

results in smaller match values for stimuli where the end letters differ from the template, and 

slightly larger values for stimuli with exterior letters that match those of the template. 

The relative ordering of match values for the different forms of orthographic similarity 

relations shown in Table 2 is consistent with some general criteria that were proposed by Davis 

(2006), on a basis of a review of orthographic similarity data; for example, nearly adjacent 

transposition neighbors like slate and stale are more similar than double-substitution neighbors 

like smile and stale, but less similar than single-substitution neighbors like scale and stale). 

However, to properly evaluate the model it is necessary to derive predictions that are directly 

relevant to the dependent variables measured in experiments on orthographic input coding. To 

this end, I next describe how the spatial coding and superposition matching equations can be 

embedded within a model of lexical selection, and how this model can simulate lexical decision. 

Modelling Lexical Selection 

Within the localist, lexicalist framework adopted here, lexical selection involves 

competition between lexical representations. Evidence supporting such lexical competition has 

been reported by Bowers, Davis, and Hanley (2005b) and Davis and Lupker (2006). The most 
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well known model implementing this form of lexical selection is the IA model. As noted earlier, 

the spatial coding model retains many of the features of the IA model, including that model’s 

localist letter and word representations, hierarchical processing, lateral inhibition, top-down 

feedback, and frequency-dependent resting activities. However, the orthographic input coding 

scheme and lexical matching algorithm of the original model are replaced by the spatial coding 

and superposition match algorithm described above. 

Overview of Differences between the Spatial Coding Model and the IA Model 

The main differences between the spatial coding model and the original IA model are the 

input coding scheme and the way in which input stimuli are matched against word templates. 

However, there are also some other differences between the models that affect the present 

simulations. The original IA model was designed to handle words of a fixed length (four letters). 

When words of varying length are included in the vocabulary, there can be quite intense 

competition between subsets and supersets, e.g., between words like come and comet. If the IA 

model’s processes of lexical selection are not modified, it often fails to select the correct target 

word, due to competition from subsets and/or supersets. As described below, the spatial coding 

model introduces two mechanisms to overcome this problem. There are also some differences 

between the models with respect to a) the way word frequency influences word activation, b) the 

nature of activity decay, c) the way in which incompatible information in the stimulus inhibits 

word node activity, and d) the nature of top-down feedback. As is shown below, the latter 

changes to the model have a small positive impact on its ability to explain the data simulated in 

the second part of this article, although a good fit to the data can be obtained even without 

introducing these changes. That is, it is the input coding and matching assumptions that have 

been described already that are critical to explaining orthographic similarity data. 

Architecture of the Model 
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The architecture of the spatial coding model is shown in Figure 6. The model is a localist 

neural network model: each node within the model corresponds to a unique representation (e.g., 

a letter feature, a letter, or a word). As in the IA model, there are separate representational levels 

for letter features, letters, and words, and there are connections between nodes in adjacent 

levels. In addition, there are representational levels for coding exterior letters and for coding 

stimulus length. Nodes within the latter two levels receive inputs from the letter level and 

project connections to the word level. Furthermore, the model incorporates a spatial coding 

mechanism that coordinates the transmission of signals from the letter level to the word level.  

The nodes within the feature and letter levels are divided into separate subsets 

representing different position-specific channels. Whereas the original IA model consisted of 

four channels, the present implementation includes twelve. In other respects, these components 

of the model are equivalent to the original IA model. The representations at the letter level are 

treated as abstract letter identities, although in practice the Rumelhart-Siple (1974) font that is 

used to code letter features can only code upper-case letters. Although more plausible accounts 

of the features that readers use to identify letters are now available (e.g., Courrieu, Farioli & 

Grainger, 2004; Fiset et al., 2008; Pelli, Burns, Farrell & Moore-Page, 2006), McClelland and 

Rumelhart’s (1981, p. 383) assumption that “the basic results do not depend on the font used” 

seems like a reasonable starting point.  

Nodes at the word level are not position-specific. The only respect in which the word 

level in the spatial coding model differs from the IA model is the assumption of the intermediate 

receiver nodes that connect letter nodes to word nodes (these are not shown in Figure 6). As 

described above, the purpose of these nodes is to compute signal-weight difference functions, 

resolve the competition among the different outputs emanating from the letter level, and output 

the result to the word node. 
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As in the word level of the IA model, a crucial aspect of processing is that words 

compete with each other via lateral inhibition: this is the means by which the model selects the 

word node (or nodes) that best match(es) the input stimulus. That is, the node that receives the 

greatest input from the letter level will dominate the activity at the word level and suppress the 

activity of competing word nodes. As shall be seen below, the presence of competitive 

interactions in the lexicon has important implications for the interpretation of the masked 

priming effects that have been the most common source of evidence in recent studies of letter 

position coding and lexical matching. As described below, the model implements lateral 

inhibition by means of the summation nodes shown at the top of Figure 6. This appears to be a 

neurally plausible method, and is the only viable method of implementation from a modelling 

perspective (assuming direct lateral  inhibitory connections between each pair of word nodes 

would require roughly 109 inhibitory connections for the current lexicon, versus approximately 

30,000 in the present implementation). 

Figure 6 also shows the exterior letter banks, which explicitly code the initial and final 

letters of the stimulus. Both of these banks contain one node for each letter of the alphabet (the 

figure shows only a subset of these nodes). There are excitatory connections between the two 

exterior letter banks and the word level (e.g., the C node in the initial letter bank sends an 

excitatory connection to the CAT word node, as seen in the figure).  

Finally, the spatial coding model includes a stimulus length field, shown on the lefthand 

side of Figure 6 (again, the figure shows only a subset of the nodes within the field). The 

function of the nodes within this field is to explicitly code the length of the current input 

stimulus. Nodes of this type were previously proposed by Smith, Jordan, and Sharma (1991) in 

order to extend the IA model to processing words of varying length. As will be seen below, this 

assumption is not the only way to handle competition between words differing in length. 

Nevertheless, information about stimulus length presumably becomes available quite early in 
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processing, based both on total letter level activity as well as independent visual input signals, 

and thus it seems plausible that this information is exploited by the visual word recognition 

system. Indeed, during normal reading the visual system presumably exploits an estimate of the 

length of the next word in order to plan the saccade to that word so that the eyes land close to 

the preferred viewing location (Rayner, 1979). 

How Signals Flow through the Model 

Stimuli are presented to the model by setting the binary activities at the feature level. 

Active features then send excitatory signals to all of the letter nodes containing that feature, and 

inhibitory signals to all of the letter nodes not containing that feature; these inputs result in the 

activation of letter nodes. The spatial coding mechanism then coordinates the output of letter 

signals to the word level, dynamically tagging these letter signals with a phase code that 

indicates relative letter position. These signals are intercepted by receiver nodes, which shift the 

phase of the signals (thereby implementing the previously described signal-weight difference 

computation), and also resolve competition due to repeated letters. The signals output by 

receivers are then integrated at word nodes, which implement the superposition matching 

algorithm. Inputs from the exterior letter banks also contribute to the match value computed by 

word nodes. In addition to the match value, word nodes also compute a term that represents the 

mismatch between the input stimulus and the template. The net input to the word node is 

computed by combining these bottom-up match and mismatch signals with lateral inhibitory and 

excitatory signals, as well as length (mis)match signals from the stimulus length field. This net 

input drives a differential equation representing changes in activity over time. The other factors 

that influence this activity equation are exponential decay and a term that reflects the frequency 

of the word coded by the word node (thus high frequency words become activated more rapidly 

than low frequency words). When the stimulus is a word, the large match value computed by the 

node that codes that word will ensure that it soon starts to become more activated than the 

others, and lateral inhibition within the word level then allows this word node to suppress its 
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competitors. The time that it takes for the dominant word node to exceed the identification 

threshold is the critical factor affecting the speed of Yes responses when the model simulates the 

lexical decision task. When the stimulus is not a word, the model will usually respond No, but 

the time that it takes to make this response will depend on the extent to which the stimulus 

activates nodes at the word level (i.e., very wordlike nonwords will take longer to reject than 

less wordlike nonwords).  

Resting Activities 

Each node has a resting activity to which it decays in the absence of positive input, and 

this resting activity serves as the starting activity of the node at the beginning of each trial. The 

resting activity of letter nodes is assumed to be zero. The resting activity of word nodes was 

offset below zero as a function of log word frequency. The formula relating word frequency to 

word node resting activity is as follows: 

log
  

    (17) 

where MaxF represents the log frequency of the most frequent word in the model’s lexicon (the 

word the) and MinF represents the log frequency of the most frequent word(s) in the model’s 

lexicon. Equation 17 implies that the node coding the word the has a resting activity of 0, and 

that nodes coding the least frequent words in the model’s lexicon (those with frequencies of 0.34 

per million words in the CELEX corpus, such as behemoth) have the lowest resting activity, 

determined by the parameter FreqScale. The latter parameter was set to .046 (i.e., the node 

coding behemoth has a resting activity of -0.046), following the original IA model (see 

McClelland & Rumelhart, 1988).   

Activation Dynamics 
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The activation dynamics of letter and word nodes are governed by an activity equation 

that specifies how node activity should change on each cycle of processing. This activity 

equation is the same for letter and word nodes, and takes the following form: 

∆     (18) 

This equation says that the instantaneous change in a node’s activity depends on four factors: 

a) the current activity ( ), b) the net input to the node ( ), c) the decay in node activity 

( ), and d) a bias input that favours higher frequency words. The current activity 

influences the instantaneous change in activity by moderating the effect of the net input, as can 

be seen in the following equation for : 

 
         1       t                 if 0
                      otherwise 

       (19) 

The combination of Equations 18 and 19 implies that the effect of the net input decreases as the 

node activity approaches its maximum/minimum value. Positive inputs drive node activity 

towards a maximum of 1, while negative inputs drive node activity towards a minimum of 

ActMin; the parameter ActMin is set to -0.2, as in the original IA model.  

The third factor in Equation 18 represents exponential decay. This term is modified 

slightly from the original IA formulation so that node decay is match-dependent. Nodes that 

match the current input stimulus well do not decay, whereas node activity decays rapidly for 

nodes that do not match the current stimulus well. For this purpose the node’s current match 

value, which varies between 0 and 1, is compared to a parameter called DecayCutoff. Thus, 

0     (20a) 

when matchi(t) ≥ DecayCutoff, and 

                          (20b) 

when matchi(t) < DecayCutoff, where DecayRate is a parameter that controls the speed of the 

exponential decay in a node’s activity. The computation of match values is described below. 
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The final factor in Equation 18, the   term, is a negative input that 

effectively acts as a drag on the activation of low frequency words (recall that the maximum 

value of  is 0), but has no effect on letter nodes (because all letter nodes are assumed to 

have zero resting activities). The introduction of distinct parameters for  and 

DecayRate differentiates the model from the IA model. When  is set equal to 

DecayRate and DecayCutoff is set to 1, Equation 20b always holds, and Equation 18 can be 

rewritten 

∆     (21) 

which is identical to the original IA model. In the case where the net input is zero, the decay 

term in Equation 21 implies that node activity decays exponentially towards the node’s resting 

activity, at a rate determined by DecayRate. 

 

Computation of Net Input to Letter Nodes 

Having explained the various components of the activity equation – its shunting term, 

exponential decay, and frequency bias – all that remains is to explain how the net input term is 

computed. In the case of letter nodes, there are two sources of input to the jth letter node in 

channel c at time t: 

     (22) 

The top-down t signal is similar to the IA formulation, but I delay 

detailed description of this component until the activation of word nodes by letter nodes has 

been described. The bottom-up  signal is computed in exactly the same 

way as in the original IA model, by taking the dot product of the feature activation vector and 

the feature-letter weight vector for that letter node, i.e.,  

  ∑    (23) 
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where (t) is the binary activity of the kth letter feature node in channel c at time t, and 

is the weight connecting that feature node to the  jth letter node. The value of this weight 

depends on the compatibility of the feature with the letter and the parameters FL and FL, which 

represent the strength of feature-letter excitation and inhibition respectively. Compatible 

features and letters (e.g., the feature representing the presence of a top horizontal bar and the 

letter T) are connected by an excitatory connection with strength  = FL and incompatible 

features and letters are connected by an inhibitory connection with strength  = -FL. 

Letter nodes can compute a match value by counting the proportion of positive feature 

signals they receive, or equivalently, via linear transformation of the  

signal, i.e.,   

 
 FL

FL  FL
    (24) 

Equation 24 results in a match value that lies between 0 and 1 (the constant 14 reflects the 

number of letter features in the Rumelhart-Siple font). This match value can then be compared 

to the DecayCutoff parameter, as described in Equation 20. 

 

Computation of Net Input to Word Nodes 

The net input to the ith word node can be decomposed into four sources, representing a) 

the match between the input stimulus and the node’s template, b) a measure of the mismatch 

between the input stimulus and the node’s template, c) lateral inputs from within the word level, 

and d) feedback from the stimulus length field: 

LW   (25) 

In practice, word nodes should also receive feedback from other sources, such as phonological 

and semantic feedback. These inputs are not incorporated in the present implementation, but 

could readily be added to the net input equation.  
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The computation of  – the first term in Equation 24 – has already been explained. 

This match value is raised to a power (in order to contrast-enhance the input) and weighted by 

the parameter FL.  I next describe how the remaining components of Equation 25 are computed. 

Mismatch Inhibition 

The main source of bottom-up input to word nodes is the match value, which measures 

how well the current input stimulus matches the learned template. However, another (weak) 

source of bottom-up input to word nodes is a negative input that discounts evidence for a given 

word on the basis of stimulus letters that are incompatible with that word. This input helps to 

further constrain the set of potential lexical candidates, while avoiding problems associated with 

letter-word inhibition (e.g., Davis, 1999). The key difference between mismatch inhibition and 

the letter-word inhibition in the original IA model and related models (e.g., Coltheart et al., 

2001; Grainger & Jacobs, 1996) is that mismatch inhibition takes account of the presence of 

mismatching letters but not the identity of these mismatching letters (and thus does not require 

any inhibitory letter-word connections). A word node is able to estimate the number of 

mismatching letters in the stimulus by subtracting a count of the number of letters that 

contribute towards the match with the template from the number of letters that are in the 

stimulus. The number of letters that contribute towards the match corresponds to the number of 

winning receivers, while total activity at the letter level (or activities at the stimulus length field) 

can be used to estimate the number of letters in the stimulus. In practice, the latter value is 

capped so that it does not exceed the number of letters in the template. Thus, the equation for 

computing mismatch inhibition is: 

 LW min ,  )     (26) 

where Ci is the number of matching letters (i.e., the count of the positive signals from the 

receiver banks to the ith word node) and LW is a parameter weighing the influence of mismatch 

inhibition. The cap on the larger value in Equation 26 is to ensure that mismatch inhibition does 
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not interfere with the recognition of familiar lexical constituents in complex words. For 

example, if the stimulus is wildcat, the mismatch is 3 (the number of letters in the template) 

minus 3 (the number of winning receivers) equals 0, rather than 7 (the number of letters in the 

stimulus) minus 3. In cases like this the letters in wild are additional letters, rather than 

mismatching letters, and so it is appropriate to compute a zero mismatch. Equation 26 also 

implies that mismatch inhibition cannot help to distinguish addition/deletion neighbours like 

widow/window, although it does help to distinguish substitution neighbours like trail and trawl. 

Furthermore, because the estimate of the number of letters that contribute towards the match is 

not dependent on position-specific coding, mismatch inhibition does not require that letters must 

be in the “correct” position to avoid inhibiting a word node. For example, the G and D in the 

transposed-letter nonword jugde activate winning nodes at the receiver banks for the judge word 

node, and thus do not count as mismatching letters. Note, however, that some anagrams will 

give rise to mismatch inhibition, because the signal-weight difference functions for some 

constituent letters are so distant from the resonating phase. For example, assuming there is not 

extreme letter position uncertainty, the letters e and j in eudgj do not activate winning nodes at 

the receiver banks for the judge word node, because they are too far from the resonating phase 

(which in this case is zero); thus, the asymptotic value of mismatchJUDGE is equal to 0 when the 

input stimulus is judge or jugde, but is equal to 2 when the input stimulus is eudgj. 

Lateral Excitatory and Inhibitory Influences on Word Node Activation 

The  component in Equation 25 has two components, one that is inhibitory, 

representing lateral inhibition at the word level, and one that is excitatory, representing the self-

excitatory signal output by word nodes with positive activities:  

     (27) 

The relative contributions of these two components is weighted by the parameters 

 and . 
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Word-word inhibition. 

The  component in Equation 27 is computed in essentially the same way as 

in the IA model, in that it is calculated by summing across all of the positive word node 

activities (only active word nodes output a lateral inhibitory signal). The only difference is that 

lateral inhibitory signals in the spatial coding model are assumed to be length-dependent. This 

assumption conforms to what Grossberg (1978) refers to as masking field principles. According 

to these principles, nodes that code longer words output stronger lateral inhibitory signals than 

nodes that code shorter words, and are also assumed to dilute incoming lateral inhibitory inputs 

to a greater extent than nodes that code shorter words. These assumptions are implemented in 

the spatial coding model through a masking field weight which increases with the length of the 

template word. The masking field weight for the ith word node is: 

1 4                                (28) 

Equation 28 implies that the masking field weight equals 1 for words of four letters, which 

facilitates comparison with the original IA model. The parameter wmf was set so that nodes that 

code 7-letter words output lateral inhibitory signals that are approximately twice as strong as 

those output by nodes that code 4-letter words (e.g., mfPLANNER = 2.05 versus mfPLAN = 1). 

Lateral inhibition is implemented by assuming the existence of a summation node that 

computes the total word inhibition signal. This approach avoids the need to assume specific 

inhibitory connections between each pair of word nodes. Figure 6 illustrates how this 

summation works for a subset of word nodes. Nodes that code words of different lengths output 

signals to different summation nodes, so that there are separate activity totals  for each 

different word length. For example, the T3 summation node receives inputs from the cat and rat 

word nodes, but not from nodes that code longer words such as cart, chart, or carrot. These 

signals are weighted by the masking field weight, so that longer words output a greater 
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inhibitory signal. The total input to each of the length-dependent summation nodes can be 

written as follows:  

∑    (29) 

As can be seen in Figure 6, each length-dependent summation node sends a signal to a grand 

summation node. The total input to the latter node is: 

∑      (30) 

This value is then output by the grand summation node as an inhibitory signal to the word level. 

Following masking field principles, this inhibitory input is diluted at the word node according to 

the length of the template word. Thus: 

       (31) 

That is, an inhibitory input of a fixed magnitude has approximately twice as much impact on 

nodes that code 4-letter words as on nodes that code 7-letter words.  

Word-word excitation. 

The  component in Equation 27 represents the self-excitatory signal that a 

word node sends itself. Self-excitation is a common component of competitive networks, in 

which it can serve various adaptive functions (e.g., Carpenter & Grossberg, 1987; Davelaar, 

2007; Grossberg, 1973; Wilson & Cowan, 1972). In the original IA formulation, self-excitation 

is included in the form of a term that ensures that word nodes do not inhibit themselves (i.e., a 

word node effectively subtracts its own activity from the incoming lateral inhibitory signal). 

Thus, the strength of the self-excitatory signal corresponds to the activity of the word node: 

       (32) 

where the  notation indicates that only nodes with positive activities output a self-

excitatory signal. The parameter , which weights self-excitatory signals, is set to be slightly 

larger than the parameter , which weights lateral inhibitory signals, and thus self-excitation 
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is used not only to cancel out self-inhibition, but also to enhance the competitive process, 

enabling the best-matching node to more rapidly suppress its competitors. 

Length-Matching 

The  term in Equation 25 represents the feedback signal from the 

stimulus length field, which consists of a net inhibitory signal to word nodes that do not match 

the length of current input stimulus. It is assumed that, through a process of Hebbian learning, 

each word node develops a positive connection to the stimulus length node with ordinality 

corresponding to the length of the template, e.g., the cat node will develop a connection to the 

stimLen3 node. Thus, the weight from the nth stimulus length node to the ith word node is: 

    1       if 
   0       otherwise 

                                        (33) 

The facilitatory signal that the word node receives when the stimulus length matches the 

template length balances a non-specific inhibitory signal that the stimulus length field sends to 

the word level; the strength of the latter signal corresponds to the total field activity (i.e., 1 when 

there is a letter string present and 0 otherwise). This gives: 

  ∑ ∑   (34) 

That is, if the length of the input stimulus does not correspond to its template length, the word 

node receives an extra inhibitory input that is weighted by the parameter  . A relatively small 

setting of this parameter is employed in the current model, so that length mismatch inhibition 

does not prevent addition and deletion neighbours from becoming activated and interfering with 

identification of the target, as is required by the empirical evidence (e.g., Bowers et al., 2005a; 

Davis & Taft, 2005; Davis, Perea, & Acha, 2009). 

The activation of nodes within the stimulus length field can be achieved via various 

sources of input. An approximate (but potentially unreliable) source of information regarding 

the length of the input stimulus is provided by visual signals with low spatial frequency. 

Activity at the letter level provides a somewhat more reliable source of information regarding 
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the length of the input stimulus. At asymptote, only one letter is active within each channel, and 

this node will have the maximum letter node activity (of one), and thus the asymptotic total 

activity at the letter level is equivalent to the stimulus length. A further source of information 

regarding the likely length of the input stimulus is prior history; for example, it is common in 

masked priming experiments to use target stimuli of a fixed length. A full implementation of the 

stimulus length field would combine these various inputs and use lateral inhibitory interactions 

to select a single node. The present implementation takes the simpler approach of setting the 

stimulus length nodes directly, such that the activity of the node corresponding to the target 

stimulus length is set to one and other stimulus length nodes are set to zero. For example, when 

the target stimulus is cat, the activity of the  node is set at one, while the activity of 

other stimulus length nodes is set at zero. 

Top-Down Feedback from Word Nodes to Letter Nodes 

As in the original IA model, top-down feedback is assumed to occur between the word 

and letter levels. However, the switch to position-independent letter coding necessitates a 

slightly different implementation of this top-down feedback. For example, if the stimulus 

wildcat leads to activation of the cat word node, this node should send feedback to the letter 

nodes that code positions five through seven, rather than those for the first three positions. A 

word node can use the resonating phase to determine which letter channel should receive 

feedback signals.  In particular, define 

 1                                           (35) 

where  is the channel corresponding to the leftmost letter of the stimulus,  is the 

resonating phase of the ith word node (see Equation 8), and posj is the veridical position of the jth 

letter within the template. To illustrate, suppose wildcat is presented across letter channels 3 to 

11. In this case, the first letter projects to channel 3 (i.e., IC = 3), and the resonating phase of the 

cat word is 4 (i.e., 4 . Thus, cj = 3 + 4 + posj - 1 = posj + 6. That is, the channel 
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that codes the first letter of the template is cj = 1 + 6 = 7. Hence the cat node sends a positive 

feedback signal to the C letter node in channel 7. The strength of this feedback is: 

WL
∑ .001

 

  (36a) 

where  is as defined in Equation 22. The division by 

t implies that top-down feedback has a relatively weaker impact on 

channels that are receiving very strong bottom-up input (i.e., top-down feedback tends not to 

override unambiguous bottom-up input, unless WLis large), but has a large impact on channels 

that receive little (or no) bottom-up input. For letter nodes that do not receive feedback, 

0                 (36b) 

Equations 17-36 complete the description of how the input coding and matching 

algorithm is embedded within a model of lexical activation and selection. These equations 

require 15 parameters in order to weight the various influences on letter and word nodes. 

Simulating Lexical Decision 

Each of the experiments simulated here used the lexical decision task, and thus it is 

important to describe how the model can make lexical decisions based on its internal states. For 

this purpose, the opponent process model of lexical decision (Davis, 1999) was used. According 

to this model, lexical decision involves a competition between two opposing channels, one that 

accumulates evidence in favour of a Yes response and another that accumulates evidence in 

favour of a No response. A decision is reached once one of the two channels exceeds a threshold 

activity (this decision threshold was set at 0.8). The activity equations for these two channels are 

similar in form to the shunting activity equations assumed for letter and word nodes, thus: 

1 1   (37) 
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1 1    (38) 

In Equations 37 and 38, the first term following the equals sign shunts the positive input to the 

channel and establishes an upper bound (of 1) on channel activity, while the final term shunts 

the negative input to the channel (i.e., the inhibitory signal from the competing channel) and 

establishes a lower bound (of -1) on channel activity. The parameter  represents the strength of 

between-channel inhibition, and was set at 0.003. 

The present implementation includes two sources of input to the Yes channel: 

     (39) 

The first source of input to the Yes channel is the total activity at the word level, weighted by 

the parameter , which was set at 0.4. The  term is simply the sum of the 

positive word node activities; this source of input represents a measure of the wordlikeness of 

the stimulus.  A second (and more reliable) source of input to the Yes channel is the evidence 

that lexical identification has occurred. When a word node exceeds some identification threshold 

 (a threshold of 0.68 is used in the present simulations) it outputs a signal to the next level in 

the processing hierarchy; the summed activity at this level therefore provides an index of word 

identification having occurred. This higher processing level is not shown in Figure 6, and nor is 

it explicitly modelled in the present simulations. Instead, the ID term in Equation 39 is used as a 

proxy for the total activity at this level; thus, ID = 1 if a word node has exceeded the 

identification threshold, or ID = 0 otherwise. The parameter  weights the contribution of 

lexical identification to the Yes decision. A large value implies that the YES channel will exceed 

the decision threshold (triggering a Yes decision) soon after lexical identification; all simulations 

reported here used a value of  = 1. With the present parameter settings it typically takes 

around 20 cycles following word identification before a Yes response is triggered. 

The present implementation includes only one source of input to the No channel: 

 max     (40) 
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This input represents the maximum activity at the letter level, weighted by the parameter , 

which was set at 0.36. Equation 40 implies that the decision process starts as soon there is 

activity in the letter nodes (and not, for example, when the stimulus is a forward mask such as 

######). Furthermore, Equations 37-40 imply that the rate at which activity in the two channels 

grows varies according to the rate of letter activation. If, for example, stimulus degradation 

causes letter activation (and hence, also, word activation) to grow relatively slowly this rate 

modulation ensures that the model will not say No prematurely.  

The opponent process model has various advantages over the variable deadline models 

that have been used in previous modelling of the lexical decision task (e.g., Coltheart et al., 

2001; Grainger & Jacobs, 1996), notably with respect to explaining the continuous (rather than 

discrete) nature of reaction time distributions for No responses (Davis, 1999). The model has yet 

to be applied to detailed modelling of reaction time distributions (e.g., Norris, 2009; Ratcliff, 

Gomez, & McKoon, 2004), although Davis (1999) conducted simulations showing that the 

addition of noise to the  and  equations results in positively skewed distributions like 

those observed in human data, and observed that this skew is greater for low frequency than for 

high frequency words (e.g., Andrews & Heathcote, 2001; Balota & Spieler, 1999). 

Parameter Settings 

Most of the parameters of the model are inherited from the original IA model. The 

settings for these parameters are very similar to (in most cases, identical to) those used in 

previous IA simulations (Davis, 2003; Davis & Lupker, 2006; McClelland & Rumelhart, 1981), 

with the exception that the feature-letter parameters have higher values, so that the speed of 

letter level activation, relative to the speed of word level activation, is considerably faster than in 

the original model. This parameter choice, combined with the step size parameter dt (i.e., the 

width of the time slices used to update activities in the model, which was set to 0.05), was 

chosen so that the scale of priming effects in the model (measured in processing cycles) was 

comparable to the scale of empirical priming effects (measured in milliseconds). The full list of 
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parameter settings is shown in Table 3. For convenience, the parameters are listed in the order 

described in the text, together with references to the equations in which they are introduced. 

Note that  parameters weight excitatory inputs, while  parameters weight inhibitory inputs. 

The spatial coding model also introduces several new parameters that are not in the 

original IA model. The introduction of letter position uncertainty that increases linearly with the 

number of letters in the input stimulus requires two new parameters, σ0 and , as described in 

Equation 3. A further parameter (Power) is used to contrast-enhance the bottom-up input to 

word nodes (see Equation 25). Previous modelling has used values of 2 (Davis, 1999; Davis & 

Bowers, 2004, 2006) or 3 (Lupker & Davis, 2009) for this parameter; the present simulations 

adopted an intermediate value of 2.5. The modifications introduced to handle words of varying 

length require two new parameters: the masking field parameter  (see Equations 28-31), and 

the length mismatch parameter   (see Equation 34). The FreqBias parameter, which 

modulates the competitive advantage of higher frequency words (see Equation 18), was set at 

1.8 (larger settings of this parameter result in larger frequency effects, but can lead to difficulty 

in identifying the lowest frequency words). Finally, the parameter , which 

controls match-dependent decay (see Equation 20), was set at 0.4. 

The opponent process model of lexical decision requires five parameters: an 

identification threshold , three parameters that weight the inputs to the Yes and No channels 

( , , and , and a parameter, , that controls the strength of the inhibition between 

channels. Given the relatively large weight assigned to the  parameter in the present 

simulations, the speed of Yes responses for words was dictated largely by the speed of lexical 

identification (i.e., how long it took before the activity of a word node exceeded the 

identification threshold). 

Part 2: Application of the Model to Empirical Phenomena 
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General Method for Running Masked Priming Simulations 

The general method for conducting the simulations was identical to that used in 

previously reported simulations (Davis, 2003; Davis & Lupker, 2006; Lupker & Davis, 2009). 

[Note 1: The software and stimulus files for running the simulations can be downloaded from 

this webpage: http://www.pc.rhul.ac.uk/staff/c.davis/SpatialCodingModel/ ]. Each simulation 

used exactly the same stimuli as used in published experiments, except where English language 

stimuli replaced those used in the original French, Dutch or Spanish language experiments, as 

explicitly noted. The parameter settings of the model were identical for the simulations of 

primed and unprimed lexical decision. It would have been possible to achieve a better fit to the 

data if parameters were allowed to vary across simulations, and in some cases this parameter 

variation might be justifiable, given that the experiments simulated were run in different 

laboratories with different populations of subjects. However, the main goal of the simulations 

was not to maximize the fit between model and data, but to test whether a single model could 

capture all of the key qualitative results in the empirical database of orthographic form priming 

effects, while also capturing the benchmarks results in unprimed lexical decision. 

At the beginning of each trial, activities of all nodes in the model were set to their resting 

levels. The input stimulus was then presented to the model by setting the binary letter feature 

nodes to the appropriate values. In the masked priming simulations, this stimulus was the prime, 

and it was replaced at the feature level by the target stimulus after 55 cycles (the value of 55 is 

approximately equal to the mean, in milliseconds, of the prime durations used in the 

experiments simulated here). The use of a fixed prime duration facilitates comparison across 

simulations; any small variations in prime duration in the actual experiments are treated as noise 

(along with differences in stimulus luminance, participant populations, and testing equipment). 

The “letter-reset” assumption of Davis and Lupker (2006) was adopted, according to which the 

target onset has the effect of resetting letter-level activities, as well as the Yes and No channels.  
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On each cycle of processing the difference equation in Equations 18 was solved, causing 

activities of the letter and word nodes to be updated; likewise, numerical integration of 

Equations 37 and 38 caused the activities of the Yes and No channels to be updated on each 

cycle. A decision was said to have been made once the activity in one of the latter channels 

exceeded the criterion of 0.8. Decision latencies were measured from target onset. 

Vocabulary 

The vocabulary of the model consisted of 30,605 words taken from the N-Watch 

program (Davis, 2005). This set comprises all of the words listed in the CELEX database 

(Baayen et al., 1993) that (a) are between two and ten letters in length, (b) occur 6 or more times 

in the corpus, i.e., have an expected occurrence of at least 0.34 per million words, and c) do not 

include capitals in the database listing (e.g., proper nouns like England or Chris were excluded).  

Simulating Unprimed Lexical Decision with the Model 

The majority of the simulations presented here focus on modelling correct Yes responses 

in the masked priming variant of the lexical decision task. However, before introducing these 

simulations it is appropriate to present some results demonstrating that the model can explain 

some benchmark findings in unprimed lexical decision. I consider seven lexical decision 

findings that Coltheart et al. (2001, p.227) identified as “benchmark results that any 

computational model of reading should be able to simulate”.  

The Word Frequency Effect 

The first benchmark finding noted by Coltheart et al. (2001), and probably the most well 

established finding in the lexical decision task, is the word frequency effect, that is, the finding 

that Yes responses to high frequency words are faster than Yes responses to low frequency words 

(e.g., Monsell, 1991; Murray & Forster, 2004; Rubenstein, Garfield, & Millikan, 1970). 

Coltheart et al. (2001) demonstrated the DRC model’s ability to simulate a word frequency 

effect by reporting a simulation of the stimuli from Andrews (1989, 1992); here I take the same 
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approach in testing the spatial coding model. These stimuli consist of 24 low frequency words 

(with an average frequency of occurrence of 2.4 per million words according to the CELEX 

database) and 24 high frequency words (average frequency of 444.4 per million). The model 

responded Yes to each of the words except for mope, which is not included in its vocabulary. 

The mean predicted latencies of correct Yes responses were 95.7 cycles for high frequency 

words and 113.4 cycles for low frequency words; this difference was statistically significant, p < 

10-16. The model also showed good predictive power at the item level: the correlation between 

the model’s decision latency and the mean human decision latency for each item (reported in 

Appendix A of Andrews, 1992) was 0.71.  

The Lexical Status Effect 

The second benchmark finding noted by Coltheart et al. (2001) is that correct Yes 

responses are faster than correct No responses (e.g., Rubenstein et al., 1970). This result is 

readily simulated by the model provided that the noin parameter is not set too high. By way of 

demonstration, I constructed a set of 48 nonwords by changing a single letter of each of the 

words from the Andrews (1989, 1992) set. The mean decision latency for these nonwords was 

129 cycles (the range of correct No latencies was 102 to 300 cycles; the model made two errors, 

misclassifying knaw and fect as words). This mean latency is significantly slower (p < 10-6) than 

the mean of 86 cycles for the matched words, although there is some overlap in the distributions 

(the range for correct Yes responses was 90 to 126 cycles). 

The N Effect on Yes Latencies 

The third and fourth findings described by Coltheart et al. (2001) as benchmark results 

related to neighbourhood size (N), and are a) the facilitatory effect of N on Yes latencies to low 

frequency words, and b) the null effect of N on Yes latencies to high frequency words. As has 

been noted previously (e.g., Bowers et al., 2005b; Davis, 2003), competitive network models 

such as the IA model and the spatial coding model predict a null effect of N on the speed of 

word identification (or more precisely, the models predict no difference between small N and 
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large N words, other things being equal; they do predict an inhibitory effect of having one or 

two neighbours relative to words with no neighbours). For example, the simulation of the 

Andrews (1989, 1992) stimuli predicts no difference between the large N and small N 

conditions (p = .33).  

One approach to making competitive network models predict a facilitatory effect of N is 

to assume that fast Yes responses are sometimes made prior to word identification (e.g., 

Coltheart et al., 2001; Grainger & Jacobs, 1996). This approach makes sense in experiments in 

which N systematically distinguishes words from nonwords. However, an alternative approach 

is to question the status of the facilitatory N effect. As Stadthagen-Gonzalez and Davis (2006) 

noted, N is positively correlated with imageability and negatively correlated with age-of-

acquisition (AOA; i.e., large-N words tend to be learned earlier than small-N words). Although 

both of these variables are known to have large effects on lexical decision latency (e.g., Balota, 

Cortese, Sergent-Marshall, Spieler & Yap, 2004; Brysbaert & Ghyselinck, 2006; Cortese & 

Khanna, 2008; Stadthagen-Gonzalez, Bowers, & Damian, 2004; Whaley, 1978), as well as 

reading time (Juhasz & Rayner, 2003), published experiments on N effects have not controlled 

for their effects, and manipulations of N have typically been confounded with AoA and/or 

imageability (for example, the low frequency small-N and large-N words in the Andrews stimuli 

are typical in differing significantly with respect to both AoA and imageability, p < .0005 and p 

< .05 respectively, based on the norms collected by Cortese & Khanna, 2008 and Cortese & 

Fugett, 2004). In unpublished experiments, Davis and Bowers (in preparation) found no effect 

of N on the latency of Yes responses when AoA and imageability were both controlled. Thus, I 

claim that the model’s prediction of no effect of N on Yes responses is the correct one. 

The N Effect on No Latencies 

The fifth benchmark finding noted by Coltheart et al. (2001) is the inhibitory effect of N 

on No latencies to nonwords, a finding first reported by Coltheart et al. (1977). Forster and Shen 

(1996) parametrically manipulated N and found that No response latency increased linearly with 
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nonword N. It may be noted in passing that the latter result cannot be simulated by the model 

described by Coltheart et al. (2001), because the decision deadline procedure assumed in that 

model produces only two possible latencies for No responses (one for “easy” nonwords and 

another for more wordlike nonwords). I conducted a simulation of the spatial coding model 

using Forster and Shen’s (1996) stimuli, which consisted of 120 items split into four N 

conditions (roughly N=0, 1, 2, and 4). The model responded Yes to three items: millet and garter 

(which are words in the model’s vocabulary) and forver. As can be seen in Figure 7, the mean 

correct latencies showed a similar linear effect to that observed in the human data. 

The Pseudohomophone Effect 

The final two benchmark findings noted by Coltheart et al. (2001) are the 

pseudohomophone effect (Rubenstein, Lewis, & Rubenstein, 1971) and the interaction of this 

effect with orthographic similarity to the base word (Coltheart & Coltheart, unpublished). As 

Coltheart et al. (2001, p.231) note, the DRC is able to simulate these effects by virtue of 

“feedback to the orthographic lexicon through the following route: letters to GPC rules to 

phoneme level to phonological lexicon to orthographic lexicon”. The spatial coding model does 

not incorporate such a route, and cannot explain the pseudohomophone effect. In principle, 

however, the addition of such feedback would enable the model to capture these two findings. 

For a demonstration of how these effects can be simulated by an orthographic model by 

assuming external phonological feedback, see Davis (1999; Simulation 6.3). 

The Nonword Legality Effect 

Another basic finding concerning lexical decisions to nonwords is that illegal nonwords 

like glazb can be rejected more rapidly than legal nonwords like drilk (Rubenstein et al., 1971). 

Presumably there is a phonological contribution to this effect, and thus the present model should 

not be expected to provide a complete account of the illegality effect. Nevertheless, a simulation 

using Rubenstein et al.’s (1971) stimuli showed that the model’s latencies exhibit a significant 
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effect in the same direction, with mean No latencies of 102.3 cycles for illegal nonwords and 

124.1 cycles for legal nonwords, p = .001. 

In summary, the spatial coding model captures a number of basic lexical decision 

findings, including the word frequency effect, the lexical status effect, the nonword illegality 

effect, and the inhibitory effect of nonword N, and extensions of the model to include 

phonological processing would enable it to capture the pseudohomophone effect. Other 

simulations of the model (not reported here) have shown that it predicts the inhibitory effect of 

higher frequency neighbours (e.g., Grainger, O’Regan, Jacobs, & Segui, 1989), including the 

effects of addition and deletion neighbours (e.g, Davis & Taft, 2005; Davis et al., 2009). 

Ability of the Model to Predict Item-Level Variance 

Another way to evaluate computational models of visual word recognition is to examine 

how well these models predict performance at the level of individual items. The development in 

recent years of megadatabases of lexical decision and naming latencies (e.g., Balota et al., 2004; 

Spieler & Balota, 1997) has facilitated such evaluations. Initial findings based on this approach 

were not especially promising. Spieler and Balota (1997) collected naming latencies for 

approximately 2,870 monosyllabic words, and found that the orthographic error scores from the 

Seidenberg and McClelland (1989) model predicted 10.1% of the variance, while the settling 

times from the Plaut et al. (1996) model predicted just 3.3% of the variance in the human 

naming latencies. Subsequently, Coltheart et al. (2001) reported that the DRC model accounted 

for 3.5% of the variance for a subset of 2,516 words from this database. Clearly, predicting 

performance at the level of individual items is a rather stringent test of computational models. 

To compare the predictive power of the spatial coding model, I used exactly the same set 

of monosyllabic words as a test set, excluding a small proportion of items that were not included 

in the model’s vocabulary (very low frequency words like awn); the resulting set consisted of 

2,715 words. Mean lexical decision latencies for these items were obtained from the English 

Lexicon Project (Balota et al., 2004). The correlation between the model’s lexical decision 
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latencies and the human data was 0.51, i.e., the model successfully accounts for 26% of the 

variance at the level of individual items. It is also interesting to examine the naming latencies for 

this set. Strictly speaking, the spatial coding model is not able to name words, as it has no 

phonological output units. Nevertheless, it could be used to provide the lexical route of a dual-

route model of word naming, and thus, to the extent that there is a lexical contribution to word 

naming latency, the model should have some predictive power. The model’s latencies predicted 

10.2% of the variance in the naming latencies from the English Lexicon Project. In summary, 

although much of the variance in human lexical decision and naming latencies remains 

unaccounted for, the spatial coding model appears to be doing at least as well as other notable 

models of visual word recognition.  

Masked Form Priming Simulations 

Organisation of Simulations 

The masked priming technique has been used to study many different aspects of visual 

word recognition, including orthographic, phonological, morphological, and semantic processes. 

Given that the model under consideration does not incorporate phonological, morphological, or 

semantic representations or processes, I did not seek to simulate experiments that specifically 

focus on these processes. Despite this restriction, the relevant database of masked priming 

results is quite large. Fortunately, the main results in this domain are fairly well established. As 

Grainger (2008, p. 9) noted, “Perhaps the most stable, replicable, and therefore uncontroversial 

results obtained with the masked priming paradigm concern purely orthographic manipulations”.  

The simulations below are arranged thematically into subsections according to the type 

of letter string manipulation: replacement, transposition, deletion, insertion, string reversal, or 

string displacement. Multiple experiments are simulated within each subsection. The relevant 

data from these experiments, together with the predicted priming effects, are summarised in 

Table 4. Attempting to capture the pattern of priming effects associated with each of these string 
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manipulations imposes very strict constraints on any model of orthographic input coding. As 

will be seen, the spatial coding model handles this challenge quite successfully. 

A. Primes That Involve Letter Replacement 

Simulation 1: The prime lexicality effect (Davis & Lupker, 2006, Exp. 1). 

There are many experiments demonstrating facilitatory neighbour priming effects, e.g., 

that responses to the target SHIRT are faster following the 1-letter different prime shint relative 

to an unrelated prime like cland (e.g., Davis & Lupker, 2006; Forster et al., 1987; van Heuven, 

Dijkstra, Grainger & Schriefers,, 2001). However, not all 1-letter different primes result in 

facilitatory priming. When the prime is itself a word (e.g., short-SHIRT) responses to the target 

are slower, relative to control word primes (e.g., Segui & Grainger, 1990). This pattern of 

facilitatory priming from nonword neighbours and inhibitory priming from word neighbours 

was demonstrated for the same set of targets in a lexical decision experiment reported by Davis 

and Lupker (2006).  That is, classifications of a target like AXLE were facilitated by the 

nonword neighbour prime ixle (relative to an unrelated nonword prime), but inhibited by the 

word neighbour prime able (relative to an unrelated word prime like door). Inhibitory priming 

effects were largest when the prime was of high frequency and the target was of low frequency 

(e.g., inhibition tended to be stronger for able-AXLE than for axle-ABLE). This effect can be 

observed in the mean latencies shown in Table 4. 

Results like those reported by Davis and Lupker (2006) are important for understanding 

masked form priming effects, as they reveal how such priming effects are subject to both 

excitatory and inhibitory influences. Indeed, being able to simulate the results of this experiment 

can be viewed as a prerequisite for each of the simulations that follow, in which the excitatory 

and inhibitory influences of masked primes are systematically varied. Simulation 1 sought to 

test the spatial coding model’s ability to predict the prime lexicality effect. The simulation tested 

the same set of four and 5-letter words used by Davis and Lupker (2006). The basic procedure 

followed that described in the General Method section above.  
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The results of the simulation are shown in Table 4. As can be seen, the model does a 

good job of capturing the prime lexicality effect that was observed by Davis and Lupker (2006). 

That is, related word primes produce inhibitory priming effects, whereas related nonword 

primes produce facilitatory priming effects. The model also captures the greater inhibitory 

priming for low frequency targets primed by high frequency words than for high frequency 

targets primed by low frequency words. Finally, the model doesn’t show the frequency 

interaction for facilitatory priming that was observed by Davis and Lupker (2006). However, 

this interaction was not statistically significant, and the 11 ms priming effect observed in the 

human data for high frequency targets may be an underestimate of the true effect.  

The outcome of this simulation effectively replicates Davis and Lupker’s (2006) finding 

that a (modified) IA model using slot coding could simulate their results. However, there are 

important differences between the model tested by Davis and Lupker (2006) and the model 

tested here. In the former simulation, the 4-letter word stimuli were tested using a vocabulary of 

1,178 words and the 5-letter word stimuli were tested using a separate vocabulary of 3,370 

words. By contrast, the present simulation tested all of the stimuli using a fixed vocabulary over 

25 times larger than that of the original IA model. Furthermore, switching to spatial coding 

introduces additional orthographic neighbours (e.g., transposition neighbours, neighbours once-

removed, etc.). The simulation results show that these changes in the structure of the lexical 

neighbourhood do not affect the model’s ability to simulate the basic prime lexicality effect. 

There is a far more important implication of these data. It would be overly simplistic to 

draw the conclusion that related word primes have inhibitory influences, whereas related 

nonword primes have facilitatory influences. Rather, what these empirical data and simulation 

results show is that masked form priming effects reflect the combination of facilitatory and 

inhibitory influences. In the case of word primes (especially high frequency word primes), the 

inhibitory influences typically overwhelm the facilitatory influences, whereas in the case of 

nonword primes the opposite is true. Nevertheless, it is critical to note that inhibitory influences 
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on masked priming are always present to the extent that the prime activates competitors of the 

target, whatever the lexical status of the prime. This insight has major implications for all of the 

form priming experiments simulated in this article. In particular, it implies that the match values 

computed by models of orthographic input coding are only part of the story. These match values 

drive the facilitatory influence of the prime on the target. But to make accurate quantitative 

predictions it is necessary to also take into consideration the inhibitory influences of the prime, 

which requires conducting simulations of a full model of lexical identification. Predictions based 

purely on match values fail to capture these inhibitory influences of lexical competitors. For 

example, the nonword blard and the word board result in equivalent (large) match values with 

the target BEARD. This equivalence may suggest that the unmediated facilitatory influence of 

these primes on the target will be the same, but (as is clear from the results of the experiment 

and the simulation) their inhibitory influences on the target differ greatly. Understanding this 

point allows one to realise why masked priming experiments sometimes fail to observe 

facilitation for primes that are associated with relatively high match values (e.g., Guerrera & 

Forster, 2008; Schoonbaert & Grainger, 2004). It also enables one to devise methods for 

overcoming these inhibitory influences, as discussed below. 

Simulation 2: The shared neighbourhood effect (van Heuven et al., 2001). 

Another empirical phenomenon that illustrates the influence of lexical competitors on 

masked form priming is the shared neighbourhood effect reported by van Heuven et al. (2001). 

Shared neighbours are words that are neighbours of both the prime and the target. For example, 

in the case of the prime-target pair laby-LAZY, the word lady is a shared neighbour. Van 

Heuven et al. (2001) found that form priming effects were smaller when the prime and target 

shared a neighbour (as in laby-LAZY) compared to trials when there were no shared neighbors 

(e.g., lozy-LAZY). 

Simulation 2 attempted to simulate this finding. The stimuli were constructed to parallel 

the Dutch stimuli used by van Heuven et al. (2001). There were 20 4-letter, low frequency, 
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small-N target words. For each target, three primes were constructed: one that shared one or 

more neighbours with the target, another that was a neighbour of the target but shared no 

neighbours with it, and a third that was an unrelated nonword prime. Position of the replacement 

letter was roughly matched across the two neighbour conditions. 

The simulation slightly underestimated the magnitude of the observed facilitatory 

priming effects, but captured the critical shared neighbourhood effect in van Heuven et al.’s 

experiment. That is, the priming effect was substantially greater for primes that did not share 

any neighbours with the target than for primes that shared a neighbour with the target. The 

results of this simulation reinforce and strengthen the conclusion drawn from Simulation 1. In 

this case, the critical primes are all nonwords, and so the results cannot be attributed to a simple 

prime lexicality account. The two sets of related primes were equally similar to their targets, and 

yet one set produces a much larger priming effect than the other. Here, the facilitatory influence 

of bottom-up input is matched, but the inhibitory influences of lateral inhibition are not: shared 

neighbour primes give rise to activity in the target’s lexical competitors, and the resulting 

competition diminishes the facilitatory influences of the prime. Consequently, as in Simulation 1 

the results of the simulation cannot be determined purely on the basis of the orthographic match 

between the primes and the targets. 

Related shared neighbourhood results have been reported with word primes by Davis 

and Lupker (2006, Experiment 3), and with partial word primes (e.g., c#be-CUBE) by Hinton, 

Liversedge, and Underwood (1998) and Perry, Lupker, and Davis (2008). Each of these findings 

can be interpreted by noting that all primes have both facilitatory and inhibitory influences. This 

insight is also relevant for the following simulations. 

Simulation 3: The multiple-letter replacement constraint (Schoonbaert & Grainger, 

2004, Experiment 4). 

As noted already (and simulated in Simulation 1), form primes constructed by replacing 

a single letter of the target are typically associated with relatively large priming effects. 
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However, when two letters are replaced, priming effects are greatly diminished, and often absent 

(e.g., Perea & Lupker, 2003, 2004; Peressotti & Grainger, 1999; Schoonbaert & Grainger, 

2004). An experiment reported by Schoonbaert and Grainger (2004, Experiment 4) provides a 

good illustration of this apparent limit on form priming effects. Although there was some 

evidence of form priming from 2-letter different primes in the case of 7-letter targets (as also 

observed by Lupker & Davis, 2009), there was no evidence at all of priming from 2-letter 

different primes in the case of 5-letter targets, regardless of whether the position of replacement 

was initial, medial, or final (see Table 4). 

On the surface, this finding appears to pose a problem for all of the current orthographic 

input coding schemes, which predict that orthographic similarity values should decrease 

approximately linearly as more letters are substituted (at least for the replacement of successive 

internal letters). There is a reasonably high overlap between a 5-letter target word and a 2-letter 

different prime. For a pair like BLEON and BARON the match value is 5/7 = .71 (assuming 

dynamic end-letter marking). This match value is equivalent to the match computed for 1-letter 

different primes where the different letter is an end letter, as in BAROY and BARON. Thus, if 

there was a straightforward relationship between predicted match values and observed priming 

effects, 2-letter different primes like prade-PROBE, should, according to the spatial coding 

model, produce priming effects that are at least as large as those associated with 1-letter 

different primes like baroy-BARON (i.e., both primes should produce significant form priming). 

From the foregoing discussion, however, it should be apparent that there is not a 

straightforward relationship between predicted match values and observed priming effects, and 

that simulations are required to predict the priming effects that should be observed for 2-letter 

different primes. To simulate Schoonbaert and Grainger’s (2004) experiment, which was 

conducted with French stimuli, I selected the 14 5-letter target words from their stimulus set that 

are French-English cognates (such as rural and baron). Each target was paired with the same 

four primes used by Schoonbaert and Grainger (2004), i.e., three separate 2-letter different 
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primes (initial, inner, and final letter replacements) and an unrelated (all-letter-different) prime. 

For example, the primes for the target BARON were upron (initial 2-letters different), bleon 

(inner 2-letters different), barsy (final 2-letters different), and pievu (control, all-letter-different). 

The results of this simulation are shown in Table 4. As can be seen, the results for 2-

letter different primes mirrored the findings of Schoonbaert and Grainger (2004), in that they 

show no evidence of priming. In order to test whether the absence of priming could be due to 

characteristics of the targets, I constructed an additional 1-letter different prime condition (i.e., 

one that was not included in the experiment) by replacing the final letter of the target, using the 

same replacement letter as for the 2-letter different prime that incorporated a final letter 

replacement (e.g., the 1-letter different prime for the target BARON was baroy). The mean 

decision latency for this condition was 93 cycles, i.e., a priming effect of 11 cycles. Thus, these 

targets are capable of showing priming effects. Furthermore, although the match value 

computed for 1-letter different primes with final letter replacements is equivalent to that 

computed for 2-letter different primes with inner letter replacements (e.g., bleon-BARON), the 

latter condition showed no priming in the simulation. Thus the absence of priming for 2-letter 

different primes cannot be explained solely in terms of match values. 

Why then is it that a prime like bleon does not (on average) facilitate responses to a 2-

letter different target like BARON? The reason for the absence of priming in the model in this 

case is the same as for the primes with shared neighbours in Simulation 2: the prime frequently 

activates competitors of the target more strongly than the target itself. In the case of 2-letter 

different primes, these competitors are not quite as obvious, partly because psycholinguists since 

Coltheart et al. (1977) have tended to count only neighbours formed by a single letter 

replacement. Nevertheless, these competitors exist, and exert an inhibitory influence on priming; 

for example, in the case of bleon-BARON, the lexical competitors will include words like blown 

(a neighbour once-removed of the prime), bacon, began, brown, and bean. One way to establish 

that this is the correct explanation of the absence of priming in the model is to disable all of the 
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word nodes for words that are shared neighbours (in the broad sense) of bleon and BROWN 

(e.g., blown, bacon, began, baton, bison, begin, brown, etc.). When this is done (defining a 

shared neighbour as any word that produces a match of greater than .4 with both the prime and 

the target), the priming effect for this trial changes from null to 10 cycles. Thus, according to the 

model the multiple letter replacement constraint in masked priming is due to the fact that 

increases in the number of letters that differ between the prime and the target both decrease the 

orthographic match between these two stimuli (and increases the mismatch) and simultaneously 

increase the likelihood that the prime will activate lexical competitors of the target. 

Relaxing the multiple-letter replacement constraint. 

As we have seen, prime-target pairs that have relatively high match values can have 

either facilitatory, null, or inhibitory effects, depending on the extent to which they activate 

lexical competitors of the target. A technique for greatly reducing lexical competitor effects has 

recently been developed by Lupker and Davis (2009). In this technique, called sandwich 

priming, the prime of interest (e.g., a related form prime or an unrelated control prime) is 

preceded by a brief (masked) presentation of the target word; that is, the prime is sandwiched 

between two presentations of the target. The aim of the first presentation of the target stimulus is 

to give an initial headstart to the activation of the target node, enabling it to overwhelm lexical 

competitors that would ordinarily be activated by the prime. Thus, if the absence of priming for 

2-letter different primes in Simulation 3 was the result of lexical competitor effects, it should be 

possible to obtain form priming for these stimuli if the sandwich priming technique is used. 

Simulation 3A tested this prediction. Sandwich priming was simulated by presenting the target 

(for 40 cycles) prior to the prime of interest. In all other respects, this simulation was identical to 

Simulation 3. The results showed relatively large priming effects for 2-letter different primes; 

the size of the priming effect was 25, 38, and 25 cycles for the initial, inner, and final letter 

replacement conditions, respectively. Thus, as expected, the use of sandwich priming causes the 

model to predict facilitatory effects for prime conditions that did not produce priming in 
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Simulation 3. This in turn leads to an empirical prediction concerning the difference between 

conventional masked priming and sandwich priming. Although this prediction has not been 

tested for Schoonbaert and Grainger’s stimuli, it has been tested by Lupker and Davis (2009) for 

7-letter English target words; this test is the subject of the next pair of simulations. 

Simulation 4: Parametric variation of number of replaced letters (Lupker and Davis, 

2009, Experiment 2A). 

Although the replacement of two letters eliminates priming for 5-letter word targets, the 

spatial coding model predicts that 2-letter different primes should produce some priming for 

longer targets (the reason for this prediction is straightforward, e.g., a match of 4/6 is greater 

than a match of 3/5). The available evidence supports this prediction, although there is some 

variability in the obtained effects. The average priming effect for 2-letter different primes and 5-

letter targets, based on eight priming effects from four experiments (Frankish & Barnes, 2008; 

Perea & Lupker, 2003a, Experiments 1 and 2; Schoonbaert & Grainger, 2004, Experiment 4) is 

0 ms (the median is 1 ms), whereas the average priming effect for 2-letter different primes and 

6-letter targets, based on five priming effects from four experiments (Perea & Lupker, 2003, 

Experiment 3; Perea & Lupker, 2004, Experiments 1 and 2; Peressotti & Grainger, 1999, 

Experiment 2) is 13 ms (the median is 12 ms). Although only two of the latter five priming 

effects were statistically significant, it seems likely that there is a genuine priming effect here. 

Lupker and Davis (2009) examined priming for 7-letter targets, and parametrically 

manipulated the number of replaced letters between one and five. Results are shown in Table 4. 

As can be seen, the results showed clear priming effects (which were statistically significant) for 

one and 2-letter different primes, but no priming for primes in which three or more letters of the 

target were replaced. Simulation 4 tested whether this result is captured by the model, using the 

same stimuli as in Lupker and Davis’s (2009) experiment. As can be seen in Table 4, there was 

a relatively good match between the observed data and the results of the simulation, although 

the model overestimated the observed priming effect for 1-letter different primes. The other 
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slight discrepancy between the model and the data was for the 5-letter different primes, but the 

-7 ms priming effect in the data is most likely attributed to noise. In summary, the model does a 

good job of capturing the effects of letter replacement on masked form priming. 

Simulation 5: Parametric variation of number of replaced letters (Lupker and Davis, 

2009, Experiment 2B). 

In a separate experiment, Lupker and Davis (2009, Experiment 2B) tested the same 

stimuli using the sandwich priming technique. As Table 4 shows, the use of sandwich priming 

enabled significant priming to be obtained even when the prime and target differed by three (out 

of seven) letters. Simulation 5 tested whether this result is captured by the model; it was 

identical to Simulation 4 except for the initial presentation of the target for 40 cycles to simulate 

sandwich priming. As can be seen in Table 4, there was a good match between the observed data 

and the results of the simulation. 

Summary of Simulations 1 – 5 

The masked priming simulations presented above each deal with situations in which one 

or more letters of the target are replaced by other letters to form an orthographically similar 

prime. The match calculations in such cases are quite straightforward, but the simulations 

illustrate that masked priming effects are more complex than a simple account based on match 

values alone. Different prime-target pairs that are associated with identical match values can 

result in either facilitatory, inhibitory or null priming effects. Primes that are less similar to the 

target can produce greater facilitation than those that are more similar.  

The cause of this additional complexity is lexical competition. In the most extreme case, 

as demonstrated in Simulation 1, a prime that is orthographically very similar to the target can 

nevertheless lead to inhibitory priming, if the prime is itself a word, thereby promoting strong 

lexical competition. Corresponding, though less extreme instances of lexical competition are 

observed for primes that are not themselves words, but that activate words that can compete 
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with the target. Such primes may fail to produce facilitatory priming of the target, even though 

other primes matching the target equally well produce facilitation, as in Simulations 2 and 3. 

Simulations of lexical identification are essential for modelling these interactions of 

orthographic similarity and lexical competition; models that rely solely on match calculation 

cannot hope to provide an adequate account of form priming data. A further benefit of a 

computational approach that attempts to model identification processes during masked priming 

is that it can be used to suggest new priming methodologies. The sandwich priming technique 

illustrated in Simulation 5 is a case in point. This technique was initially tested computationally, 

where it was shown to have the potential to reduce lexical competitor effects. Subsequent 

empirical tests of the technique have validated this claim, and established the utility of sandwich 

priming for obtaining priming effects in situations where lexical competition would ordinarily 

interfere with form priming (Lupker & Davis, 2009). Some of the simulations presented below 

will illustrate the application of this technique further. In particular, the value of techniques for 

reducing lexical competition will become apparent when extreme letter transpositions are 

considered. 

B. Primes That Involve Letter Transpositions 

A number of early papers investigated transposed letter (TL) similarity effects in 

unprimed tasks (e.g., Andrews, 1996; Bruner & O’Dowd, 1958; Chambers, 1979; O’Connor & 

Forster  1981; Taft & van Graan, 1998). However, in recent times researchers have tended to 

favour the masked form priming procedure for investigating TL similarity effects. A search of 

PsycInfo reveals over 20 published articles investigating TL priming in the last five years 

(several more are currently in press or under submission), and most of these papers report 

multiple experiments. Simulation 6 simulates an experiment from one of the early, and 

particularly influential studies reported in this series of papers on TL priming (Perea & Lupker, 

2003a). Simulation 7 examines what happens when a letter transposition is combined with a 
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letter replacement, as in the experiments of Davis and Bowers (2006). The latter data enabled 

the falsification of a number of alternative models of orthographic input coding.  

The remaining simulations in this subsection investigate increasingly severe disruptions 

of letter position. Simulation 8 examines priming effects for primes in which the transposed 

letters are not immediately adjacent (as in Simulation 6), but are instead separated by an 

intervening letter. Experiments have shown that TL priming effects are obtained when the 

transposed letters are nonadjacent, as in caniso-CASINO (Davis & Bowers, 2005; Lupker, Perea 

& Davis, 2008; Perea & Lupker, 2004), although these effects are smaller than the priming 

effects for adjacent TL primes. Finally, Simulations 9 and 10 investigate the effects of more 

extreme letter transpositions: Simulation 9 simulates the results of Guerrera and Forster (2008, 

Experiment 3), while Simulation 10 makes a prediction concerning the outcome of an 

experiment using the same primes with the sandwich priming methodology. The latter 

prediction has recently been confirmed by Lupker and Davis (2009).  

Simulation 6: Adjacent TL Priming (Perea & Lupker, 2003a). 

The goal of Simulation 6 was to investigate the ability of the spatial coding model to 

capture adjacent TL priming effects. Data from Experiment 1 of Perea and Lupker (2003a) 

provides an appropriate test set for this purpose. Their experiment used 5-letter English words as 

target stimuli. In addition to manipulating prime type, Perea and Lupker also manipulated 

position of transposition: internal (e.g., jugde-JUDGE) or final (e.g., judeg-JUDGE). The 

stimuli in this experiment were carefully controlled, using orthographic controls for each of the 

TL primes. These control stimuli were constructed by making letter substitutions for the letters 

that were transposed in the TL primes; for example, different participants saw the target GLOVE 

preceded by a TL-internal prime (golve), a corresponding orthographic control (gatve), a TL-

final prime (gloev), or its corresponding orthographic control (gloac).  

Table 4 shows the results of the experiment and the simulation. As can be seen, there 

was a very close fit between model and data. There was a strong overall TL priming effect, as 
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measured relative to orthographic controls. This TL priming effect was especially large for 

internal transpositions, although the priming effect was smaller than for identity primes 

(suggesting that letter position does matter, though this comparison of priming effects must be 

made with some caution, as the identity priming effect was measured relative to all-letter-

different primes, rather than 2-letter different orthographic controls). Priming was somewhat 

smaller for final transpositions. The results of the simulation reflect the relative flexibility of 

letter position coding when spatial coding is used, while the weaker TL priming for final 

transpositions is the result of end-letter marking. 

Simulation 7: Neighbour once-removed priming(Davis & Bowers,2006,Experiment 2-3). 

TL priming effects such as those observed in Simulation 6 (and empirically in many 

experiments) demonstrate the flexibility of the visual word identification system with respect to 

letter position coding. This flexibility raises the question of just how sensitive this system is to 

letter position. A possibility left open by the basic TL priming effect is that the system is so 

flexible because it is actually somewhat insensitive to disruptions of letter position. One way to 

test this possibility is to investigate the system’s sensitivity to the smallest possible disruption of 

letter position. This was the approach taken by Davis and Bowers (2006).    

Davis and Bowers (2006) compared two types of form primes: neighbour primes, 

formed by substituting one of the letters of the target with a different letter, and neighbour once-

removed primes, formed by combining a letter transposition with a substitution of one of the 

transposed letters. For example, for the target word ANKLE, axkle is a neighbour prime, while 

akxle is a neighbour once-removed prime. Note that both of these primes contain four letters in 

common with the target. The only difference, with respect to their similarity to the target, is that 

one letter (in this case, the k) is in the correct position in the neighbour prime, but is one position 

away from the correct position in the neighbour once-removed prime. Given such a minimal 

difference, it would not seem implausible to posit that these two primes could be 

indistinguishable from the perspective of the target word node, and in fact this is the prediction 
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of the discrete open bigram coding model (Grainger & van Heuven, 2003). However, Davis and 

Bowers (2006) found that this prediction is incorrect – neighbour primes were slightly, but 

significantly more effective than neighbour once-removed primes. Davis and Bowers (2006) 

noted that the spatial coding model predicts higher match values for neighbour primes than for 

neighbour once-removed primes. However, they did not report simulations of masked priming. 

Simulation 7 was therefore designed to test the model’s ability to simulate the empirically 

observed pattern. 

The simulation tested the same set of 120 5-letter English target words used by Davis 

and Bowers (2006). Each target was associated with five primes. Two of these were neighbour 

primes in which the letter in either position 2 or position 4 of the target had been replaced (rows 

23 and 24 respectively in Table 4). There were also two neighbour once-removed prime 

conditions in which the letter in either position 4 or position 2 of the target was replaced and 

then transposed with the letter in position 3 (rows 25 and 26 respectively in Table 4). The final 

condition comprised unrelated control primes. As can be seen in Table 4, both types of form 

prime resulted in facilitatory priming, as in the experimental data, and the priming effect was 

larger for neighbour primes than for neighbour once-removed primes. The model provides a 

good fit to both the qualitative and quantitative pattern of the data. One further aspect of the 

results worth noting is that the model predicts no effect of the serial position of the replaced 

letter for neighbour primes (i.e., it did not matter whether the neighbour primes were formed by 

substituting the second or the fourth letter). This prediction agrees with the pattern observed by 

Davis and Bowers (2006). Although there may be differences between exterior and interior 

letters, there is apparently no difference in the status of different interior letters. 

The ability of both readers and the model to show differences between neighbour and 

neighbour once-removed primes demonstrates the exquisite sensitivity of position coding in the 

visual word identification system. This sensitivity poses a challenge to many open bigram 

coding models (Grainger & van Heuven, 2003; Whitney, 2001, 2004), although the overlap 
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open bigram model (Grainger et al, 2006) does predict greater match values for neighbour than 

for neighbour once-removed primes. At the same time, the fact that neighbour once-removed 

primes are associated with significant form priming, in contrast to the weak or null priming 

effects associated with 2-letter different primes (Simulation 3), provides further evidence of the 

relative flexibility of letter position coding (i.e., the letter k in akxle contributes towards the 

match with ankle, despite being in the incorrect position). The next three simulations probe the 

limits of this flexibility. 

Simulation 8: Nonadjacent TL Priming (Perea & Lupker, 2004).  

Perea and Lupker (2004) reported data showing that nonadjacent TL primes like caniso-

CASINO produce greater form priming than orthographic control primes like caviro-CASINO. 

This finding, which has subsequently been replicated in English (Davis & Bowers, 2005; 

Lupker et al., 2008), demonstrates that the position uncertainty in the orthographic input code 

cannot be captured by a position-specific model in which letter inputs are assumed to “leak” into 

immediately adjacent channels. Perea and Lupker (2004) also found (in three separate lexical 

decision experiments) that the priming for nonadjacent TL primes was weaker than for 

neighbour primes (e.g., casiro-CASINO). This result, which has also been replicated in English 

(Davis & Bowers, 2005), provides even stronger constraints on models of letter position coding. 

Earlier open-bigram coding models predict larger match values for nonadjacent TL primes than 

for neighbour primes (e.g., Grainger & van Heuven, 2003; Whitney, 2001), although more 

recent open bigram models predict the opposite ordering, given appropriate parameter choices 

(Grainger et al., 2006; Whitney, 2004). The spatial coding model predicts the correct ordering of 

match values, although, as has been seen already, this does not guarantee that the model will 

make the correct predictions regarding the outcome of the masked form priming experiment. 

Simulation 8 was designed to test the model’s ability to simulate the empirical pattern. 

The simulation tested a set of 102 6-letter English target words; these words had an 

average frequency of 32 per million, and contained no repeated letters. The nonadjacent TL 
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primes were created by transposing the third and fifth letters of the target. One-letter different 

primes were created by replacing the third letter with a consonant that did not occur elsewhere 

in the letter string, and 2-letter different primes were created in a similar way by replacing both 

the third and fifth letters. Unrelated primes consisted of primes from the other conditions that 

shared no more than one letter with the target. The results of the empirical data and the 

simulation are shown in Table 4. As can be seen, the model provides a good qualitative fit to the 

data. Nonadjacent TL primes resulted in greater priming than 2-letter different primes, but 

weaker priming than 1-letter different primes.  

In summary, the empirical data originally reported by Perea and Lupker (2004) provide 

critical information regarding the relative perceptual similarity of orthographic neighbours 

formed by replacing one or two letters or by transposing nonadjacent letters. As Davis (2006) 

noted these data place rather strict constraints on theories of input coding by providing a 

yardstick by which to measure the differential impact of replacing a letter versus altering the 

position of that letter. A satisfactory model needs to capture the fact that casino and caniso are 

more similar to each other than casino and caviro, but less similar to each other than casino and 

casiro. The spatial coding model succeeds in satisfying these dual constraints.  

Simulation 9: Extreme Transpositions (Guerrera & Forster, 2008, Experiment 3). 

The TL priming effects discussed thus far indicate that not all of the letters of a word 

need to be in the correct position in order for that word to become activated by a letter string, 

and the displaced letters can be at least a couple of positions away from their correct position. 

One might therefore ask, what are the limits of TL priming?  Guerrera and Forster (2008) sought 

to answer this question. To this end, they tested a range of anagram primes in which most or all 

of the letters were out of their correct position.  

One condition that Guerrera and Forster tested in several experiments was one where the 

exterior letters were maintained in their correct position, but the six interior letters were each 

transposed with an adjacent letter (e.g., the prime for SANDWICH would be snawdcih); they 
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refer to this as the T-I-6 prime condition. In each of their experiments, T-I-6 primes resulted in 

significant form priming, typically in the range of 20 to 30 ms. As Guerrera and Forster (2008, 

p.125) noted, “The degree to which the human word recognition system tolerates transposition 

in the input is quite remarkable.”  

In Experiment 3, Guerrera and Forster (2008) tested the limits of the system even further 

with a prime condition in which all eight letters of the target were transposed (e.g., the prime for 

SANDWICH would be asdniwhc); they refer to this as the T-All prime condition. In this case, 

there was no hint of a priming effect, and thus Guerrera and Forster (2008) concluded that they 

had “now reached the limits of the system” (p. 133).  

These two conditions provide important constraints on models of letter position coding. 

The strong priming for T-I-6 primes appears consistent with spatial coding, which predicts a 

match value of .76 for these primes. A much smaller match value (of .45) is computed for T-All 

primes. A simulation is required in order to establish whether the former prime gives rise to a 

facilitatory priming effect of the right general magnitude and the latter prime results in no 

priming at all. This was the aim of Simulation 9, which tested three of the four prime conditions 

of Experiment 3 of Guerrera and Forster (2008) (the remaining prime condition is tested in 

Simulation 11, when string reversal is considered). The target words were the 96 8-letter targets 

from Guerrera and Forster’s (2008) experiment. 

Table 4 shows the results of the simulation, together with the results from Guerrera and 

Forster’s experiment. As can be seen, the T-I-6 prime condition showed a strong priming effect, 

in accord with the empirical data. By contrast, the T-All prime condition showed no priming 

effect in the data, and a very small priming effect (of 5 cycles) in the model. The results of the 

simulation differ somewhat from theoretical predictions made by Guerrera and Forster, who 

suggested that the moderately high match for T-All primes implied that the spatial coding model 

predicted “strong priming” (p. 137). As has been noted already, the relationship between match 
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values and masked form priming effects is not straightforward, and Simulation 9 provides 

further evidence of this point.  

Although the T-All priming effect in the model certainly could not be characterised as 

strong, there is some evidence of priming in this condition. Is this problematic for the model? 

Further empirical data is relevant to considering this question. Lupker and Davis (2009, 

Experiment 1A) replicated the T-All priming condition of Guerrera and Forster’s experiment, 

using exactly the same stimuli. This experiment also showed a statistically nonsignificant 

priming effect, but there was a 9 ms advantage for T-All primes relative to control primes. The 

average of the priming effects observed in these two experiments is thus 4 ms, i.e., quite close to 

the predicted priming effect of 5 cycles.  

Simulation 10: Sandwich priming with extreme transpositions (Lupker & Davis, 2009, 

Experiment 1). 

The reason for the apparent disconnect between the match values for T-All primes and 

the priming effects observed in Simulation 9 is that, as in previous simulations, the prime 

activates lexical competitors of the target more strongly than the target itself. For example, 

consider a prime-target pair such as baonmrla-ABNORMAL. Though the prime has a match of 

.45 with the target, it is a better match for a number of other words, including banner (match = 

.625), baron, baronial, formula, banana, bacteria, etc. The (moderate) activation of these word 

nodes interferes with the activation of the target word node, with the consequence that the prime 

provides no headstart to the processing of the target. By contrast, T-I-6 primes like snawdcih are 

virtually always better matches for the target (SANDWICH) than for any other words.   

It may be apparent from the foregoing discussion that the sandwich priming technique 

offers a potential method for reducing the interference from such lexical competitors, and 

thereby enabling T-All primes to become effective form primes. This possibility was tested by 

Lupker and Davis (2009). As noted above, using the same prime-target stimuli as Guerrera and 

Forster (2008), they replicated the latter’s finding of a nonsignificant T-All priming effect when 



Spatial Coding Model  72 
 

a standard masked priming methodology was used. However, when they used sandwich priming 

they found a 40 ms T-All priming effect. Simulation 10 sought to simulate this finding. The 

simulation was identical to Simulation 9, except that sandwich priming was assumed, i.e., the 

target was briefly presented prior to the prime of interest.  

Table 4 shows the results of the simulation, as well as the relevant results from Lupker 

and Davis (2009). As can be seen, the switch to sandwich priming transformed the 6 cycle 

priming effect of Simulation 9 to a 30 cycle priming effect. The model’s slight underestimation 

of the empirical effect may indicate that the  parameter is underestimated for 8-letter words, or 

that the model’s account of the mechanisms underlying sandwich priming is incomplete; it may 

be noted that increasing the sandwich prime duration improves the quantitative fit to the data. 

Nevertheless, the more salient point is that, in both the model and the data, sandwich priming 

has the effect of transforming a rather small T-All priming effect into a very large effect. 

The finding that T-All primes can give rise to substantial form priming effects is 

important, for two reasons. First, this finding demonstrates the extraordinary flexibility of the 

letter position coding system. Despite the fact that every single letter of the target has been 

displaced, these primes are sufficiently similar to the target to support its activation. This 

similarity is somewhat counterintuitive (the word abnormal does not leap out at one when 

confronted with its T-All prime baonmrla), and yet is exactly as predicted by the spatial coding 

model. The assumption of position-independent letter coding naturally leads to the prediction 

that even quite extreme anagrams are relatively similar to their base word (compared to all-

letter-different controls). The fact that sandwich priming is a sufficiently sensitive methodology 

to detect this similarity is the second noteworthy aspect of this finding. The great potential of the 

sandwich priming methodology constitutes powerful testimony to the theoretical and practical 

value of the computational model that led to its development. 

C. Primes That Involve Letter String Reversal 
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String manipulations like those considered in Simulations 6-10, in which a single pair of 

letters is transposed, or there are a small number of pairwise transpositions, give rise to similar 

orthographic similarity scores in spatial coding and open-bigram coding models (e.g., Dehaene, 

Cohen, Sigman & Vinckier, 2005; Grainger & van Heuven, 2003; Grainger & Whitney, 2004; 

Schoonbaert & Grainger, 2004; Whitney, 2001, 2004). However, the predictions of these models 

are distinguished by a special case of letter transposition that occurs when an entire string (or 

long substring) of letters is reversed, as in draw and ward. Such manipulations offer a 

particularly strong test of context-specific coding schemes in which letter position is coded by 

activating nodes that code where a letter occurs relative to another nearby letter: in particular, 

whether it occurs before or after this letter. For example, draw activates the open bigrams DR, 

DA and DW, but not the reversed open bigrams RD, AD or WD (which are activated by ward). 

Indeed, reversed letter strings like draw and ward do not share any common bigrams. By 

contrast, these letter strings are reasonably similar according to the spatial coding model.  

Thus, examining effects of letter string reversal offers a means of testing  fundamental 

assumptions of different models of letter position coding. Simulations 11 through 13 consider 

two different sorts of string reversal manipulations. In Simulations 11 and 12 the aim is to test 

whether the spatial coding model overestimates the similarity of reversed letter strings such that 

it predicts form priming in situations where none is found (Davis & Lupker, 2009; Guerrera & 

Forster, 2008). Simulation 13 tests whether the spatial coding model can correctly predict form 

priming effects in situations where reversed-string priming is obtained (Davis & Lupker, 2009). 

Simulation 11: Reversed-halves priming (Guerrera & Forster, 2008). 

Reversed-halves (RH) anagrams constitute another form of prime-target relationship that 

was originally tested by Guerrera and Forster (2008). These anagrams are formed by reversing 

the letters in each half of a word (e.g., DRAWBACK=>wardkcab). This manipulation greatly 

disrupts relative position, but has a smaller disruptive effect on absolute position, because the 

internal letters of each half are left adjacent to their original position (e.g., the R in 
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DRAWBACK has shifted by only a single position in wardkcab). According to the spatial 

coding model, then, there should be a moderate similarity score for RH anagrams. 

By contrast, open bigram coding models predict that RH anagrams are relatively 

dissimilar. Indeed, given the standard restrictions on the distance separating the letters of an 

open-bigram, RH anagrams like DRAWBACK and wardkcab do not share any open-bigrams. 

This prediction about the perceptual similarity of RH anagrams is consistent with Guerrera and 

Forster’s (2008) findings, which showed no evidence of a form priming effect when RH 

anagrams were used as primes. 

The aim of Simulation 11 was to test whether the spatial coding model incorrectly 

predicts form priming for RH anagram primes. The simulation tested the same stimuli used by 

Guerrera and Forster (2008). Results are shown in Table 4, along with the corresponding results 

from Guerrera and Forster’s experiment. The model predicts a priming effect of only 3 cycles 

for RH anagram primes, which is compatible with the null effect observed in the data.   

Simulation 12: Reversed-interior priming (Davis & Lupker, 2009). 

One possible explanation for the lack of priming produced by RH anagram primes is that 

they differ from the target with respect to the exterior letters, which may play a particularly 

important role in lexical matching. This raises the possibility that a reversed-string prime could 

support priming if the exterior letters were preserved in their correct position. Davis and Lupker 

(2009) have recently investigated this possibility, constructing reversed-interior (RI) primes by 

reversing all of the internal letters of 8-letter words. For example, for the target COMPUTER, 

the RI prime was cetupmor. Control primes were formed by maintaining the exterior letters and 

replacing all of the interior letters with letters that do not occur in the target (e.g., calibnar). A 

standard masked priming paradigm produced the results shown in Table 4. The 5 ms difference 

between the RI and control prime conditions did not approach significance. 

According to the spatial coding model, the predicted match for RI primes is reasonably 

high (.52, compared to .40 for control primes). This raises the possibility that the model 
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incorrectly predicts form priming for RI anagram primes. The aim of Simulation 12 was to 

check this possibility. The model was tested with the same stimuli used by Davis and Lupker 

(submitted). Results of the experiment and the simulation are shown in Table 4. As can be seen, 

the model and data agree in predicting virtually no priming for RI primes. In summary, although 

the spatial coding model predicts greater levels of similarity between reversed letter strings than 

other models, Simulations 11 and 12 show that the model correctly predicts the absence of 

masked form priming from the reversed letter string primes that have been examined empirically 

(Davis & Lupker, 2009; Guerrera & Forster, 2008). 

Simulation 13: Sandwich simulations (Davis & Lupker, 2009). 

The previous discussion of T-All primes (Simulations 9 and 10) demonstrated that these 

primes do not give rise to priming in the standard masked priming paradigm, but are associated 

with robust priming effects when the sandwich priming technique is used (Guerrera & Forster, 

2008; Lupker & Davis, 2009). By analogy, Davis and Lupker (2009) speculated that reversed 

letter string primes that do not give rise to priming in the standard masked priming paradigm 

(e.g., Guerrera & Forster, 2008), might give rise to priming effects when the sandwich priming 

technique is used. That is, the absence of priming in the standard masked priming paradigm may 

reflect effects of lexical competition. For example, consider a reversed-interior prime-target pair 

such as cetupmor-COMPUTER. Though the prime has a match of .56 with the target, it has a 

slightly stronger match with a number of other words, including tumour, stupor, camphor, and 

customer. The (moderate) activation of these word nodes interferes with the activation of the 

target word node, with the consequence that the prime provides no headstart to the processing of 

the target. The sandwich priming technique has the potential to reduce the interference from 

such lexical competitors, so that reversed-string primes might become effective form primes.  

The results obtained by Davis and Lupker (2009) are consistent with this conjecture (see 

Table 4). Using the same prime-target stimuli as Guerrera and Forster (2008), they found a 

small, but significant 9 ms priming effect when sandwich priming was used. Likewise, they 
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found a significant 23 ms priming effect for reversed-interior primes when sandwich priming 

was used. Simulation 13 sought to simulate these two sandwich priming experiments, using the 

same stimuli as in the experiments.  

The results of the simulation are shown in Table 4. As can be seen, the switch to 

sandwich priming transformed the null reversed-interior priming effect of Simulation 12 to a 21 

cycle priming effect, and increased the 2-cycle reversed halves priming effect of Simulation 11 

to a 7 cycle priming effect. The magnitudes of these effects are close to the human data. 

These findings provide a further demonstration of the usefulness of the sandwich 

priming technique. Moreover, they demonstrate that the null effects of reversed-string primes in 

standard masked priming effects cannot be interpreted as evidence for the weak (or zero) 

perceptual similarity of strings formed through string reversal manipulations. Rather, these 

findings suggest that such manipulations result in pairs of strings that are at least moderately 

similar to each other. This conclusion is consistent with spatial coding, but is problematic for 

open-bigram coding models (this point is discussed further below). 

D. Superset Primes 

Each of the string manipulations considered thus far (letter replacement, letter 

transposition, and string reversal) result in primes that preserve the string length of the target. 

The next two subsections consider string manipulations that modify string length through the 

deletion or addition of letters. Letter insertion has the interesting property of modifying absolute 

letter position while maintaining relative order of letters (e.g., consider the order of the common 

letters in special and specxyial). This is not to say that letter insertion should have no impact on 

orthographic similarity. Although order is maintained, relative position information is modified 

slightly by letter insertion (e.g., the c in specxyial is further away from the letter i than the c in 

special). This disruption of letter contiguity leads to a slight reduction in the match value for 

each inserted letter. The empirical effects of letter insertion on masked priming have been 

investigated in a series of experiments reported by Grainger and colleagues (Van Assche & 
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Grainger, 2006; Welvaert, Farioli, & Grainger, 2008). These experiments have tested the effect 

of number of inserted letters on form priming, and have also examined whether letter insertion 

effects are dependent upon the status of the inserted letter (repeated or unique). These two issues 

are considered in Simulations 14 and 15. 

Simulation 14: Parametric manipulation of number of inserted letters (Van Assche & 

Grainger, 2006; Welvaert, Farioli, & Grainger, 2008). 

Van Assche and Grainger (2006) and Welvaert et al. (2008) report several experiments 

investigating the effects of letter insertion on form priming. As Welvaert et al. (2008) noted, 

slightly different patterns can emerge from one experiment to another, and so it is advisable to 

combine data from multiple experiments. To this end, they performed a meta-analysis based on 

seven experiments (N=248) that included 7-letter word targets and primes that included between 

zero and three inserted letters (zero inserted letters corresponds to identity priming). This 

analysis revealed a graded effect of letter insertion, in which there was a cost of 11 ms per letter 

inserted; the linear regression equation explained 62% of the variance in priming effects.   

The stimuli for Simulation 14 were constructed to parallel those used in the experiments 

of Van Assche and Grainger (2006) and Welvaert et al. (2008). The targets were a random set of 

96 7-letter words with no repeated letters. Primes were constructed by inserting 0, 1, 2, or 3 

letters at either position 4 (e.g., abdomen, abdgomen, abdgcomen, abdgcxomen) or position 5 

(acquire, acquhire, acquhjire, acquhmjire); in addition, a set of all-letter-different control 

primes was constructed.  

As can be seen in Table 4, although the model underestimated priming by around 6 

cycles for each condition, it was quite successful in capturing the linear relationship between 

number of inserted letters and priming effects. According to the model, this linear decrease in 

priming effects reflects the disruption of relative position information as further letters are 

inserted. The slight underestimation of priming may reflect the slight variation in masked 

priming methodology used in these experiments. Specifically, Van Assche and Grainger (2006) 
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and Welvaert et al. (2008) used four stimulus fields rather than three, with the prime followed 

by a 16 ms backward mask that preceded the target stimulus; by contrast, the simulation used 

the same procedure as in other simulations, i.e., there was no backward mask). The inclusion of 

the intermediate mask in the experiment allows extra processing time for the prime, which could 

increase masked priming effects. 

Simulation 15: Superset priming (Van Assche & Grainger, 2006, Experiment 1). 

Having established that superset primes can produce robust form priming effects, Van 

Assche and Grainger (2006) proceeded to investigate whether the magnitude of these effects 

was affected by whether the inserted letter was a repeated letter (i.e., one that occurred already 

in the target), or a unique letter. They compared two repeated letter conditions: one in which the 

repeated letters were adjacent (e.g., cabbinnet-CABINET or cabinnet-CABINET), and another 

in which the repeated letters were separated by two intervening letters (cabinbet-CABINET or 

canbinet-CABINET). There were two versions of the unique letter condition (e.g., cabinxet-

CABINET and caxbinet-CABINET), in order to control for possible letter position effects. 

Finally, identity and unrelated prime conditions were included for comparison purposes. The 

simulation included each of these eight conditions, and used the same targets as Simulation 14. 

The match values computed by the spatial coding model are equivalent for the two 

repeated letter conditions, and also for the unique letter condition (e.g., cabinxet-CABINET). 

This equivalence reflects the model’s equivalent treatment of repeated and unique letters. As can 

be seen in Table 4, the equivalent match values across the repeat, repeat-displace and unique 

(insert) letter conditions translate to approximately equivalent predicted priming effects. This 

pattern perfectly mirrors the pattern of the data. 

It is worth noting that the equivalence of the displaced and adjacent repeated letter 

conditions is not a necessary prediction of all models. According to the discrete OB coding 

scheme described by Schoonbaert and Grainger (2004), the displaced repeated letters should 

produce a better match than the adjacent repeated letters (0.93 vs 0.87). The same prediction 
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follows from the current SERIOL model (Whitney, 2004), whereas the overlap OB coding 

model predicts the opposite pattern (.90 vs .96). Van Assche and Grainger (2006, p. 346) 

concluded that “in terms of the influence of letter repetition on relative-position priming effects, 

it appears that the SOLAR [i.e., spatial coding] model generates superior predictions relative to 

the other models examined”. 

E. Noncontiguous Subset Primes 

Subset primes are formed by deleting letters of the target. It is appropriate to distinguish 

between two types of subset primes. The deletion of initial or final letters results in contiguous 

subset primes (e.g., qual-quality); these are considered in the next subsection. The deletion of 

internal letters of the target results in non-contiguous subset primes. Like superset primes, these 

primes modify absolute letter position while maintaining letter order (e.g., consider the order of 

the common letters in special and spcal). However, although order is maintained, the relative 

position is modified slightly by letter deletion (e.g., the c in spcal is closer to the letter p than the 

c in special). This disruption of letter contiguity results in a slight reduction in the match value, 

as, of course, does the absence of one or more of the letters of the template. The simulations 

reported in the present subsection examine the effect of number of deleted letters, the effect of 

deletions versus substitutions (Peressotti & Grainger, 1999), the importance of relative letter 

position in letter deletion primes (Grainger et al., 2006; Peressotti & Grainger, 1995, 1999), as 

well as the importance of whether the deleted letter occurs only once or repeatedly in the target 

(Schoonbaert & Grainger, 2004).  

Simulation 16: Deletion of repeated versus unique letters (Schoonbaert & Grainger, 

2004, Experiment 1). 

Schoonbaert and Grainger (2004) tested subset priming effects for targets containing 

repeated letters. Their prediction (based on open-bigram coding) was that deleting a repeated 

letter (e.g., trival-TRIVIAL) would result in greater priming than deleting an unrepeated letter 

(e.g., trivil-TRIVIAL). Contrary to this prediction, primes formed by deleting repeated letters 
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were not more effective than those formed by deleting unique letters. Schoonbaert and Grainger 

(2004) noted that this result is consistent with a spatial coding account, because the spatial 

coding model treats repeated letters in the same way as unique letters, and incorporates a 

mechanism to prevent letters doing “double-duty”, i.e., a single letter cannot contribute to the 

overall match more than once (e.g., the I in trival cannot count towards both Is in trivial).  

The English stimuli used in Simulation 16 were constructed in the same way as in 

Schoonbaert and Grainger’s (French) experiment. The critical targets were 64 7-letter words 

containing repeated letters (where the repeated letters were not adjacent, and did not occur in 

initial or final positions). The primes were constructed by deleting either the second occurrence 

of the repeated letter, or an immediately adjacent letter. As in Schoonbaert and Grainger’s 

experiment, possible letter position effects were controlled for by testing an equal number of 

control targets that contained no repeated letters, and which were primed with letter deletion 

primes constructed in the same way as for the targets with repeated letters.  

The results of the simulation are shown in Table 4. As in Simulation 14, the model’s 

underestimation of the magnitude of priming effect by around 5 cycles across each condition 

may reflect the need to increase the prime duration in the simulation to simulate the use of the 

intervening backward mask in the experiment. Nevertheless, the overall pattern of the results 

demonstrates an excellent fit to the experimental data. Subset primes were extremely effective 

for both the repeated letter targets and control targets, and the size of the priming effect did not 

appreciably differ as a function of whether the deleted letter was a repeated letter or a unique 

letter. These results, combined with those from Simulation 15, demonstrate that the method by 

which the model handles repeated letters is consistent with a broad range of priming data. 

Simulation 17: Subset versus substitution priming (Peressotti & Grainger, 1999, 

Experiment 2). 

Peressotti and Grainger (1999) reported several experiments investigating various 

aspects of relative position priming. They sought to extend work previously reported by 
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Humphreys, Evett and Quinlan. (1990) which had found that the identification of target words 

could be primed by subsets that shared common letters with the target in the same relative 

position (e.g., exterior letters primed exterior letters, and interior letters primed interior letters). 

For example, identification of targets like BLACK was facilitated both by substitution primes 

like btvuk (relative to control primes like otvuf) and by deletion primes like bvk (relative to 

control primes like ovf). Peressotti and Grainger attempted a replication of Humphreys et al.’s 

prime conditions, using the three-field masked priming technique and the lexical decision task. 

Experiment 2 of Peressotti and Grainger (1999) manipulated prime relatedness and 

prime length to form the following four priming conditions: a) the subset prime 1346 (e.g., crtn-

CARTON), b) the unrelated control prime dddd (e.g., vsfx-CARTON), c) the substitution prime 

1d34d6 (e.g., czrtwn-CARTON), and d) the unrelated control prime dddddd (e.g., vzsfwx-

CARTON). The description of primes in this and the following simulations adopts the common 

practice of using digits to indicate letter position, e.g., the notation 1346 indicates a prime 

consisting of the letters from positions 1, 3, 4 and 6 of the target. The letter d (as in 1d34d6) 

indicates a letter that is not present in the target. Their results showed that subsets were effective 

form primes, relative to their controls, but that substitution primes were not (relative to their 

controls). Peressotti and Grainger (1999) concluded that the presence of non-target letters in the 

substitution primes exerted an inhibitory effect on target identification.  

Simulation 17 used stimuli that were constructed in the same way as Peressotti and 

Grainger’s (their experiment used French stimuli, and hence it was necessary to construct 

English stimuli with the same characteristics). There were eighty 6-letter targets, each paired 

with four different primes. Table 4 shows the mean priming effects predicted by the model. As 

can be seen, both the subset primes and the substitution primes resulted in facilitatory priming, 

but the priming effect was larger for subset primes. The model slightly underestimates the 27 ms 

effect that Peressotti and Grainger (1999) found for subset primes in their Experiment 1, 
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although these authors obtained smaller priming effects for this condition in a subsequent 

experiment in the same series (see below).  

The magnitude of the predicted priming for substitution primes was very close to the 

observed effect. The latter effect was not statistically significant in Peressotti and Grainger’s 

data, but other experiments suggest that there is a genuine priming effect to be found for 2-letter 

different primes and 6-letter targets (e.g., Perea & Lupker, 2004), as has also been observed for 

2-letter different primes and 7-letter targets (Lupker & Davis, 2009; see Simulation 4). 

Nevertheless, the critical aspect of the results is that both the model and the data show greater 

priming for subset primes than for substitution primes. This suggests that the mismatch 

inhibition produced by substituted letters outweighs any beneficial effect these letters may have 

in helping to preserve relative position information for the remaining letters. 

Simulation 18: The relative position priming effect (Peressotti & Grainger, 1999, 

Experiment 3). 

A second issue explored by Peressotti and Grainger (1999) (again following on from 

earlier work reported by Humphreys et al., 1990 on the perceptual identification of primed 

targets) concerns the flexibility of letter position coding as revealed by subset priming. As 

discussed in detail already, there is considerable evidence for facilitatory priming from primes 

that transpose two adjacent letters of a target stimulus (e.g., catron-CARTON). One might 

therefore anticipate that subset primes that incorporate adjacent letter transposition would result 

in some form priming (e.g., that ctrn-CARTON would result in a priming effect not too much 

smaller than that for crtn-CARTON). However, this expectation is violated by the results of 

Peressotti and Grainger’s (1999) Experiment 3 (see Table 4), which replicated the facilitatory 

effect of subset primes, but found no priming for subset primes in which the order of the two 

interior letters was transposed (i.e., 1436 primes like ctrn-CARTON) or in which the order of 

the two exterior letters was transposed (i.e., 6341 primes like nrtc-CARTON).   
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Simulation 18 used the same 80 word targets as Simulation 17. The 1346 and dddd 

prime conditions were also identical to those of Simulation 14, and the new conditions of 1436 

and 6341 were included. Table 4 shows the mean priming effects predicted by the model. As 

can be seen, the 1346 subset primes showed a facilitatory priming effect of the same size as that 

effect observed by Peressotti and Grainger (1999); this correspondence suggests that the slight 

underestimation of subset priming observed in Simulation 14 is not problematic for the model. 

The model also correctly predicts a weaker priming effect for the 1436 subset primes, although 

there is evidence of some facilitatory priming. Finally, the model predicts no priming for the 

6341 primes, consistent with the nonsignificant priming effect reported by Peressotti and 

Grainger (1999). Thus, the model provides a good account of relative position priming. 

F. Primes That Involve Letter String Displacement 

A key claim of the spatial coding model is that the recognition of letter strings is 

position-invariant. The assumption of end-letter marking introduces a slight degree of position-

specificity (in the sense that the model computes larger match values when two strings share 

their initial and final letters), but it is nevertheless the case that the model predicts that a familiar 

letter string that ordinarily occurs in serial positions 1 through 4 can be recognised even when it 

occurs in positions 4 through 7. To date, very few masked priming experiments have examined 

such manipulations, in which letter strings are shifted, rather than transposed or reversed. These 

experiments have produced somewhat mixed results. On the one hand, Grainger et al. (2006) 

observed significant priming effects when substrings of the target word were shifted by as many 

as four letter positions. For example, in one experiment Grainger et al. found that priming of 9-

letter target words was equivalent for 12345 primes (e.g., labyr-LABYRINTH) and 56789 

primes (e.g., rinth-LABYRINTH), despite the fact that the letters of the prime in the latter 

condition are shifted by four positions (forward) relative to the positions of the corresponding 

letters in the target. This result is consistent with position-invariant identification and poses a 

strong challenge to position-specific models. 
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On the other hand, Kinoshita and Norris (submitted) have recently reported a masked 

priming experiment in which priming effects were not obtained for position-shifted primes. The 

targets in this experiment were 8-letter words and nonwords, and the critical primes were of the 

form 56781234, i.e., the first half of the target was shifted forward by four positions, while the 

second half was shifted backward by four positions. This manipulation resulted in no priming, 

relative to an unrelated baseline condition. Simulations 19 and 20 investigate whether the spatial 

coding model can accommodate the dual (and potentially conflicting) constraints imposed by 

these two sets of results. 

Simulation 19: Shifted-halves (Kinoshita & Norris, submitted). 

As noted above, Kinoshita and Norris (submitted) have recently reported a masked 

priming experiment which, on the surface at least, appears to conflict with the findings of 

Grainger et al. (2006). As in the 56789 prime condition of the latter experiment, the primes 

consisted of substrings of the target that had been shifted from their normal position by four 

letter positions (although the targets were eight rather than nine letters long). This substring was 

then concatenated with a substring corresponding to the initial four letters of the target. The 

resulting primes, of the form 56781234, showed no priming relative to an unrelated baseline 

condition.  

From an empirical perspective, the absence of 56781234 priming is noteworthy. The 

results of Grainger et al. (2006) suggest that 5678 should be an effective prime for an 8-letter 

target, so it may be somewhat surprising that the addition of four further target letters should 

eliminate this effect. More importantly, from a theoretical perspective, the absence of 56781234 

priming may appear to pose a strong challenge to position-invariant recognition. This challenge 

is especially profound in the case of models that attempt to achieve position-invariant 

recognition through matching of small sublexical chunks. For example, the overlap open-bigram 

model (Grainger et al., 2006) predicts a match of .85 between a target and a shifted-halves prime 

(e.g., drenchil-CHILDREN), and high match values are also produced by the discrete open-
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bigram and SERIOL models. These high values reflect the fact that drenchil and children share 

most of their local context, e.g., C is followed by H, D is followed by R, etc. 

However, from the perspective of the spatial coding model, Kinoshita and Norris’s 

(submitted) result is not so problematic, because match values in this model are based on the 

whole string, and not just the similarity of the sublexical components. That is, drenchil and 

children share common substrings (1234 and 5678), but their whole-word match is less good. 

The addition of the 1234 component will not increase the priming that can be generated by the 

5678 substring, because these additional letters are too far away from the expected position that 

is implied by the remaining letters. This point is most easily illustrated graphically. Figure 8 

shows the signal-weight difference functions computed by the children word node when the 

input stimulus is drenchil. As can be seen, the node is in some sense sensitive to the overlap 

with both halves of the stimulus. The d, r, e, and n functions are perfectly aligned with each 

other, so that the node can “recognise” that the substring dren matches part of the template. 

Likewise, the c, h, i, and l functions are perfectly aligned with each other, so that the node can 

“recognise” that the substring chil matches part of the template. However, the signal-weight 

difference functions for these components are not aligned with each other (rather, they are quite 

distant), and so there is not a complete (or even a particular close) match between the stimulus 

and the template. Effectively, when faced with a 56781234 prime, the word node must choose 

between two partial matches: one in which the stimulus has been shifted forward by four 

positions or one in which it has been shifted backward by four positions (the same stimulus 

cannot simultaneously have been shifted in both directions). Thus, based on a spatial coding 

model there is no reason to expect that a 56781234 prime will be more effective than a 5678 

prime. As noted below, the same is not true of other current models. 

Furthermore, the spatial coding model offers a couple of reasons to expect that a 

56781234 prime will be less effective than a 5678 prime. The first reason relates to end-letter 

marking. Consider the target INTERVAL, and the primes rval versus rvalinte. In addition to the 



Spatial Coding Model  86 
 

common substring rval, rval and interval share the property that their final letter is l (resulting in 

a match of (4+1)/(8+2) = .5). This is not the case for rvalinte and interval, which have different 

initial and final letters (resulting in a match of (4+0)/(8+2) = .4). Thus, the addition of the 1234 

letters (i.e., inte) actually decreases the match. The second, more important reason to expect that 

a 56781234 prime will be less effective than a 5678 prime is that the additional 1234 letters will 

frequently result in a better match between the prime and other words. For example, rvalinte 

produces a closer match to 8-letter words like reliance, relative, radiance, validate, etc., as well 

as to shorter words like ravine, reliant and recline than it does to interval. Even though none of 

these matches is especially close, they may be sufficient to prevent rvalinte from functioning as 

an effective prime for the target INTERVAL.  

Simulation 19 aimed to test this lexical competition account of the absence of masked 

priming for shifted-halves primes. The simulation used the same (8-letter) primes and targets as 

Kinoshita and Norris (2009). As can be seen in Table 4, there was no indication of a difference 

between the shifted halves (56781234) prime condition and the control (all-letter-different) 

prime condition. This result is in accordance with the findings of Kinoshita and Norris (2009).  

Simulation 20: Position-invariant priming (Grainger et al., 2006). 

The most dramatic examples of position-invariant priming presented to date come from 

Experiments 2 and 3 of Grainger et al. (2006). These experiments showed large subset priming 

effects for both initial subsets (e.g., 12345-1234567) and final subsets (34567-1234567). 

Although there was some indication of larger priming effects for initial-overlap subsets, the 

large priming effects for final-overlap subsets (37 ms for 34567 primes and 12 ms for 4567 

primes) are difficult to reconcile with a position-specific letter coding model, even one that 

incorporates letter position uncertainty (e.g., Gomez et al., 2008). 

Simulation 20 attempted to simulate these effects. The stimulus set for this simulation 

was formed by randomly selecting a set of 60 7-letter word targets, subject to the constraint that 

targets contained no repeated letters. Each of these targets was paired with eight different 
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primes, which were of the form: a) 12345, e.g., plast-PLASTIC; b) 34567, e.g., astic-PLASTIC; 

c) 13457, e.g., pastc-PLASTIC; d) ddddd, e.g., qmbtu- PLASTIC, d) 1234, e.g., plas-PLASTIC; 

e) 4567, e.g., stic-PLASTIC; f) 1357, e.g., patc-PLASTIC; or g) dddd, e.g., qmbt- PLASTIC. 

The results of this simulation show some similarities with the empirical data, as well as 

some differences. As in the data, there were (numerical) priming effects for all six related prime 

conditions. In particular, the model correctly predicts that priming should be obtained for both 

initial subsets (12345, 1234) and final subsets (34567, 4567), i.e., priming was not specific to 

absolute serial position. The model also correctly predicted a similarly sized priming effect for 

non-contiguous subsets (13457, 1357). Overall, however, the predicted subset priming effects 

tended to be smaller in magnitude than the empirical effects, especially for initial overlap 

primes. I return to this discrepancy below. It is important to note, though, that the same model 

predicts priming for final subsets like 4567 (in this simulation), but not for shifted-halves primes 

like 56781234 (in Simulation 19). This pattern suggests that it is possible to resolve the apparent 

conflict between the results of Grainger et al. (2006) and Kinoshita and Norris (submitted). 

Summary of Simulation Results 

Figure 9 plots the relationship between the model’s predicted priming effects and the 

empirically observed effects. The line of best fit (dashed line) has a slope of 0.98 and intercepts 

the y-axis at 1.91; the proximity to the origin and a slope of 1 indicates that the parameter 

choices were successful in achieving a good correspondence between the units of milliseconds 

in which the observed priming effects are measured and the units of processing cycles in which 

the predicted priming effects are measured. The plot illustrates the remarkably close fit between 

theory and data (r = .95, RMSE = 6.19), across the full range of prime manipulations and 

observed priming effects (from -34 ms / -35 cycles up to +55 ms / +58 cycles). Overall, the 

model (assuming a fixed set of parameters) is able to account for 90% of the variance in 61 

mean priming effects derived from a set of over 25 form priming experiments that span the 
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entire range of letter string manipulations. In view of the typical variability associated with 

empirical priming effects, the obtained fit is likely to be close to the limits of observation. 

Figure 9 also shows a few outliers, where the model’s predicted priming effect 

overestimates or underestimates the observed effect size (the most extreme outliers are 

highlighted in the third column of Table 5). The model overestimated neighbour priming effects 

for high frequency targets in Simulation 1; on the other hand it tended to underestimate 

neighbour priming effects for the low frequency targets in Simulations 1 and 2. It is possible 

that these outliers reflect spurious noise, but the model’s account of neighbour priming as a 

function of target frequency may warrant closer scrutiny. 

The most noteworthy outliers relate to the model’s underestimation of priming effects 

for 5-letter contiguous subset primes (Grainger et al., 2006) in Simulation 20. The observed 

priming effects are extremely large, considering that the prime omits two of the letters of the 

target. Indeed, the priming effect of 45 ms for 12345 primes is of a similar magnitude to the 

effect size that the model predicts for identity primes with these targets. The magnitude of the 

observed effects suggests that these subset primes may invoke processes that are beyond form 

priming. One possibility is that the first five letters of the target word is sufficient to provoke 

some form of expectancy (see Forster, 1998 for a discussion of this possibility). Although the 

model incorporates expectancy in the form of its top-down feedback, it may be that this 

feedback is insufficiently strong, or that the implementation of feedback is incorrect. Another 

possibility is that the observed priming effects for contiguous subsets includes a morphological 

priming component, which would be outside the scope of the present model. 

Although the experiments modelled here focussed on the issues of orthographic 

representations and processes, there was every opportunity for other types of representations and 

processes (i.e., phonological, morphological, or semantic) to influence the pattern of empirical 

results. Needless to say, the model would underestimate masked priming effects that are due to 

non-orthographic processes; for example, the present model would fail to predict associative 
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priming effects such as those observed for prime-target pairs like judge-COURT (e.g., Perea & 

Gotor, 1997). Nevertheless, the fact that a purely orthographic model can provide such a good 

account of this large data set is of interest, and appears to validate the general approach of 

seeking to study the workings of the orthographic lexicon in isolation. This approach clearly 

neglects important aspects of reading, but nevertheless it appears that it can offer a fairly good 

characterisation of early visual word identification processes. 

Comparison of the Spatial Coding Model with Other Models 

The spatial coding model differs in several ways from the original IA model, and thus it 

is not immediately apparent which of these differences might result in it offering a better 

account of the empirical database. In this section, I first demonstrate that the spatial coding 

model does indeed provide a better account of the data than the IA model. I then consider a set 

of nine models, each of which differs from the spatial coding model with respect to one critical 

difference. Each model is tested on the same twenty simulations reported above, and their 

performance is compared to the model already tested. This approach makes it possible to assess 

the relative contribution of each of the differences of the spatial coding model from the original 

IA model. In the final part of this section, I turn to consideration of two alternatives to the 

standard approach that have been proposed in recent years: the overlap model (Gomez et al., 

2008) and open-bigram coding models (e.g., Grainger & Whitney, 2004). Although both of 

these approaches are able to explain an impressive number of empirical observations, I conclude 

that neither is able to explain all of the results simulated here. 

Original IA Model 

In order to conduct the same simulations that were reported above with the original IA 

model, a different parameterisation of the spatial coding model was employed, as described in 

the Appendix (where it is shown that this parameterisation results in identical performance for 

the 4-letter vocabulary used in the original IA model). Not surprisingly, the model failed to 

identify a large proportion of the stimuli, as the result of competition between words of different 
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length, and this resulted in a rather poor correlation between the model’s predicted priming 

effects and the empirical data (r = 0.17). To try to provide a fairer test of the model, I then ran 

each of the simulations using vocabularies of a fixed length that corresponded to the target 

words in that simulation. The model then succeeded in identifying the target stimuli, although it 

frequently made errors on the lexical decision task, because its identifications were too slow. As 

a compromise, I set the   parameter to 0.0, so that Yes decisions could be made whenever 

the model succeeded in identifying the stimulus. This enabled the model to achieve a correlation 

between its predictions and the empirical data of 0.63 (see Table 5). Although the model was 

reasonably successful in predicting priming effects for letter substitution primes, it 

systematically underestimated priming effects for transposed letter primes. For example, the 

model predicted no facilitatory priming for internal transposition primes in Simulation 21, 

compared to the 30 ms priming effect observed by Perea and Lupker (2003b). Likewise, the 

model systematically underestimated priming effects for other primes that disrupted absolute 

letter position, including inserted letter primes, deleted letter primes, reversed string primes 

(when sandwich primed), and primes involving letter string displacement. These difficulties are 

consistent with the problems with the original IA model that have been discussed elsewhere 

(e.g., Davis, 1999, 2006).  

Next, I compare different parameterisations of the spatial coding model in order to assess 

the relative contribution made by different aspects of the model. 

Model without Position Uncertainty 

Most of the incorrect predictions of the original IA model stem from its lack of position 

uncertainty; for example, the above-mentioned underestimate of TL priming would presumably 

be corrected if the model incorporated some position uncertainty. One way to evaluate the 

importance of position uncertainty is to set σ equal to zero in the spatial coding model, thereby 

eliminating letter position uncertainty. Predictably, the resulting model does rather poorly on the 

full set of 20 simulations (see Table 5). The correlation between model and data (r = 0.73) is 
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still somewhat higher than the IA model, chiefly due to the model’s superior predictions for 

identity priming and sandwich priming. Clearly, however, the assumption of position 

uncertainty is a prerequisite for explaining the empirical data. 

A further question concerning position uncertainty relates to the spatial coding model’s 

assumption that σ varies as a function of stimulus length. How critical is this assumption? To 

answer this question, I tested the model with a fixed value of σ (σ = 2, kσ = 0); results are shown 

in Table 5. As can be seen, this model performs very well overall, with a correlation between 

theory and data of 0.93. However, this value of σ is too small for long stimuli. This is evident in 

the sandwich priming simulations with 8-letter stimuli, where the model greatly underestimates 

the priming for reversed-string primes. The problem is even more apparent in the simulation 

examining the effect of parametric letter insertion.  Whereas the spatial coding model predicts 

priming effects close to those reported in Welvaert et al.’s (2008) meta-analysis, the model with 

a fixed σ predicts no priming at all for primes involving the insertion of three letters (row 41 in 

Tables 4 and 5). The reason is that the insertion of three medial letters causes the remaining 

letters on either side to be separated by too great a distance to mutually contribute to a lexical 

match (e.g., the bal and cony in balxyzcony are too far apart to both support the activation of the 

target BALCONY; compare the example shown in Figure 4(c) and the accompanying 

description). This does not cause a problem for the model with variable σ, as letter insertions 

also increase the degree of position uncertainty, so that the distance of three letters is not too far 

to enable the signal-weight differences from both halves of the word to contribute to the target 

match. In the model with fixed σ, a higher setting of σ results in a better fit to the letter insertion 

data, but reduces the goodness of the fit to other experiments (e.g., the model predicts too much 

priming for T-All primes in Simulation 9, and too small a difference between neighbour and 

neighbour-once-removed primes in Simulation 7). Thus, the qualitative fit to the data is superior 

if σ is assumed to vary with stimulus length. 

Model without Position Invariance 
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A critical difference between the spatial coding model and the standard approach to 

orthographic input coding is the assumption of position-invariant coding in spatial coding as 

compared to the position-specific coding assumed in the standard approach. The formulation of 

the equations underlying the spatial coding model enables the importance of this difference to be 

tested by varying a single parameter. This parameter change effectively transforms the position-

invariant spatial coding model into a position-specific coding model. Simulation results for this 

model are shown in Table 5. Overall, the model performs quite well, with a correlation between 

model and data of 0.91. Indeed, in many cases this model makes identical predictions to those of 

the spatial coding model. However, there are a number of priming effects that are greatly 

underestimated by the position-specific model. Each of these priming effects involves subset 

priming. The most striking differences are for the final-overlap subset primes (e.g., lcony-

BALCONY and cony-BALCONY) tested in Grainger et al. (2006). The data show priming 

effects of 37 ms and 12 ms for these two conditions. Although the position-invariant spatial 

coding model underestimates priming in the first case, it nevertheless predicts substantial 

priming in both of these conditions (of 24 and 7 cycles, respectively). By contrast, the position-

specific model predicts no priming for either of these conditions (predicted effects of 2 and 1 

cycles). This failure to predict position-invariant priming is exactly as would be expected for the 

position-specific coding model. Although the set of experiments simulated here includes only 

one experiment that illustrates position-invariant priming, the same phenomenon was shown 

repeatedly in four separate experiments reported by Grainger et al. (2006). Position-invariant 

priming has also been observed in several morphological priming experiments (e.g., Crepaldi, 

Rastle, Davis, & Lupker, in preparation; Duñabeitia, Laka, Perea & Carreiras, 2009).  

The other priming effects that are greatly underestimated by the position-specific model 

are the non-contiguous subset primes (1346 and 13457) tested by Peressotti and Grainger (1999) 

and Grainger et al. (2006) respectively. Although these primes share their first letter with the 

target, the deletion of the second letter means that the absolute position match is greatly 
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disrupted. In the position-invariant spatial coding model, the resonating difference for these 

primes is -1, i.e., the model is sensitive to the fact that the best relative position match is 

observed by the letters that occur one position earlier in the prime than in the target. The 

position-specific coding model cannot capture this aspect of the similarity between the prime 

and target, and hence it systematically underestimates priming for non-contiguous subset primes 

like 1d34d6 and 1d345d7. Thus, despite the model’s quite good quantitative fit with the full data 

set, the failure of the position-specific coding model to explain priming for final overlap and 

non-contiguous subset primes is a critical flaw. 

Model without Mismatch Inhibition 

Another important respect in which the spatial coding model differs from the standard 

approach to orthographic input coding is its replacement of letter-word inhibition with 

nonspecific mismatch inhibition. To investigate the importance of this mismatch mechanism, the 

same set of 20 simulations was tested with a model in which the γLW parameter was set to zero, 

i.e., mismatch inhibition was switched off. This model performed fairly well overall, with a 

correlation between theory and data of 0.87 (see Table 5). However, there are a few phenomena 

where this model does worse than the model with mismatch inhibition. One of these 

phenomena, perhaps surprisingly, is TL priming, where the model without mismatch inhibition 

predicts smaller priming effects than observed in the data (e.g., see rows 21 and 28). The match 

between theory and data could be improved by increasing σ. The more interesting aspect of this 

comparison, though, is that it reveals that one component of the TL priming effect seen in 

Simulations 6 and 8 is based on the fact that the transposed letters are not incompatible with the 

target, unlike the replacement letters in the orthographic control. 

Although the model without mismatch inhibition can readily be adjusted to provide a 

good account of TL priming, there are two other phenomena that may not be so easy to 

accommodate. The first is the sandwich priming effects for primes that differ from the target by 

several letters. As can be seen in rows 16 through 19, the model without mismatch inhibition 
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greatly overestimates the magnitude of priming for primes that differ from the target by 2, 3, 4, 

or 5 letters. By contrast, the model with mismatch inhibition is able to provide a good account of 

the observed priming effects, by virtue of the fact that increases in the number of replaced letters 

lead to increased levels of inhibition to the target node. 

The other critical challenge for the model without mismatch inhibition is how to explain 

Peressotti and Grainger’s (1999) finding that subset primes (1346) are (numerically, at least) 

more effective primes than double replacement primes (1d34d6). This model predicts a small 

difference in the opposite direction, because the only effect of the replacement letters on the 

match value is a positive one: these letters ensure that the remaining letters (1346) are in the 

correct positions relative to each other (i.e., letter contiguity is preserved over the prime and 

target stimuli in 1d34d6-123456 but not in 1346-123456). By contrast, the model with mismatch 

inhibition correctly predicts greater priming for 1346 than for 1d34d6, as a consequence of the 

inhibition that the two mismatching letters contribute to the target in the latter case. The 

difference between the 1346 and 1d34d6 priming effects was not statistically significant in 

Peressotti and Grainger’s (1999) experiment, and thus further investigation of this difference 

would be desirable. Nevertheless, initial indications are that the mechanism of mismatch 

inhibition may play a critical role in explaining orthographic similarity data.  

Model without End-Letter Marking 

A final important respect in which the spatial coding model differs from the standard 

approach is in its introduction of end-letter marking. To investigate the importance of this aspect 

of the model, I tested an alternative model in which the weights from the two exterior letter 

banks were zeroed. Once again, this model performed quite well with respect to its overall fit to 

the data (r = 0.92, see Table 5). However, closer inspection of the results reveals that this model 

overestimates priming effects for primes that differ from targets with respect to their exterior 

letters. For example, the model fails to capture the difference in the magnitude of priming for 

TL-final primes relative to internal transpositions (Perea & Lupker, 2003b). Likewise, the model 
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overestimates priming for the T-All and Reversed-Halves primes of Guerrera and Forster (2008; 

see also Lupker & Davis, 2009). Furthermore, the model without end-letter marking 

underestimates priming effects for primes and targets that shared the same exterior letters, as in 

the reversed interior primes of Davis and Lupker (2009), the deleted letter primes of Peressotti 

and Grainger (1999) and Schoonbaert and Grainger (2004), the inserted letter primes of Van 

Assche and Grainger (2006) and Welvaert et al. (2008), and the displaced letter string primes of 

Grainger et al. (2006). Although these results need not imply that the specific mechanism of 

dynamic end-letter marking is the correct way to capture the special status of exterior letters, it 

seems clear that some general mechanism of this sort is required to account for the empirical 

database on masked form priming effects. 

Model without Masking Field Parameters 

The spatial coding model includes two mechanisms designed to facilitate competition 

between words of different lengths: masking field interactions and length-mismatch inhibition. 

According to masking field principles, nodes that code longer words have a competitive 

advantage over nodes that code shorter words (e.g., Grossberg, 1978). The magnitude of this 

advantage depends on the parameter mf. To examine the impact of masking field principles on 

the model’s performance, I tested the 20 simulations with a model in which mf was set at 0. This 

model performed very similarly to the masking field model (r = .98), but the latter model 

typically resulted in a slightly closer fit to the data (the correlation between model and data for 

the non-masking field model was 0.93). One difference between the two models that is not 

apparent from the lexical decision latencies was that the non-masking field model occasionally 

made identification errors in which a low-frequency target word was misidentified as a high-

frequency shorter word (e.g., on the trial wenve-WEAVE, the target was misidentified as “we”). 

A related phenomenon is the model’s underestimation of priming effects for subset primes that 

are several letters shorter than the target, particularly if the prime is itself a word (e.g., fort-
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FORTUNE; see rows 59 and 60). This reflects the fact that, in the non-masking field model, 

nodes that code 7-letter words have greater difficulty in suppressing shorter words.  

Model Without Length-Mismatch Inhibition 

Similar comments apply to the model’s assumption of length-mismatch inhibition. A 

model with no length-mismatch inhibition (i.e., γlen = 0; see Table 5) performed very similarly to 

the model with length-mismatch inhibition, with the exception that it did slightly worse with 

respect to its predictions for the contiguous subset primes in Grainger et al. (2006). In summary, 

the assumptions of masking field principles and length-mismatch inhibition are helpful for the 

network’s lexical selection mechanism, in that they help the best-matching lexical candidate to 

inhibit subset/superset competitors. However, neither of these assumptions is critical for 

explaining the orthographic similarity data simulated here. 

Model without Match-Dependent Decay 

The spatial coding model incorporates a slightly different form of activity decay than the 

original IA model. Specifically, it is assumed that the rate of decay is modulated by the match 

between the bottom-up input and the template. This assumption (in slightly different form) was 

originally proposed by Lupker and Davis (2009) in order to simulate sandwich priming effects. 

They observed that the exponential decay assumed by the original IA model caused the activity 

triggered by the initial sandwich prime to dissipate quite rapidly, making it difficult to account 

for the magnitude of sandwich priming effects. The assumption of match-dependent decay 

implies that a node that has been activated by the initial sandwich prime can maintain its 

activation if the critical prime is similar to the template, but will decay rapidly for primes that 

are dissimilar to the template (as will be the case for control primes). 

To test the impact of this modification to the model, the original form of decay was 

simulated by setting the DecayCutoff parameter equal to 1 and the DecayRate parameter equal 

to 0.07; in addition, the FreqBias parameter was set equal to the DecayRate (otherwise the 

model often responds No to low frequency words). As can be seen in Table 5, the resulting 
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model provides quite a good account of the data (r = 0.92). However, as expected, this model 

underestimates sandwich priming effects (e.g., see rows 15, 33, and 37). Future modelling may 

suggest a different mechanism for explaining sandwich priming. At present, however, there do 

not seem to be any considerations arguing against the proposed match-dependent decay.  

Model without Top-Down Feedback 

The final variant of the model that I consider is one in which there is no top-down 

feedback (i.e., WL = 0). The performance of this model is virtually identical to the model with 

top-down feedback, with the exception of the models’ predictions for the contiguous subset 

primes of Grainger et al. (2006). Here, the model without top-down feedback predicts priming 

effects that are typically around 10 cycles smaller than the model with top-down feedback. 

Given that the latter model is already underestimating the magnitude of the observed effects, this 

difference implies that the model without top-down feedback greatly underestimates contiguous 

subset priming effects. 

On the one hand, the above result could be interpreted as strong support for the role of 

top-down feedback in visual word identification. Indeed, perhaps the spatial coding model could 

do an even better job of fitting the data if its top-down feedback was greater or implemented 

slightly differently. If top-down feedback is very strong (e.g., WL = 10) the model predicts 

considerably stronger priming effects for the subset primes of Grainger et al. (2006), thereby 

reducing (although not altogether eliminating) the underestimation of priming for these data 

points. The reason for this is that top-down feedback causes the model to “fill in” the missing 

letters of the target, e.g., the prime balco activates the BALCONY word node, which in turn 

activates the “missing” letters N and Y at the end of the stimulus. 

On the other hand, there are grounds for being somewhat cautious regarding the role of 

top-down feedback. Although the model with strong top-down feedback does a better job of 

fitting the Grainger et al. (2006) data, the means by which it achieves this better performance is 

to directly activate the “missing” letters (e.g., the stimulus bayon leads to the activation of the 
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bayonet word node, which in turn leads to the activation of the final letters E and T). This is 

exactly the form of “hallucination” that Norris, McQueen & Cutler (2000) cite as a reason not to 

include top-down feedback in models of perception. The problem is not that the model strongly 

activates a superset of the stimulus – it is that top-down feedback overwrites the trace left by the 

stimulus, such that the veridical record of the input is replaced by an expectation. The system 

then has no means of recovering from its error, i.e., the nonword bayon is liable to be 

consistently read as bayonet. It may be that a more appropriate form of top-down feedback 

mechanism is possible. For example, top-down feedback could influence receiver nodes rather 

than letter nodes, so that the model retains some trace of the original input against which 

categorisations can be verified. This is an area for future investigation, and the study of subset 

priming may be fertile territory for the continuing debate between interactive and non-

interactive models of perception (e.g., Bowers & Davis, 2004; McClelland, Mirman & Holt, 

2006; Norris et al., 2000). 

Comparison of the Model with Other Alternatives to the Standard Approach 

The foregoing discussion has focussed on the respects in which the spatial coding model 

improves on the “standard” approach, as exemplified by the IA model, and other well-known 

computational models of visual word recognition. However, the spatial coding model is not the 

only alternative to the standard approach, and to conclude this section I directly compare the 

spatial coding model with other newer models, specifically,  a) the Overlap model (Gomez et al., 

2008) and b) open-bigram models (e.g., Grainger & van Heuven, 2003; Whitney, 2001). 

The overlap model.  

The overlap model (Gomez et al., 2008) is a noisy version of position-specific coding, in 

which the representation of a letter extends into adjacent positions. The model assumes a 

separate position uncertainty Gaussian distribution function for each letter of the stimulus and 

each letter of the template. Gomez et al. (2008) showed that the model could provide a very 

good fit to forced-choice perceptual identification data.  
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The overlap model has much in common with the spatial coding model. Both models 

assume that letters (rather than letter pairs or triples, for example) are the fundamental 

perceptual units in the matching process, and both models assume letter position uncertainty 

functions. The models vary with respect to the number of parameters they use to model position 

uncertainty – the spatial coding model uses only a single position uncertainty parameter, 

whereas the overlap model assumes one parameter for each letter position, in order to capture 

variations in letter position uncertainty across the stimulus (in particular, the first letter is 

associated with a much  narrower uncertainty distribution than other letters, a characteristic that 

the spatial coding model captures through the use of end letter marking). Nevertheless, Gomez 

et al. (2008) showed that a simplified version of the overlap model that assumes only two 

position uncertainty parameters was also able to achieve a good fit to forced-choice perceptual 

identification data.  

The key difference between the overlap and spatial coding models is the assumption of 

position-specific versus position-invariant letter representations, respectively. This difference is 

critical when the stimulus and the template overlap at different absolute positions, as in 

examples like wildcat and cat. It would be impossible for the overlap model to detect the cat in 

wildcat, whereas the position-invariant recognition of the spatial coding model makes it 

straightforward to detect embedded words like this. Another set of priming effects that are likely 

to be underestimated by the overlap model are those involving non-contiguous subset primes, as 

in the experiments reported by Peressotti and Grainger (1999) and Grainger et al. (2006). 

One way to think about the spatial coding model is as a “sliding overlap” model. That is, 

the superposition matching algorithm implements a version of the overlap model in which the 

overlapping Gaussian functions representing the input are allowed to slide laterally across those 

representing the template until the maximum match is obtained. For example, in the wildcat 

example, the CAT word node computes three signal-weight differences of 4. The peak in the 

superposition function at this point can be interpreted as reflecting the idea that the overlapping 
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Gaussian functions representing the input have shifted four positions across the spatial code for 

the word CAT to “find” the point at which there is a maximum (in this case, perfect) overlap 

between the stimulus and the template. In the case of inputs that do not require any shifting to 

find the maximal overlap, the two models make quite similar predictions. Indeed, the spatial 

coding model could fit data such as those collected by Gomez et al.(2008) at least as well as the 

overlap model if it were given the same number of parameters (i.e., separate values of  for each 

letter position). However, in the case of inputs that require shifting to find the maximal overlap 

(e.g., the masked form primes tested by Grainger et al., 2006), the spatial coding model can 

capture data that are beyond the scope of the overlap model. 

The position-specificity of the overlap model must be regarded as a critical weakness of 

this approach, not simply from the perspective of explaining form priming data, but more 

importantly, from the perspective of explaining morphological processing. Skilled readers are 

(indeed, must be) able to recognise the commonality of the morpheme cat across familiar words 

like cat, catburglar, wildcat, as well as unfamiliar forms like cathole, blackcatday, and supercat. 

There are strong grounds for rejecting any approach to coding letter position that is 

fundamentally unable to support such position-invariant recognition. 

A theoretical approach to orthographic input coding that is very similar to the overlap 

model has been adopted in the Bayesian Reader model (Norris, 2006; Norris & Kinoshita, 

2008). The Bayesian Reader is a stimulus sampling model that assumes that readers are 

(approximately) optimal Bayesian decision makers. Unlike the overlap model, this model 

incorporates a lexical selection mechanism, and has been extended to simulate masked priming 

(Norris & Kinoshita, 2008). The model integrates evidence over time from the prime and the 

target so as to make an optimal decision (i.e., in the case of lexical decision, is the stimulus a 

word?). Thus, the Bayesian Reader model is not restricted to making predictions about match 

values, and is capable of simulating masked priming (though to date the only masked priming 
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result from the lexical decision task that the model has been shown to simulate is a null effect of 

prime congruency observed by Norris & Kinoshita, 2008). 

The lexical selection mechanism of the Bayesian Reader is quite different from the 

lexical competition process of the IA, SOLAR and related competitive network models. One 

important consequence of this difference is that the Bayesian Reader cannot readily 

accommodate lexical competition effects in masked priming (cf. Bowers, in press), and thus is 

unable to account for the inhibitory priming effects of Davis and Lupker (2006) that were 

modelled in Simulation 1. Furthermore, the absence of lexical competition within the model 

makes it difficult to see how the Bayesian Reader could accommodate other masked form 

priming phenomena that bear the hallmarks of lexical competition, such as the shared 

neighbourhood effect (van Heuven et al., 2001), the multiple-letter replacement constraint (e.g., 

Schoonbaert & Grainger, 2004), and sandwich priming effects (Davis & Lupker, 2009; Lupker 

& Davis, 2009) (see Simulations 2, 3, 4, 5, 10, and 13 of the present article). Thus, it seems 

likely that the present version of the Bayesian Reader faces considerable challenges, although 

simulations of the model are required to properly evaluate its fit to the data. 

Open bigram models. 

A popular approach in recent attempts to solve the problem of letter position coding 

involves the assumption of open bigrams (e.g., Dehaene et al., 2005; Grainger & van Heuven, 

2003; Grainger & Whitney, 2004; Schoonbaert & Grainger, 2004; Whitney, 2001, 2004). An 

open bigram refers to an ordered pair of letters that is not necessarily contiguous in the input 

stimulus; for example, the word cat includes the open bigram ct. A number of different versions 

of open-bigram coding have been proposed; these versions vary with respect to a) their 

sensitivity to letter contiguity, b) the maximal distance between the letters in an open bigram, 

and c) their coding of exterior letters. I focus here on the general characteristics of open-bigram 

coding models (for detailed descriptions of the different versions see Davis & Bowers, 2006; 

Grainger & van Heuven, 2003; Whitney, 2004). 
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There are some similarities between open bigram coding models and spatial coding. 

Both approaches result in relatively flexible letter position coding, enabling the explanation of 

phenomena such as TL similarity. Furthermore, both models can support (approximately) 

position-invariant identification. For example, open-bigram models can explain the capacity to 

detect cat in wildcat, because both letter strings contain the open bigrams ca, ct, and at. 

An obvious difference between open bigram coding models and spatial coding is the 

fundamental unit of matching. One consequence of this difference that is worth noting relates to 

the nature of the matching process. In spatial coding, the letters of the input stimulus are directly 

matched against the whole template, whereas in open bigram coding the letters of the input 

stimulus are matched against open bigrams, and then these units are matched against the 

template. It follows that open bigram coding can match multiple different subcomponents of a 

word even when these subcomponents are positioned differently, relative to each other, in the 

stimulus and the template. For example, when open bigram coding is assumed, the stimulus 

pondfish is an excellent match for the word fishpond, because the components fish and pond 

maintain their local context (e.g., the bigrams fi, fs, and fh are present in both fishpond and 

pondfish). This prediction about orthographic similarity runs into problems when attempting to 

explain both masked priming data (Kinoshita & Norris, submitted; cf Simulation 19) and data 

from unprimed lexical decision (Crepaldi et al., in preparation). Spatial coding, by contrast, 

handles these data well, because the stimulus pondfish is a relatively poor match for the word 

fishpond: for example, in terms of the “sliding overlap” idea discussed earlier in this section, 

pondfish must be shifted four positions to the right to find the overlap in the word fish, but this 

shifts the constituent pond even further from its correct position. 

Another key difference between spatial coding and open bigram coding concerns the 

directionality inherent in the latter model. As noted, open bigrams are ordered letter pairs, and 

these units are not activated when the order of the letters is reversed. For example, the anagrams 

ward and draw do not share any open bigrams. Recently, a number of experiments have sought 
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to test the strong predictions about the effects of letter string reversal that follow from open 

bigram coding (Davis & Lupker, 2009; Whitney & Grainger, submitted; see Simulations 11 

through 13). These experiments indicate that, when a suitably sensitive methodology is used, the 

perceptual similarity of pairs of reversed letter strings is clearly apparent. Such data pose critical 

problems for open bigram coding. 

In addition to the empirical problems with open bigram coding, there are also some 

important theoretical objections to this method of coding letter position (I focus here on general 

problems with open bigram coding; for a discussion of problems with a specific open bigram 

model, the SERIOL model, see Davis, in press). One objection relates to the plausibility of the 

notion of open bigrams that entail the visual system discarding intermediate letters. Another 

objection concerns the lack of generality of the open bigram solution to encoding position, given 

that this solution is not helpful for converting spelling to sound. In view of the fact that a 

different type of letter position code is required to accomplish this mapping (one that is capable 

of encoding position-invariant relationships between graphemes and phonemes), it is not clear 

what is gained by assuming a less versatile position code for lexical matching. This lack of 

generality also extends to other aspects of position coding. Although it has not generally been 

recognised (though see Davis, 1999), the problem of coding the relative order of morphemes 

gives rise to more or less the same issues as coding letter position. Here, however, an open 

bigram type solution seems unsatisfactory. Representing all possible letter pairs in English 

requires 26 x 26 open bigrams, a number that does not seem unfeasible for representing letter 

order. By contrast, representing all possible morpheme pairs would require a highly implausible 

number of units. Rather, the ability to encode novel compounds, as well as to distinguish 

reversible compounds like overtake and takeover, must rely on a capacity to dynamically assign 

order information to individual constituents, as in the spatial coding scheme. In summary, 

although open bigram coding models make many similar predictions to spatial coding, the open 

bigram approach faces some critical empirical and theoretical challenges. 
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Summary and Conclusions 

This paper has described the spatial coding model of letter position coding and lexical 

matching. I have previously argued (Davis, 2006; Davis & Bowers, 2006) that this is the only 

existing model that can satisfactorily account for critical phenomena related to orthographic 

input coding and lexical matching. I have further argued that the key aspect of this model that 

enables it to succeed (and which differentiates it from other current models of input coding and 

lexical matching) is its commitment to position and context-independent representations. Spatial 

coding solves the problem of how letter position can be conveyed using such codes, but also 

necessitates an approach to lexical matching that is rather different from the dot-product 

matching approach that has been used in other models. Elsewhere (Davis, 2001, 2004, in press) I 

have discussed how this model of lexical matching could be implemented, based on the phase 

coding hypothesis, and the way in which phase coding can represent uncertainty regarding letter 

position and letter identity. 

A number of core principles underlie the spatial coding model, including the principles 

of abstraction (which commits the model to context-independent representations), invariance 

(according to which letter position should be coded in a way that preserves information about 

letter contiguity and the distance between letters), selectivity (according to which word nodes 

only receive input from relevant letter nodes), translation (which is implemented through the 

computation of signal-weight differences), harmony (according to which the critical feature of 

translated letter signals is their congruence; this principle is achieved through the use of 

superposition matching), clone-equivalence and “one-letter, one-match” (the latter two are 

critical to the model’s account of how repeated letters are encoded). Arguments for most of 

these principles can be made on the basis of general considerations derived from thought 

experiments. Nevertheless, they can also be subjected to empirical scrutiny. The invariance 

principle that is implemented here is a slightly modified version of that described by Grossberg 
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(1978) (it differs only in that the arithmetic difference between adjacent elements of the spatial 

code is held to be invariant, rather than the ratio of adjacent elements, as in Grossberg’s 

version). This principle has been directly challenged by open-bigram coding schemes that 

dispense with information about the distance between letters (e.g., Grainger & van Heuven, 

2003; Grainger & Whitney, 2004; Whitney, 2001). However, as Davis and Bowers (2004) 

showed, experimental data reinforce the importance of encoding information about letter 

contiguity. An interesting question for future research concerns the relevance of the above 

principles for understanding other aspects of cognition that require encoding the serial order of 

component stimuli, including spoken word identification and short-term memory. 

There is now a large body of data on the topic of orthographic input coding. Successfully 

modelling all of these data is a difficult problem for any model. However, the simulations 

presented here demonstrate that the spatial coding model does an excellent job of capturing 

existing data. The model is successful because it addresses each of the three critical processes 

listed in the introduction: encoding of letter identity and position, lexical matching, and lexical 

selection. In particular, the model’s incorporation of lexical competition as a means of lexical 

selection elucidates the mechanics of masked priming and helps to illustrate the limitations of 

conventional methods for studying the processes of encoding and matching, as well as guiding 

the development of new methodologies to overcome these limitations (Lupker & Davis, 2009).  

The spatial coding model shares many features with the SOLAR model of visual word 

recognition (Davis, 1999). Following a nested modelling approach, future papers will describe 

other aspects of this model: the model’s chunking mechanism, the means by which the model 

self-organises, the way in which it learns about word frequency, and how this biases the 

identification process, and the way in which the model implements competitive processes to 

achieve identification of familiar words and learning of new words.  
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Appendix: Simulating the IA Model as a Special Case of the Spatial Coding Model 

 

In order to specify the original IA model as a special case of the spatial coding model, 

Equations 8, 26, and 36a are replaced with slightly more complex forms. Thus, Equation 8 is 

replaced by: 

   , max , ,    
 0                                                                       

                 (A1)                      

The condition in (A1) is designed to allow position-specific coding models such as the original 

IA model to be treated as special cases of the spatial coding model. The default setting of the PI 

(for “position-invariance”) switch in the spatial coding model is true. When the PI switch is set 

to be false, the resonating phase is always zero, which implies that letters signals only contribute 

to the match to the extent they occur in the expected serial position (where the clause “to the 

extent” allows for the possibility of some position uncertainty). For example, in Figure 4, the 

resonating phase is 0 in examples (a), (c), (d), (e), and (f) whether the switch PI is set to be true 

or false. However, in example (b) the resonating phase differs for the position-invariant and 

position-specific versions. For the position-specific model, PI is false, and combining Equations 

(A1) and (15) implies that 0 (rather than 3) and 0 (rather than 1). 

Equation 26 is replaced by:  

 max  , ∑ ∑  ∑ ,       

 (A2) 

When LWI = 0, Equation A2 is equivalent to Equation 26. When LWI = 1, equation (A10) 

implements IA-style letter-word inhibition, subject to the condition that letter activities grow at 

the same rate in each channel, which is approximately true in the original IA model. 

Equation 36a is replaced by:  
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∑ .001
  

  (A3) 

The parameter TDM acts as a switch. The default value is TDM = 1, so that top-down 

feedback is modulated by bottom-up input as in Equation 36a. However, the setting TDM = 0 

(so that the strength of top-down feedback is , independent of bottom-up input) 

results in top-down feedback signals that are identical in magnitude to the original IA model. 

Thus, to specify the original IA model as a special case of the spatial coding model, the 

switch PI (position invariance) should be set to false, the letter-word inhibition switch should be 

set to true (LWI = 1), the top-down feedback modulation switch should be set to false (TDM = 

0), end-letter marking should be eliminated by setting  =  = 0, and the remaining 

parameter settings should be as shown in the relevant column of Table 3. 

As noted earlier, the IA-style letter-word inhibition implemented in equation (A2) is not 

exactly equal to the letter-word inhibition of the original IA model, because it relies on the 

assumption that letter activity grows at the same rate in each letter channel. To test the 

approximation in (A2), the identification latencies for the full set of 1178 words in the original 

IA vocabulary were compared for the original model and the version of the spatial coding model 

with the above IA parameter settings. The identification threshold  was set at 0.68 (as in all 

other simulations), and the temporal scaling parameter dt was set at 0.1. The average 

identification latency was 181.4 cycles for both models. The correlation between the two sets of 

decision latencies was 0.999, and the absolute difference in the two latencies for a given word 

never exceeded one cycle. Thus, the above parameterisation is essentially equivalent to the 

original IA model. 
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Table 1 

Examples of Signal-Weight Difference Calculations Required for Superposition Matching 

 
(a) “brain” 

Stimulus Template Difference 

B 1 1 0 

R 2 2 0 

A 3 3 0 

I 4 4 0 

N 5 5 0 

 

(b) “wetbrain” 

Stimulus Template Difference 

B 4 1 3 

R 5 2 3 

A 6 3 3 

I 7 4 3 

N 8 5 3 
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Table 2 

Examples of Match Values for Spatial Coding Models with and without End-Letter Marking  

 Type Stimulus Template 
Without 

ELM 
With 
ELM 

Identity 
(12345) 

table TABLE 1.00 1.00 

Initial superset 
(12345d) 

tablet TABLE 1.00 0.86 

Final superset 
(d12345) 

stable TABLE 1.00 0.86 

Outer superset 
(1d2345) 

stable STALE 0.84 0.89 

 
Adjacent TL 
(12435) 

trail TRIAL 0.84 0.89 

Neighbour                
(d2345) 

teach BEACH 0.80 0.71 

 
Neighbour                
(1d345) 

scale STALE 0.80 0.86 

Neighbour-once-removed 
(13d45) 

sable STALE 0.72 0.80 

Nonadjacent TL 
(14325) 

slate STALE 0.65 0.75 

Double replacement 
(1dd45) 

smile STALE 0.60 0.71 

Reversed 
(54321) 

lager REGAL 0.25 0.18 

 Note: ELM = end letter marking. 
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Table 3 
 

Parameter Settings Used in the Spatial Coding Model (SCM) and in the Original Interactive 

Activation Model (IAM) 

 
SCM 

 
IAM 

 
Equation Parameter 

 0.48 (0) (3) – position uncertainty by length function 

k 0.24 (0) (3) – position uncertainty by length function 

FreqScale 0.046 0.046 (17) – scaling of word frequency in resting activities 

FreqBias 1.8 (-0.07) (18) – resting activity input to activity equation  

ActMin -0.2 -0.2 (19) – shunting of net input by current activity 

DecayCutoff 0.4 (1) (20) – match-dependent decay 

DecayRate 1 0.07 (20) – match-dependent decay 

FL 0.28 0.005 (23) – feature-letter input 

FL 6 0.15 (23) – feature-letter input 

LW 0.4 0.07 (25) –net word input 

Power 2.5 (1) (25) –net word input 

LW 0.04 0.04 (26) – mismatch inhibition 

WW 0.34 0.21 (27) – word-word inhibition 

WW 0.44 0.21 (27) – word-word excitation 

wmf 0.35 (0) (28) – masking field weight 

len 0.06 (0) (34) – length mismatch 

WL 0.3 0.3 (36) – word-letter feedback 

dt 0.05 0.05 (18) – step-size: temporal scaling parameter 
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Table 4  

Results of Twenty Masked Priming Simulations, Together With the Original Experiment Means 

Index  Simulation  Experiment  Prime Type   Data      Model      

Critical  Control  Effect  Critical  Control  Effect  Difference 
1 Simulation 1 Davis & Lupker 2006          

Expt 1 
HF primes, LF targets 679 645 ‐34 150 115 ‐35 ‐1 

2   nonword primes, LF targets 634 660 26 93 113 20 ‐6 

3   LF primes, HF targets 586 573 ‐13 124 103 ‐21 ‐8 

4   nonword primes, HF targets 571 582 11 79 101 23 12 

5 Simulation 2 van Heuven et al. 2001 Shared Neighbour prime 540 552 12 116 112 7 ‐5 

6   No Shared Neighbour prime 524 552 28 93 112 20 ‐8 

7 Simulation 3 Schoonbaert & Grainger 
2004                     Expt 4 

Replace Initial Letters 622 623 1 102 104 2 1 

8   Replace Inner Letters 626 623 ‐3 105 104 0 3 

9   Replace Final Letters 620 623 3 103 104 1 ‐2 

10 Simulation 4 Lupker & Davis 2009          
Expt 2A (Standard priming) 

Replace 1 496 518 22 70 102 32 10 

11   Replace 2 501 518 17 89 102 13 ‐4 

12   Replace 3 517 518 1 99 102 3 2 

13   Replace 4 514 518 4 99 102 2 ‐2 

14   Replace 5 525 518 ‐7 100 102 1 8 
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Index  Simulation  Experiment  Prime Type   Data      Model      

Critical  Control  Effect  Critical  Control  Effect  Difference 
15 Simulation 5 Lupker & Davis 2009          

Expt 2B (Sandwich priming) 
Replace 1 552 609 57 41 99 58 1 

16   Replace 2 576 609 33 56 99 43 10 

17 Simulation 5   
(continued) 

Lupker & Davis 2009          
Expt 2B (Sandwich priming) 

Replace 3 582 609 27 72 99 28 1 

18   Replace 4 601 609 8 84 99 15 7 

19   Replace 5 602 609 7 94 99 5 ‐2 

20 Simulation 6 Perea & Lupker 2003b         
Expt 1 

Identity 523 570 47 56 108 53 6 

21   Internal Transposition 556 586 30 76 106 31 1 

22   Final Transposition 554 567 13 92 104 12 ‐1 

23 Simulation 7 Davis & Bowers 2006          
Expt 2&3 

SN2 584 613 30 79 107 28 ‐2 

24   SN4 582 613 31 78 107 29 ‐2 

25   N1R‐ 595 613 19 86 107 21 2 

26   N1R+ 595 613 18 86 107 21 3 

27 Simulation 8 Perea & Lupker 2004          
Expt 1B 

SN 665 703 38 76 106 30 ‐8 

28   NATN 679 703 24 81 106 24 0 

29   DSN 696 703 7 97 106 9 2 
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Index  Simulation  Experiment  Prime Type   Data      Model      

Critical  Control  Effect  Critical  Control  Effect  Difference 
30 Simulation 9 Guerrera & Forster 2008       

Expt 3A 
T‐I‐6 610 636 26 78 109 30 4 

31   T‐All 637 636 ‐1 104 109 5 6 

32  Lupker & Davis 2009          
Expt 1A (Standard priming) 

T‐All 718 727 9 104 109 5 ‐4 

33 Simulation 
10 

Lupker & Davis 2009          
Expt 1B (Sandwich priming) 

T‐All 651 691 40 77 106 30 ‐10 

34 Simulation 
11 

Guerrera & Forster 2008       
Expt 3A 

Reversed Halves 637 636 ‐1 105 109 3 4 

35 Simulation 
12 

Davis & Lupker 2009          
Expt 2A (Standard priming) 

Reversed Interior 620 625 5 102 105 3 ‐2 

36 Simulation 
13 

Davis & Lupker 2009          
Expt 1B (Sandwich priming) 

Reversed Halves 684 693 9 100 106 6 ‐3 

37  Davis & Lupker 2009          
Expt 2B (Sandwich priming) 

Reversed Interior 643 666 23 80 102 21 ‐2 

38 Simulation 
14 

Welvaert et al. 2008 Insert 0 545 600 55 57 107 50 ‐5 

39   Insert1 556 600 44 69 107 38 ‐6 

40 
 

 Insert2 567 600 33 81 107 26 ‐7 

41   Insert3 578 600 22 89 107 18 ‐4 

42 Simulation 
15 

Van Assche & Grainger 2006   
Expt 1 

C1234567 532 582 50 57 107 50 0 

43 
 

 12334567, 12345567 541 582 41 65 107 42 1 

44   12534567, 12345367 543 582 39 66 107 42 3 

45   12d34567, 12345d67 543 582 39 65 107 42 3 
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Index  Simulation  Experiment  Prime Type   Data      Model      

Critical  Control  Effect  Critical  Control  Effect  Difference 
46 Simulation 

16 
Schoonbaert & Grainger 
2004                     Expt 1 

Repeated Letter Deletion 565 607 42 74 106 33 ‐9 

47 

 
 Unique Letter Deletion 572 607 35 75 106 31 ‐4 

48   Repeated Letter Control 560 597 37 74 107 33 ‐4 

49   Unique Letter Control 561 597 36 76 107 32 ‐4 

50 Simulation 
17 

Peressotti & Grainger 1999    
Expt 2 

1346 623 650 27 83 103 20 ‐7 

51 

 
 1d34d6 629 641 12 90 104 13 1 

52 Simulation 
18 

Peressotti & Grainger 1999    
Expt 3 

1346 596 616 20 83 103 20 0 

53   1436 611 616 5 92 103 11 6 

54   6341 609 616 7 102 103 1 ‐6 

55 Simulation 
19 

Kinoshita & Norris 2009 Shifted Halves 603 610 7 108 108 1 ‐6 

56 Simulation 
20 

Grainger et al. 2006 12345 531 576 45 74 101 27 ‐18 

57   34567 539 576 37 77 101 24 ‐13 

58   13457 547 576 29 79 101 23 ‐6 

59   1234 562 585 23 88 101 13 ‐10 

60   4567 573 585 12 95 101 7 ‐5 

61     1357 577 585 8 95 101 6 ‐2 
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Table 5 

Summary of the Results of the Twenty Simulations for the Spatial Coding Model and Ten Other Models.  

Index  Data  SCM IAM  σ=0 σ=1.0 No PI No MMI No ELM No MF No LMI IA Decay No TDF

1  ‐34  ‐35 ‐33 ‐37 ‐36 ‐37 ‐34 ‐52  ‐33 ‐33 ‐17 ‐35

2  26  20 29 23 19 21 21 11  16 16 25 21

3  ‐13  ‐21 ‐13 ‐21 ‐21 ‐21 ‐20 ‐27  ‐21 ‐19 ‐16 ‐19

4  11  23 31  25 22 23 23 17 20 21 24 22

5  12  7 1  8 7 7 7 4 3 6 8 4

6  28  20 26 20 20 20 21 13  17 19 24 20

7  1  2 9 2 1 2 ‐1 ‐1 ‐3 2 0 1

8  ‐3  0 5 2 ‐1 0 2 1 ‐4 ‐1 ‐1 ‐1

9  3  1 11 2 1 1 0 0 ‐1 0 1 0

10  22  32 24 32 32 33 31 29 30 35 31 31

11  17  13 16 14 13 15 18 5  6 12 15 13

12  1  3 7 4 3 4 8 3 1 3 3 2

13  4  2 3 3 3 3 1 2 2 2 2 2

14  ‐7  1 2 2 2 2 0 1 1 1 1 1

15  57  58 29  59 58 59 59 55 58 59 41 50

16  33  43 23 43 43 43 48 38 43 45 29 37

17  27  28 14  28 28 28 39 20 28 29 18 24

18  8  15 6 15 15 15 31 6 16 16 10 14

19  7  5 4 5 5 5 20 1 5 5 6 6

20  47  53 35  53 53 53 51 51 52 51 52 48

21  30  31 ‐2  0 35 31 22 23 32 31 28 29

22  13  12 1  ‐1 15 12 7 22 6 6 17 14
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Index  Data  SCM IAM  σ=0 σ=1.0 No PI No MMI No ELM No MF No LMI IA Decay No TDF

23  30  28 27 29 28 29 29 20 24 28 32 28

24  31  29 27 29 29 29 29 21 26 29 33 29

25  19  21 12 6 22 22 19 10 15 19 25 21

26  18  21 12 6 23 21 19 10 16 20 26 21

27  38  30 27  31 30 31 30 24  27 29 32 29

28  24  24 16 8 25 25 15 15 21 23 26 22

29  7  9 17 10 9 10 14 4 5 5 14 11

30  26  30 4  2 25 31 25 29 31 31 29 26

31  ‐1  5 2 3 4 9 2 12  5 3 11 7

32  9  5 2 3 4 9 2 12 5 3 11 7

33  40  30 ‐1  4 25 36 28 42 31 31 26 35

34  ‐1  3 2 2 3 4 2 4 3 2 3 2

35  5  3 0 0 1 2 0 2 2 2 1 1

36  9  6 ‐1 1 4 6 8 14 6 6 13 7

37  23  21 0  0 11 22 27 10  22 23 9 20

38  55  50 35  50 50 50 46 49 49 49 53 55

39  44  38 3  2 35 37 32 35 37 40 41 40

40  33  26 3  2 18 23 19 16  22 26 27 24

41  22  18 N/A 2 2 15 9 4  11 15 22 19

42  50  50 35  50 50 50 46 49 49 49 53 55

43  41  42 7  10 39 38 37 39 41 44 44 44

44  39  42 7  10 39 36 36 39 41 44 44 44

45  39  42 7  10 40 37 37 40 42 44 45 45

46  42  33 18  16 33 33 27 28  30 34 35 32

47  35  31 18  19 31 32 24 29 29 32 33 31
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Index  Data  SCM IAM  σ=0 σ=1.0 No PI No MMI No ELM No MF No LMI IA Decay No TDF

48  37  33 15  14 33 34 26 28 29 32 35 32

49  36  32 16  18 31 33 25 25  29 31 34 31

50  27  20 2  2 20 13 14 10  20 20 20 14

51  12  13 15 13 13 13 18 4 14 13 17 15

52  20  20 2  2 20 13 14 10 20 20 20 14

53  5  11 3 2 11 12 1 2 9 8 10 8

54  7  1 0 1 1 1 0 1 1 1 0 1

55  7  1 0 1 1 ‐1 0 0 0 0 0 1

56  45  27 21  28 27 29 21 34  25 22 22 14

57  37  24 0  26 24 2 17 26  19 21 19 11

58  29  23 1  3 23 17 17 18  23 25 24 18

59  23  13 18 14 13 14 2 19 4 7 17 5

60  12  7 0  7 7 1 0 9 0 3 11 3

61  8  6 1 1 5 3 1 8 9 4 13 4

r     0.948 0.632 0.727 0.928 0.911 0.869 0.915  0.927 0.933 0.915 0.913
 

Note: “Index” refers to indices shown in Table 4.  The column labelled Data shows the observed priming effects, SCM = Spatial Coding Model, IAM = the 

original Interactive Activation model, σ=0 refers to the model with no letter position uncertainty, σ=1.0 is the model that assumes a fixed value of σ for all 

stimulus lengths, No PI is the model without position-invariance, No MMI is the model without mismatch inhibition, No EL is the model without end-letter 

marking, No TDF is the model without top-down feedback, No LMI is the model without length-mismatch inhibition, No MF is the model without the masking 

field parameter, and IA Decay is the model that uses the original IA-style node decay equation and parameters. 

 



 131

Figure Captions 

Figure 1: Examples of spatial coding. The same letter nodes are used to code the words stop, 

post, opts, and pots, but with different dynamically assigned spatial patterns. 

 

Figure 2: a) Spatial coding of cat with position uncertainty; b) A different way of 

representing Figure 2(a); (c) Spatial coding of cat with position and identity uncertainty. 

 

Figure 3: Schematic depiction of match computation at the STOP word node when the input 

stimulus is stop. See text for details. 

 

Figure 4: Examples of superposition matching. See text for details. 

 

Figure 5: Illustration of computations performed by receiver nodes associated with the 

STOOP word node. (a) Input stimulus = stoop; (b) Input stimulus = stop. See text for details. 

 

Figure 6: The spatial coding model. Figure depicts some of the nodes that are activated when 

the input stimulus is “cat”; only a subset of nodes and connections are shown. 

 

Figure 7: a) Data from Forster and Shen (1996) showing effect of nonword N on latency of 

No responses; b) Simulation results for the model tested on the same stimuli. 

 

Figure 8: Superposition matching for shifted-halves stimuli. 

 

Figure 9: A plot of model predictions versus experimental data. Each point represents a 

priming effect modelled in the simulations. 
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 Figure 1 
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Figure 2        
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Figure 3  
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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