
On the Development of Next Generation
Memory Exploits

Jordy Gennissen

Submitted in fulfillment for the degree of
Doctor of Philosophy

S3Lab, Information Security Group
Royal Holloway, University of London

Declaration of Authorship

I, Jordy Gennissen, hereby declare that this thesis and the work presented in it is
entirely my own. Where I have consulted the work of others, this is always clearly
stated.

Jordy Gennissen,
February 10, 2023

i

ii

Acknowledgements

First and foremost, I would like to thank my supervisors Daniel O’Keeffe and
Jorge Blasco. I am thankful for the guidance, and the freedom provided to me
to research different and non-conformal topics. You stuck with supervising me
during the most heated of times, and this dissertation would not have been possible
without you. I would also like to thank my past supervisors, in chronological order:
Lorenzo Cavallaro, Johannes Kinder and Daniele Sgandurra. Even during a limited
time of supervision, I learnt a lot and I appreciated your guidance.

I am grateful for the Center for Doctoral Training at Royal Holloway, the scholar-
ship from L3Harris TRL (formerly L3-TRL) and Royal Holloway (EP/P009301/1)
that provided financial support for the past years and the hours of discussion with
employees of TRL, notably Tim, Lauren, Paul and Martin.

Besides official supervisors, I have had the pleasure of collaborating with a large
group of incredibly smart people throughout the world. Jassim Happa has pro-
vided great support on both a personal level and scientifically, it has been a plea-
sure working with you. I would like to thank Erik Poll, Veelasha Moonsamy and
Konstantinos Mersinas for the long brainstorms, discussions and general guidance.

I want to thank all my colleagues at Bloomberg L.P. during my internship in 2019.
I am very grateful for this opportunity provided by Julien, the fruitful work while
working with Julio and Pete, and of course the great time with them, Zhenghao,
Shane, and everyone else I met during this time. The internship was a once in a
lifetime experience I will never forget.

Furthermore, I want to express my gratitude towards the friends and colleagues
I made at Royal Holloway, in no particular order: Marcos, Nathan, Claudio, Ja-
son, Angela, James, Amy and Mateo. Interactions may have been limited in the
past years due to the pandemic and distance, but I really enjoyed the long nights,
extensive conversations and all events we attended.

iii

On a personal note, a very special thank you goes to Anna. Your love and support
has helped me through some of the hardest times and brought me to the end of this
journey. You understand the struggles of a PhD and you knew what I needed, even
when I did not. Thank you and I love you.

I want to show upmost gratitude towards my parents — Luc & Thea — and
my brothers, Milan & Sylva. Even while abroad, we have always been in touch
and I believe you experienced parts of the life of a PhD student, without doing a
PhD yourself. Your support has been invaluable throughout all these years and I
cannot begin to imagine how I would have finished without it. Finally, I would
like to say thank you to Sharon, Floor Robin and Dajo, who helped me through the
hardest of times and got me back to continue the journey, to Manouk for designing
and testing the Hack the Heap website, and to all people testing the website and
providing feedback.

iv

Abstract

Memory vulnerabilities can be dangerous. To counter their effects, software and
hardware support is being developed for Control-Flow Integrity (CFI): a technique
to stop classical exploits from working. Unfortunately, there remains an under-
explored residual attack surface. We refer to exploits targeting this attack surface
as Next Generation Memory Exploits (NGMEs).

This dissertation focuses on attacks and defences of NGMEs through an exploita-
tion model of three phases: vulnerability, control and payload. We discuss vulner-
abilities as a whole and propose new, measurable properties for vulnerabilities.
These properties form the foundation of a vulnerability taxonomy called GEN, as it
GENerically describes and classifies vulnerabilities. GEN defines what a vulnerabil-
ity is through a technical definition. Moreover, GEN identifies what vulnerabilities
are relevant for NGMEs and how to find them.

Typically, memory vulnerabilities expose limited capabilities. Control techniques
are necessary to exploit such vulnerabilities. Heap Layout Manipulation is one
technique to overwrite useful data structures. We propose a toolchain that can
generate puzzles from real-world applications, to then be solved in a puzzle game
called Hack the Heap. This way, we can solve the Heap Layout Manipulation prob-
lem through gamification while remaining heap manager agnostic and explainable.

With control gained over a vulnerable application, the next step is to deliver
the payload: what the exploit wants to achieve. To halt this payload, we propose
System Call Argument Integrity: automatic data-flow protection tailored towards
security-sensitive system calls. It protects against data-only attacks while incurring
overhead only when handling security-sensitive data-flows.

Concluding, we propose a novel framework for characterising NGMEs (and vul-
nerabilities more broadly), in addition to techniques for assessing and mitigating
their impact during different phases of the exploitation lifecycle. Considering the

v

increasing risk of real-world NGMEs, we hope this dissertation fosters further re-
search into both NGME threats and mitigations.

vi

Contents

List of Acronyms xvii

1 Introduction 1

1.1 Challenges & Research Questions . 3
1.1.1 Challenges in the Vulnerability Phase 4
1.1.2 Challenges in the Control Phase 4
1.1.3 Challenges in the Payload Phase 5

1.2 Contributions . 6
1.3 Researching Offensive Security . 7

2 Background 9

2.1 Bugs, Vulnerabilities & Weaknesses . 9
2.1.1 Vulnerability Classifications . 10

2.2 Memory . 17
2.2.1 Application Memory . 18
2.2.2 Memory Safety . 19
2.2.3 Memory Protection . 20

2.3 The Heap . 22
2.3.1 Heap Layout Manipulation . 26
2.3.2 Existing HLM Solutions . 28

2.4 System Calls . 29
2.5 Memory Attacks and Defences: a Timeline 30
2.6 Crowd-sourcing Research, Awareness and Education 37

2.6.1 Education . 38

3 The Exploitation Process 41

3.1 An Example: The HTTP Server . 43

vii

Contents

3.2 The Vulnerability Phase . 44

3.2.1 The Vulnerability Primitive . 45

3.2.2 Vulnerability Defences . 46

3.3 The Control Phase . 46

3.3.1 Initial Control . 47

3.3.2 Control Primitives . 48

3.3.3 Control Defences . 50

3.4 The Payload Phase . 50

3.4.1 Payload Defences . 51

3.5 Next Generation Memory Exploits . 52

3.6 The HTTP Server Attack . 53

4 The Vulnerability: GENerically understanding them 57

4.1 Existing Vulnerability Definitions . 58

4.2 GENerically understanding Vulnerabilities in applications 59

4.2.1 Abstraction Layers . 59

4.2.2 The Incorrectness-Undefinedness Property 64

4.2.3 From Bugs to Vulnerabilities 67

4.3 Applying GEN to a Vulnerability . 69

4.3.1 GEN Class Labels . 69

4.3.2 Classification Challenges . 69

4.4 The Common Weakness Enumeration (CWE) 72

4.5 Using GEN . 76

4.5.1 Consequence Boundaries . 77

4.5.2 Abstraction layers as Testing Oracle 77

4.5.3 Security Use-case . 82

4.6 Evaluation . 83

4.6.1 Taxonomy Evaluation Criteria 84

4.6.2 AFL . 87

4.7 NGME Vulnerabilities . 89

4.8 Discussion . 90

4.9 Conclusion . 93

viii

Contents

5 Taking Control: Hack the Heap 95

5.1 Hack the Heap: The Game . 97
5.1.1 Design . 98
5.1.2 Levelling up . 99
5.1.3 Visualisation Challenges . 100

5.2 Generating Puzzles . 101
5.2.1 Artificial Puzzles . 103
5.2.2 Real-world Puzzles . 103

5.3 Implementation . 106
5.4 Evaluation . 106

5.4.1 Case Study: Synthetic Example 107
5.4.2 Case Study: NJS . 108

5.5 Discussion & Future Work . 111
5.6 Conclusion . 112

6 The Payload: System Call Argument Integrity 113

6.1 Threat Model & Requirements . 114
6.1.1 Design Requirements . 115

6.2 System Call Security . 116
6.2.1 Security Sensitive System Calls 116
6.2.2 Sensitiveness Boundaries . 118

6.3 System Call Argument Integrity . 119
6.3.1 Overview . 119
6.3.2 Compiler Design . 120
6.3.3 Bucketisation . 124
6.3.4 Dynamic Libraries . 124
6.3.5 Data-flow Analysis . 125
6.3.6 Memory Protection . 125

6.4 Implementation . 126
6.5 Evaluation . 127

6.5.1 Security Evaluation . 128
6.5.2 Performance Evaluation . 129

6.6 Discussion . 132
6.7 Conclusion . 135

ix

Contents

7 General Conclusion and Discussion 137

Bibliography 145

Appendices 167

A GEN classification quickstart . 167
B Table of bugs found with AFL, labelled with GEN and CWE 169
C Context-free Grammar of the puzzle format 173
D Heap Layout solution from CVE-2019-11839 174
E Comparison between HTH and an enumeration approach 174
F Shellcode System Call Occurrences . 175

F.1 32-bit Shellcode System Calls 175
F.2 64-bit Shellcode System Calls 176

G System Call Audit . 176
H Security-sensitive System Calls . 200

H.1 Security-sensitive system calls in in-the-wild 200
H.2 Security-sensitive system calls in in-audit 201

x

List of Figures

2.1 A typical memory layout of a *NIX application. 19
2.2 Freelists behaviour without segregated storage 23
2.3 Heap location placements based on heap management strategies. . . 24
2.4 The HLM solution of the problem in Section 2.3.1. 27

3.1 The exploitation process in three rough steps. 41
3.2 Visual representation of the exploit process. 42
3.3 A model exploitation chain with 2 vulnerabilities. 46
3.4 The exploitation steps in the example exploit from Section 3.1. 54

4.1 Bug/Vulnerability assessment steps. 59
4.2 GEN abstraction layers. 60
4.3 Example undefinedness and incorrectness bugs. 64
4.4 A multi-step bug patch in GEN. 70
4.5 Visualisation showing the impact limitations of vulnerabilities. . . . 76
4.6 Abstraction layers as testing oracles or layers being tested. 78

5.1 A screenshot of the HTH puzzle game being played. 98
5.2 The HTH Mascot robot. 99
5.3 The full infrastructure of Hack the Heap. 102

6.1 Example vulnerable code with a backwards data-flow trace. 120
6.2 SCAI Design . 122
6.3 Webserver throughput with SCAI and Intel MPK 130
6.4 Webserver throughput with SCAI and SFI/mprotect 131

xi

List of Figures

xii

List of Tables

3.1 Generic control levels with their meaning and effect. 48
3.2 Control primitives, mainly in the existence of a memory violation. . . 49

4.1 Comparison of various definitions of a vulnerability. 58
4.2 Typical vulnerabilities with their GEN class and explanation. 74
4.3 Relation between bug-finding techniques and associated GEN classes. 81
4.4 The 10 criteria for vulnerability taxonomies 84

5.1 Different levels in HTH with concepts introduced at each level 100
5.2 Actions used by the puzzle format. 103

6.1 Privilege Escalation Usage in various Case Studies 136

xiii

List of Tables

xiv

List of Listings

2.1 Example C code containing a stack-based buffer overflow. 18
2.2 Example C code containing a heap-based use-after-free. 20
2.3 Vulnerable example code where HLM can be used 26

3.1 Example vulnerable C code header as explained in Section 3.1 43
3.2 Example vulnerable C code as explained in Section 3.1 55

5.1 Recorder Output . 105
5.2 Code snippet of the CTF challenge with an integer overflow 107

6.1 Example instrumentation of a write instruction when using SFI . . . 119
6.2 Instrumented version of the example in Figure 6.1 121

xv

List of Listings

xvi

List of Acronyms

ACE Arbitrary Code Execution 47
AEG Automatic Exploit Generation 35
AFL American Fuzzy Lop (a fuzzer) 87
ARP Arbitrary Read Primitive 51
ASLR Address Space Layout Randomisation 32
ATT&CK Adversarial Tactics, Techniques and Common Knowledge 14
AWP Arbitrary Write Primitive 47
BOP Block-Oriented Programming 36
CAPEC The Common Attack Pattern Enumeration and Classification 13
CFB Control-Flow Bending 35
CFI Control-Flow Integrity 34
CGI Common Gateway Interface 54
CIA Confidentiality, Integrity and Availability 15
CTF Capture-The-Flag 106
CVE Common Vulnerability Enumeration 9
CVSS Common Vulnerability Scoring System 15
CWE Common Weakness Enumeration 14
CWP Contiguous Write Primitive 48
DARPA Defense Advanced Research Projects Agency 35
DEP Data Execution Prevention 31
DFI Data-Flow Integrity 33
DOP Data-Oriented Programming 36
DoS Denial-of-Service 11
DLMalloc Doug Lea’s malloc implementation 29
GEN The GENeric vulnerability taxonomy 59
GOT Global Offset Table 49

xvii

List of Acronyms

HLM Heap Layout Manipulation 25
HTH the Hack The Heap puzzle game 97
HTTP HyperText Transfer Protocol 43
IH Information Hiding 21
ISA Instruction Set Architecture 80
IU Incorrectness-Undefinedness 64
JEMalloc Jason Evans’ malloc implementation 100
KLoC Kilo-Lines of Code 106
LFH Windows’ Low Fragmentation Heap 25
LoC Lines of Code 108
LTO Link-Time Optimisation 126
ML Machine Learning 61
MITRE Name of the organisation, not an acronym 13
MPK Intel’s Memory Protection Keys 22
NGINX Engine X (webserver) 106
NGME Next Generation Memory Exploit 3
NIST National Institute of Standards and Technology 9
NJS NginX JavaScript 108
NX bit Non-eXecute bit 31
OOM Out Of Memory error 131
OS Operating System 18
PA The Protection Analysis project 10
PEP Privilege Escalation Primitive 115
PTMalloc2 PThreaded adaptation of DLMalloc 29
RAM Random Access Memory 18
RFC Request For Comments document 60
ROP Return-Oriented Programming 33
SCAI System Call Argument Integrity 119
SDLC The Software Development Life-Cycle 11
SFI Software-Fault Isolation 21
SOC Security Operations Center 82
SoK Systematisation of Knowledge (body of work) 141
SQL Structured Query Language 16

xviii

TC Turing-Completeness 50
TCMalloc Thread-Caching Malloc adaptation of DLMalloc 95
UaF Use-after-Free 20
WWW/W3 Write-What-Where, see AWP 47
WX Write-or-eXecute 31

xix

Introduction 1
Technology has enhanced daily life in the past few decades to an extreme extent.
As of 2021, an estimated 3.8 billion people own at least one smartphone [192]. Fur-
thermore, the last years have seen incredible progress within self-driving cars [48];
over 320 million smart speakers have been installed across the world [177]; and
the recent COVID-19 pandemic forced companies worldwide to change the way
they work, resulting in quadrupling the amount of people working from home in
the US [22] while the e-commerce business has seen a growth of 9x the average
pre-pandemic growth [146].

As society becomes increasingly dependent upon digital devices, it is vital for
these devices to work as intended. When a device malfunctions — whether acci-
dental or through malice — the results can be disastrous. The compromise of smart-
phones and smart speakers can pose large threats to a person’s privacy [17, 103,
77]; and malfunctioning self-driving cars can lead to death in extreme cases [73].
Furthermore, device malfunctions have become a vital aspect of warfare, where
e.g., supply chain attacks can leave entire areas without critical resources as seen
in the US in 2021 [112], while other attacks can disrupt business and communica-
tion by wiping all files from infected machines, as seen during the recent war in
Ukraine [128].

Such attacks are possible when a mistake is made in developing the software.
Software development is error-prone, but software development is arguably not
treated as such. When we compare it against architecture, the risk of a mistake
made by the architect can lead to buildings collapsing, lives being lost and millions
of dollars in damage. The risk of a bug in software on the contrary is more complex,
and the risks are abstract. In combination with a high demand on functionality,
the process leaves room for plenty of mistakes. With most machines running on

1

1 Introduction

millions of lines of written software, these mistakes (i.e., bugs) are retroactively
discovered on a regular basis.

Not all bugs can be used to perform damaging attacks. Thus every bug found
raises the question of how problematic it is in practice. If it can be used by an
attacker to compromise the software or the underlying system, it is important to
patch the bug and update its software as soon as possible. Such bugs are typically
referred to as vulnerabilities and are (or should be) prioritised over their seemingly
harmless counterpart. Determining whether a vulnerability can be used by at-
tackers is a hard task: it is generally only feasible with certainty by writing the
exploit. Alternative methods have been developed to estimate the likelihood of
exploitability — e.g., with CVSS — but hold no guarantees.

In today’s infrastructure, correcting a single vulnerability is only part of miti-
gating the threat. Software can be deployed numerous times world-wide and is
under constant development. Even if a new vulnerability is fixed, companies may
still run older versions of the application, e.g., if newer versions work differently
or are costly to update. In other words, vulnerabilities can pose a threat long after
a fix is publicly available [113].

Next Generation Memory Exploits. In this dissertation we focus on memory-
based vulnerabilities within an application. Memory-based vulnerabilities break
the internal contract on where or when a piece of information ends, and where or
when the next piece of information starts. A skilled exploit writer may be able to
use such scenarios to read or write into other important structures, therefore com-
promising the application further. These vulnerabilities are known to be dangerous
at least since 1972 [6] but are still regularly reported [132].

A lot has changed for memory-based exploit writers since 1972. A multitude
of defence techniques are deployed today, such as Address Space Layout Ran-
domisation (ASLR), Write-or-eXecute (WX) and stack canaries. All of the above
need to be broken or circumvented if the attacker wants any chance at writing a
successful exploit. Furthermore, the 64-bit architecture in modern devices is more
likely to use registers over memory when possible (for example within calling
conventions [181]), making memory-based vulnerabilities less likely to be effective.
64-bit pointer values may also require the exploit writer to write null-bytes, which
can be notoriously difficult or even impossible.

2

1.1 Challenges & Research Questions

The next defence to be deployed on a large scale is Control-Flow Integrity
(CFI) [119, 120]. This will change the playing field for exploit writers once again, as
current techniques seen in the wild heavily rely on the capability of hijacking the
control-flow of the application.

Ahead of this development, two attack techniques have arisen in academic re-
search. Control-flow Bending (CFB) [25, 79] breaks CFI by abusing the inherent in-
accuracies of the CFI mechanism. Data-only attacks [32, 98, 156] on the other hand
circumvent the CFI defence by not targeting any control data. Either technique
relies upon the exact code and internal logic from the application, so they cannot
be generically applied or transferred. Hereafter, we refer to a memory exploit in
the presence of CFI as a “Next Generation Memory Exploit” (NGME), regardless of
whether it evades or breaks CFI.

Writing NGMEs is a complex task consisting of many smaller yet still complex
steps. Already, real-world exploit writing takes expertise and it can easily take
weeks or months to develop one. The counterweight here is the pay-off: real-world
exploits in today’s digital world have much larger impact on society as a whole
compared to 20 years ago. This dissertation looks at memory exploit writing with a
focus on NGMEs. Specifically: how it works, how to simplify exploit writing, and
how to systemically protect against these new attack techniques.

1.1 Challenges & Research Questions

Exploit writing is a difficult task done by experts. It is generally very specialised
and practical in nature, and so is the communication across practitioners. For
outsiders, this can be a menacing field due to its technical difficulties and limited
resources. This gave rise to our main research question:

RQ1: How does the exploitation process work, and how does this apply
to NGMEs?

In this dissertation, the exploitation process is broken down into three phases.
First, it requires a vulnerability to be exposed and known by the attacker. We then
need to shape the vulnerability and use it to gain control over the application.
Finally, we use the control gained to accomplish our goal: deliver the payload.
Within each of the phases there are challenges we researched.

3

1 Introduction

1.1.1 Challenges in the Vulnerability Phase

In an ideal world, we could eliminate all vulnerabilities in software. Unfortunately,
no such thing is possible. To understand why, we need to understand what a
vulnerability truly represents, but understanding the underlying cause of a vulner-
ability is a hard problem. If someone made a mistake (i.e., creating or exposing a
vulnerability), where in the software development process was this mistake made?
What type of mistake was made? Many would argue they understand vulnera-
bilities as a concept, despite being unable to structurally explain them beyond “a
mistake was made”.

Labelling vulnerabilities by the direct cause of the vulnerability can be done (e.g.,
“buffer overflow”) but can become ambiguous (e.g., “heap overflow” or “out-of-
bounds write”). For each vulnerability with a subtle difference, it requires a new
class (e.g., “buffer underflow”) leading to an abundance of different classes. To
compensate, it can include a catch-all class (e.g., “Improper input validation”) to
avoid misclassifying, but this provides a large amount of interpretive space for the
vulnerability to be classified. It also becomes hard to classify consistently, because
the variables used to classify are e.g., not tangible or open for interpretation.

It is a challenge to design a classification or a full taxonomy without losing these
properties. On top, a vulnerability taxonomy needs to have a class for any vul-
nerability, and should not classify non-vulnerabilities. This prompts the following
research question:

RQ2: What tangible and unambiguous properties does a vulnerability
have?

Afterwards, we can question what these properties mean in the context of NGMEs.

1.1.2 Challenges in the Control Phase

When a vulnerability is exposed, it is often a small and limited issue, where e.g.,
certain input characters must or cannot be used, certain functionality is invoked
and — in the case of memory issues — it almost certainly leads to a crash. It
becomes the exploit writers’ task to avoid crashing behaviour while expanding the
small issue into an opening big enough to perform or execute a given payload.

4

1.1 Challenges & Research Questions

One technique to do this is called Heap Layout Manipulation (HLM), a method to
force overwriting a data-structure of the exploit writer’s choice. Previously, HLM
was situational since the first goal of an attacker was to overwrite a control pointer
and hijack the control-flow. With NGMEs however, there is a clear need for data
manipulation to make the exploit work. As such, HLM is gaining traction with its
use in NGMEs. This technique is strongly dependent on the actions or operations
that the exploit writer can perform, and it can take large amounts of time to set up
the heap in the preferred layout. Preferably, we can off-load the exploit writer with
simplifying or solving the HLM task. However, the HLM problem is undecidable,
so finding a solution is not guaranteed.

Furthermore, if the exploit writer has no hand in the HLM process (e.g., through
an automatic solution), important details such as functions invoked or resulting
memory layout may be opaque. This may lead to them reverse-engineering the
resulting HLM solution, which is an unnecessary effort when automation is the
goal. In other words, the HLM solution should present the exploit writer with all
relevant information to complete the exploit writing process. Finally, applications
can differ in heap manager usage, where different managers can behave differently
— changing the problem-space again. Summarising, we question the following:

RQ3: Can we find a generic solution to solving HLM problems that is
explainable and heap manager agnostic?

1.1.3 Challenges in the Payload Phase

With the widespread deployment of CFI on the horizon, the attack surface for
memory vulnerabilities will change drastically once again. The new NGME attacks
are hard [25, 109], but it still remains possible to execute payloads. We can protect
ourselves with existing tools [137, 136] but with a very large overhead. Thus, to
properly protect against NGMEs we require a fast solution that still blocks the full
class of attacks. Our approach is to focus on the payloads often used, and find a
way to protect this functionality from attacks — even in the case of a successful
control phase. We do this by observing that only a few system calls are used in
these common payloads, where the goal becomes to protect the arguments to those
few system calls. On top, any solution must incur limited overhead or it will not
be useful. We focus on the Data-only attacks of NGMEs, leaving the CFB capability

5

1 Introduction

within NGMEs as future work as part of incremental research. This leads us to our
final research question:

RQ4: Can we protect applications against data-only attacks by blocking
off common payload targets with a limited performance overhead?

In practice, this research led to an interest and understanding of heap manager
behaviour and its weaknessess, which consequently inspired the research of RQ3.

1.2 Contributions

This work is based on a three phase paradigm, with contributions to each. We will
thoroughly discuss the exploitation paradigm used in this dissertation before div-
ing into each individual aspect (Chapter 3). Afterwards, we present a vulnerability
taxonomy, an offensive control technique and a payload protection scheme for each
phase respectively. In detail, this dissertation provides:

1. A taxonomy for vulnerabilities with a small number of classes called GEN. In
contrast to existing taxonomies, GEN classifies bugs and vulnerabilities with
exactly one class based on a discrepancy between two abstraction layers. GEN
introduces two complementary concepts, Incorrectness and Undefinedness,
to explain what abstraction layer is responsible for the discrepancy. GEN

also considers the security policy as a separate abstraction layer, something
overlooked by previous taxonomies. GEN is directly linked to the scope of
impact of a vulnerability and to bug-finding techniques. (RQ2, Chapter 4)

2. Hack the Heap: A puzzle game that simulates heap behaviour to solve the
Heap Layout Manipulation (HLM) problem. The goal of the game is to
perform the Heap Layout Manipulation, i.e., set up the heap in a hacker-
preferred way. A solution in the game is directly transferable into the real-
world, even when the game presents a simplified version of the problem.
Hack the Heap provides a visualisation and simplification of the problem-
space while being heap manager-agnostic. Furthermore, it can crowdsource
the exploit writer’s task by letting other people play the game and find
various solutions, from where the exploit writer can choose an HLM solution
of choice to continue writing the exploit. (RQ3, Chapter 5)

6

1.3 Researching Offensive Security

3. System Call Argument Integrity (SCAI): A new paradigm for protecting com-
mon payloads. It uses the observation that common payloads use common
system calls with customised argument, and protects the data-flow into these
security-sensitive system calls. Furthermore, it leverages the power of heap
manager behaviour to separate the arguments from the remainder of the ap-
plication. SCAI uses Intel MPK technology to severely limit the runtime over-
head of applications, and does not require instrumenting (dynamic) libraries
or kernel modifications. SCAI protects the application from generic payloads,
even in the case of a successful data-only compromise. (RQ4, Chapter 6)

Together, our contributions give a greater insight into the threat of NGMEs. Why
they still exist; how the residual attack surface can be more effectively utilised;
and what the next step is in protecting against NGMEs. We conclude the work in
Chapter 7 where we discuss the above contributions in the context of RQ1.

Chapter 4 of this thesis is currently under revision at Elsevier Computers & Secu-
rity, coauthored with Jassim Happa and Daniel O’Keeffe. Chapter 5 of this thesis
has been published at WOOT 2022 [82] titled “Hack the Heap: Heap Layout Ma-
nipulation made Easy”, coauthored with Daniel O’Keeffe. It passed the Artefact
Evaluation with its open-source code available1 2

1.3 Researching Offensive Security

Even today, offensive research is regularly regarded as unethical. At first sight,
this is understandable: research results are shared with the world on how to make
cyber attacks better, simpler, easier to execute or quicker to develop. As this thesis
also presents offensive security research (Chapter 5), it is vital to understand why
it is a necessary evil.

Sharing the information democratises the exploitation process. If novel attack
techniques are available to anyone, it limits the effect of concurrent information
in private and government instances. This may in turn make it easier to exploit
new vulnerabilities/CVEs, which is the best way to determine the severity of a vul-

1The website is available here: https://github.com/Usibre/hacktheheap.
2The generator is available here: https://github.com/Usibre/hacktheheap-puzzlegen.

7

https://github.com/Usibre/hacktheheap
https://github.com/Usibre/hacktheheap-puzzlegen

1 Introduction

nerability and prioritise what vulnerabilities to patch. Typically, this is organised
in bug-bounty programs where ethical hackers can get paid sums of money after
submitting completed exploits. These programs provide exploit developers with
an ethical way to do their job and be rewarded with it, while aiding the software
development company with vulnerabilities and exploitability proofs.

Besides, most NGME attack paradigms currently being researched are not yet
shown to be used in practice. These attack paradigms (e.g., data-only attacks [32,
109]) may take years before a realistic attack will be seen in the real world. The
offensive research did lead to a plethora of protection schemes [142, 34, 180, 80,
27], attempting to have practical defences available when these attacks become
realistic. If we want research to make the world a safer place within the digital
domain, we need to perform offensive research to be ahead of the attacks in the
wild; protect against these attacks; determine severity and bug-fix priority; and
make the information available to anyone instead of using it as a secretive tool in
cyber warfare.

Finally, the existing structure of Chapter 5 teaches people how to perform one
aspect of exploit development to crowdsource this aspect. Our approach simplifies
and teaches Heap Layout Manipulation, which could aid newer exploit writers to
aid with the exploitation and in time with bug-bounty programs. However, it is
only one step in the exploitation process (as Chapter 3 will highlight). On top,
the crowdsourcing aspect (i.e., submitting custom puzzles for others to play) is not
available to the general public.

8

Background 2
This chapter will provide the general background information and research related
to the following chapters. We begin with a discussion of vulnerabilities as a concept
and their classification. We then introduce application memory, and memory safety
followed by a deep dive into the heap. After, we discuss system calls and a his-
torical timeline on exploitation and defence techniques of memory vulnerabilities.
Finally, we discuss the impact of crowd-sourcing research and gamification.

2.1 Bugs, Vulnerabilities & Weaknesses

Some mistakes in software can be abused by attackers to compromise the software
itself or even its underlying system. These mistakes are generally referred to as
vulnerabilities or weaknesses. The true meaning of a vulnerability is different
according to different authoritative organisations. For example, FIPS200 defines a
vulnerability as a “Weakness in an information system, system security procedures,
internal controls, or implementation that could be exploited or triggered by a threat
source” [140]. NIST CVE however defines a vulnerability as “A weakness in the
computational logic (e.g.„ code) found in software and hardware components that,
when exploited, results in a negative impact to confidentiality, integrity, or avail-
ability” [130]. Among practitioners the exact definition may not be easily spelled
out, but the intuitive understanding of what is and what is not a vulnerability is
mostly clear. If a software (or hardware) mistake poses an opportunity for attack-
ers, it is problematic and will be called a vulnerability.

Because software is easily copied, distributed and reused, popular implementa-
tions of software are deployed numerous times world-wide. A single vulnerability
in a popular application could mean that individuals and organisations throughout

9

2 Background

the world could be at risk. In an attempt to limit these ramifications, the Common
Vulnerabilities and Exposures (CVE) database was founded. The CVE keeps track
of all vulnerabilities within popular software and hardware products, and labels
them with unique IDs (e.g., CVE-2019-11839 [53]). The CVE ID can be linked
with other meaningful information about the vulnerability, e.g., a severity score,
a vulnerability type and more details/resources.

2.1.1 Vulnerability Classifications

Many attempts have been made to classify both vulnerabilities and attacks, in
which certain vulnerability characteristics are key [102]. In early works, the Pro-
tection Analysis (PA) project [14] collected vulnerability samples in order to extract
abstract patterns. Over 100 samples were collected and subsequently classified
into four main classes: Domain errors, validation errors, naming errors and serialisation
errors.

Bishop [15] used these classes as part of their UNIX vulnerability classification,
calling it the nature of the vulnerability. Additionally, they considered other proper-
ties, most importantly the Time of Introduction based on earlier work by Landwehr et
al. [118]. The Time of Introduction considers three phases: development, maintenance
and operation. Bishop points out that ambiguity can occur if categories are not
explicitly specified in a mutual exclusive manner.

Bishop’s Time of Introduction was redesigned in an attack classification taxon-
omy by Howard [95]. To categorise attacks, Howard specifies the type of vul-
nerability, in which three categories arise: implementation, design and configuration.
Nowadays, the Time of Introduction property is usually referred to these three
categories.

In more recent work, we strike a rough separation between fundamental research
— work that is aimed towards understanding vulnerabilities — and operational
research — work that is aimed at achieving direct real-world impact. When unclear,
we separate based on the approach of the project: if classes follow a bottom-up
approach we label this operational, and top-down approaches are labelled funda-
mental. Ultimately, this separation is to aid the reader in becoming aware of the
current state-of-the-art and holds no further research significance.

10

2.1 Bugs, Vulnerabilities & Weaknesses

Fundamental Vulnerability Classifications

In 2008, Meunier summarised the different properties used in various classifica-
tions [127]. Properties such as exploitability and disclosure process measure a level of
severity but can be hard to determine for a given vulnerability. A classification by
genesis determines whether the vulnerability was intentional and if so, whether the
intent was malicious. This is a difficult classification since intent and maliciousness
are not objective measures. Meunier also discusses the software development life-cycle
(SDLC) categorisation, an expansion on the Time of Introduction property from
Landwehr [118]. SDLC includes a separation between integration, maintenance
and requirements while keeping the main categories of design, implementation
and operation. Meunier finishes with a set of 6 criteria (4 defined and 2 implicit)
a taxonomy requires. We refer the reader to Meunier for a full overview of the
top-down properties used for classification in previous work.

The taxonomy criteria of Meunier have been expanded upon by Derbyshire et
al. [63]. They examine end-to-end attack taxonomies rather than standalone vul-
nerabilities, and analyse 7 attack taxonomies from both theoretical and practical
perspectives. In total, 10 different theoretical criteria are outlined, together with a
separate test to determine use in practice.

Simmons et al. proposed AVOIDIT, an attack taxonomy aimed towards edu-
cating the defender [169]. AVOIDIT classifies attacks along four dimensions (i)
Attack Vector, (ii) Operational Impact, (iii) Defence, and (iv) Information Impact.
Although AVOIDIT is not a vulnerability taxonomy, its attack vector dimension
resembles a vulnerability classification. AVOIDIT defines ten different categories
for the attack vector, including buffer overflow, file descriptor, input validation and
social engineering. Unfortunately, this classification has limitations since a single
vulnerability can fall into multiple classes, i.e., classes are not mutually exclusive.
For example, buffer overflows often occur due to a lack of input validation. The
authors do mention that an attack could be comprised of a chain of attack vectors,
but this should not lead to ambiguity. According to Derbyshire et al. [63], AVOIDIT
only covers two of their ten criteria.

More recently, Li et al. proposed a model based on the complexity of abusing a
vulnerability [124]. This is a hard problem to assess, but they attempt to capture
the complexity with a few broad categories. If the vulnerability results in control

11

2 Background

over resource usage on the target system (e.g., potentially causing a Denial-of-
Service (DoS) attack), they refer to it as an Aging-Related Vulnerability. If the
vulnerability is dependent on external factors such as timing or the environment, it
is called a Non-Aging-related Mandel Vulnerability. Alternatively, when a fixed set
of conditions is required for the vulnerability to be exploited, it is referred to as a
Bohr-Vulnerability. When a vulnerability matches none of the above, they consider
a catch-all Unknown Vulnerability category.

Surprisingly, an integer overflow issue falls in the category of the Aging-Related
Vulnerability according to the authors. This type is clearly different from other
vulnerabilities in this category, which only deal with DoS attacks, and might po-
tentially aid the exploitation of a separate vulnerability (e.g., in HLM [92]). An
integer overflow instead can lead to a complete compromise of the internal state of
a process. In fact, a buffer overflow attack is mapped to all three categories ([124],
Figure 3). Following the criteria from Derbyshire et al. [63], this approach lacks
(i) mutual exclusiveness, is ambiguous and does not represent socio-technical at-
tacks among others. Instead of their proposed use-case of understanding how
vulnerabilities can be exploited — which one requires to use the classification —
this methodology might be of more use in an operational vulnerability assessment
setting.

Operational Vulnerability Classifications

The Seven Pernicious Kingdoms by Tsipenyuk et al. [190] classify vulnerabilities
into “7+1” different categories. The first seven are: (1) input validation and rep-
resentation, (2) API abuse, (3) security features, (4) time and state, (5) errors, (6)
code quality and (7) encapsulation. According to the authors, all the above can be
identified and resolved within the source code (“implementation” category in the
Time of Introduction/SDLC). Finally, their last class is an environment class that
refers to issues with configuration and the environment in which the application
is run. As the authors acknowledge, it is clear that the classes are not mutually
exclusive. For example, a failure on input validation within an API can create a
vulnerability, and a buffer overflow can already occur in classes 1, 2 and 6. Fur-
thermore, a category such as code quality is inherently subjective and can easily
be used as a catch-all for software bugs. Ultimately, their goal is to “help software

12

2.1 Bugs, Vulnerabilities & Weaknesses

developers understand the kinds of errors that have an impact on security”. Within
the Time of Introduction classification, a design category is absent.

MITRE OVAL. Common in an operational setting is the MITRE OVAL standard 3.
The OVAL standard is a collection of various classifications and properties of flaws,
vulnerabilities, exposures and weaknesses, whichever word more closely resem-
bles the situation. Among others, OVAL includes the known CVE collection and
ATT&CK, but also the lesser known CWE standard and CAPEC. Every piece of
OVAL is focused towards a different goal: Where CVE is operational by nature and
contains common vulnerabilities across products, CWE aims to classify weaknesses
in a stratified framework, aiming to list all potential issues that could give rise to a
vulnerability. Note that CVE is not a classification model (in contrast to most OVAL
efforts), but rather an operational framework for listing vulnerabilities. Not part
of MITRE OVAL, the CVSS aims to measure vulnerability severity in a stratified
manner.

The Common Attack Pattern Enumeration and Classification (CAPEC) [10] is
a taxonomy of attacks, aiming to aid the entire software development lifecycle
(SDLC). CAPEC is a tool that aids testing, analysis and threat modelling. It is or-
ganised into two independent tree structures with 575 nodes at the time of writing.

The first tree is “Mechanisms of Attacks”. Each category here represents a dif-
ferent mechanism that could be used in the attack of a system. An example cate-
gory here is “Abuse existing functionality”, that contains “API Manipulation” as
subcategory among others. Alternatively, the second tree-structure on the nodes
is “Domains of Attacks”, with categories such as software or supply chain. Here,
API manipulation is a subcategory of software instead. All nodes contain a short
description of the execution flow of a potential attack.

The attack categorisation as listed are mainly operational in nature. The num-
ber of categories and attack patterns is large and attacks can fit in more than one
category. Furthermore, they can represent completely different stages of the same
attacks. For example, fuzzing is listed as a type of attack whereas this has a com-
pletely different stage of an attack compared to code injection: fuzzing may find
a code injection opportunity. It is disputed whether fuzzing is indeed an attack
vector at all — and raises the question why CAPEC does not contain a complete

3https://oval.mitre.org/

13

2 Background

bug-finding technique list if so. It would be interesting to have a relation based on
the attack stage and related stages (such as fuzzing flowing into a code injection
attack).

The Common Weakness Enumeration (CWE) [133] also has a bottom-up ap-
proach but focuses on vulnerabilities rather than attacks. This is a big difference:
Where CAPEC aims to categorise attacks from an attacker perspective, CWE tries
to answer the question what the issue is with a given application. This line gets
blurred in some types of weaknesses and attacks. For example, CAPEC has an
Overflow buffer attack category whereas CWE has a Buffer Copy without Checking
Size of Input category.

Like CAPEC, CWE has seen an explosion in categories from its bottom-up ap-
proach, making it difficult to use for classification. For example we can look at
CVE-2019-16724, a vulnerability in File Sharing Wizard 1.5.0 where part of the in-
put data is not properly validated (CWE-20) and triggers a buffer overflow (CWE-
118, CWE-119, CWE-120, CWE-788) that leads to an out-of-bounds write (CWE-
787). This out-of-bounds write can be abused to create a “write-what-where” prim-
itive (CWE-123). An exploit is known in the form of a Metasploit module4 that
injects a shellcode (CWE-94, CWE-96).

In fact, CVE-2019-16724 is classified to CWE-120 and whilst its CVE states that
the issue is similar to CVE-2010-2330 and CVE-2010-2331 — which are both
classified as CWE-119. Thus while CWE can excel in giving a solid explanation to
the issue of a known vulnerability, it can be highly ambiguous as a vulnerability
classification.

Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) is a model
and knowledge base to identify security gaps in organisations, and addresses them
prior to adversary attacks. ATT&CK organises attacker behaviour into technical
objectives that adversaries want to achieve, such as data collection, discovery,
defence evasion and exfiltration among others. Each objective (called a tactic in
ATT&CK terminology) contains a list of concrete techniques. For example, the
collection tactic contains audio capture; data from local system; email; and video
capture. The specific technique depends on the vulnerabilities present on the attack
surface, and the capacity and capabilities of the attacker. Each technique provides

4https://www.exploit-db.com/exploits/47412

14

2.1 Bugs, Vulnerabilities & Weaknesses

a description of the method, the systems it applies to, what adversary groups
use such method (if known), as well as any mitigation/remediation actions. The
model takes a form that resembles a set of 2D matrices, including: (1) preparatory
tactics and techniques (akin to reconnaissance and weaponisation in the cyber
kill chain [99]), as well as (2) Enterprise and (3) Mobile Matrices. The model is
intended for security practitioners to identify potential vulnerabilities in existing
digital platforms and to address them directly. The model is not mainly used
for addressing software vulnerabilities, but rather (whole) systems deployed in
organisations.

Common Vulnerability Scoring System (CVSS) [126, 162] is a standard measure-
ment system to score vulnerability impact. It is composed of three metric groups:
base, temporal, and environmental scores. These three rely on consistency of met-
rics most of which are represented as a “low–high” range. The base score represents
the foundational characteristics about a vulnerability that are constant, irrespective
of time and user environments. The base score is the mandatory score for assessing
any vulnerability when using the CVSS standard. It identifies the access vector,
access complexity, privileges required, user interaction, scope and Confidentiali-
ty/Integrity/Availability (CIA) impacts.

The temporal score identifies the characteristics of a vulnerability that change
over time but not among user environments, such as: to what degree is it ex-
ploitable, what remediations exist and the confidence analysts have in the vulner-
ability reports. Finally, the environmental score reflects the characteristics of the
environment, including potential mitigation techniques that may limit the impact
of successful exploitation and additional assets available after exploitation. When
the metrics are assigned values, the underlying equations can calculate a final score
ranging from 0 to 10.

Weird Machines

Once the vulnerability is triggered (i.e., reached/executed), the applications’ logic
is compromised and “weird” things can happen within the execution. According to
the Langsec community, we enter a weird machine [20, 9, 197]. The weird machine is
a conceptual state machine model consisting of all states that were not supposed to
exist. When a vulnerability is triggered, the weird machine is entered and its states

15

2 Background

are exposed. The weird machine technically expresses an undocumented program
with unknown semantics [70]. Programming the weird machine becomes analogous
to writing an exploit.

Attempts have been made to formalise weird machines. Dullien proposed the
usage of a state automaton to represent weird machines [70]. An approach by
Vanegue uses abstraction levels [197], analogous to our approach in Chapter 4.
D’Silva et al. extended this approach from Vanegue, in the context of compiler
optimisations that nullify security properties [69]. They conclude that different
levels of abstractions are required to reason about low-level behaviour of code.
They show the abstraction level used to reason about optimisation may overlook
issues that arise on a different level of abstraction.

Also focusing on weird machines on the level of compilation are Paykin et
al. [150]. They consider the source code as ground truth. Anything that deviates
from the source code when executing the compiled program is seen as a weird
machine. They take a formal approach to model this using programming language
techniques. Any deviation to the source code is called an exploit. As such, their
formalism captures vulnerabilities as a result of the compilation process and be-
yond.

Limitations of the Weird Machine Model. One paper by Erik Poll discusses
forwarding flaws: issues that appear when data is passed from one application
to another, e.g., SQL injection. He discusses how this is a separate issue compared
to processing issues [153]. Specifically, Poll mentions that forwarding flaws are
different by nature as they are deliberately introduced, but accidentally exposed.
Through this, it is concluded that the forwarding flaws do not expose weird ma-
chines.

Although forwarding flaws clearly are fundamentally different, we argue that it
does expose a weird machine. Lets take the example of a search engine that fails to
escape quotemarks(") when forwarding a query to an SQL database. Using one or
more quotemarks inside the search query will not search for the exact string, as the
quotemarks are interpreted in the context of the SQL code. The deviation occurs in
the application, as the semantics of the resulting SQL query already deviates from
its intended semantics. In other words, the application behaviour deviates from the
intended behaviour, so a weird machine is present in the application.

16

2.2 Memory

Rather, the issue is two-fold. First off, the deviation itself is expressed in data
rather than code. Although this is in line with the Langsec principles, its devia-
tion is not present when representing the weird machine as state machine — the
common representation of weird machines. The second problem lies in the decou-
pling from the original application and its weird machine(s). One vulnerability
can express many weird machines, depending on the state of the application at the
moment that the vulnerability is expressed. As such, it is the exploit writers’ goal to
“choose” or set up the right weird machine to make it possible or easier to program
the required exploit. In the SQL example above, the vulnerability is expressed with
any input string that contains at least one quotemark. Yet, the small weird machine
it creates is highly dependent on the semantics of this string in the context of the
application it is forwarded to. Exploitation writing is thus not only programming
the weird machine, but also choosing the right point of entry from the vulnerability,
i.e., choosing the right weird machine to program.

A separate issue of the weird machine model is when multiple vulnerabilities
are used within a single exploit. Especially when vulnerabilities of different ab-
straction levels are leveraged, the weird machine model cannot contain this level
of information within a single representation: a logic bug is not a vulnerability
when looking into the weird machine concept in bytecode fashion like Dullien [70]
as it lacks high-level semantics. If the weird machine however models the logic
operations of the application, a subsequent memory violation cannot be modelled
within the same weird machine.

This is not to say that the weird machine model is not accurate or useful. Instead,
we argue that the weird machine model is in its infancy and needs to become part
of a larger model. Only through a larger model (with e.g., the potential for multiple
weird machines or abstractions) can it fully grasp the full breath of vulnerabilities
in the context of exploit writing.

2.2 Memory

To fully understand memory vulnerabilities, we require a good understanding
of how memory is organised within an application, what is meant with memory
(un)safety and how we can protect this memory. These are all discussed in this

17

2 Background

1 int main() {
2 char name[128];
3 scanf("%s", name);
4 printf("Hello, %s!", name);
5 return 0;
6 }

Listing 2.1: Example C code containing a stack-based buffer overflow.

section.

An application process requires memory to perform necessary operations. Al-
though physical RAM is used, the Operating System (OS) reorganises the available
memory into virtual memory. We will not go into detail about the inner workings of
the OS and its memory management, but it is important to understand that a mem-
ory address does not correspond to the hardware address of a running application.
When starting an application, it starts an application process. The process gets
usable memory in the same address range: accessing this memory by an application
gets translated by the OS to its respective hardware address.

Because it gets translated, any memory violation within an application process
cannot write outside the boundaries of the application itself. This provides the
machine with a vital piece of protection, as one vulnerable application does not
directly put other processes in danger. This does not mean that a memory violation
is benign, as it can still affect the internal structures of the application. From hereon,
“memory” refers to the virtual memory as used by a single application process.

2.2.1 Application Memory

Within an application process, memory is used for various purposes. Memory is
generally executable (i.e., for executing the code), writable (e.g., for managing data)
or read-only (for unchanged data). Writable memory can be divided again into 4
different groups: global memory, the stack, the heap and raw memory requests.

The global memory is of a static size and will exist for the entire duration of the

application runtime. Secondly, applications use a stack containing local variables
and buffers. This memory is linked to a function: when the function finishes, these
variables automatically go out of scope. Thirdly, we have dynamic memory called
heap memory. The size and lifetime of heap memory is under control of the devel-

18

2.2 Memory

oper.

Reserved

Executable code (.text)

Global variables

Heap

Stack

Environment

...

Uninitialised

Memory (RAW)

0x00..00

0x00..3000

0x00..18000

0x00..2a000

0x7ff..fe000

Figure 2.1: A typical memory layout of a *NIX
application.

When heap memory is required, a
function can be called (e.g., malloc())
to request a buffer of a given size. At
the end of its usage, the developer is
responsible for returning the memory.
This is done with a call to free(). The
heap is discussed further in Section 2.3.
Finally, large chunks of unmanaged
memory can be requested manually
(e.g., mmap in unix-based systems).
This provides the developer one or
more pages of raw memory . If this
large chunk is used for more than one
data structure, the developer is respon-
sible for managing the layout. A typical
memory layout in an application is
visualised in Figure 2.1.

2.2.2 Memory Safety

Some programming languages (e.g., C,
C++ or more recently “unsafe” Rust) do not enforce memory boundaries. This is
generally faster compared to an automatic system like Garbage Collection or run-
time checks [65], but a mistake by a developer could mean that memory boundary
properties are violated. These programming languages are therefore considered
memory unsafe. In order to gain memory safety in languages, we need to combine
spatial memory safety and temporal memory safety.

Spatial Memory Safety means that no memory buffer access — when accessed
for both reading and writing — can end up outside the spatial boundaries of said
buffer. As an example, there is a spatial memory safety issue in Listing 2.1. Under
normal circumstances, someone’s name does not exceed 127 characters5and the
program would execute as intended. Any input that exceeds 127 characters will

5127 characters not including the null delimiter as 128th character.

19

2 Background

1 [..]
2 int main() {
3 int *number1 = (int) malloc(sizeof(int);
4 scanf("%d", number1);
5 free(number1);
6 int *number2 = (int) malloc(sizeof(int));
7 scanf("%d", number2);
8 printf("%d + %d = %d!", number1, number2, number1+number2);
9 free(number2);

10 return 0;
11 }

Listing 2.2: Example C code containing a heap-based use-after-free.

write outside of the allocated “name” buffer. This could overwrite other data saved
on the stack or metadata saved on the stack. Spatial memory safety also includes
underflows or arbitrary reads/writes, as can be demonstrated with e.g., a format
string attack.

Temporal Memory Safety is instead concerned with the lifetime of memory buffers.
This occurs when the memory is not ready to be used yet/anymore. For example,
when a variable is read before initialisation; is read or written to after its lifetime;
ending the lifetime of memory more than once; etc. A common mistake w.r.t.
temporal memory safety is a use-after-free (UaF), an example of which is shown
in Listing 2.2. In this example, number1 is freed on line 5. The lifetime of the
number1 variable has ended, but interactions still occur with this variable on line 8.
Depending on the heap manager used, the number2 variable here can be placed in
the same location as number1. This would cause writing to number1 to overwrite
the value of number2. Heap manager behaviour is discussed later in this chapter.

2.2.3 Memory Protection

Memory pages in an application have three protection flags, determining whether
the memory is (1) readable; (2) writable; and (3) executable. In Section 2.2.1 we
discussed all writable sections. However, runtime requests can change this: on
Linux systems this is done with the mprotect system call. This can set any of the
above flags to true or false, making any combination possible6. This has been used
to create execute-only memory [163], which prevents read-outs of the memory and

6Some combinations of memory protection flags may not be supported by all kernels.

20

2.2 Memory

thereby enforces confidentiality (e.g., to protect intellectual property and hinder
code-reuse attacks). The same mechanism protects against attackers overwriting
non-writable data (e.g., the bytecode itself).

Flags set on memory pages are stored in the kernel. Per process, a limited number
of contiguous memory regions can have differing flags according to the mprotect
specification. If the application contains too many different regions (differing in
protection flags), a consecutive call to mprotect can fail.7The protection flags are
shared across different threads.

Information Hiding. Protecting memory against adversaries has become increas-
ingly popular in the last decade [116, 23, 43, 172, 27, 80, 142, 139]. An mprotect

protection can only cover a small amount of differing flags and switches slowly,
so alternative solutions have been attempted. For example, Information Hiding
(IH) allocates a small amount of memory in a randomised location [116]. Given the
large space for virtual memory (128TB), guessing a small memory area becomes
difficult enough to provide guarantees similar to guessing encryption keys. The
used memory is typically surrounded by guard pages, where any read or write
will trigger an exception. However, IH relies heavily on not leaking the hidden
memory address in any way for an exploit writer to find. This has been shown
to be more difficult than previously expected [43, 78, 85, 144]. Regardless of the
scrutiny surrounding information hiding, the LLVM CFI implementation relies on
IH at the time of writing [185].

Software Fault Isolation. An alternative solution masks pointers before using
them. This is known as Software Fault Isolation (SFI) [201, 165]. Before using any
pointers, a bitwise and can be used to force certain bits to 0, and conversely a
bitwise or can set bits to 1. With memory segregation, this can force pointers to
be in or out of a specific region. Afterwards, the application can either continue
with the masked pointer, or compare the value against its original (and throw an
exception if the check failed). For SFI to be fail-safe, the memory region needs to
be determined at compile-time to ensure that an attacker cannot tamper with the
pointer masks. This also requires the maximum memory size to be determined
while compiling.

7Typically around 16 different regions, including the pre-existing regions where e.g., code can be
executed; data can be edited but not executed; or read-only memory that can do neither.

21

2 Background

For sandboxing, SFI can be used on specific parts of code (e.g., plugins or user-
supplied code). For the opposite — protecting a specific memory area — every
single memory read or write instruction will need to be masked for confidentiality
or integrity respectively. This can lead to a substantial performance overhead. Be-
sides, SFI does not protect uninstrumented code in contrast to the above techniques.

Intel MPK. The CPU manufacturing company Intel responded to the need for
additional fast memory protection as well. They developed a hardware solution
inside CPUs called Memory Protection Keys (MPK). These are protected protection
bits (for reading and writing) that can protect up to 16 different memory domains
that can be set through custom instructions. MPK enforces read and write protec-
tion at the hardware level on a per-thread basis, with quick user-space interaction.

2.3 The Heap

The heap is a flexible memory region used by applications for data with a custom
lifetime. It can be interacted with through the malloc API as specified in C18, also
known as C17 or ISO/IEC 9899:2018 [108], in section 7.22.3. The standard describes
how to request a memory chunk (through malloc, calloc, aligned_alloc,
resize an existing memory chunk (realloc) or return a memory chunk (free).
An API implementation of the heap is called the heap manager.

The specification does not describe how the memory is managed internally: this
is to the discretion of the implementation. How to distribute pieces of a large con-
tiguous chunk of memory with a limited performance and memory overhead poses
various challenges. Generally, different heap managers trade off space efficiency
for memory overhead or security guarantees. We discuss the most significant de-
sign decisions below.

Fitting Methods. When a memory request is received by the heap manager, it is
the task of the heap manager to quickly and efficiently return a memory region of
(at least) the requested size. This memory is selected from one contiguous region in
most cases. Yet, previously allocated memory chunks can be freed or resized at any
time, which can fragment the heap memory area quickly. The most fundamental
question on a request for a memory chunk, is how to search for a large enough
chunk of available memory: this is called the fitting technique or fitting algorithm.

22

2.3 The Heap

0

1

2

3

Alloc 1

Free

Free

Alloc 1∗

Alloc 2

Alloc 2

Unused Memory

Unused Memory

Unused Memory

Unused Memory

Figure 2.2: Here we show the behaviour of free-lists. When an object is freed, for example
freeing ‘Alloc 1’ (0 → 1), its location remains preserved for another memory request
of this size. If we request a different size chunk ‘Alloc 2’ (1 → 2), it will not use this
memory since it is reserved. When this size chunk is requested again by requesting ‘Alloc
1∗’ (2→ 3) it will fill the spot with either the LIFO or FIFO principle (typically LIFO, stack-
based). With segregated memory, a number of locations are preserved per bin size a priori.

One such fitting technique is “First Fit”. Here, the heap manager starts searching
from the start of the heap memory region. We traverse to the end, checking all free
regions. As soon as we find a memory chunk that is big enough to hold the request,
we take the start of this memory region. Upon freeing the chunk, we may require
coalescing, merging the freed area with adjacent free areas to create one bigger free
area. If we don’t, we may end up with many tiny (and virtually unusable) free
memory chunks, none of which are big enough for larger requests.8

Other fitting techniques include “Next Fit” (where we start searching where we
left at the last search), “Best Fit” (where we search the entire area for the smallest
fitting empty region, gaining efficient memory usage at the cost of performance),
and “Free Lists”. With Free Lists, we group requests in different sizes, padding
each request to these sizes. Each size has an associated free list containing available
memory chunks of that size. If nothing is available, we use unsorted memory to
return a memory chunk. When this heap chunk gets freed eventually, it is added
to the free list to be reused for other memory requests of the same size. A visual
example on the Free List mechanism is shown in Figure 2.2. Free lists are common
in heap managers, although significant differences lie in (1) whether to adapt a
LIFO (Last-In-First-Out) or FIFO (First-In-First-Out) policy, (2) freelist sizes and
ranges between sizes, (3) coalescing, and (4) segregation as discussed below.

8A visual demonstration of First Fit can be found on https://hacktheheap.io/game.htm?id=1 using
the website from Chapter 5.

23

https://hacktheheap.io/game.htm?id=1

2 Background

0

1

2

Alloc 2 Alloc 3 Alloc 5

Alloc 3 Alloc 5

Alloc 5Alloc 3FreelistsFirst Fit Best Fit Next Fit Random Fit

Figure 2.3: This figure shows the different locations where a heap manager can place a
subsequent request. Given the heap state as marked in the first bar, “Alloc 2” is freed
which results in the second bar (1). After this, the different marked area shows the different
locations depending on what fitting technique used by the heap manager. Note that all
allocations in this example are of equal size. Random fit could technically occupy any of
the available spots, but has the potential to land on the marked spot.

The difference between different fitting techniques is visualised in Figure 2.3.
Here, we allocate 5 equally sized memory chunks before freeing the first and fourth
allocation. The resulting memory layout is shown in the State 0. Following the
steps in the figure, we free the second allocation, resulting in State 1. The next allo-
cation can occur in a large amount of locations, depending on the fitting technique
deployed, as State 2 shows.9

Note that the fitting techniques as discussed are theoretical models. While heap
managers generally follow one or more algorithms as described above, additional
deviations from the model algorithms exist to enhance performance or lower frag-
mentation.

Segregation. When using free lists, we could pre-allocate a multitude of memory
chunks of each size. Doing so enforces that every allocation of the same padded size
would be in the same area until full. Freelists for each size can be pre-filled after
pre-allocating. If the heap manager runs out of space for a given size, it can either
split a larger existing block for new entries (typically referred to as “Segregated
Fit”) or take an unorganised chunk and split this into entries of the requested size
(called “segregated storage”) [205]. Note that the use of free lists does not require
any form of segregation — Figure 2.2 for example.

Non-determinism. When heap managers become predictable, their behaviour
can be abused in the existence of a memory vulnerability. How to leverage the
predictable behaviour is studied in Chapter 5, but some heap managers have taken

9Random fit could differ more, depending on its implementation.

24

2.3 The Heap

this into account and added direct non-determinism within the fitting method. This
needs to be done carefully to avoid excessive fragmentation without losing non-
determinism. For example, the Windows Low Fragmentation Heap (LFH) does so
by choosing a random entry from a pre-allocated freelist. Yet, attempts to limit the
heap fragmentation have been shown to become deterministic enough to abuse in
the past [193, 159], e.g., through heap spraying [66].

Metadata Protection. Another design decision is whether to include metadata ad-
jacent to the returned memory (e.g., tcmalloc) or in a separate metadata region for
all metadata (e.g., LFH). Besides non-determinism, modern heap managers have
incorporated security mechanisms to protect metadata. Metadata is well-known
to enable various attacks [206], e.g., an unsafe unlink attack [155]. To protect heap
metadata, it can be encoded, and its location can be randomised and surrounded
by guard pages. Illegal metadata behaviour (e.g., double free) can be detected
with additional checks and metadata can be heuristically checked to be reasonably
correct (e.g., freelist pointers pointing into the heap region). Heaphopper [71] can
be used to check heap metadata attack safety, and a safe allocator can already be
deployed [141].

Size Thresholds. Heap managers change their internal behaviour depending
on the size of the request. This is good, as small requests are allowed to be less
space-efficient without losing too much effective memory, speeding up the request
process. Similarly, when requests become very large, heap managers will often
request the memory from the OS (i.e., through the mmap system call in Linux).
A number of thresholds are determined per heap manager where each range of
sizes adapts different behaviour. For example, ptmalloc2 uses single-linked lists
when the requested size is smaller than 11310(becoming up to 128 bytes including
metadata), and will call mmap if the request size exceeds 131040 bytes (max size
of 0x1FFF0 including metadata). Different heap managers have different default
thresholds.

10This is empirically tested and configurable.

25

2 Background

1 typedef struct {
2 size_t id;
3 uint16_t content_length;
4 char *value;
5 } record;
6
7 record *new(size_t id, char *password,
8 uint16_t length) {
9 record *rec = malloc(sizeof(record));

10 rec->id = id;
11 rec->content_length = 2*length;
12 rec->value = malloc(rec->content_length);
13 strlcpy(rec->value, password, length);
14 return rec;
15 }
16
17 void alter_value(record *rec, char *password,
18 uint16_t length) {
19 if (rec->content_length < length) {
20 free(rec->value);
21 rec->content_length = length;
22 rec->value = malloc(rec->content_length);
23 }
24 strlcpy(rec->value, password, length);
25 }
26
27 void print_value(record *rec) {
28 printf("Password for id %lu: ’%s’",
29 rec->id, rec->value);
30 }

Listing 2.3: Vulnerable example code where HLM can be used

2.3.1 Heap Layout Manipulation

The Heap Layout Manipulation (HLM) problem, also known as Heap feng shui [173,
141] or heap massaging [86], is the challenge to change the heap layout in a format
that is beneficial to the exploit writer. The aim is to set up a heap layout such
that the vulnerability will overwrite a memory chunk of interest. We call these
chunks targets. Similarly, we have access to memory chunks that write outside the
temporal or spatial boundaries. This can result from a temporal vulnerability (e.g.,
a use-after-free) or a spatial vulnerability (e.g., an overflow). We call the vulnerable
memory chunk(s) bugged.

26

2.3 The Heap

Figure 2.4: A visualisation of an HLM solution as discussed in Section 2.3.1. Between each
step, code is printed which turns the upper layout into the layout below the text. In step 3,
we are left with a “password” memory chunk (the left-most one) right next to a “record”
memory chunk. An overflow from the password chunk would leak into the record chunk,
overwriting a data pointer. The size of each puzzle piece is slightly bigger (e.g., 32 bytes)
than the requested size (24 bytes) due to the added metadata from the heap manager.

Example

Consider the code in Listing 2.3. This is a simple (and poorly coded) password
manager with three operations. The new operation saves a new record containing
a password to be saved; alter_value can change the saved password of a record;
and print shows the saved password on the screen. The new function requires a
password length as well as the password. This length is checked in the copying
function on line 13. Yet, the size of this new buffer is set to twice the length as
seen in line 11. This creates the potential for an (unsigned) integer overflow where
2 × length < length and hence the buffer would be too small for the submitted
password. We refer to this allocation (on line 12) as a bugged allocation. Next, we
need to find a useful value to overwrite with this overflow. No function/control
pointers are available on the heap, but we do have one data pointer available: the
value inside the record struct on line 4. If we overwrite this value, we can control
both where to write and what to write by using the alter_value operation on
the overwritten record afterwards. The allocation to the record struct creates this
pointer on the heap (line 9), and thus we call this a target allocation. With the

27

2 Background

information above, the goal is to allocate a bugged allocation adjacent to a target
allocation, on a lower address (so the overflow writes into the target allocation).
This is the heap layout manipulation problem. A solution to our example is depicted in
Figure 2.4 and is comprised of the following operations:

1. new operation with size 24, twice. Shown in layout 1 of Figure 2.4.

2. alter_value operations on step 1 in reverse order to size 64, as shown in
layout 2 of Figure 2.4.

3. new operation with size 32780, that will overflow in an allocation of size 24
and write into the second record created in step 1, see layout 3 in Figure 2.4.
Any additional data written to this overflow will write into the record object,
overwriting a data pointer and creating an arbitrary write.

2.3.2 Existing HLM Solutions

Heap layout manipulation is gaining traction in the research community. SHRIKE [92]
performs a random search for a solution, but is limited to interpreters and requires
(re)compilation of the application. In follow-up work, Gollum [93] uses an evolu-
tionary algorithm to enhance its success rate. SLAKE [33] performs heap layout
manipulation on the kernel, using the kernel’s heap management properties to
implement a custom search technique. Similar to SHRIKE and Gollum, it requires
recompilation and is limited to a narrow set of applications.

Most recently, MAZE [203] proposes a custom “dig&fill” algorithm for the HLM
problem. MAZE analyses operation-based applications using symbolic execution
to automatically find the operations one can perform. It then probes the heap
manager with similar (concrete) heap actions to find patterns in the operations:
creating or filling “holes”. This converts the problem into a list of constraints, to be
solved with a constraint solver. Although MAZE does not appear to require access
to source code11, it still has a number of drawbacks. First, MAZE is limited to ap-
plications that can be reasonably symbolically executed, but symbolic execution is
strongly affected by state explosion and at times, imprecision. Second, the dig&fill
algorithm is closely tied to the inner workings of dlmalloc and ptmalloc (a threaded

11MAZE’s implementation is not available at the time of writing.

28

2.4 System Calls

adaptation of dlmalloc). Finally, translation of operations into constraints can only
occur if operations obey certain conditions with respect to the size of allocations.
To ensure this, MAZE employs different strategies (e.g., operation merging) that
while convenient for the solver still limit the search space, potentially excluding
solutions.

In contrast, in Chapter 5 we propose a puzzle game to visualise and simplify the
HLM problem space. The puzzle game is heap manager agnostic and although not
fully automatic, it provides the exploit writer with one or more explainable, visual
solutions to the problem.

2.4 System Calls

In order for user-space applications to have any impact on the machine it is running,
it needs to perform system calls (also known as syscalls). The collection of
system calls can be considered an API to gain any form of input or output, that
works by triggering an interrupt. Then, the kernel handles the API request before
returning to the user-space application with the result of the system call.

Which system call is requested is determined by the rax register value in Linux-
based OSes, where over 350 different system calls provide an extensive list of in-
teractions for applications [189]. Additional registers (typically rdi, rsi, rdx,

etc.) can contain arguments to the system call (e.g., where to write input). Note
that this assumes the System V calling convention for AMD64, as is the focus for
this dissertation.

For example, to write to the screen in a Linux-based bash one needs the write
system call. On an x86-64 cpu, the system call needs to be triggered with an rax

value of 1 and an rdi value of 1, being standard output as first argument. Then,
rsi needs to hold a pointer to the string that needs to be printed and rdx requires
the number of bytes to write. Now, all we need to do is call the syscall opcode
(analogous to the int 0x80 on 32-bit x86 machines) and the kernel will print our
message for us. Then, it will save the number of bytes written into the rax register
as return value and return back to the application.

If an attacker tries to change the behaviour of an application to their benefit, they
require one or more system calls with the right arguments to produce any beneficial

29

2 Background

output too. Instead of looking for executing a predetermined piece of code (e.g., a
shellcode), we can frame the problem as executing a series of system calls (or just
one) with the right arguments.

2.5 Memory Attacks and Defences: a Timeline

The concept of taking control over an application in the presence of a memory
vulnerability is at least known from 1972 [6] and is still a real threat today [49, 50,
111]. The process has changed completely however, due to protection mechanisms
in place today and possibly more tomorrow. Here we discuss the most impactful
changes of the past 50 years in research and practice. It starts with an extended
version of the work by Szekeres et al. [182], with a slightly different focus given
todays knowledge. Afterwards, we discuss what has happened since their work in
2013.

Attack The Start: Stack Overflows. Anderson discussed the potential of a buffer over-
flow in 1972, stating “[a spatial memory vulnerability] can be used to inject code
into the monitor that will permit the user to seize control of the machine” [6].
In 1988 it became clear that stack overflows were a real threat, as it was used by
the notorious Morris worm to infect targets [175]. The technique however became
popular amongst hackers when an article appeared in the e-magazine Phrack called
“Smashing the Stack for Fun and Profit” [4] in 1996. Here, Aleph One discusses
in detail how the return address of a stack frame can be overwritten to execute a
shell code. Originally, a shell code is a minimum example in assembly or bytecode
to open a shell. Nowadays, a shell code refers to a small snippet of bytecode the
attacker wants to execute on the target.

Hitting the exact start of the shell code upon jumping proved problematic, as he
stated: “Trying to guess the offset even while knowing where the beginning of the stack
lives is nearly impossible”. If execution of the shellcode starts at the wrong position,
we could miss vital instructions or execute misaligned instructions (i.e., jumping
halfway into a multi-byte instruction and interpreting the instructions as different
ones). Aleph One suggested the usage of nop instructions. A nop instruction is
a single-byte instruction that performs the “no-operation” by doing nothing and
can be added at the start of the shellcode in large amounts. Starting the shellcode

30

2.5 Memory Attacks and Defences: a Timeline

execution anywhere within a range of nop instructions (nops) will continue doing
nothing until the effective code is executed without alignment issues in x86 or x86-
64 architectures. Nowadays, this technique is known as a nop sled.

Defence The Response: W
⊕
X. In a response to the stack overflow attacks above, vari-

ous different techniques were presented to counter an easy stack overflow exploit.
SPARC machines running Solaris 2.6+ were among the first to implement W

⊕
X

in 1997 [184], a design principle where memory is allowed to be either writable or
executable but not both12. This simple property single-handily stops the usage of
shell codes, as the attacker injects code into a writable segment —- which would
then be non-executable.

This required a fundamental change to memory, to be implemented in such
a way that the OS/hardware does not have to perform additional checks upon
every memory write and instruction execution, significantly slowing down the
application. Multiple solutions appeared, including but not limited to the Non-
eXecute bit (NX bit) and Data Execution Prevention (DEP). As of 2004 approx-
imately, the non-executable memory property is enforced in hardware in most
processors (e.g., AMD and Intel [186]). Nowadays, this is a default option on
machines, including phones. Where it is not enforced through hardware it can
always be enforced through the operating system or hardware enforcement can be
simulated in a virtualised environment, even if less relevant nowadays.

Attack The Alternative: return-into-libc. Hackers were quick with a response. As early
as 1997, the first exploit was written that bypasses the NX bit [171]. The attack
used the code of the application against itself by calling the system() function in
libc. After all, libc would always load on every application in the same memory
location. The arguments to system() were carefully prepared in the exploit, so
/bin/sh could be executed and a shell would spawn. This type of attack became
known as a return-into-libc exploit, and its concept was broadened by Nergal in
Phrack in 2001 [138].

Defence Into the Caves: Stack Canaries. In 1998, Cowan et al. presented StackGuard, a
compile-time toolset that adds protection against stack-based overflows [47]. Here,
they presented a new technique called a canary word, nowadays known as a stack

12Technically, this technique started off as a Non-Executable Stack specifically, later to be generalised
to any writable memory.

31

2 Background

canary. The technique is named after the Welsh miner’s canary which was used to
detect high amounts of carbon monoxide inside mining caves.

A canary is a word-sized random value to be placed at the start of a stack frame,
between the saved base pointer and the local variables of that stack frame. Upon
returning from the function, the code will check if the stack canary is still intact
(i.e., contains the original value) and halt execution if not. If an attacker wants to
overwrite the return address, it will overwrite the stack canary and the attack will
be detected before the malicious payload can be executed. Attackers will need to
skip the canary while writing out of bounds, read out the canary first and write the
same exact value, or guess, or bruteforce its value.

Defence The Random Solution: Address Space Layout Randomisation. In 2001, Ad-
dress Space Layout Randomisation (ASLR) was introduced, generally credited to
the Linux Pax Project [176]. ASLR randomises the memory address of almost all
parts of the application, but notably (1) the stack, (2) dynamically loaded libraries
(like libc), and (3) the heap. This rather simple solution halts the return-into-libc
attacks, as the starting address of libc needs to be known to find the location of a
target function such as system(). Modern solutions randomises more application
segments, notably the text (code) section.

Just like stack canaries, this technique breaks when the attacker can read out
memory pointers or guess the value, determining the ASLR offset and the stack
canary. Once the ASLR offset is known, any function address can be easily calcu-
lated13. The pointer memory read must not trigger a crash however, as a restart of
the application will reset both the ASLR offset and the stack canary value. The
simplicity and minimal overhead of both stack canaries and ASLR led to their
widespread incorporation in every major operating system [62, 187, 47]. The ASLR
paradigm has been extended for specialised use since, protecting specific smaller
data structures. This has become known as information hiding within the virtual
memory space [116, 23, 27] as discussed previously. Even in specialised use, the
pointer must never be leaked and the memory area must be small enough not to be
probed or guessed [78, 85].

One separate mechanism has been explored in defeating ASLR without leaking or
guessing the offset. Göktas et al. explored a method of exploit writing where only

13See https://libc.blukat.me/ for example.

32

https://libc.blukat.me/

2.5 Memory Attacks and Defences: a Timeline

relative addresses are used [86]. Relative addresses inherently contain the ASLR
offset, so leaking the offset may not be necessary.

Attack Generic Code-reuse: Return-Oriented Programming. The concept of return-
into-libc attacks was further generalised by Hovav Shacham in 2007 with the intro-
duction of Return-oriented Programming (ROP) [166]. With ROP, more than one
return address is (over)written on the stack. Instead of jumping to a libc function
of choice, small code snippets are taken within the program and its libraries —
ROP gadgets — that perform a useful task before returning. These are often a few
instructions (e.g., a pop or a mov) at the end of various functions. By combining
these, a shellcode can be written as ordered collection of these gadgets, called a
ROP gadget chain. At the end of each gadget, the program will execute the ret
and jump to the next ROP gadget. With enough ROP gadgets available, almost
any payload can be written as long as the stack can be overwritten. This also saw
a resurgence of shellcodes, as a ROP chain can grant a memory page write and
execute permissions manually, enabling shellcode usage.

ROP also spiked a renewed interest in memory attacks, with people finding new
ways of performing code reuse attacks. In 2010, Checkoway et al. suggested
call-oriented programming where function pointers in indirect call instructions
could be overwritten instead of return values [30]. One year later, jump-oriented
programming also emerged as alternative to ROP [16]. Generating ROP chains can
be done automatically by various tools [58, 160, 7, 204].

Defence The Supposed End: Full Memory Safety. Programming languages like Java
and Python are considered memory safe as memory-based vulnerabilities do not
appear in code written in these languages14. These languages either have memory-
safe design or check memory bounds during run-time. Similar solutions have been
suggested for C, including but not limited to HardBound in 2008 [64] and Soft-
Bound in 2009 [136] to enforce spatial memory safety, and CETS in 2010 for temporal
safety [137]. Other efforts focus on the integrity of data-flow within a program,
notably Data Flow Integrity (DFI) [28] and Write Integrity Testing (WIT) [3] in 2006
and 2008 respectively.

Unfortunately, full memory safety and data-flow integrity are both prone to in-

14Less of bugs found in compilers/interpreters of such languages that may be written in a different
language.

33

2 Background

accuracies and a large overhead. For example, CETS reported a 116% overhead on
applications to enforce full memory safety. This has been shown to be unreasonable
in practice: after all, deciding to use C/C++ nowadays is often out of performance
consideration. Hence, enforcing full memory safety in C/C++ is generally not done
in practice.

Defence No more jumping around: Control-Flow Integrity. In a response to return-into-
libc attacks and the generalised ROP attacks, Abadi et al. suggested Control Flow
Integrity (CFI) [1]. CFI is two-fold: forward CFI and backwards CFI/shadow stack.

Forward CFI limits the allowed targets within an indirect call or jmp instruc-
tion. call instructions can initially be limited to the start of functions, functions
who take the same amount of arguments (arity match) or even the same type
arguments and return type (function type match) [188, 208]. Similarly, jmp targets
can be limited to locations in its current function. Alternatively, static or dynamic
analysis can determine expected behaviour for call or jmp instructions that can
be used to whitelist allowed targets [149, 194].

Forward CFI ultimately needs to decide what are and are not allowed targets
to call / jump to. More advanced techniques can limit the allowed targets even
further, but can also break normal execution if the original application source code
does not adhere to the same ruleset. Other techniques — namely dynamic instru-
mentation — can be more accurate without breaking regular execution, but add a
large overhead [97]. Research distinguishes between course-grained CFI and fine-
grained CFI, although it is unclear where the border lies exactly.

Backwards CFI requires checks on the return address. The accepted technique
here is to use a shadow stack: a copy of the regular stack containing the return
addresses, or hashes thereof [23, 59]. Similar to a stack canary, the value is checked
against its original value and halts if the return address has been tampered with.
Alternatively, the shadow stack value can be used as return address, assuming that
the shadow stack cannot be tampered with. This specifically protects against ROP,
although design and implementation details can easily break the mechanism [26,
60].

Control-flow integrity is not common in devices yet, but it is currently actively
in development. Android kernels have CFI support for a couple of years at the
time of writing, and the Linux 5.13 kernel has CFI capabilities too as of April

34

2.5 Memory Attacks and Defences: a Timeline

2021 [119]. In the meantime, Intel is working on support for hardware-enforced
CFI on their processors called Intel CET, containing a shadow stack and indirect
branch tracking. To use CET, Intel is developing a software component called
FineIBT [120] for full “fine-grained” CFI.

At this point, we have arrived at the state-of-the-art in the real world, which is
also where work by Szekeres et al. ends [182]. Everything following exists within
research and is thus part of the NGME attack surface that we address in this disser-
tation.

Attack Effortless: Automatic Exploit Generation. Although writing exploits remains
possible, it requires more and more effort over time, having to circumvent or de-
feat various defence techniques. As computers are commonly known to automate
processes, so was the automation of writing exploits an interesting angle [21, 24].
The first work exploring the full breath of Automatic Exploit Generation (AEG)
were Avgerinos et al. in 2011 [8, 29]. They utilise symbolic execution [39, 38] to
trigger a stack-based buffer overflow and traverse its path constraints towards a
compromised state.

AEG saw a spike of interest when DARPA organised the Cyber Grand Challenge
in 2016 [81] where fully automatic machines participated in an attack/defence Cap-
ture the Flag tournament. The participating machines were programmed to patch
security flaws on their services while attacking the other contenders, without any
human interaction. This led to new tools [167] and techniques [178, 155, 168] in the
space of a few years to automate the search, exploitation and patching of vulnera-
bilities. New techniques and tools mainly focus on one aspect within AEG, as the
full breath of AEG consists of a large amount of smaller, distinct steps. One such
aspect we focused on in the context of AEG is HLM, in Chapter 5.

Attack Still Jumping: Control-Flow Bending. The introduction of CFI means that attack-
ers cannot jump anywhere in the code anymore, even if a memory leak is in place
to defeat ASLR and stack canaries. However, an attacker can still choose which of
the allowed jmp/call targets can be used. This can be used to perform Control-
flow Bending (CFB) attacks where the jmp/call targets are chosen from allowed
targets. It is shown that the range of allowed targets can be large enough to perform
an attack [26, 60, 84, 43]. Even while using strict CFI policies, complex attacks are

35

2 Background

possible using CFB [25, 79]. These attacks abuse the fundamental limitations of CFI
as a whole. Nonetheless, the attacks are relatively difficult and complex in practice.
A small number of CFB attacks are currently known that defeat strict CFI policies.

Attack No need to jump: Data-only Attacks. With CFI becoming more and more refined,
advanced ROP and CFB attacks are becoming more and more difficult. Thus, the
offensive side needed a new tool. This gave birth to non-control data attacks or
data-only attacks: an exploitation technique that does not override any instruction
pointers or function pointers. Instead, it only overrides non-control data.

Data-only attacks are known since 2005, where Chen et al. showed real-world
exploits without overriding any control data [32]. Yet, its popularity has been grow-
ing with the introduction of automatic tools to generate such exploits in 2015 [96].
In contrast to the direct data manipulation attacks, this explored the concept of
modular exploit stitching by re-using existing code [34] using similar paradigms as
ROP, called Data-Oriented Programming (DOP). Since then these attacks have been
shown to be Turing-complete [98], generalised by Ispoglou et al. with (basic) Block
Oriented Programming (BOP) [109] and with STEROIDS by Pewny et al. [151] in
2018 and 2019 respectively. Our focus in Chapter 6 is to prevent these types of
attacks.

Defence The resurgence: Data-flow Integrity. As data-only attacks became popular in
research, a defensive response is only a matter of time. This led researchers to
revisit the concept of Data-Flow Integrity (DFI), blocking the core technique that
data-only attacks rely upon [172, 35, 180, 139, 19].

To reduce runtime overhead, focus has been to limit instrumentation. For ex-
ample, WIT [3] focuses merely on integrity (in contrast to confidentiality). Other
DFI-based work is tailored towards certain user-defined object types [27], private
class attributes [19], or a probing technique on whether data may be attacker-
controlled [139]. Alternative efforts to limit overhead either require hardware sup-
port [172] or are tailored towards cyber-physical systems [180, 35].

The Conclusion: Has the cat caught the mouse? With every defence, a new
attack technique quickly becomes the norm. With every attack again, new defences
are presented and implemented — especially if the overhead of said new technique
is acceptable (or can be made acceptable). This raises the question whether we are
merely at the next step in a game of cat and mouse.

36

2.6 Crowd-sourcing Research, Awareness and Education

Until we achieve complete memory safety within a reasonable overhead, some
attacks will always be possible. Attacks are however becoming increasingly com-
plex and context-dependent: specific tools need to be used (e.g., data-only gad-
gets) that are not transferable to a different application. Furthermore, the payload
of such attacks may not be as clear, since payloads too become application- and
context-dependent. Instead, attackers may e.g., leak a private key or overwrite
an “authenticated” boolean [32, 51, 98]: data of which the location and method of
accessing varies across different applications.

Note that data-flow integrity is limited w.r.t. analysis accuracies in the same way
that CFI is. This means DFI raises the bar for exploit writers, but DFI does not
guarantee the absence of data-only attacks. It is not unlikely that new attacks and
attack techniques will be found on the residual attack surface. Then, the game starts
over again.

2.6 Crowd-sourcing Research, Awareness and Education

Crowd-sourcing has been used in several scientific domains to solve a range of
research tasks. Researchers have sought to motivate their crowd through finan-
cial gains [168]; the idea of being part of a research breakthrough [117, 72]; or by
entertaining them through a fun game [199, 200, 44], i.e., gamification. Where the
former two are often repetitive and non-challenging tasks, gamification relies on
the task at hand being challenging: something to e.g., replace a sudoku with. These
are branded as scientific discovery games, where the goal is to engage the general
public in a series of puzzles that hold scientific significance.

Arguably the most successful scientific discovery game is FoldIt [44, 115, 83,
114], a protein-folding game that made both awareness campaigns and scientific
discoveries in the aid of AIDS, Cancer and Alzheimers, to mention a few. This game
is essentially an optimisation problem on the folding of proteins. The FoldIt team
has performed extensive research on how to build such a game [45, 5] with over
850,000 players. They also identified key factors for building a successful game [45]
— that inspired our design in Chapter 5.

With regards to a game’s design, it must reflect and illuminate the natural rules of
the system. After all, the game is meant to be played by players who have little

37

2 Background

to no experience with protein folding or biology in general. This means that the
important parts of the game system need to catch the eye of the player through its
design. Within FoldIt, this is done using additional objects (e.g., showing bubbles
where the void space needs to be filled up) and colours (e.g., using red upon illegal
clashes). Furthermore, they use a gradient between red and green on different parts
of the protein to show where the most points can be gained (and improve upon the
optimisation problem). At the same time, it must manage and hide the complexity of
the system. As a clear example in the FoldIt game, hydrogen atoms are hidden by
default as they exist in very large quantities and do not add structural information.
If hidden parts become important — for example when they cause a clash — they
will reappear if necessary for the understanding of the player. Thus, managing this
complexity is vital to the understanding of the player. The game also needs to be
approachable, as is done in FoldIt through a bright and cartoonish look.

While playing the game, everything a player does must respect the constraints of
the system that is being explored. This means the result must be a solution to the
real-world problem. Hence, the game should incorporate known algorithms and
optimisation techniques, as is described in detail in their work. At the same time,
the players need to have enough meaningful interactions: sufficient to explore the
problem-space and come up with new solutions. To make the game more intuitive
and fun, the FoldIt game aims for a direct interaction model with the protein, as if
you could actually touch it. Furthermore, the game has a scoring system directing
players to the solution, even though solutions to real-world puzzles are not known.

Gamification has been used in the field of information security before, mainly
focusing on educational value. For example, board games have been developed for
computer security education [89, 88]. To the best of our knowledge, we are the first
to deploy gamification within information security as crowdsourcing technique.
For our crowdsourcing-based project, see Chapter 5.

2.6.1 Education

Similar to FoldIt, our approach in Chapter 5 works on the principle of learning by
doing [76, 154, 36]. On the other hand, whilst FoldIt introduces players to real-
world scenarios immediately, we start with a series of tutorials in order to train the
public. This way, we follow a pattern of “teach → crowdsource”. In order to retain

38

2.6 Crowd-sourcing Research, Awareness and Education

educational value, we attempted to minimise inaccuracies on the visual elements
and no abstraction inaccuracies that can affect the real-world value in any way.
This way, we ensure that the skill from playing the game remains transferable to
the effective HLM solving skill. These inaccuracies are discussed in Chapter 5.

Within the teaching phase, new concepts are taught through an structured learn-
ing assessment feedback loop [42]. Each level-up phase consists of a brief explana-
tion of a new topic, followed by a dummy assessment to test the new knowledge.
In contrast to FoldIt we do introduce explicit tutorials, but we follow the same
mindset of FoldIt [5] by only explaining the core concepts that cannot be easily
learnt by playing directly (e.g., complex heap manager fitting methods). Even
with this new knowledge, it is mainly mastered by playing [36] the puzzles that
follow, after the level-up challenge. It is here that players run into a vast set of
variety within puzzles where combinations of new concepts prove challenging.
Once the player is confident enough, they can decide to move onto the next level-
up phase which adds the next challenge. This is necessary since we observed that
players tend to lose interest when the game moves either too quick or too slow.
Players’ interest and motivation however is important now only for retaining the
player, but also has a strong effect on the quality of gamification [91]. Once all core
concepts have been explained, the game moves onto the crowdsourcing aspect,
where the answers found by players can be useful in a scientific context. On top,
our game in Chapter 5 itself hopefully raises awareness on the dangers of (memory)
vulnerabilities as an overarching result, which will be discussed later.

39

Open your eyes and then open your eyes again.
TERRY PRATCHETT

The Exploitation Process 3
Exploiting an application is a complex and multifaceted task. This dissertation
follows a three step paradigm to break down the exploitation process as shown
in Figure 3.1. It all starts with finding a vulnerability. Here, we question what a
vulnerability truly represents. We also need to know what the vulnerability can
affect; and if and how the vulnerability can be reached. The vulnerability needs to
be found and understood. These questions are explored in depth in Chapter 4.

This vulnerability then needs to be leveraged to accomplish a certain goal, e.g.,
gaining control over the underlying machine. We need to reason in a forwards
manner to see what we can accomplish with the vulnerability, before we can for-
mulate a goal that may be possible. In other words, we need to figure out what
level of control we can gain from the vulnerability. In part, this step is comprised of
a list of techniques. We attempt to get the most out of the vulnerability, regardless
of the goal of the exploit. For example, Return-Oriented Programming (ROP) is a
control technique: it does not specify any payload but provides the attacker with
arbitrary code execution, enhancing control. In order to perform ROP, one needs
a large enough write primitive to write the return pointers and data on the right
location(s) of the stack. This may require more control techniques before ROP
can be performed. How to gain control for heap-based NGMEs is the focus of
Chapter 5.

Finally, the attacker can use the control gained to perform the compromising task:
executing a payload. Although separate, the aim of the attack guides the control step

Find & analyse
vulnerability Gain control Execute Payload

Figure 3.1: The exploitation process in three rough steps.

41

3 The Exploitation Process

Vulnerability Application under
control

Exploit

Vulnerability
Phase Control Phase Payload Phase

ROP
DOPHLM

Shellcode

String Format

ASLR Leak SQLi

GOT write

Reverse conn

exec(/bin/sh)

print
(priv

key)

calc.exe
auth=1

user=root

/etc/s
hadow

install(X)

Unit Tests
Fuzzing

Code Inspection

Pentesting

Figure 3.2: Here we depict the 3-step exploit writing process. Many angles in the
vulnerability phase (yellow-green) can lead to a small, initial point of entry into unintended
behaviour of the application. Afterwards, we use control techniques (blue) to broaden our
control. In the payload phase, we narrow this back down towards our wanted behaviour
to complete the exploit.

into what control is required for the exploit. Depending on the results of the control
step, the exploit writer may need to alter the payload to fit the level of control
gained. While the control step broadens the search for capabilities, the payload
phase narrows it down towards a concrete goal. Preventing payload execution for
NGMEs is the focus of Chapter 6. The three steps are visualised in Figure 3.2.

The procedure can be compared to a mathematical proof. Certain properties are
known (i.e., the application purpose and (byte)code, possibly one or more vulner-
abilities), as well as the end result: what we want to do with the final exploit. How
to link the two is the challenge, and often requires both forwards and backwards
reasoning to find out if such a proof exists (a proof of exploitability in our case),
and how this proof is constructed. The three steps as outlined above provide a
guideline on how to form this proof of exploitability.

Exploitation is sometimes regarded in a larger scheme with additional steps, such
as reconnaissance [99], persistence [74] or remaining undetected [61]. Although
these are undoubtedly important steps in a real-world scenario, we are only con-
cerned with the core vulnerability exploitation aspect of the process. Furthermore,
unlike our three step exploitation model, such schemes typically view the exploita-
tion (development) process as a single phase.

42

3.1 An Example: The HTTP Server

1 // Remains in memory if keep-alive is set
2 // Target structure
3 typedef struct {
4 char *ty;
5 int socket;
6 [..]
7 } connection_t;
8
9 // Bugged structure

10 typedef struct {
11 [..]
12 char *dir;
13 size_t content_length;
14 char *body;
15 } request_t;
16
17 // CGI base directory global
18 char *exec_dir;

Listing 3.1: Example vulnerable C code header as explained in Section 3.1

In the remainder of this chapter, we will discuss the three step exploitation pro-
cess in more detail. In particular, we will systematise the process where possible
through analysing relevant primitives and techniques, discussing in each step what
is required for each technique and how to systematically defend against certain
techniques. This provides a framework for the following chapters where we will
discuss primitives, a control technique and a defence technique in chapters 4, 5 and
6 respectively.

3.1 An Example: The HTTP Server

To provide an intuitive understanding of the paradigm introduced in this chapter,
we present a fictitious vulnerable HTTP server. This HTTP server is a single-
threaded, single-processed application without ASLR, running under port 80 and
available to the attacker. The relevant C code is shown in Listing 3.2 (placed at the
end of this chapter due to size) and a header is shown in Listing 3.1. The HTTP
server will be a running example in the remainder of this dissertation.

The vulnerability is a simplified adaptation of CVE-2002-1496 [49], originally a
heap-based buffer overflow in a webserver called nullhttpd. This CVE first came
to the attention of the research community by Chen et al. [32] as a vulnerability
that could be abused without overwriting any control pointers: a data-only attack.

43

3 The Exploitation Process

In our code snippet in Listing 3.2, we show the use of a similar vulnerability. We
will go into detail on exploiting this vulnerability later in this chapter, but now we
briefly cover each relevant aspect of this code.

Following our three-step paradigm, we first need to find a vulnerability. This
can be done through e.g., a manual code review, fuzzing or symbolic execution, as
will be discussed in Chapter 4. In this case, we can see that the (user-controlled)
content_length is used on line 31 to create a heap buffer, after adding 80 more
bytes. This is not checked against a potential integer overflow, so the buffer size
could end up smaller than the original content (where
content_length+80<content_length). Ultimately, this leads to a heap over-
flow from this buffer into adjacent heap memory, on line 33.

To gain more control with this vulnerability, we may be able to overwrite the
connection_t structure, which contains a pointer to the content-type string. The
string value is under control of the user as seen on line 25. By overwriting the
pointer-value, we can choose exactly where the content-type is written. We also can
already decide what is being written, meaning we can decide what to write where.

As a payload, we want to execute an application. We can do this through the
exec function on line 5. Yet, any slashes are removed in our application (line 6) so
it can only execute applications from the allowed directory set on line 3. In other
words, our goal is to overwrite the exec_dir buffer value. We can change it into the
directory where our desired application resides (e.g., /bin/sh), with user-chosen
arguments. This provides us with a shell on the webserver: our exploit is complete.

3.2 The Vulnerability Phase

In order to exploit an application, something needs to be wrong. As simple as this
sounds, the concept of a vulnerability is debated to this day. We will discuss this
in detail in Chapter 4, but it is important to understand that a vulnerability is a
weakness in a computer system that could affect the behaviour of the system in
unintended ways. Concretely, we can represent the vulnerability as some input
that does not provide the expected output.

Representing the vulnerability by its input is tied to the reachability problem of

44

3.2 The Vulnerability Phase

vulnerabilities. In our HTTP server example in Section 3.1, we discussed a vulnera-
bility we could see from the source code. If the vulnerability cannot be reached (e.g.,
because of additional checks or assertions in other functions), there is no reason to
worry. The reachability problem is equivalent to the halting problem [191] and
hence undecidable15. In our example, a request with a set content length of at least
SIZE_T_MAX-79 will get to trigger the vulnerability as far as is shown within the
code snippet.

While the focus of this dissertation is on memory violations, we extrapolate here
and in Chapter 4 onto any vulnerability. Chapter 4 discusses a taxonomy across all
vulnerabilities in a more generic setting. In this chapter, we mainly focus on the
fundamental difference between exploiting a memory vulnerability and a different
type of vulnerability.

3.2.1 The Vulnerability Primitive

The vulnerability primitive is three-fold. First, we need one or more (direct or
indirect) inputs that trigger the vulnerability, ensuring it is reachable and knowing
how to get there. Secondly, we need to find the right perspective on the abstraction
level where the vulnerability bears meaning. As discussed in the weird machine
model limitations (Section 2.1.1), an SQL injection has a completely different model
compared to e.g., the buffer overflow example from Section 3.1. Lastly, we need to
understand the implications of the vulnerability, what violation caused the exis-
tence of the vulnerability and thus can be used to write an exploit.

For example, a buffer overflow exposes some form of memory corruption (vio-
lation) through undefined behaviour when compiling (abstraction level) but needs
to be reachable with some input (trigger). Afterwards, we need to know what
size overflow occurs, where and when it occurs, what characters are allowed, et
cetera. In contrast, a reachable SQL injection vulnerability exposes user-data that
will be incorrectly interpreted as SQL code. For an SQL injection vulnerability
we also need to know its implications and limitations, for example knowing what
characters are allowed and knowing what query we are changing. Note that they

15This is done easily by proof of reduction, by adding transitions from every halting state in a Turing
machine into one single state without any outgoing transitions. If we have a machine that can
decide whether to reach that state, we have built a halting machine.

45

3 The Exploitation Process

Overwrite

Overread

2 byte overwrite

Heap Layout
Manipulation

2 byte overwrite

Overwrite GOT entry
Execute

system(/bin/sh)

ASLR offset

ASLR offset

Figure 3.3: This figure shows a model exploitation chain with 2 vulnerabilities. A thorough
explanation is available in Section 3.3.1. The vulnerability steps are depicted in yellow-
green, control steps in blue and the payload steps in red.

act on a completely different abstraction layer, which changes the applicable control
techniques and payloads. This is the topic of Chapter 4.

3.2.2 Vulnerability Defences

A natural way to protect against vulnerabilities is to locate and patch the mistakes,
but this has proved insufficient in practice. In addition, fundamental techniques
can be deployed to stop the expression of vulnerability classes entirely. One ex-
ample is enforcement of memory safety as discussed in Section 2.2. Even though
C is a memory unsafe language, full memory safety can be achieved through the
use of Hardbound [64] or Softbound [136] in combination with CETS [137]. It
must be noted that these solutions present a large overhead and do not see any
use in practice. Instead, automatic memory management (e.g., garbage collection,
runtime bounds checks) is used with other programming languages like Java or
Python.

3.3 The Control Phase

Once a reachable vulnerability is established, an initial level of control over the
application has already been achieved. The goal in step 2 is to enhance this level of
control, ultimately to execute step 3 (the payload).

Many techniques exist to move from one level of control to another. For example,
an off-by-one string vulnerability could be placed next to a second string that over-

46

3.3 The Control Phase

writes the null byte of the first string to create a larger contiguous buffer overwrite.
If we use this to overwrite a user-data pointer, it can become an Arbitrary Write
Primitive (AWP), and ROP can turn an AWP into Arbitrary Code Execution (ACE).
The three steps above are all individual and independent techniques, but in the
right circumstances they present a way to turn an off-by-one vulnerability into
arbitrary code execution.

All of the above are meaningless with a different vulnerability primitive. In
a poorly sanitised SQL pipe, the initial level of control is completely different,
and SQL injection techniques are available to enhance this control. The control
step starts with the initial level of control as gained through the vulnerability or
vulnerabilities. In short, the control step is the “glue” of the exploit, linking the
entry point(s) to the goal.

3.3.1 Initial Control

The vulnerability primitive presents an initial level of control. This considers
the full context of the vulnerability and thus is highly specific. For example,
Heartbleed/CVE-2014-0160 [51] is a heap buffer overread vulnerability where the
size of the overread is user-controlled. Control over what is being overread is lim-
ited by the maximum amount of bytes to read, the heap state being unknown and
attacker heap interaction itself being limited. On the other hand, Shellshock/CVE-
2014-6271 [52] presents a passthrough into the bash shell due to poor sanitisation.
What can be executed here is completely dependant on the applications available
on the device (and allowed by access control). Furthermore, it is limited to a certain
set and length of input characters mishandled by Shellshock, and dependent on the
underlying machine, software and environment.

The initial control as exposed by a vulnerability differs per vulnerability and per
environment. This needs to be taken into account when starting the control phase.
First, we need to consider any factor that affects the behaviour of the vulnerability.
Second, we determine which of those are user-controlled and/or malleable by the
exploit writer. Third and most importantly, what exactly is exposed by the vulnera-
bility: where do we start in enhancing control. Unfortunately, this is very specific to
a vulnerability, and generalising this is out of scope for this dissertation. Szekeres
et al. have attempted this specifically in the context of memory vulnerabilities,

47

3 The Exploitation Process

Abbrev. Name Effect Comment

CWP Contiguous
Write Primitive

WriteN chosen bytes on an
unchosen location

AWP Arbitrary Write
Primitive

Write N chosen bytes on a
location of choice

Also known as Write-what-
where

ARP Arbitrary Read
Primitive

Read N chosen bytes on a
location of choice

TC Turing-
Completeness

Perform any calculation of
choice

May not be able to execute
system calls/interrupts

ACE Arbitrary Code
Execution

Execute any series of in-
structions

Generally constitutes full
compromise of the applica-
tion

Table 3.1: This table lists some generic control levels with their meaning and effect.

together with a simplified flow of gaining control, as shown in their SoK [182],
Figure 1.

Combining Vulnerabilities. More than one vulnerability can be used to gain a
certain level of control. This means we could have more than one point of initial
control in the total exploit, glued together with control steps. For example, if we
have an overread vulnerability paired with an overwrite vulnerability, we can use
the former to break ASLR whilst using its results to overwrite into a meaningful
pointer (relative to the ASLR offset). Together, this written pointer can be used to
e.g., overwrite or overread other values. This is visualised in Figure 3.3, where the
blue blocks represent control techniques used.

3.3.2 Control Primitives

From the initial control of the vulnerability, we need to build a level of control that is
suitable to execute a given payload. This is often a series of individual steps where
each step requires a level of control and provides an elevated level of control. Some
generic control levels are listed in Table 3.1.

The visual example in Figure 3.3 contains two vulnerabilities. The first vulner-
ability is an overwrite vulnerability where we control what we write and where
we write, but we are limited to 2 bytes (e.g., through a complex format string
vulnerability). The second vulnerability is a heap overread vulnerability. We use
Heap Layout Manipulation (HLM, as will be discussed in detail in Chapter 5) to
make sure we read into a pointer value. From this pointer value, we can determine
the ASLR offset that we can use in the overwrite vulnerability. We can perform the

48

3.3 The Control Phase

Name Requires Provides Comment

ROP AWP ACE No shadow stack
DOP AWP TC Given enough gadgets and

dispatcher
HLM Heap violation AWP / Control Hijack
Unsafe unlink Heap violation AWP / Control Hijack No metadata protection
SQL Injection SQL sanitisation bug db read/write
Blind SQL Injection SQL sanitisation bug db read/write No output
GOT/vTable overwrite AWP Control Hijack No forwards CFI
Shellcode Control Hijack ACE No W⊕X
ROP W⊕X bypass AWP Shellcode enabled W⊕X
Custom dispatcher stack overwrite at the

end of function
action repeatability overwrite the saved IP and

BP
netcat reverse connect execve execution remote shell can be considered payload
String format “%n” attack string format bug AWP
Overwrite2Overread AWP ARP Overwrite printed pointer
ASLR Offset leak ARP ASLR Leak
Stack Canary leak ARP canary leak

Table 3.2: This table lists some control primitives, mainly in the existence of a memory
violation. (ROP = Return-Oriented Programming, AWP = Arbitrary Write Primitive, ACE =
Arbitrary Code Execution, TC = Turing-Completeness, HLM = Heap Layout Manipulation,
ARP = Arbitrary Read Primitive)

overwrite twice16 to overwrite a Global Offset Table (GOT) entry into the location
of the system function, using the ASLR offset in both the GOT location and the
system location. To execute the payload, we call whatever GOT entry has been
overwritten with /bin/sh as the first argument to spawn a shell.

Generic Control Primitives. Some control primitives are generic enough to work
under most circumstances. One such generic technique called ROP provides an
ACE primitive, once we can overwrite enough bytes at the right location. Using the
example from Figure 3.3, ROP can technically be used with the arbitrary overwrite
vulnerability and broken ASLR (instead of overwriting the GOT table). This would
however require a very consistent dispatcher that repeats the 2-byte overwrite on
the stack many times before starting the ROP chain execution. This would be
tedious but potentially necessary: overwriting the GOT table entry is much simpler,
but cannot be used if e.g., the application is statically linked.

This can again be overcome if a system call to mmap/mprotect can be per-
formed with a (shorter) ROP chain, to create a writable and executable memory
segment. Afterwards, we need to write a shellcode there and overwrite one last

16Here we assume that the difference between the original pointer and the system function pointer
differs my 4 bytes maximum. Alternatively, we can repeat the process to overwrite more bytes.

49

3 The Exploitation Process

saved instruction pointer to jump to our shellcode. If possible, this technique limits
the size of the ROP chain, and re-enables shellcode techniques.

Control techniques do not guarantee success but do provide the exploit writer
with a useful toolset. All these techniques work in the right circumstances when
requirements are met. A variety of generic control primitives is listed in Table 3.2.

Note that the control primitives in Table 3.2 are simplified. For example, ROP
requires a fairly large write primitive, something that is not listed. On the other
hand, ROP can be performed with a large enough contiguous stack overflow under
the right circumstances17. This does not discredit the control primitive but requires
caution.

Some modern techniques are proven to be Turing-Complete (TC). This is a limited
form of ACE, because TC in itself provides no control over input or output (i.e.,
through system calls, see Section 2.4). Whilst any calculation is possible from
a mathematical standpoint, the results are impactful when combined with input
or output. In the (un)fortunate event where no system calls are available when
gaining TC, TC is completely harmless — in contrast to ACE.

3.3.3 Control Defences

In Chapter 2, we discussed the most important developments in memory ex-
ploitation, including defence techniques. Unsurprisingly, most defence techniques
for binaries are tailored towards preventing control techniques. For example, a
non-executable stack was implemented to prevent the usage of shellcodes on the
stack. Similarly, backwards CFI prevents ret2libc or ROP attacks and forwards CFI
protects against control-hijacks through indirect calls and jumps, e.g., overwriting
GOT records or vtables.

3.4 The Payload Phase

While the control step broadens the scope, the payload narrows it back down. If
the level of control does not support the execution of the payload, we either need

17Among others, this requires the absence or leaking of stack canaries and potentially requiring the
capability of writing null bytes.

50

3.4 The Payload Phase

to revisit the control step; reconsider our the payload option(s); or accept defeat.
The payload is a concrete method of accomplishing the goal for the exploit.

We can often determine a number of payloads that may be suitable. For example,
a goal like “steal a private key” is not concrete and hence cannot be linked to control
techniques. Instead, we can determine how to steal the private key, which could be
done by (1) reading the right area of the application: e.g.„ through Arbitrary Read
Primitive (ARP), (2) write the private key into a printable area (e.g., through an
AWP), (3) gaining a shell to read out the private key, and so forth. At that point, we
can link our payload to explicit levels of control. Each individual payload option,
with its required control primitives, is a payload primitive.

Generic Payloads While some payloads gain meaning through the application
under attack, other payloads are transferable to other applications. As an example,
shellcodes can be reused since they perform a generic operation after gaining ACE.
Generic payloads typically target the underlying machine (e.g., gaining a shell
or installing a backdoor), since the semantics of the application under attack is
irrelevant. Similar to generic primitives, generic payloads can be chosen by the
exploit developer when the concrete payload suits the overall goal of the developer.
A more in-depth discussion on generic payloads is presented in Chapter 6.

3.4.1 Payload Defences

For a payload level defence, we assume the control phase has been successful
by the attacker. The application at this point is compromised, so we have very
little guarantees towards protecting the application itself. Payload level defence
techniques often have a broader view than just the application internals. Instead,
access control or virtualisation limits the impact in the case of complete application
compromise.

With defence techniques in place, more guarantees can be provided even in the
case of compromise. These guarantees can be used to provide a payload-step
defence technique, as is the main topic of Chapter 6.

51

3 The Exploitation Process

3.5 Next Generation Memory Exploits

In Next Generation Memory Exploits — where a fine-grained CFI is deployed
alongside current defences — multiple generic control techniques are no longer
applicable. CFI blocks most targets in returns and indirect calls and jumps, notably
breaking the ROP control technique. It does not provide a unique target however,
providing at least some room for exploit writers to decide on the target. In some
circumstances this can lead to successful exploitation [79]. One generic control
primitive has been identified in the presence of two consecutive calls to functions
of the printf family [25] given some level of prior control. The resulting control
provides exploit-writers with TC.

Another angle is to forget about control-data completely [32]. Instead of breaking
CFI, it is circumvented by not changing any control-data. Non-control data can be
changed and moved around enough to gain TC [98], or to execute payloads under
the right circumstances [109, 156, 151]. Early examples overwrite meaningful data
to bypass authentication or execute a different binary than intended: this is referred
to as Direct Data Manipulation (DDM). More recent attacks perform code-reuse
attacks and pointer stitching to change the overall semantic meaning of the appli-
cation under attack, called Data-Oriented Programming (DOP) [34]. DOP attacks
require a large code-base and are almost exclusively generated automatically.

The CFB and Data-only attack vectors can be seen as fundamentally different:
CFB explicitly leverages the inaccuracies of CFI whilst Data-only Attacks strictly
adhere to the control-flow. It raises the question why exploit-writers would stick
to one technique over the other, or more importantly: over a combination. If
the CFI target set cannot be limited further18, both approaches would be equally
suitable and usable once CFI is widely deployed. Transferring control into a target
of choice can be hugely beneficial to find DOP gadgets or dispatchers. Current
DOP techniques are very computationally expensive and complex, so adding CFB
techniques adds to the modelling efforts and computational limitations19.

The interchangeable nature of CFB and Data-only Attacks can be seen clearly
with UCT [97]. UCT is a CFI solution that rewrites any indirect control-flow trans-

18Without incurring unreasonable overhead.
19The computation limitations are currently mainly state explosion issues in symbolic execution and

effective guiding in fuzzing.

52

3.6 The HTTP Server Attack

fer into a switch-like structure20. Based on the original heuristics, it decides what
control-flow transfer will take place, and performs a direct jump to the respective
direct control transfer. The authors state that any control-flow deviation is now
a non-control data issue, which is out of scope for their work. In other words,
the authors have successfully translated the CFB problem space into a Data-only
problem space. Thus, attempting a data-only attack on an application hardened
with UCT could provide better results.

We believe the classification and labelling of various control techniques is an
important and useful tool for exploit writers, developers and researchers alike.
However, it should be taken into account that hybrid NGME attacks are possible
too. If DDM is good enough to gain the necessary level of control, there is no need
to search for DOP dispatchers. On the other hand, a CFB technique can become
fruitful in creating a DOP dispatcher when no natural dispatchers can be found or
used.

3.6 The HTTP Server Attack

Vulnerability. In Section 3.1, we discussed a fictitious HTTP server (Listing 3.2)
with a vulnerability on line 31. We can now apply the three phase exploit de-
velopment process onto this HTTP server to build an NGME. To recap, we call
malloc on “content_length + 80”, to cause an unsigned integer overflow. An
unsigned integer overflow is not an issue by default as it is properly defined in
C. In this instance however, it is undesirable and its resulting behaviour will differ
from the required behaviour. In our case, it creates a heap overflow vulnerability on
line 33, as the buffer is smaller than the content-length specified. It is however at the
integer overflow where the vulnerability appears, because this is where behaviour
diverges. This is the topic for Chapter 4. This initial vulnerability opens up a path
in the code into the heap buffer overflow.

Control. Given the heap overflow, we can perform heap layout manipulation to
enforce the overwrite of a data pointer, for example the content_type pointer.
This can then be used as pointer to write a string-value on a chosen location on

20Do note that UCT is paired with a run-time monitor to further narrow allowed the (originally
indirect) targets.

53

3 The Exploitation Process

Line 25 in Listing 3.2. This creates an AWP. The AWP is limited: we write a string-
type value, so our write must end with a null byte and will not contain additional
null bytes. Considering it is all part of an HTTP request, additional characters
may need to be escaped before use. Overflow size is no limitation in the given
AWP. How to perform heap layout manipulation in a simple, heap agnostic way is
discussed in Chapter 5.

Integer Overflow Heap Overflow

Heap Layout

Manipulation
Data pointer

Overwrite

CGI base Overwrite exec(/bin/sh)

Creates

Chosen

overwrite

AWP

Figure 3.4: This figure shows the vulnera-
bility/control/payload steps for an example
exploit in our example from Section 3.1. The
vulnerability steps are depicted in yellow-
green, control steps in blue and the payload
steps in red.

Payload. On Line 3 a Common
Gateway Interface (CGI) base directory
is set. This directory is preprended
on Line 8 before the execv function
is called, originally to ensure the list
of applications is limited. Overwriting
this value opens up the functionality to
any application of the device, through
a DDM attack. For example, writing
/bin/ as CGI base directory would
enable a call to /bin/sh. A diagram of
the full exploit is shown in Figure 3.4.

Calling /bin/sh on a remote webserver does not help in gaining control, unless
we can interact with the resulting shell. More realistically, one would set up a
reverse connection shell, e.g., with netcat21:

/usr/bin/nc [attacker public ip address] [port] − e /bin/sh

To complete the exploit with our reverse shell, we must set the CGI base directory
to /usr/bin/ and then call netcat with the above arguments. This does truly
present us with a full-control data-only exploit. How to halt this attack without
changing functionality, system-wide modifications or manual intervention is the
topic of Chapter 6.

21This only works on older versions of netcat, as the developers concluded it might be a security risk
to add a direct option for connecting to a remote machine and piping its communication straight
to an application of choice.

54

3.6 The HTTP Server Attack

1 void init() {
2 exec_dir = malloc(128);
3 strlcpy(exec_dir, "/usr/bin/cgi/", 127);
4 }
5 uint8_t exec(char *application, char **argv) {
6 application = escape_and_remove_slashes(application);
7 char *full_path = malloc(128);
8 strlcpy(full_path, exec_dir,127);
9 strlcat(full_path, application, 127);

10 int fork_res = fork();
11 if (fork_res==0) {
12 execv(full_path, argv);
13 } else if (fork_res<0) {
14 perror("execv");
15 } else {
16 free(argv);
17 return EXIT_SUCCESS;
18 }
19 }
20 request_t *parse_request(connection_t *conn, char *request_string) {
21 request_t *request = malloc(sizeof(request_t));
22 char *content_type = parse_content_type(request_string);
23 if (conn->ty==NULL || strcmp(content_type,conn->ty)) {
24 conn->ty = realloc(conn->ty, strlen(content_type)+1);
25 strlcpy(conn->ty, content_type, strlen(content_type));
26 }
27 [..]
28 request->dir = parse_directory(request_string);
29 request->content_length = parse_content_length(request_string);
30 char *body_start = find_body_start(request_string);
31 request->body = malloc(request->content_length+80);
32
33 strlcpy(request->body, body_start, request->content_length);
34 }
35 void handle_request(connection_t *conn, char *request_string) {
36 request_t *request = parse_request(conn, request_string);
37 if (strncmp(request->dir, "/cgi-bin/",9)===0) {
38 exec(request->dir+9, parse_cgi_args(request->body));
39 }
40 [..]
41 }

Listing 3.2: Example vulnerable C code as explained in Section 3.1

55

Manager: You have to fix all the bugs in the C++
compiler, but you can’t change the behavior in
any way.
Me: That’s not possible. By definition, if you fix a
bug, the behavior is necessarily different.
Manager: Brian, you don’t understand. You have
to fix the bugs but the compiler’s behavior can’t
change.

BRIAN W. KERNIGHAN, IN UNIX: A
HISTORY AND A MEMOIR

The Vulnerability: GENerically
understanding them 4
As discussed in Chapter 3, an attacker requires at least one vulnerability to write
an exploit. Defining the concept of a vulnerability may seem easy at first sight, but
a universally agreed upon definition does not exist. Moreover, some definitions are
too narrow or too broad, which has led to the introduction and usage of separate
terminology, such as bugs; weaknesses; flaws; mistakes; errors; and so on. This too
is done on a per-case basis, so its usage is inconsistent.

Intuitively, when a vulnerability exists, the application behaves different com-
pared to the expected behaviour. In addition, a vulnerability assumes something
about the abusability of this change in behaviour. We believe the change in be-
haviour is key to understanding vulnerabilities.

Once we understand the nature of vulnerabilities, we gain a number of advan-
tages. For example, we know what control techniques apply to what vulnerability,
leading us to the next step in exploit writing. We also learn how and where to
patch the vulnerability, empowering us to protect ourselves. On top, we can deter-
mine what vulnerability types can be used to write NGMEs while rendering other
vulnerabilities irrelevant.

Concretely, this chapter discusses the limitations of existing definitions of bug
and vulnerability. Then we define new, fundamental properties of bugs and vulner-
abilities to form a new taxonomy and definition. We show these properties are nat-
urally embedded in bug-finding techniques and propose a new generic methodol-
ogy for bug-finding. Afterwards, we discuss how these properties can aid towards
vulnerability reduction and how classifying vulnerabilities can help to reason about
their potential consequences. Then we highlight NGMEs, discussing what subset
of vulnerabilities are relevant to the NGME attack surface before concluding.

57

4 The Vulnerability: GENerically understanding them

Definition by Exploitability Policy Assets Threat CIA
FIPS 200 [140],
NIST SP 800-
128, CNSS

X* × × X ×

NIST CVE [130] X × × × X
MITRE
CWE [131]

× × × X ×

RFC 4949 [100] X* X × × ×
ISO 27000 [106] X × X X ×
ISO 27005 [107] X × X X ×

Table 4.1: Comparison of various definitions of “vulnerability”, by whether it mentions
the following: exploitability; violating the security policy; affecting assets; to be used by a
threat source; and the Confidentiality-Integrity-Availability triad. *: Mention the potential
exploitability rather than exploitability.

4.1 Existing Vulnerability Definitions

Different authorities use different definitions for bugs and vulnerabilities. Some
definitions even vary within the same authority. Table 4.1 shows a breakdown of
vulnerability definitions by various authorities.

All definitions refer to a vulnerability as a weakness, most of which mention
exploitability22. The effect a vulnerability has is generally divided into three cate-
gories: whether it affects the companies assets; whether it can violate the security
policy; and whether it can affect the CIA properties. Furthermore, some definitions
explicitly refer to usage by a threat actor whereas others do not.

All properties ultimately question what is and what is not a vulnerability. For
example, the exploitability of a vulnerability is an undecidable problem [70] and
can hence only be proven by providing an actual exploit. Then, the impact of the
given exploit may or may not impact the security policy or a specified asset, which
again questions whether it is a vulnerability — depending on the definition used.

Practitioners who work with vulnerabilities on a daily basis know what is and
what is not a vulnerability. Yet, no technical definition exists that describes what a
vulnerability is.

22Some definitions mention the potential exploitability instead. In Table 4.1 this is marked with an
asterisk(*).

58

4.2 GENerically understanding Vulnerabilities in applications

4.2.1:
Between what

abstraction layers
is the

discrepancy?

4.2.2:
Is behaviour
defined at
the higher

abstraction layer?

4.2.3:
Is the discrepancy
harmless in any

setting?

Figure 4.1: Bug/Vulnerability assessment steps.

4.2 GENerically understanding Vulnerabilities in applications

As we develop software applications, we form specifications from a set of require-
ments. If the specification of an application (or lack thereof) differs from its actual
implementation or execution, we refer to this discrepancy as a bug. Our taxonomy
— GEN — concretises this. With GEN, we view the specification of an applica-
tion and the execution as different abstraction layers, and consider discrepancies
between such abstraction layers as the origin of bugs. In addition to where, GEN
considers why a bug occurs: through the incorrectness-undefinedness property.

Finally, although these two properties serve to classify a bug in GEN, they do not
say whether the bug is in fact a vulnerability. In GEN, we define a vulnerability as any
bug that potentially exposes new data or functionality (e.g., privilege escalation),
as will be discussed in Section 4.2.3.

The GEN conceptual model thus results in a three step vulnerability assessment
process, as illustrated in Figure 4.1. We next discuss each of these steps in detail.

4.2.1 Abstraction Layers

In GEN, we consider a number of coarse-grained abstraction layers, as illustrated
in Figure 4.2. A bug or vulnerability in this notion is a discrepancy between two
layers. This occurs when two layers contradict: one layer specified to execute oper-
ation A whilst the other layer executes A’. The contradiction between the two layers
describe the vulnerability. The granularity of the abstraction layers in GEN are
carefully designed and forms the basis for a generic solution. A further discussion
on custom layers can be found in Section 4.8.

We will first discuss the layers A—G as depicted in Figure 4.2, describing the steps
from the most abstract representation to a hardware “abstraction” layer, where the
application concretely runs on a piece of hardware. Afterwards, we will discuss the

59

4 The Vulnerability: GENerically understanding them

two top-level layers in Figure 4.2, the security policy and human-computer inter-
action. These layers differ considerably from the others: they do not describe the
behaviour of the actual application, but rather define requirements and interactions
respectively.

optional
Human-Computer

Interaction
Z

optional
Security

Policy
P

Informal

Description
A

optional
Formal

Specification
B

optional
Data &

Setup
C

Source CodeD

010010001101

110101101011
Machine CodeE

ProcessF

Hardware

Execution
G

Figure 4.2: Diagram of the different abstrac-
tion layers in GEN. At the top it contains
two meta-layers. The remainder shows the
translation from a conceptual application to
a concretely executed version. Discrepan-
cies between different layers form a bug: a
layer behaves differently than intended.

A Informal Description. First, an
application has an Informal Descrip-
tion, describing what the application is
supposed to do. An informal description
can take on many forms, from a verbal
one-liner to a comprehensive specifi-
cation document (e.g., an RFC). Note
that in addition to the development of
an application, the informal description
can also describe the deployment of an
existing piece of software in a given
setting.

B Formal Specification. Second, we
may have a Formal Specification of the
behaviour of the application. Here we
refer to a mathematical model where
properties can be proven (e.g., through
model checking). A formal specification
defines the required behaviour more
precisely and with more attention to
potentially problematic behaviour. The
formal specification is an optional layer,
as it is not required when developing
software. When provided however, it
can give guarantees about e.g., proper
use of cryptographic protocols. Unfortu-
nately, formal specifications can become
outdated and might also only cover part
of the application.

60

4.2 GENerically understanding Vulnerabilities in applications

Formal specifications are always translated from informal descriptions. A vul-
nerability can therefore occur between layers A and B, since there are no guarantees
that the formal specification maps perfectly onto the intended behaviour from the
informal description. Discrepancies here are exceptionally problematic as their
absence cannot be mathematically proven. We therefore cannot fully prove the
absence of vulnerabilities within an application (i.e., absence of evidence is not
evidence of absence).

C Data & Setup. Next is the data layer, also called the Software Setup layer. This
layer is classically concerned with the configuration of the software. Consider here
an SQL server that is exposed to the Internet under credentials admin:admin.
This is an issue with the setup of the server, not the software itself. Note that this
layer is optional since it is not a solid representation of the software, but instead
specifies pieces on how the software will behave in practice — just like the formal
specification layer. This also means that a vulnerability can skip this layer entirely
when it does not involve the configuration, data or setup of the application.

Recent interest in Machine Learning (ML) highlights new attack vectors unac-
counted for in related work. Through ML, data can determine the behaviour of
an application rather than the code. This data-driven development requires us to
reason differently about the data component and vulnerabilities in this new setting.
As data can specify behaviour, the data layer considers behaviour as specified in an
ML setting too. Due to the importance of data in this setting, two new vulnerability
types arise when applying ML. Once a dataset has been poisoned, it no longer
accurately represents the classes or clusters one intends to represent [110, 13]. This
is a bug from a higher abstraction layer to the data layer. Note that we are not
discussing the dataset poisoning itself, but instead the vulnerability that arises from
an already poisoned dataset.23

The second attack considers an adversarial sample, where a data-point is care-
fully crafted to represent a different class from the actual class [148, 147, 152]. Cat-
egorising adversarial ML is a difficult problem and can generally be attributed to
either the dataset or the processing / learning step in ML. GEN considers the dataset
lacking in detail (i.e., definedness) for the correct classification of the adversarial

23Poisoning the dataset itself can be done in a multitude of ways and is technically a payload phase
technique in the framework of Chapter 3.

61

4 The Vulnerability: GENerically understanding them

sample. Hence, we label this a discrepancy between the data layer and the next
layer – the source code.

D Source Code. The Source Code layer considers the application in the program-
ming language(s) used to develop the application. This describes what a program
is supposed to do on a detailed, less abstract layer than any of the above. A
program can have multiple dissimilar representations (i.e., languages) of source
code and can even have different source code representations (e.g., Cython trans-
lating Python code to the C language). Within this layer, we only consider the
various internal artefacts of the application that have been written by developers
(in contrast to e.g., auto-generated or transpiled code). Discrepancies between
D and B (specifically incorrectness bugs) are commonly sought for using formal
verification.

Up to (and including) this point, translations from one abstraction layer to an-
other are generally performed manually. From here onwards, most aspects are
automated: compilation, execution, etc. As a consequence, whenever a discrepancy
occurs (due to incorrectness, as will be explained later on), this is often attributed
to the external component responsible for that translation step. Intuitively, if the
behaviour of a program changes after translation from source code to a compiled
version, this means that the compiler incorrectly translates the source code.

E Machine Code. Naturally, the next abstraction layer is a compiled version of
the code. We label this the Machine Code layer. Transformation into machine code
is generally done automatically, through a compiler or interpreter. Common bugs
in compilers arise from aggressive optimisation techniques. For example, when
performing cryptographic operations, it is common to finish with zero-ing out
the memory used for private data. Dead code elimination is known to remove
this, since the newly written zeroes are not used before it goes out of scope [69].
The optimisation changes the behaviour of the application, making the resulting
behaviour incorrect with respect to the source code layer.

The machine code layer considers all source code object files that were translated
from source code (D) to the machine code layer (E). For external libraries, we require
a separate layer since their source code is not part of the application.

F Process. As such, next is the Process layer, also known as the External Component
or Library layer. This is the step where we consider our application as a running

62

4.2 GENerically understanding Vulnerabilities in applications

process on top of an operating system, in contrast to a static file (our executable). As
process, we now consider segments instead of sections, we consider the implemen-
tation of libraries24 and the process gains the ability to interact with the operating
system. This layer considers the actual implementation of these components as
behaviour, where previously we considered them from a specification point-of-
view.

The process layer is an unusual layer, as we consider external components as
a single layer abstraction. For each external component, the same layerisation
from Figure 4.2 is applicable. Nevertheless, from the application point-of-view we
merely care about its description (e.g., manual) and its implementation.

G Hardware Execution. When executing the machine code on a machine, we have
the Hardware Execution layer. This is the “fully concrete” layer: it represents
the execution of our application on an actual machine. Examples for vulnerabil-
ities are the Rowhammer attack or the Plundervolt attack [164, 134]: these type
of vulnerabilities get exposed only in hardware execution and are (incorrectness)
vulnerabilities with respect to the above layers. Most side-channel attacks fall
in this category too, as indirect output such as electricity usage becomes explicit
within this layer.

P Security Policy. Above the informal layer, two layers exist that do not have
an application representation, but rather contain meta-properties. The (Security)
Policy or (Security) Standard layer describes a number of properties that should
hold within the given application and its usage. The properties within the policy
layer can vary across different other layers, and this layer can be seen as addition
to the informal layer. For example, a standard requirement may be that all network
connections must be cryptographically secured. If this ends up not being the case,
it will result in a vulnerability. Alternatively, if left unspecified (e.g., because no
such standard is included), a lower abstraction layer gains the power to decide if
the connections will be encrypted or not. This would however not be a bug or
vulnerability from the policy perspective, because the policy is not violated. Var-
ious different vulnerability (and attack) classification models distinguish between
design, implementation and configuration. While our model roughly follows this

24Here we consider all libraries where the source code is not under our control — including static
libraries.

63

4 The Vulnerability: GENerically understanding them

Question> 5 / 2?
Answer> 5 / 2 = 2

(a) An incorrectness bug: the program is
supposed to return 2.5.

Question> apple / 2?
Segmentation fault

(b) An undefinedness bug: it was not de-
fined how the program should behave.

Figure 4.3: Example undefinedness and incorrectness bugs.

narrative, the addition of a security policy seems to have been overlooked in mod-
els we have encountered. Where an application is well constructed and deployed,
it does not automatically mean that it follows the rules and regulations set on a
bigger scale.

Z Human-Computer Interaction. Finally, we introduce the Human-Computer
Interaction (HCI) layer. This layer considers the user-behaviour of the application,
both directly and indirectly. We consider this layer to only interact with the infor-
mal description layer (A) and the policy layer (P). An example policy is to not re-use
credentials for the application, and an example attack is a spear-phishing attack.

Although we added the HCI layer for exhaustiveness purposes, we consider
this layer out-of-scope in the remainder of this dissertation. Treating this layer
in the same way as other layers would specify what layer is “correct” (the human
or the description/policy) and this is not as straightforward: it is a human issue
and should be treated as such. Maybe even more concerning in treating this layer
equally would be the search for such a vulnerability. The authors do not believe
searching for vulnerabilities within users is the right approach ethically. We leave
work on this issue domain experts in that area [2, 210].

4.2.2 The Incorrectness-Undefinedness Property

Once a discrepancy is observed between two abstraction layers, it raises the ques-
tion of how this discrepancy came to be. Another tempting question is what layer
is responsible or needs fixing. The answer to this lies within the Incorrectness-
Undefinedness property (IU property).

Incorrectness. Incorrectness occurs when two layers disagree about the behaviour
of the application. Consider a program that expects a number as input and returns
exactly half that input (i.e., x 7→ x/2). Upon sending an odd number as input, say
5, an application using integers cannot return 2.5 and will likely return 2 (or 3).

64

4.2 GENerically understanding Vulnerabilities in applications

This is considered inconsistent with the intended behaviour as given above: we
say there is an incorrectness bug between the informal layer and the source code
layer. Figure 4.3a illustrates this.

When faced with an incorrectness issue, we always consider the “higher layer”
layer to be correct and the lower layer to be incorrect. After all, the higher layer
describes the intended behaviour of an application. This eliminates any ambiguity
(with respect to incorrectness bugs) as to which layer should be regarded as correct.
Through transitivity, the elimination of an incorrectness bug will always end up
being consistent with the top-level layer that represents the intended application.

Although an application may do what it is supposed to do, it may also have
side-effects that introduce vulnerabilities (e.g., a backdoor). We consider these
incorrectness bugs, as they do not only perform the requested operation. A more
thorough discussion on side-effects is found in Section 4.8.

Undefinedness. The second principle that leads to a deviation is undefinedness.
This is a more nuanced issue, as undefinedness means we have an underspecifica-
tion: there is no expected behaviour. We are looking for the absence of something
being defined, instead of something incorrect. Unfortunately, this is where most
known vulnerabilities arise: through corner-cases that were not accounted for. The
abstraction layer therefore leaves the behaviour undefined.

Given the calculator example above, our description leaves undefined how the
application is supposed to behave when the input is not a number: See Figure 4.3b.
A string as input has been left undefined and hence anything can happen in prac-
tice — a segmentation fault in this case. This issue is mathematically known as
Reductio ad absurdum: False implies anything. We refer to this type of issue as an
undefinedness bug. Note that we left the behaviour undefined when the input is
not a number. If we had specified to return an error message on any other input
(defining behaviour in the higher layer), either the error message shows, or it would
be an incorrectness bug.

When undefinedness occurs in an abstraction layer, it could become defined
in a lower layer. In fact, this is where undefined behaviour can become useful,
as the layer leaving something undefined can simply assume it will not occur.
This can simplify the translation from one abstraction layer to another. A simple
example to demonstrate this is a buffer overflow in C. This is explicitly stated

65

4 The Vulnerability: GENerically understanding them

to be undefined behaviour in the C language specification to enable additional
optimisation opportunities during compilation.

On the other hand, it is pivotal to the correctness of the application to never
execute undefined behaviour. If we end up doing so, the actual behaviour could
be determined by the compiler used or affected by non-deterministic factors (e.g.,
randomness or environment) — but defined nevertheless. The observed behaviour
will be defined in a lower abstraction layer like the C compiler does in the example
above.

We make note that a gap is filled during translation between specification and
code, forcibly defining behaviour where it was previously left undefined. The
actual behaviour can be anything at this point, as we have lost all assurances about
current and any future behaviour of the application. In other words, giving the
space to define behaviour within a lower abstraction layer is often problematic by
design. In contrast to incorrectness, we consider the higher level layer to be incorrect
and in need of fixing, as this layer executes undefined behaviour.

Finally, undefinedness should not be confused with hiding details through ab-
straction. Within our calculator example as discussed above, apple / 2 was left
undefined. When input is defined (e.g., 4 / 2), the description of the program
does not explain how to perform the division as these implementation details are
left for lower abstraction layers. This however is not an undefinedness bug — in
contrast to the apple example — as the operation itself is specified.

Defining bugs.
An important observation is that incorrectness and undefinedness are naturally
(1) mutually exclusive and (2) exhaustive. If behaviour has been properly defined,
this can never trigger an undefinedness bug. Similarly, if behaviour has not been
defined at some point, it can technically not be incorrect either. Additionally, if
behaviour of an application is properly defined and the application follows the
exact specified behaviour, there’s no room for bugs.

This property provides us with enough information to formulate a technical
definition of a bug. Concretely, we define a bug as follows:

Definition 1. A software bug is a deviation between intended and actual behaviour that oc-
curs when two abstraction layers have a discrepancy. This is due to either (1) incorrectness
or (2) undefinedness.

66

4.2 GENerically understanding Vulnerabilities in applications

This definition contextualises the common definition of a bug as a mistake in
software, making it a quantitative and descriptive property. On top, it provides
additional information about the bug.

4.2.3 From Bugs to Vulnerabilities

So far, we described how GEN defines a bug, with an abstraction layer discrepancy
and an underlying cause (i.e., incorrectness or undefinedness). We next discuss
when GEN considers a bug to be a vulnerability (Figure 4.1, step 3). In GEN, we
consider the core difference between a bug and a vulnerability resides within the
assets of the computer system, namely its capabilities and data. As such, we define
a vulnerability as a bug that could expose previously inaccessible capabilities or data
on the target system:

Definition 2. A software vulnerability is a bug (as per DEFINITION 1) that can potentially
expose data or functionality that was not intended according to the informal description or
policy.

Although the definition focuses on misbehaving software, this does not imply
that bugs or vulnerabilities are limited to software itself. Hardware, micro-code or
social issues become bugs due to the resulting software misbehaving.

Note that according to this definition all vulnerabilities are bugs.

This definition of a vulnerability refers to some unknown factor: a potential
rather than a certainty. This is because assessing the (un)exploitability of a bug
can be a tremendous task [70], so it is often not worth the effort to determine this
with certainty. Even heuristically, it is hard to assess the exploitability of bugs
as the most harmless bugs can potentially be leveraged in a complex attack. For
example, a null pointer deference might trigger the restart of a process which in
itself seems fairly harmless. Yet, it can make the heap layout (more) deterministic
and limit noise [92]; and reset the ASLR offset or the stack canaries when it may
have unwritable characters (e.g., null bytes). This can be argued to expose multiple
capabilities: it might not be so harmless.

Note that our definition does not mention the property of exploitability. The
exploitability property is not objective, as the leaking of some internal data may be

67

4 The Vulnerability: GENerically understanding them

useful to an attacker but this is far from guaranteed. An example is CVE-2014-0160,
better known as Heartbleed [51]. Heartbleed is a buffer overread vulnerability
in OpenSSL that can leak adjacent memory, including a private key, as will be
discussed in more detail in Section 4.3.2. Yet, without any sensitive data within
proximity to the overread bug, the newly obtained data by the attacker could
have been completely useless. In other words, it is non-trivial and highly context-
sensitive to generically determine the sensitiveness of a bug in more detail. This
would become a severity assessment, which is out of scope for GEN.25 We consider
low severity bugs to still be able to impact the security of a system. Thus, we
suggest defaulting this property to true unless certain the bug cannot provide any
new data or functionality. Concluding, the third step of bug classification in GEN is
not answering whether the bug could expose new capabilities or data, but instead
whether we have some level of confidence that the bug does not expose new data
or capabilities.

The GEN definition of a vulnerability is embedded within the GEN design and thus
very different from the definitions as discussed in Section 4.1. Where existing
vulnerabilities start by questioning the effects (e.g., exploitability or security policy
violations), our definition is grounded in its origin: in why the vulnerability came
to be. What mistake was made for this vulnerability to be exposed lies at the center
of GEN — how they affect security principles is of secondary concern.

Because the definition is fundamentally different, it is difficult to summarise the
GEN definition in the same way as we did in Table 4.1. Nonetheless, we would
argue to fall in the categories of potential exploitability (directly following the
discussion above) and affecting assets (following directly from Definition 2). The
vulnerability could arise from the security policy (layer P) but does not need to do
so: plenty of vulnerabilities exist that may not be taken into account in the policy.
We also do not mention a threat source or threat actor, as a lack of an explicit threat
does not remediate the situation. Finally, it can be argued that we do consider
confidentiality, integrity and availability through the definition of exposing data
(confidentiality) or new capabilities (integrity, availability). Either way, no existing
definition is similar, as Table 4.1 reflects.

25For a severity assessment, other frameworks are available, e.g., CVSS [162].

68

4.3 Applying GEN to a Vulnerability

4.3 Applying GEN to a Vulnerability

In Section 4.2 we introduced the conceptual model underpinning GEN. This section
describes how GEN is used to classify vulnerabilities in practice. We begin with
a discussion of how GEN assigns a class label to vulnerabilities. Then we discuss
challenges that arise when applying GEN and how those challenges can be resolved.
A detailed classification sheet with guide can be found in Appendix A.

4.3.1 GEN Class Labels

To classify a bug with GEN, we follow the three steps in Figure 4.1. In step one, we
question between what abstraction layers the bug manifests. Afterwards, we see
if behaviour is specified on the higher abstraction, i.e., whether behaviour is due
to incorrectness or undefinedness. Finally, we assess whether it has an impact on
the data or functionality of the system, to determine whether it is a vulnerability or
not.

Using the properties discussed, we can label each bug with a given type. For this,
we use the following format: [higher layer][lower layer]-[IU property].
Within the layers, we can either give the full name (e.g., “Source”) or the unique
character (e.g., D). The IU property is either I for incorrectness or U for undefined-
ness.

As an example, a classic buffer overflow is undefined behaviour according to
(most) source programming languages where this is possible to occur. Hence, it is
a discrepancy between source code (D) and the machine code layer (E), where the
behaviour becomes specified (see Table 4.2). Note that it may not be deterministic
yet, but defined nonetheless. According to our notation rules, the correct GEN code
would be “Source-Machine-U” or “DE-U” in short. As such, the heap overflow
from our example in Section 3.1 is a “DE-U” vulnerability.

4.3.2 Classification Challenges

When classifying a bug with GEN, we have identified three situations that intro-
duce conceptual challenges for the GEN model where additional care is required in
practice: (1) fixing bugs can expose or remove other bugs; (2) an undefinedness bug
that was once defined creates a three-layer pattern; and (3) the informal layer could

69

4 The Vulnerability: GENerically understanding them

Revision 0

Informal
Description

Source Code

010010001101
110101101011 Machine Code

U
ndefined

U
ndefined

010010001101
110101101011

Revision 1

Incorrect
U

ndefined

Incorrect
U

ndefined

Define error
message

Informal
Description

Machine Code 010010001101
110101101011

Revision 2

X

X

Implement error
message

Figure 4.4: This diagram depicts how GEN tackles the undefinedness bug from Figure 4.3b,
where non-integer input is not defined. First, we fix the undefinedness issue to show an
error message upon non-integer input. Secondly, this needs to be implemented in Revision
1, and the problem is resolved completely in Revision 2.

contain contradictory statements. We next discuss when each occurs and how they
can be overcome.

Fixing bugs can expose or remove other bugs related to the same problem. As
an example, lets reconsider our undefinedness example from Figure 4.3b, where
2+applewas undefined. The informal description does not specify how to handle
this, so there is an undefinedness discrepancy from the informal description to the
machine code layer — where it becomes defined. Upon defining behaviour (e.g.,
defining that any other input should show an error), the source code does not yet
reflect this as it is still undefined here. This interaction is shown in Figure 4.4,
while going from Revision 0 to Revision 1. Unfortunately, this fix presents us with
an incorrectness discrepancy, as discussed next.

As long as the related bugs are of the same IU type (see the next section on
incorrectness through undefinedness), fixing bugs should be done from the top-
layer down. Incorrectness bugs could introduce or eliminate related incorrectness
bugs in the layers below, while a lower layer fix could end up incorrect after fixing
the higher layer incorrectness. With undefinedness bugs we do not even have a
choice: if multiple layers leave the behaviour undefined, we need to find the first
layer that contains defined behaviour. If no layer provides defined behaviour, the

70

4.3 Applying GEN to a Vulnerability

informal description needs to specify the behaviour and the bugs can be fixed from
there onwards.

Incorrectness through undefinedness occurs when a lower abstraction layer (hy-
pothetically called “V”) contains undefined behaviour that was initially defined
behaviour in a higher abstraction layer “U”. It becomes defined again in a lower
layer “W”, such that we end up with a defined-undefined-defined chain of rela-
tionships. In the first half — defined-undefined — this is an incorrectness bug. In
the second half — undefined-defined — it is an undefinedness bug instead. Due
to the high layer defining behaviour, this creates a two-fold classification, generally
with a single bug in layer V .

This is shown in Revision 1 of Figure 4.4. Because the informal description is
updated, there is now an incorrectness discrepancy between the informal layer and
the source code layer. Similarly, an undefinedness discrepancy exists between the
source code and the machine code layers with respect to the same overall problem.
Implementing the newly defined behaviour fixes both the incorrectness discrepancy
and the undefinedness discrepancy.

For a more extensive example, lets reconsider Heartbleed [51]. Heartbleed is
a bug that appeared in the heartbeat mechanism of the OpenSSL library. The
heartbeat mechanism can be used by clients to check for a response, by sending
a small payload and providing the length of the payload in the payload_length
field. The server would then respond with the given payload and length, con-
firming the connection between client and server. The Heartbleed bug occurred
when the payload_length passed to the server was larger than the data being
passed on. In the vulnerable versions of OpenSSL, the server would respond with
payload_length bytes, even if the payload given was shorter. The additional
bytes sent would then be taken out of adjacent memory, where private keys could
reside. This is an incorrectness bug, as the specification says to either (1) respond
with an exact copy of the request, or (2) silently discard if the payload_length
variable is too large [101]. On the other hand, it triggers an undefinedness bug in
the Source layer through a buffer overread. After all, reading outside a buffer in
the C language is undefined behaviour.

Undefinedness bugs always trigger an incorrectness bug, unless it was undefined
in previous abstraction layers (in which case that needs to be addressed separately).

71

4 The Vulnerability: GENerically understanding them

In an incorrectness-through-undefinedness bug such as Heartbleed, we conclude
that it has two classes, since it refers to the same underlying bug. Alternatively,
an undefinedness bug leading to another undefinedness bug (in a higher abstrac-
tion layer) is considered separate as multiple layers have a bug that needs to be
resolved. Once resolved, this will lead to an incorrectness bug paired with the
original undefinedness bug. In other words, an undefinedness bug is either (1) at
the top abstraction layer, (2) automatically introduces an incorrectness bug on the
layer above, or (3) contains additional, separate bugs that need to be resolved that
would lead to situation 2. Because of this property of undefinedness bugs (in con-
trast to the simpler incorrectness bugs), we can label them by their undefinedness
characteristic — the incorrectness bug will always be there until the undefinedness
bug is resolved.

The problem when failing to address the bidirectional nature of undefinedness
bugs is clearly shown in the CWE classification [129]. They do not address this
and end up with ambiguous classification where e.g., a buffer overflow (CWE-
120) can also be classified as Improper input validation (CWE-20). Note that these
two CWE classes have no relation according to the CWE. More so, a problematic
buffer overflow could consequently lead to a write-what-where condition (CWE-
123), labelling the vulnerability with 3 CWE classes. We will discuss the interaction
between GEN and CWE in detail in Section 4.4.

Intra-layer Contradictions can happen in a very exceptional case: it could occur
that the informal description by design could contradict itself. For example, a
description of the form “Button 2 must perform operation B; Button 2 must perform
operation C” (where operation B is different from operation C). In this case, we
have to consider the informal layer to be incorrect with respect to itself. This can
only occur in the informal layer and in exceptional cases the policy layer. Any other
layer must in the end conform to the informal layer.

4.4 The Common Weakness Enumeration

The Common Weakness Enumeration (CWE) [129] is an operational vulnerability
classification effort made by MITRE and the most common classification method
currently in use to the best of our knowledge. The CWE is fundamentally different

72

4.4 The Common Weakness Enumeration (CWE)

from GEN in a number of ways. This section highlights the differences between
CWE and GEN, finding out how a combined usage of both could enhance classifi-
cation.

CWE’s bottom-up approach means an observed vulnerability is generalised into
a category. 26. The drawbacks of this approach are that it provides no guarantees in
terms of exhaustiveness or disambiguation as the model requires continual updat-
ing to cover new forms of vulnerabilities, as shown in Table 4.2. CWE has a total of
418 classes at the time of writing, with new classes being added over time.

In contrast, GEN follows a top-down approach. By design, GEN has limited ambi-
guity in comparison to CWE and provides a reasoning structure that can describe
the entire spectrum of bugs – including new bugs that could arise in future. On
the flipside, we do not argue that a GEN label like Source-Machine-U (DE-U) is as
descriptive and intuitive when compared to a CWE label like classic buffer overflow.
GEN compensates for the limitations of CWE. To understand how CWE and GEN

interact in practice, we mapped all CWE classes onto one or more GEN classes. Be-
sides showing interactions between the two, the mapping can also help classifying
with one, given the class of the other classification. A few example vulnerabilities
with both classes are shown in Table 4.2.

Within the mapping, 41% of CWE classes have a single GEN class. In 39% of cases
more than one GEN class is attributed to a CWE class. We refer to such CWEs as
multi-class CWEs. Conversely, the remaining 20% of CWE classes are classified as
pseudo-vulnerabilities, meaning the CWE class does not represent a bug according
to GEN. We next discuss both multi-class CWEs and pseudo-vulnerabilities in more
detail.

Multi-class CWEs. Many of the CWEs encountered had multiple associated
GEN classes. This phenomenon can have two different yet closely related reasons.
In the first case, the CWE description itself reflected this directly, stating two or
more situations belonging to the CWE class. As an example, CWE-241 describes
the issue when “the software does not handle or incorrectly handles [input]” of
an unexpected data type. In the case of an unexpected data type, it is likely to
be undefined within the informal description (A). Hence, when the software does
not handle this type, it will be classified to Informal-Source-U. On the other hand,

26For a more detailed description of the CWE, see Chapter 2

73

4 The Vulnerability: GENerically understanding them

Name CWE class GEN Code Explanation
Buffer
Overflow

CWE-120 Source-
Machine-U

DF-U Undefined behaviour in common
languages like C/C++ becoming
defined behaviour after compila-
tion.

SQL
Injection

CWE-89 Informal-
Source-I

AD-I One would expect to perform the
query as it would with proper
sanitisation: the source code fails
to do so semantically.

Rowhammer
Attack

CWE-1256 Machine-
Hardware-I

FG-I Flipping adjacent bits in memory
should have no impact on the
state of the application. Here the
hardware fails to adhere to this
property.

Password
Sharing

CWE-522 HCI-
Informal-I

ZA-I If specified that password sharing
is prohibited, given fair reason
and usability as such, the human
does not adhere to the rules as
they should.

Dataset Poi-
soning

N/A Informal-
Data-I

AC-I The dataset no longer accurately
represents what it should, lead-
ing to incorrect behaviour com-
pared to the intended behaviour.

“no-s”ftp CWE-319,
CWE-284

Policy-
Data-I

PC-I If specified that (TLS-)encryption
must be used, usage of plain FTP
is incorrect, even if the informal
description is not explicit.

Table 4.2: Typical vulnerabilities with their GEN class and an explanation as to why they
belong in this class. Each class consists out of two abstraction layers and either an I for
incorrectness or a U for undefinedness.

when the software incorrectly handles the input, it has to be defined how to handle
this input and has to be an Informal-Source-I type bug. Concluding, CWE-241 has
two classes: AD-I and AD-U. So a single CWE description can in effect conflate two
or more different GEN classes.

The second case occurs when a detail is unknown, meaning the CWE class could
fit into multiple GEN classes. For example, an integer overflow (CWE-190) in the
C language is undefined behaviour (hence DE-U) when the integer is signed, yet
defined behaviour in the case of an unsigned integer (hence AD-I or no bug at
all). If instead the source language is Java, a signed integer overflow would be
defined as rollover behaviour and thus not an undefinedness bug either. Do note

74

4.4 The Common Weakness Enumeration (CWE)

that these two are fundamentally different: integer overflow behaviour can be used
by the developer if defined, but should never be used if its behaviour is undefined.
One compiler may behave as the developer expects, but a different compiler or
compiler version may not [170].

Missing detail that leads to multiple classes can be very different in nature too.
CWE-321 discusses the use of a hard-coded cryptographic key. When this is set
as configuration of a program, it is a Policy-Configuration-I bug. Alternatively,
it could have been hardcoded inside the source code of the application, where it
would be a Policy-Source-I type bug. This lack of detail in CWEs can lead to 3 or 4
classes in exceptional cases.

Pseudo-vulnerabilities. In total, 83 CWE classes were classified as pseudo-
vulnerabilities: classes that did not represent real vulnerabilities. This is attributed
to a number of different reasons. First, CWE has a number of classes that represent
consequences (such as a write-what-where, CWE-123, that states an attacker has
some level of control over inter-application virtual memory) rather than the vulner-
ability itself. This is likely the result of a vulnerability, but is not a representation of
the vulnerability itself. Consequences cannot be classified with GEN because it has
no information on either property GEN requires for classification.

Secondly, CWE contains classes that are indicators for vulnerabilities, such as
Suspicious Comment (CWE-546). Similar to the consequences, these might be use-
ful in an operational setting but should not be confused with an actual bug or
vulnerability. These cannot be classified either because there is no incorrectness
or undefinedness occurring through the indicators.

Last, “bad” code that leads to sub-optimal performance or redundancy (affecting
maintainability) is also classified as a vulnerability according to the CWE classifi-
cation. Again, this is not a vulnerability according to GEN unless the security policy
layer explicitly states this is not allowed. Only the CWE classes here mentioning a
security policy were classified with the appropriate policy class(es).

CWE & GEN. GEN is a top-down approach and hence fundamentally different
from the bottom-up CWE. It captures properties of vulnerabilities that CWE does
not capture in its current form. The mapping as discussed substantiates this claim,
as fewer than half of the CWE classes conform to a unique GEN class. On the other
hand, concreteness and descriptiveness of CWE classes provides a quick intuitive

75

4 The Vulnerability: GENerically understanding them

Layer 0

Layer 1

Layer 2

Layer 3
D

is
cr

ep
an

cy

Im
pact

Figure 4.5: This figure visualises that the impact of a given vulnerability can only flow
upwards from the lowest affected layer in the abstraction hierarchy. The layers could
represent any GEN layer subset (e.g., layer 0 being the informal layer, layer 1 being the
setup layer, etc.).

understanding that GEN cannot grasp. Thus, we believe GEN can complement CWE
in the classification of given vulnerabilities, similar to how CVSS complements
CVE. GEN can also help provide the right CWE class(es), because a GEN class only
has a subset of related CWE classes.

4.5 Using GEN

Having introduced the conceptual model underpinning GEN (Section 4.2) and how
it can be applied to a vulnerability (Section 4.3), in this section we discuss the use
of GEN beyond its theoretical framework. First, on an individual vulnerability level
we discuss how GEN bounds the extent to which a vulnerability can impact system
behaviour. Second, we discuss how different GEN classes relate to different testing
techniques. Specifically, we describe how to find vulnerabilities of a given GEN

class and the construction of new, specialised testing techniques based on the GEN
methodology. Finally, we discuss a direct practical use-case of GEN.

76

4.5 Using GEN

4.5.1 Consequence Boundaries

GEN’s abstraction layers indicate where vulnerabilities occur. Although the severity
of a vulnerability is out of scope for this work, these layers can also provide insight
in what might be affected as a consequence of the vulnerability being abused. That
does however not mean that a vulnerability cannot surpass its abstraction layer
boundaries.

In particular, vulnerability consequences can move up abstraction layers, but can-
not move downwards. This is because complexity and detail is added when translat-
ing to lower abstraction layers. Vulnerabilities on a higher abstraction level cannot
affect the lower level details, whereas a lower level vulnerability can still impact
the overall operation. This is visualised in Figure 4.5 Concluding, GEN can only aid
in filtering lower-level consequences, but not the converse.

As an example, consider the process of compilation: moving from the source
code layer to the machine code layer. One such vulnerability is a buffer overflow,
that falls in the Source-Machine-U category. A buffer overflow can alter the
internal memory state of an application, which can in turn affect the operation in
a semantically significant manner (e.g., crashing the application). The converse is
not true: a vulnerability on a higher level (say an SQL injection) will not be able to
impact e.g., the internal memory state. This is because the vulnerability resides in
an abstraction layer too high and hence has no concept of internal (virtual) memory.

4.5.2 Abstraction layers as Testing Oracle

GEN’s design is based on the way we try to find different bugs and vulnerabilities.
GEN can explain why fuzzing an application with a commodity fuzzer is unlikely
to find a Rowhammer vulnerability [196, 164]: the fuzzer has no knowledge about
hardware-specific properties. Similarly, searching for a Rowhammer bug or using
a fuzzer will not expose a server with admin:admin credentials. In this section we
discuss how GEN is related to bug-finding techniques and how a new bug-finding
technique can be designed using GEN concepts.

According to GEN, when two abstraction layers misalign it must be due to either
incorrectness or undefinedness. In the case of incorrectness, GEN considers the
higher layer to be correct. In other words, if we can test the lower layer based on
the behaviour specified by the higher layer, we should be able to find the bug. The

77

4 The Vulnerability: GENerically understanding them

Incorrect

Testing Oracle

Tested Layer

(a) With incorrectness, the upper layer
can be used as testing oracle to test the
lower layer and find such bugs.

U
ndefined

Tested Layer

Testing Oracle

(b) We can find undefinedness discrep-
ancies by recognising undefinedness
artefacts in the lower layer, potentially
after altering the lower layer.

Figure 4.6: Incorrectness and undefinedness work in opposite ways when searching for
such bugs. With either type of discrepancy, one of the involved layers can be used as
testing oracle to test the other involved layer. The green layer depicts the layer that can be
used as testing oracle, while the red layer depicts the layer that we are testing.

higher layer in this instance can be called a testing oracle [11]. We can use this
abstraction layer as ground truth to test correctness of the lower layer, in the tradi-
tional sense of a testing oracle. For example, a formal specification is a testing oracle
for the source code layer w.r.t. incorrectness issues. Concretely, any incorrectness
bug of a given GEN class can be found when using the higher layer as ground truth
as shown in Figure 4.6a. For example by using any existing technique that does so.

Construction of Undefinedness Oracles. In contrast to incorrectness, when
two abstraction layers misalign due to undefinedness the higher layer is in the
wrong. Hence, we must use the lower layer as testing oracle, because we must
test the higher layer to determine if and where it is underspecified. This is shown
in Figure 4.6b. However, we need to build this oracle from the lower layer, as it pro-
vides a change from undefined behaviour into defined behaviour: a discrepancy in
behaviour that we can pick up on.

We can build a testing oracle for undefinedness bugs in a number of ways. First,
we can define the undefinedness with a marker. A concrete example is UBSan, an un-
defined behaviour sanitiser for C-like languages [183]. Here we force any undefined
behaviour in the source code to throw an exception. The exception is the marker we
can use to uniquely recognise whether undefinedness occurred. Through this we
can test the layer below (the machine layer) and detect any undefined behaviour.

78

4.5 Using GEN

Another similar solution is to prepare for such bugs by design, and define prob-
lematic situations as should not occur. A very common example is the addition of
assert statements by developers. Similarly, an application design (informal de-
scription) could specify that a specific capability should never be visible if the user
does not have sufficient privileges. This solution does not cover all vulnerabilities
of a given type but can be used to build up an approximate undefinedness testing
oracle.

Thirdly, we can find undefined behaviour through expected patterns or artefacts.
Similar to the first solution, we can consider source code undefinedness bugs. A
common pattern here is for undefinedness bugs to cause a crash. As a reminder,
this is where buffer overflows reside, among others. In any layer below the source
code, where translation is generally automatic, undefined behaviour can damage
internal structures, leading to crashes more often than not. In any higher abstrac-
tion layer — where the translation is not automatic — alternative patterns should
be found. The expected patterns will never guarantee complete coverage of all
vulnerabilities within that class however.

Lastly, we can abuse the bidirectional nature of undefinedness, since the layer
above (when it exists) either contains another undefinedness bug with respect to
the layer above, or contains an incorrectness bug (since we go from defined to
undefined). In the latter situation, we can test for the incorrectness bug instead,
if the actual behaviour changes the expected behaviour due to the undefinedness
bug. This can however not be used when undefinedness is purposefully used (such
as assuming the memory layout during run-time) if the actual behaviour ends up
matching the intended behaviour due to other factors.

All of the above are valid techniques for creating a bug-finding technique for a
given GEN class. Using this in conjunction with the incorrectness issues where we
can take the higher layer as oracle, we can determine what bug-finding technique
is searching for what GEN class bug.

In Practice. In some cases, the abstraction layer is a testing oracle in the traditional
sense. When performing formal verification (e.g., through model checking [41]), the
formal layer is a testing oracle for the source code layer. In practice, most other
bug-finding techniques approximate a testing oracle with respect to one or two
different classes, but have the potential for finding bugs in other classes. Below we

79

4 The Vulnerability: GENerically understanding them

will discuss a few examples of this.
Techniques such as fuzzing [31] generally search for application crashes and

hangs. Crashes and hangs are almost certainly problematic, and we refer to them as
an implicit oracle [11]. These crashes (and occasional hangs) are typical artefacts of
source code layer undefinedness. Note that fuzzing does not look into hardware-
specific attacks (unless tailored towards these), and often crashes and hangs are
not explicit in source code. Even more so, common practice is to not instrument
(and hence not enhance code-coverage in) dynamic libraries in order to prioritise
the application. In other words, we hypothesise that most bugs found within com-
modity fuzzers (that trigger upon crashes/hangs) fall within the Source-Machine
layers, with an additional few within the Machine-Process layers. The testing
oracle becomes exact when a fuzzer is combined with test-time sanitisers such
as UBSan that can crash the application when undefined behaviour occurs in the
source code27.

Within the Source-Machine layers, there are also incorrectness bugs. As dis-
cussed before, an incorrectness bug in this layer refers to a mistake by the compiler.
D’Silva et al. discuss this thoroughly, with the classic example of optimising out
memset(buffer, 0, sizeof(buffer)) at the end of a function [69]. The in-
correctness bugs commonly seen in compilers nowadays do not induce hangs or
crashes, so fuzzing will not find such bugs. Instead, it finds undefinedness bugs.
Considering the C language for example, many vulnerabilities are known to arise
from explicit undefined behaviour, e.g., buffer overflows, signed integer overflows
and format string attacks. We test our fuzzing hypothesis in the evaluation (Sec-
tion 4.6.2).

Once we get to the Hardware layer, attacks become sufficiently diverse that a
single bug-finding technique is insufficient with currently available techniques.
Instead, most types of vulnerabilities require a specialised technique to detect a
particular vulnerability. In the search for vulnerabilities in this layer, we will dis-
cuss two different examples. If any Instruction Set Architecture (ISA) contains
undefined or even incorrectly behaving instructions, specialised opcode fuzzing
can bring this to light [67]. The second example — the Spectre/Meltdown family
— is a result of an incorrect branch prediction. The incorrect (and resolved) branch

27As has been done before: https://groups.google.com/forum/#!topic/afl-users/GyeSBJt4M38.
28http://sqlmap.org

80

https://groups.google.com/forum/#!topic/afl-users/GyeSBJt4M38

4.5 Using GEN

Testing tool/technique
Tailored
towards

Exact Oracle Generic

Fuzzing DE-U × X
Model checking BD-I X X
Spectector [87] EG-U X ×
N-version Programming [125] AD-I X X
Penetration testing PC-I/PD-I × X
Manual testing (job title) AD-I × X
Unit/Integration tests AD-I × X
User observation ZA-I × ×
Buffer overflow detection [121, 123] DE-U X ×
Rowhammer detection [105, 209] EG-I × ×/ X
SQLMap28 AD-I × ×

Table 4.3: Relation between bug-finding techniques/tools and associated GEN classes. Exact
Oracle refers to the use of the abstraction layer as oracle; generic means it can find more than
one particular type of bug. In Rowhammer Detection, the second technique cites is generic
whereas the first is not.

prediction generates data without clearing as a side-effect. The data that is not
cleared presents the opportunity to read out this data — a side-effect that was not
part of the specified operation. A listing of bug-finding techniques and tools with
their respective GEN class is summarised in Table 4.3.

Testing oracles by designing abstraction layers. Conversely, we can design
new specialised bug-finding techniques based on GEN principles. This is done by
slightly adjusting abstraction layers to model a specific vulnerability type. This new
abstraction layer can be compared against the original abstraction layer. Whenever
the two abstraction layers exhibit different behaviour, it can only be a result of the
additional modelling.

One example is Spectector [87] by Guarnieri et al. They use symbolic execution
to find Spectre-related bugs. They do so by modelling the Spectre vulnerability in
their symbolic execution engine. The created model represents a slight change in
the abstraction layer used by the engine, only adding Spectre specifics. Afterwards,
they compare an execution in this model against an execution without the Spectre
model. Any deviations can only occur because of the added Spectre specifics. In
GEN terminology, they used the symbolic execution engine as abstraction layer and
created a new abstraction layer by only modelling Spectre behaviour. Afterwards,

81

4 The Vulnerability: GENerically understanding them

they tested the new abstraction layer, using the original abstraction layer as testing
oracle.

Here we view each translation between abstraction layers within GEN as many
small step translations. Needless to say, these smaller translations can become very
complex, as the order of smaller translations can make a big difference. Further-
more, since we do not look into a full translation into a naturally stable abstraction
layer, the small step translations need to be chosen with care. Still, this method-
ology can be generalised using fine-grained changes with the GEN methodology,
isolating more fine-grained vulnerability classes.

4.5.3 Security Use-case

Here we will discuss a concrete hypothetical use-case scenario to show the concrete
use of GEN as a taxonomy. Specifically, we will first discuss the classification of
a single vulnerability. We then explain how to use of GEN in a larger, statistical
setting. We do so by outlining a scenario involving a hypothetical company and
their response to the GEN classification results.

A New Vulnerability. Consider a large company (referred to as The Company)
that internally develops software for the services they provide to their clients. The
Company has a Security Operations Center (SOC) and an internal IT infrastruc-
ture. The SOC is alerted on a Friday morning as a zero-day exploit is discovered
inside the database software they use, e.g., CVE-2014-2669. It is known that the
exploit was discovered as it was used in-the-wild and it is unknown whether The
Company has been targeted too.

Within its first report, it is explained that the exploit contains multiple previously
unknown vulnerabilities in the software and people are working on a patch. Both
vulnerabilities are niche and complex mistakes in a part of the software that is
hardly used in practice. This vulnerability has a CWE-189 tag, referring to “Nu-
meric Errors”. The report makes a quick mention that both bugs are of the DE-U
type: an undefinedness discrepancy between the source and the machine code.

The SOC quickly concludes that the machine can only be compromised at the
permission level of the SQL server based on the information given. However,
the SQL server application itself can be compromised, including its internal data
structures. Before investigating whether The Company was targeted or how the

82

4.6 Evaluation

vulnerability affects the application, the SOC team turn on a version of the SQL
server hardened with full memory safety (e.g., using Hardbound/Softbound [64,
136] and CETS [137]) and turn off the original process. The server is temporarily
slower than usual until a patch is published and the original server can be updated
and reinstated. Now the SQL server experiences minimal downtime, the threat has
been quickly thwarted and the SOC team can focus on investigating if there is any
reason to believe they had been attacked already.

The Bigger Picture. The Company is also monitoring every vulnerability that is
found in their software. When a vulnerability manages to bypass the testing phase
of internal application development, it is recorded on a separate vulnerability list
for subsequent root-cause analysis. Over the past 2 months, the application security
team of The Company has seen a small spike inside the vulnerability list in the DE-
U class. In the meantime, fewer DE-U seemed to have been found during testing
over those two months.

The team knows DE-U type bugs are most often found inside their symbolic
execution engine, a custom-built project altered to find bugs and optimise code
coverage inside their software. Upon further inspection, the team realises that
2 months ago the company updated their compiler. The total speed-up of their
internal software was substantial but the machine code changed significantly, ren-
dering their symbolic execution engine mostly useless in its current setup. The
team started optimising the symbolic execution engine for this new environment
and almost instantly found another 4 DE-U type vulnerabilities.

4.6 Evaluation

We tested GEN in two different ways. First, we evaluate how well GEN does as a
taxonomy in a theoretical setting. For this we use the taxonomy evaluation criteria
listed by Derbyshire et al. [63]. Although originally defined for attack taxonomies
rather than for vulnerabilities (where an attack can be a complex structure compris-
ing multiple vulnerabilities) we believe the criteria given are universal enough for
use in evaluating GEN.

Secondly, we evaluate if the theoretical concept of GEN classes as testing oracles
is applicable in practice. To test this, we took one bug-finding technique and clas-

83

4 The Vulnerability: GENerically understanding them

No. Criterion Sub-criterion 1 Sub-criterion 2

1 Accepted Appropriate hierarchical format Sensible and tangible variables
2 Complete & Exhaustive Top-most categories sufficiently

high level
Clear processes for adding cate-
gories

3 Comprehensible Categorisation well-defined Descriptive and industry-congruent
4 Mutually Exclusive Sensible and tangible variables One class excludes other classes
5 Repeatable Different people provide the same

class/label
No terms require interpretation

6 Terms well-defined No terms require interpretation Descriptive and industry-congruent
7 Unambiguous All [bugs] can be categorised Appropriate hierarchical format
8 Useful No catch-all category Only categorises [bugs/vulnerabili-

ties]
9 Versatile Clear processes for adding cate-

gories
Clear processes for adding to cate-
gories

10 Human representative Contains human-focused category Can categorise socio-technical issues

Table 4.4: The 10 criteria for taxonomies according to Derbyshire et al.[63], adapted to
a vulnerability taxonomy. The italic criteria represent the criteria that could not be
sufficiently confirmed.

sified the vulnerabilities found. Here we used AFL [207], a fuzzer famous for its
practicality and ability to find real-world bugs. According to our theory, the vast
majority of the classified vulnerabilities should have the DE-U class, as this would
be in line with Section 4.5.2.

4.6.1 Taxonomy Evaluation Criteria

For a fundamental taxonomy, we aimed to adhere to fundamental properties. For
example, a bug should get exactly one label and if you can label it then it must be a
bug. To evaluate the fundamental basis of the GEN taxonomy, we assessed it using
the criteria specified by Derbyshire et al. [63]. They identify 10 criteria with two
sub-criteria each to assess a taxonomy.

The taxonomy criteria are aimed towards attack taxonomies rather than vulner-
ability taxonomies. Although similar, the differences change the meaning of some
criteria and also their importance. Although this requires a degree of judgement,
to enable reproducibility we present for each criterion the detailed analysis under-
pinning our evaluation. The criteria with subcriteria are summarised29in Table 4.4.

Analysis. The first criterion is called Accepted (1) and requires both an appropriate

29The changes to the criteria are marked with straight brackets ([]) and only changes the focus from
attacks to bugs/vulnerabilities. Furthermore, all criteria are left as is.

84

4.6 Evaluation

hierarchical format, and tangible and sensible variables used for categorisation.
GEN is hierarchical along three dimensions: abstraction discrepancy; the IU prop-
erty; and potential exposure of data or functionality. Each dimension can be used
independently for comparison, similar to Engle et al. [75]. We believe this form
of hierarchy is versatile enough to reason about similarities amongst bugs and
vulnerabilities given their respective individual properties. Furthermore, each is
based on a single tangible variable apart from the last. Abstraction discrepancy
is tangible as it comprises the complete stack of software development and usage.
The IU property is tangible too because any unclear situation is a result of ambi-
guity, meaning it is not well-defined (i.e., undefinedness). However the potential
exposure attribute of our vulnerability definition (Section 4.2.3) can be difficult at
times, but it defaults to true upon doubt.

Second is the criterion of Exhaustiveness (2). Exhaustiveness requires the top lev-
els of a taxonomy’s hierarchy to be sufficiently high-level to capture all possibilities.
The abstraction layers as presented in this work are exhaustive, ranging from the
most abstract version of the application to a fully concrete version. Furthermore,
the IU property is exhaustive: if neither occur, the translation is perfect. The vul-
nerability property is a yes/no question where any other answer would be equiv-
alent to yes and is hence exhaustive. The second sub-criterion for exhaustiveness
is clarity when categories need to be added. Within our categories, this should
not occur because of our top-down approach to tackle the exhaustiveness issue.
However, abstraction layers can be adjusted when appropriate to capture clearer
subcategories. This will be discussed in Section 4.8.

The next criterion is Comprehensibility (3). Whether GEN meets this criterion is not
clear-cut, since the GEN classification is novel and requires a slightly different way
of thinking about a given vulnerability. Specifically, Derbyshire et al. [63] specifies
three sub-criteria that need to hold: industry congruence, descriptiveness and well-
definedness. At this stage GEN has not yet been shown to be industry congruent,
since it contains novel concepts unexplored until now. On the other hand, we argue
it is descriptive (see Section 4.2) and its properties are naturally well-defined since
the abstraction layers conform stable states in an applications’ representation and
the IU-property is both exhaustive and mutually exclusive.

Mutual exclusiveness (4) is very important in a taxonomy. If a vulnerability could

85

4 The Vulnerability: GENerically understanding them

reside in more than one category, it could cause confusion that would completely
defeat the purpose of the taxonomy. Whilst we achieve mutual exclusiveness, it
did come at a cost: we introduce separate vulnerabilities if bugs span multiple
abstraction layers. As an example lets reconsider the calculator undefinedness bug
from Section 4.2.2. As depicted in Figure 4.3b, 2 + apple is left undefined in
the informal description layer. The behaviour is most likely still left undefined
in the source code layer, so the bug initially can be attributed to the DE-U class.
Upon resolving this, the informal description still leaves this behaviour undefined,
but the source code does not anymore: this is a clear undefinedness bug again.
Now we consider the other AD-U bug a separate bug from the initial bug. Although
counter-intuitive, it requires resolving bugs on multiple layers so we consider them
separate bugs. If this approach is adhered to, mutual exclusiveness is achieved.

The next criterion states that the taxonomy needs to be Repeatable (5). From
a theoretical perspective, the abstraction layers are in line with the Time of In-
troduction property, an established property for classifying vulnerabilities as dis-
cussed in Section 2.1.1. The IU property could however require practice to label
vulnerabilities with confidence. In addition, the other criteria GEN satisfies are
helpful for repeatability. For example, repeatability is impossible without mutual
exclusiveness because alternatively, different people would get a choice between
different classes that both apply. We argue this criterion should be tested in a real-
world scenario. However, evaluating GEN in a real-world setting remains future
work and thus so does this criterion.

Criterion number six states that the Terms are well-defined (6), meaning it is
industry-congruent and descriptive (see (3)) and does not require interpretation.
Whether GEN requires interpretation depends on how clear-cut its abstraction
layers definitions are. As long as abstraction layers are well-defined, any bug
or vulnerability will cover a clear set of abstraction layers. Interpretation could
pose an issue for concluding “definedness” in exceptional scenarios, but this will
be discussed in the Discussion & Limitations section (Section 4.8).

The remaining criteria are already (partly) covered. Criterion seven states that
the taxonomy needs to be Unambiguous (7). Concretely, the authors state that the
taxonomy should be broad enough (see 2) and should be in an appropriate hierar-
chy (see 1).

86

4.6 Evaluation

Criterion eight states that GEN needs to be useful (8), in the context that it should
not contain a “catch-all” category and only captures “real vulnerabilities”. GEN

does not contain any residual class (and hence no “catch-all”), and excludes pseudo-
vulnerabilities too, as shown in Section 4.4.

According to the next criterion the taxonomy requires versatility (9), referring to
clear processes when a novel vulnerability cannot be classified (see 2) and clear
processes for keeping up-to-date with current trends and technology. For what (2)
does not cover in the second sub-criterion, our example of machine-learning attacks
(Section 4.2.1) shows that recent scenarios can be captured — albeit more effort can
be required at times.

Finally, the last criterion is concerned with a representation of human factors (10).
Here the HCI abstraction layer helps provide the necessary classification options,
even though differentiation between different HCI-type vulnerabilities is limited.

Summary. The main issues we found when evaluating the GEN taxonomy have to
do with repeatability (5) and industry-congruence (3)&(6). Repeatability is mainly an
issue because of the resources needed to test it on a large enough scale. Similarly,
industry-congruence remains to be seen: we can only hope it will become industry-
congruent once businesses understand the benefits. If we consider GEN to not
be industry-congruent and lacking repeatability, it would satisfy 13/15 subcriteria
and thus 7/10 criteria, considering industry-congruence appears twice within the
criteria. Industry-congruence and repeatability is yet to be tested in practice.

4.6.2 AFL

In this part of our evaluation, we evaluate GEN’s ability to associate bug-finding
techniques with specific GEN classes. American Fuzzy Lop [207], better known by
its acronym AFL, is a widely used open-source fuzzer. Because AFL triggers upon
crashes and hangs, we hypothesize that AFL uses an implicit oracle, mainly finding
bugs that fall into the DE-U class. To test this, we perform the first two classification
steps of GEN on a list of bugs found by AFL, skipping the third step (vulnerability
assessment). To compare, we also provided the CWE class if available, or classified
it through CWE if not.

Setup We base our evaluation on a dataset of bug reports gathered from the
website of AFL’s author, Michal Zalewski. The website refers to a large number

87

4 The Vulnerability: GENerically understanding them

of webpages, each describing one or more bugs found through AFL [207]. The
links are diverse and can link to an email conversation, a git repository issue, a
blog-post or a CVE description among others. Some links are dead, whereas others
can describe a multitude of bugs. In most cases, links refer to a conversation where
the input found by AFL causes a crash and is shared with the maintainers of the
software project. Dead links and sources where it cannot be reasonably confirmed
which bug was found by AFL were omitted.

In the remaining sources, the information given was often not enough for GEN
classification. More information needed to be found through inspection of what
caused the crash. Contrary to the unusable sources, we did include bugs where
such information was not available, as this could skew the results. This resulted in
101 analysed bugs that were found by AFL, including the unclassified bugs. The
full results are shown in Appendix 2.

Results. According to our analysis, we found that 84/101 bugs (83.2%) are
attributed to DE-U. Out of the remaining bugs, 8/123 (7.9%) were attributed to AD-I
without resorting to undefined behaviour in the source layer. Most of these cases
were assertion failures that trigger a crash as is defined by the source code. Note
that assertion failures can be used as technique to stop undefinedness bugs in the
source code as discussed in Section 4.5.2. Furthermore, at least one used N-version
programming in combination with AFL, gaining a different testing oracle.

One bug (1.0%) was a double-free, meaning it resulted in undefined behaviour
of an external library and hence was labelled EF-U30, and one bug was an AD-U
bug since it was left undefined what would happen overall, leading to undesired
behaviour (a hang). The remaining 7 (6.9%) bugs could not be determined by GEN
due to lack of detail.

As discussed in Section 4.3.2, the DE-U bugs have an AD-IU label (either incorrect-
ness or undefinedness is possible here). Since this could mean there are multiple
bugs, it could be argued that fuzzing finds the AD-IU bug instead. However, the
undefinedness bug always gets paired with an incorrectness bug31. This is one-

30A double-free is technically a double bug in the “fixing bugs” format of Section 4.3.2, since it is
undefined in the DE-U translation as well. To not skew the results in favour of our hypothesis, it
has been labelled EF-U in this case.

31Unless incorrectness occurs in the informal layer or the higher layer contains another
undefinedness bug.

88

4.7 NGME Vulnerabilities

directional, meaning the incorrectness bug does not get paired with an undefined-
ness bug by default. Due to the amount of undefinedness bugs and the nature of
crashes, this is however unlikely. Furthermore, this would mean that the testing
oracle of the AFL fuzzer spans also the informal description layer where it has no
knowledge nor any artefacts to find such bugs. In summary, we deem it reasonable
to say that AFL mainly finds DE-U bugs.

The CWE classification shows that CWE does not hold similar results. The list
contained 28 different CWE classes, each averaging 3.6 bugs with a median of
2 bugs. Most common (with 14 occurrences each) were CWE-119 and CWE-125,
representing “Improper Restriction of Operations within the Bounds of a Memory
Buffer” and “Out-of-bounds Read” respectively. Notably, the list contained 8 bugs
classified with CWE-20: “Improper Input Validation” — a catch-all class for the
bugs found. Note that this is the basis for all bugs according to the Langsec com-
munity. Where CWE struggles in ambiguity and fine-grainedness, GEN provides a
natural class to bugs found by AFL.

4.7 NGME Vulnerabilities

In this chapter, we tackled the full breath of application vulnerabilities. Not all vul-
nerabilities can be used to write Next Generation Memory Vulnerabilities (NGMEs)
as our work reflects. To start, NGMEs abuse the application memory, which is
not explicit until the translation to layer E. Since impact can go up but not down
(Section 4.5.1), any translation higher than the DE (including the HCI and the policy
layer) is not relevant in an NGME context. Concretely, we are interested in layers D
(source), E (machine), F (process) and G (hardware).

Let us take a few examples of vulnerabilities in the above classes. A recurring
type is the buffer overflow (DE-U) that grants some form of access to an attacker.
These are definitely vulnerability types that can be used to write an NGME. DE-
I vulnerabilities on the other hand (i.e., compiler bugs) are often more niche but
could also expose interesting vulnerabilities. The other way around does not need
to be the case. For example, a logic bug in the compiler can expose a vulnerability
without violating temporal or spatial memory safety principles.

89

4 The Vulnerability: GENerically understanding them

Notably, the source code language needs to be memory unsafe by design (e.g.,
C, C++, unsafe Rust) to expose a memory violation on the DE-U class. The same
holds for the Process layer in the external components used on the EF-U class.
From Process to the machine layer, virtual memory (and even physical memory)
is explicit so bugs from either type could expose a memory violation. For example,
rowhammer attacks (that fall under the FG-I class) change hardware memory and
thus can chain into an NGME. If a vulnerability is reported that does not fall in
the above classes or the source language restriction, it cannot be used to write an
NGME.

4.8 Discussion

GEN presents a new way of looking at bugs and vulnerabilities. This hinges on the
fact that a bug is a deviation from the intended behaviour. This consequently means
that we require some form of ultimate ground truth, which in GEN is the informal
description layer. We cannot identify any issues with the informal description layer,
unless it contradicts either itself or the security standard. Applications that are
impossible in practice (e.g., create an application that concludes whether a given
program will halt) or descriptions that inadvertently result in unwanted behaviour
(e.g., a forkbomb) cannot be captured in this approach.

This issue can become more subtle. As an example, we can build a smart kettle
with built-in thermometer at the bottom. The kettle would automatically turn
off when the thermometer reads 100°C exactly as the informal description says.
However, the user could live high in the mountains where water has a lower boil-
ing temperature. In this case the kettle would keep boiling the water until all is
evaporated, since height affects the boiling temperature of water. This issue in the
informal description does not show in our model, but presents a fire hazard (and
could be called a vulnerability).

This is different from issues due to ambiguity. For example, an informal de-
scription could state that we want a working calculator. One can now question
whether an operation like 5 + ten would be defined or undefined. When the
informal description (or any layer for that matter) can become ambiguous in some
way, the nature of the vulnerability could become ambiguous too. While this could

90

4.8 Discussion

be labelled as an issue of ambiguity, we suggest to always label this undefined-
ness unless explicitly and clearly specified (e.g., what representation of numbers is
allowed).

Abstraction Layers are a source of discussion. Whereas the regular GEN layers
may seem arbitrary, they do provide us with the full breadth of abstraction layers:
from the most informal and abstract representation of the application to a concrete
and observable execution. On top of this, we added 2 distinct layers representing
the human interaction and a potential overlaying policy the application needs to
adhere to. Through this we retain the property of completeness: all bugs and vul-
nerabilities inside an application can be labelled by GEN. The layers in between are
designed to map onto course-grained changes in line with bug-finding techniques,
as explained throughout this work. While the layer definitions can be versatile, the
current layers of GEN are carefully designed for its purpose.

We are aware that most individual software-based projects and deployments
follow a much more fine-grained procedure with additional abstraction layers that
GEN omits. A good example would be to add a virtualisation layer or emulation
layer when appropriate, as they can introduce a completely new group of vul-
nerability types. GEN could be applied with a custom abstraction layer tree that
can become more complex based on the use-case. As an example, the OpenCPI
project [145] considers platform, component and application specifications sepa-
rately. Then it can split the source language layer into multiple parts according
to the language used (RCC, HDL, etc.). Alternatively, OpenCPI “components”
can be handled separately to individually consider bugs within components, and
handling the application layer together with the component specifications where
the implementation is a black box (layer F in GEN). However, these are specialised
environments, which was not the aim when designing GEN.

Notably, we would have a layer in between the informal description and the
formal specification called the “specification” level. Through a layer like this, we
can distinguish between the calculator above and a full RFC-like document that
presents much more detail (and less room for interpretation). Sadly the difference
between the two is hard to define, and it is unclear where to draw the line between
whether a given document would be detailed enough to become a specification
over the informal description. This has led us to decide that documents describing

91

4 The Vulnerability: GENerically understanding them

the applications all fall within the informal description layer.

From GEN, it might seem preferable to keep the number of abstraction layers to
a minimum, since fewer abstraction layers make for fewer translations that could
contain discrepancies. This is unfortunately an illusion, since the set of translations
must all move from one side of the spectrum (the informal description) to the
other (hardware execution). Removing an abstraction layer (in practice) increases
complexity when translating between the other abstraction layers, making those
translations more error-prone. On the contrary, more layers provide a smoother
translation from one abstraction layer to the other, making it easier to identify
translation bugs [87].

A bug-finding technique could still span over multiple translations. This suffers
from the same complexity issue but would be capable of finding a wider range of
bugs. Recent work shows potential, particularly with verification of machine code
in the Formal-Machine-I class(es) [18, 198]. Regardless, we believe the best way to
search for vulnerabilities at this stage is to take separate classes with an appropriate
technique in a divide-and-conquer strategy.

Evaluation. The theoretic taxonomy evaluation is based on a set of criteria orig-
inating from an attack taxonomy evaluation and not intended for a vulnerability
taxonomy. Although the criteria are generic and attack taxonomies often have an
“attack vector” or a “vulnerability” vector, better criteria could exist. The taxonomy
evaluation does contain subjective criteria (e.g., industry congruence, appropriate
hierarchical format) that make it hard to evaluate a given taxonomy. As such, our
self-evaluation on these criteria should be read with care when it comes to the
subjective criteria. One last criterion was not evaluated due to lack of resources
and contacts in industry: repeatability. This is also left as future work.

We categorise the types of vulnerabilities found using one bug-finding technique:
fuzzing. We were unable to extend this evaluation to other techniques that are
generally not publicly available, such as vulnerabilities found through unit testing.
We believe that the nature of the classification gives an intuitive understanding of
this hypothesis for other bug-finding techniques. For example, unit tests are used
to check a given operation for correct behaviour, i.e., when the source code does
not adhere to the supposed behaviour according to the description level. It would
be very interesting to confirm this statistically with other vulnerability types, but

92

4.9 Conclusion

this is left as future work.

Side-effects. With a side-effect the application does as the specification says, but
not solely what the specification says. Side-effects are incorrectness issues in GEN.
This can lead to confusion as it does not align with the notion of correctness in
formal verification. Using Hoare logic [94], the following would be correct:

{L list} sort(L); create_backdoor(); {L sorted}

GEN considers this to be incorrect, as they always come at a cost in both perfor-
mance and additional effects. As such, we do not deem it reasonable to consider
applications correct if other unspecified operations are taking place simultaneously.

To illustrate this, consider a pizzeria that recently switched to an online ordering
system. Someone orders one pizza, but the system mistakenly creates 5 equal or-
ders for said person. 5 pizzas will be delivered where only one pizza was required
(and hence only one will likely be paid for). Although the person ordering a pizza
got their pizza, the pizzeria is left with 4 unpaid pizzas. It is easy to see that the
online ordering system was incorrect in creating 5 orders.

4.9 Conclusion

In this chapter, we presented a new way of looking at vulnerabilities based on
two properties. First, bugs occur when translating between specific abstraction
layers, e.g., when translating source code to machine-readable code. Second, the
underlying cause of the bug can be explained with the IU property, which states
that every bug can be attributed to either incorrectness or undefinedness. The com-
bination of these two fundamental, measurable properties defines different classes
of bugs (RQ2). Furthermore, we deem a bug a vulnerability if it potentially exposes
new data or capabilities. We call our classification model GEN since it GENerically
classifies vulnerabilities. GEN satisfies at least 7/10 criteria (13/15 subcriteria) and
up to 10/10 taxonomy criteria. When labelling bugs found by the AFL fuzzer, GEN
classifies 83.2% of bugs into a single class, showing a clear relation between AFL
bug-finding and the GEN classes. Apart from the inherent uncertainty introduced
by the exploitability property , GEN provides a tangible and clear definition of a
vulnerability with additional explanation on what went wrong.

93

A body of concepts and folk theorems exists in the
community of exploitation practitioners;
unfortunately, these concepts are rarely written
down or made sufficiently precise for people
outside of this community to benefit from them.

THOMAS DULLIEN

Taking Control: Hack the Heap 5
With the uprise of CFI as discussed throughout this dissertation, the attack sur-
face for memory vulnerabilities narrows down to NGMEs. Thus, it becomes more
important to leverage the residual attack surface as effectively as possible. One
common way of doing this is by overwriting data-structures through heap vulner-
abilities.

When faced with a heap vulnerability, a key step for an attacker is to overwrite a
useful data structure, e.g., a function pointer, data pointer or an authenticated

flag (to bypass authentication), to enhance control over the application. Changing
the heap layout so the vulnerability overwrites a chosen data structure of choice is
known as the Heap Layout Manipulation (HLM) problem.

The HLM problem poses several challenges. First, the memory layout for each
heap manager is complex, and any heap interaction can completely change the
placement of subsequent memory requests. For example, allocating a chunk of
memory and immediately freeing it can affect the location of the next allocation.
Second, implementation differences between different heap managers can result
in different heap layouts for the same application. For example, the commonly
used Linux heap manager PTMalloc2, Windows’ heap manager LFH and TCMalloc
(used by e.g., Google Chrome) work very differently internally. Thoroughly under-
standing the heap managers’ behaviour is therefore vital for HLM, but also ex-
tremely time-consuming and error-prone. Third, the heap does not have a generic
target to overwrite apart from the heap metadata, and metadata targets can be
easily protected [141, 71]. Hence, we need to find memory chunks with data we
want to overwrite, for example with the approach of Roney et al. [157].

In automatic solutions [92, 93, 203], a fourth challenge arises. More often than
not, the HLM problem is a single step in the bigger picture of creating the exploit.

95

5 Taking Control: Hack the Heap

Thus, not only does the HLM problem need a solution, it needs an explainable
solution, so the exploit writer is not left with an opaque solution that needs to be
reverse engineered before they can proceed.

In this chapter, we draw parallels between the HLM problem and traditional
puzzles. From our perspective, the HLM problem shows many similarities with
classic puzzles, where solving a puzzle requires logical reasoning and thinking
ahead. Puzzle games have been used to successfully crowd-source solutions to
complex scientific problems in other domains [199, 200, 44]. Key to the success is
to make the game challenging and fun while retaining the original goal of creating
scientifically meaningful results. Besides, the visual nature of puzzle games often
makes the solutions they produce easy to understand and interpret.

We propose “Hack the Heap”: an online puzzle game that can represent both
synthetic and real-world HLM problems in a visual puzzle format. Hack the Heap
(HTH) can be played by anyone regardless of knowledge about the heap, memory
or any background in computing or computer science. HTH contains an extensive
tutorial system to teach a player how heaps work interactively. HTH does not
introduce any computer science terminology or other irrelevant complexity, so any-
one can play. In this way, we teach new players intuitively how HLM works and
what constraints limit the exploit writer in practice with synthetic puzzles. At the
final level of HTH, players can solve puzzles generated from real-world programs,
empowering them to successfully perform the crowdsourced tasks by gathering
solutions over time. Once solved, the exploit writer can replay the solution(s) in
the game interface to see how each solution works and choose the solution that
best fits the conditions for exploit writing.

Attacker Model

Without loss of generalisation, we assume that the application under attack is hard-
ened with Write-xor-eXecute (Section 2.5) and CFI. Furthermore, we assume that a
vulnerability exists within the application that led to an invalidation of the full
memory safety property (Section 2.2.2), specifically on the heap. Note that the
combination of the above means that the exploit will become an NGME. We also
assume that the attacker can reasonably either create a predictable heap layout (e.g.,
by causing a crash leading to a restart) or has the ability to learn the layout (e.g.,

96

5.1 Hack the Heap: The Game

through an ARP). The attacker can interact with the heap by sequencing different
operations, where the goal is to overwrite a target of choice: a data-pointer for
example. Finally, we assume any non-deterministic behaviour by either the heap
manager or the application does not lead to a non-replayable solution. As an
example, the Windows heap manager LFH is non-deterministic by nature but can
be abused to become deterministic [193, 159]. All of the above are either implicitly
or explicitly in line with previous work [203, 93, 92]

5.1 Hack the Heap: The Game

In order to solve the HLM problem, we propose an online puzzle game for anyone
to play, where the puzzle board is a one-dimensional jigsaw puzzle representing
the heap. Considering that HLM is only one aspect of writing an exploit (or even
one aspect of the control phase), it needs to work on behalf of the exploit writer,
explaining the solution. The user requires a level of control to make sure that (1)
the operations performed in the solution and their ordering make sense; (2) the
resulting state of the application (and of the heap) is clear to the user; and (3) the
state of the application after the HLM problem is solved is useful for continuing the
exploit.

In short, we formulate the following requirements:

R1. The approach should work on a wide range of applications, regardless of
application type, complexity or availability of source code.

R2. The approach should not be limited to a specific type (or types) of heap
manager.

R3. The approach should not fundamentally discard parts of the solution space
to simplify the problem without the ability to return to the original solution
space if a solution is not found.

R4. The approach should provide insight into the HLM solution(s), providing all
the necessary tools to the exploit writer to continue writing the exploit.

97

5 Taking Control: Hack the Heap

Figure 5.1: A screenshot of the heap puzzle game being played. The numbers correspond as
follows: 1. is the playing board (or heap memory space if you like). 2. shows all operations
that can be performed at the current stage of the game. 3. shows all requirements of
operations before said operation can be used. 4. shows additional details about the puzzles.
5. is a link to the tutorial where the player can level up.

5.1.1 Design

The puzzle board as shown in Figure 5.1-1 will be filled with “puzzle pieces”,
equivalent to chunks allocated on the heap through a call to malloc(). In order to
place the puzzle pieces on the puzzle area, a player performs operations by clicking
buttons, as shown in Figure 5.1-2. These operations represent operations in real-
world programs, such as invoking an API call. Operations consist of one or more
calls to functions of the malloc-family (such as malloc, calloc, realloc,

free, etc.).

The goal in the game is to place the bugged and target puzzle pieces next to each
other in the game, representing a heap overflow (or underflow) into useful data.
To add to the intuition of the game, we simply call these pieces the “left” piece
and the “right” piece instead of bugged and target pieces. In Figure 5.1, the last
piece (called “harmful”) is a right puzzle piece, representing a target in the HLM
problem. If this puzzle piece ends up on the right, adjacent from the piece with the
left marker, the puzzle is solved.

98

5.1 Hack the Heap: The Game

Figure 5.2: This is the HTH Mascot that guides the player in the tutorial. It also shows up
to congratulate the player when successfully solving a puzzle, and when the user thinks
that the puzzle is impossible to solve.

5.1.2 Levelling up

To dive straight in the game can be hard for people without intrinsic knowledge
about heap internals. As such, we built a level-based system with tutorials to
aid people in playing the game and progressing. Our mascot explains the game
with the most basic primitives to be able to play the game (see Figure 5.2). For
example, only a basic overflow without additional requirements will be presented.
Furthermore, puzzle piece placement is done with “first fit” logic, meaning that
every next piece will be placed on the left-most fitting position. At the end of this
tutorial, the player will be presented with a challenge. Solving the challenge will
progress the player to level 1 as shown on the left-hand side of Figure 5.1.

At this point, the player can play various level 1 puzzles. If the player wants a
new challenge, they can press the “level up” button (as seen in Figure 5.1-5). This
starts a new tutorial about a new concept (e.g., a new attack type), followed by a
new challenge using this new concept. Solving the challenge will again progress
the player towards the next level, where they can play puzzles that could include
the new concept. We chose this design to let the player decide when it is time to
progress further, as different players prefer different speeds before feeling confident
within the full extent of each level. In practice, the real challenge is introduced after
each level up. Specifically, when playing the regular challenges that include the
new concept. The level-up challenge functions as minimal check on the skill of the

99

5 Taking Control: Hack the Heap

Level Concept introduced
Level 1 Basics (First Fit, Overflow)
Level 2 realloc() action added
Level 3 initialisation function added
Level 4 Next fit
Level 5 Best fit
Level 6 memalign() action added
Level 7 Overflow upon freeing
Level 8 List fit (free lists)
Level 9 Overflow upon allocating
Level 10 Direct pipe to real-world Service fits (e.g., ptmalloc2, jemalloc)

Table 5.1: Different levels in HTH with concepts introduced at each level

player, and as stimulus and excitement trigger to the player. In other words, players
can decide their own pace. What type of puzzle is played is shown on the left of
the players’ screen (Figure 5.1-4). The concepts introduced at each level are shown
in Table 5.1. We discussed the educational design in more detail in Section 2.6.1.

Upon hitting level 10, a PTMalloc2 fit will become available that does not sim-
ulate its behaviour. Instead, the backend will perform every requested opera-
tion using PTMalloc2 and record its behaviour. The results are fed back into the
puzzle game so we can ensure a correct representation of the problem. We cur-
rently support PTMalloc2, DLMalloc, TCMalloc and JEMalloc. This is where the
approach switches from educational to a crowd-sourcing platform: we empowered
the player to perform HLM and start presenting real-world HLM problems to them.

5.1.3 Visualisation Challenges

The puzzle game shows heap chunks as arrow-like puzzle pieces in different
colours. Multiple issues arose in the design of this memory bar. First, we wanted
the size of each puzzle piece to reflect its actual size (in bytes). The initial design
scaled the different puzzle pieces to their actual size, but this proved unhelpful.
Allocation sizes in real-world scenarios stretch over a wide range, creating exces-
sively large chunks. Smaller chunks also became too small to fit all the information
(name, amount of bytes, identifier, left/right marker). In some scenarios, puzzle
pieces became too small to fit in the arrow-like structure, completely breaking the
visualisation. This was solved by setting a minimum size of a puzzle piece (the

100

5.2 Generating Puzzles

“step” piece in Figure 5.1). In our current design, the size of a puzzle piece grows
logarithmically, so a 1024 byte piece is 4 times as large as a 1 byte piece. With
this solution, we cannot scale all the puzzle pieces anymore to fit in the memory
bar. Thus, when the bar fills up completely, a second bar is created on the fly
underneath. The player can either decide to scroll inside the memory bar or drag
the bar down so multiple bars are shown at the same time. This is especially useful
when analysing larger applications.

A second challenge is that operations can appear and disappear on the fly, even
when performing seemingly unrelated operations. Consider a simple model with
three operations: x=malloc(128); realloc(x,512); and free(x). Upon per-
forming the first operation, new instances of the realloc operation and the free
operations will appear. Yet, when freeing the heap chunk, the realloc operation
is not valid anymore. These conditional operations are shown on the left-hand
side as puzzle details (Figure 5.1, label 3). Puzzle details include which operations
create new types, what each operation requires to be executed, and what it may
remove (potentially rendering other operations invalid). When searching for other
operations to perform, players can always consult this to see what they can do to
gain new operations and/or not to lose operations.

Finally, users experienced issues when operations caused changes to the heap
they did not expect. In particular, it took time and frustration to find what new
puzzle pieces had appeared where, and as a result they often got lost in the new
scenario. Hence, we decided to highlight all new puzzle pieces after an operation
is performed. This helped the players track their actions while playing the game,
making the game significantly more intuitive. Do note here that although the
representation might visually be not as accurate as possible, in no way it affects
the correctness of the problem space, nor does it affect the solution space.

5.2 Generating Puzzles

In order to play the game, we need puzzles. The HTH game consists of both
artificially created puzzles and real-world (recorded) puzzles. Both are represented
in the same format when playing the game.

This format as follows:

101

5 Taking Control: Hack the Heap

Operating System

Application HTH Library Shared Libraries

Recorder Refinery Puzzle

Back end

Front end

Player

Synthetic
Generator

PTMalloc2 svc

TCMalloc svc

...

Puzzle Generation Player Interaction Backend Services

Figure 5.3: The full infrastructure, split in three boxes. The left box describes the generation
of real-world puzzles. The middle box describes the user interaction with the website,
playing the HTH game. The right box describes the additional services running on the
back end of the webserver. The blue colour denotes aspects we developed, whilst yellow
shows systems untouched.

[magic] [Fit] [Attack] [heapsize]T [operations]

For example, using the first fit technique (F), attack with an overflow on allocat-
ing the overflowing object (OFA) on a heap of size 8096 bytes, we get the following
header:

HPM2/FOFA8096T...

An operation is represented with a name followed by a colon, from where every
action is listed. Operations are delimited with a period to denote the start of the
next operation. Initialisation operations (that are invoked at the start and cannot be
invoked by the user) have an additional period in front of its name.

Each action starts with a number representing the type of action (see Table 5.2,
followed by a tag that represents its flow. The tag tells for example what memory
chunk needs to be freed. Finally, we add a name with a colon where required,
followed by its arguments, in between brackets. As an example, an operation with
name “Operation” that allocates 128 bytes and resizes it to 512 bytes afterwards
looks as follows:

Operation: 1A(newchunk:128,1) 3A(:512)

The game system automatically recognises which operations can be executed
when and what chunk needs to be altered. The context-free grammar of the puzzle
format is available in Appendix C.

102

5.2 Generating Puzzles

Number Action Args Name
0 malloc 1 Yes
1 calloc 2 Yes
2 memalign 2 Yes
3 realloc 1 Optional
4 free 0 No
5 mallopt 2 No

Table 5.2: Actions used by the puzzle format. Realloc naming is optional and renames the
memory chunk.

5.2.1 Artificial Puzzles

Most puzzles that represent a real-world problem are relatively complex and hard
for new players to get into. For example, most real-world puzzles only make sense
using a real-world heap manager, but a real-world manager only gets introduced at
level 10 (see Table 5.1). For educational purposes, we present easier synthetic puz-
zles until then. We generate puzzles for the different levels according to Table 5.1.
Puzzles are generated based on a range of options (e.g., what fitting technique will
it use) and weights (e.g., creating more mallocs over memaligns).

Yet, this is unfortunately not enough to generate interesting puzzles. For exam-
ple, if the “bugged” piece(s) and the “target” piece(s) only appear in the initiali-
sation function, then there is no point in playing. Similarly, if the total size of the
heap is too small (or too large to perform heap spraying), it can render the puzzle
impossible or become increasingly frustrating respectively. On the other hand, if
a target allocation directly follows a bugged allocation, its solution is trivial and
does not challenge the player. All these corner cases are checked when creating
puzzles to ensure the best quality synthetic puzzles and keep the player engaged
with the game and the learning process, until players are ready to be challenged
with real-world scenarios.

5.2.2 Real-world Puzzles

Ultimately, the HTH game has to be used on real-world applications, as an HLM so-
lution to a synthetic puzzle bears no significance. In order to play real-world HLM
problems, we developed the HTH recording framework: a UNIX-based framework
that can record heap usage of real-world unmodified applications using any heap

103

5 Taking Control: Hack the Heap

manager to turn it into a puzzle. This is done in two steps, as shown on the left-
hand side of Figure 5.3. First, we record all calls to the heap manager and save this
as a raw trace. This trace is then given to the Refinery, which turns it into a playable
puzzle.

Recording Heap Usage. In order to record all heap usage, we preload the HTH
library. This library implements wrappers for all functions from the malloc family,
to not alter the original program. Instead, it is preloaded with the LD_PRELOAD

environment variable to make sure our wrapper-functions get called. The wrappers
collect function arguments, return value, return address and the pid among others.
This information is sent through a message queue to the HTH Recorder. The HTH
library contains additional optional functions that can be used when linking the
application to the library (i.e., if the source code is available). These functions can
mark particular mallocs with a custom name or type (bugged/target) statically,
where this is marked in the recorder for later use. Alternatively, we offer this
information manually, either by passing additional information to the Recorder
interface or by manually altering the output later. On the first invocation of any of
the overridden (or additional) functions, the library also attempts to locate the main
function address. This is sent alongside the PROCESS_START keyword to mark a
new execution, to calculate the ASLR offset. For the same reason, any dynamic
library used (that invokes our wrapper library) will be sent to the HTH Recorder.
Together, this can be used later to leverage DWARF debug information (if available)
to automatically determine the original variable name as used in the source code.

The information is captured and saved by the Recorder application. The Recorder
can be controlled through a CLI, to run the target application, name and mark the
start of various operations, interact with the target application through stdin and
so on. This can be further automated with configuration files. Listing 5.1 shows an
example Recorder output file.

The Refinery. We first need to split the recording based on the application’s
process ids/pids. For multiprocessed applications, any allocation before forking is
present in both pids. After each fork, the heap layout will diverge depending on
the pid we trace. As an example, Listing 5.1 line 9 shows a fork into a new pid:
81649. The subsequent call to malloc(4096) on line 10 is executed on this new
pid. Similarly, the calls to realloc (line 12) and free (line 14) are not present in

104

5.2 Generating Puzzles

1 SET target ./application
2 START
3 NEXT init
4 PROCESS_START
5 DYNAMIC /lib/x86_64−linux−gnu/libc.so.6
6 @ 0x7fe454ad1000 @ 0

7 MALLOC(128) @ 0x4011a9 = 0x99e2a0 @ 816848

8 MALLOC(1024) @ 0x7fe454b55e84 = 0x99e330 @ 816848
9 FORK 816848 −> 816849 @ 816848

10 MALLOC(4096) @ 0x7fe454b55e84 = 0x99e740 @ 816849
11 NEXT interact

12 REALLOC(0x99e2a0 , 512) @ 0x401220 = 0x99f750
13 @ 816848

14 FREE(0x99f750) @ 816848
15 END

Listing 5.1: Recorder Output

this child process. In the parent process trace, we do not want this malloc(4096)
to appear. Splitting the file leaves us with one output file per pid, from where we
can decide which to process.

These single-thread files can then be processed by the Refinery. In short, the
Refinery parses the raw data into lists of heap actions per operation. In the parent
process of Listing 5.1, this would be an init operation containing everything up
to the FORK command, and an interact operation as denoted on line 11 (by the
NEXT operation keyword) containing the realloc and the free. Afterwards, it
traces the path each allocation makes (by tracing the return values) and labels each
path with a unique label. The label tracks which frees and reallocs correspond
with which earlier operations. This trace is colour-coded in Listing 5.1. Here we
have three heap traces — yellow, pink and green — where the green one shows
a longer trace of a malloc, a realloc and finally a free. In turn, it shows the
dependencies, as every free requires the chunk to be allocated. After performing
the interact operation, we cannot perform this again as the green trace has
ended. Once we have the operations and labels, we generate a puzzle that can
be played on the website.

Some real-world puzzles perform a very large amount of heap-related operations
before the user interacts with the application, dubbed the initialisation operation.
This is referred to by Heelan et al. [92] as noise: heap allocations that we cannot

105

5 Taking Control: Hack the Heap

interact with throughout the course of heap manipulation. In some instances, it
adds a burden to the person performing heap layout manipulation (i.e., adding
difficulty to the puzzle). In other scenarios however, it adds “noise” to the visuali-
sation and processing only, making it confusing to the player and adding significant
loading time. To minimise this, the Refinery can remove some of these actions. In
order to remain realistic and conservative, it only removes the middle allocation of
three (non-bugged and non-target) allocations if all three are not freed throughout the
execution. This simplification technique is optional and henceforth refer to this as
the “simplified” puzzle.

5.3 Implementation

The game runs on a small Apache2 webserver, available to anyone at https:
//hacktheheap.io/. Besides the webserver, the game uses a database for saving
(generated and submitted) puzzles and results. The puzzle game is implemented
in TypeScript ES2015 and consists of approx. 5 KLoC. The layout is made with
HTML5, CSS3 with Bootstrap and flexbox. The backend of the puzzle game is
written in about 1 KLoC Python3 and C. The Heap recorder, library and refinery
are written in C and Python3, consisting of approximately 2 KLoC.

5.4 Evaluation

The goal of our evaluation is to show that we can represent and solve real-world
HLM problems in the HTH puzzle. We evaluate the HTH infrastructure by gen-
erating puzzles from vulnerable applications. Afterwards, we attempt to solve the
puzzles, solving the HLM problem for each heap vulnerability. The solution to the
puzzles are applied to the original application to confirm it is a real solution to the
HLM problem. All tests are performed on a 64-bit Ubuntu 18.04 VM with 4 cores
and 8 GB of RAM, using the HacktheHeap.io website.

We first discuss a synthetic example application, taken from a Capture the Flag
(CTF) challenge. Afterwards, we discuss the real-world application of Hack the
Heap through 3 CVEs in NJS, the NGINX webserver’s backend Javascript module.

106

https://hacktheheap.io/
https://hacktheheap.io/

5.4 Evaluation

30 typedef struct {
31 uint16_t id;
32 uint16_t content_len;
33 char *content;
34 } blob_s;
35 [..]
36 fread(&(new_obj->id), sizeof(uint16_t), 1, fp);
37 fread(&(new_obj->content_len), sizeof(uint16_t)
38 , 1, fp);
39 new_obj->content = malloc((uint16_t)
40 (2*new_obj->content_len));
41 fread(new_obj->content, 1, new_obj->content_len,
42 fp);
43 fclose(fp);
44 new_obj->content[new_obj->content_len] = ’\0’;

Listing 5.2: Code snippet of the CTF challenge with an integer overflow on line 39–40.

5.4.1 Case Study: Synthetic Example

In our first case study, we use a synthetic example from a non-public CTF challenge.
The application provides us with a small interactive shell that can save strings on
a given index. In this shell, we can perform various operations such as create a
new object on a given id, edit the string, save the object to a file or load from a file.
The developer arguably tried to avoid buffer overflows while loading an object by
mallocing exactly double the given content-length, creating an integer overflow.
The trimmed code is shown in Listing 5.2, showing this vulnerability on lines 39–
40.

When a content length is set over half the maximum size of a uint16_t, the cal-
culation on line 40 will cause an unsigned integer overflow. Afterwards, lines 41–42
will cause a heap overflow on the malloc-ed memory. In puzzle game terminol-
ogy, this means the puzzle piece created will be a “bugged” piece.

Next up is the question of what to target. Each object consists of an id, the content
length and a pointer to the actual content — which is separately allocated. We
aim to overwrite the content pointer of a separate object. If we can overwrite this
pointer with a pointer value of our choice, we obtain an arbitrary write primitive.
This can be used to overwrite the saved instruction pointer, a GOT table entry or to
e.g., write a ROP chain onto the stack.

We record the various operations producing a recording similar to Listing 5.1.
This is run through the refinery to create a puzzle to be played on the website.

107

5 Taking Control: Hack the Heap

Playing the puzzle shows that we first need to perform a file read operation before
allocating the target, then delete the first read before reading the overflowing piece
from a file. We can perform this in the original executable to gain the arbitrary write
primitive. We finalise the exploit by overwriting the saved instruction pointer to
point to a shellcode and gain a shell.

5.4.2 Case Study: NJS

NJS is a limited version of JavaScript, written to extend the functionality of the
NginX webserver. In 2019, NJS was fuzzed by various fuzzers including Fluff, a
JavaScript fuzzer by Samsung [68]. This lead to multiple CVEs, notably heap over-
flow CVEs CVE-2019-11839 [53]; CVE-2019-12206 [54]; and CVE-2019-13617 [55]32.
NJS is a particularly interesting case study as the amount of frees are limited
within the user interactions. All CVEs have been patched.

In preparation for puzzle generation, we marked the allocation functions for ob-
jects that start with a pointer as target allocations. We use only allocations of objects
that start with either a data pointer or a function pointer, so that an overwrite either
creates an arbitrary write primitive or control-flow hijack respectively. Further-
more, the vulnerable version of NJS did not contain any functionality to recognise
what heap action (e.g., mallocs/frees) corresponded with what line of JavaScript code. We
wrote a small JavaScript module (of approx. 50LoC) to send additional messages to
the recorder module (see Figure 5.3), marking the start of each individual JavaScript
command. Using this, we can see what exact heap actions are performed with
each line of JavaScript code. Finally, we marked the ‘bugged’ allocations for each
of the CVEs (in separate runs), i.e., the allocations read/written to outside of its
boundaries.

A variety of JavaScript commands were chosen as different operations to create
the puzzle, each of which contain one or more calls to malloc/memalign/free,
to present the player with a set of operations to alter the state of the heap. These
always include one or more operations (i.e., lines of JavaScript code) that create
bugged or target allocations. Every puzzle is available on the website to be played.

CVE-2019-11839 is a heap overflow on JavaScript arrays. When an array is cre-
ated, space for an amount of (empty) elements is allocated with an internal size
32CVE-2019-13617 was found through libfuzzer, the others by Fluff.

108

5.4 Evaluation

variable. If an element is added to the array, it will check if there is still space
available. If the allocated space is completely occupied, it will be reallocated into
a bigger heap chunk. Alternatively, the first empty space will be used to store the
new element. The array.prototype.shift operation removes an element from
the beginning of the array, and is implemented to move the pointer of the start
of the array one element forward. It failed however to update the internal size
variable, as there is one element fewer that will fit inside the array at this point. A
number of shifts on an array would cause its actual space to become far less than
its internal size variable. Elements added at the end beyond its actual remaining
size would erroneously not trigger a reallocation of the array, but instead cause a
heap overflow until the size variable is exhausted.

Upon playing the simplified puzzle, we found a solution: First, we create a new
array that we fill with elements until a resize takes place (10). Afterwards, we create
a small regex object to fill up empty spots in the memory layout, before creating a
JavaScript object. Internally, the JavaScript object starts with a data pointer that
becomes directly adjacent to our array. A series of shifts will now misalign the
size and free space as explained above, and subsequent pushes to the array will
overwrite the data pointer. The resulting heap layout is shown in Appendix D.

Performing the solution on the non-simplified puzzle shows that the same heap
layout is achieved, confirming that the simplification did not alter the problem
space nor its correctness, while purging 1119 allocations. However, context on how
the results are achieved is important to an exploit writer, as this example clearly
shows — the exploit writer can analyse the solution in the non-simplified puzzle,
even when the simplified version is used to solve the puzzle. When writing a
JavaScript file with the above solution, the desired heap layout is not achieved,
as the JavaScript parser now creates a slightly different tree (with a different ini-
tialisation function, as our puzzle game is considered). A knowledgeable exploit
writer does however see that this issue is easily solved by filling the gaps left with
a few malloc calls. Rerunning the HTH Recorder on this new solution shows that
the bugged heap chunk is directly followed by the target heap chunk.

CVE-2019-12206 arises when transforming strings to uppercase or lowercase vari-
ants. In particular, these functions do not distinguish between the byte size of a
UTF-8 encoded string and its string length. For characters with a representation

109

5 Taking Control: Hack the Heap

requiring more than one byte in UTF-8 (e.g., “è”), the string length becomes smaller
than the byte size of the string. The new heap buffer created for said string (based
on the string length) will be too small to fit all the bytes, leading to a heap overwrite.
In contrast to the previous puzzle (from CVE-2019-11839), the overflow here occurs
directly after allocating the ‘bugged’ memory chunk. In other words, the target
chunk already needs to be in place when the bugged chunk is allocated, and cannot
be allocated afterwards as it will overwrite the overflow data. This mode is the
“Overflow upon allocating”: level 9 in the HTH tutorial.

In this instance, we created an array and filled it until it grew once. Afterwards,
we created a second, empty array to fill up the gap left from the resized first array.
Next, we placed a target puzzle piece: this time we used a compiled regular ex-
pression object as target. The first fields of the compiled regular expression in NJS
contains function pointers to malloc and free, to be used when performing a search
with the regular expression. Overwriting these fields would give the attacker the
power to call any executable section available.

To finalise the HTH solution, we grow the array again, creating a gap in front
of the regular expression object. We finally transform a large UTF-8 string (with
enough multi-byte characters) into lowercase, to overwrite the malloc function
pointer into a value of choice. Here too, this solution is repeated in the non-
simplified version and confirmed to produce the same results. In the same way, the
solution in JavaScript code presents us with the desired heap layout for exploita-
tion. A random search would have taken on average 84 days, see Appendix E.

CVE-2019-13617 performs an overread when the lexer throws an error. Hence,
it occurs during error handling upon parsing the JavaScript file (and hence before
interpreting the actual code). Using our solution, this means that the bugged al-
location occurs before any operation can be performed (and the application halts
before that). Although the lexicographic differences can alter the heap layout when
this vulnerability is triggered, our solution does not provide the necessary toolset
to find an HLM solution. Within the puzzle, no operations are available (because
it halts before any of the operations are executed) and the vulnerability is only
available in the initial operation, before the player can perform any action at all.

110

5.5 Discussion & Future Work

5.5 Discussion & Future Work

In Section 5.1, we specified 4 requirements for our solution.
R1: Our solution works on a wide range of applications. We do assume interac-
tions can be represented as different HTH operations in a reasonable33replayable
manner. The main bottleneck of HTH is the players’ browser and internet speed
when puzzles are large.
R2: HTH supports four heap managers, and the HTH game and its recorder design
is heap manager agnostic. This does mean that repeatability remains an issue in
non-deterministic heap managers, as a solution may need to be repeated many
times for the same result.
R3: The Recorder performs only one simplification that does not change the prob-
lem space and hence does not lead to any inaccuracies. Even in the case of dis-
trust towards this or potential future simplifications, they are not fundamentally
required to find a solution to the HLM problem. Just like within the evaluation, the
non-simplified version of the puzzle can be used to replay (and verify) the solution.
R4: Our solution visualises the heap, providing insight into the heap layout. Differ-
ent players can find different solutions, that show exactly how and why the solution
works. The exploit writer can choose whichever solution works best to continue
exploit development.

HTH could benefit from automatic solutions. For example, finding targets could
be done by the solution as proposed by Roney et al. [157]. Marking the vulner-
able section can be automated, for example using vulnerability patches as done
by Brumley et al. [21]. Finally, automatically extracting operations can be done
through e.g., fuzzing [207, 68] or symbolic execution [203]. We leave the full imple-
mentation of this as future work.

User experience. It would be interesting to further evaluate several aspects
of the game’s user experience. In particular, user understanding of the game;
their enjoyment; their ethical understanding (i.e., making sure they understand
that playing it is not unethical); and repeatability (i.e., the likelihood of players
returning). While this has been done informally on multiple occasions throughout
the development of HTH, no final user experience evaluation has been performed.
33As an example, the run-time parsing changes in the NJS evaulation were not exactly replayable,

yet accurate enough to not prove a burden.

111

5 Taking Control: Hack the Heap

Recorder Extensions. Our evaluation shows part of our limitations as CVE-2019-
13617 could not be solved with our work. This is because our methodology uses
post-startup operations as interactions, which the CVE did not have. It could be
possible to create HTH puzzles by having multiple runs of the application with
slightly different initial inputs (e.g., parameters or environment). Comparing the
different raw output files could allow to gather the heap-related effects and turn
them into suitable operations, synthetically building the expected heap interaction
sequence.

Game Extensions. The HTH game can be extended in a variety of ways. As
mentioned, HTH could benefit from additional heap manager services, running
e.g., ZEND or LFH. Further, HTH can be extended with temporal memory attacks
(e.g., UaF or use-before-init attacks) to support other types of vulnerabilities, or to
add a distance “success” metric from bugged to target piece.

5.6 Conclusion

We presented a solution to the heap layout manipulation problem by posing the
problem as a visual puzzle game. Through the actual usage and probing of a given
heap manager, we succeeded in creating a heap manager agnostic solution (RQ3).
The game can be played online through a browser and is described in layman’s
terms with an extensive tutorial system. We also presented a heap recording infras-
tructure, where the heap interactions of real-world applications can be recorded.
Applications with a spatial heap vulnerability can be recorded and turned into a
puzzle, where the solution to the puzzle represents an accurate solution to the heap
layout manipulation problem. We showed its real-world usage and limitations
through different CVEs, with solutions that remained correct when applying them
to the application. The game also serves as a severity assessment: a solved real-
world puzzle is a very beneficial scenario to exploit writers, as an overwrite or
overread into memory of choice can go a long way in exploit writing.

112

The Payload: System Call Argument
Integrity 6
Data-only attacks are performed when many control phase mitigations are in
place limiting the control phase, most significantly CFI. While gaining Turing-
Completeness (TC) is theoretically possible [98] with data-only attacks, Arbitrary
Code Execution (ACE) remains limited [109]. For exploit writing, gaining ACE in
the control phase is generally not necessary — as long as the required payload is
executed. In some examples ACE had not been achieved, but the right interaction
was found to successfully execute the payload. Notably, the data-only attack in
Nullhttpd [32] can spawn a shell and the ProFTPd attack [34] reads out a private
key.

Existing solutions against data-only attacks protect the data from tampering but
suffer from a large performance overhead. To limit the performance overhead,
defences have tailored the data protection towards what they deem important to
protect, as discussed at the end of the timeline in Section 2.5.

We believe the crux of protecting against data-only attacks lie within the gateway
to functionality: system calls. Any application requires system calls to implement
their input and output. For exploit writers to impose their behaviour upon a vul-
nerable application, system calls are required that provide the functionality that the
exploit writer wishes. In the context of data-only attacks, functions that implement
these system calls need to be called with a “natural” appearance. Availability
of these system calls cannot be avoided without severely restricting the allowed
functionality of an application [12]. Yet, it is the tampered data in the exploit that is
used as system call argument(s) which turns the benign and intended behaviour into
the payload.

113

6 The Payload: System Call Argument Integrity

To prevent this, we propose System Call Argument Integrity: a practical miti-
gation technique for protecting against data-only attacks. System Call Argument
Integrity protects the data-flow of exactly those system calls an exploit writer is
likely to use. To be specific, it enforces memory segmentation between security-
sensitive system calls and the remaining data-flows through Intel MPK [46]. In-
tel MPK is already available on the market for multiple years and provides fast,
thread-specific protection against memory-based attacks. As opposed to existing
solutions, only sensitive flows require instrumentation. When MPK-enabled hard-
ware is not available, we present alternate protection schemes using mprotect or
Software-Fault Isolation (SFI). On top, our solution requires no kernel modifica-
tions or instrumentation of shared libraries.

6.1 Threat Model & Requirements

In this chapter, we propose a solution against data-only attacks: attacks that are
possible in the case of strong CFI protection. Thus, we assume mitigations against
control-flow attacks are in place (i.e., forward CFI and a shadow stack). To be exact,
we assume no illegal control-flow occurs. Memory cannot be both writable and
executable (NX), as this could break the CFI solution, and the address space layout
is fully known to the attacker. While this may be an overestimation of a typical
attacker’s knowledge, our threat model forces us to protect against sophisticated
attacks. This is consistent with previous work [109, 79]. Finally, we assume the at-
tacker has an AWP that allows the attacker to overwrite arbitrary memory locations
with a value of its choosing at a certain point in execution.

There are two cases of exploits we do not consider. First, we consider only
data-only attacks arising from memory safety violations. If the user input al-
ready goes straight into the system call (For example, command injections like
Shellshock/CVE-2014-6271 [52]), data-flow integrity will not block this attack.
Secondly, we do not consider the semantic importance of variables from within
the program. If the program contains an “authenticated” flag or a private key for
example, it may be a good attack vector. We consciously refrained from protecting
flows with semantic significance, in order to keep this approach fully automatic
and readibly deployable. This is reflected in our attacker win condition.

114

6.1 Threat Model & Requirements

Attacker win condition. In our model, we focus on attackers whose goal or win
condition is to gain control over the underlying system with the user privileges of
the application being attacked. Gaining control in this context is a broad goal that
includes gaining remote access on the target machine or switching to an account
with new privileges. We refer to this win condition as a Privilege Escalation Prim-
itive (PEP). This model therefore excludes data-only attacks that compromise the
application itself (e.g., to leak its sensitive data) but do not (directly) seek to control
the rest of the system.

6.1.1 Design Requirements

Given our threat model, we next define the requirements for a good solution.

(R1) Minimal Developer Effort: To maximise impact, mitigations should be compati-
ble with legacy applications. For legacy applications, we consider solutions requir-
ing any developer effort or annotations beyond recompiling the application to be
impractical. Furthermore, any mitigation must not affect the program semantics
(i.e., the program should not break under normal use).

(R2) System Compatibility: The solution should be easily deployable. We therefore
require no kernel modifications or custom hardware extensions. In addition, we
aim to avoid modifications to dynamic linked libraries.

Intel MPK places a limitation on system compatibility, but MPK supporting ma-
chines are already available and no customisation is necessary beyond this. We
believe that a hardware-enforced mechanism is in line with previous protection
mechanisms such as the NX bit/DEP [186] and soon CFI [120].

(R3) Security: Any proposed solution must significantly improve security with respect
to the threat model. This means preventing attacks that are possible with mitigation
techniques like CFI in place. Although we trust the kernel, dynamic libraries may
be abused by attackers [57, 56], and any solution must therefore protect against
vulnerabilities within dynamic libraries.

(R4) Acceptable Overhead: A mitigation technique is only viable in practice if its
performance overhead is reasonable in a production setting34.

34We purposefully do not mention any concrete numbers here, as this is not an objective
measurement. An extreme boundary may be the average DFI overhead of 104% [28].

115

6 The Payload: System Call Argument Integrity

6.2 System Call Security

Within an application, various different data-flows exist that do not interact with
each other. When performing a data-only attack, the AWP connects the source
of the write primitive to an arbitrary data-flow where such interference was not
intended to exist. In practice, some data-flows are more security-sensitive than
others. The goal for data-flow integrity is to block the malicious data-flow interfer-
ence into a security-sensitive flow [28]. In particular, data can flow into a system call
argument that is used to perform an operation that is of interest to attackers.

This is why we present System Call Argument Integrity (SCAI), a form of data-
flow integrity tailored towards system calls. Since any user-space process does
not have any in- or output without system calls, the key reasoning is to protect
the arguments of system calls against tampering from adversaries. This prevents
malicious interaction with the underlying system and thus with the outside world.

6.2.1 Security Sensitive System Calls

We hypothesize that not all system calls are used or even usable by attackers. In
order to validate this hypothesis and to determine which, we performed a three-
fold analysis. First, we analysed the system call usage of 274 shellcodes. Then we
looked at proof-of-concept exploits in published work. Finally, we manually went
over all system calls on Linux x86-64 to exhaustively separate security-sensitive
system calls from harmless ones.

Shellcodes. Shellcodes contain generic, transferable payloads and thus fall within
our threat model. To understand the usage of system calls in shellcodes, we anal-
ysed 239 shellcodes for x86 and 35 shellcodes for x86-64 using the shellcode
database from shell-storm.org [161]. For every shellcode, we counted the
different system calls used. When a system call occurs multiple times within the
shellcode, this does not influence the total count and is counted a single time. The
results are shown in Appendix F.1 for x86 shellcodes and Appendix F.2 for x86-64
shellcodes.

Although many system calls are available35, the tables clearly show a small sub-
set of system calls: ±30 different system calls are being used in at least 2 shellcodes.

35382 on the Linux master branch at the time of writing [189]

116

shell-storm.org

6.2 System Call Security

Moreover, both tables have execve as number one occurring system call with
a combined 172/274 shellcodes (62.8%). This confirms execve is widely used for
exploitation purposes.

Published work. Within research publications, the tendency towards a small set
of system calls is seen too. To show this, we looked at 12 papers, ranging from 2007
to 2019. All of them either (1) contain a new technique for exploit generation or (2)
contain a Proof-of-Concept (PoC) exploit as part of a case study. For each of these,
we determined if their PEP was made explicit and what PEP was used to finalise
exploitation. Out of the 11 papers that specified what PEP they used, 9 mention
execve or a derivative and 4 papers refer to the use of shellcodes. The complete
results are shown in Table 6.1, at the end of the chapter.

Audit. Besides analysing what is currently used in practice, we wanted to build
a theoretical boundary on what is potentially useful for attackers. For example,
the execveat system call is rarely used but provides execve functionality — the
most used system call in the previous analyses. To ensure we cover all potentially
harmful system calls, we manually audited all system calls of Linux x86-64 to
perform a system call audit and determine potential security (ab)use.

From the full list of all system calls, we first removed unavailable system calls
and left out system calls that have no arguments or impact on the underlying sys-
tem (e.g., getpid). Afterwards, we removed all system calls that need superuser
privileges to run, since this is out of scope according to our threat model. This
is the case for 60 system calls and can be taken into account when necessary to
run a program under root privileges. They are marked separately in the audit in
Appendix G.

From the resulting set, we labelled the system calls based on whether they can
potentially be used for exploitation. This could be a single system call or a com-
bination of system calls that can be chained to write an exploit (e.g., open →
write → close). If more than one system call is necessary to create an exploit,
we label any potential start of a chain (e.g., open in the example above) as dan-
gerous. Since an attacker first needs to control a starting system call in a chain, we
remove any follow-up system calls. This is consistent with previous work [12]. For
any other chained system call, we remove them if they require a different system
call argument compromise as part of the attack prior to being called. Finally, we

117

6 The Payload: System Call Argument Integrity

manually inspected the remaining list and remove any item that is certain not to
lead to any privilege escalation. The remaining system calls are listed as security-
sensitive. Together with the chain start system calls, this analysis provided 32
security-sensitive system calls. This is mostly consistent with earlier work [12],
with a small divergence due to a difference in threat model. The full audit can be
found in Appendix G.

6.2.2 Sensitiveness Boundaries

The audit represents a theoretical upper bound, whereas the other two analyses
represent practice. Hence, we will end up with two sets of system calls that are are
considered security-sensitive from different perspectives.

Regardless of the practical analyses, a few of system calls need to be taken into
account. This is in order to preserve the function of the NX-bit (and with it, CFI):
we need to ensure no writable and executable memory chunk can be crafted by an
attacker. Creating such a memory chunk requires control over the protection bits
of the following system calls: mmap (0x9), mprotect (0xa) and pkey_mprotect

(0x149). For any solution to work, attackers must not get access to the protection
bits of any of these system calls.

From the shellcodes and the published work, we can conclude that execve
(0x3b) is clearly key within exploitation in practice. This system call on x86-64 is
semantically equivalent to execveat (0x142), execve32 (0x208) and execveat32
(0x221). Hence, we can conclude with certainty that protecting these system call
arguments is necessary. Together with the NX-bit circumventing system calls in
the paragraph above, we find 7 system calls that are crucial. We refer to this
set of system calls as in-the-wild. The in-the-wild system call list is available in
Appendix H.1.

On the other hand, our audit bounds the set of system calls that may need to be
protected with SCAI. This is a superset of in-the-wild and arguably contains system
calls that are irrelevant in the bulk of situations. We refer to this set of system
calls as in-audit. The in-audit system call list is available in Appendix H.2. In the
remainder of this work, we consider these two sets in particular, but other sets
(based on other threat models) can be used instead.

118

6.3 System Call Argument Integrity

1 mov rax, r15 ; pointer
2 or rax, 0x10000000 ; mask1
3 and rax, 0x10ffffff ; mask2
4 cmp r15, rax ; check if in region
5 jne success ; if not in region
6 shr rax, 0xd ; get the identifier
7 cmp rax, 0x2 ; 0x2 is allowed
8 je success ; continue
9 callq exit@plt ; the check failed

10 success:
11 mov [r15], rax

Listing 6.1: Example instrumentation of a write instruction when using SFI and
bucketisation

6.3 System Call Argument Integrity

SCAI tracks data-flow from data allocation into a security-sensitive system call. At
a high level, we determine if an allocation (stack/heap/globals) has a data-flow
into a security-sensitive system call. If so, the allocation is changed and allocates
the memory in a predetermined secure memory region. These data-flows are con-
sidered security sensitive data-flows, or sensitive data-flows in short. Depending
on the memory protection mode, this memory will be set to read-only using the
Intel MPK mechanism or an mprotect system call, and will only be set to writable
when necessary. Alternatively, we can mask all writes with SFI to enforce the data-
flow integrity. In Section 6.2, we identified two sets of security-sensitive system
calls: in-the-wild and in-audit. Protecting either set of system calls with SCAI is
referred to as SCAI-wild and SCAI-audit respectively.

6.3.1 Overview

In this section we give an overview of how SCAI works using a minimal example.
Consider the example code in Figure 6.1. Line 6 contains a heap overflow since no
buffer size is specified. If the user input contains more than 100 bytes, it overflows
into the second buffer created. This overflow provides a contiguous memory write
and can be exploited to create a bash shell. For simplicity, we do not turn this
vulnerability into an arbitrary write. Given that the two mallocs are allocated

119

6 The Payload: System Call Argument Integrity

1 int main() {
2 ptr x = malloc(100);
3 ptr y = malloc(100); Allocation
4 strcpy(y, "/bin/date");
5 input = read(STDIN);
6 strcpy(x, input); // overflow
7 printf("%s\n", x);
8 execv(y, {y, NULL}); Sensitive
9 return 0;

10 }

Figure 6.1: Example vulnerable code with a backwards data-flow trace.

adjacent to one another, an attacker can give an input long enough to overwrite the
value of y and write /bin/sh to execute a bash shell instead.

The aim is to block this attack without changing the semantics of the program. In
order to do so, we import data from libc and recognise a flow from execv (line 8)
to a sensitive system call (execve). SCAI tracks the data-flow back to the strcpy
instance on line 4 and the malloc on line 3 as shown in the trace in Figure 6.1.

The malloc function is recognised as a memory allocation source so we rewrite
this to use a custom allocator in the secure region. Now this memory area is
read-only for the duration of the program. Afterwards, we traverse this malloc
forwards again to find any uses. Every memory write is wrapped with two function
calls. Before the instruction set_safemem_writable is added to give the write
instruction write privileges to the memory segment. After the instruction, we reset
this again by calling set_safemem_readonly. This is done around the strcpy
instruction (line 6) and around the execv instruction (line 8). The instrumented
version is equivalent to the code in Listing 6.2, highlighting the changes. When
protecting using the SFI scheme, write instructions are masked instead of a read-
only property being enforced. An example mask instrumentation is shown in
Listing 6.1.

6.3.2 Compiler Design

In this section we describe the complete SCAI framework, explaining in depth how
we secure binaries during compilation. We analyse both executables and dynam-

120

6.3 System Call Argument Integrity

1 int main() {
2 init_safemem();
3 x = malloc(100);
4 y = safe_malloc(100);
5 set_safemem_writable();
6 strcpy(y, "/bin/date");
7 set_safemem_readonly();
8 input = read(STDIN);
9 strcpy(x, input); // overflow

10 printf("%s\n", x);
11 set_safemem_writable();
12 execv(y, {y, NULL});
13 set_safemem_readonly();
14 return 0;
15 }

Listing 6.2: Instrumented version of the example in Figure 6.1

ically linked libraries alike. After the analysis, we either export the results in the
case of a library, or instrument the code if we are compiling an executable. A library
export can subsequently be imported to understand the data-flow and security-
sensitivity of used library functions within the application. The full process of 7
steps is depicted in Figure 6.2. We next discuss each individual step in detail.

1. System Call Identification. In order to harden the arguments to the system
calls, we need to find the system call invocations. If the system call that is being
invoked matches one in our list of security-sensitive system calls, SCAI looks up
which arguments to this system call are security-sensitive. This is the system call
identification (1) step. If we cannot determine which system call is invoked, SCAI
takes every argument as well as the system call number itself (the rax value in
x86-64).

2. Function Dependency Analysis. Concurrently with step (1), we perform
a function data dependency analysis (2) to determine data-flow dependencies
between arguments, the return value and global variables. This lets us analyse
functions separately, as well as providing tooling for uninstrumented libraries. This
provides us with information showing whether a data-flow was detected and gives
a high level overview of certain data-flows from function to function. If external
functions are called (i.e., from an imported library), an import from a previous
analysis can fill in the dependencies.

3. Minimal Sensitivity Analysis. We trace system call arguments from step (1)

121

6 The Payload: System Call Argument Integrity

Syscall Identification

1

Function Data
Dependency

2
Minimal Sensitivity

Analysis

3

Export Dependency
& Sensitivity

4

Reuse Function Deepcopy

5

Determine and Rewrite
Memory Allocations

6

Write instrumentation

7
Import

If library Import

If

executable

InstrumentationAnalysis

Figure 6.2: SCAI Design

and from imported libraries to their source. While tracing, we likely cross multiple
function boundaries. If a function argument flows into a sensitive system call argu-
ment, we know this function argument is always sensitive. We refer to the subset
of function arguments (and return value) that are always sensitive as the minimal
sensitivity (3) of the function. This is in contrast with the function calling a separate
function (that might be used in different contexts): we discuss this further in step (5)
(reuse function deepcopy). After this step, we know the minimal sensitivity of each
function, as well as any sources that potentially end up as a system call argument.

4. Export Dependency & Sensitivity (libraries only). When compiling a dynamic
library, we want to save the analysis results for later use. We export (4) the function
data-flow dependencies as well as the minimal sensitivity for each of the functions.
Source information is dropped for libraries since we will not instrument them. This
did not prove limiting in practice, since most source analyses ended in (exported)
function boundaries or immutables/constants. This step is where the SCAI proce-
dure ends for code that should remain uninstrumented, i.e., dynamic libraries.

5. Reuse Function Deepcopy (executables only). A call into a function needs to be
instrumented. Unfortunately, the same function may be reused at different callsites.
At some callsites, it could be used without requiring privileges, invalidating the
“always sensitive” property from step (3) (minimal sensitivity analysis). We still
have to instrument (i.e., grant privileges to) these functions for the application not
to crash — although not all callsites may need said privileges.

122

6.3 System Call Argument Integrity

This issue is most easily illustrated with an example. Consider our target pro-
gram uses a custom my_memcpy. If any sensitive data-flow uses my_memcpy, it
will have to be instrumented to allow it to write to secure memory. At the same
time, it is undesirable to have every call to my_memcpy be privileged: this poses
a security issue as well as adding additional overhead. In contrast to the “always
sensitive” property from step (3), these functions are “potentially sensitive”.

We solve this by creating a function deepcopy (5) and instrumenting only the
copy. Any call to a function with a security-sensitive data-flow will then use a
cloned privileged function rather than the original. This limits the instrumenta-
tion as well as improving security: any other call to the original function is left
untouched. This needs to be done recursively as well within our newly copied
function, hence the deepcopy.

6. Memory Allocation Rewrite (executables only). We are now ready to add the
secure memory mechanism to the binary. From step (3) we know what system calls
are used and the memory sources, i.e., the only memory allocations that can contain
security-sensitive system call arguments. In this step we rewrite these memory
allocations (6) to use the secure memory.

7. Write Instrumentation (executables only). After rewriting the memory alloca-
tions, we need to add write instrumentation (7) to ensure any expected write in-
struction into the secure memory allocations will not cause an error. Here, we need
to perform an additional forwards data-flow analysis since the memory allocations
can be (re)used in locations other than those identified by the initial backwards
data-flow analysis performed in steps (1–3). Failing to instrument these writes
leads to false positives.

How to instrument a write instruction depends on how the secure memory re-
gion is protected. SCAI supports three mechanisms (discussed in more detail in
Section 6.3.6): Intel MPK, mprotect and software fault isolation (SFI)). For MPK
and mprotect, we wrap write instructions with two functions: one to make the
secure region writable, and another to make it read-only again afterwards. Note
that for (deep) copied functions, we instrument the copied versions by design while
leaving the original functions untouched. For SFI, we calculate a bitmask of the
secure region and instrument all remaining memory write instructions instead. At
the end of the instrumentation, we add an initialisation function at the start of main

123

6 The Payload: System Call Argument Integrity

to initialise the secure memory region.

6.3.3 Bucketisation

SCAI relies on attackers not gaining control over any instrumented write or call
instructions. When this does happen, basic SCAI does not provide any protection.
We cannot completely avoid this since the system call functionality is required.
Yet, writing an exploit with some security-sensitive system calls (e.g., open) may
be non-trivial — in contrast to other system calls (e.g., execve). To overcome
this issue, SCAI can split the secure memory in different regions (i.e., buckets) for
different system calls.

With bucketisation enabled, every privileged write primitive can only write to
the parameters of system calls for which there exists a data-flow relation. For
example, an attacker that controls a write that is instrumented because of the open
system call can influence other system calls to open but not any arguments to
mmap. This raises the bar for leveraging complex and non-trivial system call usage
in comparison to straightforward system calls when writing exploits. Moreover,
adding more system calls to be protected no longer increases the attack surface.

6.3.4 Dynamic Libraries

The analysis described in the previous section starts at the system calls. However,
most system calls used nowadays are implemented within a wrapper function,
typically in a libc or libcxx library. Before we can instrument applications and
protect their system call arguments, we therefore need to analyse these libraries.
Besides, these libraries contain core functionality often used within applications.
In other words, it contains crucial data-flow information. Instead of manually
analysing and mocking or modelling these functions, we perform the same data-
flow analysis as used in the application. As such, we compile dynamic libraries
without instrumentation as part of our analysis ((R2) System Compatibility) in steps
1–4. Apart from the compiled library, SCAI will export a file containing all neces-
sary details to fill the gaps in subsequent analyses of the main application code.

Note that dynamic libraries generally do not change much over the course of
time by design, since a public API defines the behaviour of the library. This API
generally implies what data flow relation exists through its intended behaviour

124

6.3 System Call Argument Integrity

(See Chapter 4). In particular, libraries containing system calls typically have a
stable export. We exploit this observation by exporting one set of data flows and
reusing this export even when versions of libraries change. The uninstrumented,
newly compiled libraries do not need to be installed, as the ones currently avail-
able most likely have the same data-flows and system calls. Instead, more recent
versions of dynamic libraries may add new functionality which only requires re-
compilation if this functionality is used within the application.

6.3.5 Data-flow Analysis

SCAI’s data-flow analysis is performed on an SSA language [158]. For intra-
functional analysis, we traverse the explicit UD chains. On inter-functional anal-
ysis, we extend this by matching the traced value to its argument or return state-
ments in a context-insensitive manner. For indirect function calls, we perform
a matching function prototype analysis. Upon finding an external function, we
use the imported information gathered from dynamic libraries to resolve data-
dependencies if possible. If this is not available SCAI considers any value to be
potentially affected, avoiding crashes under normal use.

6.3.6 Memory Protection

To protect the secure memory region, a custom library is used to handle the secure
memory requests, set memory writable (and back to read-only) and to initialise
the memory region. This custom library is available with three different mecha-
nisms: mprotect, SFI, and MPK. All are implemented using DLMallocs’ mspaces
and wrapped with x86-64 assembly for MPK opcodes and direct system call invo-
cations. Each protection mechanism has separate benefits and drawbacks which
we will discuss below.

mprotect Through the mprotect system call we can enforce a read-only property on mem-
ory. Since this enforcement is not thread-specific, SCAI with mprotect protection
can fail in a multi-threaded setting. Besides, the system call incurs a large overhead
so this method is mainly suited when required protection is limited.

SFI Software-Fault Isolation (SFI) masks pointers with a bitmask to either check if
the memory region written to is correct, or to force the pointer inside or outside

125

6 The Payload: System Call Argument Integrity

a given region. In contrast to the mprotect solution above, multithreading is
not an issue. However, all memory write instructions require instrumentation to
block writes into secure memory, simulating the read-only property. In contrast to
mprotect, SFI cannot protect dynamic libraries unless a recompiled instrumented
version is used. Besides, SFI regions do not scale dynamically.36 Summarising, the
SFI overhead does not scale with the data-flows to be protected and cannot pro-
tect external library functionality without recompilation, but does support multi-
threaded applications.

MPK As the best of both worlds, we can use Intel MPK to enforce the read-only property
on secure memory regions. MPK protection works on a per-thread basis, so multi-
threaded applications can individually gain access to memory when necessary.
MPK also adds the lowest overhead of the three options: only sensitive data-flows
need instrumentation and MPK does not need system calls (i.e., kernel interac-
tion/context switch) after initialisation. It does require hardware support, which
may not always be available to the user. Nonetheless, it solves all problems at hand
and MPK-enabled CPUs have been on the market for several years already [104].

6.4 Implementation

SCAI is implemented as an LLVM link-time optimisation (LTO) module pass on
LLVM 9.0.0 (commit 69716394f3d) in ±3.9 KLoC of C++ code. This is complemented
by a linker script for memory segmentation and a custom dynamic library to pro-
vide the memory protection, containing approximately 800 LoC in x86-64 assembly
per memory protection technique.

The memory allocated is currently statically determined as a proof-of-concept.
This means a fixed amount of 16MiB or 1MiB per bucket is allocated upon running
the binary. For mprotect or MPK, the Heap Manager can be customised further to
make the secure memory scalable and/or thread-specific.

Exporting and importing the dynamic library data is done with YAML. For ex-
tracting the data dependencies and system calls we used musl libc [135]. The secure
memory management is implemented on top of dlmalloc [122] using mspaces and
pthread mutexes.

36This is unless the bitmask is writable during runtime which breaks with our threat model.

126

6.5 Evaluation

6.5 Evaluation

In Section 6.1.1 we defined four requirements for any solution: (R1) Minimal De-
veloper Effort; (R2) System Compatibility; (R3) Security; and (R4) Acceptable Over-
head. We discuss all 4 requirements below with respect to SCAI.

(R1) Minimal Developer Effort. Our implementation performs automatic compile-
time instrumentation, but relies on security-sensitivity and data-flow information
for any dynamically linked libraries. Analysis results for common dynamic li-
braries can be generated once and shared to reduce the additional effort required.
Custom libraries will still need to be analysed, but this only requires running the
compiler pass. Thus, some limited additional effort may be needed. On the other
hand, SCAI does not require the developer to mark sensitive information (i.e., with
attributes): the process of recognising security-sensitive data-flows is automatic.
Thus SCAI requires no manual effort on the part of the developer beyond compi-
lation flags, and does not require any application-specific knowledge.

(R2) System Compatibility. We rely on the Intel MPK mechanism to provide us
with memory-based per-thread protection. This limits the deployment of SCAI
to MPK-enabled computers, and limits the amount of protection domains available
for other MPK usage. As seen in the past, Intel provides such hardware support for
a small range of CPUs until either interest shrinks (e.g., Intel MPX) or grows (e.g.,
Intel SGX). A continued interest from the community into Intel MPK technology
— together with deployable solutions — can make MPK a valuable addition to be
widely deployed in the next generation of CPUs. Alternate solutions are available
for SCAI using mprotect or SFI, each with their own drawbacks.

Besides MPK, our solution works out-of-the-box on any Linux system. For other
OSes (e.g., Microsoft Windows) a system call analysis is required similar to Sec-
tion 6.2.1 to protect the right data-flows.

(R3) Security. SCAI is clearly effective in our motivating example in Section 6.3.1.
To recap the example, an exploit writer can chain the heap overflow into the first
argument from execv — the argument that decides what external application is
executed. SCAI disrupts the stitching of the two data-flows, protecting the execv
call by restricting write-access.

Theoretically, we should also protect against real-world data-only attacks, as long

127

6 The Payload: System Call Argument Integrity

as the data-flow under attack is not already a security-sensitive data-flow. To show
this in practice, we analyse Nullhttpd 0.5.0, a webserver application with a known
data-only attack. The full analysis is described below.

(R4) Acceptable Overhead. Intel MPK stores the protection flags in a separate register
that is indirectly available from user-space. After initialisation, we do not need
to switch to kernel-space and back (like mprotect, conditionally branch (SFI) or
write to memory locations (Like most DFI solutions [136, 3, 137]). Through these
properties, the overhead is significantly limited.

The main performance overhead is the result of rewriting (fast) stack/global
variables into heap allocations when they are security-sensitive. Global variables
present a small initialisation slowdown, but creating and removing stack variables
is much faster than a heap-based allocation/free. While this is limited to security-
sensitive stack variables, it can slow down applications under repeated calls to such
functions. We discuss potential solutions for future work in Section 6.6. A practical
evaluation on the resulting overhead is below.

6.5.1 Security Evaluation

Assessing the security benefits of applications is generally a difficult task. Only
a few data-only exploits under our threat model are publicly available since CFI
is not deployed at scale yet. Besides, small changes to the application, compiler
version or environment can change the complete course of exploitation. Our se-
curity evaluation focuses on the webserver nullhttpd 0.5.0 with vulnerability
CVE-2002-1496 [49]. The CVE is used by BOPC to generate a data-only exploit that
calls execve [109], and has a thorough write-up as done by Chen et al. [32] for
32-bit.

Nullhttpd 0.5.0 contains a signedness error on the content length value in the
header of HTTP requests, allocating a small buffer for the POST data. A larger
POST data size will overflow in the heap when writing to this new buffer. This
heap allocation and write is not instrumented by SCAI-wild. Because the POST
data could be forwarded to a CGI application, SCAI-audit does instrument this al-
location through the open system call, making it available to the security-sensitive
memory. In other words, SCAI-audit requires bucketisation to isolate the argu-
ments to open from the arguments to execve. SCAI-wild protects against this

128

6.5 Evaluation

with and without bucketisation because open is not part of the in-the-wild system
call set.

The overflowing write is done through a memcpy instance. This shows the impor-
tance of the Reuse Function Deepcopy (5) step when statically linking, or proper
dynamic library handling when linked dynamically. If the memcpy function was
instrumented (e.g., because loading the configuration file requires an instrumented
memcpy), the exploit would successfully spawn a shell. Our implementation suc-
cessfully distinguishes between different uses of functions and blocks the exploit.

Using the mprotect mechanism, race conditions occur since Nullhttpd is mul-
tithreaded. Nullhttpd works with a dispatcher that receives the request, before
spawning a new thread to handle it and listening for the next request on the main
thread. It can be configured to run on a single-thread (meaning the dispatcher will
wait until the previous request is handled), which helps as long as the dispatcher
does not invoke the memory protection functions. In the case of bucketisation, it
cannot invoke the same bucket instead: this will introduce race conditions. this
occurs in SCAI-audit (with and without bucketisation), meaning that the program
can break with a false positive under normal conditions. Similarly, if mutexes are
used, this would create a deadlock. The dispatcher is not instrumented in the SCAI-
wild version of Nullhttpd, meaning we just need to eliminate concurrency issues
among request handling threads. Through a single request handling thread or pro-
tection through mutexes, SCAI-wild can work under the mprotect mechanism:
this protects against the known attacks just like the MPK version. Unfortunately
deploying it is unrealistic due to performance issues, as we will discuss next.

6.5.2 Performance Evaluation

For the security evaluation we also used Nullhttpd 0.5.0. Using this webserver,
we performed a stress test to see how it would perform with the added protection
from SCAI. The stress test is performed using WRK237over a period of 1 minute
per test with increasing concurrent requests. The machine has an Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10GHz with 80 cores and Intel MPK support, and 252GB of
RAM, running Ubuntu 20.04.4 LTS (focal). All libraries and executables were build
with LLVM 9.0.0 [40]; LLVM safe stack and (forwards) CFI [188] (unless mentioned

129

6 The Payload: System Call Argument Integrity

(a) Full Nullhttpd 0.5.0 throughput with MPK. (b) MPK throughput starting at 5 concurrent
requests, with error bars.

Figure 6.3: Nullhttpd 0.5.0 throughput as a function of concurrency, using Intel MPK as
protection mechanism.

otherwise); O2 optimisation; and Link-Time Optimisation (LTO).

In order to generate accurate results, the webserver received 8 cores to run on
through taskset. WRK2 was similarly given 32 different cores to limit the inter-
ference between the webserver and WRK2 itself. The total utilisation of the RAM
memory was never over 2%.

Concretely, we used WRK2 to measure the throughput of Nullhttpd under in-
creasing concurrent requests. For each, we used a Link-Time Optimisation (LTO)
compiled version as base level, given that LTO is required for SCAI but performs
additional optimisation passes. We first compare the LTO version against the web-
servers as instrumented through CFI to get a baseline for CFI.

Because SCAI requires CFI (as e.g., a ROP would completely nullify the SCAI

protection), so we would like to know its performance compared to a CFI-only run.
In testing SCAI, we tested (1) in-the-wild and (2) audit system call lists for protec-
tion. Both were tested with and without bucketisation. Note that the mprotect
protection mechanism has not been tested under the audit system call list, because
mprotect is not thread-specific as discussed before.

Results. As seen in Figure 6.3, the slowdown of the webservers is marginal when
SCAI is applied using MPK. CFI-only shows an overhead of 14.8–24.1% compared

37See https://github.com/giltene/wrk2, commit 44a94c17.

130

https://github.com/giltene/wrk2

6.5 Evaluation

(a) Throughput when using Software-Fault Iso-
lation.

(b) Throughput when using the mprotect
system call.

Figure 6.4: Nullhttpd 0.5.0 throughput as a function of concurrency, with non-standard
protection mechanisms.

to the LTO baseline. The SCAI-wild implementation shows no further overhead
without buckets, and an overhead of 3.5% when using buckets. Nullhttpd with
SCAI-audit saw a larger overhead of 17–24% overhead.

The main bottleneck with Nullhttpd seems to be the dispatcher, which is not
instrumented in the wild version, hence the similar overhead to CFI. This shows the
power of SCAI, since it does not instrument code that does not require it. The audit
version does instrument the dispatcher and hence shows a raise in the overhead.

SFI Using SFI, the overhead remains limited as seen in Figure 6.4a. However, after
9–10 concurrent requests, the SCAI-audit fails. Here, the secure memory runs out
and a subsequent heap memory request fails with an Out-Of-Memory (OOM). This
is not considered in the code of nullhttpd and leads to a segmentation fault. This
shows a fundamental limitation of SFI, since the SFI mask requires knowledge of
the full size and location of the secure memory region a priori.38Nonetheless, SCAI-
wild shows an overhead of 4.3–6.7% while using SFI, and the successful SCAI-audit
tests show an overhead of 14.7–17.5%. SCAI-audit shows that SFI can outperform
MPK when its capabilities are invoked frequently — which is more likely the case
the more system calls are being instrumented (such as in audit).

38Note that the MPK-based solution does not crash with an OOM, since the default behaviour of
mspaces is to allocate from a newly requested chunk of heap memory. If used in a real scenario
however, it is better to further develop a separate heap manager as mentioned in Section 6.4.

131

6 The Payload: System Call Argument Integrity

mprot As seen in Figure 6.4b, the mprotect mechanism is significantly slower. SCAI-
wild already performs at a 131–286% overhead as shown in the figure above. SCAI-
audit has not been tested since it introduces a race-condition that results in false-
positives crashing the application.

6.6 Discussion

While SCAI protects against common payloads, it does not protect against attackers
that focus on semantics data such as private keys or personal data. SCAI also does
not protect against attacks where the data-flow is valid, such as with command
injection attacks39. The former can be solved with manual annotations inside the
source code with additional development effort. The latter cannot be protected
with any DFI solution by design. Protection against both attack vectors is left as
future work.

Another use of data-flow protection is protecting CFI data, analogous to Code-
pointer integrity [116]. This can be implemented using the same MPK-like mech-
anism, as long as enough MPK keys are at our disposal. When a shadow stack
or safe stack is implemented using our MPK implementation, stack variables can
be rewritten into a safe stack instead of rewriting them as heap variables. This is
theoretically the largest source of the SCAI overhead, so this technique would likely
reduce the overall overhead of CFI+SCAI. In our evaluation, we used the default
LLVM CFI implementation instead. Note that the CFI implementation used only
affected the overhead baseline, since data-only attacks do not interact with CFI
mechanisms.

Intel MPK. SCAI relies on Intel MPK to protect its data. When access to Intel
MPK is not possible, the mprotect system call or SFI can be used, albeit with
their respective downsides. Notably, mprotect is not a per-thread mechanism,
so multithreaded applications using the mprotect mechanism can introduce race-
conditions that either break the application under normal usage or the converse.
SFI on the other hand cannot protect against functionality in dynamic libraries and
requires careful usage of the virtual memory space.

39Note that these types of attacks are of a different GEN class.

132

6.6 Discussion

Next Generation Memory Exploits. While SCAI protects against data-only
attacks, NGMEs are not limited to data-only attacks. In NGMEs, control-flow can
be controlled by attackers in CFB attacks, so long as it stays within the allowed
CFI targets: this is not protected by SCAI. The main problem arises when the data-
flow analysis as performed by SCAI is invalidated by CFB techniques. This occurs
either by longjump-like returns (that are allowed by most CFI implementations);
allowed indirect return instructions that were not accounted for; or indirect call
instructions that were not accounted for. All of these could change the context of the
executed function, e.g., by writing from non-secure memory into secure memory
with an instrumented memcpy.

A partial solution would be to override the security-sensitive system call function
wrappers and check if their pointer arguments are indeed from secure memory
(i.e., with SFI). This can be combined with additional runtime checks to ensure no
data-flow is copied from the non-secure memory to the secure memory, which is
non-trivial.

A second problem occurs when a secure memory region remains writable for
too long. This could occur with e.g., a string format attack on an instrumented
sprintf. Here, an attacker could jump back more than one stack frame (as al-
lowed due to longjump) and keep the MPK region writable for longer, because it is
not paired with a set_readonly instruction anymore. In this particular example,
the AWP is already in the sensitive data-flow so it would not differ anyway, but
we cannot guarantee that similar instances can break the data-flow protection. A
solution that adds a quick read-only MPK property after any call instruction is
available in our implementation, but has not been tested. The CFB limitation is
consistent with related work [142, 27].

Analysis Limitations. In our proof-of-concept implementation of SCAI we per-
form a UD-chain based analysis with a few extra techniques for (indirect) function
calls and known data locations. Although this covers the basics, it becomes inac-
curate in the complex data-flows often seen in applications. The dynamic library
analysis extends the analysis results, but our current implementation lacks pointer
analysis such as aliasing [179]. This can cause an under-approximation of the data-
flow leading to a false positive, crashing under normal usage. With state-of-the-art
static analysis techniques applied, we believe SCAI could become a practical and

133

6 The Payload: System Call Argument Integrity

deployable solution.

SCAI does not track asynchronous inter-thread or inter-process communication.
This is an open question in the research community [174] but could result in losing
track of data-flow information that leads into a security-sensitive system call. On
the other hand, no proof-of-concept exploit is known by us that abuses this loss of
data-flow information.

By design, we are unable to spot stack spilling. Stack spilling occurs when we
do not have enough registers available in hardware when compiling. This means
a register-value is pushed on the stack temporarily so the register can be used
for something else. This could be an issue in register-sized variables such as the
protection bits in mmap. Since SCAI is implemented as an LLVM compiler pass,
it runs the analysis on the LLVM IR. LLVM IR is a static single assignment (SSA)
language [158], meaning the amount of registers available is infinite by design.
Hence, stack spilling could happen after our implementation has completed its
instrumentation. We have not encountered a sensitive data-flow leak in practice.

Finally, we do not detect indirect data-flow. Indirect data-flow is when data is
indirectly transferred, e.g., when a number is copied by looping and incrementing.
When using indirect data-flow transfers, unprivileged data can be indirectly copied
into privileged data, exposing an attack vector. This problem is limited in scope and
unlikely to occur in usage of the protected system calls in real-world programs. We
have not encountered any real-world examples that contain indirect data-flows into
protected system calls.

Data Protection Limitations SCAI provides three different mechanisms to protect
the security-sensitive data. The data itself is internally handled by DLMalloc and
pre-allocated upon initialisation of the application. Our implementation uses a
mutex to enforce thread-safety across the secure memory. With additional imple-
mentation effort ptmalloc2 could be altered to ensure more efficient thread-safety
and scalability of the memory. By managing different thread arenas and MPK keys
(in the case of bucketisation) inside ptmalloc2, performance and memory scalability
could be increased, less of limitations per technique. In particular, SFI will have a
predefined maximum to keep the bitmasks constant (and thus immutable), and
mprotect has a maximum amount of contiguous regions of protection bits.

134

6.7 Conclusion

6.7 Conclusion

All system calls are created equal. With respect to security however, some are more
equal than others. Concretely, out of 382 system calls available on the latest version
of the Linux kernel, a mere 32 of them can be leveraged to gain more control
over the underlying system. In practice, only a handful of system calls are used
for exploitation. Albeit intuitive, to the best of our knowledge we are the first to
systematically analyse and exploit this observation without interfering with normal
application behaviour. Our analysis motivated the design of System Call Argument
Integrity, the concept of preventing data tampering only for data that is input to a
security-sensitive system call.

System Call Argument Integrity creates a secure memory region that is not
writable unless strictly necessary. Hence, data-only attacks are naturally blocked
unless the vulnerability primitive is already in the target trace. In addition, buck-
etisation mitigates most of the risk of a sensitive data-flow becoming compromised
by creating different memory regions for different system calls. Bucketisation
protects all the other system calls from an attacker, even in the event of a system
call argument becoming available to an attacker.

Our implementation of System Call Argument Integrity is effective against data-
only attacks and SCAI is shown to have minimal performance impact (RQ4). With
either Intel MPK support, single-threaded applications or static linking, SCAI
works out-of-the-box: no changes are required to the kernel, dynamic libraries
or the source code. With additional effort spend on the program analysis aspect,
SCAI may become precise enough to be generally deployable on executables.

135

6 The Payload: System Call Argument Integrity

Case Study Published Explicit
Primi-
tive

Escalation Primitive

The Geometry of Innocent Flesh
on the Bone: Return-into-libc
without Function Calls (on the
x86) [166]

2007 X execve

AEG: Automatic Exploit Genera-
tion [8]

2011 X execve, shellcodes

Unleashing Mayhem on Binary
Code [29]

2012 X shellcodes

Control Flow Bending: On the
Effectiveness of Control-Flow In-
tegrity [25]

2015 X execve

Automatic Generation of Data-
Oriented Exploits [96]

2015 X execve, setuid

Control Jujutsu: On the Weak-
nesses of Fine-Grained Control
Flow Integrity[79]

2015 X execve

The Dynamics of Innocent Flesh
on the Bone: Code Reuse Ten
Years Later [195]

2017 X execve, mprotect

Modular Synthesis of Heap Ex-
ploits [155]

2017 X shellcodes

Position-independent Code
Reuse: On the Effectiveness
of ASLR in the Absence of
Information Disclosure [86]

2018 X
dup2, execve,
mprotect, shellcodes

Revery: From Proof-of-Concept to
Exploitable [202]

2018 × UNDISCLOSED

Block Oriented Programming:
Automating Data-Only
Attacks[109]

2018 X execve

Gollum: Modular and Greybox
Exploit Generation
for Heap Overflows in
Interpreters[93]

2019 X execve

Table 6.1: Privilege Escalation Usage in various Case Studies

136

General Conclusion and Discussion 7
In the case of a memory violation, even the smallest mistake can have major
consequences. Exploiting these memory violations however is a complex, time-
consuming process and usually consists of many individual, complicated tasks.
Writing an exploit can easily take weeks or months to develop and requires a lot
of expertise. The field is ever changing and the next change is due soon with
the potential widespread deployment of CFI [119, 120]. Next generation attack
techniques show this is not the end [25, 98] even though some protections [142, 27]
already propose partial solutions. These attacks will be found in the real world after
CFI is more widely deployed, as long as the pay-off is large enough. Yet, NGMEs
are a hard problem for both attackers and defenders.

Within the research community, we are ahead of the curve. Arguably, we are
preparing for the point when the attacks appear “in the wild”. Until then, the
interest of both the research community and society as a whole will remain limited.

Nonetheless, it is paramount that we continue to stay ahead of the curve. We
need to fully understand what attack vectors are still available in NGMEs; find po-
tential dangerous patterns such as two sequential calls to printf [25]; understand
what aspects can be realistically automated; and find new, better ways of protecting
against NGMEs. Only by performing both offensive and defensive research can the
world be properly prepared against this new, emerging attack vector.

In this dissertation, we started with the overall question:

RQ1: How does the exploitation process work, and how does this apply
to NGMEs?

137

7 General Conclusion and Discussion

To answer this question, we looked at NGMEs from an offensive perspective. The
theory and practice in this dissertation applies mostly to all memory exploits. In
other words, memory exploit writing in itself is central. Every aspect is highlighted
with respect to its application towards NGMEs, without a loss of generality when
applicable to other memory exploits.

Vulnerability RQ2: What tangible and unambiguous properties does a vulnerability have?
The exploit writing process is broken down in three phases (Chapter 3). At least
one vulnerability is required to write an exploit. Vulnerabilities are interesting
phenomena that are still vaguely defined and poorly understood to this day. Chap-
ter 4 discusses this and presents an exact definition of a bug, based on measurable
properties. To recapitulate, a bug represents a discrepancy between the intended
behaviour and the behaviour in practice, or any abstraction layer in between (Sec-
tion 4.2.1). Any discrepancy can only be attributed to either incorrectness or un-
definedness. If the behaviour was properly defined and implemented correctly,
there is no space for mistakes. Furthermore, if no discrepancy exists between any
two abstraction layers, the behaviour of the application in practice is equal to the
intended behaviour and thus no bug exists.

These two properties form the basis of the GEN taxonomy. Furthermore, a bug is
labelled as a vulnerability if it bears no certainty for the unexploitability of the bug
(Section 4.2.3). This definition inevitably remains vague. Ideally, a vulnerability
is exploitable with certainty, but assessing exploitability is hard. Although met-
rics (e.g., CVSS [126]) can determine a certain likelihood of exploitability, the only
means of determining exploitability with certainty involves writing the exploit.
Not only is this hard and time-consuming (as this dissertation reflects), the process
is undecidable: failing to write an exploit provides no guarantee to the absence of
any exploit. Not labelling vulnerabilities due to a lack of a working exploit could
pose a serious threat as its risk could be underestimated. As such, our definition
for a vulnerability turns this around: only a degree of certainty of unexploitability
removes the vulnerability label from a bug.

From a broader perspective, GEN teaches us the true nature of vulnerabilities.
It shows where mistakes can be made (the abstraction layers) and explains that
mistakes can only be a consequence of incorrectness or undefinedness. Instead of
definitions that rely on e.g., what is or is not confidential; an asset; or interesting

138

for threat sources, we provide measurable properties in line with the intuitive
understanding of vulnerabilities. Less of exploitability, GEN removes all debate on
whether something is a vulnerability while providing an understanding on why it
is a vulnerability.

Control RQ3: Can we find a generic solution to solving HLM problems that is explain-
able and heap manager agnostic?
A vulnerability leads to unintended behaviour. Triggering the vulnerability opens
up the possibility for the exploit writer to execute more unintended behaviour. In
other words, the exploit writer has gained some initial level of control over the
application (Section 3.3.1). The subsequent task of the exploit writer is to gain
elevated levels of control such as an arbitrary write primitive, Turing-Completeness
or even Arbitrary Code Execution. Various techniques and potentially a multitude
of vulnerabilities can be used, and various protection schemes (e.g., ASLR or stack
canaries) need to be broken or circumvented.

One technique in the case of a heap memory vulnerability is Heap Layout Manip-
ulation. Heap Layout Manipulation provides the attacker to overwrite a value of
choice on the heap. Usually this is a data pointer (creating e.g., an AWP) or a control
pointer (e.g., to perform CFB). We discussed how to off-load the exploit writer in
the HLM task without losing the intuitive understanding of the resulting solution.
This led to Hack the Heap, an online puzzle game that accurately represents both
synthetic and real-world HLM problems.

Hack the Heap players only require a modern browser and time. No prior knowl-
edge is required, as a series of small tutorials teaches the player all they need.
For realistic puzzles, Hack the Heap switches to a backend service that executes
the exact operations of the puzzle using a heap manager of choice. Currently, 4
different heap managers are available on https://hacktheheap.io/ but this can be
easily extended to different heap managers or OSes.

To play real-world puzzles, we need to generate the puzzles based on real-world
behaviour of the vulnerable application. We developed the Hack the Heap recorder
to record all heap manager interactions, complete with an interactive console to
interact with the application, recognise various operations and more. The recording
can be directly turned into a playable puzzle with the HTH refinery.

The full HTH pipeline makes it easier to solve the HLM problem by simplifying

139

https://hacktheheap.io/

7 General Conclusion and Discussion

and visualising the problem at hand. Alternatively, it can be added to the HTH
database so other players can solve the puzzle. Crowd-funding these tasks can
provide the exploit writer with multiple solutions where they can choose the most
appropriate solution for the remainder of the exploit. If no solution is found,
players can mark the puzzle as impossible.

Hopefully, future research continues to consider crowd-sourcing research and
gamification. It has been proven useful in other work and we barely touched the
surface of its opportunities. We hope that our own work on HLM will be extended,
but we also hope that the research direction as a whole takes inspiration from the
non-conventional approach.

Payload RQ4: Can we protect applications against data-only attacks by blocking off
common payload targets with a limited performance overhead?
With the right level of control, exploit writers can achieve their exploitation goals.
Goals can range from gathering data (e.g., a private key) to deleting data (e.g.,
purging a database), and from gaining shell access on the machine to installing a
malicious application (e.g., a backdoor). A concrete way of reaching said goal is
called a payload (Section 3.4).

Some payload goals (e.g., stealing a private key) are semantically tied to the
application under attack. Other payload goals (e.g., gaining a shell) are generic
regardless of the semantics of the application40. We analysed the generic payloads
in the form of shell codes, previously published work and a manual audit on all
available Linux system calls (Section 6.2.1). This provided us with a lower and
upper bound on all system calls that could be used in exploits. While known to
exploit writers intuitively, this analysis specifies clearly what is and what is not a
threat. Knowing generic payload targets, we can provide additional protection to
ensure these targets are not within reach of exploit writers.

We do so through System Call Argument Integrity (Chapter 6), a technique that
utilises Intel MPK functionality to enforce read-only (non-write) access on secure
memory regions. These regions contain any data that could flow into system calls
as used in common payloads. Any legitimate write is wrapped with two function
calls that set the memory region writable — and back to read-only. Across differ-
ent security-sensitive system calls, different memory regions can be used through

40Less of the availability of such functionality in NGMEs.

140

bucketisation (Section 6.3.3). If one data-flow is already compromised, bucketisa-
tion still prevents the attacker from influencing other system call arguments.

System Call Argument Integrity protects against data-only attacks, but could
theoretically be circumvented with Control-Flow Bending. We hope that this dis-
sertation shows that NGMEs are hard problems, and protecting against both CFB
and Data-only attacks is challenging but necessary. We see System Call Argument
Integrity as a stepping stone towards effective, directed protection at a low over-
head.

Besides, we show usability of Intel MPK. This could spike both future research
into the extended usage of MPK in a security setting. On top, this could convince
Intel that MPK is a worthwhile effort to continue, providing a broader range of
CPUs with MPK support in the future. In the future, MPK may become a default
option on machines to protect against NGMEs.

Future Work

Within the individual contribution chapters, we have discussed various future
work angles and directions specific to that body of work. In the overarching notion
of this dissertation however, a general direction becomes apparent to evolve the
field.

Within the exploitation process itself, the systematisation of chapter 3 could be
broadened into a SoK. This could be framed in the concept of weird machines
(Section 2.1.1). Here, step 1 would be to find the vulnerability, i.e., entrance to
the weird machine. The GEN class here depicts the type of weird machine we
are considering (the abstraction) in combination with the cause of the existence of
such a weird machine. Step 1 also considers choosing what weird machine to enter
(where multiple paths could exist that trigger the same vulnerablity with a different
environment). Afterwards, programming the weird machine is step 3 (payload),
whilst various techniques can be used to make it easier to program the weird ma-
chines — which is step 2 (control). Control and payload differences are mostly
abstracted away with a state machine representation, since control techniques are
also part of programming the weird machine within the abstraction. Besides, the
payload step narrows down to an end goal, which is a hard problem to formulate
within the weird machine representation. These are all challenges that can lead to

141

7 General Conclusion and Discussion

an SoK contribution with respect to exploit development in weird machine models.
Hack the Heap is more concrete as a research project in itself. In part due to

a global pandemic, Hack the Heap has not been evaluated with respect to its en-
joyment; and its awareness and educational value. Almost any infosec lecturer I
personally spoke to is willing to use Hack the Heap in their course on offensive
security, whilst admitting that heap exploitation has thus far been considered too
advanced to fit the course. Although this makes it difficult to introduce a control-
group to test for effectiveness, We believe Hack the Heap can alter this [37] by
simplifying the concept of heap vulnerabilities and their effects. After (part of) the
original Hack the Heap tutorial, students can be presented with an actual appli-
cation that contains a heap vulnerability in combination with the HtH game and
the source code. Through solving the puzzle, the aim would be to learn exploit
development, heap memory behaviour and memory safety awareness in a broader
scale. This can then be evaluated with a questionnaire [143] on the three axes
of enjoyment; educational value; and awareness. Awareness is tied to the gam-
ification aspect of HtH and may need additional effort [90]). The questionnaire
would be interesting to see paired with the final scores of the students on heap-
related questions in the exam, that will actually reflect the intrinsic hard-skills
at the end of the course. It it however important that both the game and the
questionnaire remain optional for the students not to be motivated beyond what
they learn throughout the course material.41 In this case, Hack the Heap would
benefit from implementations of temporal vulnerabilities.

Finally, System Call Argument Integrity needs additional static program analysis
techniques and a potential reference monitor to make the false positive rate reason-
able. Afterwards, SCAI can be used to implement fine-grained forwards CFI to be
used in combination with Intel CETS, just like FineIBT [120].

Conclusion

When CFI gets deployed on a broad scale, it is not to prevent exploitation. It is to
deter attackers by making it harder (and thus more costly) to develop an exploit
for a given vulnerability, exactly like we have seen with any previous control-
level protection scheme (e.g., NX, ASLR or stack canaries). As long as the target is

41This is of course also something that should be asked within the questionnaire.

142

valuable enough in the face of monetisation, information or activism, an exploit will
be developed. If we add additional protection like CFI, we need to acknowledge
that the rules of the game change and prepare appropriately.

The research performed in this dissertation is part of a larger effort into under-
standing the attack surface before we encounter real-world NGMEs. We broadened
the overall understanding of vulnerabilities, discussed how control can be achieved
easier through HLM and gamification, and we looked at how to block a data-only
attack even if a level of control was successful. We put this together in one frame-
work for exploit development, to understand how exploit development works and
find the right approach to deter such exploits.

On a broader spectrum, this dissertation shows that a tremendous amount of
work is still to be done in the research community. It is still not known how feasible
and broadly applicable NGMEs are, nor is it known how to reliably protect against
them. These are both still open questions that need to be solved in the research
community before they become a reality.

143

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In
ACM conference on Computer and communications security. CCS, 2005.

[2] A. Adams and M. A. Sasse. Users are not the enemy. In Communications of the
ACM. CACM, 1999.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with wit. In IEEE Symposium on Security and Privacy.
S&P, 2008.

[4] aleph1 (Elias Levy). Smashing the stack for fun and profit.

[5] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider, J. Lowdermilk, D. Truong,
S. Cooper, and Z. Popovic. The impact of tutorials on games of varying
complexity. In SIGCHI Conference on Human Factors in Computing Systems,
2012.

[6] J. P. Anderson. Computer security technology planning study. In DEPUTY
FOR COMMAND AND MANAGEMENT SYSTEMS HQ ELECTRONIC
SYSTEMS DIVISION. ASFC, 1972.

[7] angr. angr/angrop | github. https://github.com/angr/angrop. Accessed:
2021-09-08.

[8] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. Aeg: Automatic exploit
generation. In Network and Distributed System Security Symposium. NDSS,
2011.

145

Bibliography

[9] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith. The page-fault weird
machine: Lessons in instruction-less computation. In Presented as part of the
7th {USENIX} Workshop on Offensive Technologies. WOOT, 2013.

[10] S. Barnum. Common attack pattern enumeration and classification (CAPEC)
schema description. In MITRE, 2008.

[11] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. In IEEE transactions on software
engineering. TSE, 2014.

[12] M. Bernaschi, E. Gabrielli, and L. V. Mancini. Operating system
enhancements to prevent the misuse of system calls. In ACM conference on
Computer and communications security. CCS, 2000.

[13] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and
F. Roli. Poisoning behavioral malware clustering. In Workshop on artificial
intelligent and security workshop. AISec, 2014.

[14] R. Bisbey and D. Hollingworth. Protection analysis: Final report. In
Information Sciences Inst, 1978.

[15] M. Bishop. A taxonomy of unix system and network vulnerabilities.
Technical report, Technical Report CSE-95-10, Department of Computer
Science, University of California at Davis, 1995.

[16] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming:
a new class of code-reuse attack. In ACM Symposium on Information, Computer
and Communications Security. ASIACCS, 2011.

[17] BNP Media. Apple failed to disclose security incident affecting 128 million
users in 2015. https://www.securitymagazine.com/articles/95179-apple-
failed-to-disclose-security-incident-affecting-128-million-users-in-2015. Ac-
cessed: 2021-08-24.

[18] J. A. Bockenek, F. Verbeek, P. Lammich, and B. Ravindran. Formal verification
of memory preservation of x86-64 binaries. In Conference on Computer Safety,
Reliability, and Security. CCRS, 2019.

146

Bibliography

[19] A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal, A. Rastogi,
H. Nemati, A. Panda, and P. Bhatu. Confllvm: A compiler for enforcing data
confidentiality in low-level code. In EuroSys Conference. EuroSys, 2019.

[20] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina.
Exploit programming: From buffer overflows to weird machines and theory
of computation. In USENIX; login. login, 2011.

[21] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In IEEE
Symposium on Security and Privacy. S&P, 2008.

[22] E. Brynjolfsson, J. J. Horton, A. Ozimek, D. Rock, G. Sharma, and H.-Y.
TuYe. Covid-19 and remote work: an early look at us data. Technical report,
National Bureau of Economic Research, 2020.

[23] N. Burow, X. Zhang, and M. Payer. Sok: Shining light on shadow stacks. In
IEEE Symposium on Security and Privacy. S&P, 2019.

[24] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe:
Automatically generating inputs of death. In ACM Transactions on Information
and System Security. TISSEC, 2008.

[25] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow
bending: On the effectiveness of control-flow integrity. In USENIX Conference
on Security Symposium. USENIX Sec, 2015.

[26] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern defenses.
In USENIX Security Symposium. USENIX Sec, 2014.

[27] S. A. Carr and M. Payer. Datashield: Configurable data confidentiality and
integrity. In ACM Symposium on Information, Computer and Communications
Security. ASIACCS, 2017.

[28] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow
integrity. In symposium on Operating systems design and implementation. OSDI,
2006.

147

Bibliography

[29] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on
binary code. In IEEE Symposium on Security and Privacy. S&P, 2012.

[30] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In ACM
conference on Computer and communications security. CCS, 2010.

[31] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In IEEE
Symposium on Security and Privacy. S&P, 2018.

[32] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks
are realistic threats. In USENIX Security Symposium. USENIX Sec, 2005.

[33] Y. Chen and X. Xing. Slake: Facilitating slab manipulation for exploiting
vulnerabilities in the linux kernel. In ACM SIGSAC Conference on Computer
and Communications Security. CCS, 2019.

[34] L. Cheng, H. Liljestrand, M. S. Ahmed, T. Nyman, T. Jaeger, N. Asokan, and
D. Yao. Exploitation techniques and defenses for data-oriented attacks. In
IEEE Cybersecurity Development. SecDev, 2019.

[35] L. Cheng, K. Tian, and D. Yao. Orpheus: Enforcing cyber-physical execution
semantics to defend against data-oriented attacks. In Computer Security
Applications Conference. ACSAC, 2017.

[36] F. Chiarello and M. G. Castellano. Board games and board game design
as learning tools for complex scientific concepts: Some experiences. In
International Journal of Game-Based Learning. IJGBL, 2016.

[37] F. Chiarello and M. G. Castellano. Board games creation as motivating and
learning tool for stem. In European Conference on Game-Based Learning. ECGBL,
2017.

[38] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective symbolic
execution. In Workshop on Hot Topics in System Dependability. HotDep, 2009.

[39] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-
vivo multi-path analysis of software systems. In International Conference

148

Bibliography

on Architectural Support for Programming Languages and Operating Systems.
ASPLOS, 2011.

[40] V. A. Chris Lattner. The llvm compiler infrastructure. https://llvm.org/.
Accessed: 2019-09-03.

[41] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
In ACM transactions on Programming Languages and Systems. TOPLAS, 1994.

[42] S. Conrad, J. Clarke-Midura, and E. Klopfer. A framework for structuring
learning assessment in a massively multiplayer online educational game:
Experiment centered design. In International Journal of Game-Based Learning.
IJGBL, 2014.

[43] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi. Losing control: On the effectiveness of
control-flow integrity under stack attacks. In ACM SIGSAC Conference on
Computer and Communications Security. CCS, 2015.

[44] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay,
D. Baker, Z. Popović, et al. Predicting protein structures with a multiplayer
online game. In Nature. Nature Publishing Group, 2010.

[45] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite, F. Khatib, A. C.
Snyder, M. Beenen, D. Salesin, D. Baker, et al. The challenge of designing
scientific discovery games. In International Conference on the Foundations of
Digital Games, 2010.

[46] J. Corbet. Memory protection keys. https://lwn.net/Articles/643797/.
Accessed: 2022-04-11.

[47] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. Stackguard: automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX security symposium.
USENIX Sec, 1998.

[48] C. Criddle. ‘self-driving’ cars to be allowed on uk roads this year.
https://www.bbc.co.uk/news/technology-56906145. Accessed: 2022-03-14.

149

Bibliography

[49] CVE-2002-1496. nullhttpd 0.5.0 heap overflow
https://www.cvedetails.com/cve/ CVE-2002-1496/.

[50] CVE-2013-2028. nginx 1.3.9 through 1.4.0 stack overflow
https://www.cvedetails.com/cve/ CVE-2013-2028/.

[51] CVE-2014-0160. Heartbleed https://www.cvedetails.com/cve/

CVE-2014-0160/.

[52] CVE-2014-6271. Shellshock https://www.cvedetails.com/cve/

CVE-2014-6271/.

[53] CVE-2019-11839. NginX NJS heap overflow
https://www.cvedetails.com/cve/ CVE-2019-11839/.

[54] CVE-2019-12206. NginX NJS heap overflow
https://www.cvedetails.com/cve/ CVE-2019-12206/.

[55] CVE-2019-13617. NginX NJS heap overflow
https://www.cvedetails.com/cve/ CVE-2019-13617/.

[56] CVE-2021-3962. ImageMagick UaF https://www.cvedetails.com/cve/
CVE-2021-3962/.

[57] CVE-2021-44228. Log4j arbitrary code execution
https://www.cvedetails.com/cve/ CVE-2021-44228/.

[58] J. Dahse, N. Krein, and T. Holz. Code reuse attacks in php: Automated
pop chain generation. In 2014 ACM SIGSAC Conference on Computer and
Communications Security. CCS, 2014.

[59] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow
stacks and stack canaries. In ACM Symposium on Information, Computer and
Communications Security. ASIACCS, 2015.

[60] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection. In
USENIX Security Symposium. USENIX Sec, 2014.

150

Bibliography

[61] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. Cloaker:
Hardware supported rootkit concealment. In IEEE Symposium on Security
and Privacy. S&P, 2008.

[62] T. de Raadt. Exploit Mitigation Tecchniques (in OpenBSD, of course).
Presentation, The OpenBSD Project, 2005.

[63] R. Derbyshire, B. Green, D. Prince, A. Mauthe, and D. Hutchison. An analysis
of cyber security attack taxonomies. In IEEE European Symposium on Security
and Privacy Workshops. EuroS&PW, 2018.

[64] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic. Hardbound:
architectural support for spatial safety of the c programming language. In
international conference on Architectural support for programming languages and
operating systems. ASPLOS, 2008.

[65] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety without
runtime checks or garbage collection. In ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems. LCTES, 2003.

[66] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou. Heap taichi: exploiting
memory allocation granularity in heap-spraying attacks. In Annual Computer
Security Applications Conference. ACSAC, 2010.

[67] C. Domas. Breaking the x86 isa. In Black Hat, 2017.

[68] M. Dominiak and W. Rauner. Efficient approach to fuzzing interpreters. In
BlackHat Asia, 2019.

[69] V. D’Silva, M. Payer, and D. Song. The correctness-security gap in compiler
optimization. In 2015 IEEE Security and Privacy LangSec Workshop. LANGSEC,
2015.

[70] T. F. Dullien. Weird machines, exploitability, and provable unexploitability.
In IEEE Transactions on Emerging Topics in Computing. TETC, 2017.

[71] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
Heaphopper: Bringing bounded model checking to heap implementation
security. In USENIX Security Symposium. USENIX Sec, 2018.

151

Bibliography

[72] N. L. Eisner, O. Barragán, S. Aigrain, et al. Planet Hunters TESS I: TOI 813,
a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit. In
Monthly Notices of the Royal Astronomical Society, 2020.

[73] L. Eliot. Tesla lawsuit over autopilot-engaged pedestrian
death could disrupt automated driving progress.
https://www.forbes.com/sites/lanceeliot/2020/05/16/lawsuit-against-
tesla-for-autopilot-engaged-pedestrian-death-could-disrupt-full-self-
driving-progress/. Accessed: 2021-08-24.

[74] P. Engebretson. The basics of hacking and penetration testing: ethical hacking and
penetration testing made easy. Elsevier, 2013.

[75] S. Engle, S. Whalen, D. Howard, and M. Bishop. Tree approach to
vulnerability classification. In Department of Computer Science, University of
California, 2005.

[76] D. Epple, L. Argote, and R. Devadas. Organizational learning curves: A
method for investigating intra-plant transfer of knowledge acquired through
learning by doing. In Organization science, 1991.

[77] S. Esposito, D. Sgandurra, and G. Bella. Alexa versus alexa: Controlling
smart speakers by self-issuing voice commands. In arXiv preprint
arXiv:2202.08619, 2022.

[78] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the point (er):
On the effectiveness of code pointer integrity. In IEEE Symposium on Security
and Privacy. S&P, 2015.

[79] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-
grained control flow integrity. In ACM SIGSAC Conference on Computer and
Communications Security. CCS, 2015.

[80] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi. Imix: In-process
memory isolation extension. In USENIX Security Symposium. USENIX Sec,
2018.

152

Bibliography

[81] D. Fraze. Cyber grand challenge (cgc) (archived).
https://www.darpa.mil/program/cyber-grand-challenge. Accessed:
2021-09-28.

[82] J. Gennissen and D. O’Keeffe. Hack the heap: Heap layout manipulation
made easy. In IEEE Security and Privacy Workshops (SPW). WOOT, 2022.

[83] M. Gilski, M. Kazmierczyk, S. Krzywda, H. Zábranská, S. Cooper, Z. Popović,
F. Khatib, F. DiMaio, J. Thompson, D. Baker, et al. High-resolution structure
of a retroviral protease folded as a monomer. In Acta Crystallographica Section
D: Biological Crystallography. International Union of Crystallography, 2011.

[84] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control:
Overcoming control-flow integrity. In IEEE Symposium on Security and
Privacy. S&P, 2014.

[85] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis,
C. Giuffrida, and H. Bos. Undermining information hiding (and what to do
about it). In USENIX Security Symposium. USENIX Sec, 2016.

[86] E. Göktas, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz, H. Bos,
and C. Giuffrida. Position-independent code reuse: On the effectiveness of
aslr in the absence of information disclosure. In IEEE European Symposium on
Security and Privacy. EUROS&P, 2018.

[87] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. Spectector:
Principled detection of speculative information flows. In IEEE International
Symposium on Security and Privacy. S&P, 2018.

[88] A. Haggman. Imagining and anticipating cyber futures with games. In Cyber
Threats and NATO 2030: Horizon Scanning and Analysis, 2020.

[89] A. Haggman et al. Wargaming in cyber security education and awareness
training. In International Journal of Information Security and Cybercrime. IJISC,
2019.

[90] J. Hamari, J. Koivisto, and H. Sarsa. Does gamification work?–a literature
review of empirical studies on gamification. In international conference on
system sciences. ICSS, 2014.

153

Bibliography

[91] J. Hamari and J. Tuunanen. Player types: a meta-synthesis. In Transactions of
the Digital Games Research Association, 2014.

[92] S. Heelan, T. Melham, and D. Kroening. Automatic heap layout manipulation
for exploitation. In USENIX Security Symposium. USENIX, 2018.

[93] S. Heelan, T. Melham, and D. Kroening. Gollum: Modular and greybox
exploit generation for heap overflows in interpreters. In ACM SIGSAC
Conference on Computer and Communications Security. CCS, 2019.

[94] C. A. R. Hoare. An axiomatic basis for computer programming. In
Communications of the ACM. ACM New York, NY, USA, 1969.

[95] J. D. Howard. An analysis of security incidents on the internet. In PhD Thesis.
Department of the Air Force Air University, 1997.

[96] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic generation
of data-oriented exploits. In USENIX Security Symposium. USENIX Sec, 2015.

[97] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and
W. Lee. Enforcing unique code target property for control-flow integrity. In
ACM SIGSAC Conference on Computer and Communications Security. CCS, 2018.

[98] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-
oriented programming: On the expressiveness of non-control data attacks.
In IEEE Symposium on Security and Privacy. S&P, 2016.

[99] E. M. Hutchins, M. J. Cloppert, R. M. Amin, et al. Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains. In Leading Issues in Information Warfare & Security
Research, 2011.

[100] I. E. T. F. (IETF). Rfc4949 (internet security glossary, version 2). https:

//tools.ietf.org/html/rfc4949. Accessed: 2021-09-02.

[101] I. E. T. F. (IETF). Rfc6520 (tls heartbeat extension). https://tools.ietf.
org/html/rfc6520#section-3. Accessed: 2020-07-28.

154

https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc6520#section-3
https://tools.ietf.org/html/rfc6520#section-3

Bibliography

[102] V. M. Igure and R. D. Williams. Taxonomies of attacks and vulnerabilities in
computer systems. In IEEE Communications Surveys & Tutorials. CST, 2008.

[103] S. Ikeda. Record gdpr fine handed to amazon over targeted adver-
tising. https://www.cpomagazine.com/data-protection/record-gdpr-fine-
handed-to-amazon-over-targeted-advertising/. Accessed: 2021-08-24.

[104] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
http://www.intel.com/sdm vol. 3A, 4-36. Accessed: 2022-04-11.

[105] G. Irazoqui, T. Eisenbarth, and B. Sunar. Mascat: Stopping microarchitectural
attacks before execution. In International Association for Cryptologic Research
Cryptology Preprint. IACR, 2016.

[106] ISO. Information technology — Security techniques — Information security
management systems — Overview and vocabulary. Standard, International
Organization for Standardization, Geneva, CH, Feb. 2018.

[107] ISO. Information technology — Security techniques — Information security
risk management. Standard, International Organization for Standardization,
Geneva, CH, July 2018.

[108] ISO/IEC. Information technology — Programming languages — C.
Standard, International Organization for Standardization, Geneva, CH, July
2018.

[109] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. Block oriented
programming: Automating data-only attacks. In ACM SIGSAC Conference
on Computer and Communications Security. CCS, 2018.

[110] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li.
Manipulating machine learning: Poisoning attacks and countermeasures for
regression learning. In IEEE Symposium on Security and Privacy. S&P, 2018.

[111] A. Jain. Cve-2021-3156 blogpost: Heap-based buffer overflow in
sudo (baron samedit). https://blog.qualys.com/vulnerabilities-threat-
research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-
baron-samedit. Accessed: 2021-08-24.

155

Bibliography

[112] S. K. Jennifer Hiller. U.s. fuel crisis eases as pipeline returns to normal after
hack. https://www.reuters.com/business/energy/massive-replenishment-
begins-ease-us-fuel-shortages-2021-05-15/. Accessed: 2021-08-23.

[113] KernelCare. Heartbleed still found in the wild: Did you know that you
may be vulnerable? https://linuxize.com/post/heartbleed-still-found-in-
the-wild/. Accessed: 2022-03-15.

[114] F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z. Popović, and D. Baker.
Algorithm discovery by protein folding game players. In National Academy of
Sciences. National Acad Sciences, 2011.

[115] F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda,
H. Zabranska, I. Pichova, J. Thompson, Z. Popović, et al. Crystal structure
of a monomeric retroviral protease solved by protein folding game players.
In Nature structural & molecular biology. Nature Publishing Group, 2011.

[116] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-
pointer integrity. In USENIX Symposium on Operating Systems Design and
Implementation. OSDI, 2014.

[117] K. Land, A. Slosar, C. Lintott, D. Andreescu, S. Bamford, P. Murray, R. Nichol,
M. J. Raddick, K. Schawinski, A. Szalay, et al. Galaxy zoo: the large-scale spin
statistics of spiral galaxies in the sloan digital sky survey. In Monthly Notices
of the Royal Astronomical Society. Blackwell Publishing Ltd Oxford, UK, 2008.

[118] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A taxonomy of
computer program security flaws. In ACM Computing Surveys. CSUR, 1994.

[119] M. Larabel. Clang cfi support upstreamed
for linux 5.13 - but only on arm64 for now.
https://www.phoronix.com/scan.php?page=news_item&px=Clang-CFI-
Linux-5.13. Accessed: 2021-09-08.

[120] M. Larabel. Intel working to combine the best of cet + cfi into "fineibt".
https://www.phoronix.com/scan.php?page=news_item&px=Intel-
FineIBT-Security. Accessed: 2021-09-08.

156

Bibliography

[121] D. Larochelle and D. Evans. Statically detecting likely buffer overflow
vulnerabilities. In USENIX Security Symposium. USENIX, 2001.

[122] D. Lea. A memory allocator. http://gee.cs.oswego

.edu/dl/html/malloc.html. Accessed: 2018-01-11.

[123] K.-s. Lhee and S. J. Chapin. Type-assisted dynamic buffer overflow detection.
In USENIX Security Symposium. USENIX, 2002.

[124] X. Li, X. Chang, J. A. Board, and K. S. Trivedi. A novel approach for software
vulnerability classification. In IEEE Reliability and Maintainability Symposium.
RAMS, 2017.

[125] Liming Chen and A. Avizienis. N-version programming: A fault-tolerance
approach to rellablllty of software operatlon. In Twenty-Fifth International
Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five
Years’. FTCS, 1995.

[126] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring
system. In IEEE Security & Privacy. IEEE, 2006.

[127] P. Meunier. Classes of vulnerabilities and attacks. In Wiley Handbook of Science
and Technology for Homeland Security. Wiley Online Library, 2008.

[128] D. Milmo. Russia unleashed data-wiper malware on ukraine, say
cyber experts. https://www.theguardian.com/world/2022/feb/24/russia-
unleashed-data-wiper-virus-on-ukraine-say-cyber-experts. Accessed: 2022-
03-14.

[129] MITRE. Common weakness enumeration. https://cwe.mitre.org. Accessed:
2020-07-28.

[130] MITRE. Cve terminology. http://cve.mitre.org/about/

terminology.html. Accessed: 2021-09-02.

[131] MITRE. Cwe glossary. https://cwe.mitre.org/documents/

glossary/index.html#Vulnerability. Accessed: 2021-09-02.

157

http://cve.mitre.org/about/terminology.html
http://cve.mitre.org/about/terminology.html
https://cwe.mitre.org/documents/glossary/index.html#Vulnerability
https://cwe.mitre.org/documents/glossary/index.html#Vulnerability

Bibliography

[132] MITRE. Vulnerability distribution of cve security vulnerabilities by type
https://www.cvedetails.com/

vulnerabilities-by-types.php. Accessed: 2021-12-22.

[133] MITRE. Common weakness scoring system. http://cwe.mitre.org/

cwss/, 2010. Accessed: 2020-07-28.

[134] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens.
Plundervolt: Software-based fault injection attacks against intel sgx. In IEEE
Symposium on Security and Privacy. S&P, 2020.

[135] Musl. musl libc. https://www.musl-libc.org/. Accessed: 2019-04-16.

[136] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound: Highly
compatible and complete spatial memory safety for c. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI, 2009.

[137] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Cets: compiler
enforced temporal safety for c. In International Symposium on Memory
management. ISMM, 2010.

[138] Nergal. The advanced return-into-lib(c) exploits. phrack 11, 58(dec 2001),
http://phrack.com/issues .html?issue=67&id=8. Accessed: 2022-
04-12.

[139] M. Neugschwandtner, A. Sorniotti, and A. Kurmus. Memory categorization:
Separating attacker-controlled data. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. DIMVA, 2019.

[140] NIST. Minimum security requirements for federal information and
information systems. Standard, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8930, Mar. 2006.

[141] G. Novark and E. D. Berger. Dieharder: securing the heap. In 17th ACM
conference on Computer and communications security. CCS, 2010.

[142] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan,
and A.-R. Sadeghi. Hardscope: Hardening embedded systems against data-
oriented attacks. In ACM/IEEE Design Automation Conference. DAC, 2019.

158

http://cwe.mitre.org/cwss/
http://cwe.mitre.org/cwss/

Bibliography

[143] B. J. Oates. Researching information systems and computing. Sage, 2005.

[144] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida. Poking
holes in information hiding. In USENIX Security Symposium. USENIX sec,
2016.

[145] opencpi.org. Open component portability infrastructure. https://www.

opencpi.org/. Accessed: 2020-07-30.

[146] A. Orendorff. 10 ecommerce trends for 2021: Growth strate-
gies, data & 17 experts on the future of direct-to-consumer (dtc)
retail. https://commonthreadco.com/blogs/coachs-corner/ecommerce-
trends-future. Accessed: 2021-08-24.

[147] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami.
Practical black-box attacks against machine learning. In ACM Asia conference
on computer and communications security. ASIACCS, 2017.

[148] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In IEEE European
symposium on security and privacy. EuroS&P, 2016.

[149] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow integrity
through binary hardening. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. DIMVA, 2015.

[150] J. Paykin, E. Mertens, M. Tullsen, L. Maurer, B. Razet, A. Bakst, and S. Moore.
Weird machines as insecure compilation. In IEEE Workshop on Foundations of
Computer Security. FCS, 2019.

[151] J. Pewny, P. Koppe, and T. Holz. Steroids for doped applications: A compiler
for automated data-oriented programming. In IEEE European Symposium on
Security and Privacy. EuroS&P, 2019.

[152] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing
Properties of Adversarial ML Attacks in the Problem Space. In IEEE
Symposium on Security & Privacy. S&P, 2020.

159

https://www.opencpi.org/
https://www.opencpi.org/

Bibliography

[153] E. Poll. Langsec revisited: input security flaws of the second kind. In 2018
IEEE Security and Privacy LangSec Workshop. LANGSEC, 2018.

[154] M. Prensky. Digital game-based learning. ACM Computers in Entertainment,
2003.

[155] D. Repel, J. Kinder, and L. Cavallaro. Modular synthesis of heap exploits. In
Workshop on Programming Languages and Analysis for Security. PLAS, 2017.

[156] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and M. Polychronakis.
Revisiting browser security in the modern era: New data-only attacks and
defenses. In IEEE European Symposium on Security and Privacy. EUROS&P,
2017.

[157] J. Roney, T. Appel, P. Pinisetti, and J. Mickens. Identifying valuable pointers
in heap data. In IEEE Security and Privacy Workshops (SPW). WOOT, 2021.

[158] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. POPL, 1988.

[159] saaramar. Deterministic lfh. https://github.com/saaramar/Deterministic_LFH.
Accessed: 2022-02-22.

[160] J. Salwan. Ropgadget - gadgets finder and auto-roper. http://shell-
storm.org/project/ROPgadget/. Accessed: 2021-09-08.

[161] J. Salwan. Shellcodes database for study cases.
http://shell-storm.org/shellcode/. Accessed: 2019-03-14.

[162] K. Scarfone and P. Mell. An analysis of cvss version 2 vulnerability scoring.
In International Symposium on Empirical Software Engineering and Measurement.
IEEE, 2009.

[163] M. Schink and J. Obermaier. Taking a look into {Execute-Only} memory. In
USENIX Workshop on Offensive Technologies. WOOT, 2019.

[164] M. Seaborn and T. Dullien. Exploiting the dram rowhammer bug to gain
kernel privileges. In Black Hat. UBM, 2015.

160

Bibliography

[165] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee, K. Schimpf,
and B. Chen. Adapting software fault isolation to contemporary cpu
architectures. In USENIX conference on Security. USENIX Sec, 2010.

[166] H. Shacham. The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86). In ACM conference on Computer and
communications security. CCS, 2007.

[167] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, et al. Sok:(state of) the art of war:
Offensive techniques in binary analysis. In IEEE Symposium on Security and
Privacy. S&P, 2016.

[168] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel,
and G. Vigna. Rise of the hacrs: Augmenting autonomous cyber reasoning
systems with human assistance. In ACM SIGSAC Conference on Computer and
Communications Security. CCS, 2017.

[169] C. Simmons, C. Ellis, S. Shiva, D. Dasgupta, and Q. Wu. Avoidit: A cyber
attack taxonomy. In Annual Symposium on Information Assurance. ASIA, 2014.

[170] L. Simon, D. Chisnall, and R. Anderson. What you get is what you
c: Controlling side effects in mainstream c compilers. In IEEE European
Symposium on Security and Privacy. EuroS&P, 2018.

[171] Solar Designer. Getting around non-executable stack (and fix). Aug. 1997.

[172] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. Hdfi:
Hardware-assisted data-flow isolation. In IEEE Symposium on Security and
Privacy. S&P, 2016.

[173] A. Sotirov. Heap feng shui in javascript. In Black Hat Europe, 2007.

[174] P. S. Souza, S. S. Souza, M. G. Rocha, R. R. Prado, and R. N. Batista. Data flow
testing in concurrent programs with message passing and shared memory
paradigms. In Procedia Computer Science. Elsevier, 2013.

[175] E. H. Spafford. The internet worm program: An analysis. In ACM SIGCOMM
Computer Communication Review. ACM, 1989.

161

Bibliography

[176] B. Spengler. Pax: The guaranteed end of arbitrary code execution.
https://grsecurity.net/PaX-presentation_files/frame.htm. Accessed: 2022-
02-21.

[177] Statista. Installed base of smart speakers worldwide in 2020 and 2024.
https://www.statista.com/statistics/878650/worldwide-smart-speaker-
installed-base-by-country/. Accessed: 2021-08-24.

[178] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In Network and Distributed System
Security Symposium. NDSS, 2016.

[179] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in llvm. In
ACM International conference on compiler construction. CC, 2016.

[180] Z. Sun, B. Feng, L. Lu, and S. Jha. Oei: Operation execution integrity for
embedded devices. In arXiv preprint arXiv:1802.03462. arXiv, 2018.

[181] Pax: The guaranteed end of arbitrary code execution.
https://wiki.osdev.org/System_V_ABI. Accessed: 2022-03-05.

[182] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In
IEEE Symposium on Security and Privacy. S&P, 2013.

[183] T. C. Team. Clang documentation - undefined behavior sanitizer. https://
clang.llvm.org/docs/UndefinedBehaviorSanitizer.html. Ac-
cessed: 2020-07-30.

[184] The Center for Internet Security. Solaris benchmark v1.3.0. standard, The
Center for Internet Security, 2004.

[185] The Clang Team. Safestack. https://clang.llvm.org/docs/SafeStack.html.
Accessed: 2022-03-18.

[186] The Register. Intel ships ’execute disable’ pentium 4s.
https://www.theregister.com/2004/10/04/intel_nx_p4s/. Accessed:
2021-09-06.

162

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Bibliography

[187] J. Thompson. Six facts about address space layout randomization on win-
dows. https://www.fireeye.com/blog/threat-research/2020/03/six-facts-
about-address-space-layout-randomization-on-windows.html. Accessed:
2021-09-08.

[188] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano,
and G. Pike. Enforcing forward-edge control-flow integrity in gcc & llvm. In
USENIX Security Symposium. USENIX Sec, 2014.

[189] torvalds/linux. Linux master branch x86-64 syscall
table. https://github.com/torvalds/linux/blob/

master/arch/x86/entry/syscalls/syscall_64 .tbl. Accessed:
2018-08-29.

[190] K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms: A
taxonomy of software security errors. In IEEE Security & Privacy. S&P, 2005.

[191] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. In London Mathematical Society, 1937.

[192] A. Turner. August 2021 mobile user statistics: Discover the number
of phones in the world & smartphone penetration by country or
region. https://www.bankmycell.com/blog/how-many-phones-are-in-the-
world. Accessed: 2021-08-24.

[193] C. Valasek. Understanding the low fragmentation heap. In Blackhat USA,
2010.

[194] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska,
H. Bos, and C. Giuffrida. Practical context-sensitive cfi. In ACM SIGSAC
Conference on Computer and Communications Security. CCS, 2015.

[195] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and
C. Giuffrdia. The dynamics of innocent flesh on the bone: Code reuse ten
years later. In ACM SIGSAC Conference on Computer and Communications
Security. CCS, 2017.

163

Bibliography

[196] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida. Drammer: Deterministic rowhammer
attacks on mobile platforms. In ACM SIGSAC conference on computer and
communications security. CCS, 2016.

[197] J. Vanegue. The weird machines in proof-carrying code. In 2014 IEEE Security
and Privacy LangSec Workshop. LANGSEC, 2014.

[198] F. Verbeek, J. Bockenek, A. Bharadwaj, B. Ravindran, and I. Roessle.
Establishing a refinement relation between binaries and abstract code. In
ACM-IEEE International Conference on Formal Methods and Models for System
Design. MEMOCODE, 2019.

[199] L. Von Ahn and L. Dabbish. Labeling images with a computer game. In
SIGCHI conference on Human factors in computing systems, 2004.

[200] L. Von Ahn, R. Liu, and M. Blum. Peekaboom: a game for locating objects in
images. In SIGCHI conference on Human Factors in computing systems, 2006.

[201] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-
based fault isolation. In ACM Symposium on Operating Systems Principles.
SOSP, 1993.

[202] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen, and
W. Zou. Revery: From proof-of-concept to exploitable. In ACM SIGSAC
Conference on Computer and Communications Security. CCS, 2018.

[203] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou. {MAZE}:
Towards automated heap feng shui. In USENIX Security. USENIX, 2021.

[204] Y. Wei, S. Luo, J. Zhuge, J. Gao, E. Zheng, B. Li, and L. Pan. Arg: Automatic
rop chains generation. In IEEE Access, 2019.

[205] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. In Workshop on Memory Management.
WMM, 1995.

164

Bibliography

[206] I. Yun, D. Kapil, and T. Kim. Automatic techniques to systematically discover
new heap exploitation primitives. In USENIX Security Symposium. USENIX
Sec, 2020.

[207] M. Zalewski. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
Accessed: 2018-08-02.

[208] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. Practical control flow integrity and randomization for binary
executables. In IEEE Symposium on Security and Privacy. S&P, 2013.

[209] T. Zhang, Y. Zhang, and R. B. Lee. Cloudradar: A real-time side-channel
attack detection system in clouds. In International Symposium on Research in
Attacks, Intrusions, and Defenses. RAID, 2016.

[210] V. Zimmermann and K. Renaud. Moving from a ‘human-as-problem” to a
‘human-as-solution” cybersecurity mindset. In International Journal of Human-
Computer Studies. IJHCS, 2019.

165

http://lcamtuf.coredump.cx/afl/

Bibliography

166

Appendices

A GEN classification quickstart

Classifying a given bug using GEN requires a few details on the situation. In short, we follow
the three-step process from Picture 4.1: (1) determine the abstraction layers involved, (2)
determine whether it’s due to incorrectness or undefinedness, and (3) attempt to determine
the harm it can cause. We always consider the erroneous behaviour that arises from the bug
when determining its class, irrespective of any other behaviour (that e.g., may exhibit more
erroneous behaviour). This uses the classification sheet as seen on the next page.

Abstraction Layers. Following the abstraction layers, we first determine whether optional
layers are involved: see the second column. For every crossed out optional layer, we can
cross these out and cross out the respective discrepancy options. Then we go through each
abstraction layer to check for discrepancies (right-hand side mark).

As soon as the behaviour differs across two layers, we tick the box between the two layers
and check what potential labels could be involved. Note that going from “undefined be-
haviour” to “undefined behaviour” does not pose a change in behaviour of the two layers,
and hence will not be considered a bug (yet) — this will be exposed through the undefined-
ness property as discussed in Section 4.3.2. If no two layers can be found with a behavioural
discrepancy, then what we are analysing is not a bug, as hardware execution does exactly
what the original description told it to do. We do this until all layers have been considered —
even when a discrepancy has been found.

Definedness. Given all layers, we question whether the higher layer of the two has defined
behaviour in the erroneous example. For this, use the left-hand checkboxes on the classifica-
tion sheet. If so, it is an incorrectness issue. If it is undefined, there is an undefinedness issue.
In combination with the discrepancy location, this provides the bug with a unique class.

Vulnerability. Can we prove beyond doubt that the bug does not expose any previously
inaccessible data or functionality? If so, then we mark it a bug, preferably while giving the
full reasoning on why this cannot be used within an exploit. Alternatively, we mark it a
vulnerability, to not provide false information on the nature of a potentially harmful bug.
This concludes the classification.

167

Appendices

GEN Classification Sheet

Name: Application: GEN ID:

CVE ID: CWE ID: CVSS Vector:

�
Human-Computer

Interaction (Z)�X

Defined?

�
Security

Policy (P)�X

Relevant?

� HCI w.r.t. informal description

Discrepancy?

�

�

�

�

�

�

�

If informal description

violates the security Policy

Only if formal

spec. available

Only if data /

setup applicable

If source code has a discrepancy

with the next available above

ZA-I

PA-I

AB-IU

AC-IU

BC-IU
AD-IU

BD-IU

CD-IU

DE-IU

EF-IU

FG-IU

�
If informal description is

inconsistent or contradictory
AA-I

Informal

Description (A)
�

�
Formal

Specification (B)
�

�
Data &

Setup (C)
�

Source Code (D)�

010010001101

110101101011
Machine Code (E)�

Process (F)�

Hardware

Execution (G)�X

� Is a vulnerability

Additional comments:

168

B Table of bugs found with AFL, labelled with GEN and CWE

B Table of bugs found with AFL, labelled with GEN and CWE

Product CVE Description Category CWE Class
libjpeg-turbo CVE-2013-6630 read of

uninitialised
memory

Source-Machine-U CWE-189

libpng CVE-2015-0973 Heap Overflow Source-Machine-U CWE-119
libtiff CVE-2014-8127 Out-of-bounds

read
Source-Machine-U CWE-125

libtiff CVE-2014-8128 Out-of-bounds
write

Source-Machine-U CWE-787

libtiff CVE-2014-8129 Out-of-bounds
write

Source-Machine-U CWE-787

mozjpeg N/A Out-of-bounds
write

Source-Machine-U CWE-190*

PHP CVE-2015-0232 Uninitialised
pointer use

Source-Machine-U CWE-824

PHP N/A Null-pointer
dereference

Source-Machine-U CWE-476*

PHP CVE-2015-0231 Use-after-free Source-Machine-U CWE-416
PHP N/A Use-after-free Source-Machine-U CWE-416*
PHP N/A Out-of-bounds

read
Source-Machine-U CWE-125*

PHP CVE-2017-5340 Uninitialised
memory access

Source-Machine-U CWE-190

Mozilla Firefox CVE-2014-1564 Uninitialised
memory access

Source-Machine-U CWE-824

Mozilla Firefox CVE-2014-1580 Uninitialised
memory access

Source-Machine-U CWE-200

Mozilla Firefox CVE-2014-8637 Uninitialised
memory access

Source-Machine-U CWE-200

Internet Explorer CVE-2015-0061 Uninitialised
memory access

Source-Machine-U CWE-200

Internet Explorer CVE-2015-0080 Uninitialised
memory access

Source-Machine-U CWE-200

Internet Explorer CVE-2015-0076 Uninitialised
memory access

Source-Machine-U CWE-200

PCRE CVE-2015-0323 Heap Overflow Source-Machine-U CWE-119
PCRE CVE-2015-8380 Heap Overflow Source-Machine-U CWE-119
PCRE N/A Stack Corruption Source-Machine-U CWE-193*
Adobe Reader CVE-2016-4198 Out-of-bounds

write
Source-Machine-U CWE-119

Adobe Reader CVE-2016-6969 Use-after-free Source-Machine-U CWE-416
Adobe Reader CVE-2016-6978 Out-of-bounds

read
Source-Machine-U CWE-119

169

Appendices

Product CVE Description Category CWE Class
OpenSSL CVE-2015-0289 NULL pointer

dereference
Source-Machine-U CWE-476

OpenSSL CVE-2015-1790 NULL pointer
dereference

Source-Machine-U CWE-476

OpenSSL CVE-2015-1789 Out-of-bounds
read

Source-Machine-U CWE-119

OpenSSL CVE-2015-3195 Memory Leak Source-Machine-U CWE-200
OpenSSL N/A Incorrect Results (in)Formal-Source-I1 CWE-192*
OpenSSL CVE-2016-2108 Buffer Underflow Source-Machine-U2 CWE-119
libwpd N/A Endless Loop Unknown Unknown
libpagemaker N/A Undisclosed Unknown Unknown
poppler N/A Out-of-bounds

read
Source-Machine-U CWE-125*

Freetype N/A Buffer overflow Source-Machine-U CWE-120*
Freetype N/A Off-by-one error Source-Machine-U CWE-193*
GnuTLS CVE-2014-8564 Out-of-bounds

write
Source-Machine-U CWE-310

Libksba CVE-2014-9087 Buffer overflow Source-Machine-U CWE-191
GnuPG N/A NULL

dereference
(multiple)

Source-Machine-U CWE-476*

GnuPG CVE-2015-1606 Use-after-free Source-Machine-U CWE-416
GnuPG CVE-2015-1607 Invalid read oper-

ation
Source-Machine-U CWE-20

OpenSSH N/A NULL pointer
dereference

Source-Machine-U CWE-476*

OpenSSH N/A NULL pointer
dereference

Source-Machine-U CWE-476*

OpenSSH N/A Undisclosed Unknown Unknown
OpenSSH N/A Undisclosed Unknown Unknown
PuTTY CVE-2015-5309 Integer Overflow Source-Machine-U CWE-189
PuTTY N/A Erasing out-of-

bounds memory
Source-Machine-U CWE-404*

ntpd CVE-2015-7855 Abort instead of
returning error

Informal-Source-I CWE-20

ntpd N/A NULL pointer
dereference

Source-Machine-U CWE-476*

nginx N/A Self-dependent
streams accepted

Informal-Source-U CWE-1047*

nginx N/A Stack overflow Source-Machine-U CWE-120*
nginx N/A Double free Source-Library-U CWE-415*
bash CVE-2014-6277 Uninitialised

memory access
Source-Machine-U CWE-78

bash CVE-2014-6278 Improper parsing Informal-Source-I CWE-78

170

B Table of bugs found with AFL, labelled with GEN and CWE

Product CVE Description Category CWE Class
tcpdump CVE-2014-8768 Integer

underflow
Source-Machine-U CWE-191

tcpdump CVE-2014-8767 Integer
underflow

Source-Machine-U CWE-189

tcpdump CVE-2014-8769 Out-of-bounds
read

Source-Machine-U CWE-119

tcpdump N/A Incorrect type
conversion

Source-Machine-U CWE-843*

tcpdump N/A Out-of-bounds
read (×2)

Source-Machine-U CWE-125*

tcpdump CVE-2015-3138 Out-of-bounds
read

Source-Machine-U CWE-20

tcpdump CVE-2016-7993 Buffer overflow Source-Machine-U CWE-119
JavaScriptCore N/A Multiple(4) Asser-

tion Failures
Informal-Source-IU CWE-436*

pdfium N/A Invalid pointer
dereference

Source-Machine-U CWE-822*

ffmpeg N/A Use-after-free Source-Machine-U CWE-416*
ffmpeg N/A Array out-of-

bounds access
Source-Machine-U CWE-129*

ffmpeg N/A Uninitialised
memory use

Source-Machine-U CWE-908*

ffmpeg N/A Out-of-bounds
read

Source-Machine-U CWE-125*

libarchive CVE-2015-8915 Invalid memory
read

Source-Machine-U CWE-125

libarchive CVE-2015-8916 NULL pointer
dereference

Source-Machine-U CWE-476

libarchive CVE-2015-8917 Invalid memory
read

Source-Machine-U CWE-476

libarchive CVE-2015-8918 Overlapping
memcpy

Source-Machine-U CWE-119

libarchive CVE-2015-8919 Heap out-of-
bounds read

Source-Machine-U CWE-119

libarchive CVE-2015-8920 Stack out-of-
bounds read

Source-Machine-U CWE-125

libarchive CVE-2015-8921 Global out-of-
bounds read

Source-Machine-U CWE-125

libarchive CVE-2015-8922 NULL pointer
dereference

Source-Machine-U CWE-476

libarchive CVE-2015-8923 Undisclosed Unknown CWE-20
libarchive CVE-2015-8924 Heap out-of-

bounds read
Source-Machine-U CWE-125

libarchive CVE-2015-8925 Invalid memory
read

Source-Machine-U CWE-125

171

Appendices

Product CVE Description Category CWE Class
libarchive CVE-2015-8926 NULL pointer

dereference
Source-Machine-U CWE-476

libarchive CVE-2015-8927 Heap out-of-
bounds read

Source-Machine-U CWE-125

libarchive CVE-2015-8928 Heap out-of-
bounds read

Source-Machine-U CWE-125

libarchive CVE-2015-8929 Memory leak Source-Machine-U CWE-119
libarchive CVE-2015-8931 Signed Integer

Overflow
Source-Machine-U CWE-190

libarchive CVE-2015-8932 Invalid Shift-left Source-Machine-U CWE-20
libarchive CVE-2015-8930 Endless loop Informal-Source-I CWE-20
libarchive CVE-2015-8933 Signed Integer

Overflow
Source-Machine-U CWE-190

libarchive CVE-2015-8934 Heap out-of-
bounds read

Source-Machine-U CWE-125

Wireshark N/A Array overflow Source-Machine-U CWE-129*
Wireshark N/A Heap overflow Source-Machine-U CWE-122*
Wireshark N/A Incorrect type

conversion
Source-Machine-U CWE-681*

ImageMagick N/A Underflow /
Overflow

Source-Machine-U CWE-191*

ImageMagick CVE-2016-5687 Out-of-bounds
read

Source-Machine-U CWE-125

ImageMagick CVE-2016-5688 Undisclosed Unknown CWE-119
ImageMagick CVE-2016-5689 NULL pointer

dereference
Source-Machine-U CWE-476

ImageMagick CVE-2016-5690 NULL pointer
dereference

Source-Machine-U CWE-476

ImageMagick CVE-2016-5688 Lack of Validation Unknown CWE-119
ISC BIND CVE-2015-5477 Assertion Failure Informal-Source-I CWE-19
ISC BIND CVE-2015-5722 Assertion Failure Informal-Source-I CWE-20
ISC BIND CVE-2015-5986 Assertion Failure Informal-Source-I CWE-20
QEMU N/A Out-of-bounds

write
Source-Machine-U CWE-787*

QEMU N/A Uninitialised
function pointer

Source-Machine-U CWE-824*

lcms N/A Stack overflow Source-Machine-U CWE-120*

1 This was in a test combining AFL with N-version programming. 2 The underflow is a result of two separate
vulnerabilities of this type.

172

C Context-free Grammar of the puzzle format

C Context-free Grammar of the puzzle format

This is the context-free grammar used to represent a HTH puzzle in string format. It starts
with a magic (HPM2/) followed by the heap manager F (e.g., first fit, ptmalloc, jemalloc).
Afterwards, it describes the attack type A (e.g., OFA meaning overflow on allocation) and
the size of the heap Z. This is followed by the individual operations O, with a name, colon(:)
and a list of actions. Actions T are described by a number (e.g., 1 is a malloc, etc.) a tag to
represent its trace followed by a name and argument(s) if applicable. Different operations are
separated with a period(.), an additional period suggests that the operation is an initialisation
operation.

S -> ’HPM2/’FAZO

F -> ’F’|’B’|’L’|’N’|’P’|’D’|’T’|’J’

A -> ’OVF’|’OFA’|’OFD’|..

Z -> [num]’T’

O -> O.O

| [name]:T

| .[name]:T

T -> TT

| [0-4][TAG]P(R)

P -> &B

| &T

| λ

R -> [name]:[ARG]

| [name]:

| λ

[ARG] -> [ARG],[ARG]

| [num]

[TAG] -> [A-Z]+

[name] -> [a-zA-Z]+

[num] -> [0-9]+

173

Appendices

D Heap Layout solution from CVE-2019-11839

This figure shows the full layout of the heap of CVE-2019-18839 after performing the solution
as discussed in Section 5.4.2. At the bottom right, two adjacent puzzle pieces are highlighted
with a red ellipse. These “left” and “right” pieces are the bugged and target pieces respec-
tively, depicting a successful solution to the HLM problem.

E Comparison between HTH and an enumeration approach

When provided with a puzzle, it is difficult to compare the quality of the users playing against
other techniques. We can however estimate the time it takes for either a depth-first search on
the available operations or a random search. Estimating this precisely is not straightforward
however due to dependencies: any operation that enables or disables another operation
changes the options for the next choice of operation.

In the puzzle for CVE-2019-11839, we have a total of 16 base operations (that can be per-
formed at any time). One operation (creating an array) enables a chain of operations (growing
the array), each of which disable an operation. Creating two arrays would also create two
additional operations. If we are able to keep growing our array (which is not in the current
puzzle), the amount of operations can be described in the following formula.

Σn
i=1(x + i − 1)n−i(x + i)

Here, n denotes the amount of operations performed in the sequence, and x denotes the
amount of non-changing operations: x = 15 in CVE-2019-11839 and x = 16 in CVE-2019-
12206. If we check for a correct solution after every operation, we do not need to repeat
smaller chains. The table below shows the time it takes to enumerate all options of a given

174

F Shellcode System Call Occurrences

length (after compensating for non-infinite growth). Here we assume that we can perform an
operation followed by a check if the heap layout has been achieved 8 times per second per
CPU, including all heap manager logic and ignoring the time it takes to perform the initial
operation, which generally takes a significant amount of time. As the table shows, a full
enumeration would take in the worst case approximately 6 CPU-days and 168 CPU-days for
CVE-2019-11839 and CVE-2019-12206 respectively, and on average at least 3 and 84 CPU-days
respectively.

of operations performed max 1 2 3 4 5 6 7

CVE-2019-11839 2s 64s 24m 8h 6d 117d 2041d
CVE-2019-12206 2s 72s 29m 10h 9d 168d 3168d

Approximate CPU core time (in seconds; minutes; hours and days) to enumerate all possibil-
ities for the given puzzles, when 8 full operations and heap layout checks can be performed
per second. Highlighted are the set where our solution appear.

F Shellcode System Call Occurrences

F.1 32-bit Shellcode System Calls

x86 (32-bit) shellcode syscall imbalance. Other refers to the following: chdir, getuid,

stime, pause, rmdir, pipe, geteuid16, umount, setpgid, chroot,

getppid, sethostname, old_readdir, iopl, wait4, ipc, setdomainname,

nanosleep, pwrite64 and lstat64, each occurring exactly once.

175

Appendices

F.2 64-bit Shellcode System Calls

x86-64 shellcode syscall imbalance. Other refers to the following: access, kill,

setuid, setregid, reboot, sethostname and execveat, each occurring exactly
once.

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

0 0x0 sys_read unsigned
int fd

char
*buf

size_t
count

1 0x1 sys_write unsigned
int fd

const
char
*buf

size_t
count

2 0x2 sys_open const
char
*file-
name

int flags int
mode

3 0x3 sys_close unsigned
int fd

4 0x4 sys_stat const
char
*file-
name

struct
stat
*statbuf

176

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

5 0x5 sys_fstat unsigned
int fd

struct
stat
*statbuf

6 0x6 sys_lstat fconst
char
*file-
name

struct
stat
*statbuf

7 0x7 sys_poll struct
poll_fd
*ufds

unsigned
int nfds

long
time-
out_msecs

8 0x8 sys_lseek unsigned
int fd

off_t
offset

unsigned
int
origin

9 0x9 sys_mmap unsigned
long
addr

unsigned
long len

unsigned
long
prot

unsigned
long
flags

unsigned
long fd

unsigned
long off

10 0xa sys_mprotect unsigned
long
start

size_t
len

unsigned
long
prot

11 0xb sys_munmap unsigned
long
addr

size_t
len

12 0xc sys_brk unsigned
long
brk

13 0xd sys_rt_sigaction int sig const
struct
sigac-
tion
*act

struct
sigac-
tion
*oact

size_t
sigset-
size

14 0xe sys_rt_sigprocmask int how sigset_t
*nset

sigset_t
*oset

size_t
sigset-
size

15 0xf sys_rt_sigreturn unsigned
long
__un-
used

16 0x10 sys_ioctl unsigned
int fd

unsigned
int cmd

unsigned
long
arg

17 0x11 sys_pread64 unsigned
long fd

char
*buf

size_t
count

loff_t
pos

18 0x12 sys_pwrite64 unsigned
int fd

const
char
*buf

size_t
count

loff_t
pos

19 0x13 sys_readv unsigned
long fd

const
struct
iovec
*vec

unsigned
long
vlen

177

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

20 0x14 sys_writev unsigned
long fd

const
struct
iovec
*vec

unsigned
long
vlen

21 0x15 sys_access const
char
*file-
name

int
mode

22 0x16 sys_pipe int
*filedes

23 0x17 sys_select int n fd_set
*inp

fd_set
*outp

fd_set*exp struct
timeval
*tvp

24 0x18 sys_sched_yield
25 0x19 sys_mremap unsigned

long
addr

unsigned
long
old_len

unsigned
long
new_len

unsigned
long
flags

unsigned
long
new_addr

26 0x1a sys_msync unsigned
long
start

size_t
len

int flags

27 0x1b sys_mincore unsigned
long
start

size_t
len

unsigned
char
*vec

28 0x1c sys_madvise unsigned
long
start

size_t
len_in

int be-
havior

29 0x1d sys_shmget key_t
key

size_t
size

int
shmflg

30 0x1e sys_shmat int
shmid

char
*shmaddr

int
shmflg

31 0x1f sys_shmctl int
shmid

int cmd struct
shmid_ds
*buf

32 0x20 sys_dup unsigned
int
fildes

33 0x21 sys_dup2 unsigned
int
oldfd

unsigned
int
newfd

34 0x22 sys_pause
35 0x23 sys_nanosleep struct

time-
spec
*rqtp

struct
time-
spec
*rmtp

36 0x24 sys_getitimer int
which

struct
itimer-
val
*value

37 0x25 sys_alarm unsigned
int
seconds

178

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

38 0x26 sys_setitimer int
which

struct
itimer-
val
*value

struct
itimer-
val
*ovalue

39 0x27 sys_getpid
40 0x28 sys_sendfile int

out_fd
int
in_fd

off_t
*offset

size_t
count

41 0x29 sys_socket int fam-
ily

int type int pro-
tocol

42 0x2a sys_connect int fd struct
sock-
addr
*user-
vaddr

int
addrlen

43 0x2b sys_accept int fd struct
sock-
addr
*upeer_sockaddr

int
*upeer_addrlen

44 0x2c sys_sendto int fd void
*buff

size_t
len

unsigned
flags

struct
sock-
addr
*addr

int
addr_len

45 0x2d sys_recvfrom int fd void
*ubuf

size_t
size

unsigned
flags

struct
sock-
addr
*addr

int
*addr_len

46 0x2e sys_sendmsg int fd struct
msghdr
*msg

unsigned
flags

47 0x2f sys_recvmsg int fd struct
msghdr
*msg

unsigned
int flags

48 0x30 sys_shutdown int fd int how
49 0x31 sys_bind int fd struct

sock-
addr
*umyaddr

int
addrlen

50 0x32 sys_listen int fd int
backlog

51 0x33 sys_getsockname int fd struct
sock-
addr
*usock-
addr

int
*usock-
addr_len

52 0x34 sys_getpeername int fd struct
sock-
addr
*usock-
addr

int
*usock-
addr_len

53 0x35 sys_socketpair int fam-
ily

int type int pro-
tocol

int
*usock-
vec

179

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

54 0x36 sys_setsockopt int fd int level int opt-
name

char
*optval

int
optlen

55 0x37 sys_getsockopt int fd int level int opt-
name

char
*optval

int
*optlen

56 0x38 sys_clone unsigned
long
clone_flags

unsigned
long
newsp

void
*par-
ent_tid

void
*child_tid

57 0x39 sys_fork
58 0x3a sys_vfork
59 0x3b sys_execve const

char
*file-
name

const
char
*const
argv[]

const
char
*const
envp[]

60 0x3c sys_exit int er-
ror_code

61 0x3d sys_wait4 pid_t
upid

int
*stat_addr

int op-
tions

struct
rusage
*ru

62 0x3e sys_kill pid_t
pid

int sig

63 0x3f sys_uname struct
old_utsname
*name

64 0x40 sys_semget key_t
key

int
nsems

int sem-
flg

65 0x41 sys_semop int
semid

struct
sembuf
*tsops

unsigned
nsops

66 0x42 sys_semctl int
semid

int sem-
num

int cmd union
semun
arg

67 0x43 sys_shmdt char
*shmaddr

68 0x44 sys_msgget key_t
key

int ms-
gflg

69 0x45 sys_msgsnd int
msqid

struct
msgbuf
*msgp

size_t
msgsz

int ms-
gflg

70 0x46 sys_msgrcv int
msqid

struct
msgbuf
*msgp

size_t
msgsz

long
msgtyp

int ms-
gflg

71 0x47 sys_msgctl int
msqid

int cmd struct
msqid_ds
*buf

72 0x48 sys_fcntl unsigned
int fd

unsigned
int cmd

unsigned
long
arg

73 0x49 sys_flock unsigned
int fd

unsigned
int cmd

74 0x4a sys_fsync unsigned
int fd

180

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

75 0x4b sys_fdatasync unsigned
int fd

76 0x4c sys_truncate const
char
*path

long
length

77 0x4d sys_ftruncate unsigned
int fd

unsigned
long
length

78 0x4e sys_getdents unsigned
int fd

struct
linux_dirent
*dirent

unsigned
int
count

79 0x4f sys_getcwd char
*buf

unsigned
long
size

80 0x50 sys_chdir const
char
*file-
name

81 0x51 sys_fchdir unsigned
int fd

82 0x52 sys_rename const
char
*old-
name

const
char
*new-
name

83 0x53 sys_mkdir const
char
*path-
name

int
mode

84 0x54 sys_rmdir const
char
*path-
name

85 0x55 sys_creat const
char
*path-
name

int
mode

86 0x56 sys_link const
char
*old-
name

const
char
*new-
name

87 0x57 sys_unlink const
char
*path-
name

88 0x58 sys_symlink const
char
*old-
name

const
char
*new-
name

89 0x59 sys_readlink const
char
*path

char
*buf

int buf-
siz

181

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

90 0x5a sys_chmod const
char
*file-
name

mode_t
mode

91 0x5b sys_fchmod unsigned
int fd

mode_t
mode

92 0x5c sys_chown const
char
*file-
name

uid_t
user

gid_t
group

93 0x5d sys_fchown unsigned
int fd

uid_t
user

gid_t
group

94 0x5e sys_lchown const
char
*file-
name

uid_t
user

gid_t
group

95 0x5f sys_umask int
mask

96 0x60 sys_gettimeofday struct
timeval
*tv

struct
time-
zone
*tz

97 0x61 sys_getrlimit unsigned
int re-
source

struct
rlimit
*rlim

98 0x62 sys_getrusage int who struct
rusage
*ru

99 0x63 sys_sysinfo struct
sysinfo
*info

100 0x64 sys_times struct
sysinfo
*info

101 0x65 sys_ptrace long re-
quest

long
pid

unsigned
long
addr

unsigned
long
data

102 0x66 sys_getuid
103 0x67 sys_syslog int type char

*buf
int len

104 0x68 sys_getgid
105 0x69 sys_setuid uid_t

uid
106 0x6a sys_setgid gid_t

gid
107 0x6b sys_geteuid
108 0x6c sys_getegid
109 0x6d sys_setpgid pid_t

pid
pid_t
pgid

110 0x6e sys_getppid
111 0x6f sys_getpgrp
112 0x70 sys_setsid

182

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

113 0x71 sys_setreuid uid_t
ruid

uid_t
euid

114 0x72 sys_setregid gid_t
rgid

gid_t
egid

115 0x73 sys_getgroups int gid-
setsize

gid_t
*grou-
plist

116 0x74 sys_setgroups int gid-
setsize

gid_t
*grou-
plist

117 0x75 sys_setresuid uid_t
*ruid

uid_t
*euid

uid_t
*suid

118 0x76 sys_getresuid uid_t
*ruid

uid_t
*euid

uid_t
*suid

119 0x77 sys_setresgid gid_t
rgid

gid_t
egid

gid_t
sgid

120 0x78 sys_getresgid gid_t
*rgid

gid_t
*egid

gid_t
*sgid

121 0x79 sys_getpgid pid_t
pid

122 0x7a sys_setfsuid uid_t
uid

123 0x7b sys_setfsgid gid_t
gid

124 0x7c sys_getsid pid_t
pid

125 0x7d sys_capget cap_user_header_t
header

cap_user_data_t
dataptr

126 0x7e sys_capset cap_user_header_t
header

const
cap_user_data_t
data

127 0x7f sys_rt_sigpending sigset_t
*set

size_t
sigset-
size

128 0x80 sys_rt_sigtimedwait const
sigset_t
*uthese

siginfo_t
*uinfo

const
struct
time-
spec
*uts

size_t
sigset-
size

129 0x81 sys_rt_sigqueueinfo pid_t
pid

int sig siginfo_t
*uinfo

130 0x82 sys_rt_sigsuspend sigset_t
*un-
ewset

size_t
sigset-
size

131 0x83 sys_sigaltstack const
stack_t
*ss

stack_t
*oldss

132 0x84 sys_utime char
*file-
name

struct
utim-
buf
*times

183

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

133 0x85 sys_mknod const
char
*file-
name

umode_t
mode

unsigned
dev

NI 134 0x86 sys_uselib NI
135 0x87 sys_personality unsigned

int per-
sonality

136 0x88 sys_ustat unsigned
dev

struct
ustat
*ubuf

137 0x89 sys_statfs const
char
*path-
name

struct
statfs
*buf

138 0x8a sys_fstatfs unsigned
int fd

struct
statfs
*buf

139 0x8b sys_sysfs int op-
tion

unsigned
long
arg1

unsigned
long
arg2

140 0x8c sys_getpriority int
which

int who

141 0x8d sys_setpriority int
which

int who int nice-
val

142 0x8e sys_sched_setparam pid_t
pid

struct
sched_param
*param

143 0x8f sys_sched_getparam pid_t
pid

struct
sched_param
*param

144 0x90 sys_sched_setscheduler pid_t
pid

int pol-
icy

struct
sched_param
*param

145 0x91 sys_sched_getscheduler pid_t
pid

146 0x92 sys_sched_get_priority_max int pol-
icy

147 0x93 sys_sched_get_priority_min int pol-
icy

148 0x94 sys_sched_rr_get_interval pid_t
pid

struct
time-
spec
*inter-
val

149 0x95 sys_mlock unsigned
long
start

size_t
len

150 0x96 sys_munlock unsigned
long
start

size_t
len

151 0x97 sys_mlockall int flags

184

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

152 0x98 sys_munlockall
153 0x99 sys_vhangup
154 0x9a sys_modify_ldt int func void

*ptr
unsigned
long
byte-
count

155 0x9b sys_pivot_root const
char
*new_root

const
char
*put_old

156 0x9c sys__sysctl struct
__sysctl_args
*args

157 0x9d sys_prctl int op-
tion

unsigned
long
arg2

unsigned
long
arg3

unsigned
long
arg4

unsigned
long
arg5

158 0x9e sys_arch_prctl struct
task_struct
*task

int code unsigned
long
*addr

159 0x9f sys_adjtimex struct
timex
*txc_p

160 0xa0 sys_setrlimit unsigned
int re-
source

struct
rlimit
*rlim

161 0xa1 sys_chroot const
char
*file-
name

162 0xa2 sys_sync
163 0xa3 sys_acct const

char
*name

164 0xa4 sys_settimeofday struct
timeval
*tv

struct
time-
zone
*tz

165 0xa5 sys_mount char
*dev_name

char
*dir_name

char
*type

unsigned
long
flags

void
*data

166 0xa6 sys_umount2 const
char
*target

int flags

167 0xa7 sys_swapon const
char
*spe-
cialfile

int
swap_flags

168 0xa8 sys_swapoff const
char
*spe-
cialfile

169 0xa9 sys_reboot int
magic1

int
magic2

unsigned
int cmd

void
*arg

185

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

170 0xaa sys_sethostname char
*name

int len

171 0xab sys_setdomainname char
*name

int len

172 0xac sys_iopl unsigned
int level

struct
pt_regs
*regs

173 0xad sys_ioperm unsigned
long
from

unsigned
long
num

int
turn_on

RM 174 0xae sys_create_module REMOVED
IN
Linux
2.6

175 0xaf sys_init_module void
*umod

unsigned
long len

const
char
*uargs

176 0xb0 sys_delete_module const
chat
*name_user

unsigned
int flags

RM 177 0xb1 stsys_get_kernel_syms REMOVED
IN
Linux
2.6

RM 178 0xb2 sys_query_module REMOVED
IN
Linux
2.6

179 0xb3 sys_quotactl unsigned
int cmd

const
char
*special

qid_t id void
*addr

NI 180 0xb4 sys_nfsservctl NI
NI 181 0xb5 sys_getpmsg NI
NI 182 0xb6 sys_putpmsg NI
NI 183 0xb7 sys_afs_syscall NI
NI 184 0xb8 sys_tuxcall NI
NI 185 0xb9 sys_security NI

186 0xba sys_gettid
187 0xbb sys_readahead int fd loff_t

offset
size_t
count

188 0xbc sys_setxattr const
char
*path-
name

const
char
*name

const
void
*value

size_t
size

int flags

189 0xbd sys_lsetxattr const
char
*path-
name

const
char
*name

const
void
*value

size_t
size

int flags

190 0xbe sys_fsetxattr int fd const
char
*name

const
void
*value

size_t
size

int flags

186

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

191 0xbf sys_getxattr const
char
*path-
name

const
char
*name

void
*value

size_t
size

192 0xc0 sys_lgetxattr const
char
*path-
name

const
char
*name

void
*value

size_t
size

193 0xc1 sys_fgetxattr int fd const
char
*name

void
*value

size_t
size

194 0xc2 sys_listxattr const
char
*path-
name

char
*list

size_t
size

195 0xc3 sys_llistxattr const
char
*path-
name

char
*list

size_t
size

196 0xc4 sys_flistxattr int fd char
*list

size_t
size

197 0xc5 sys_removexattr const
char
*path-
name

const
char
*name

198 0xc6 sys_lremovexattr const
char
*path-
name

const
char
*name

199 0xc7 sys_fremovexattr int fd const
char
*name

200 0xc8 sys_tkill pid_t
pid

ing sig

201 0xc9 sys_time time_t
*tloc

202 0xca sys_futex u32
*uaddr

int op u32 val struct
time-
spec
*utime

u32
*uaddr2

u32
val3

203 0xcb sys_sched_setaffinity pid_t
pid

unsigned
int len

unsigned
long
*user_mask_ptr

204 0xcc sys_sched_getaffinity pid_t
pid

unsigned
int len

unsigned
long
*user_mask_ptr

NI 205 0xcd sys_set_thread_area NI. Use
arch_prctl

206 0xce sys_io_setup unsigned
nr_events

aio_context_t
*ctxp

207 0xcf sys_io_destroy aio_context_t
ctx

187

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

208 0xd0 sys_io_getevents aio_context_t
ctx_id

long
min_nr

long nr struct
io_event
*events

209 0xd1 sys_io_submit aio_context_t
ctx_id

long nr struct
iocb
**iocbpp

210 0xd2 sys_io_cancel aio_context_t
ctx_id

struct
iocb
*iocb

struct
io_event
*result

NI 211 0xd3 sys_get_thread_area NI. Use
arch_prctl

212 0xd4 sys_lookup_dcookie u64
cookie64

long
buf

long len

213 0xd5 sys_epoll_create int size
NI 214 0xd6 sys_epoll_ctl_old NI
NI 215 0xd7 sys_epoll_wait_old NI

216 0xd8 sys_remap_file_pages unsigned
long
start

unsigned
long
size

unsigned
long
prot

unsigned
long
pgoff

unsigned
long
flags

217 0xd9 sys_getdents64 unsigned
int fd

struct
linux_dirent64
*dirent

unsigned
int
count

218 0xda sys_set_tid_address int
*tidptr

219 0xdb sys_restart_syscall
220 0xdc sys_semtimedop int

semid
struct
sembuf
*tsops

unsigned
nsops

const
struct
time-
spec
*time-
out

221 0xdd sys_fadvise64 int fd loff_t
offset

size_t
len

int
advice

222 0xde sys_timer_create const
clockid_t
which_clock

struct
sigevent
*timer_event_spec

timer_t
*cre-
ated_timer_id

223 0xdf sys_timer_settime timer_t
timer_id

int flags const
struct
itimer-
spec
*new_setting

struct
itimer-
spec
*old_setting

224 0xe0 sys_timer_gettime timer_t
timer_id

struct
itimer-
spec
*setting

225 0xe1 sys_timer_getoverrun timer_t
timer_id

226 0xe2 sys_timer_delete timer_t
timer_id

188

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

227 0xe3 sys_clock_settime const
clockid_t
which_clock

const
struct
time-
spec
*tp

228 0xe4 sys_clock_gettime const
clockid_t
which_clock

struct
time-
spec
*tp

229 0xe5 sys_clock_getres const
clockid_t
which_clock

struct
time-
spec
*tp

230 0xe6 sys_clock_nanosleep const
clockid_t
which_clock

int flags const
struct
time-
spec
*rqtp

struct
time-
spec
*rmtp

231 0xe7 sys_exit_group int er-
ror_code

232 0xe8 sys_epoll_wait int epfd struct
epoll_event
*events

int
max-
events

int
timeout

233 0xe9 sys_epoll_ctl int epfd int op int fd struct
epoll_event
*event

234 0xea sys_tgkill pid_t
tgid

pid_t
pid

int sig

235 0xeb sys_utimes char
*file-
name

struct
timeval
*utimes

NI 236 0xec sys_vserver NI
237 0xed sys_mbind unsigned

long
start

unsigned
long len

unsigned
long
mode

unsigned
long
*nmask

unsigned
long
maxn-
ode

unsigned
flags

238 0xee sys_set_mempolicy int
mode

unsigned
long
*nmask

unsigned
long
maxn-
ode

239 0xef sys_get_mempolicy int *pol-
icy

unsigned
long
*nmask

unsigned
long
maxn-
ode

unsigned
long
addr

unsigned
long
flags

240 0xf0 sys_mq_open const
char
*u_name

int
oflag

mode_t
mode

struct
mq_attr
*u_attr

241 0xf1 sys_mq_unlink const
char
*u_name

189

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

242 0xf2 sys_mq_timedsend mqd_t
mqdes

const
char
*u_msg_ptr

size_t
msg_len

unsigned
int
msg_prio

const
struct
time-
spec
*u_abs_timeout

243 0xf3 sys_mq_timedreceive mqd_t
mqdes

char
*u_msg_ptr

size_t
msg_len

unsigned
int
*u_msg_prio

const
struct
time-
spec
*u_abs_timeout

244 0xf4 sys_mq_notify mqd_t
mqdes

const
struct
sigevent
*u_notification

245 0xf5 sys_mq_getsetattr mqd_t
mqdes

const
struct
mq_attr
*u_mqstat

struct
mq_attr
*u_omqstat

246 0xf6 sys_kexec_load unsigned
long
entry

unsigned
long
nr_segments

struct
kexec_segment
*seg-
ments

unsigned
long
flags

247 0xf7 sys_waitid int
which

pid_t
upid

struct
siginfo
*infop

int op-
tions

struct
rusage
*ru

248 0xf8 sys_add_key const
char
*_type

const
char
*_de-
scrip-
tion

const
void
*_pay-
load

size_t
plen

249 0xf9 sys_request_key const
char
*_type

const
char
*_de-
scrip-
tion

const
char
*_call-
out_info

key_serial_t
de-
stringid

250 0xfa sys_keyctl int op-
tion

unsigned
long
arg2

unsigned
long
arg3

unsigned
long
arg4

unsigned
long
arg5

251 0xfb sys_ioprio_set int
which

int who int
ioprio

252 0xfc sys_ioprio_get int
which

int who

253 0xfd sys_inotify_init
254 0xfe sys_inotify_add_watch int fd const

char
*path-
name

u32
mask

255 0xff sys_inotify_rm_watch int fd __s32
wd

190

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

256 0x100 sys_migrate_pages pid_t
pid

unsigned
long
maxn-
ode

const
un-
signed
long
*old_nodes

const
un-
signed
long
*new_nodes

257 0x101 sys_openat int dfd const
char
*file-
name

int flags int
mode

258 0x102 sys_mkdirat int dfd const
char
*path-
name

int
mode

259 0x103 sys_mknodat int dfd const
char
*file-
name

int
mode

unsigned
dev

260 0x104 sys_fchownat int dfd const
char
*file-
name

uid_t
user

gid_t
group

int flag

261 0x105 sys_futimesat int dfd const
char
*file-
name

struct
timeval
*utimes

262 0x106 sys_newfstatat int dfd const
char
*file-
name

struct
stat
*statbuf

int flag

263 0x107 sys_unlinkat int dfd const
char
*path-
name

int flag

264 0x108 sys_renameat int
oldfd

const
char
*old-
name

int
newfd

const
char
*new-
name

265 0x109 sys_linkat int
oldfd

const
char
*old-
name

int
newfd

const
char
*new-
name

int flags

266 0x10a sys_symlinkat const
char
*old-
name

int
newfd

const
char
*new-
name

267 0x10b sys_readlinkat int dfd const
char
*path-
name

char
*buf

int buf-
siz

191

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

268 0x10c sys_fchmodat int dfd const
char
*file-
name

mode_t
mode

269 0x10d sys_faccessat int dfd const
char
*file-
name

int
mode

270 0x10e sys_pselect6 int n fd_set
*inp

fd_set
*outp

fd_set
*exp

struct
time-
spec
*tsp

void
*sig

271 0x10f sys_ppoll struct
pollfd
*ufds

unsigned
int nfds

struct
time-
spec
*tsp

const
sigset_t
*sig-
mask

size_t
sigset-
size

272 0x110 sys_unshare unsigned
long
un-
share_flags

273 0x111 sys_set_robust_list struct
ro-
bust_list_head
*head

size_t
len

274 0x112 sys_get_robust_list int pid struct
ro-
bust_list_head
**head_ptr

size_t
*len_ptr

275 0x113 sys_splice int
fd_in

loff_t
*off_in

int
fd_out

loff_t
*off_out

size_t
len

unsigned
int flags

276 0x114 sys_tee int fdin int
fdout

size_t
len

unsigned
int flags

277 0x115 sys_sync_file_range long fd loff_t
offset

loff_t
bytes

long
flags

278 0x116 sys_vmsplice int fd const
struct
iovec
*iov

unsigned
long
nr_segs

unsigned
int flags

279 0x117 sys_move_pages pid_t
pid

unsigned
long
nr_pages

const
void
**pages

const
int
*nodes

int *sta-
tus

int flags

280 0x118 sys_utimensat int dfd const
char
*file-
name

struct
time-
spec
*utimes

int flags

281 0x119 sys_epoll_pwait int epfd struct
epoll_event
*events

int
max-
events

int
timeout

const
sigset_t
*sig-
mask

size_t
sigset-
size

282 0x11a sys_signalfd int ufd sigset_t
*user_mask

size_t
size-
mask

192

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

283 0x11b sys_timerfd_create int
clockid

int flags

284 0x11c sys_eventfd unsigned
int
count

285 0x11d sys_fallocate long fd long
mode

loff_t
offset

loff_t
len

286 0x11e sys_timerfd_settime int ufd int flags const
struct
itimer-
spec
*utmr

struct
itimer-
spec
*otmr

287 0x11f sys_timerfd_gettime int ufd struct
itimer-
spec
*otmr

288 0x120 sys_accept4 int fd struct
sock-
addr
*upeer_sockaddr

int
*upeer_addrlen

int flags

289 0x121 sys_signalfd4 int ufd sigset_t
*user_mask

size_t
size-
mask

int flags

290 0x122 sys_eventfd2 unsigned
int
count

int flags

291 0x123 sys_epoll_create1 int flags
292 0x124 sys_dup3 unsigned

int
oldfd

unsigned
int
newfd

int flags

293 0x125 sys_pipe2 int
*filedes

int flags

294 0x126 sys_inotify_init1 int flags
295 0x127 sys_preadv unsigned

long fd
const
struct
iovec
*vec

unsigned
long
vlen

unsigned
long
pos_l

unsigned
long
pos_h

296 0x128 sys_pwritev unsigned
long fd

const
struct
iovec
*vec

unsigned
long
vlen

unsigned
long
pos_l

unsigned
long
pos_h

297 0x129 sys_rt_tgsigqueueinfo pid_t
tgid

pid_t
pid

int sig siginfo_t
*uinfo

298 0x12a sys_perf_event_open struct
perf_event_attr
*attr_uptr

pid_t
pid

int cpu int
group_fd

unsigned
long
flags

299 0x12b sys_recvmmsg int fd struct
msghdr
*mmsg

unsigned
int vlen

unsigned
int flags

struct
time-
spec
*time-
out

193

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

300 0x12c sys_fanotify_init unsigned
int flags

unsigned
int
event_f_flags

301 0x12d sys_fanotify_mark long
fan-
otify_fd

long
flags

__u64
mask

long
dfd

long
path-
name

302 0x12e sys_prlimit64 pid_t
pid

unsigned
int re-
source

const
struct
rlimit64
*new_rlim

struct
rlimit64
*old_rlim

303 0x12f sys_name_to_handle_at int dfd const
char
*name

struct
file_handle
*handle

int
*mnt_id

int flag

304 0x130 sys_open_by_handle_at int dfd const
char
*name

struct
file_handle
*handle

int
*mnt_id

int flags

305 0x131 sys_clock_adjtime clockid_t
which_clock

struct
timex
*tx

306 0x132 sys_syncfs int fd
307 0x133 sys_sendmmsg int fd struct

mms-
ghdr
*mmsg

unsigned
int vlen

unsigned
int flags

308 0x134 sys_setns int fd int
nstype

309 0x135 sys_getcpu unsigned
*cpup

unsigned
*nodep

struct
getcpu_cache
*un-
used

310 0x136 sys_process_vm_readv pid_t
pid

const
struct
iovec
*lvec

unsigned
long
liovcnt

const
struct
iovec
*rvec

unsigned
long
riovcnt

unsigned
long
flags

311 0x137 sys_process_vm_writev pid_t
pid

const
struct
iovec
*lvec

unsigned
long
liovcnt

const
struct
iovcc
*rvec

unsigned
long
riovcnt

unsigned
long
flags

312 0x138 sys_kcmp pid_t
pid1

pid_t
pid2

int type unsigned
long
idx1

unsigned
long
idx2

313 0x139 sys_finit_module int fd const
char
__user
*uargs

int flags

314 0x13a sys_sched_setattr pid_t
pid

struct
sched_attr
__user
*attr

unsigned
int flags

194

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

315 0x13b sys_sched_getattr pid_t
pid

struct
sched_attr
__user
*attr

unsigned
int size

unsigned
int flags

316 0x13c sys_renameat2 int
olddfd

const
char
__user
*old-
name

int
newdfd

const
char
__user
*new-
name

unsigned
int flags

317 0x13d sys_seccomp unsigned
int op

unsigned
int flags

const
char
__user
*uargs

318 0x13e sys_getrandom char
__user
*buf

size_t
count

unsigned
int flags

319 0x13f sys_memfd_create const
char
__user
*un-
ame_ptr

unsigned
int flags

320 0x140 sys_kexec_file_load int ker-
nel_fd

int ini-
trd_fd

unsigned
long
cmd-
line_len

const
char
__user
*cmd-
line_ptr

unsigned
long
flags

321 0x141 sys_bpf int cmd union
bpf_attr
*attr

unsigned
int size

322 0x142 sys_execveat int dfd const
char
__user
*file-
name

const
char
__user
*const
__user
*argv

const
char
__user
*const
__user
*envp

int flags

323 0x143 sys_userfaultfd int flags
324 0x144 sys_membarrier int cmd int flags
325 0x145 sys_mlock2 unsigned

long
start

size_t
len

int flags

326 0x146 sys_copy_file_range int
fd_in

loff_t
__user
*off_in

int
fd_out

loff_t
__user *
off_out

size_t
len

unsigned
int flags

327 0x147 sys_preadv2 unsigned
long fd

const
struct
iovec
__user
*vec

unsigned
long
vlen

unsigned
long
pos_l

unsigned
long
pos_h

int flags

195

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

328 0x148 sys_pwritev2 unsigned
long fd

const
struct
iovec
__user
*vec

unsigned
long
vlen

unsigned
long
pos_l

unsigned
long
pos_h

int flags

329 0x149 sys_pkey_mprotect unsigned
long
start

size_t
len

unsigned
long
prot

int
pkey

330 0x14a sys_pkey_alloc unsigned
long
flags

unsigned
long
init_access_right

331 0x41b sys_pkey_free int
pkey

332 0x41a sys_statx int dfd const
char
*file-
name

unsigned
flags

unsigned
int
mask

struct
statx
*buffer

333 0x41b sys_io_pgetevents aio_context_t
ctx_id

long
min_nr

long nr struct
*events

struct
*time-
out

struct
*sig

334 0x41c sys_rseq struct
rseq
__user
*rseq

uint32_t
rseq_len

int flags uint32_t
sig

... ...

... ...
424 0x1a8 sys_pidfd_send_signal int

pidfd
int sig siginfo_t

__user
*info

unsigned
int flags

425 0x1a9 sys_io_uring_setup u32 en-
tries

struct
io_uring_params
__user
*p

426 0x1aa sys_io_uring_enter unsigned
int fd

u32
to_submit

u32
min_complete

u32
flags

const
sigset_t
__user
*sig

size_t
sigsz

427 0x1ab sys_io_uring_register unsigned
int fd

unsigned
int op

void
__user
*arg

unsigned
int
nr_args

428 0x1ac sys_open_tree int dfd const
char
__user
*path

unsigned
flags

429 0x1ad sys_move_mount int
from_dfd

const
char
__user
*from_path

int
to_dfd

const
char
__user
*to_path

unsigned
int
ms_flags

430 0x1ae sys_fsopen const
char
__user
*fs_name

unsigned
int flags

196

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

431 0x1af sys_fsconfig int
fs_fd

unsigned
int cmd

const
char
__user
*key

const
void
__user
*value

int aux

432 0x1b0 sys_fsmount int
fs_fd

unsigned
int flags

unsigned
int
ms_flags

433 0x1b1 sys_fspick int dfd const
char
__user
*path

unsigned
int flags

434 0x1b2 sys_pidfd_open pid_t
pid

unsigned
int flags

435 0x1b3 sys_clone3 struct
clone_args
__user
*uargs

size_t
size

... ...

... ...
512 0x200 sys_rt_sigaction 32-bit:

see
64-bit
version

513 0x201 sys_rt_sigreturn 32-bit:
see
64-bit
version

514 0x202 sys_ioctl 32-bit:
see
64-bit
version

515 0x203 sys_readv 32-bit:
see
64-bit
version

516 0x204 sys_writev 32-bit:
see
64-bit
version

517 0x205 sys_recvfrom 32-bit:
see
64-bit
version

518 0x206 sys_sendmsg 32-bit:
see
64-bit
version

519 0x207 sys_recvmsg 32-bit:
see
64-bit
version

197

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

520 0x208 sys_execve 32-bit:
see
64-bit
version

521 0x209 sys_ptrace 32-bit:
see
64-bit
version

522 0x20a sys_rt_sigpending 32-bit:
see
64-bit
version

523 0x20b sys_rt_sigtimedwait 32-bit:
see
64-bit
version

524 0x20c sys_rt_sigqueueinfo 32-bit:
see
64-bit
version

525 0x20d sys_sigaltstack 32-bit:
see
64-bit
version

526 0x20e sys_timer_create 32-bit:
see
64-bit
version

527 0x20f sys_mq_notify 32-bit:
see
64-bit
version

528 0x210 sys_kexec_load 32-bit:
see
64-bit
version

529 0x211 sys_waitid 32-bit:
see
64-bit
version

530 0x212 sys_set_robust_list 32-bit:
see
64-bit
version

531 0x213 sys_get_robust_list 32-bit:
see
64-bit
version

532 0x214 sys_vmsplice 32-bit:
see
64-bit
version

198

G System Call Audit

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

533 0x215 sys_move_pages 32-bit:
see
64-bit
version

534 0x216 sys_preadv 32-bit:
see
64-bit
version

535 0x217 sys_pwritev 32-bit:
see
64-bit
version

536 0x218 sys_rt_tgsigqueueinfo 32-bit:
see
64-bit
version

537 0x219 sys_recvmmsg 32-bit:
see
64-bit
version

538 0x21a sys_sendmmsg 32-bit:
see
64-bit
version

539 0x21b sys_process_vm_readv 32-bit:
see
64-bit
version

540 0x21c sys_process_vm_writev 32-bit:
see
64-bit
version

541 0x21d sys_setsockopt 32-bit:
see
64-bit
version

542 0x21e sys_getsockopt 32-bit:
see
64-bit
version

543 0x21f sys_io_setup 32-bit:
see
64-bit
version

544 0x220 sys_io_submit 32-bit:
see
64-bit
version

545 0x221 sys_execveat 32-bit:
see
64-bit
version

199

Appendices

cc %rax %rax System call %rdi %rsi %rdx %r10 %r8 %r9

546 0x222 sys_preadv2 32-bit:
see
64-bit
version

547 0x223 sys_pwritev2 32-bit:
see
64-bit
version

Critical:

Needs privilege:

To chain:

Safe:

No state change:

Other:

No wrapper:

H Security-sensitive System Calls

H.1 Security-sensitive system calls in in-the-wild

rax hex System call rdi rsi rdx r10 r8 r9

009 0x009 sys_mmap addr len prot flags fd off
010 0x00a sys_mprotect start len prot
059 0x03b sys_execve *filename **argv **envp
322 0x142 sys_execveat dfd *filename **argv **envp flags
329 0x149 sys_pkey_mprotect start len prot pkey
520 0x208 sys_execve_32 *filename **argv **envp
545 0x221 sys_execveat_32 dfd *filename **argv **envp flags

200

H Security-sensitive System Calls

H.2 Security-sensitive system calls in in-audit

rax hex System call rdi rsi rdx r10 r8 r9

002 0x002 sys_open *filename flags mode
009 0x009 sys_mmap addr len prot flags fd off
010 0x00a sys_mprotect start len prot
013 0x00d sys_rt_sigaction sig *act *oact sigsetsize
016 0x010 sys_ioctl fd cmd arg
030 0x01e sys_shmat shmid *shmaddr shmflg
041 0x029 sys_socket family type protocol
053 0x035 sys_socketpair family type protocol *usockvec
056 0x038 sys_clone clone_flags newsp *parent_tid *child_tid
059 0x03b sys_execve *filename **argv **envp
082 0x052 sys_rename *oldname *newname
083 0x053 sys_mkdir *pathname mode
085 0x055 sys_creat *pathname mode
086 0x056 sys_link *oldname *newname
088 0x058 sys_symlink *oldname *newname
090 0x05a sys_chmod *filename mode
091 0x05b sys_fchmod fd mode
216 0x0d8 sys_remap_file_pages start size prot pgoff flags
257 0x101 sys_openat dfd *filename flags mode
264 0x108 sys_renameat oldfd *oldname newfd *newname
265 0x109 sys_linkat oldfd *oldname newfd *newname flags
266 0x10a sys_symlinkat *oldname newfd *newname
268 0x10c sys_fchmodat dfd *filename mode
294 0x126 sys_inotify_init1 flags
316 0x13c sys_renameat2 olddfd *oldname newdfd *newname flags
322 0x142 sys_execveat dfd *filename **argv **envp flags
329 0x149 sys_pkey_mprotect start len prot pkey
330 0x14a sys_pkey_alloc flags init_access_right
435 0x1b3 sys_clone3 *uargs size
514 0x202 sys_ioctl_32 fd cmd arg
520 0x208 sys_execve_32 *filename **argv **envp
545 0x221 sys_execveat_32 dfd *filename **argv **envp flags

201

	List of Acronyms
	Introduction
	Challenges & Research Questions
	Challenges in the Vulnerability Phase
	Challenges in the Control Phase
	Challenges in the Payload Phase

	Contributions
	Researching Offensive Security

	Background
	Bugs, Vulnerabilities & Weaknesses
	Vulnerability Classifications

	Memory
	Application Memory
	Memory Safety
	Memory Protection

	The Heap
	Heap Layout Manipulation
	Existing HLM Solutions

	System Calls
	Memory Attacks and Defences: a Timeline
	Crowd-sourcing Research, Awareness and Education
	Education

	The Exploitation Process
	An Example: The HTTP Server
	The Vulnerability Phase
	The Vulnerability Primitive
	Vulnerability Defences

	The Control Phase
	Initial Control
	Control Primitives
	Control Defences

	The Payload Phase
	Payload Defences

	Next Generation Memory Exploits
	The HTTP Server Attack

	The Vulnerability: GENerically understanding them
	Existing Vulnerability Definitions
	GENerically understanding Vulnerabilities in applications
	Abstraction Layers
	The Incorrectness-Undefinedness Property
	From Bugs to Vulnerabilities

	Applying GEN to a Vulnerability
	GEN Class Labels
	Classification Challenges

	The Common Weakness Enumeration (CWE)
	Using GEN
	Consequence Boundaries
	Abstraction layers as Testing Oracle
	Security Use-case

	Evaluation
	Taxonomy Evaluation Criteria
	AFL

	NGME Vulnerabilities
	Discussion
	Conclusion

	Taking Control: Hack the Heap
	Hack the Heap: The Game
	Design
	Levelling up
	Visualisation Challenges

	Generating Puzzles
	Artificial Puzzles
	Real-world Puzzles

	Implementation
	Evaluation
	Case Study: Synthetic Example
	Case Study: NJS

	Discussion & Future Work
	Conclusion

	The Payload: System Call Argument Integrity
	Threat Model & Requirements
	Design Requirements

	System Call Security
	Security Sensitive System Calls
	Sensitiveness Boundaries

	System Call Argument Integrity
	Overview
	Compiler Design
	Bucketisation
	Dynamic Libraries
	Data-flow Analysis
	Memory Protection

	Implementation
	Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Conclusion

	General Conclusion and Discussion
	Bibliography
	Appendices
	GEN classification quickstart
	Table of bugs found with AFL, labelled with GEN and CWE
	Context-free Grammar of the puzzle format
	Heap Layout solution from CVE-2019-11839
	Comparison between HTH and an enumeration approach
	Shellcode System Call Occurrences
	32-bit Shellcode System Calls
	64-bit Shellcode System Calls

	System Call Audit
	Security-sensitive System Calls
	Security-sensitive system calls in in-the-wild
	Security-sensitive system calls in in-audit

