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h
(k+1)
c . This per-node update is computed in parallel with shared pa-
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Abstract

Drug combinations are commonly used to treat complex diseases or co-existing con-

ditions. However, they pose a risk of side effects due to adverse Drug-Drug In-

teractions (DDIs). During drug development, the detection of DDIs remains an in-

tractable problem mostly due to the relatively small sample size in clinical trials and

the sheer number of possible drug combinations. Recently, due to the development

of Adverse Event Reporting Systems (AERs), datasets have become available that

collect data on adverse side effects caused by drugs already on the market. These

resources encouraged the development of machine learning methods to predict side

effects caused by pairs of drugs.

In this thesis, I present DCSE-twin (pron. Dixie-twin), the main approach I

developed for predicting adverse effects of drug pairs. I also show the early models

that led to the development of DCSE-twin. The main idea behind my approach

is to learn distributed representations separately for drugs and side effects. These

are learned in a neural network that also combines non-linearly the representations

for single drugs to obtain the representations for drug pairs. A key finding from

my early models is that non-linearity is crucial to model the combination of the

individual drugs.

The existence of separate explicit representations for drugs, side effects and drug

combinations allows my model to synergistically combine learning from side effect

data of both single drugs and drug combinations. In this way, my model is able to

answer new pharmacologically relevant questions, being able to predict side effects

for drug pairs for which no side effects are known, or even for drug pairs in which

neither of the drugs is known to interact with any other drug (these are known as

“cold start” problems). DCSE-twin is tested in a variety of experimental procedures,

xxvii



xxviii Abstract

including prospective evaluations, and its performance is compared against state-of-

the-art methods. I also introduce several novel experimental settings in an attempt

to approximate real-world scenarios in drug development, pharmacovigilance and

drug repurposing. The results presented here show that DCSE-twin outperforms

existing state-of-the-art methods on every experimental setting. Moreover, these ex-

periments allow me to shed some light on biological aspects of the problem including

the need for non-linearly combining representations for single drugs to obtain the

representation for drug pairs. DCSE-twin represents an opportunity to use patient

population data to flag and prioritise adverse effects caused by drug combinations

for further validation.



“Science, my lad, is made up of mistakes, but they are mistakes which are

useful to make, because they lead little by little to the truth.”

Jules Verne

1
Introduction

Many human diseases are caused by highly complex biological processes that are

resistant to the activity of a single drug [5]. A common strategy to combat these

diseases, and overcome these limitations, is polypharmacy. This refers to a therapy

involving the concurrent use of medications, also called drug combinations [6]. Drug

combinations are found to be highly useful for enhanced therapeutics as they can

involve synergistic effects that are triggered by Drug-Drug Interactions (DDIs), for

example, by modulating the activity of distinct proteins [7, 8]. These DDIs can

1
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be exploited to repurpose drug combinations to obtain optimal treatment for many

complex conditions, such as heart failure, severe hypertension or cancer [9]. Drug

repositioning refers to the process of finding new uses outside the scope of the

original medical indication for existing drugs [10]. Repurposing existing drugs in

combinations not only provides new therapeutic possibilities but also reduces the

cost and time for drug development [5]. For example, the combination of Venetoclax

and Idasanutlin has recently been shown to lead to superior antileukemic efficacy in

the treatment of acute myeloid leukaemia [11]. In this case, the two drugs improve

survival by simultaneously targeting complementary mechanisms.

Although the use of polypharmacy therapies may be needed for the treatment

of many diseases [12], a major drawback is the increased risk of adverse side effects

that are due to the DDIs. Adverse DDIs occur when the activity of one drug may be

alerted significantly due to the presence of other drugs [13, 14]. They constitute one

of the most important concerns in clinical rational administration and postmarketing

pharmacovigilance. Polypharmacy side effects are becoming an increasingly serious

problem in health care, affecting over 15% of the U.S. population and costing > 170

billion a year for treatment [1]. About 30% of all unexpected Adverse Drug Events

(ADEs) may be accounted for adverse DDIs [15]. ADEs are a leading cause of

morbidity and mortality around the world [16].

DDIs are classified as pharmacokinetic or pharmacodynamic, according to their

underlying mechanism of action [9, 17]. Pharmacokinetic interactions are those

in which one drug affects the Absorption, Distribution, Metabolism or Excretion

(ADME) of another drug. These interactions can be quantified by the changes in

kinetic parameters such as the area under the curve, half-life or peak serum con-

centration. The most common type of pharmacokinetic drug interaction involves
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drug metabolism, in particular, reactions with certain liver enzymes play a key role.

Some drugs induce these enzymes (e.g., rifampin, phenobarbital, phenytoin, car-

bamazepine, efavirenz), and many more drugs are inhibitors (e.g., some macrolide

antibiotics, antifungal azoles, HIV protease inhibitors, immunosuppressants, antide-

pressants, proton pump inhibitors, antitumoral). Naturally, the enzyme inducers

cause an increase and the inhibitors a decrease in drug metabolites, with conse-

quences that vary according to the type of metabolite; drugs can be metabolized to

active, inactive or toxic forms. Pharmacodynamic interactions are those where the

effects of one drug are changed by the presence of another, without alterations in

drug kinetics. Sometimes these interactions are due to competition at the level of

drug receptors, but often the mechanisms are indirect and involve interference with

physiological mechanisms. There are additive or synergistic interactions that cause

an increase in pharmacological effects, and antagonistic interactions that cause a

decrease and can often lead to adverse side effects [9].

Adverse DDIs constitute an ever-growing issue, as the number of prescriptions

of two or more drugs for the treatment of diseases continues to increase [4]. Also,

the number of approved drugs keeps increasing, and with this, the number of po-

tential interactions between prescribed medications rapidly rises. As the population

is ageing and polypharmacy is becoming progressively more common, there is an

increased likelihood of DDIs that can inadvertently lead to exaggeration of adverse

effects. This kind of event cannot be properly prevented without recognising the

need to adjust medications based on the potential risks brought by DDIs. Normally,

health operators are unaware of the clinical risks of certain drug combinations. And

the fact is that potential DDIs far outnumber the known actual drug interactions.
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Unintentional and mismanaged DDIs are a common reason for preventable polyphar-

macy side effects. Therefore, there is a need for carefully planned preclinical and

clinical DDI studies during drug development, and also during the postmarketing

stage after drug approval. Methods to identify DDIs earlier in a comprehensive way

can be implemented to improve clinical decision making [18]. The World Health

Organisation (WHO) estimates that at least 60% of adverse drug reactions are pre-

ventable [17]. Discovering and predicting DDIs will help prevent life-threatening

consequences for patients and it will prompt safe drug co-prescriptions for better

treatments.

1.1 Detection and prediction of Drug-drug inter-

actions

Pharmacovigilance (PV) is referred to as drug safety monitoring. WHO formally

defines it as “the science and activities relating to the detection, assessment, under-

standing and prevention of drug-related problems” [19]. PV can be classified into two

categories: (1) pre-authorisation PV which concerns the information that ADEs ac-

cumulated from clinical trial settings[20]; and (2) postmarketing/post-authorisation

PV concerning the safety information collected during the drugs post-authorisation

life cycle. Pre-authorisation PV is unable to fully detect drug safety concerns before

its use in the real world. This is due to factors such as:

• the restricted sample of trial participants as compared to the total targeted

population intended for the drug’s market,

• the limited interval of drug exposure per each study participant. This is even
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more accentuated if the drug is intended for chronic use,

• a lack of possibly risky patient subpopulations who are usually omitted from

clinical trials [21].

Even considering these aspects, the premarketing information about a drug’s

efficacy is normally more reliable and comprehensive. However, a complete safety

profile cannot be established during the premarketing stage [22].

Additionally, premarketing trials don’t usually explore DDI studies, and are more

focused on the safety and efficacy profiles of individual medications. Pharmacology

profiling leads to the identification of both intended and unintended single drug-

induced effects, such as biological system perturbations [3]. In contrast, patients on

drug combinations are not usually even included in the clinical trials. Furthermore,

it is unfeasible to test all possible pairs of drugs and their side effects. This means

that many potentially serious polypharmacy side effects remain unobserved in the

relatively small clinical testing [6, 23]. Therefore, reliable automated prediction of

such risks is highly desirable to mitigate their impact on patients.

To address the issue of small sample size in clinical trials, the U.S. Food and

Drug Administration (FDA), WHO, and Health Canada have created large Adverse

Event Reporting Systems (AERSs) that collect data from clinicians, patients, and

pharmaceutical companies. This resource represents an opportunity to monitor drug

safety in a larger and more diverse population of patients [23]. The abundance of

data led to the development of many signal detection algorithms that quantify the

“unexpectedness” of an ADE being reported for a drug. Unpredictable DDIs, which

can only be explained by the interaction between the two drugs and not by any of

the individual drugs on their own, are recognised only through such signal detection
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practices during the postmarketing life cycle [24].

In the past decade, a collection of DDI-related information has become publicly

available. The TWOSIDES dataset [23] is the result of a data-driven approach to

flag potentially significant drug-drug-event associations in the AERS. It includes

information about adverse side effects caused by the combinations of two drugs.

The availability of TWOSIDES generated a surge of novel computational meth-

ods that are developed for the prediction of adverse DDIs (see Chapter 2). Generally

speaking, these methods can be separated into two categories, based on the speci-

ficity level of their predictions. The first category of methods focuses on predicting

if a given drug pair will have an adverse DDI or not. This is framed as a binary

prediction problem. If we consider the example in Figure 1.1, this type of method

will try to predict the probability of Aspirin and Warfarin to having an adverse

DDI. The second category of methods predicts the specific type of polypharmacy

side effect associated with a given drug pair. Following the example in Figure 1.1,

this type of method will provide a probability of the side effect of gastrointestinal

haemorrhage being associated with the drug pair consisting of Aspirin and Warfarin.

In my work, I focus on the problem of predicting specific polypharmacy side

effects. That is, given two drugs, di and dj, and a specific side effect type r, my

goal is to assign a score to the triplet (di, dj, r). This score can be interpreted as

the probability of the side effect r being caused by the co-administration of drugs

di and dj.

To this end, this thesis introduces a new approach that I have called DCSE-twin

(pronounced dixie twin), for the prediction of adverse DDIs. DCSE stands for Drug

Combinations Side Effects, and twin denotes the fact that my approach consists
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Figure 1.1: Example of a polypharmacy side effect. Aspirin on its own can cause
the side effect gastrointestinal ulcer, and Warfarin can cause intestinal wall oedemaa.
However, when the two drugs are prescribed together, they have an increased risk of
causing gastrointestinal haemorrhage, which can only be explained by the combination of
the two drugs.

a: Oedema is a build-up of fluid in the body which causes the affected tissue to become swollen.

https://www.nidirect.gov.uk/conditions/oedema

of two similar models that work together. DCSE-twin learns low-dimensional dis-

tributed representations for drugs and side effects, simultaneously, from side effect

data of both single drugs and drug pairs. DCSE-left is a logistic non-negative ma-

trix factorisation model that learns representations to predict off-label side effects

for single drugs. The other component, DCSE-right, is a model that combines the

individual distributed representations of the single drugs in a nonlinear way, to learn

a representation for the pair of drugs. The main objective of my approach is to learn

these distributed representations to predict a score for a given (di, dj, r) triplet. The

idea behind these representations is that they can encapsulate meaningful informa-

tion about biological activity that is relevant for explaining and predicting adverse

DDIs.

https://www.nidirect.gov.uk/conditions/oedema


8 Introduction

1.2 Distributed representations

The notion of distributed representations was introduced in 1984 by Geoffrey E.

Hinton [25]. Each of the entities involved in the representation, is represented by a

pattern of activity distributed over many computing elements, and each computing

element is involved in representing many entities. This concept has then been applied

with considerable success to different tasks, such as statistical language modelling,

speech recognition, and a wide range of natural language processing tasks [26].

An advantage of this type of representation is that it leads to a good automatic

generalisation. When the weights in the elements, that compose the representations,

are changed to incorporate new knowledge about one entity, the changes affect the

knowledge associated with other entities that are represented by similar activity

patterns [27]. This weight adjustment results in the elements representing important

features of the task domain and the regularities in the task are captured by the

interaction between these units [28].

My work focuses on learning distributed representations for drugs, pairs of drugs,

and side effects. The idea is to have the distributed representations capture impor-

tant biological features involved in the mechanisms of ADEs. Ideally, the problem

of predicting polypharmacy side effects can be modelled by the interaction between

the units of the distributed representations of the drug pair and the side effect.

These representations provide the ability to capture similarities, between drugs or

side effects, by the similarity of their representations. Consequently, they allow the

ability to generalise new information in sensible ways by learning how to represent

entities with a distributed pattern of activities.

My approach, DCSE-twin, learns the distributed representations for drugs and
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side effects by integrating information from two different task domains, namely,

off-label side effects for single drugs, and polypharmacy side effects. This allows

the model to change the weights of the representations in accordance with the new

knowledge being added. Specifically, when one model modifies the representations,

these changes affect the knowledge associated with drugs and side effects, in the

other model, which is represented by similar activity patterns, independently of the

fact that they belong to different problems or models.

1.3 Document organisation

This thesis is organised as follows. Chapter 2 discusses the most relevant existing

methods in the current DDI prediction literature. It includes an explanation of the

baseline methods I compare my approach against and highlights the limitations in

the existing literature. Chapter 3 details the preliminary models that paved the way

for my final approach and explains the main findings from these methods. Chapter 4

presents my main proposed method for the prediction of adverse DDIs, DCSE-twin.

It also includes the formal mathematical definitions for both DCSE-left and DCSE-

right. In Chapter 5, I showcase the experimental results. I provide the comparison of

my method against different baselines and the different evaluation protocols. I also

provide different experiments to further understand the inner workings of DCSE-

twin. Chapter 6 contains the conclusion of this thesis and a discussion about possible

avenues for future work. Lastly, the Appendix A includes an alternative nonlinear

combination for DCSE-right and some further experiments about the learning of

DCSE-twin and the effects of regularisation.
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1.4 Contributions of this thesis

In this thesis, I propose a novel approach, DCSE-twin, for the prediction of polyphar-

macy side effects, see Chapter 4. I thoroughly compare DCSE-twin with the state-

of-the-art under several experimental settings. The experiments show that my ap-

proach consistently outperforms the competitors and obtains the best performance

for predicting adverse DDIs (see Chapter 5). Other specific contributions of this

thesis are listed below, along with the specific section(s) where each item can be

found in the document.

• My work is able to address the cold start problem in which a prediction can be

made for drugs, pairs of drugs or side effects without any previous interaction

information (i.e. unseen during training). I propose novel experimental set-

tings that approximate more realistic and interesting scenarios, than the most

common settings used in the current literature. I also provide the biological

research questions that each setting attempts to answer. I show that the per-

formance of DCSE-twin is consistently better than the state-of-the-art, across

the different evaluations, see Chapter 5.1.3, 5.1.5.

• My work is the first to introduce a prospective evaluation for adverse DDIs.

This evaluation entails predicting newly discovered adverse DDIs with a model

trained with older data. This is, to the best of my knowledge, the first work

that introduces the chronological aspect of DDI prediction. This replicates a

real-world scenario even more accurately, since the DDIs that I am predicting,

were discovered after the ones used for the training of the model, see Chapter

5.1.4.
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• I am the first to clearly evaluate the case of predicting true polypharmacy side

effects. A drug pair can cause a side effect that can already be explained by

either of the drugs individually. However, a more important and interesting

case is when the drug pair causes a new side effect that can only be explained

by the co-administration of the two drugs. To the best of my knowledge, this

distinction was never made explicit in the current literature on DDI prediction.

See Chapter 5.1.6.

• I demonstrate how the problem of learning distributed representations for pairs

of drugs is highly nonlinear. I provide empirical evidence to show that using

linear models is not sufficient to model the complex relationships between two

drugs, see Chapters 3.3, 5.2.

• I propose a novel loss function and optimisation algorithm for learning a reg-

ularised logistic non-negative matrix factorisation. I derive the multiplicative

update rules to optimise the loss function. The modelling of the bias is tailored

specifically to the problem of single side effect prediction. This model is the

left component of DCSE-twin, namely, DCSE-left, see Chapter 4.2.
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“If I have seen further it is by standing on the shoulders of Giants.”

Isaac Newton

2
Related Work

In this chapter, I review several methods that have been proposed for the problem

of predicting adverse DDIs. These methods will be used to compare the perfor-

mance of my approach, DCSE-twin, against the state-of-the-art. The approaches in

this chapter have been carefully selected based on two criteria, they have the best

predictive performance; and they are highly representative of the different type of

methods or technologies applied to this problem.

The availability of datasets that compile DDI information made possible the

13
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surge of computational methods that tackle this problem. There are two datasets

that influenced the field the most, namely, TWOSIDES [23] and DrugBank [29].

TWOSIDES is a collection of significant drug-event associations from the AERS,

which collects reports from doctors, patients and drug companies. DrugBank, on

the other hand, contains information about DDIs that have some literature-based

evidence. The types of DDIs are also different for both datasets. TWOSIDES in-

cludes the specific adverse side effect that occurs due to the co-administration of the

two drugs, for example, the side effect “blindness” may be caused by the interaction

between vardenafil and tadalafil. In DrugBank, the DDIs have different types and

levels of specificity. They are categorised in pharmacokinetic and pharmacodynamic

drug interactions. The nature and biological implications of these two datasets are

different, and a distinction should be made when predicting for one or the other

dataset.

Initially, various machine learning methods were developed to identify if two

drugs will interact or not. Zhang et al. [30] propose a label propagation framework

to predict DDIs based on clinical side effects. Kastrin et al. [31] frame the problem

as a binary classification task on networks of potential DDIs and use link prediction

techniques for predicting unknown interactions between drugs. Many other methods

have been proposed, and most of them are based on drug similarities, such as inter-

action profiles, side effects and target similarities, 2D and 3D molecular structure,

etc.[32, 33, 30, 34, 35, 36].

General DDI prediction approaches can be useful to derive broad rules for de-

scribing drug interactions at the cellular level, however, they can’t be used directly

to guide drug combination therapies [1]. These methods characterise DDIs through

scores that can be interpreted as the probability of an interaction between the two
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drugs. However, these methods lack the ability to answer a more interesting ques-

tion: what are the specific type of adverse effect that arises from the interaction?

The methods presented in this chapter are focused on this important question.

There are several different adverse DDI prediction methods that have been pro-

posed in the past years. Nevertheless, I have encountered a number of limitations

with the existing methods. One of them is a lack of a systematic comparison of

state-of-the-art methods under the same experimental setting. Another important

piece missing is the lack of a biologically inspired research question that drives the

experiments. Most of the methods perform a training/testing split that better suits

their method, and overlook the usefulness of their setup. In Chapter 5, I present a

comparison of my approach to several state-of-the-art methods under different ex-

perimental settings and provide a meaningful research question that helps elucidate

the purpose of each experiment.

2.1 Modelling polypharmacy side effects with graph

convolutional networks - Decagon

The work by Zitnik et al. [1] presents Decagon, an approach for modelling side

effects caused by combinations of two drugs. This approach constructs a multi-

modal graph of protein-protein interactions, drug-protein target interactions, and

the polypharmacy side effects, represented as drug-drug interactions, where each

side effect is an edge of a different type.

Each drug-drug interaction is labelled by a different edge type, which signifies

the type of the side effect. The authors develop a multirelational edge prediction
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Figure 2.1: An example graph of polypharmacy side effects derived from genomic
and patient population data (Figure is taken from [1]). A multimodal graph consists of
protein–protein interactions, drug–protein targets and drug–drug interactions encoded by
964 different polypharmacy side effects (i.e. edge types ri, i = 1; ...; 964). Side infor-
mation is integrated into the model in the form of additional protein and drug feature
vectors. Highlighted network neighbours of Ciprofloxacin (node C) indicate this drug tar-
gets four proteins and interacts with three other drugs. The graph encodes information
that Ciprofloxacin (node C) taken together with Doxycycline (node D) or with Simvas-
tatin (node S) increases the risk of bradycardia side effect (side effect type r2), and its
combination with Mupirocin (M) increases the risk of gastrointestinal bleed side effect
r1. The graph representation are used to develop Decagon, a graph convolutional neural
model of polypharmacy side effects. Decagon predicts associations between pairs of drugs
and side effects (shown in red) with the goal of identifying side effects, which cannot be
attributed to either individual drug in the pair.

model that uses the multimodal graph to predict DDIs as well as their types. The

polypharmacy side effect modelling is cast as a multirelational link prediction prob-

lem on a multimodal graph encoding drug, protein and side effect relationships (see

Fig 2.1). These relationships are represented by a graph G = (V ,R) with N nodes

(e.g. proteins, drugs) vi ∈ V and labelled edges (relations) (vi, r, vj), where r is the
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edge type (relation type): (i) physical binding between two proteins, (ii) a target

relationship between a drug and a protein or (iii) a particular type of a side ef-

fect between two drugs. They consider 964 different relation types between drugs

(i.e. side effects). Note: after inspecting the dataset they made available, the actual

number is 963.

In addition, they allow for the inclusion of side information in the form of addi-

tional node features. Different nodes (drugs, proteins) can have different number of

node features, given by real-valued feature vectors x1,x2, . . . ,xN assigned to every

node in the graph.

The polypharmacy side effect prediction task considers the problem of identifying

associations between drug pairs and side effects. These associations are limited to

only those that cannot be attributed to either drug alone. Using the graph G, the

task is to predict edge types between drug nodes. Given a drug pair (vi, vj), the

aim is to determine how likely an edge eij = (vi, r, vj) of type r belongs to R,

meaning that concurrent use of drugs vi and vj [i.e. the use of a drug combination

(vi, vj)] is associated with a polypharmacy side effect of type r in the human patient

population.

To this aim, the authors develop a non-linear, multi-layer convolutional graph

neural network model Decagon that operates directly on graph G. Decagon has two

main components:

• an encoder: a graph convolutional network operating on G and producing

embeddings for nodes in G (Fig. 2.2A), and

• a decoder: a tensor factorisation model using these embeddings to model

polypharmacy side effects (Fig. 2.2B).
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Figure 2.2: Overview of Decagon model architecture (Figure taken from [1]). (A)
Decagon encoder. Shown is a per-layer update for a single graph node (a drug node
representing Ciprofloxacin based on the small example input graph in Fig. 2.1). Hidden
state activations from neighboring nodes N c

r are gathered and then transformed for each
relation type individually and passed through a non-linear activation function (i.e. ReLU)

to produce a hidden state of node vc in the (k+1)-th layer, h
(k+1)
c . This per-node update

is computed in parallel with shared parameters across the whole graph. (B) For every
relation, the Decagon decoder takes pairs of embeddings (e.g. hidden node representations
zc and zs representing Ciprofloxacin and Simvastatin) and produces a score for every
(potential) edge in the graph. Shown is the decoder for polypharmacy side effects relation
types. (C) A batch of neural networks that compute embeddings of six drug nodes in the
input graph. In Decagon, neural networks differ from node to node but they all share
the same set of relation-specific trainable parameters [i.e. the parameters of the encoder
and decoder; see Equations 2.1 and 2.2]. That is, rectangles with the same shading
patterns share parameters, and thin rectangles with black and white shading patterns
denote densely connected neural layers.

2.1.1 Decagon encoder

Let’s first describe the graph encoder model. It takes as input a graph G and addi-

tional node feature vectors xi, and produces a node d-dimensional embedding zi ∈ Rd

for every node (drug or protein) in the graph. The idea is that Decagon learns how

to transform and propagate information, captured by node feature vectors, across

the graph. Convolutional operators are learned that propagate and transform infor-

mation across different parts of the graph and across different relation types. For

a given node Decagon performs transformation/aggregation operations on feature
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vectors of its neighbours. This way Decagon only takes into account the first-order

neighbourhood of a node and applies the same transformation across all locations

in the graph. Successive application of these operations then effectively convolves

information across the K-th order neighbourhood (i.e. embedding of a node de-

pends on all the nodes that are at most K steps away), where K is the number of

successive operations of convolutional layers in the neural network model. In each

layer, Decagon propagates latent node feature information across edges of the graph,

while taking into account the type (relation) of an edge. A single layer of this neural

network model takes the following form:

h
(k+1)
i = ϕ

∑
r

∑
j∈N i

r

cijr W
(k)
r h

(k)
j + cirh

(k)
i

 (2.1)

where h
(k)
i ∈ Rd(k) is the hidden state of node vi in the k-th layer of the neural

network with d(k) being the dimensionality of this layer’s representation, r is a

relation type and matrix W
(k)
r is a relation-type specific parameter matrix. Here,

ϕ denotes a non-linear element-wise activation function (i.e. a rectified linear unit),

which transforms the representations to be used in the layer of the neural model,

cijr and cir are normalisation constants, which are chosen to be symmetric cijr =

1/
√
| N i

r ||N i
r | and cir = 1/ |N i

r | with N i
r denoting the set of neighbours of node vi

under relation r. Importantly note that the sum in Equation 2.1 ranges only over

the neighbours N i
r of a given node i and thus the computational architecture (i.e.

the neural network) is different for every node. Figure 2.2A shows an example of

a per-layer convolutional update Equation 2.1 for node C from Figure 2.1. And,

Figure 2.2C then illustrates that different nodes have different structures of neural

networks, because each node’s network neighbourhood is different.
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The overall encoder then takes the following form. The authors stack K layers as

defined in Equation 2.1 such that the output of the previous layer becomes the input

to the next layer. The input to the first layer are node feature vectors, h
(0)
i = xi, or

unique one-hot vectors for every node in the graph if no features are present.

2.1.2 Decagon decoder

The encoder maps each node vi ∈ V to an embedding, a real-valued vector repre-

sentation zi ∈ Rd, where d is the dimensionality of node representations.

The goal of the decoder is to reconstruct labelled edges in G by relying on learned

node embeddings and by treating each label (edge type) differently. In particular,

decoder scores a (vi, r, vj)-triple through a function g whose goal is to assign a score

g (vi, r, vj) representing how likely it is that drugs vi and vj are interacting through a

relation/side effect type r (Fig. 2.2C). Using embeddings for nodes i and j returned

by Decagon’s encoder zi and zj, the decoder predicts a candidate edge (vi, r, vj)

through a factorised operation:

g (vi, r, vj) =


zTi DrRDrzj if vi and vj are drugs

zTi Mrzj if vi and vj are both proteins, or,

vi and vj are a protein and a drug

(2.2)

followed by the application of a sigmoid function σ to compute probability of

edge (vi, r, vj) :

pijr = p ((vi, r, vj) ∈ R) = σ (g (vi, r, vi)) (2.3)
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Decagon’s decoder distinguishes between two different cases:

1. When vi and vj are drug nodes, the decoder g in Equation 2.2 assumes a global

model of drug-drug interactions (i.e. R) whose variation and importance across

polypharmacy side effects are described by side-effect-specific diagonal factors

(i.e. Dr ). Here, R is a trainable parameter matrix of shape d×d that models

global DDIs across all possible polypharmacy side effects. Additionally, in

Decagon, every relation r representing a different polypharmacy side effect is

associated with a diagonal d× d matrix Dr modelling the importance of each

dimension in zi towards side effect r.

2. When vi and vj are not both drug nodes, the decoder g in Equation 2.2 employs

a bilinear form to decode edges from node embeddings. More precisely, in that

case, the decoding function g is associated with a trainable parameter matrix

Mr of shape d×d that models interactions between every two dimensions in zi

and zj. The predicted edge probability is then computed using a bilinear form

(Equation 2.2) followed by the application of a sigmoid function (Equation

2.3).

2.1.3 Decagon model training

During the model training, Decagon’s model parameters are optimised using the

cross-entropy loss:

Jr(i, j) = − log pijr − En∼Pr(j) log
(
1− pinr

)
, (2.4)

to encourage the model to assign higher probabilities to observed edges (vi, r, vj)

than to random non-edges, where En∼Pr(j) is the expectation when n follows the
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negative sampling distribution Pr. As in previous studies [26, 37], the model is

estimated through negative sampling. For each drug-drug edge (vi, r, vj) (i.e. a

positive example) in the graph, a random edge (vi, r, vn) (i.e. a negative example)

is sampled by randomly choosing node vn. This is achieved by replacing node vj

in edge (vi, r, vj) with node vn that is selected randomly according to a sampling

distribution Pr [26]. Considering all edges, the final loss function in Decagon is:

J =
∑

(vi,r,vj)∈R

Jr(i, j). (2.5)

Decagon is trained for a maximum of 100 epochs using the Adam optimiser with

a learning rate of 0.001 and early stopping with a window size of 2.

2.1.4 Decagon experimental setup

Decagon is trained on the TWOSIDES dataset, focusing on predicting the 963 com-

monly occurring types of polypharmacy side effects that each occurred in at least

500 drug combinations.

For each polypharmacy side effect type, drug pairs associated with that side

effect are split into training, validation and test sets. Ensuring that the validation

and test sets each include 10% of drug pairs. For each side effect type, 80% of drug

pairs are used to train the model and 10% to select model parameters. The task is

then to predict pairs of drugs that are associated with each side effect type. Decagon

assigns a probability for every drug pair and for every side effect type, that a given

pair is associated with the given side effect.
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2.2 DeepWalk

DeepWalk [2] is an approach for learning latent representations of vertices in a

network. These representations encode relations in a continuous vector space, which

can be exploited by statistical models. DeepWalk uses local information obtained

from truncated random walks to learn latent representations by treating walks as the

equivalent of sentences. DeepWalk was not developed explicitly for the prediction of

polypharmacy side effects. However, it was applied by Zitnik et al. in the Decagon

paper, as a competing method. I choose this method because, similarly to my

approach, it learns representations for drugs, but follows a graph-based approach.

2.2.1 Problem formulation

The authors consider the problem of classifying members of a social network into

one or more categories. Let G = (V,E), where V represent the members of the

network, E are their connections, E ⊆ (V ×V ), and GL = (V,E,X, Y ) is a partially

labelled social network, with attributes X ∈ R|V |×S where S is the size of the feature

space for each attribute vector, and Y ∈ R|V |×|Y|,Y is the set of labels.

In a traditional machine learning classification setting, the aim is to learn a

hypothesisH that maps elements ofX to the labels set Y . In this case, the significant

information about the dependence of the examples embedded in the structure of G

can be used to achieve superior performance.

The goal is to learn XE ∈ R|V |×d, where d is small number of latent dimensions.

These low-dimensional representations are distributed; meaning each social phe-

nomenon is expressed by a subset of the dimensions and each dimension contributes

to a subset of the social concepts expressed by the space. This is the same concept
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I apply in my approach. Using these structural features, the attributes space will

be augmented to help the classification decision. These features are general and can

be used with any classification algorithm (including iterative methods). However,

the greatest utility of these features is their easy integration with simple machine

learning algorithms. They scale appropriately in real-world networks. This is why

DeepWalk can be applied to the problem of polypharmacy side effect prediction.

DeepWalk takes a graph as input and produces a latent representation as output.

Once the distributed representations are learned by the method, any state-of-the-art

machine learning algorithm, such as Support Vector Machines (SVMs) or Random

Forests (RFs), can be applied using the representations as features.

Figure 2.3: Overview of DeepWalk (Figure taken from [2]). A window of length
2w+1 is slid over the random walkWv4 , mapping the central vertex v1 to its representation
Φ (v1). Hierarchical Softmax factors out Pr (v3 | Φ (v1)) and Pr (v5 | Φ (v1)) over sequences
of probability distributions corresponding to the paths starting at the root and ending at
v3 and v5. The representation Φ is updated to maximise the probability of v1 co-occurring
with its context {v3, v5}.

2.2.2 The DeepWalk method

The only required input for any language modelling algorithm is a corpus and a

vocabulary V . DeepWalk takes a set of short truncated random walks as its own
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corpus, and the graph vertices as its own vocabulary (V = V ).

The DeepWalk algorithm consists of two main components; first a random walk

generator, and second, an update procedure. The random walk generator takes a

graph G and samples uniformly a random vertex vi as the root of the random walk

Wvi . A walk samples uniformly from the neighbours of the last vertex visited until

the maximum length (t) is reached (Fig. 2.3a). In practice, the implementation

specifies the number of random walks γ of length t to start at each vertex.

ALGORITHM 1: DeepWalk(G,w, d, γ, t)

Input : graph G(V,E)
window size w
embedding size d
walks per vertex γ
walk length t

Output: matrix of vertex representations Φ ∈ R|V |×d

1 Initialisation: Sample Φ from U |V |×d

2 Build a binary Tree T from V
3 for i = 0 to γ do
4 O = Shuffle(V )
5 foreach vi ∈ O do
6 Wvi = RandomWalk (G, vi, t)
7 SkipGram (Φ,Wvi , w)

8 end

9 end

Lines 3-9 in Algorithm 1 show the core of this approach. The outer loop specifies

the number of times, γ, that should start random walks at each vertex. Each

iteration can be thought of as making a pass over the data and sampling one walk

per node during this pass. At the start of each pass, a random ordering is generated

to traverse the vertices. The SkipGram algorithm [26] is used to update these

representations in accordance with the following objective function:

minimize
Φ

− log Pr ({vi−w, · · · , vi+w} \vi | Φ (vi)) (2.6)
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ALGORITHM 2: SkipGram(Φ,Wvi , w)

1 foreach vj ∈ Wvi do
2 foreach uk ∈ Wvi [j − w : j + w] do
3 J(Φ) = − log Pr (uk | Φ (vj))

4 Φ = Φ− α ∗ ∂J
∂Φ

5 end

6 end

SkipGram

SkipGram is a language model that maximises the co-occurrence probability among

the words that appear within a window w in a sentence. It approximates the con-

ditional probability in Eq. 2.6 using an independence assumption as the following:

Pr ({vi−w, · · · , vi+w} \vi | Φ (vi)) =
i+w∏

j=i−w
j ̸=i

Pr (vj | Φ (vi)) (2.7)

Algorithm 2 iterates over all possible collocations in a random walk that appear

within the window w (lines 1-2). For each, a vertex vj is mapped to its current

representation vector Φ (vj) ∈ Rd (see Fig. 2.3b). Hierarchical Softmax is used to

approximate the probability distribution.

The model parameter set is θ = {Φ,Ψ} where the size of each is O(d|V |).

Stochastic gradient descent (SGD) is used to optimise these parameters (Line 4,

Algorithm 2). The derivatives are estimated using the back-propagation algorithm.

The learning rate α for SGD is initially set to 2.5% at the beginning of the training

and then decreases linearly with the number of vertices that are seen so far.

For the problem of polypharmacy side effect prediction, once the distributed

representations are learned for each drug, a logistic regression classifier is trained

for each side effect. This is the same methodology as described in [1], and the same

experimental setup can be applied.
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2.3 Predicting Polypharmacy Side-effects Using

Knowledge Graph Embeddings - TriVec

TriVec is a knowledge graph-based approach applied to the problem of polypharmacy

side effect prediction [3]. This method uses multi-part embedding vectors to predict

the side effects caused by the interaction between two drugs. This approach models

drug pairs and their side effects as a knowledge graph, where interacting drugs

are modelled as nodes and their corresponding side effects are modelled as edges.

A tensor factorisation-based knowledge graph embedding model is used to learn

vector representations for both drugs and side effects. These learned embeddings are

used to predict unknown DDIs. This approach has been shown to achieve superior

performance when compared to Decagon [3]. It also learns representations for both

drugs and side effects, as my own approach. For these reasons, I choose TriVec as

the main competing method for my work.

2.3.1 TriVec method

The knowledge graph embedding model that is used, follows a generative approach

to learning low-rank embedding vectors for the entities and relations. The TriVec

model represents each entity and relation using three embedding vectors such that

the embedding of entity i is ΘE(i) = {e1i , e2i , e3i } where all embedding vectors have the

same size K (a user-defined embedding size). Similarly, the embedding of relation

j is ΘR(j) =
{
w1

j , w
2
j , w

3
j

}
. Where em and wm denote the m embedding vector for

the entity or the relation, and m ∈ {1, 2, 3}. The embeddings in the TriVec model

are initially with random values generated by the Glorot uniform random generator.

The embedding vectors are then updated during the training procedure to provide
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optimised scores for the knowledge graph facts.

TriVec first initialises its embedding with random noise. Then, it updates them

by iterative learning on the training data. The learning pipeline of the model learns

the embeddings of entities and relations by minimising a negative softmax log-loss

that maximises the scores of true facts and minimises the scores of unknown facts.

This loss is defined as follows:

LTriModel
spo = −ϕspo′ + log

(∑
o′

exp (ϕspo′)

)
− ϕs′po + log

(∑
s′

exp (ϕs′po)

)

+
λ

3

K∑
k=1

3∑
m=1

(
|ems |

3 +
∣∣wm

p

∣∣3 + |emo |3) ,
(2.8)

whereK denotes the embedding size, ϕspo′ denotes the score of the (s, p, o
′) triple,

x′ represents an entity e : e ̸= x, e ∈ E , emi is the embedding part m of the entity

embedding ΘE(i), w
m
i is the embedding partm of the relation embedding ΘR(i), ϕs′po

denotes the score of the triple (s′, p, o),m denotes the embedding part index, λ

denotes a configurable regularisation weight parameter and |x| is the absolute of

x. The term λ
3

∑K
k=1

∑3
m=1

(
|ems |

3 +
∣∣wm

p

∣∣3 + |emo |3) is the nuclear 3-norm, which is

a regularisation term that enhances model generalisation over datasets with large

entity vocabularies.

The scores of the TriVec model are computed using an embeddings interaction

function (scoring function) that is defined as follows:

fTriModel (s, p, o,Θ) =
K∑

e1sw
1
pe

3
o + e2sw

2
pe

2
o + e3sw

3
pe

1
o. (2.9)

It uses a set of three interactions: one symmetric interaction:
(
e2sw

2
pe

2
o

)
and two
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asymmetric interactions:
(
e1sw

1
pe

3
o

)
and

(
e3sw

3
pe

1
o

)
.

Figure 2.4: Flow diagram of the scoring function of TriModel applied to polypharmacy
side-effects drug combinations (Figure taken from [3]). The subject (s), and the object
(o) represent the drug combination while their corresponding polypharmacy side-effect is
represented as the relation (r). All these components are represented using three embed-
ding vectors of size k. The score of a triple (s, p, o) is defined as f(s, p, o) =

∑
k ck, where

c = i1 + i2 + i3, i1 = s1 · r1 · o3, i2 = s2 · r2 · o2, and i3 = s3 · r3 · o1.

The TriVec model is a tensor factorisation model that solves the problem of link

prediction as 3D tensor completion. The tensor dimensions represent entities and

relations. In the task of predicting polypharmacy side-effects, the drug combina-

tions are modelled as the subjects and objects of triples while the corresponding

polypharmacy side-effects are modelled as relations. In the training process, the

model learns from the different types of assertions such as protein-protein interac-

tions, drug-protein interactions, drug-drug interactions, single drug side effects and

polypharmacy side effects. This allows the model to learn efficient embeddings for

the components corresponding to the different entities and relations in the knowl-

edge graph. In the prediction phase, the TriVec model then learns the probability

of polypharmacy side-effects associations by completing a 3D tensor of drugs and

polypharmacy side-effects as shown in Figure 2.4.

The evaluation protocol is the same as in the work by Zitnik et al., as they

compare this method against Decagon. A detailed explanation for this procedure
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can be found in Chapter 5 of this thesis. The results obtained greatly surpass

the performance of Decagon and show how the learned embeddings can be used to

enhance the predictive performance for graph-based methods.

2.4 Deep learning improves the prediction of drug–

drug and drug–food interactions

The last method I present is DeepDDI, by Ryu et al. [4]. This is a computational

framework that uses names of drug-drug or drug-food constituent pairs and their

structural information as inputs to accurately generate DDI types as outputs of

human-readable sentences. DeepDDI uses Deep Neural Networks (DNN) to predict

DDI types using the DrugBank gold standard DDI dataset. This is a method that

was developed for a different DDI dataset. However, this approach uses deep neural

networks at the core of its predictions, making it an excellent baseline to compare

against my work.

The input for the DNN starts with the structural information provided in the

Simplified Molecular-Input Line-Entry System (SMILES)[38] format. This repre-

sentation was used to generate a feature vector called Structural Similarity Profile

(SSP). SSP is devised to effectively capture unique structural features of a given

drug and to associate this feature with a set of the reported DDI types. SSP con-

tains pairwise structural similarity scores obtained from the comparison between the

input drug and all the 2,159 approved drugs, in the DrugBank dataset, as a fixed

comparison target. The SSP is generated for each drug in the input drug pair. The

similarity is measured by the Tanimoto coefficient, which is defined as the number
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of common chemical fingerprints divided by the number of all the chemical finger-

prints of the two drugs being compared (Fig. 2.5). The chemical fingerprints of each

drug are calculated by using the Extended-Connectivity Fingerprint of diameter 4

(ECFP4). The dimension of the SSPs is reduced using Principal Component Anal-

ysis (PCA) and keeping 50 principal components (90% of variance retained). The

two SSPs of each input drug are combined and used as the input for the DNN of

DeepDDI, as observed in Figure 2.6.

Figure 2.5: Concept of Structural Similarity Profile (SSP) (Figure taken from [4]).
SSP is a feature vector for an input drug in the pair and contains pairwise structural
similarity scores obtained from the comparison between the input drug and the 2,159
approved drugs reported at DrugBank. The structural similarity was calculated using the
Tanimoto coefficient with extended-connectivity fingerprints of diameter 4 (ECFP4).

The DNN of DeepDDI is designed to be a multi-label classification model that

predicts multiple DDI types for a given drug pair. This is modelled this way since

drug pairs can have multiple DDI types. DeepDDI is built to predict 86 different

DDI type sentences, this means that it has the same number of output neurons.

These output neurons’ activity values range between 0-1 and can be interpreted as

the probability of the pair interacting to cause that DDI type. The DDN is trained

by minimising the cross-entropy as the loss function. An overview of DeepDDI can
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Figure 2.6: Process of using the SSPs as input for the DNN (Figure taken from [4]).
Upon generation of the SSP for each drug in pair (Fig 2.5), the dimension of each SSP
is reduced to 50 using PCA. The two SSPs with the reduced dimension are subsequently
combined into a single SSP to represent each drug pair as a feature vector. The combined
SSP is used as an input for the DNN of DeepDDI.

be observed in Figure 2.7.

For the evaluation setting, the drug pairs associated with the DDI types in the

gold-standard DrugBank DDI dataset are split into training (60%), validation (20%)

and testing (20%). A total of 192,284 DDIs form the dataset used in this study.
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Figure 2.7: Overall scheme of the DeepDDI approach (Figure taken from [4]). Deep-
DDI consists of the structural similarity profile (SSP) generation pipeline and deep neural
network (DNN). DeepDDI accepts chemical structures (in SMILES describing the struc-
ture of a chemical compound) and names of drugs in pairs as inputs and predicts their
potential drug-drug interaction (DDI) types as outputs in human-readable sentences hav-
ing the input drug names. DNN of DeepDDI is a multilabel classification model that can
predict multiple DDI types at the same time for a given drug pair. To develop DeepDDI,
a gold standard DDI dataset covering 191,878 drug pairs was obtained from DrugBank,
and used to train the DNN of DeepDDI. A single, combined SSP (feature vector of a drug
pair) is generated for each input drug pair. DeepDDI has many implications such as the
prediction of potential causal mechanisms for the adverse drug events (ADEs) of a drug
pair of interest (blue dotted arrow) using the output sentences.

2.5 Final remarks

In this chapter, I presented an overview of the state-of-the-art in DDI prediction.

The first methods developed to this end focused on predicting whether two drugs

interact or not. These approaches frame DDI prediction as a binary classification

problem. However, there is a detailed type of polypharmacy side effect (e.g., hepatic

failure, cough, high blood pressure, lower metabolism, etc.) associated with each

DDI. There are several methods that were developed for this problem [3, 39, 40, 41,

42]. I selected only the most relevant ones as competing methods in my work, since

these approaches are highly representative of their own categories of methods and

serve as good baselines to compare against my work. Also, they were chosen based

on their relevance to the field and impact of the publication venue.
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A limitation of the current literature is that there is a lack of a unified and

standard evaluation protocol. Different methods adopt different evaluation settings

that best suit their own architectures and modelling of the problem. Another issue is

that the biological reasoning behind the experiments is often overlooked or missing

altogether. A key limitation, that was identified by Qian et al., is the fact that most

current methods can’t generalise their performance on drug pairs where neither

drug is seen during training [43]. Qian et al., are the firsts to introduce a more

realistic experimental setting that addresses the cold start problem of predicting

drugs completely unseen during training. In this work, the authors leverage genetic

interaction features and introduce a novel training scheme for DDI prediction in

the DrugBank dataset. One of the contributions of their work is to showcase the

strength of the genetic interaction profiles as features for the prediction of DDIs

and the novel training scheme. They make use of XgBoost as the machine learning

method to learn a model for the predictions. I don’t compare against the work by

Qian et al. because they focus on the problem of general DDI prediction. Also,

the number of drugs is reduced by the constraint of having the features available.

Nevertheless, I include a comparison against the XgBoost method (see Chapter 5.1)

but using other type of features that are available for all the drugs in the TWOSIDES

dataset.

In methods such as Decagon, the drug pairs are split by polypharmacy side

effects. This is what makes the most sense for graph-based methods, since the side

effect is the edge type. The testing can then be interpreted as sampling edges from

different graphs. However, it is somewhat far from a real-world scenario. More

often than not, DDIs are researched for a new drug or a new drug combination

during the clinical trials in the drug development pipeline. And these graph-based
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methods depend on known polypharmacy side effects to make efficient predictions.

They require rich information about the investigated drugs, i.e., known associations

about interactions with other drugs. This means that these methods cannot make

predictions for drugs with limited or no known assertions [3]. Moreover, based on

the graph-nature of the method, it would be near impossible to modify it to account

for unseen drugs or side effects.

My work addresses the limitations found in the current literature on polyphar-

macy side effect prediction. I introduce well-defined experimental settings, found

in Chapter 5.1. I also provide an intuition of the biological motivation behind each

research question that the evaluation intends to address. Besides covering the most

conventional evaluation protocol found in the literature of DDI prediction, the other

experimental settings I propose are novel and provide a more realistic scenario that

experimentalists can relate to. Lastly, I provide a sound comparison of my approach

against the state-of-the-art methods presented in this chapter for each experimental

setting.
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“Progress is made by trial and failure; the failures are generally a hun-

dred times more numerous than the successes, yet they are usually left

unchronicled.”

William Ramsay

3
Early Models

The goal of my work is to develop machine learning models to predict polypharmacy

side effects, i.e. adverse effects caused by the co-administration of two drugs. In this

chapter, I present the early models that were crucial to understanding the problem

and realising some key biological aspects about the prediction of adverse DDIs. The

objective of this chapter is to showcase what were the limitations and findings that

led to the development of my final approach, DCSE-twin.

Galeano et al. [44] developed a linear novel matrix decomposition method that

37
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learns low-dimensional representations for drugs and side effects, and, for the first

time, predicts the frequency of side effects. This prompted me to question if I could

model the prediction of adverse DDIs, using a similar, linear, model. Specifically,

can I model the combination of two drugs with a linear model?

To answer this question, first, I developed a matrix decomposition method that

breaks down the DDI matrix (described in Chapter 3.2) into the product of three

matrices, S, M , and H. The matrices S and H are fixed and contain the represen-

tations learned by Galeano et al. This method, attempts to linearly combine the

individual representations of the two drugs and relate them to the representations

of the side effects. The main finding from this model showed that a linear model

is not sufficient to capture the combination of the representations of single drugs.

To explore this notion further, I formulated a nonlinear approach to combine the

pre-trained single drug representations. This approach uses a Mutli-Layer Percep-

tron (MLP) to combine the representations for the individual drugs and learn a

representation for the drug pairs. The results from these early models, indicated

that the drugs, in fact, are combining nonlinearly.

3.1 Materials

3.1.1 Drug-Drug Interaction Data

The adverse DDIs were taken from TWOSIDES [23], which contains information

of 63,473 drug combinations and 1,318 side effect types with a total of 645 drugs.

This data was mined from the FDA AERS (FAERS) for reports of adverse effects

in patients receiving combinations of two drugs as medication. In Chapter 5.1.1 I
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discuss this dataset in more detail.

3.1.2 Drug and side effect representations

A recent work, developed in our lab by Galeano et al., [44] presents a novel ma-

trix decomposition method that predicts the frequency of every side effect for every

single drug in the SIDE Effect Resource (SIDER)1 4.1 [45] dataset. This decom-

position results in a vector of latent variables representing each drug and a vector

of latent variables representing each side effect. Galeano et al. show that these

low-dimensional representations encode meaningful biological information of drug

molecular and clinical activity. Furthermore, the individual components of the vec-

tors are interpretable in terms of drug anatomical categories.

I intend to use the underlying biological information, encoded by the representa-

tions learned by Galeano et al., for the prediction of DDIs. The assumption here is

that the relationship between the drug representations will indicate how the drugs

interact with each other and which anatomical systems will be perturbed to cause

a specific adverse effect.

The outcome of applying the method by Galeano et al. are two matrices of

low-dimensional vectors. Let’s define the matrix W ∈ Rm×k that contains the drugs

representations, and the matrixH ∈ Rk×n formed by the side effects representations,

where m is the number of drugs and n is the number of side effects. For the DDI

prediction problem, the number of drugs is, m = 432, and the number of side effects

is, n = 544. The total number of combinations is, 36, 143.

1This dataset contains information on marketed medicines and their recorded adverse drug
reactions. The information is extracted from public documents and package inserts.
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3.2 SMH Model

I first propose a linear model for the prediction of adverse DDIs. This is a matrix de-

composition model that combines pre-trained single drug representations and learns

a matrix that relates the representations of the two drugs with the pre-trained side

effect representations. In other words, I propose a decomposition of the DDI matrix

into the product of three matrices, S, M , and H. An overview of this approach can

be observed in Figure 3.1.

First we represent the DDI information as a matrixX ∈ Rp×n where p is the total

number of drug combinations with at least one side effect associated to them. I use

the pre-trained drugs latent vectors, contained inW , to represent each drug. Let S ∈

Rp×2k be a matrix where each row is a drug pair represented by the concatenation

of the representations of the individual drugs, si ∈ R2k where k is the length of each

low-dimensional vector (k = 10). Accordingly, I fix the matrix H ∈ Rk×n where

each column represents the pre-trained representation of each side effect.

To relate these two matrices S and H the objective is to learn a new matrix

M ∈ R2k×k that will reduce the concatenated representations, in S, back into the

same latent space of length k. The matrixM will contain the learned representations

for the drug combinations. I obtain the prediction for the polypharmacy side effects

by applying the following linear model:

X̂ ≈ SMH (3.1)

where M is the solution of the following optimisation problem:
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Figure 3.1: SMH model. This is a matrix decomposition linear model that learns a
matrix M that relates the matrices S and H. S contains the pre-trained concatenated
drug representations for every pair, and H is formed by the pre-trained representations
for the side effects.

min
M
JSMH(M) =

1

2
∥X − SMH∥2F +

β

2
∥M∥2F

subject to the non-negative constraint M ≥ 0.

(3.2)

Where ∥.∥F denotes the Frobenius norm, β is the l2 regularisation parameter,

and the l2 norm is defined as:

∥M∥2F =
2k∑
i=1

k∑
j=1

|mij|2. (3.3)

The first term in Eq. 3.2 is the fitting constraint on the real DDI data in X.
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And the second term is the l2 regularisation applied to M . Finally, I impose a non-

negative constraint on M , as this favours biological interpretability because only

additive combinations of the latent features will result in the final prediction [46].

SMH multiplicative algorithm

To minimise the loss function JSMH(M) subject to the non-negative constraint, I

developed a novel algorithm that uses the following multiplicative update rule:

mij ← mij
(S⊤XH⊤)ij

(S⊤SMHH⊤ + βM)ij
. (3.4)

This update rule is based on the principles of Non-negative Matrix Factorisation

(NMF) and shares the same theoretical proofs of convergence [47]. Using this up-

date rule to minimise Eq. 3.2 has some advantages over following gradient descent

based approaches. There is no need to set a step-size parameter, it has theoretical

guarantees of convergence, and it does not require a projection function to maintain

the non-negative constraint. Following the update rule is enough to guarantee non-

negativity, provided that M is initialised with non-negative values. M is initialised

with random weights drawn from a uniform distribution in the interval (0,
√
σ).

To evaluate the performance of this approach, I remove 10% of the DDIs at

random from X and hold them out for my testing set. I train a model with 80%

of the DDIs, and the remaining 10% is used to select the optimal value for the

l2 regularisation parameter β. Once I find the optimal β, I train the final model

with all the data available (90%) and evaluate the performance on the testing set.

I make sure that all the rows in X have at least 5 ones in them, i.e. every drug

pair is associated with at least 5 adverse side effects. This experiment is meant to

evaluate how well the methods are able to predict novel DDIs for existing drugs on
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the market. This could potentially help clinicians who have to decide which drugs

to co-administer and minimise the risk of adverse effects. A major drawback of this

evaluation is that it is not fit to measure how a method performs at predicting DDIs

for new drugs, since in this setup every drug pair needs to be have some known

associations.

I use the Area Under the Receiver Operator Characteristic (AUROC) curve, and

the Area Under the Precision-Recall Curve (AUPRC) to evaluate the performance

of my approach. For both metrics, the perfect score is a value of 1. For the pos-

itive samples in training and testing, I use the DDIs from TWOSIDES, and the

complement set of TWOSIDES is used as negative samples.

I obtain an AUROC of 0.702, and an AUPRC of 0.223 for the SMH model under

this setting. This result indicates that although there is a minimal signal being

captured by the matrix M , the performance can still be improved greatly. Some

limitations of my approach could be in the constraints I imposed on the model. The

first one is the non-negative constraint set on the matrix M . Another limitation of

the model could lie in the learned representations that I fix for S and H. These low-

dimensional vectors were learned using a different dataset and a different problem,

predicting side effect frequency. Although this problem is related to DDI prediction,

the fact that I am fixing this values and not allowing the model to learn the individual

representations could also be limiting the performance of this approach. The last

big constraint that I am setting onto the model, is learning M in a linear way.

Unconstrained SMH model

An important aspect of this approach is that it is trying to learn how two drugs

interact with each other in order to cause an adverse side effect. Specifically, we can

interpret these low-dimensional vectors as the distributed representations, of drugs
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and side effects, that encapsulate the state of their biological system. What the

model tries to capture is how the drugs combine with each other to perturb different

anatomical systems that will in turn cause the adverse side effect.

The SMH model has a non-negative constraint set on the matrix M . This is

to favour the interpretability of the representations for the drug pairs. However,

there might be a more complex relationship between two drugs that an additive

combination may not be sufficient to model it. A DDI, normally, occurs when

a drug affects the efficacy and safety of the other drug [14]. I hypothesise that

removing the non-negative constraint on M , the performance of the SMH model

can be improved. This will consider the possibility of having a trade-off between

interpretability and predictive performance.

By removing the non-negative constraint imposed on M , I cannot longer use

my algorithm that applies the multiplicative update rule to optimise JSMH(M).

Instead, I adopt a gradient descent approach to optimise Eq. 3.2. However, note

that JSMH(M) is differentiable and the differentiation can be solved for M . This

means that I can use the closed form to obtain the optimal M by setting ∂JSMH

∂M
= 0:

∂JSMH

∂M
= −S⊤XH⊤ + S⊤SMHH⊤

M = (S⊤S)−1S⊤XH⊤(HH⊤)−1

(3.5)

Notice that normally the inverse of (S⊤S)−1 and (HH⊤)−1 would be considered

costly operations. However, because the sizes of the matrices are small: 2k×2k and

k×k, respectively, with k = 10, these operations are not computationally intensive.

I call this model unconstrained SMH (uSMH), to differentiate it from the SMH
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model.

To evaluate the performance of uSMH, I follow the same experimental setup

described before. Table 3.1 shows the results compared to the traditional SMH

model. As we can observe, the performance increases slightly for both the AUROC

and the AUPRC. This indicates that removing the non-negative constraint may play

a beneficial role in predictive performance. Inspecting the unconstrained M reveals

that around 30% of the values in M go negative after removing the constraint.

Nevertheless, the results are still not great. Following these results, the next thing

to explore is to not use the learned low-dimensional vectors learned by Galeano et

al. to represent the drugs and side effects. Another possibility is that the linearity

of the model is limiting its capability to explain the interactions between the two

drugs. These limitations will be explored in the next sections.

Table 3.1: Performance comparison between the constrained SMH and the uncon-
strained SMH models. For uSMH, M is allowed to have negative values.

Method AUROC AUPRC
SMH 0.702 0.223
uSMH 0.713 0.240

3.3 Non-linear model - MLP combination

The last preliminary model I present, explores the linear limitation of the SMH

model. From the preliminary results of the SMH and uSMH models, I conclude

that a linear combination may not be sufficient to capture the intricacies involved

in the combination of two drugs. Deep neural networks can use many intermediate

layers of artificial neurons between the input and output to learn a hierarchy of
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progressively more complex feature detectors [48]. For this approach, I make use of

the drug and side effect distributed representations, learned by Galeano et al., but

instead of learning a linear combination of the individual drug representations, I

use a Multi-Layer Perceptron (MLP). This means connecting a deep neural network

to the individual drug representations to model the non-linear association between

them, and learn a representation for the drug pair. This representation for the drug

pair will be connected to the representations of the side effects to make a prediction

for the association.

Figure 3.2 shows a schematic of this approach. The input for the model are the

representations of the individual drugs. These representations are fixed and are not

learned by my method. They are denoted by the matrix W learned by the method

by Galeano et al. The row i of W represents the low-dimensional vector for drug

i. These representations wi and wj are then fed to the MLP combination layers to

learn the non-linear combination between them:

c⃗i,j = ϕout (ϕL (. . . ϕ2 (ϕ1 (w⃗i ⊕ w⃗j)) . . .)) , (3.6)

here⊕ represents the concatenation, ϕout and ϕx respectively denote the mapping

function for the output layer and lth hidden layer, where there are L hidden layers

in total, and c⃗i,j ∈ Rk×1 signifies the distributed representation for the combination

of drugs i and j.

Finally, the vector of predicted scores for the drug pair (i, j), x̂i,j, where x̂ ∈

R1×m, with m = 544, is obtained by:

ˆ⃗xi,j = c⃗i,jH (3.7)
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The output layer of this approach is a non-trainable layer where the weights are

fixed by the matrix H containing the side effects representations learned by Galeano

et al. This approach is an extension of the uSMH model, where instead of learning M

linearly, an MLP is used to model the nonlinearities involved in the combination of

two drugs. I believe that the use of nonlinearity will help capture a more meaningful

relationship between the drug representations.

Table 3.2: Performance comparison between all the preliminary models.

Method AUROC AUPRC
SMH 0.702 0.223
uSMH 0.713 0.240
MLP combination 0.785 0.297

Table 3.2 includes the results of this approach compared against the other pre-

liminary models. As observed, the MLP combination approach yields much better

results than the uSMH. This indicates that the linearity was limiting the modelling

of the combination of the two drugs, and may hint that the drugs are actually

combining nonlinearly.
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Figure 3.2: MLP combination model. This method learns a non-linear combination
for a drug pair, based on the two fixed learned representations of the individual drugs,
represented by wi and wj . The output of the MLP is the representation of the drug pair,
which gets multiplied by the representations of the side effects to obtain a predicted score
for each side effect in the output layer.
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3.4 Final remarks

In this chapter, I presented the early models that paved the way to my final approach

that is presented in the next chapter. The main idea behind these models is to learn

how to combine the distributed representations of two individual drugs to learn a

representation for a drug pair. These representations, for drugs and side effects,

found a lot of success at predicting the frequency of single drug side effects [44].

For this reason, finding the right way to combine, or learn, them was an important

objective of these initial approaches.

The main findings from the early models are detailed as follows:

• A linear approach is not good enough to model how two drugs combine in

order to cause new adverse side effects.

• Using an MLP to learn a representation for the drug pairs, shows how much

the approach benefits from nonlinearity. There are a lot of complex interaction

between the individual representations that cannot be captured by a simple

linear approach.

Another important remark is that these methods are very rigid in terms of the

experimental setups that can be adopted for evaluation. The current literature of

DDI prediction adopts different settings, which can’t be adapted for most of the

preliminary methods showed here. Nevertheless, these results are good to show

that the learning is going in the right direction. In Chapter 5, I provide a detailed

comparison of my final approach against state-of-the-art methods in DDI prediction

under different evaluation protocols.

My final method incorporates the strength of each of the preliminary models,
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while also addressing their limitations. It learns distributed representations directly

from the known information, without relying on external pre-trained data. My

approach also makes use of data of single drug side effect to learn more robust

representations for both drugs and side effects. It is highly nonlinear, as it uses an

MLP to model the complex relationships between the individual drugs. In the next

chapter, I explain this approach in full detail.



“All the knowledge is in the connections.”

David Rumelhart

4
Learning distributed representations for

predicting adverse effects of drug

combinations

In this chapter, I present DCSE-twin, a novel approach for predicting adverse side

effects caused by DDIs. The idea behind my approach is to learn distributed rep-

resentations separately for drugs and side effects. These are learned in a neural

51
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network that combines, nonlinearly, the representations of the individual drugs to

obtain the representation for drug pairs. The elements in the distributed represen-

tations, can be interpreted as the activations of different biological systems. When

my approach relates the representation for a drug pair, with the representation of a

side effect, it obtains a score that can be interpreted as the probability of the side

effect being associated to the drug pair. The fact that these representations are

explicitly separate, allows DCSE-twin to synergistically learn from side effect data

of both single drugs and drug pairs. This provides my model, the ability to answer

novel questions, in the field of DDI prediction, that are relevant for pharmacology.

DCSE-twin can address the cold start problem by predicting adverse DDIs, for drug

pairs for which no side effects are known, or even for drug pairs in which neither of

the drugs is known to interact with any other drug.

An overview of DCSE-twin is presented in Figure 4.1. The method is a com-

bination of two models, DCSE-left and DCSE-right. DCSE-left is a non-negative

matrix factorisation model that utilises data from side effects caused by single drugs.

DCSE-right is a deep neural network that learns from side effects caused by drug-

drug interactions. The two architectures in this approach are linked, as the weights

for the distributed representations are shared between the two models. By sharing

the weights across the models, the representations can be learned from two different

data sources simultaneously. DCSE-left allows the approach to learn representations

that are more descriptive of the mechanism of single drug action and lets the neural

network, in DCSE-right, model the nonlinearities involved in the combination of two

drugs. As the weights are updated by one of the models to incorporate new knowl-

edge about drugs or side effects, the changes affect the knowledge associated with

other entities in the other model that are represented by similar activity patterns.



53

Figure 4.1: Overview of the architecture of my final model, DCSE-twin. It consists
of the combination of DCSE-left and DCSE-right. The two models share the parameters
for the distributed representations of drugs and side effects. The final prediction for my
approach is given by the output of DCSE-right, ŷi,j,l, and it represents the probability
that a side effect l is caused by the co-administration of drugs i and j.

A key distinction between the early methods showcased in Chapter 3 and this

final approach, is the way in which the problem is framed. Motivated by recent work

in collaborative filtering [49], I restructure the architecture of the model by replacing

the n side effect outputs, to a single output that determines the probability of a

combination of drugs being associated to a given side effect. In this new architecture,

the side effect is also an input to the model. This change allows the approach to be

more robust and flexible in terms of the different experimental settings and research

questions that can be tackled, all of which are explained in Chapter 5.1. It also

means that the number of side effects that the model can predict is not limited, nor

restricted by the architecture. As long as we have the distributed representation
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for drugs and side effects, my model will be able to predict a probability for the

drug-drug interaction.

An important characteristic of DCSE-twin is that the distributed representa-

tions are constrained to be non-negative. This has the added advantage of making

explicit the parts-based representation [47], and therefore, having the potential to

offer biological interpretability. This means that drugs are characterised by a set

of learned non-negative low-dimensional features that, when additively combined

with the representation of the side effects, account for the probability of that side

effect occurring or not. From the work by Galeano et al., we learned that these

representations can then be used to explain drug activity in terms of perturbations

of distinct biological and anatomical systems. By also constraining the learned rep-

resentations for the drug combinations to be non-negative, I expect the same notion

of interpretability can also be extended for drug-drug interactions.

In this chapter, I will first focus on providing the mathematical formulations for

the two models in the approach, DCSE-right and DCSE-left. Finally, I will detail

the final approach, DCSE-twin, that is the combination of the two separate models.

4.1 DCSE-right, predicting adverse DDIs

DCSE-right has the lead role of predicting the side effects caused by drug-drug

interactions. It considers the task of identifying associations between drug pairs and

side effects. Let D be a set of drugs and R a set of side effects, then the drug-drug

interaction prediction task can be considered as a function f : D ×D × R→ [0, 1].

For a given triplet of two drugs and a side effect (di, dj, rl), the aim is to determine

how likely it is that the concurrent use of drugs di and dj is associated with the
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side effect rl in the human patient population. The goal is to find an approximation

of f , given a dataset of known associations between drug pairs and side effects

T = {(di, dj, rl)p|di, dj ∈ D, i ̸= j, rl ∈ R}Pp=1 ⊂ D × D × R, where P is the total

number of known triplets. The model described below is one such approximation.

Figure 4.2: DCSE-right. The individual representations for the two drugs are fed into
a neural network. These combination layers will provide the necessary nonlinearities to
find a representation for the drug pair. The final prediction score is given by ŷi,j,l. This
model is trained with data from TWOSIDES.

The architecture of the model can be observed in Figure 4.2. The bottom input

layer consists of three vectors d⃗i, d⃗j and r⃗l with a one-hot encoding that determines
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the identity of the two drugs and the side effect, respectively. Above the input layer,

is the embedding layer, a fully connected layer that projects the sparse encoding to

a dense vector. Note that to maintain the same representations for all drugs, I

use a Siamese embedding layer W ∈ Rm×k, where m is the number of drugs in

T and k is the embedding size. For the side effect input, the embedding layer is

H ∈ Rn×k, where n is the number of side effects in T . Note that k ≪ min(m,n) and

represents the number of latent features in the distributed representations. Thus,

the representations for the drugs and side effects are obtained through the following:

w⃗i = W T d⃗i

h⃗l = HT r⃗l

(4.1)

where d⃗ ∈ Rm×1, r⃗ ∈ Rn×1 and w⃗, h⃗ ∈ Rk×1. The resulting drug and side effect

embeddings are the distributed representations learned by DCSE-right.

The representations for the two drugs are then concatenated and fed into a multi-

layer neural architecture, which we term the combination layers. The output of the

combination layers has the same size as the distributed representations for the drugs

and it signifies the learned distributed representation for the drug pair. I define the

combination layers as follows:

c⃗i,j = ϕout (ϕX (. . . ϕ2 (ϕ1 (w⃗i ⊕ w⃗j)) . . .)) , (4.2)

here⊕ represents the concatenation, ϕout and ϕx respectively denote the mapping

function for the output layer and xth hidden layer, where there areX hidden layers in

total, and c⃗i,j ∈ Rk×1 signifies the distributed representation for the combination of

drugs i and j. These hidden layers are meant to provide a large level of flexibility to
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model the nonlinear interactions between the latent features of the representations

of the two drugs. The fundamental assumption is that the hidden layers might also

capture some specific molecular mechanisms between the two drugs that make them

interact in a way that would elicit side effects.

Finally, the predicted score ŷi,j,l is obtained by

ŷi,j,l = σ
(
c⃗ T
i,jh⃗l + b

)
(4.3)

The term c⃗Ti,jh⃗l, is the dot product between the representations of the drug pair

and the side effect, and b is the bias term. σ represents the sigmoid activation func-

tion. The target value yi,j,l is interpreted as a probability between 0 or 1 indicating

whether the side effect l is associated to the combination of drugs i and j.

The bias term b plays a key role in the prediction. Its first purpose is to make sure

that the entire range of the sigmoid function is being represented. To understand

why this is the case, notice that since both c⃗i,j and h⃗l are non-negative, the lower

bound for the dot product between these two vectors is 0. This means that if

we omit the bias term, and considering the nature of the sigmoid function1, our

prediction ŷ will be bounded between 0.5 and 1 . The bias term ensures that the

raw value of the non-normalised predictions is allowed to go below 0. Consequently,

the final prediction values fall within the entire range of the sigmoidal function. The

second purpose of the bias term is to model the systematic tendencies inherent to

the data, such as, the prescription bias. Some drugs are, generally, prescribed more

than others, and some side effects tend to occur more frequently than others [50].

Thus, it would be unwise to explain the total prediction score with just the dot

1σ(a) = 1
1+exp(−a)
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product of the representations. Instead, the system tries to identify the portion of

the prediction that can be attributed to the bias, subjecting the true interaction

portion of the data to the modelling of the distributed representations.

The deep neural network in DCSE-right integrates the problem-specific knowl-

edge into the learning. It imposes constraints on how the distributed representa-

tions of the drugs and side effects are being integrated. The idea is that DCSE-twin

favours interpretability of the distributed representations. As shown before in [44],

the low-dimensional vectors can be analysed to gain a biological interpretation for

the predictions. For this reason, the architecture in DCSE-twin is built so that it

is possible to discern how the features of the drugs and side effects (that will be

learned linearly) are combined (nonlinearly) to make the predictions.

Figure 4.3: Heatmap of the hyperpa-
rameter grid search for the combination
layers - Values represent the AUROC.

Figure 4.4: Heatmap of the hyperpa-
rameter grid search for the combination
layers - Values represent the AUPRC.

For the implementation of the distributed representations of single drugs and side

effects, W and H are initialised by sampling from a uniform distribution in the range

[0, 0.01], as described in [44]. The combination layers have the same dimensionality

as the concatenation of the representations of the two individual drugs, i.e., 2 × k.

As for the number of hidden layers and the size of the representations, I adopt
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a grid search to find an appropriate value for these hyperparameters2 (as seen in

Figures 4.3 and 4.4). For the number of hidden layers, I select 2. For the size of the

representations I select 200 for the experiments shown in Chapter 5, as it achieves

the higher predictive performance. However, when considering the interpretability

of the distributed representations, I select 20 as the size, as a smaller size would allow

a more comprehensive interpretation. Note that after extensive testing, the results

show that DCSE-twin, with this smaller size for the representations, still outperforms

state-of-the-art methods, as this score (0.914) is higher than the next-top competitor

shown in Table 5.2. A major advantage of DCSE-twin is its robustness to the setting

of the parameters. As long as some reasonable values are selected, the performance

does not vary significantly, and I can select parameters that can, for instance, favour

interpretability, without losing predictive performance.

Finally, after the last hidden layer, we obtain the representation for the pair,

c⃗i,j, with the same size as the vectors for the single drugs, i.e., k. The distributed

representations for the drug pair also lie in the same latent vector space as the

representations of the single drugs. This characteristic is crucial to keep the model

interpretable, and also scalable in terms of the number of drugs in the combinations.

Even if there are more drugs in the combination, DCSE-right will learn a nonlinear

combination to represent the combination of drugs in the same latent space as the

individual drugs.

For the choice of the nonlinear activation function, I first use the hyperbolic tan-

gent, tanh, as the activation for the first hidden layer that initially combines the two

representations of the individual drugs. The idea behind using the tanh is to allow

2The performance of the grid search is evaluated on a validation set, independent from the
testing set.
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for negative activations as the first step to combining the two single representations.

There may be some interactions between the drugs that may be better represented

by negative values. Empirical results show little variation in the overall performance

of the method by replacing the hyperbolic tangent with another activation function,

such as, the Rectified Linear Unit (ReLU) or the sigmoid functions. For the rest of

the hidden layers, and the drug pair representation, I select ReLU for the nonlinear

activation function. Notice that the values of the representations for the single drugs

are not upper-bounded, this makes ReLU a perfect choice for the activation of the

drug pair representation, since the idea is that the distributed representations all

lie in the same latent space. Also, ReLU encourages sparse activations which may

play an important role in the interpretability of the latent vectors, as we expect only

some components to be activated for specific drugs. My empirical results show that

ReLU yields better performance than the tanh or sigmoid functions. The training

time is also significantly reduced.

Note that the nonlinearity is given by the combination layers in the form of a

MLP. However, there are alternatives that may yield a different combination. One

such alternative is using a Convolutional Neural Network (CNN). In the Appendix

A.1 I include a variation of DCSE-right which uses a CNN instead of an MLP and

achieves similar performance.

4.1.1 Learning DCSE-right

Considering the binary nature of the drug-drug interaction data, we can view the

value of yi,j,l as a label, where 1 means that the drug pair (i, j) is associated to

the side effect l. The predicted score ŷi,j,l then represents the probability of l being

associated to the drug pair (i, j). My method then determines the model parameters
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by minimising the binary cross-entropy loss function, also known as the negative log

loss:

min
W,H,θc,b

L (W,H, θc, b) = −
∑
i,j,l

yi,j,l log ŷi,j,l + (1− yi,j,l) log (1− ŷi,j,l)

subject to W,H ≥ 0

(4.4)

Where θc represents the parameters of the hidden combination layers. The model

is estimated through negative sampling as described in [26]. For each (di, dj, r) triplet

(i.e., a positive example), I sample a triplet (di, dn, r) (i.e., a negative example) by

randomly selecting drug dn according to a sampling distribution Pr [26]. Further

explanation of the negative sampling procedure can be found in Chapter 5.1.2. As

described in the work by Zitnik et al. [1], I maintain a balanced ratio of positive

to negative examples in the training set. To train the model I use the Adaptive

Moment Estimation (Adam) [51], which adapts the learning rate for each parameter

by performing smaller updates for frequent and larger updates for infrequent param-

eters. Adam results in faster convergence and higher performance in general than

vanilla Stochastic Gradient Descent (SGD), as my empirical results indicate. The

code for DCSE-right was implemented in Python 3.9.7 and the TensorFlow 2.3.1

library.
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4.2 DCSE-left, predicting off-label side effects for

single drugs

The next important component of DCSE-twin is the left-side model in my approach,

DCSE-left. It consists of a regularised logistic NMF model that learns representa-

tions of drugs and side effects. The main difference between the two models in my

approach is that DCSE-left learns from single drugs - side effect data and DCSE-

right learns from pairs of drugs - side effect data. The main motivation to use this

model is to augment the amount of data that we can use to learn the distributed rep-

resentations of drugs and side effects. This allows DCSE-twin to improve its overall

predictive performance, and to answer new biologically relevant research questions.

The idea is to leverage this data to improve the learning of the representations.

Nevertheless, there is another reason why using DCSE-left benefits the overall ap-

proach. This model does not only learn the distributed representations for the same

drugs and side effects as DCSE-right but also learns them for many that don’t have

any drug-drug interaction information. This means that by plugging the represen-

tations, for these drugs and side effects, in DCSE-right, we can obtain a prediction

for drug pairs and side effects with previously no recorded associations. This setting

is called de novo prediction. It allows us to overcome the famous cold-start problem

where a prediction can’t be made unless there is some previous information about

the entities involved. In Chapter 5.1.5 I include a detailed explanation of all the

different scenarios for which I can obtain these de novo predictions, along with the

experiments carried out.

Let’s again start by formulating the problem I am tackling with DCSE-left. This
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problem considers the task of identifying associations between single drugs and off-

label side effects. Let Dext be a set of drugs and Rext a set of side effects, where

|Dext| = m + o, |Rext| = n + q, and o and q are the number of drugs and side

effects, respectively, available only for the left-side data. Then for a drug - side

effect (di, rl) tuple, the aim is to determine how likely it is that the use of drug

di is associated to the side effect rl in the human patient population. Let Z be

the set with the known associations between drugs and off-label side effects, where

Z = {(di, rl)j|di ∈ Dext, rl ∈ Rext}Jj=1 ⊂ Dext × Rext, and J is the total number of

known tuples. Then we can define a binary (m+o)× (n+q) matrix X, with (m+o)

unique drugs and (n+ q) unique side effects. Every association in Z is represented

as a 1 in X, and the remaining entries of the matrix are filled with zeros.

Therefore, the idea is to learn a low-dimensional distributed representations for

drugs, defined as w⃗ ∈ Rk, and for side effects, defined as h⃗ ∈ Rk. Such that, the

score for a drug - side effect association, x̂i,l, is given by the dot product of the two

distributed representations:

x̂i,l = w⃗ih⃗l (4.5)

This score can be obtained by decomposing X into a product of two matrices

as X ≃ W extHext, where W ext ∈ R(m+o)×k (each row is a distributed representation

for a drug), and Hext ∈ Rk×(n+q) (each column is a distributed representation for a

side effect). W ext and Hext can be learned by optimising the Least Squares (LS) loss

function, either by gradient descent or using Multiplicative Update Rules (MURs)

as described in [47, 52]. However, learning from LS maps onto the entire positive

real space of numbers. This is not the ideal scenario for this task, since the target
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data, X, is binary, and the predictions won’t be upper-bounded to 1.

4.2.1 Logistic NMF

DCSE-left plays an important role in my approach, so it is crucial to incorporate it

with DCSE-right in the proper way. For binary data, a general NMF is not optimal

and it may fall behind in performance when compared to probabilistic approaches

[53]. Inspired by the work by Larsen and Clemmensen [52], I developed the Logistic

NMF model (LogNMF) for the prediction of side effects caused by single drugs.

This LogNMF is a generative model formed by the combination of NMF and logistic

regression. The first change to the traditional NMF would be to the prediction score,

x̂i,l, in Eq. 4.5:

x̂i,l = σ(w⃗ih⃗l − b). (4.6)

Two things are added here, the sigmoid function σ, and the bias term b. The

bias has the same functions as described in the previous section for DCSE-right.

Note that for the prediction in LogNMF (Eq. 4.6), the bias term has a minus sign.

This is because the same non-negative constraints applied to the matrices W ext and

Hext, also apply to the bias b. This bias term can be defined, in its general form, as a

global constant value, b that applies to every x̂i,l. However, I define it as the product

of two different biases, uivl, where one value represents the bias for the drug i and

the other the bias for side effect l. These biases play the role of capturing the general

trends in the data (e.g. drug and side effect popularity, see Chapter 5.4), allowing

the distributed representations to learn from more biologically relevant associations.

Let’s define u⃗ ∈ R(m+o)×1 as the vector with the values for the biases for each
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individual drug, and v⃗ ∈ R(n+q)×1 as the vector with the values for the biases for

each side effect. This allows having a specific bias value for each drug and for each

side effect separately, and consequently, for each x̂i,l. Considering this, the final

prediction for LogNMF has the following form:

x̂i,l = σ(w⃗ih⃗l − uivl). (4.7)

A representation of DCSE-left can be observed in Figure 4.5. The input layer

consists of two binarised sparse vectors d⃗i and r⃗l with a one-hot encoding that

determines the identity of the drug and the side effect, respectively. Above the

input layer, is the embedding layer which contains the values for the representations

of both drugs and side effects, depicted by W ext and Hext. To obtain the latent

vector for the drug and the side effect, namely, w⃗i and h⃗l, the same operation as in

Equation 4.1 is carried out. Lastly, the output consists of the predicted probability

of drug i causing side effect l, given by Eq. 4.7.

To learn the representations and the biases, I minimise the regularised LogNMF

loss function:

min
W ext,Hext,u,v

LLogNMF

(
W ext, Hext, b

)
= −

∑
i,l

xi,l log x̂i,l + (1− xi,l) log (1− x̂i,l)

+
β

2
∥W ext∥2F +

β

2
∥Hext∥2F +

α

2

∥∥uvT∥∥2
F

subject to W ext, Hext, u, v ≥ 0.

(4.8)

Here ∥.∥F denotes the Frobenious norm, and β and α are regularisation parame-

ters. The goal is to learn meaningful low-dimensional representations that in a way
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Figure 4.5: DCSE-left: LogNMF. A logistic variation of the classic NMF to learn from
binary data. The prediction is constrained to [0, 1], but the low-dimensional distributed
representations are kept non-negative. This model is trained with data from off-label side
effects caused by single drugs — OFFSIDES.

they are able to generalise and capture the biological activations of drugs and side

effects. Thus, the model should avoid overfitting the observed data by penalising

the magnitudes of the learned parameters. The constants β and α control the extent

of the regularisation for the distributed representations and the biases, respectively.

The values for these hyperparameters are determined using a validation set (see

Chapter A.2.2).
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I was able to derive efficient multiplicative learning algorithms that do not require

setting a learning rate or using a projection function to guarantee non-negative

constraints. I will show now the derivation of this rule for W ext3. Similarly to Lee

and Seung [47], I start by applying the gradient descent update rule on Eq. 4.8:

W ← W − η∇LLogNMF (W )

W ← W − η
[
XHT −

(
X̂HT + βW

)] (4.9)

where ∇(.) represents the derivative with respect to W , and X̂ = σ(W extHext−

uvT ) denotes the matrix with all the predicted values.

If η = c, for a constant value c, then the algorithm in Equation 4.9 is equivalent

to gradient descent with a constant step size. Instead if I re-scale the variables and

set:

η to → W

X̂HT + βW
(4.10)

then, Equation 4.9 becomes:

W ← W +W ◦ XHT

X̂HT + βW
−W ◦ X̂HT + βW

X̂HT + βW
(4.11)

Where ◦ represents the Hadamard, or element-wise product. It is straightforward

to see that by cancelling out some terms in Equation 4.11, I can obtain the following

multiplicative learning rule for W :

W ← W ◦ XHT

X̂HT + βW
(4.12)

3Note that to avoid a convoluted notation, the superscript ext was omitted from the matrices
W and H.
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A similar procedure is followed for H, u and v, to obtain the following multi-

plicative rules:

H ← H ◦ W TX

W T X̂ + βH

u← u ◦ X̂v

Xv + (αvTv)u

vT ← vT ◦ uT X̂

uTX + (αuTu) vT

(4.13)

These update rules themselves ensure that the non-negative constraint is satis-

fied. This is made possible by the re-scaling of the learning rate for every entry in

W using Equation 4.9. Note that the model parameters can also be learnt using

stochastic gradient descent and a projection function to guarantee the non-negative

constraints. However, this procedure does not require setting a learning rate nor

applying such projection function. Another reason why I decided to use the MURs,

instead of gradient descent, is to stabilise the changes in the model parameters be-

tween iterations (see Chapter 5.5). This should potentially help the reproducibility

of the model and, following that, the interpretability of the distributed representa-

tions.

4.3 DCSE-twin

The final model of my approach consists of the combination of DCSE-left and DCSE-

right, previously described in this chapter. We return to the overview in Figure 4.1.

These two models will learn, simultaneously, the distributed representations for

drugs, pairs of drugs and side effects. The idea is to have both models benefit from
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each other by improving the representations of drugs and side effects by incorporat-

ing the extra amount of data each model brings. In order for the representations

to leverage the data from both problems, the learning for the two models is done

by taking turns. And, the key aspect is that the weights of the embedding layers

for drugs and side effects, i.e., the distributed representations, are transferred to the

other model in between turns in the learning. This also allows the problem-specific

information of each model to be transferred to the other one. Drugs or side effects

that are being updated in one model, will affect the knowledge of drugs and side

effects that have similar activity patterns in their representations.

Besides the distributed representations of drugs and side effects, I am also trans-

ferring the biases. Sharing the bias between the two models allows the system to

capture the drugs’ and side effects’ tendencies and noise in the data for both dif-

ferent problems. Thus, the model can leverage the actual interaction signal in the

data for learning the distributed representations.

To allow the sharing of the biases between the two models, a few modifications

need to be made to DCSE-right. First, let u ∈ Rm×1 and v ∈ Rn×1 be the drug and

side effect bias vector, respectively. Let us refer to the bias vectors in DCSE-left as

uext ∈ R(m+o)×1 and vext ∈ R(n+q)×1 to differentiate between the biases of the two

models. Now we can modify the final prediction of DCSE-right in Equation 4.3, as

follows:

ŷi,j,l = σ
(
c⃗ T
i,jh⃗l − gi,jvl

)
(4.14)

Here, gi,j represents the bias for the drug pair (i, j). Remember that for DCSE-

left, the bias value for the drug-side effect pair is given by the product of the bias of
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the drug and the side effect: uext
i vextl . For DCSE-right, I explicitly model the bias

for the drug pair gi,j, and argue that the combination of the two individual biases,

ui and uj, needs to also be nonlinear. I will use an MLP to model the combination

bias for two drugs. A graphic representation of this notion is depicted in Figure 4.6.

Figure 4.6: Explicit modelling of the combination bias. An MLP is used to learn how
the individual drug biases combine to come up with a single value that represents the bias
for the drug pair.

Let us then define gi,j, in a similar way as Eq. 4.2, as follows:

gi,j = ϕout (ϕB (. . . ϕ2 (ϕ1 (ui · uj)) . . .)) , (4.15)

where · represents the concatenation, ϕout and ϕx denote the mapping function
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for the output layer and bth hidden layer, respectively. And, there are B hidden

layers in total. Finally, the loss function for DCSE-right is also minimised for the

parameters of the bias combination MLP, θg:

min
W,H,θc,θg

L (W,H, θc, θg) = −
∑
i,j,l

yi,j,l log ŷi,j,l + (1− yi,j,l) log (1− ŷi,j,l)

subject to W,H, u, v, g ≥ 0.

(4.16)

4.3.1 Training DCSE-twin

The training of DCSE-twin, is done by taking turns between the two models. This

allows to transfer the knowledge of one problem to the other, and learn more mean-

ingful representations for drugs, drug pairs and side effects.

The pseudo-code of this algorithm is described in Algorithm 3. First, the training

starts by initialising the model parameters. Followed with a few initial iterations

(initialIters) of the algorithm of DCSE-left to give the representations a good

initial value. After these iterations, the main training loop begins. Before moving

the learning to DCSE-right, the weights from DCSE-left are transferred to DCSE-

right. Note that the number of drugs and side effects in DCSE-left is larger than

for the right side. So, only the weights for the common drugs and side effects are

being shared. Then, the training moves to DCSE-right, where a number of epochs

are run (turnEpochs). After transferring the learned weights from the right-side to

DCSE-left, the weights get updated again by DCSE-left a certain amount of times

(turnIters). After a fixed total amount of turns (totalTurns), one last update is

done on DCSE-right since this is the prediction task we care about.

The different variables in Algorithm 3, namely, initialIters, totalTurns,
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ALGORITHM 3: Training algorithm for the final model.

1 W ext, Hext, uext, vext ← initialiseWeights();
2 W ext, Hext, uext, vext ← leftSideTraining(iters = initialIters);
3 for i← 1 to totalTurns do
4 W,H, u, v ← W ext[: m, :], Hext[: n, :], uext[: m], vext[: n];
5 W,H, u, v ← rightSideTraining(epochs = turnEpochs);
6 W ext[: m, :], Hext[: n, :], uext[: m], vext[: n]← W,H, u, v;
7 W ext, Hext, uext, vext ← leftSideTraining(iters = turnIters);

8 W,H, u, v ← W ext[: m, :], Hext[: n, :], uext[: m], vext[: n];
9 W,H, u, v ← rightSideTraining(epochs = lastEpochs);

turnEpochs, and turnIters, are set empirically after a thorough analysis of the

learning dynamics between the two models, described in Chapter A.2.



“The scientist is not a person who gives the right answers, he’s one who

asks the right questions.”

Claude Levi-Strauss

5
Experimental Results

In this chapter, I present the results I obtained by extensively testing DCSE-twin in

a variety of experimental settings and comparing it with state-of-the-art methods.

I also introduce several settings that I developed in an attempt to approximate

real-world scenarios in drug development, pharmacovigilance and drug repurposing.

The results show that DCSE-twin outperforms the existing state-of-the-art method

in every experimental setting. Moreover, these experiments allowed me to shed some

light on the biological aspects of the problem as well as on the inner workings of my

73
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algorithm.

The experimental settings and the research questions they attempt to answer

are the following:

• Setting A. The research question is: how good is a method at predicting drug

pairs that might cause a specific side effect? This is a standard evaluation

procedure that appears in the existing literature and was introduced by Zitnik

et al [1].

• Setting B – De novo prediction of side effects for unseen drug pairs.

This setting answers the question: how good is a method at predicting the

potential side effects for a drug pair with no known interactions in the DDI

dataset (that I use for training)?

• Prospective evaluation. Here the question is: based only on past informa-

tion, how good is an approach at generalising its predictions for newly discov-

ered adverse DDIs? To the best of my knowledge, my work is the first to

perform a prospective evaluation for adverse DDI prediction. For this evalua-

tion, I train the models on an older version of TWOSIDES that includes data

up to 2009 and use them to predict new associations reported from 2010 to

2014 in a newer version (NSIDES).

• De novo prediction for drugs and side effects. The question is: Consid-

ering a novel DDI triplet (di,dj,rl), how good is a method at predicting adverse

DDIs when one, two or three of the entities in the DDI triplet do not appear

in the DDI dataset (that I use for training)? As mentioned in Chapter 2, this

is known as the “cold start” problem. The earlier work by Qian et al is the
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only one that addressed this problem, but their method was able to predict

only the existence of an interaction, while DCSE-twin can predict the specific

side effect.

• “True” polypharmacy side effect prediction. The question is: for a

given drug pair, how good is a method at predicting side effects that are not

already caused by either of the 2 drugs alone? This case is, arguably, the most

significant in terms of assessing the risks of polypharmacy therapies.

The experiments presented in the sequel provide further proof that the dis-

tributed representations of the single drugs combine nonlinearly into the represen-

tation for the drug pair. They also quantify the improvement in the prediction of

DDI obtained by including off-label single drug side effect data, and they highlight

the role of the biases in modelling drug and side effect popularity.

5.1 Experimental Results

5.1.1 Datasets

The main sources of data I used for my work are the TWOSIDES and OFFSIDES

datasets [54], which contain information about adverse events caused by the co-

administration of two drugs, and off-label side effects caused by single drugs, re-

spectively. TWOSIDES includes 1, 318 side effect types across 63, 473 drug pairs.

There is also a total of 645 drugs that make up the different drug pairs. In total,

there are 4, 543, 686 associations between side effects and combinations of drugs. On

average, each side effect is associated with 4, 719 drug pairs. Figure 5.1 shows the



76 Experimental Results

distribution of the number of drug pairs linked to each side effect. For a closer in-

spection of both ends of the plot, tables 5.1a and 5.1b illustrate the top and bottom

10 side effects, respectively, in the TWOSIDES dataset in terms of drug pairs that

are associated with them.

Figure 5.1: Distribution of the number of drug pairs associated with each side effect.
On the x-axis we have the side effects arranged in ascending order, in terms of the number
of drug pairs that cause them, and the y-axis represents the count of drug pairs that cause
each side effect.

OFFSIDES contains information about 438, 801 associations between 10, 097 off-

label side effects and 1, 332 drugs. The term “off-label” refers to any drug effect that

is not already listed on the drug’s package insert. The average drug label lists 69 “on-

label” adverse events. For OFFSIDES, there is an average of 329 high-confidence

off-label adverse events for each drug.

Both TWOSIDES and OFFSIDES are the result of a data-driven approach that

flagged significant drug-event associations from the AERS which collects reports



5.1 Experimental Results 77

Table 5.1: Top and bottom 10 side effects in TWOSIDES. The first column represents
the ranking in the top or bottom 10, the second column is the name of the side effect, and
the last column is the number of drug pairs that are associated with the side effect.

(a) Top 10 side effects in TWOSIDES.

# Side effect Drug pairs
1 Arterial pressure

decreased
28,568

2 Anaemia 27,006
3 Difficulty breath-

ing
26,037

4 Nausea 25,190
5 Pneumonia 24,430
6 Fatigue 24,260
7 Pain 23,894
8 Diarrhoea 23,848
9 Asthenia 23,515
10 Emesis 23,043

(b) Bottom 10 side effects in TWOSIDES.

# Side effect Drug pairs
963 Sarcoma 502
962 Collagen disease 504
961 Neonatal respira-

tory distress syn-
drome

507

960 Impetigo 507
959 Coccydynia 508
958 Carbuncle 509
957 Atypical my-

cobacterial infec-
tion

510

956 Anaemia
hypochromic

510

955 Multiple person-
ality disorder

514

954 Normal pressure
hydrocephalus

515

from doctors, patients and drug companies. In this approach, the authors were able

to successfully remove synthetic associations from indications, co-prescriptions, and

hidden covariates. The method used to build these datasets is called Statistical

Correction of Uncharacterised Bias (SCRUB).

I also carried out a prospective evaluation using a newer version of TWOSIDES,

called NSIDES [55]. TWOSIDES and OFFSIDES include adverse events reports

up to and including 2009, whereas, NSIDES considers reports up to and including

2014. To the best of my knowledge, this is the first work that is actively making

use of this newly released data. I used NSIDES to define a novel experimental
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setting to evaluate if my approach is able to prospectively predict newly discovered

DDIs while training only with the older data. NSIDES contains information about

653, 352 new drug-drug interactions previously unknown in TWOSIDES. Note that

only the interactions are new — i.e., the drug-drug-side effect triplets. The drugs

and side effects involved in the triplets were already present in TWOSIDES and

have interactions with other drugs and side effects.

5.1.2 Setting A - Split per side effect

The first experimental setup is the one that is adopted most commonly in the liter-

ature [1, 3, 56]. It was introduced by Zitnik et al. [1], and it is focused on predicting

which pairs of drugs will cause a given side effect.

First, to make sure that there is a minimum number of information for each side

effect, the TWOSIDES dataset is reduced so that only the side effects that occur

for at least 500 drug pairs are kept. Then, for each side effect, I split the associated

drug pairs into training, validation and test sets. Both the validation and test sets

include 10% of the drug pairs and the training set is composed of the remaining

80%. The validation set is used to select the model parameters.

For the negative samples, I followed the exact same sampling procedure as de-

scribed in the work by Zitnik et al. [1]. For each positive sample (di, dj, r), I sampled

a random negative sample (di, dn, r) by randomly choosing drug dn. This drug is

selected randomly according to a sampling distribution Pr [26]. This sampling distri-

bution Pr is an empirical adjustment of the “unigram distribution”. The unmodified

distribution is expressed by the following equation:
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P (di) =
f (di)∑m

j=0 (f (dj))
(5.1)

Where f(di) is a function that returns the number of drugs with which drug i

interacts with and causes side effect r. In network terms, f(di) would mean the

degree of node i. For instance, the probability of choosing the drug “Ibuprofen” as

a negative sample, would be equal to the number of drugs with which “Ibuprofen”

interacts with, divided by the total number of interactions for a given side effect.

Intuitively, drugs that have many interactions with other drugs are more likely to

be selected as negative samples. Nevertheless, the authors state in their paper that,

empirically, the best adjustment to the equation above is to raise f to the power of

3/4, as follows:

Pr (di) =
f (di)

3/4∑m
j=0

(
f (dj)

3/4
) (5.2)

Raising f to this power has the effect of increasing the probability for drugs

with a small number of interactions and decreasing the probability for those with

a high number of interactions. This behaviour is desirable, I don’t want to pick

high-interactive drugs all the time as negative samples since they are less valuable

and less likely of being true negatives as the unusual or less-interactive drugs.

Since I sample one negative per positive sample, the final training set is balanced.

For both validation and test sets, I kept the same balanced setting but the negative

examples are sampled in a different way. For each positive sample, the drug dn is

selected randomly according to a uniform distribution.

The task at hand is then to predict drug combinations that are associated with
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each side effect type. I evaluated the performance of my approach against the meth-

ods detailed in Chapter 2. In addition to them, I also compared to a state-of-the-art

machine learning approach, XgBoost. For this approach I built a feature vector

for each drug based on PCA representation of the drug-target protein interaction

matrix. I also combined the PCA representation of side effects of individual drugs

from the OFFSIDES dataset. Drug pairs are represented by concatenating the cor-

responding drug feature vectors and used as input for XgBoost, that predicts the

exact side effect of a pair of drugs. A different model is trained for each side effect

type. Comparing against a state-of-the-art classifier is really important, especially

since the feature vector is built from single drug side effect information, which is the

same data I use for DCSE-left. Another approach used in the comparison is TransE

[57]. This approach considers the problem of embedding entities and relationships

of multi-relational data in low-dimensional vector spaces. It was used as a competi-

tor in the TriVec paper, and it represents a good baseline for this problem. This

method models relationships by interpreting them as translations operating on the

low-dimensional embeddings of the entities. It is a state-of-the-art link prediction

method on knowledge bases.

The parameter setting for the methods is determined using a validation set with a

grid search over different possible values. For the methods that are not graph-based,

the ideal parameters were selected based on the best performance on the validation

set for each side effect type. The performance was calculated using the AUROC and

the AUPRC. Higher values always indicate better performance. For those methods

for which there is a different model per side effect type, the performance is averaged

across the number of side effects.

From the results in Table 5.2, we see that DCSE-twin outperforms all other
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Table 5.2: Performance comparison for Setting A. AU-
ROC and AUPRC are shown for all methods.

Method AUROC AUPRC
XgBoost⋆ 0.801 0.811
DeepWalk⋆ 0.715 0.709
DeepDDI⋆ 0.623 0.610
Decagon† 0.872 0.832
TransE 0.900 0.863
TriVec 0.905 0.869
DCSE-twin 0.927 0.882

⋆ Performance is averaged across 963 side effects.
† As reported in [1].

methods. The difference with DeepDDI possibly indicates a potential limitation

in relying only on chemical-based features to represent drugs for the prediction of

polypharmacy side effects. It also hints that just using deep neural networks is

not enough to achieve competitive performance in DDI prediction. Both DeepWalk

and XgBoost show an improvement over DeepDDI. These methods first learn the

representation for the drugs and then use these learned features to predict the asso-

ciations. The fact that the learning in these two stages is kept separate, highlights

that there is an interdependence between the different side effects and the combi-

nation of drugs that are not being addressed in these models. These findings show

that end-to-end learning can greatly benefit performance. When comparing against

the other end-to-end methods, namely, Decagon, TransE and TriVec, DCSE-twin

still shows a clear advantage in performance gains. It demonstrates that the dis-

tributed representations learned by my approach are highly descriptive and are able

to outperform other methods that rely on graph convolutions and different biolog-

ical and chemical features. Learning a representation for the drugs and side effects

that effectively captures how they are interconnected, provides a lot of flexibility
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and simplicity to my approach. It also shows that the information available about

the single drugs and polypharmacy side effects in OFFSIDES and TWOSIDES, re-

spectively, is rich enough to learn a system that is able to outperform other highly

complex methods that rely on a lot of external information.

5.1.3 Setting B - De novo prediction for drug pairs

While Setting A focuses primarily on the drug pairs that are associated with specific

side effects, for this new setting I focused, instead, on all the side effects caused by

the drug pairs. Specifically, the aim is to predict which side effects, out of all the

possible ones, are caused by the interaction between the two drugs. To achieve this,

the testing split is done per drug pairs where I held out all the side effects associated

with the combination, for testing.

This experimental setup is meant to frame the problem as a de novo prediction of

side effects for “new” or unseen drug pairs. These experiments can provide a better

assessment of the real-life utility of the different methods. To my knowledge, I am

the first to introduce this setting and this represents another important contribution

of my work. I believe this experimental setup has a real value as it represents the

problem in a different and, possibly, a more realistic way.

In order to formally understand this setting, let’s define a new matrix S ∈ RC×n.

Where C is the number of known drug combinations in TWOSIDES with at least

one associated adverse side effect, and n is the number of side effects. For these

experiments, I used the entire TWOSIDES dataset (I removed the constraint I had

in Setting A, where I only keep side effects with at least 500 drug pairs associated

with them. In total, the number of side effects (n) is 1, 318, and the number of drug

pairs (C) is 63, 473).
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To split the data into training, validation and testing, I randomly selected 10% of

the rows in S and use this as the testing set. These rows represent all the side effects

associated with the drug pairs. I did the same for the validation set, by selecting

another 10%. I used the remaining 80% of the rows to train the model. I took all

the unknown entries in S as the set of negative samples. This makes the problem

highly unbalanced in terms of the negatives to positives ratio, having a density1 of

only 7%. This selection of negative samples made the most sense because my aim

is to assign a probability score for all possible side effects for a given drug pair.

I chose DeepDDI as the competitor for this setting because it’s the method that

can be adjusted better to this experimental setup. This method also has some

characteristics that make it an ideal baseline to compare against my work. It is

highly nonlinear as it employs deep neural networks like my own approach. And it

makes use of features that depend on the chemical structures of the drugs as input.

This last aspect can also illustrate how a method that relies on engineered features

compares to my approach. To make DeepDDI work for this setting, the only change

I made was to the output layer. Instead of having one output, I changed it to have n

outputs, where n is the number of side effects I am predicting for. The model then

becomes a multi-label classifier that gives a probability score for each side effect,

from the input features of the drug pair.

For setting B, I first evaluate the performance of DCSE-twin and DeepDDI by

measuring the AUROC and AUPR in the test set. From Table 5.3 we can observe

that, under these metrics, my method shows a clear improvement over the DeepDDI

method. It is important to note that DCSE-twin still gets a clear edge over DeepDDI,

1The density of a matrix is defined as the ratio of nonzero entries to the total number of
elements. For this problem, it means the total number of 1s in S, divided by the total number of
elements, given by C × n.
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Table 5.3: Performance comparison for Setting B. AUROC and AUPRC are shown
for both methods.

Method AUROC AUPRC
DeepDDI 0.767 0.220
DCSE-twin 0.851 0.360

in spite of not depending on any type of biological features.

I also used information retrieval metrics, like the Precision and Normalised Dis-

counted Cumulative Gain in the top-10 (Prec@10 and NDCG@10, respectively) to

measure the performance. These metrics were computed for each drug pair or row

in the testing set. The precision at the top-k, measures the proportion of items in

the top-k set that are relevant, or true ones in the test set. Formally, let’s define

Prec@k as follows:

Prec@k =
| { relevant items } ∩ {k retrieved items } |

| {k retrieved items } | (5.3)

Figure 5.2: Example of the top-5 predictions for a row in the testing set for Setting
B. The predicted scores are sorted in descending order, as represented in the bottom row.
The top row represents the true labels for the top-5 side effects.

To illustrate how to calculate the precision, let’s look at the simple example

shown in Figure 5.2. Following this example, let’s calculate Prec@5 by applying

Equation 5.3. The relevant items in the top-5 retrieved items are 2. This means

that the Prec@5 : 2
5
= 0.4.

DCG provides a performance of ranking by penalising relevant items ranked
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lower than non relevant items. Intuitively, it takes into account the ranking of the

true ones retrieved in the top-k items. DCG is defined as:

DCG@k =
k∑

i=1

reli
log2(i+ 1)

= rel1 +
k∑

i=2

reli
log2(i+ 1)

(5.4)

Where reli represents the relevance of item i. In a binary setting, it is either 1

or 0. Note that we can start the summation at position 2, since the denominator

for i = 1 is equal to 1. DCG penalises highly relevant items that appear lower

in the search by reducing the graded relevance value logarithimically proportional

to the position of the result. Following the example in Figure 5.2, the DCG@5 :

1+0+ 1
log2(3+1)

+0+0 = 1.5. The NDCG@k, is the normalised version of the DCG,

it divides the DCG by the Ideal DCG (IDCG). IDCG is defined as the DCG of the

ideal ordering. Again, if we follow the same example, the IDCG@5 : 1 + 1
log2(2+1)

+

0 + 0 + 0 = 1.63. Finally, the NDCG@k is defined as:

NDCG@k =
DCG@k

IDCG@k
(5.5)

In our example, NDCG@k : 1.5
1.63

= 0.92. Note that the ratios will always be in

the range of [0, 1] with 1 being a perfect score, meaning that the DCG is the same

as the IDCG. Therefore, the NDCG values can be averaged for all drug pairs or

rows in the testing set, to obtain a measure of the average performance of how the

different methods rank the results.

Table 5.4 shows the performance of DCSE-twin compared to DeepDDI under

the information retrieval metrics. Again, my approach shows a clear advantage over

DeepDDI. We can observe from the Prec@10 that for DCSE-twin, roughly half of

the top-10 predictions are true ones. And out of these, from the NDCG@10, we
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Table 5.4: Performance comparison for Setting B using information retrieval met-
rics. Precision and Normalised Discounted Cumulative Gain at the top-10 (Prec@10 and
NDCG@10) are shown for both methods. Results are averaged throughout all drug pairs
in the testing set.

Method Prec@10 NDCG@10
DeepDDI 0.389 0.667
DCSE-twin 0.462 0.725

know that they are ranked, on average, higher than the negative examples. These

results are very encouraging, as they show a very solid performance for combinations

of drugs without any previous information on interactions between them. Having

computational methods that can accurately predict side effects for new drug pairs

that are being tested for approval, can reduce the time and cost for the drug devel-

opment pipeline [58]. In particular, the remaining predictions in the top-10, which

are not true ones, are prime candidates for further analysis and experiments.

5.1.4 Prospective Evaluation

I evaluated the performance of DCSE-twin through a simulated prospective ap-

proach. Prospective evaluation is a method that preserves the chronological order

in which the information became available historically. It is crucial to preserve

the chronological order because a method that predicts side effects, needs to be

able to predict an unknown association based only on the information available

before the association becomes known. Using different approaches for testing like

cross-validation or Settings A & B, can potentially break the chronological order

by including in the training set drug-drug-side effect associations that historically

became known only after related associations in the testing set became known [59].

This can provide an unfair and unrealistic advantage to the prediction methods.
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To the best of my knowledge, this is the first work that introduces a prospective

evaluation for DDI prediction.

For the evaluation, I trained the models on DDI data up to 2009 (TWOSIDES)

and used them to predict the new associations reported from 2010 to 2014 (NSIDES).

This setup can be applied to both previous settings, A and B. I subset NSIDES to

account only for the same drug pairs and side effects that occur in TWOSIDES. After

filtering out the extra drugs and side effects from NSIDES, there is a total of 653, 352

new drug-drug-side effect triplets distributed among 764 different side effects. It is

important to mention that the sampling of the negative triplets for the training set

was done independently from the prospective testing set. Any prospective positive

DDI from the testing set can be sampled as a negative for the training set since

at the time there was no information about these associations. In this way, we are

preventing data leakage between the training and the prospective testing set.

Table 5.5: Performance comparison of the prospective testing set for Setting A.

Method AUROC AUPRC
DeepDDI 0.607 0.611
XgBoost 0.798 0.804
DCSE-twin 0.841 0.885

For Setting B, let’s remember that the testing is done per drug pair, not by side

effect, so, the setting is different than for Setting A. I kept from NSIDES the same

drugs and side effects that are present in TWOSIDES. This allowed me to identify

new drug pairs in NSIDES that previously had no interactions in TWOSIDES. The

total number of new drug pairs in our prospective testing set for Setting B was

5, 430, with an average of 14 side effects per drug pair. I also made sure that there

are at least 5 side effects associated with each drug pair.



88 Experimental Results

Table 5.6: Performance comparison of the prospective testing set for Setting B.

Method AUROC AUPRC Prec@10 NDCG@10
DeepDDI 0.844 0.091 0.129 0.401
DCSE-twin 0.871 0.145 0.175 0.412

DCSE-twin achieved the highest AUROC and AUPRC for the prospective testing

in both Settings A and B, as can be observed in Tables 5.5 and 5.6. These findings

suggest that the distributed representations, learned by DCSE-twin, are descriptive

enough to generalise for future reported drug pair-side effects associations at a higher

level than other methods that rely on biological and chemical features. The goal

of this evaluation was to demonstrate the real-life utility of my proposed method

by testing in a realistic scenario where the samples in training and testing follow a

chronological order. This approach can complement existing hypotheses that sup-

port the work of drug safety and drug development professionals. The practitioners

can follow up on the highest-scoring predictions, for a particular new drug pair or

side effect, with a thorough clinical investigation to focus their limited resources on

hypotheses that have a higher probability of being true.

5.1.5 De novo prediction for drugs and side effects

A key aspect of my work is the addition of DCSE-left and the data from the OFF-

SIDES dataset. This opens up new possibilities for different research questions that

frame the problem under novel scenarios with important biological implications. The

idea for this evaluation was to make de novo predictions of adverse DDIs for unseen

drugs and/or side effects, by utilising the learned distributed representations avail-

able only to DCSE-left. Specifically, there are 697 and 9, 134 extra drugs and side

effects, respectively, that are present only in OFFSIDES and not in TWOSIDES.



5.1 Experimental Results 89

Thus, my approach is solving the cold start problem for adverse DDI prediction for

all of these extra drugs and side effects.

Table 5.7: Different scenarios for de novo prediction of DDIs for new drugs and side
effects. All of the drugs and side effects come from the OFFSIDE dataset. The seen/unseen
is to specify if a drug or side effect was seen/unseen during training by DCSE-right, i.e.
are present in TWOSIDES.

Scenario Drug 1 Drug 2 Side Effect
1 Seen Seen Unseen

2
Seen Unseen Seen
Unseen Seen Seen

3
Seen Unseen Unseen
Unseen Seen Unseen

4 Unseen Unseen Seen
5 Unseen Unseen Unseen

Qian et al. [43], considered in their work the scenario of predicting interactions of

drugs without any prior information about their interaction profile during training.

They showed the importance of these predictions and highlighted the inability of

most current methods of predicting DDIs for newly developed drugs. In my work, I

extended this notion by making de novo predictions for unseen drugs during train-

ing, and also providing the specific adverse side effect caused by the combination.

Importantly, the side effects can also be unseen during the training phase. To the

best of my knowledge, DCSE-twin is the first method that can predict for unseen

side effects, as the current methods in the literature can’t account for this possibility.

First, let’s understand why I am able to make these de novo predictions for drugs

and side effects that are not seen by DCSE-right. In my approach, DCSE-right takes

as input two drugs and a side effect and outputs a score that can be interpreted as

the probability of the side effect being the consequence of the interaction between

the two drugs. However, after the training phase of the model is finished, I only need
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to input the low-dimensional vectors of drugs and side effects to obtain a prediction.

Even if the drugs or side effects were not seen by DCSE-right, and I can’t input the

one-hot encoding, the combination layers will still be able to output a distributed

representation for the drugs, using Eq. 4.2. After getting the vector that represents

the new drug pair, the prediction can easily be obtained by applying Eq. 4.14.

To evaluate the performance of DCSE-twin when predicting these new DDIs,

I used the data from NSIDES to verify which of these associations became true

after OFFSIDES and TWOSIDES were released. Since we have two drugs and a

side effect as input to my model, there are different possibilities and scenarios for

this de novo predictions. Table 5.7 shows a breakdown of the different scenarios.

The first scenario occurs when both drugs are seen during training, but a new side

effect is introduced. This scenario can prove to be useful for monitoring drugs in

their postmarketing stage to detect new risks when they are exposed to a larger

patient population. It can also serve as a decision-making tool for physicians when

prescribing combinations of existing drugs. Scenario 1 can also reduce time for

the approval of a new repurposing strategy of combinations of known drugs. For

this setting, there are currently no existing methods that can make predictions for

side effects that lack any known associations with drug combinations. The next

scenario is when one of the two drugs is unseen, and the other drug and the side

effect are both seen. In this case, we start introducing some degree of difficulty

to the prediction problem. The following scenario also has one of the two drugs

unseen, but also the side effect is now unseen during training. For postmarketing

surveillance of drugs, these last two scenarios can offer a good assessment to tell if a

method is useful or not to detect DDIs for recently approved drugs when combined

with well established and known drugs. This surveillance refers to the monitoring
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of drugs after they reach the market [60]. In scenario 4, both drugs are unseen

during training, and only the side effect has some other drugs pairs associated to it.

This scenario is particularly interesting for a new drug combination in development.

Identifying DDIs at the preclinical stage helps drug safety professionals allocate

resources and take appropriate regulatory action [61]. This type of experiments can

help guide experts in designing clinical trials for the verification of these side effects.

The last scenario is where both drugs and the side effect are unseen during training.

This means that neither of the drugs or side effects have any form of interaction

profile known at the time TWOSIDES and OFFSIDES were released. This is the

hardest scenario to predict for.

Several existing methods suffer from the cold start problem and can’t provide a

prediction for new drugs or side effects. Most of these methods are graph-based [1, 3]

where there is no information to capture from the knowledge graph for disconnected

nodes (new drugs) or link types (new side effects) without any nodes linked together.

However, feature-based methods such as DeepDDI and XgBoost, can make de novo

predictions as long as the features are available for the new drugs. A limitation of

these two methods is that the side effect is not an input to the model. This means

that they can’t make predictions for the scenarios in which the side effect hasn’t

been seen during training (Scenarios 1, 3 and 5). For this reason, I only compared

the performance of my method against DeepDDI and XgBoost in Scenarios 2 and 4.

Table 5.8 shows the performance for each of the different scenarios and competing

methods.

In Scenarios 1, 3 and 5, where the side effect is completely new, DCSE-twin

achieved good results in terms of AUROC and AUPRC. The performance was, as

expected, highest when both drugs were seen during training and lowest where
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Table 5.8: Performance for the different de novo prediction scenarios. AUROC and
AUPRC are shown for each of the scenarios and competing methods. The best performance
is shown in bold.

Scenario Drug 1 Drug 2 Side Effect Method AUROC AUPRC
1 Seen Seen Unseen DCSE-twin 0.815 0.778

2

Seen Unseen Seen
DeepDDI 0.784 0.743

XgBoost 0.801 0.774

Unseen Seen Seen
DCSE-twin 0.845 0.831

3
Seen Unseen Unseen

DCSE-twin 0.773 0.756
Unseen Seen Unseen

4 Unseen Unseen Seen
DeepDDI 0.817 0.799
XgBoost 0.808 0.771
DCSE-twin 0.833 0.815

5 Unseen Unseen Unseen DCSE-twin 0.731 0.697

neither drug nor the side effect was seen. For the rest of the scenarios in which I

can compare against two different baselines, DCSE-twin still obtained the highest

performance. These results indicate that the distributed representations learned

only by DCSE-left and used for predictions in the right, contain enough information

to make robust de novo predictions for unseen drugs and side effects.

Many of the side effects for drugs, and especially for drug combinations, are

recognised after the drug was approved and already in the market [24]. SD methods

are deployed to detect safety concerns for marketed drugs. These concerns may be

new in nature, such as new adverse side effects, not recognised during clinical trials

in the premarketing phases. Quantitative SD methods typically adopt machine

learning approaches to provide new hypotheses for experts to investigate further.

The experimental results for these different scenarios highlight the value for methods,

such as my work, to be deployed as SD methods in postmarketing surveillance for
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drugs and side effects. The aim of these methods is to discover potential safety

concerns, either completely novel (Scenarios 1, 3 and 5) or new patterns to previously

known adverse drug reactions (Scenarios 2 and 4). They can also be used to validate

or confirm signals that have been identified from different avenues, like case-by-case

assessments of individual case safety reports.

5.1.6 Predicting true polypharmacy side effects

Many of the side effects that are associated with a drug pair are already linked to

either one of the single drugs or to both of them. However, there are side effects

that are only due to the interaction between the pair of drugs. These side effects

are of particular importance since they don’t occur when only one of the single

drugs is being administered. For example, the example from Chapter 1 in Fig. 1.1,

illustrates this case: Aspirin and Warfarin can have the side effect of gastrointestinal

haemorrhage when the two drugs are prescribed together, but not when they are

taken individually.

In TWOSIDES there are 868,221 significant associations that cannot be clearly

attributed to either drug alone. Evaluating the performance when predicting these

associations will tell us more accurately how good a method is at predicting true

polypharmacy side effects. This experiment is being overlooked in the current liter-

ature on DDI prediction.

To find these true polypharmacy side effects, I compared TWOSIDES with OFF-

SIDES and analysed which side effects for a given drug pair, occur only in TWO-

SIDES and not in OFFSIDES for any of the single drugs. On average, 67% of the

side effects for a drug pair only occur due to the interaction between the drugs.

Figure 5.3 shows the full distribution of the proportion of the side effects per drug
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pair that are considered true. This means that this proportion of side effects are

present in TWOSIDES, but not in OFFSIDES for any of the drugs on their own.

Figure 5.3: Histogram of the proportion of true polypharmacy side effects per drug
pair. The height of each bar, in the y-axis, represents the count of drug pairs that have a
specific proportion of true side effects, as shown in the x-axis.

For this experiment, I used the same training set as in Setting A. To build the

testing set I selected only the true polypharmacy side effects as positive samples and

keep all the existing negative samples. Figure 5.4 shows a graphic representation

of this process. An important observation is that in the dataset made available by

Zitnik et al [1], in the Decagon paper2, they considered all possible side effects, even

the ones that can already be explained by either of the individual drugs. This is in

contrast to what they mention in the paper, where they argued that the predictions

by Decagon are made only for true polypharmacy side effects

2http://snap.stanford.edu/decagon.
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Figure 5.4: Testing on true polypharmacy side effects. Drugs A & B cause some side
effects on their own that are marked in yellow. Some of these side effects still occur for the
drug pair, these are marked in red. However, the combination does exhibit some new side
effects that can only be attributed to the pair of drugs and not by any of them individually.
These side effects are marked in green. Lastly, some of the side effects caused by either
of the drugs on their own, no longer happen for the drug pair, these cases are marked in
grey. These 0s hold more value than the white 0s as they represent a negative association
between the pair and the side effect. Whereas, the white 0s are unknown in the sense that
they can either mean a negative association but there’s not enough information to verify
this. The idea is to test only on the side effects that are caused by the drug pair and not
by any of the single drugs on their own. This means that I will ignore the red 1s and just
test on the green 1s. Both the grey and white 0s can still be used for negative samples.

From Table 5.9 we can observe that my method outperforms the other approaches

when predicting only true DDIs. I believe the importance of these true DDIs cannot

be overstated. They hold a great biological and medical significance. It can help in

the design of clinical trials and also in the prescription of new combination therapies

for complex diseases. Note that the red ones and grey zeroes in Figure 5.4 are also

interesting cases but are not being explored in this work. The red ones represent

side effects that happen for one or both drugs and are being exacerbated by the

interaction. And the grey zeroes can either be side effects that stopped occurring

for the combination, or just that the frequency with which the side effect occurs for

either of the two drugs on their own is not being exacerbated by the drug interaction.
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Table 5.9: Performance comparison for the different methods when testing only on
new DDIs. The side effects caused by the drug pairs in this set are the result of the
interaction between the two drugs and are not caused by any of them on their own.

Approach AUROC AUPRC
DeepDDI 0.617 0.594
DeepWalk 0.693 0.765
XgBoost 0.788 0.804
My method 0.910 0.823

5.2 The distributed representations for the drug

pairs are learned nonlinearly

One of the fundamental pieces of my work is the MLP which learns how to combine

the distributed representations of the individual drugs to learn the representation

for the drug pair. The findings from Section 3.3 made it clear how a simple linear

model is unable to fully capture the interaction between the drugs. This informa-

tion allowed us to gain a better understanding of the biological implications of the

problem, namely, that nonlinearity is necessary to model how two drugs combine.

However, in that early method, the experimental setting was different as I was com-

paring how a linear model would be able to learn a representation for drug pairs

starting from the already learned and pre-trained representations for the individual

drugs. For this experiment, I wanted to show how DCSE-twin performs when I

removed the MLP from DCSE-right when compared to my full method. The idea

is to not only prove that DCSE-twin works better with the MLP, but to show that

to model the interactions between two drugs, a simple linear model is not sufficient.

For this experiment, I removed the nonlinear combination layers from DCSE-

right and performed an ablation study [62]. This type of experiments are important
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to understand if the main components in a model are actually related to the initial

hypothesis. Essentially, the architecture is reduced to a single linear layer, above

the individual drug representations, that will learn coefficients to learn the represen-

tation for the combination of the two drugs, see Figure 5.5. The rest of the model

remains exactly the same, including DCSE-left, to keep the experiment fair.

Table 5.10 shows how wide the gap is between my full approach versus the one

without the nonlinear combination layers. This result confirms my initial hypothesis,

introduced in Section 3.3, that a nonlinear approach is required to model the complex

interaction between the drugs and learn the interplay between them.

Figure 5.5: Right-side model architecture without the combination MLP layers.
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Table 5.10: Ablation study - Performance of the approach without the combination
layers (MLP) compared against the full model.

Approach AUROC AUPRC
Model with no MLP 0.784 0.775
Full approach 0.912 0.873

5.3 Importance of the off-label single drug side

effect data

DCSE-twin is enriched greatly by the addition of DCSE-left and the corresponding

data from OFFSIDES. Incorporating this model into my approach allows to utilise

more data to learn better and more descriptive distributed representations. There

are two main reasons behind this: it opens up new ways of framing the problem

to answer different interesting biological questions; and to obtain better predictive

performance. I have already discussed the first reason in section 5.1.5. Now, to

understand if DCSE-left is impacting the performance of my model I performed

an ablation study where I tested my method without training with the data from

OFFSIDES. For this experiment, I used the same preparation as in Setting A for

the testing set.

First, I trained just DCSE-right (as in Fig. 4.2) for a fixed number of epochs.

This number was set to 20 for the purpose of this experiment. I used the trained

model to predict the DDIs in the testing set and then calculated the performance.

As seen in Table 5.11, DCSE-right on its own achieves comparable performance with

the full approach.

Although the overall performance was not increased by a wide margin when I

use DCSE-left, the benefits of using this model are not only limited to performance
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gains. By learning the distributed representations for a large number of drugs and

side effects without any information about their interactions, I am able to provide

de novo predictions of DDIs, using these representations. This is due to the fact

that by learning them together with DCSE-right, the representations lie in the same

latent space and can be used in any of the two models to obtain a prediction.

Table 5.11: Ablation study - Performance of DCSE-right alone compared against the
full model.

Approach AUROC AUPRC
DCSE-right only 0.892 0.858
DCSE-twin 0.912 0.873

5.4 Are the biases, u and v, modelling drug and

side effect popularity?

To understand exactly what the biases are learning, I explored the possibility that

they might be modelling drug and side effect popularity. Intuitively, drug popularity

in this context can be quantified by the number of side effects that are known to

be associated with a given drug. Conversely, side effect popularity is quantified by

the number of drugs that are known to the associated with a given side effect. The

more information there is about a particular drug or side effect, we can say the more

popular they are. Formally, I define the popularity dpopi for a drug di as the sum of

the row i in X, and the popularity rpopl for a side effect rl as the sum of the column

l in X:

dpopi =

n+q∑
j

Xi,j, rpopl =
m+o∑
j

Xj,l. (5.6)
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The hypothesis is that if the biases are modelling popularity, then u and v should

be negatively correlated to the vectors of drugs and side effects popularity, d⃗pop and

r⃗pop, respectively. The first assumption is that the model should, generally, assign

a higher score for drugs and side effects that are more popular. If that is the case,

considering the nature of the non-normalised scores, then for higher values of u and

v, the smaller the prediction score will be (see Eq. 4.7). Inversely, for lower values

of u and v, we should obtain higher predicted scores.

The Pearson correlation obtained for d⃗pop and u is −0.831 (Fischer’s two-sided

exact test, p < 2.68 × 10−146), and for r⃗pop and v is −0.844 (p < 1.52 × 10−265).

These values confirmed our hypothesis that the biases for the drugs and side effects

are modelling popularity. The hope is that if the biases are already modelling this

aspect from the data, then the factor modelling for the distributed representations

are able to learn from more biologically meaningful interactions from the data and

improve their descriptive power.

5.5 Reproducibility Analysis

In this section, I analysed if the distributed representations are reproducible across

independent runs of my approach. This is an important evaluation to ensure that

the biological interpretability of the representations is reproducible.

As a first evaluation, I followed the procedure adopted by Alexandrov et al.

to study cancer mutational signatures [63, 64]. The reproducibility procedure is

detailed as follows:

• (Step 1) Run the approach for 1, 000 times using all the available data from

TWOSIDES and OFFSIDES with the length of the distributed representations
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k = 20.

• (Step 2) Select the best 100 solutions that minimise the loss function and

aggregate them into the matrices W of m × L, and H of n × L, where L =

20x100 = 2, 000 latent features, m = 635 drugs and n = 963 side effects.

• (Step 3) Apply a partition clustering algorithm on the columns of W and H,

using the cosine distance as the metric3. Then, I run the k-means++ algorithm

[65] with k = 20. The reproducibility of the distributed representations for the

drugs and side effects is then calculated by the tightness and separation of the

clusters obtained. I use the cosine-similarity based average silhouette width

[66] of each cluster as a measure of reproducibility of each component of the

representation. This width is a measure of how similar that component is to

components in its own cluster, when compared to components in other clusters.

The silhouette width si for the ith component of the latent representation is

defined as:

si =
bi − ai

max (ai, bi)
(5.7)

where ai is the average distance from the ith point (a component of the repre-

sentation) to the other points in the same cluster as i, and bi is the minimum

average distance from the ith point to points in different clusters, minimised

over clusters. The silhouette width values range from −1 to 1. A value close

to +1 indicates that a component is very similar to other components in its

cluster but very dissimilar to neighbouring clusters.

3The cosine distance for two vectors w1 and w2 is defined as d (w1, w2) = 1 − w1w
I
2√

(w1wT
1 )(w2wI

2)
.

The cosine similarity is 1− d (w1, w2).
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My results for the reproducibility analysis are shown in Figure 5.6. The silhou-

ette plots shown in the figure is useful to study the separation distance between the

clusters. They provide a way to assess the cluster quality visually. Ideally, the aver-

age silhouette score of all the clusters should be higher than 0.5 and as close to 1 as

possible. Unfortunately, none of the components of the distributed representations

for k = 20, for the drugs, have an average reproducibility score above 0.5. This

analysis can also help guide the selection for the length of the distributed represen-

tations. To analyse this, Figure 5.7 shows the silhouette plot for the reproducibility

analysis when the length of the representations is k = 10. As can be observed,

the average score is increased from 0.08 to 0.26. It is still not the desirable score,

however, two components of the representations do obtain a score higher than 0.5.

These results indicate that for the moment, the distributed representations are

not fully reproducible across independent runs. This is mostly due to the fact that

the values for the distributed representations are still changing too much after every

epoch. To understand this behaviour I calculate the relative and average change

in the weights of W and H through the epochs. Calculating the relative change in

values is a standard stopping criterion during the learning of NMF methods [47]. If

we define W0 as the values of W from the previous iteration, and W as the current

state of the latent representations, then the relative change is calculated as follows:

max (W −W0)

max (W0)
. (5.8)

The average change in values is the mean of the matrix: W −W0. Figure 5.8

shows the analysis of the change in values for the traditional one-to-one learning

pace of DCSE-twin. As can be observed, for both the relative and average change,
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Figure 5.6: Silhouette analysis for the KMeans++ clustering of the drugs’ distributed
representations, for k = 20. In the x-axis we observe the clusters obtained by the algorithm
and in the y-axis the range of silhouette coefficient values.

the values go down. Nevertheless, they get stabilised and stop decreasing in value.

Ideally, the relative change shouldn’t be higher than 1 × 10−3, but the values are

still not that close to this value. From the average change in W and H (Fig. 5.8

bottom), we can observe that the values go down and then start going up again. The

struggle in the learning between the left-side and right-side models is more apparent
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Figure 5.7: Silhouette analysis for the KMeans++ clustering of the drugs’ distributed
representations, for k = 10. In the x-axis we observe the clusters obtained by the algorithm
and in the y-axis the range of silhouette coefficient values.

when we consider the overall change in values.

However, there are multiple things that I can adjust in DCSE-twin to make the

representations more stable, and thus, reproducible. As discussed in Section A.2,

freezing the weights of the representations and having only DCSE-left update them,

greatly reduces the struggle between the learning of the two models. It also has the
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added effect of stabilising the values of the representations. In Figure 5.9 we can

observe the analysis of the change in values when I freeze the weights of W and H

during the learning of DCSE-right. The relative change gets to a lower value for

both W and H. And the average change is also more stable. For future work, I need

to analyse different combinations of parameters like the number of times I only learn

the weights of W and H in DCSE-left before starting the learning of the right-side.

The number of frozen epochs and the size of the distributed representations may

also play a part in decreasing their overall change in values between epochs.

Figure 5.8: Analysis of the change in values of the distributed representations W
and H in between epochs. The learning of DCSE-twin for this analysis is the standard
one-to-one pace between the left-side and right-side models. The top two figures show
the relative change of values, and the bottom two figures show the average change of the
values. These figures are from the perspective of DCSE-right, so the green circles represent
when DCSE-right is updating the weights of W and H, and the black crosses show when
DCSE-right is idle and DCSE-left is updating the values.
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Figure 5.9: Analysis of the change in values of the distributed representations W and
H in between epochs. The learning of DCSE-twin for this analysis is based on freezing
the weights of W and H for 3 epochs. The top two figures show the relative change of
values, and the bottom two figures show the average change of the values. These figures
are from the perspective of DCSE-right. The green circles represent when DCSE-right is
updating the weights of W and H, the black crosses show when DCSE-right is idle and
DCSE-left is updating the values, and lastly, the yellow circles indicate when the model is
only updating the values of the combination layers.



“What I love about science is that as you learn, you don’t really get

answers. You just get better questions.”

John Green

6
Conclusion and future work

In this dissertation, I have addressed the problem of predicting adverse side effects of

drug combinations. DCSE-twin is motivated by the concept of learning distributed

representations that can describe the biological activity of drugs, drug pairs and

side effects. I provided extensive experimental results that show that DCSE-twin

outperforms the state-of-the-art under different novel evaluation scenarios that are

pharmacologically relevant. My method has great value to be adopted in regular

107
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drug development pipelines in the premarketing stages. This will empower the anal-

ysis of important safety concerns for investigational drugs at earlier stages, leading

to more efficient triage for novel drug candidates in the development process [24].

Methods, such as DCSE-twin, don’t necessarily prove causality association, but in-

stead, they can be valuable tools to flag hypotheses of adverse DDIs and support

signal assessment. A comprehensive clinical judgement will always prove to be fun-

damental for establishing causal relationships between drugs and safety concerns,

like side effects.

6.1 Future work

Interpretability of the distributed representations

The black-box nature of machine learning methods is one of the major limitations

leading to difficulty in interpreting what features are important or interpreting the

model’s predictions [24]. Interpretability can bridge the gap between applied ma-

chine learning research and clinical practice. Having biological interpretations of

machine learning predictions can help scientists involved in high-stake decisions to

make informed decisions. To this end, a clear objective for my future work is to ad-

dress the interpretability of the distributed representations of the drugs, drug pairs

and side effects.

From the results of the reproducibility analysis, presented in Chapter 5.5, it is

clear that some further tuning is needed to make the representations reproducible

across multiple runs. Analysing the different sizes for the distributed representations

may improve the model’s overall reproducibility. Following the reproducibility of

the representations, I plan to adopt a similar procedure as described in the work
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by Galeano et al. [44], to evaluate the interpretability of the representations. This

analysis has the potential of interpreting specific components of the representations

by relating them to different anatomical activities of drugs and specific drug routes

of administration.

Predicting side effects for higher-order drug combinations

Another avenue for future work involves the prediction of side effects for higher-

order (i.e. more than two) drug combinations. It has been recently reported [67],

that on average, the elderly population, take two to nine prescription medications

per day. A different survey by Kaufman et al. [68] found that 57% of women aged

≥ 65 years took ≥ 5 prescription medications and 12% took ≥ 10 medications. In

line with these results, a large study of drug therapy in elderly home care patients

in Europe [69] (n = 2707; mean age 82.2 years) found that 51% of patients took ≥ 6

medications per day and 22% of patients ≥ 9 drugs per day. It has also been reported

that 5 – 15% of elderly patients suffer clinically significant adverse reactions due to

drug interactions, whereas the number of elderly patients exposed to a potential

DDI is estimated to be between 35 and 60% [70].

Recently, the NSIDES [55] dataset, which includes millions of higher-order in-

teractions of drugs, became available. This dataset allows for the deployment of

computational methods that can assist in the prediction of side effects associated

with higher-order drug combinations.

An important advantage of DCSE-twin is that its architecture allows for a

straightforward extension to more than just two drugs. This is achieved simply

by adding more drug inputs to the model. It would involve concatenating more

individual drug distributed representations in Eq. 4.2 to learn a representation for

the higher-order combination. The changes to the rest of the model should be very
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minimal. An important note is that the dimension of the representation does not

need to increase as we increase the number of drugs in the combination. As a

consequence, the overall computational complexity of DCSE-twin will be largely in-

dependent of the number of drugs being considered. Moreover, the training phase of

the higher-order interaction models could be initialised using the weights of already

trained lower-order models, leading to faster learning and better performance. This

is in stark contrast with existing methods for DDI prediction, in which the input is

normally a concatenation of drug features [4, 71] into very high-dimensional vectors.

Extending these methods for higher-order combinations would require input vectors

of increasingly high dimensions and a complete re-training of the entire model.
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A.1 DCSE-right CNN variation

The choice of nonlinearity for DCSE-right is an MLP. However, this can be changed
to any other form of nonlinearity as long as the output is a representation for the
drug pair that lies in the same latent space as the representations for the individual
drugs.

Here I present a variation of DCSE-right in which I use a Convolutional Neural
Network (CNN) to combine the representations of the individual drugs. As un-
orthodox as it may seem to apply a CNN to a setting where the input data is not
necessarily “matrix” shaped, like an image, for example, it is still possible to make
use of the properties of CNNs for data like ours. Inspired by [72], instead of con-
catenating the representations for the individual drugs, I perform the outer product
between them, as follows:

Oi,j = w⃗iw⃗
T
j , (A.1)

where Oi,j ∈ Rk,k is a square matrix that represents the outer product between
the representations for drugs i and j. From here, we can use Oi,j as the input for
a CNN to learn features from the outer product between the representations. The
idea is to use the outer product to explicitly model the pairwise correlations between
the elements of the individual drug representations in the latent space. This matrix
Oi,j is called the Interaction Map. An overview of this nonlinear combination can
be observed in Figure A.1.

i
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Figure A.1: CNN variation for DCSE-twin. The interaction map represents the
outer product between the individual drug representations, multiple convolution layers
are stacked on top of the Interaction Map. The final layer represents the distributed rep-
resentation for the drug pair.

Such rich semantics in the interaction map facilitate the following nonlinear
layers to learn possible high-order dimension correlations. Moreover, the matrix
form of the interaction map makes it feasible to learn the interaction function with
the effective CNN, which potentially is able to generalise better and can go deeper
than the fully connected MLP. Another advantage of the CNN over the MLP is the
large number of parameters that the MLP needs to learn. Besides that, a simple
concatenation of the representations that serves as input to the MLP, may not be
representative enough as the outer product that may be able to model the pairwise
correlations between the representations.

To analyse the performance of this variation, I follow the procedure detailed in
Chapter 5.1.2. Table A.1 shows the results when comparing the MLP variation,
named DCSE-MLP, against this CNN variation, named DCSE-CNN. As observed,
DCSE-MLP achieves a higher performance. However, the difference is not that sig-
nificant, which indicates that this approach is also able to get reasonable predictive
performance.

Table A.1: Performance comparison of DCSE-right variations of nonlinear combina-
tion, DCSE-MLP and DCSE-CNN.

Method AUROC AUPRC
DCSE-CNN 0.880 0.840
DCSE-twin 0.892 0.873
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A.2 Analysis of the learning of DCSE-twin

DCSE-twin is an approach that simultaneously learns distributed representations for
drugs and side effects from two different datasets, namely, TWOSIDES and OFF-
SIDES. The goal of DCSE-twin is to have both models benefiting from each other to
obtain better predictions and more robust representations. In order to accomplish
this, the training of DCSE-twin needs balance out many different factors that, at
times, can be opposing forces during the learning. These factors include the learn-
ing algorithm between DCSE-left and DCSE-right, the regularisation parameters,
and the modelling of the biases in the two models. In this section I explore all of
these factors and present different experiments that contributed to finding the right
balance for my final approach.

A.2.1 Learning from two different datasets

In order to leverage the data from OFFSIDES correctly to learn better distributed
representations for drugs and side effects, the learning process needs to be done in
the right way. The learning of my method is done in an iterative process, as shown
in Algorithm 3, where the connection between the left-side and right-side models is
in the sharing of the distributed representations and biases. Both models are trying
to learn from different data and, although related, different problems. This will
generate an inevitable struggle between them. However, the idea is to make this
struggle as minimum as possible and have both models benefit from each other and
from both datasets. To accomplish this, it is necessary to understand how much
the learning of one model is being affected by the other. I analyse the behaviour
of the loss functions of the two models during the training to find the right balance
for the learning process. Figure A.2 shows a visualisation of this process with the
plot of the loss for each model at each epoch. Each column in the figure, that goes
through both models, has only one green circle that shows which model is updating
the weights. The black crosses show the value of loss for the model, calculated with
the weights that were updated by the other model. We can observe that there is
a natural tug-of-war motion between the two loss functions. When one model goes
through an epoch, the loss for that model decreases (green circle), but the loss for
the other model increases (black cross). Nevertheless, the overall loss between two
epochs of the same model seems to always be decreasing, which is the desirable
behaviour.

Although a simple one-to-one iterative process seems to be heading in the right
direction, the fight between the two models is still present. As a way to decrease
this struggle during the learning, I came up with an approach in which I modify
some aspects during training. First, notice in Figure A.2 how in the early epochs the
loss for DCSE-right decreases even when DCSE-left is performing the updates. This
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suggests that the representations learned by the left side are a good starting point
for the training. To make the best of this situation, I start the training with some
repeated iterations where only DCSE-left updates the representation. In the early
epochs of Figure A.3 we can observe how the loss of DCSE-right goes down when the
left side is performing the initial updates. The second change I make is to freeze the
weights of the representations in DCSE-right for some iterations. Specifically, I want
to make sure that DCSE-right is focusing on updating the weights for the MLP to
learn a better representation for the drug pair, as opposed to keeping updating the
weights for the distributed representations for the single drugs. I adjust Algorithm
3 to freeze the weights of the distributed representations of the individual drugs
after a certain amount of epochs, this process is shown in Figure A.3. During
these epochs, DCSE-right will only update the parameters for the MLP and the
representation of the combination of drugs, as depicted by the yellow circles. The
loss gets stabilised during the epochs in which the weights are frozen. During these
frozen epochs, the loss from DCSE-left remains the same, as there is no update to
the distributed representations, shown by the red crosses in the figure. However,
the struggle between the two models is also decreasing and the loss for both models
keeps decreasing at their respective turns to update the weights. Empirically, the
number of frozen epochs was set to 3 for the final training of DCSE-twin.

There are still some aspects of the learning that can be improved and under-
stood. For instance, the overall loss of the two models gets to a slightly lower value
in the simple one-to-one training than in the approach with the frozen weights.
Nevertheless, the struggle between the two models is minimal in the model where
the weights are frozen, and this is something I want to prioritise that may help
in the reproducibility of the approach. If the two models struggle too much, the
overall change of the values of the representations between two iterations is going
to be higher. The less the two models fight each other, the absolute value of the
updates between two epochs for the representations will also decrease. If the values
of the representations change too much between epochs, then the less likely will be
that they will be reproducible across independent runs of my approach. This is why
keeping the struggle between the two models may benefit not only the learning but
also the overall interpretability of the model.
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A.2.2 Regularisation analysis for DCSE-left

Besides modelling the inherent tendencies in the data, the biases in DCSE-twin have
the role to shift the distribution of the non-normalised prediction scores to capture
the entire sigmoid range. In Equation 4.7 we can observe how this happens. Note
that the dot product between the distributed representation of the drug and the
side effect gets subtracted by the product of the drug and side effect biases. This
means that the values in u and v need to be closely related to the values in W and
H, as these need to be adjusted accordingly to shift the distribution. To understand
this relationship between the biases and the distributed representations, I analyse
the distribution of their values. Figure A.4 shows these distributions for a model
without any regularisation, i.e. β,α = 0. As observed in Figs. A.4a, A.4b and A.4c,
the values for W , H, and uvT either are zero or explode in size. The unnormalised
scores (Fig. A.4d) are mostly zero which causes the final predictions (Fig. A.4e) to
be mostly random at 0.5. These results suggest that for DCSE-left to work correctly,
I need to apply some form of regularisation to the distributed representations and
also to the biases.

(a) Distribution of W (b) Distribution of H (c) Distribution of the biases uvT

(d) Distribution of the logits WH − uvT (e) Distribution of the normalised scores σ(WH − uvT )

Figure A.4: Analysis of the distribution of the distributed representations of the drugs
(a) and of the side effects (b), the biases (c), the logits or unnormalised scores (d), and
the normalised scores (e) with no regularisation — β = 0, α = 0.

The right balance between the regularisation hyperparameters, β for W and H,
and α for uvT , is needed to keep the values of the distributed representations and
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biases from exploding in size. Figure A.5 shows the same distributions as before,
but now with regularisation, specifically β = 2 and α = 0, 1. After applying this
regularisation, the values for W , H, and uvT are shrunk accordingly, as observed
in Figs. A.5a, A.5b and A.5c. From my empirical results, the regularisation for
W and H needs to be higher than for u and v. The fact that the regularisation
for the distributed representations is higher, is constraining the biases because of
how tightly linked they are. If the values for W and H don’t grow as much, then
there is no need for the biases to grow either, meaning in a lower regularisation for
uvT . Another reason why β should be higher than α is that besides helping capture
the range of the sigmoid, u and v also need to model the drugs’ and side effects’
biases. This allows the distributed representations to learn from more meaningful
interactions. Since the regularisation for the biases is lower, they have more freedom
to grow to adjust to these two important roles they play in the model.

(a) Distribution of W (b) Distribution of H (c) Distribution of the biases uvT

(d) Distribution of the logits WH − uvT (e) Distribution of the normalised scores σ(WH − uvT )

Figure A.5: Analysis of the distribution of the distributed representations of the drugs
(a) and of the side effects (b), the biases (c), the logits or unnormalised scores (d), and
the normalised scores (e) with the right regularisation — β = 2, α = 0.1.
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