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Dispersion Anomalies in Bilayer Cuprates and the Odd Symmetry of the Magnetic Resonance
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We demonstrate that recent angle resolved photoemission data in bilayer cuprate superconductors
imply that scattering of electrons between bonding and antibonding bands is strong compared to
scattering within these bands. As a consequence, the resulting data can be reproduced only by a model
which assumes that the electrons are interacting with a bosonic mode that is odd with respect to the
layer indices. This odd symmetry is a unique property of the magnetic resonance observed by inelastic

neutron scattering.
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Recent angle resolved photoemission (ARPES) experi-
ments on bilayer cuprate superconductors were able for
the first time to resolve a bilayer splitting between bond-
ing and antibonding bands [1-3]. The dispersion near the
(77,0) point of the Brillouin zone shows an unusual
asymmetry between bonding and antibonding self-energy
effects. In particular, Feng et al [1] found that the energy
distribution curves (EDCs, taken at constant momentum)
in overdoped Bi,Sr,CaCu,0445 (T. = 65 K) consist of
three features: an antibonding band (AB) peak near
20 meV, a bonding band (BB) peak near 40 meV, and a
bonding hump near 105 meV. Recently, Gromko et al. [2]
reported strong self-energy effects in the dispersions
derived from momentum distribution curves (MDCs,
taken at constant energy) in similar samples (7, =
58 K). Near momentum (k,, k,) = (1,0.13)7/a, an S-
shaped dispersion anomaly, discussed previously in
Ref. [4], was shown to be present only in the bonding
band MDC, at binding energies between 40 and 60 meV.
In both experiments, a low energy double peak structure
in the EDC was resolvable only in the same momentum
region.

In this Letter, we demonstrate that these features can be
explained by a model which assumes that low energy
scattering of electrons between the bonding and antibond-
ing bands is strong compared to scattering within each of
those bands. As scattering events which connect different
bilayer bands are odd with respect to permutation of the
layers within a bilayer, this implies that the correspond-
ing bosonic excitations which mediate such scattering
must be dominant in the odd channel. The magnetic
resonance observed in inelastic neutron scattering has
exactly this property [5,6], and moreover has the correct
energy to reproduce the observed dispersion anomalies.
Thus, the recent ARPES experiments on bilayer cuprates
provide independent support for a strong coupling be-
tween this resonance and electronic excitations.

If the electrons are phase coherent between the two
planes, then the spectra will exhibit separate bonding (b)
and antibonding (a) features with (normal state) disper-
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sions given by §;{b) and §;{”) In the cuprates, the resulting
energy splitting is anisotropic [1,7]: fz f(b)
11) (cosk, — cosk,)?. In the superconducting state. the
dispersions are modlﬁed by the presence of the d-wave
order parameter given by A; = Ag(cosk, — cosk,). In
agreement with experiment [1,3], we assume A to be
the same for the bonding and antibonding bands. Then,
the dispersion in the superconducting state takes the form
(EL7) = (&7 + (8.

Thls ‘non- 1nteract1ng picture, though, is insufficient
to describe the three observed dispersion features. We are
able to account for them in a model where electrons are
coupled to a resonant spin mode situated below a gapped
spin fluctuation continuum. Such a spectrum is observed
in inelastic neutron scattering experiments [5]. In bilayer
materials, the spin susceptibility is a matrix in the layer
indices, having elements diagonal (.., X»») and off-
diagonal (xp,, Xa») in the bonding-antibonding rep-
resentation. The components of the spin susceptibility
transforming as even and odd with respect to the layer
indices are given by X, = Xa« T X»» and x, =
Xab T Xpa- For identical planes, x,, = xpp and Xup =
Xba- The measured susceptlblhty is then given by y =
Xe coszq + X, sin? 2 4 where d is the separation of the
layers w1th1n a bilayer. The resonance part, Y, was
found to exist only in the odd channel, whereas the
continuum part, Y., enters in both [5]. Thus, x, = Xes T
Xc and y, = x.. This means the resonance mode can
scatter electrons only between the bonding and antibond-
ing bands. In contrast, the spin fluctuation continuum
scatters both within and between these bands. As we
demonstrate below, the odd symmetry of the resonance
is crucial in reproducing the ARPES spectra. In particu-
lar, if the mode were in the even channel, we would find
only one low energy spectral feature.

We employ for the single layer self-energy the func-
tional form of Ref. [8]. It is proportional to the convolu-
tion of the Gor’kov-Green’s function G with the dynamic
spin susceptlblhty X. We write this self-energy symboli-
cally as S = gy G (the hat denotes the 2 X 2 particle
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hole space, and g is the coupling constant). For a bilayer
system there is a separate self-energy for each band,
> (@b Using the above notation, these self-energies are
given by

b = —{x # GO 4y + (GP + G (1)
Dispersion anomalies arise mainly from coupling to the
resonance mode. This means that dispersion anomalies in
the bonding band are determined by the antibonding
spectral function and vice versa. (The spectral functions
for the bonding and antibonding bands are given by the
imaginary parts of the diagonal components of the
Green’s functions.) Because the antibonding band is (in
contrast to the bonding band) close to the chemical po-
tential at (7, 0) [1], the associated van Hove singularity
leads to a larger self-energy for the bonding band.

The self-energy effects can be described very accu-
rately by using a model spin spectrum which consists of a
perfectly sharp resonance mode below a gapped contin-
uum with gap A,. We approximate the intensity of the
continuum to be constant. In reality, the intensity of the
continuum decays at high energies. However, as we are
interested in self-energy effects in an energy range |e| <
200 meV, the above approximation is adequate. A high
frequency cutoff in the convolution integrals in Eq. (1)
was introduced. The precise cutoff procedure, however,
does not affect the low energy physics. Any variation in
the cutoff can be accounted for by a readjustment of the
coupling constants and the normal state renormalization
factor. We model the resonance mode, R = 2Imy,.,, and
the continuum, C = 2Imy,, by

g = 2r(@Hé(w — Qpey) — (=0 — Qe)} (2a)
Cog = 2c(GHO(w — 24,) — O(—w —24,)},  (2b)

where the © function is zero for negative argument and
one otherwise. The momentum dependences of the reso-
nance mode and the continuum, given by the functions
r(g) and c(g), are plotted in Fig. 1. The resonance mode,
shown in Fig. 1(a), is peaked at Q, with a correlation
length of &, = 2a, where a is the lattice constant. The
gapped continuum, shown in Fig. 1(b), is much broader.
This is motivated by the experimental data [5], which
show that the continuum is enhanced around Q with a
correlation length of only 0.5 lattice constants. Also, the
momentum dependence of the continuum excitations ex-
hibit experimentally a flat behavior around 0, as in
Fig. 1(b). To simplify the model, we use the same func-
tional form for the gapped continuum in the even and odd
scattering channels. This is consistent with the supercon-
ducting state data, where the gap in the odd channel
(about twice the maximal superconducting gap), is close
to the optical gap in the even channel.

We have chosen parameters appropriate for the over-
doped sample (7, = 65 K) studied in experiment [1]. The
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FIG. 1. Momentum dependence of (a) the resonance mode
and (b) the gapped spin fluctuation continuum. The resonance
mode is peaked at Q = (7, 7) with a correlation length equal
to twice the lattice constant, &, = 2a. The continuum spec-
trum, in contrast, is rather broad around Q.

normal state dispersion is obtained from a six parameter
tight-binding fit to experimental data [9], plus the bilayer
splitting discussed earlier. In order to determine the total
of seven parameters for this fit, we used three Fermi wave
vectors, ky = (0.37,0.37)7/a, kY = (1,0.217)7/a, and
k'@ = (1,0.135)7/a, the Fermi velocity at ky, Dy =
2. 316 eV A, and the normal state band energies at (77, 0),

(b) = —105 meV and f M= 18 meV (the correspond-
mg bilayer splitting is §M fM) =t, = 87 meV).
Finally, to obtain the correct overall shape of the disper-
sion, we fixed the band energy at (7, 77), using a reason-
able value &y =0.8eV. The high energy (le|l =
200 meV) dispersions are not affected strongly when
going from the normal to the superconducting state.
However, even in the normal state, the bare dispersion
is renormalized by the normal state spin fluctuation con-
tinuum. To account for this renormalization, we multiply
the above dispersion by a factor of 1.4 in order to obtain
the bare dispersion. For the remaining parameters of the
model, we use Ay = 16 meV [1], Qreb 27 meV, A, =
0.94,, g*r(Q) = 0.15 V2, and g*c(Q) = 0.72 eV. The
value for the resonance energy was obtained from the
relation ., = 4.9kzT, found experimentally to hold for
overdoped Bi;Sr,CaCuy0Og45 [5,6,10]. The resonance
weight r(Q) has not been measured for overdoped mate-
rials. For optimally doped Bi,Sr,CaCu,Og s, it is 0.95,u3
per plane [6], and we estimated for this case g = 0.65 eV
[11]. Assuming for the overdoped sample the same cou-
pling constant, the above value for g r(Q) would imply a
resonance weight of 0.36u% per plane. Similarly, with
this coupling constant and our value for g2c(Q), we
obtain a (2D)-momentum averaged continuum contribu-
tion of 1.74%/eV per plane (gotten by summing the even
and odd channels for energies @ < 0.2 eV). Our calcula-
tions are for a temperature 7 = 10 K. Note we use un-
renormalized Green’s functions in Eq. (1). This
approximation is sufficient to explain a large variety of
data, and can be justified by considerations discussed in
Ref. [12].

The bonding and antibonding normal state Fermi sur-
faces are shown in Fig. 2(a). The bilayer splitting is
maximal near the (77, 0) points of the zone. Thus, we
will concentrate on this region in the following. In
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FIG. 2 (color online). (a) Tight binding Fermi surfaces
for antibonding and bonding bands in overdoped
Bi,Sr,CaCu, 04,5 (T. = 65 K). (b) Renormalization function
and (c) imaginary part of the self energy at the (77, 0) point of
the zone for the bonding band (BB) and antibonding band (AB).
(d) Spectral functions for k, = 7/a, and k, varying from O to
0.277/a. For comparison with experiment, the spectra are
convolved with a Lorentzian energy resolution function
(FWHM 12 meV).

Fig. 2(b) we show the renormalization function for bond-
ing and antibonding bands at the (7, 0) point. The renor-
malization is stronger for the bonding band than the
antibonding band. This is a result of the proximity of
the antibonding saddle point singularity to the chemical
potential. As is seen in this figure as well, both bands
are renormalized up to high energies. The high energy
renormalization approaches that of the normal state dis-
persion (1.4).

The imaginary part of the self-energy is shown in
Fig. 2(c) for the bonding and antibonding bands. As
emission processes are forbidden for |e| < Q. the
imaginary part of the self-energy is zero in this range.
Because of scattering events to the antibonding band,
electrons in the bonding band have a large imaginary
part of the self-energy in the range between 40 and
60 meV. These events are dominated by emission of the
resonance, and are enhanced due to the van Hove singu-
larity in the antibonding band close to the chemical
potential. In contrast, the imaginary part of the antibond-
ing self-energy is not enhanced because the bonding band
is far from the chemical potential at (77, 0). Consequently,
it shows linear behavior over a wide energy range, with a
gap at low energies (|e] < Q).

Figure 2(d) presents the intensities for the bonding and
antibonding spectra. The antibonding spectra consist of a
low energy AB peak, and the bonding spectra have a low
energy BB peak and a higher energy BB hump feature. In
agreement with experiment [1,2], the width of the EDC
spectrum is large for the BB hump, but not so for the BB
and AB peaks. We also mention that the BB peak is well
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defined in the whole region between the BB Fermi cross-
ings on either side of (77, 0), but the finite energy resolu-
tion does not allow one to resolve it near (7, 0) as seen in
Fig. 2(d).

In Fig. 3 we show our results for dispersion of the EDC
and MDC peak positions. In the EDC dispersions,
Fig. 3(a), we reproduce the experimentally observed three
branches [1,2], one antibonding peak and two bonding
branches, denoted “BB peak’ and ‘“BB hump.” The BB
peak has a very flat dispersion near k, = 0 in agreement
with experiment [1]. Its position at 40 meV is approxi-
mately given by Q. + A,, where A, is the gap at the
antibonding Fermi crossing. Thus, the energy separation
between the AB peak at the AB Fermi crossing and the
BB peak at (7, 0) is a measure of the resonance mode
energy ()., in overdoped compounds. The BB hump
position at high binding energies (105 meV) is determined
by the normal state dispersion of the bonding band.
Because the spin fluctuation continuum changes only at
low energies when going from the normal to the super-
conducting state, the position of the BB hump maximum
is not very different from the normal state BB dispersion.
This is in agreement with experiment [1]. The intensity of
the AB peak decreases quickly when it approaches the BB
peak, but is strong at (77, 0) because of the proximity of
the AB band to the chemical potential in this region.

In Fig. 3(b), we present the MDC dispersions (for
comparison we also reproduce the EDC dispersions as
small symbols). The MDC dispersion consists of two
branches, an AB MDC branch and a BB MDC branch.
The self-energy effects are most clearly observable in the
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FIG. 3 (color online). Dispersion of EDC peak positions (left)
and MDC peak positions (right) near the (7, 0) point of the
Brillouin zone. The EDC dispersion consists of three branches,
one antibonding peak, one bonding peak, and one bonding
hump. The MDC bonding dispersion shows a characteristic
S-shape behavior. The small symbols in the right picture
show again the EDC peak positions for convenience.
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FIG. 4 (color online). Spectral functions for k, = m/a at
k., =0, k, =0.127/a, and k, = 0.217/a. The full lines are
the sum of antibonding (dotted) and bonding (dashed) spectral
functions. For comparison with experiment, a Lorentzian en-
ergy resolution function of 12 meV width was assumed. The
low energy double peak structure is clearly resolved for k, =
0.127/a, as in experiment [1,2]. It is not present if the mode is
in the even channel, as demonstrated in the bottom panel.

BB MDC branch. In the binding energy range between 40
and 60 meV, there is an S-shaped ‘“break” region, con-
necting the BB hump EDC branch with the BB peak EDC
branch. This S-shaped behavior reproduces the finding of
recent experiments [2].

Finally, in Fig. 4 we compare spectra for three posi-
tions in the Brillouin zone, corresponding to the spectra
presented in Refs. [1,2]. For each spectrum, the bonding
(dashed) and antibonding (dotted) contributions are in-
dicated. The spectra are convolved with a Lorentzian
energy resolution function to allow for direct comparison
with experiment. We reproduce all experimental findings.
First, at (77, 0), only the BB hump and the AB peak are
resolved. This is due to resolution effects mentioned
above. Second, near the AB Fermi crossing, the spectra
show a characteristic double peak structure, with a rela-
tively sharp AB peak and a BB peak separated from a
broad BB hump. Third, at the BB Fermi crossing, only
the BB peak is observed. The BB hump is so small in
intensity that it leads only to a kinklike feature in the
spectrum.

The dispersion anomalies observed in the bonding
band are a mirror of the large number of states close to
the chemical potential near (77, 0) for the antibonding
band. Scattering events involving a mode with energy
Q.. couple the bonding band electrons in the energy
region between 40 and 60 meV strongly to those antibond-
ing band electrons. The corresponding processes are in
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the odd channel. These effects would be lost if the reso-
nance were in the even channel. In this case, the a, b
indices in the first part of Eq. (1) would be reversed, and
thus the assignments listed in Figs. 2(b) and 2(c). The
antibonding van Hove singularity would no longer enter
in the bonding self-energy. The consequence of this can
be seen in the bottom panel of Fig. 4, where our calcu-
lations were repeated assuming an even symmetry mode.
Only two spectral features occur now, not three.
Moreover, the resulting MDC dispersion for the bonding
band loses the anomalous S-shaped region seen in
Fig. 3(b).

We have presented a theory to account for the experi-
mentally observed self-energy effects in the bilayer split
bands in double layer high temperature superconductors.
We reproduced quantitatively the EDC dispersions, the
MDC dispersions, and the spectral line shapes. We found
that the ARPES data are consistent with the interaction of
the electrons with a sharp bosonic mode which is odd in
the layer indices, a property unique to the magnetic
resonance observed by inelastic neutron scattering.
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