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Two-Component Fermi Gas on Internal-State-Dependent Optical Lattices
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We study the phase diagram of a one-dimensional, two-component (i.e., pseudo-‘‘spin’’- 1
2 ) ultracold

atomic Fermi gas. The two atom species can have different hopping or mass. A very rich phase diagram
for equal densities of the species is found, containing Mott insulators and superfluids. We also discuss
coupling such 1D systems and the experimental signatures of the phases. In particular, we compute the
spin-structure factor at small momentum, which should reveal a spin gap.
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FIG. 1 (color online). Schematic phase diagram for the model
of Eq. (1) with equal number of spin-up and -down fermions
away from half filling (i.e., N"0 � N#0 � M=2). U is the inter-
action strength and z � jt" � t#j=�t" � t#�. All phases (SDW:
spin-density wave, CDW: charge density wave, SS: singlet
superfluid, TS: triplet superfluid) exhibit a spin gap �s, except
�s � 0 for U � 0 (FG: Fermi gas) and z � 0 for U > 0 (TLL:
Tomonaga-Luttinger liquid). The first acronym refers to the
dominant type of order, the second (in parentheses) to the
subdominant one (see text for explanations). A cartoon of the
dominant order in each phase is also shown. In the area between
dashed lines the dominant order (either CDW or SS) depends on
the lattice filling (see text). In the SG phase, spin-up and -down
fermions are segregated (demixed).
Quantum engineering [1,2] of strongly correlated many-
body systems has recently become possible thanks to the
spectacular advances in trapping ultracold atoms in optical
lattices [3–6] or in microchip traps [7]. This has led to the
study of models that would otherwise be hard to realize in
solids, which may shed light on basic issues in quantum
many-body physics, including the understanding of, e.g.,
the origin of high-Tc superconductivity in doped copper
oxides. In particular, correlated boson [3,4,8,9], Bose-
Fermi [10], and Fermi [11–13] systems have received
much experimental and theoretical attention in recent
times.

In sharp contrast to electrons in solids, in cold atomic
systems, different types of atoms (different hyperfine states
or different atomic species) can be trapped and controlled
independently, such that the hopping, strength, and sign of
interactions (inter- or intraspecies) and densities can be
continuously tuned. For example, Mandel et al. [5] con-
trolled independently the periodic potential for each atom
type loaded in an optical lattice. This leads to much richer
physics which remains to be understood.

In this Letter, motivated by these recent developments
and the availability (now or soon) of fermions in elongated
traps [6,7], we study the interesting effects of having differ-
ent Fermi velocities for two species of fermions in one
dimension (1D). With equal densities of the two species,
this system is different from a two-leg spinless ladder
[14,15] or the spin- 1

2 electrons in a magnetic field
[15,16]. One main result of this Letter is the phase diagram
as a function of velocity difference, for equal densities
(Fig. 1). With repulsive interactions, a finite velocity dif-
ference breaks the SU(2) spin [17] symmetry and turns the
gapless Tomonaga-Luttinger liquid (TLL) into an Ising
spin-density wave with a spin gap. Segregation of spin-
up and -down fermions may occur if one type of fermions
has a very tiny velocity. With attractive interactions, a
singlet superfluid (SS) of bound pairs of fermions of differ-
ent types gives way to a charge density wave (CDW) of
pairs for sufficient velocity difference. We also briefly
study the effects of a small tunneling term coupling an
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array of 1D tubes together. In particular, if there are differ-
ent densities of fermions in neighboring tubes, a triplet
superfluid (TS) may become stable for repulsive interac-
tions. Finally, we calculated the dynamical spin structure
factor to reveal the spin gap.

We study the following generalized Hubbard model:
H � �
X

�;m

t��c
y
�mc�m�1 � H:c:� �U

X

m

n"mn#m: (1)
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This Hamiltonian describes a 1D Fermi gas on a
internal-state-dependent periodic potential [5]. The local
interaction U arises from projecting within the lowest
Bloch band the short-range two-body interaction v�x� �
g1D��x�, where g1D is related to the s-wave scattering
length by Eq. (14) of Ref. [18]. Experimentally, the system
is prepared as mixture of N0� fermions [6] (i.e., the total
magnetization and particle number are fixed). The index
m � 1; . . . ;M labels the lattices sites, n�m � cy�mc�m, and
� �"; # is the spin [17] index that may refer to two hyper-
fine states, or two different types of atoms (e.g., 6Li and
40K). Even though there may be no true spin symmetry, we
use the spin language to describe this binary mixture. We
assume the number of fermions of each spin species is
separately conserved, i.e., one spin type cannot be con-
verted to another. Motivated by the experimental consid-
erations above, we allow for different hopping t� for
different spins. This Hamiltonian may be realized in either
a quasi-1D chip trap [7] or in a 2D optical lattice, which is
made up of an array of 1D gas tubes [4,8] weakly coupled
by a hopping t? � minft"; t#g. When the energy gained by
hopping between neighboring tubes ( / t?) gets smaller
than the cost of adding (or removing) an extra atom to one
of the finite-sized tubes (‘‘charging energy’’), the tubes
decouple from one another and a set of independent 1D
tubes is recovered [19]. Although we assume there is a
(spin-dependent) periodic potential parallel to the tubes
such that (1) applies, many of our results also apply in
the absence of this potential when the two species have
different masses. More discussion on engineering
Hamiltonians like (1) can be found in [1].

We first study the homogeneous 1D system in the ther-
modynamic limit; finite-size and trap effects are discussed
below.

The weak-coupling limit jUj � minft"; t#g can be solved
by taking the continuum limit of (1) [15] and linearize the
dispersion around the Fermi points �k�F � �N0�=Ma.
This leads to the so-called ‘‘g-ology’’ representation [15]
with a small number of coupling constants represent-
ing low energy scattering processes. The coupling g�2k
(g2?) is the scattering amplitude for processes where a
small momentum q is exchanged between fermions of
equal (opposite) spin at opposite Fermi points, for arbitrary
values of k�F . g1? is the backscattering amplitude where
two fermions of opposite spin exchange a momentum q �
2kF � 2k"F � 2k#F, and is relevant only when N0" � N0#;
g3? is the amplitude for umklapp scattering (q � 2k"F �
2k#F � �=a) and is important only at half filling: N0" �
N0# � M. Thus for generic fillings, g1? and g3? are ir-
relevant, and the system is a TLL [15] with a com-
pletely gapless spectrum of two distinct branches of
phonons.

We focus here on the case N0" � N0# � M=2. The case
of a half-filled lattice N0" � N0# � M=2 is more involved
and will be reported elsewhere [19]. Unlike Refs. [20,21],
we obtain the phase diagram for equal number of spin-up
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and -down fermions as a function of the (Fermi) velocity
difference and consider coupling the 1D systems together.

The physical properties can be established by analyzing
the renormalization group (RG) flow of the various scat-
tering amplitudes upon the varying of a cutoff such as the
temperature T. To second order in the interaction parame-
ters, the RG flow is [19]:

_y �2k � r��y2
1?; _y2? � �y2

1?; _y1? � �y2sy1?;

(2)

where y� � g�=�@v are dimensionless couplings, v �
�v" � v#�, r� � v=2v�; _y�, and y2s � �

P
�r�y

�
2k �

2y2?; _y� � dy�=d‘, with ‘ � ln��=T�. Equations (2)
can be mapped to the RG equations of the Berezinskii-
Kosterlitz-Thouless (BKT) transition in terms of y1? and
y2s. The behavior of the BKT equations is determined [15]
by the constant of motion C � y2

1? � y
2
2s=2�r"r# � 1� �

�Ua=@v�2z2=�2� z2�, where z � jt" � t#j=�t" � t#� is the
key velocity difference parameter. For z � 0 we recover
the results for the spin-symmetric Hubbard model [15].
However, for z � 0 and U � 0, C> 0, the scattering
amplitude y1?�‘� diverges as the system is cooled down
to its ground state. This signals the formation of bound
states, and the opening of a gap in the spin sector (the
charge excitations remain gapless). For z� 1, the gap

has thus the characteristic BKT form �s 	�e�A=
���
C
p

’

�e�A
0=jt"�t#j, where �	 t" � t# and A; A0 are constants.

Note that this gap is nonperturbative in jt" � t#j.
The properties of the spin-gapped phase depend on the

sign of U. Ground states of 1D systems are characterized
by the dominant form of order that they exhibit, which is
typically quasi-long range in character, true long-range
order being only possible in 1D when a discrete symmetry
is broken. For U > 0 and z � 0, then y1?�‘� ! 1, and a
bosonization study [19] shows that the dominant order (i.e.,
the slowest decaying correlation) is a spin-density wave
(SDW) and the subdominant order (the next slowest decay-
ing correlation) is triplet superfluidity (TS). In the attrac-
tive case (U < 0), as z is increased, the dominant
(subdominant) order changes from SS (CDW) to CDW
(SS). This changeover is due to the marginal coupling
between the gapless charge and the gapped spin modes,
leading to the TLL parameter Kc going from Kc > 1 to
Kc < 1 as z is increased, which changes the dominant
correlations from SS to CDW, as described. A summary
of the phase diagram is shown in Fig. 1.

The weak-coupling regime crosses over to the strong
coupling regime jUj 
 maxft"; t#g, as confirmed by a
strong coupling expansion of (1). We only give here the
main steps; technical details can be found in [19]. We first
consider a half-filled lattice with N"0 � N#0 � M=2. For
U
 maxft"; t#g fermions cannot hop around and there is a
gap of order U to charge excitations. Degenerate perturba-
tion theory [22] shows that in this limit the Hamiltonian
in (1) maps to the Heisenberg-Ising (XXZ) spin chain
2-2
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HXXZ � J
P
m�Sm � Sm�1 � �S

z
mS

z
m�1, where the Sm de-

notes the spin operator at site m, J � 4t"t#=U, and the
anisotropy � � �t" � t#�2=2t"t# / z2. Thus, for unequal
hopping (z > 0), the chain is in the Néel phase (SDW
with true long-range order), and has a spin gap which for
small z is �s 	 Je

�A00=
���
�
p
� Je�A

000=jt"�t#j [20]. Note the
same nonperturbative dependence on t" � t# as for the
weak-coupling regime. Away from half filling, the system
is described by a t-J-like model with anisotropic spin
interactions. The charge gap is destroyed (Kc �

1
2 close

to half filling [15]), but the spin gap remains and the
dominant order is still SDW. Physically, the finite velocity
difference breaks the SU(2) spin symmetry to the lower
Z2 � U�1� . Thus, the TLL becomes an Ising antiferromag-
net in the spin sector.

For U� 0, (1) is equivalent to a model of tightly bound
fermion pairs (hard-core bosons annihilated by bm �
c"mc#m). Their hopping amplitude is J � 4t"t#=jUj, and
they interact with strength V � 2�t2" � t

2
# �=jUjwhen sitting

at nearest-neighbor sites. This model can be mapped to the
above XXZ chain via bm ! S�m and �bymbm �

1
2� ! Szm.

At half filling, charge excitations are gapless for equal
hopping and SS is the dominant order [15]. However, with
unequal hopping the spectrum of the tube is fully gapped,
becoming a CDW with true long-range order, a spin gap of
order jUj (energy to break a pair), and a charge gap �c 	

Je�A=jt"�t#j. Away from half filling, the spin gap remains
	jUj but the bosons are able to hop (i.e., the charge gap
disappears). Note that very close to half filling for z � 0,
the dominant order is CDW since Kc !

1
2 , as can be

inferred from the exact solution of the XXZ chain
[15,23]. However, as the filling deviates more and more
from half filling, Kc rises above one and the system be-
comes a 1D superfluid (SS). This change in the character of
the dominant order also takes place at constant filling,
provided the system is sufficiently far from half filling: a
SS (Kc > 1) can turn into a CDW (Kc < 1) as jzj is varied
at strong coupling. This agrees with the above weak-
coupling analysis. Note that at very low density
(N0�=M ! 0), and at least for not too different velocities,
only a SS phase is possible: in this limit, (1) maps to a
continuum (Gaudin-Yang-like) model of interacting fermi-
ons with spin-dependent mass. ForU ! �1, the fermions
pair up to become a 1D superfluid (SS) of tightly bound
pairs with irrelevant residual interactions between the
pairs.

Finally both the weak and strong coupling analysis
described above break down for sufficiently large jt" �
t#j; for weak coupling, linearization of the free fermion
dispersion is no longer justified, while for large jUj degen-
erate perturbation theory becomes subtle. Unfortunately,
rigorous results are available only for t" � 0 or t# � 0 �z �
1�, which is the Falicov-Kimball model. In 1D, Lemberger
[24] [see also [25] ] has proved that spin-up fermions
segregate from spin-down ones for U >Uc > 0 at equal
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densities. There is no segregation for U < 0 at equal den-
sities. As argued in [19,25], it is quite likely that this
segregated phase will survive also when jzj is close to 1.

The predicted phase diagram of Fig. 1 for a single 1D
tube can be directly tested experimentally in cold atoms,
but it is also interesting to analyze when there is weak
tunneling between the tubes in a square 2D array of tubes
[4,8]. The Hamiltonian for each tube at site R of the 2D
lattice is as in Eq. (1), with all fermion operators now
carrying the R label. The hopping between the nearest
neighbor tubes at R and R0 is described by H? �
�t?

P
hR;R0i

P
m;� c

y
�Rmc�R0m, where t? � minft"; t#g, but

such that fermions can now overcome the ‘‘charging en-
ergy’’ of the finite-size tubes. In general, when the isolated
tube has a gap �s � t?, H? is a relevant perturbation (in
the RG sense) and fermions hop coherently from tube to
tube. This is likely to lead to a very anisotropic 3D Fermi
liquid, which in turn may become unstable to 3D CDW or
SDW formation or 3D BCS superfluidity under appropriate
conditions. This limit has been much studied in the past,
e.g., for organic superconductors [see [26] for a review].
We shall not consider it here, and instead we study t" � t#
so that the gap �s 
 t?. Since the tubes (or at least a large
number of them near the center of the trap due to inhomo-
geneity effects) can develop a sufficiently large spin gap as
described above, coherent hopping between tubes is now
suppressed. However, H? can generate, through virtual
transition terms ofO�t2?�, of two kinds [15,27]: (i) particle-
hole pair hopping generates spin-spin and density-
density interactions: H1 �

P
m;hR;R0i�J?SRm � SR0m �

V?nmRnmR0 , and (ii) fermion pair hopping yields
H2 � Jc?

P
m;hR;R0ib

y
RmbRm�j, where J?;V?;Jc?	 t2?=�s,

bRm � c"Rmc#Rm, and ja & �s a distance smaller than the
spin correlation length, �s / ��1

s . The dominant term then
drives a phase transition to a 3D ordered phase [19]:
for U < 0, if the tubes are in the SS phase, the dominant
fermion pair tunneling leads to 3D long-range SS order.
The low-temperature properties of this system become
identical to the superfluid of bosons studied in [8]. If the
tubes are in the CDW (U < 0 and sufficiently large z) or in
the SDW (U > 0) phases, the dominant particle-hole pair
hopping leads to insulating phases that are either 3D
CDW or SDW. The ordering temperatures in all cases (at
small t?) are power laws: Tc / �s�t?=�s�

�, with ��1 �
2�2� d� and d the scaling dimension of the dominant
intertube interaction. Interestingly, the SDW or CDW or-
dering is anisotropic: incommensurate (relative to the op-
tical lattice) along the tube, but commensurate perpen-
dicular to the tubes.

Particle-hole hopping may drive a transition to a 3D
insulating state with density wave order only if the density
in neighboring tubes is equal or very similar: for a particle
and a hole to hop coherently at low temperatures, they must
be extracted from opposite Fermi points of one tube and
must match the momenta in the neighboring tube by mo-
mentum conservation. If the density mismatch between
2-3
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tubes is sufficiently large, particle-hole hopping is sup-
pressed and only the hopping of fermion pairs (which carry
zero net momentum) is possible, leading to a superfluid.
Interestingly, for U > 0, TS is the subdominant order and
the suppression of particle-hole pair hopping may then lead
to a 3D triplet superfluid, with Tc also a power law of
t?=�s.

The phase diagram shown in Fig. 1 holds, strictly speak-
ing, in the thermodynamic limit. In current 2D optical
lattices typically 	105 fermions (i.e., 	100 per tube)
[6,28]) can be loaded, but we expect all predicted phases
to appear. Because of the finite size, the phase boundaries
will not be true phase transitions, but rather sharp cross-
overs. The trap can lead to phase coexistence [29,30], local
quantum criticality [29], and even suppression of criticality
[30], but we are concerned here with the phases themselves
and not with the quantum critical points between them.
Experimentally, the imbalance in the number of spin-up
and -down fermions is of the order of a few percent [6,28],
and therefore assuming N0" � N0# should be a good ap-
proximation. Larger imbalances can lead to interesting
phenomena [19].

The most important signature of the single-tube phases
that we predict is the spin gap, �s. To probe the gap, a laser
can be used to drive stimulated Raman transitions between
the two hyperfine states � �"; # . By measuring the heating
of the gas due to the probing laser or the absorption and
emission rate of photons from the Raman laser [31], the
dynamic structure factor Ss�q; !�, which is the Fourier
transform of Ss�r; r0; t� � hS��r; t�S��r0; 0�i, could be
measured. We have computed this using the form factor
approach [32], and find [19] that for T � �s, it rises from

zero as
��������������������������������
�@!�2 � �2�s�

2
p

for @! � 2�s. Note that this is
very different from the one expected for a 3D superfluid
due to the spin anisotropy induced by the hopping
difference.

Concerning the coupled tubes, the most exotic phase is
the triplet superfluid (TS). To ‘‘engineer’’ it, we need to
make the number of fermions in neighboring tubes suffi-
ciently different [33]. This could be achieved with a bi-
periodic optical potential in the direction perpendicular to
the tubes. The coherence properties of the 3D superfluid
phases could be probed by exciting low frequency collec-
tive modes in the transverse direction [4] to the tubes and
observing the coherent oscillations.
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