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Thermopower oscillations in a normal ring with one superconducting contact
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The thermopower of a normal ring with one superconducting contact has been found to oscillate in a
magnetic field with a period corresponding to the magnetic flux quantum through the area of the ring. The
oscillation symmetry is the same as that of the magnetoresistance. The absolute value of thermopower is of the
order of 2 nV/K. These two facts suggest that the observed thermopower is due to quasiparticle thermoelectric
currents in the ring rather than the giant thermopower in the superconductor-normal loops reported earlier.
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I. INTRODUCTION

During the past two decades there has been a remarkable
progress in understanding the superconducting proximity ef-
fect in mesoscopic normal metal-superconductor (N-S)
structures both experimentally and theoretically (see Ref. 1
for a review and references therein). Recently, thermoelectric
properties of N-S systems have become a focus of experi-
mental and theoretical investigations. After theoretical pre-
diction of giant thermopower in N-S structures,’ ther-
mopower oscillations in the geometry of the Andreev
interferometer (AI) have been observed experimentally.? The
Andreev interferometer is a device where a normal part is
connected to a superconducting loop. The phase-coherent
part of the conductance of the Al oscillates with magnetic
field with a period corresponding to the magnetic flux quan-
tum ®y=hc/2e through the area of the loop. The absolute
value of the thermopower reported in various N-S systems
was found to exceed that in normal metals at low tempera-
tures by more than two orders in magnitude.>”’ The theory
explains this giant thermopower as a result of temperature-
dependent Josephson currents in the normal part of the Al
induced by the applied magnetic field.®-!! The second maxi-
mum in thermopower oscillations observed in Ref. 9 is ex-
plained by a long-range proximity effect similar to that in the
conductance.”!'! References 10 and 11 also explain the dif-
ference in the thermopower measured between N and S elec-
trodes in the Al and that between two N electrodes reported
in Ref. 6. The symmetry of these effects is that of sin ¢,
where ¢ is the superconducting phase difference between the
two N-S contacts, so that the thermopower oscillations are
/2 shifted with respect to the resistance oscillations which
follow a cos ¢ law. However, giant thermopower oscillations
of cos ¢ symmetry have been reported as well,>” which are
not explained by the theory. For a comprehensive review of
the thermopower in Andreev interferometers, which includes
all recent results, see Ref. 12.

In this Breif Report we introduce the geometry of a N-S
structure that has not yet been investigated either experimen-
tally or theoretically, namely, a normal ring with only one
superconducting contact. We observe cos ¢ thermopower os-
cillations and estimate the absolute value of the ther-
mopower. The origin of the observed thermopower is dis-
cussed.
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II. EXPERIMENT

The samples were fabricated using e-beam lithography
and standard processing. The geometry of the structures is
shown in Fig. 1. The superconductor was placed on the ex-
tension of the N wire attached to one side of the ring. The
ring diameter was 1.2 um. The superconductor was 60-nm-
thick Al and the normal metal was 45-nm-thick Ag. The
resistivity p of the Ag film was p=1.3 w() cm and the diffu-
sion constant D=136 cm?/s. To obtain clean interfaces be-
tween the layers, the contact area was Ar' plasma etched
followed by the deposition of the second layer without
breaking the vacuum. Contacts are numbered as follows: 1
and 6, heater wire, 2, superconducting contact, 3, normal
reservoir, and 4 and 5, normal contacts.

The measurements were carried out in a *He cryostat in
the temperature range 0.28—1.5 K in magnetic fields up to
0.1 T applied perpendicular to the substrate. A four-point
Wheatstone bridge was used with lock-in amplifier at the
frequency 17.7 Hz to measure the magnetoresistance of the
samples. For thermopower measurements a temperature gra-
dient was created in the normal wire between the heater and

FIG. 1. Scanned electron microscope picture of a measured
sample. Contacts numbered are 1 and 6, heater; 2, superconductor;
3, normal reservoir; 4 and 5, normal contacts. Superconductor, 60
nm Al; normal metal, 45 nm Ag.
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FIG. 2. Temperature dependence of the ring resistance at H=0.
Current contacts are 3 and 5; potential, 2 and 4.

the reservoir by a heating current applied between contacts 1
and 6, which was a sum of dc, I, and ac, [,,, currents. The
thermovoltage was measured between N and S contacts or
between two normal contacts by the lock-in amplifier on the
frequency of ac modulation.

III. RESULTS

Figure 2 shows the temperature dependence of the ring
resistance in zero magnetic field measured using current con-
tacts 3 and 6 and potential contacts 4 and 5. The reentrance
effect typical for mesoscopic proximity structures is seen.

The minimum in resistance is reached at a temperature of
the order of the Thouless energy Ep,=\AD/L?, where L is
the characteristic length of the diffusive transport. In our case
E7,=0.6 K corresponding to L=410 nm, which is of the or-
der of the electron phase breaking length. The superconduct-
ing gap energy obtained from Fig. 2 is A=1.7kzT.=2.1 K,
where 7. is the superconducting transition temperature.
Thus, at the base temperature of our experiment, the limit
kgT<Ep,<A is realized.

Figure 3 shows the magnetoresistance of the ring recorded
using the same contacts as for the data in Fig. 2. The oscil-
lation period in the magnetic field AH=21.6 G, corresponds
to the magnetic flux quantum through the area of the loop.
Measuring the dependence of the magnetoresistance oscilla-
tion as a function of temperature and the dc heating current,
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FIG. 3. Magnetoresistance of the ring at 7=0.28 K. Current
contacts are 3 and 5, potential, 2 and 4.
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FIG. 4. Dots: effective temperature of the ring versus dc heating
current contacts 1 and 6. Solid line: calculated dependence without
electron-phonon coupling. Dashed line: the slope for I;=6 uA.

the effective temperature of the ring can be obtained for ev-
ery Iy, as shown in Fig. 4. Note that dependence close to that
in Fig. 4 was obtained in Refs. 5 and 6 for Sb/Al samples of
similar geometry.

To understand the shape of the T, versus /Iy curve in Fig.
4 it is instructive first to solve the heat transport equation
neglecting electron-phonon interactions. We assume that lo-
cal thermal equilibrium of the quasiparticle distribution is
reached via electron-electron scattering.!® This is the case
when the inelastic scattering time is smaller than the diffu-
sion time through the wire, i.e., the distance between the
reservoirs is larger than electron phase breaking length. Then
for the heater we have

div(q) = puj’, (1)

where g=—kV T is the thermal flux, « is thermal conductiv-
ity, py is the resistivity of the heater, and j is the current
density in the heater. The right-hand side of Eq. (1) is the
heat generated by the current in unit volume per unit time. To
integrate Eq. (1) we need the explicit expression for . At the
lowest temperature of our experiment the Widemann-Franz
law holds for electron-electron interactions, so that «
=L X o XT, where o is the electron electrical conductivity
and L=2.45% 1078 V2/K? is the Lorentz number. The one-
dimensional heat transport equation then becomes

d( T 2
- —(T—) = 2)
dx\ Jx L

Solving Eq. (2) with boundary conditions T=T, at both
ends of the heater wire, the temperature in the middle of the
heater can be obtained as Ty=(T3+R%412,/4L)"%, where Ry is
the resistance of the heater between the reservoirs.

In the normal wire attached to the heater, the heat equa-
tion is the same as Eq. (2) but with zero right-hand side. The
boundary conditions are T=Ty at the hot end and T=T, at
the N reservoir. The temperature in the middle of the inter-
ferometer, 7,,, is equal to Tmz(Té+R,2,I?{/ 8L)"2. This depen-
dence is shown in Fig. 4 as a solid line. One can see that this
approximation is valid only for small heating currents. At
higher currents electron-phonon interaction must be taken
into account. This is done by adding a term proportional to

Ti—TIS,h to the right-hand side of Eq. (2) describing heat
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FIG. 5. Thermovoltage and magnetoresistance oscillations.
Dots: amplitude of magnetoresistance oscillations. Lines: thermo-
voltage oscillations measured using heating current between 1 and
6, for various heating currents and potential contacts. Solid line,
Iy=2.2 pA, potentials 2 and 5; dotted line, /5;=6.0 uA, potentials 2
and 5; dashed line, Iy=11.5 nA, potentials 2 and 5; dash-dotted
line, Iy=6.0 nA, potentials 4 and 5.

transfer from the electron system at temperature 7, to the
phonon system at T ,,,.'* As the heat dissipation into the pho-
non system increases it becomes more difficult to change the
electron temperature by a heating current because the pho-
non temperature of the wire is coupled to that of the sub-
strate, which works as a massive thermostat. For this reason
it is difficult to reach temperatures above 1 K in our samples
using this heating method.

The slope of the T, versus Iy curve determines the effec-
tive modulation of the temperature difference (AT),, across
the ring due to modulation of the heater current

dT

(A7), = (E)HH X Ly A3)

For Iy=6 unA, which is used later for thermopower evalua-
tion, the slope is equal to 0.037 K/uA. Substituting 7,
=1 pA into Eq. (3) gives (AT),,=0.037 K.

Figure 5 shows thermovoltage oscillations measured
at T=0.28 K between contacts 2 and 5 (N-S) and 4 and 5
(N-N) at various values of the dc heating current. It is re-
markable that measured traces for all potential electrode con-
figurations and heating currents show that the thermovoltage
oscillations are in phase with the magnetoresistance ones.
Using the thermovoltage values we can estimate the absolute
value of the oscillating thermopower S=V,,/AT. Using V,,
=75 pV for Iy=6 uA we obtain S=2.0 nV/K.

IV. ANALYSIS AND DISCUSSION

The absolute value of the diffusive thermopower in pure
Ag at low temperatures due to impurities and dislocations is
of the order of S,=~ 10T nV/K?, while that of the phonon
drag is close to S;=0.57° nV/K*.!> At T=0.6 K this gives
Sp=6 nV/K and S;=0.1 nV/K. Therefore, the contribu-
tion to thermopower from the phonon drag effect at the tem-
peratures of our experiment can be neglected. The diffusive
thermopower agrees well with the prediction of Mott’s law,
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where Sp is determined by a derivative of the logarithm of
electrical conductivity o with respect to energy ¢ taken at the
Fermi level: !

>
s =kaT((9ln0'> , @

b= 3 de _
F
where kp is the Boltzmann constant and e is the electron
charge. In the absence of superconducting contacts to normal
wires in metals with close to spherical Fermi surfaces, Eq.
(4) leads to the following expression:

s _f@’ﬂ(im), (5)

D_3esp2

where m is a constant depending on the energy depend-
ence of the scattering time 7~ &”. Substituting values of m
~-2.8 (Ref. 15) and £r=6.4 X 10* K (Ref. 17) into Eq. (5)
we get Sp=3.5 nV/K which is in good agreement with the
experiment. '

For mesoscopic N-S structures in the geometry of the An-
dreev interferometer, the theory predicts a giant thermo-emf
due to Josephson currents circulating in the loop, induced by
the applied magnetic flux. When ®=®yn, where n is an in-
teger, there is no supercurrent induced in the Andreev inter-
ferometer, so that the symmetry of thermopower oscillations
as a function of magnetic field is always that of sin ¢. This
thermopower is not described by Mott’s law and can be of
the order of &,/kgT larger than that predicted by Eq. (5). The
geometry of the samples affects the absolute value of the
thermopower and its temperature dependence but not the
symmetry of the thermopower oscillations. This conclusion
is also valid for different limits with respect to kT, E;,, and
A.12

When a normal metal is in contact with a superconductor
its conductivity is modified by the proximity effect. In par-
ticular, there is a phase-dependent correction to the conduc-
tivity o, which has the following form:

o=o(e)+Ao(e)cos ¢, (6)

where Ac(e) is the energy-dependent oscillatory part of the
correction to the conductivity due to the proximity effect. In
our sample the relative correction Ao/oy was about 1.1%,
corresponding to a weak proximity effect, oy being the ring
conductivity in the normal state. Upon substitution of Eq. (6)
into Eq. (4), Sp will acquire an oscillatory part proportional
to cos ¢. We estimated the absolute value of the oscillatory
thermopower at 7=0.6 K to be 2 nV/K, which is close to
the classical diffusive thermopower discussed above. The
symmetry of the thermopower oscillations in this case is that
of the resistance oscillations.

In conclusion, we observed thermopower oscillations in a
mesoscopic ring with one contact to a superconductor. The
absolute value of the thermopower and the cos ¢ symmetry
of the oscillations indicate that the observed oscillations are
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due to a classical diffusive thermo-emf induced in the ring.
We do not find the behavior reported for N-S geometries with
superconducting loops, where absolute values of the ther-
mopower of the order of 100-1000 nV/K have been re-
ported, and the oscillation symmetry is that of sin ¢.
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