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The lowest-lying excited states in the S=3 one-dimensional Ising-like antiferromagnet CsCoCl; consist of
domain-wall (soliton) pair states. Although the dynamical response function S(Q,w) has been calculated for
these states, it has not proved possible to explain the results of neutron scattering and Raman experiments
without recourse to the introduction of extra terms in the spin Hamiltonian. We argue against the two modi-
fications to the Hamiltonian of CsCoCl; proposed in previous papers, a staggered field term arising from a
mean field approach to exchange mixing, and next-nearest-neighbor intrachain coupling, as being unphysical.
Instead we derive a nearest-neighbor effective Hamiltonian, which takes account of the mixing of higher
Co?* ion crystal-field levels in a self-consistent manner. We also present a high-resolution inelastic neutron
scattering experiment on CsCoCl,, which has allowed the dispersion of the excited states across the Brillouin
zone to be studied more carefully than before. These results give a direct measure of S(Q,w) in the one-
dimensional phase where there is a continuum of excited states, and in the three-dimensionally ordered phases,
where weak interchain interactions split the continuum into a ‘“Zeeman ladder” of discrete states. The predic-
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tions of our theory are found to be in quantitative agreement with experiment.

I. INTRODUCTION

CsCoClj is of particular interest because it is a realization

of one of the simplest quantum systems to exhibit soliton

excitations: the S=1 antiferromagnetic chain with near-

Ising-like exchange. Compared to other one-dimensional
Hamiltonians, the Ising-like system has the advantage of be-
ing straightforward to understand mathematically, while still
showing characteristic soliton-pair excitations,"* a behavior
encountered in the mathematically more involved XY ,3 and
Heisenberg*® systems. In this context CsCoCl; is worthy of
detailed experimental study, and has been investigated quite
extensively using NMR,$ Raman—scattering,7’8 and neutron-
scattering techniques.’~!! It has become apparent from these
measurements that the one-dimensional antiferromagnetic
Ising-like Hamiltonian cannot explain all of the data on
CsCoCl; consistently, and modifications of the spin Hamil-
tonian for CsCoCl; have been suggested.“‘14

In this paper we take issue with the approaches taken in
Refs. 11-14, and instead propose a new form of the Hamil-
tonian, derived entirely from the known properties of the
coupled Co®>* ions comprising the system. We also present
high-resolution neutron-scattering measurements of the exci-
tation continuum of CsCoCl;. The inelastic neutron-
scattering measurements, made using the Multi Angle Rotor
Instrument (MARI) time-of-flight spectrometer at the Ruth-
erford Laboratory, give information about the excitation
spectrum as a function of wave vector transfer across the
Brillouin zone. As well as studying the one-dimensional
phase, we have investigated the effects of three-dimensional
ordering on magnetic excitations to the first excited states.

The rest of the paper is organized as follows: The next
section describes the chemical and magnetic structures. Sec-
tion III outlines the theory and derives the modifications to
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the spin Hamiltonian. The new neutron experiment is de-
scribed, and results presented in Secs. IV and V, respectively.
A critical comparison of the data with this and previous theo-
ries is made in Sec. VI, and finally, conclusions are drawn in
Sec. VIIL

II. STRUCTURE AND MAGNETIC ORDERING
IN CsCoCl,

The crystal structure of CsCoCl;, which is hexagonal
with space group P6;/mmec, is shown in Fig. 1. There are
two formula units per unit cell, and the lattice parameters at
a temperature 7=25 K are a=7.14 and ¢=6.00 A.'> The
magnetic Co?* ions are surrounded by trigonally distorted
octahedra of Cl~ ions, and form chains along the ¢ axis with
successive octahedra sharing a common face.

The shared C1~ ions provide a strong antiferromagnetic
superexchange path between adjacent Co?* ions within the
chains. In contrast, Co?" ions in adjacent chains are sepa-
rated by large Cs* ions, and because of the large distance
between chains and the more complicated exchange paths,
the antiferromagnetic exchange coupling between ions in
neighboring chains is some two orders of magnitude weaker.
This accounts for the quasi-one-dimensional magnetic be-
havior of CsCoCl;.

The (CoCl;) ™ chains are stacked, with Cs* ions between,
into a triangular array. Because the exchange coupling be-
tween chains is antiferromagnetic, this triangular array forms
a frustrated system. Two three-dimensionally ordered phases
occur in CsCoCl;. First, below Ty;~21 K, a partially dis-
ordered antiferromagnetic “A phase” is formed in which
one-third of the chains are paramagnetic. Then a further
phase change takes place below 7,~10-14 K to a ferri-
magnetic “F phase” where the remaining paramagnetic
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FIG. 1. The chemical structure of CsCoCl;, showing the chains
of Co?* ions, coordinated by trigonally distorted octahedra of
Cl™ ions. In the one-dimensional magnetic phase the spins on the
Co?* ions align antiferromagnetically along the hexagonal ¢ axis.

chains align in the same direction, so that 2/3 of the chains
are aligned in one way and 1/3 in opposition; see Fig. 2.1¢ A
nearest-neighbor interaction cannot explain this ordering,
and a weak next-nearest-neighbor ferromagnetic interaction
has been proposed to account for the ordered phases.?

III. THEORY

The spin dynamics of CsCoCl; requires careful consider-
ation of crystal-field states of the Co?™ ions and their behav-
ior as a many-body system when exchange coupled in a

A-phase

F-phase

@  Neelstate |

O Neel state 2
@  Disordered chain

FIG. 2. The magnetic structure in the ab plane in the three-
dimensionally ordered phases. For clarity only the Co?* chains are
shown.
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chain. In the first part of this section we consider the crystal-
field states of isolated ions. This is followed by a discussion
of the many-body spin Hamiltonian which, as usual, is de-
rived as a projection of the exchange into the lowest Kramers
doublet. Perturbation from the pure Ising limit gives rise to a
continuum of soliton-pair states for isolated chains, which
may be split into discrete levels by interactions with adjacent
chains.!"? Finally we argue that the exchange mixing with
higher single-ion levels of the same order of perturbation
must be included.

A. Crystal field

According to Hund’s rules the lowest-lying state of the
free Co?™ ion is “F. The effects on the Co?* ion of a strong
cubic crystal field with a small trigonal distortion are well
documented.'”!® A cubic crystal field splits the lowest-lying
multiplet into two orbital triplets and an orbital singlet, with
a triplet lowest by some 890 meV. The lowest T triplet has
the same symmetry as a manifold of P states and can be
described as an effective L=1 state. The cubic crystal field
causes a small admixture of this state with a much higher
free-ion P term.

The trigonal distortion and spin-orbit coupling split the
ground state into six Kramers doublets. These may be intro-
duced in the perturbing single-ion Hamiltonian'®

HS'= —2kNL-T— 8(L2-3), (1)

where T is the true spin, L is the effective orbital angular
momentum, N\ is the spin-orbit coupling constant, and & is
the trigonal distortion parameter. Allowance is made for co-
valency and the small admixture of levels by the constant k,
which is less than but of order unity.

The exchange interaction between true spins is given by

Hex:z IT; Ty, ()

where T; is the true spin vector on the ith site and 7 is the
isotropic Heisenberg exchange. This may be regarded as a
molecular field, and lifts the degeneracy of the Kramers dou-
blets. The energies of electronic excitations, measured using
inelastic neutron-scattering techniques, have enabled k\, &,
and I to be determined.'” The energies of the Co?™ ion in
CsCoCl; are presented schematically in Fig. 3.

B. Ising-like model

The usual method for considering the exchange coupling
between Co?* ions in CsCoCl; is to project the Heisenberg
interaction between true spins into the lowest-lying Kramers
doublet,’

\P+1(jz= 1/2)=C1|_ 1,3/2>+C2|0,1/2>+C3l1,‘_ 1/2>,

W_ (ji=—1/2)=c1|1,— 3/2) +¢5]|0,— 1/2) + c;5| — 1,1/2)(.3)

This leads to an effective S= 3 Hamiltonian with anisotropic
exchange,
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FIG. 3. Schematic diagram of the crystal-field levels of the
Co?™ ion in CsCoCl; (Ref. 19). Spin-orbit coupling gives rise to a
mixing of levels with the same J*=L*+T%.

H=272 [SiSiei+ e(SiSTai+Si8Ten), @
where J is the effective intrachain exchange and
e=2(c2+3¢cic3)/(3ci+ci—c2). )

The approach used to find the first excited states of the
Ising-like Hamiltonian is to use the Ising basis and treat
€(~0.1) as a perturbation.' In the pure Ising limit there are
two degenerate ground states and a highly degenerate set of
first excited states of energy 2J. These are obtained by re-
versing a block of v adjacent spins, as shown in Fig. 4. If
v is odd, the change in total spin AST==+1; if it is even,
there is no change. In the momentum representation the basis
states for AST=1 may be written in terms of the spin-flip
creation and annihilation operators

2 .
Vi(Q)= \/;E e NS Wnar 1,

2 . _
v3(0)= \/;E e RS S 1S Ve 15

(Si_+2y——1Si++2V)\PN'eel 1-

D) (N2)—1
(6)

These are the domain wall (soliton) pair states moving with
center-of-mass wave vector Q on a chain of N ions.
W ,(Q) and ¥y_(Q) are spin-wave states since they are
single-spin deviations from the fully aligned Néel states. The
transverse coupling e(S*S*+ SYS”) lifts the degeneracy of
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FIG. 4. The ground and first excited states in the pure Ising
limit. A soliton-pair state is obtained from a Néel state by reversing
a block of v spins.
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the first excited states, and allows the solitons to become
mobile. This gives rise to a continuum of excited states (see
Fig. 5) with bounds given by

0*=2J(1¥2€ cosQ), (7
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FIG. 5. Schematic diagram of the continuum of first excited
states. The bounds of the continuum (dashed lines) may be calcu-
lated using Eq. (7). The solid lines show the scattering trajectories
for MARI scans where (a) Eq=50 meV, ¢=8°, (b) E;=25 meV,
20 meV, ¢=730°, and (e)

20 meV, ¢=45°. The highlighted (black) regions show where
magnetic scattering is expected.

°, (c) Eg=20 meV, ¢=8°, (d) E,=
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Ay =0

FIG. 6. The calculated splitting of the lowest Kramers doublet is
shown as a solid line, and the symmetric splitting assumed in the
absence of exchange mixing with higher levels is shown as a
dashed line.

where Q is the one-dimensional wave vector transfer.
In the three-dimensionally ordered phases it is necessary
to include an additional term

H'=n'°% (—1)'s;, (8)
where

hC=2J1€%, (8%), ©)
J

and J'C is the interchain exchange and the summation is over
nearest-neighbor chains. This causes decoupling of the
soliton-pair states and leads to quantization of the excitation
continuum into a “Zeeman ladder” of excited states.?

C. Exchange mixing

In order to calculate the electron energy levels of the
Co?* ion in CsCoCl it is necessary to diagonalize the fol-
lowing 12X 12 Hamiltonian:

HS'= — 3k\L-T— 8(L—2)+H,,T?, (10)

where T is the true spin 2, L=1, and H,, is the molecular
field. The off-diagonal terms in the spin-orbit interaction give
rise to a mixing of levels with the same J*=L?+T%. The
spin-orbit and trigonal distortion parameters determined us-
ing inelastic neutron scattering are kA=18.4 meV and
6=51.3 meV." The molecular field may then be adjusted to
give the known splitting 2J=13 meV of the ground state.
Rather than the symmetric splitting of the ground state as-
sumed in the Ising-like model, the effect of the mixing with
higher levels is found to be depression of both levels by the
same amount A; see Fig. 6. In fact, this can also be seen
qualitatively using nondegenerate second-order perturbation
theory, where the first-order term gives symmetric splitting
and the squared second-order term gives a depression of both
levels.

The molecular fields from nearest neighbors experienced
by individual Co?* ions in chains containing soliton-pair
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states are of three types. These are 71| where the central ion
is in zero molecular field, |T| which corresponds to the
lowest level in the molecular field, and 17T which is the first
excited state in the molecular field. If the mixing of higher
states is neglected the spin states 77T and | T] split sym-
metrically about 771 |. Including the mixing we must change
the energies of the states by A(77/)=0 and
A(TTT)=A(lT])=A. When the solitons are separated the
energy difference between neglecting mixing and including it
for a chain of N ions is

ESP=NA(LT)=4A(LTD)+4A(TTD. (D

If, on the other hand, the solitons are adjacent, there will be
an 7717 state and the energy difference is

EAP'=NA(LTD=3ALTD+2A0TDH+ACTD.  (12)

Thus the spin-wave states differ in energy from the other
two-soliton states by

ESEP—EAPI=—(A(1TD+ATL)=2A.  (13)

For self-consistency it is necessary to consider how the
mixing of levels modifies the spin 7%, since this will alter the
molecular field experienced by neighboring ions, and in turn
modify the field at the original ion. The molecular field is
given by H,=2J2(T?) where the summation is over the
two neighboring ions in the chain. It is assumed in the first
calculation that for ions in the sequence ... [ TTT] ... the
central ion experiences a molecular field and the two adja-
cent ions do not. The diagonalization of Eq. (10) yields the
wave functions [Eq. (3)] and hence the new value of T?=32
¢34+ 4¢3 —1c? for this site. Since the molecular fields at the
neighboring sites no longer cancel, the new wave functions
at these sites must be calculated. The spins 7% derived for
these sites are then used to recalculate the molecular field at
the original site. When this calculation is performed itera-
tively convergence is rapid and the levels are only slightly
modified. The final value obtained is A=0.09J.

Thus we propose a spin Hamiltonian for the lowest two
states with diagonal terms so that

2J+hCy, v=1,N—1,
(v.QlH|v,0)=1 27+ h'Cy+2A,  otherwise,
and off-diagonal terms
Je[1+%9], v'=p-2,
, 1+e72€C], »'=v+2,
(r.QlH|y' Q)= JelI+e "7l VI=ra2 gy
0, otherwise,
where v runs over the values 1,3,5, ... ,N—1.

D. Neutron scattering

The inelastic neutron-scattering cross section is given by’

d*c
< 2 _ apB
d0de QP2 (8= 0.00)5"(Qu).  (15)
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where Q is the total wave vector transfer and f(Q) is the
magnetic form factor. The dynamic response is the Fourier
transform in space and time of the the dynamic two-spin
correlation function

S“ﬂ(Q,w)=%g e'“'e'%(S5(0)S5(1))dt.  (16)

For our effective spin Hamiltonian the ground state |G) is
given to first order by

1
1G>=|‘I’Neelx>+mH|‘pN’al s 17)

where |Wye ;) is one of the two Néel states of the Ising
Hamiltonian H;, and Ey is the Néel state energy. The first
excited states |E) are found by diagonalizing Eq. (14) and
periodic boundary conditions are assumed. The scattering is
dominated by the transverse response1 S¥(Q,w) which is
calculated using

S"’“(Q,w)ZEE: E|SHIGH*8(w—E), (18)
where

1

N

IV. EXPERIMENTAL PROCEDURE

Sp=—=2, e'%s}. (19)
J

A single crystal of CsCoCl; was grown using the Bridge-
man technique by Dr. R. C. C. Ward of the Clarendon Labo-
ratory. In order to minimize the effects of neutron absorption,
a smaller approximately right cylindrical fragment roughly 1
cm® in volume was cleaved from the boule. The sample was
mounted in an orange cryostat at the position of the center of
rotation of MARI, which is situated on the ISIS pulsed neu-
tron facility at the Rutherford Laboratory.

The inelastic neutron spectrometer MARI uses a Fermi
chopper to obtain monochromatic neutrons of incident en-
ergy Eq in the range 10-2000 meV. The scattered neutrons
are detected in a low angle (¢=3.86°-12°) array of eight
banks of 3He detectors arranged symmetrically about the
direction of the incident beam, and in a high-angle array of
detectors covering scattering angles up to ¢=135°.2! The
spectra are corrected for detector efficiencies and are normal-
ized for solid-angle coverage by measuring the scattering
from a vanadium standard. Monochromatic vanadium scans
are used to correct for the transmission of the chopper. The
data are acquired as time of flight and are converted to units
of energy transfer (meV). The data have also been corrected
for the kinematical factor k;/k; and have a well-
characterized background subtracted. In this experiment
most of the measurements were carried out at relatively low
incident energies £y = 20 and 25 meV, to take advantage of
the narrow intrinsic resolution, which is roughly 2% of E,.

MARI is particularly well suited to the study of one-
dimensional magnetic systems. Good counting statistics may
be achieved by mounting the crystal with the chain direction
parallel to the incident beam, since in this case the detectors
in the low-angle bank give identical information and can be
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summed without loss of information. Furthermore, the
higher-angle detectors simultaneously probe the wave vector
dependence of the scattering, and so the magnetic origin of
the scattering may be confirmed by following it out to higher
Q and comparing with the predicted magnetic form factor
dependence. This procedure also checks for the possibility of
phonon contamination.

For a fixed scattering angle ¢, both the wave vector and
energy transfer vary with time of flight, so that experiments
record data along lines in Q, E space, as shown in Fig. 5.
The reduced magnetic scattering vector parallel to the chain
direction may be expressed as

Quzg{y[EO( 1+cos’¢p—2 cosp1— w/Ey)

—w cos’p]}!?, (20)

where the constant y=0.4826 A2 meV~!. The scattering
locus (Q|,E) of scans taken in the low-angle bank with
¢=8° and E,=50, 25, and 20 meV are presented in Figs.
5(a), 5(b), and 5(c), respectively. This diagram also shows
schematically the continuum of first excited states. The high-
lighted (black) regions show where the loci intersect the ex-
citation continuum, and magnetic scattering is expected. The
loci (d) and (e) show the extremes (= 30° and 45°) of a
higher-angle group of detectors for E, = 20 meV. This re-
gion covers the important area in the vicinity of the zone
boundary.

V. RESULTS

In all of our measurements broad scattering from the con-
tinuum of first excited states was detected in the low-angle
bank; see, for example, Fig. 7. This feature occurs between
energy transfers in the range 10-16 meV, as expected.”!!
The magnetic origin of this component has been confirmed
by following the scattering out to higher Q in the higher-
angle detectors. Since the intensities of the various compo-
nents of the scattering do not grow systematically with either
scattering vector or temperature, it is deduced that the neu-
tron spectra presented below are free from phonon contami-
nation.

The data acquired in the low-angle bank of detectors with
an incident energy E(=25 meV [see Fig. 5(b)] are presented
as a function of temperature in Fig. 7. In each case the back-
ground, measured using the empty cryostat, has been sub-
tracted. In the one-dimensional phase at 7=25 K the mea-
surements clearly show an asymmetry of the excitation
continuum, with the scattering biased toward lower energies.
Discrete lines appear in the three-dimensionally ordered
phases at T=17 and 2 K, which correspond to the A and F
phases, respectively. Figure 8 shows the scattering in the
simplest three-dimensional phase at T=2 K elsewhere in the
Brillouin zone; Fig. 8(a) corresponds to the region between
Fig. 5(d) and 5(e), 8(b) to 5(a), and 8(c) to 5(c). Near the
Brillouin zone boundary [Fig. 8(a)] the width in energy
transfer is seen to narrow.

The scattering function § (@) ,w) has been calculated nu-
merically using the new theory. In the one-dimensional phase
the interchain coupling 4'C is zero, but in the A phase A€ =
0, 2J¢, 4J'C, and 6JC in the proportions 5/12, 3/12, 3/12,
and 1/12, and in the F phase the weighting for #'C = 0 and
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FIG. 7. Neutron spectra measured in the low angle bank with
¢=8° and E,=25 meV [see Fig. 5(b)] as a function of tempera-
ture. Asymmetric continuum scattering is observed at T=25 K (a)
in the one-dimensional phase, and discrete lines appear at 7=17 K
(b) and 2 K (c) in the A and F phases, respectively. The solid line
shows the scattering calculated with the exchange mixing model,
using Eq. (14).

6JC is 2/3 and 1/3. The eigenstates and eigenvalues were
obtained by diagonalizing the Hamiltonian in Eq. (14). Here
we have used chains of » =280 spins throughout; no change
can be discerned for n above 40.

In order to reproduce the observed S(Q),w) the calcula-

15997
sk (2) T=2K ]
: Eo=20meV :
- $=37.5° .
501 ]
25% i
' | 1
oL ﬂ
-25F ’ ]

100

75

50

25

Intensity (arb. units)

s o st [N S NN N N T NN TN N WY WY W S N S

e UL N B B S L L L L B LB

1

T=2K
Eq=20meV
¢=8°

50

25

T T T T T T T T T T T

TS S S SO NN TOUR WY TR SO NS WY VO WO S |

10 11 12 13 14 15 16
Energy transfer (meV)

FIG. 8. The model is compared with neutron measurements at
T=2 K elsewhere in the Brillouin zone: (a) near the zone boundary
between 5(d) and 5(e); (b) 5(a); (c) 5(c).

tion was performed over the scattering locus defined by Eq.
(20). The results were convolved with the instrumental en-
ergy resolution function, which may be approximated by a
Gaussian with full width half maximum (FWHM) uniquely
determined by the ratio w/E,.?*> The solid lines in Figs. 7
and 8 show the calculated scattering, corrected for magnetic
form factor (j,) (Ref. 23) and polarization factor [Eq. (15)].

Although there is an arbitrary overall scale factor, the dif-
ferent scans have been normalized consistently so that inten-
sities can be compared directly. There are small discrepan-
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cies between the calculated and measured spectra,
particularly at low energies where the scattering tends to be
underestimated. However, a model in which J=6.37 meV,
€=0.145, J'°=0.0087, and A=0.11J accounts adequately
for the neutron data at all temperatures and across the Bril-
louin zone. In Fig. 7(a) we see that the model successfully
predicts the line shape of the continuum scattering, and in
Figs. 7(b) and 7(c) the appearance of discrete lines in the A
and F phases. As shown in Fig. 8 the form of the scattering
is correct elsewhere in the Brillouin zone, narrowing at the
zone boundary [Fig. 8(a)]. Furthermore, the experimental
value of A is within 20% of the theoretical value calculated
in Sec. III C.

VI. DISCUSSION

In order to explain the disprepancies between theory and
observations on the experimental realizations of Ising-like
systems, the M CoX; salts, a variety of explanations have
been proposed. There seems to be no physical justification
for the models in which the anisotropy’ or the interchain
exchange® are allowed to vary for each of the series of Ra-
man lines. Furthermore, these theories are unable to explain
the sharp onset of the continuum scattering at low energies.
More recently authors have considered exchange mixing!!
and next-nearest-neighbor (NNN) intrachain coupling,'* but
neither approach has been entirely successful.

In the first attempt to take account of exchange mixing an
effective Hamiltonian was proposed, which includes a slow
internal staggered field.!! The main theoretical objection to
this approach is that it is essentially a mean field theory,
which assumes that the neighboring ions are in a Néel state.
This works in higher dimensions where spin waves are the
basic excitations,* but it is inappropriate when applied to the
soliton-pair states discussed here. Although this model gives
enhanced scattering at low energies, it predicts another series
of lines rather than the continuous spectrum observed, par-
ticularly in the Raman measurements which have very high
resolution.’

It is possible to obtain continuum scattering with a peak at
low energy and a tail at higher energies if NNN coupling is
included.'* In order for NNN coupling to explain the results
a  ferromagnetic NNN exchange of magnitude
|JNNN|~0.1|J| is required,'"* which considering that the
NNN exchange is through two nonmagnetic ligands would
seem to be unphysically large. However, the proposed form
for NNN coupling gives a good description of most of the
experimental data. The main consequence of including a
NNN term is to distinguish energetically between a spin-
wave state and the other two-soliton states. Yet we have
shown in Sec. III C that this is precisely what the correct
treatment of exchange mixing does.

In Fig. 9 the results of our neutron-scattering investigation
are compared with the predictions of the previous theories.
The scans recorded in the low-angle bank of detectors with
an incident energy E,=25 meV [see Fig. 5(b)] which probe
the region near Q= 7 are shown for T=25 [Fig. 9(a)] and
T=2 K [Fig. 9(b)], and the scattering in the vicinity of
Q =3 /2 [between Figs. 5(d) and 5(e)] is shown for T=2 K
[Fig. 9(c)]. The dashed line shows the form proposed for the
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FIG. 9. Comparison of previous models with typical neutron
results: (a) 5(b) at T=25 K; (b) 5(b) at T=2 K; (c) between 5(d)
and 5(e) at T=2 K. The calculated scattering is shown as a dashed
line for the slow internal staggered field (Ref. 11), and a dotted line
for NNN intrachain coupling (Ref. 14).

slow internal staggered field,!! and the dotted line shows the
NNN model,'* after convolution with the instrumental reso-
lution function. The good resolution of these results clearly
demonstrates the inability of the previous exchange mixing
model to account for the data. On the other hand, it could be
argued that the NNN model successfully reproduces the data
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near Q = 7, provided the energy scale is renormalized. How-
ever, the NNN term is dispersive and leads to an
underestimation of the energy of the narrow feature near
Q=3/2, which cannot be explained even if the overall en-
ergy scale is modified. In contrast our neutron-scattering re-
sults are in quantitative agreement with the theory derived in
Sec. III C.

The model is compared with the Raman-scattering
results’ in Fig. 10. Although, unlike neutron scattering, the
precise matrix elements are unknown, it can be compared
approximately with S(Q,w) at Q=0, with very high resolu-
tion in w. The simulations show $**(Q=0,w) calculated us-
ing the Hamiltonian in Eq. (14), and convolved with the
quoted instrumental energy resolution for the ideal ordered
phases. In this calculation the overall energy scale has been
reduced by 3.6% to take account of possible calibration er-
rors. The model explains the Raman measurements at least as
well as previous attempts. The main discrepancies are the
intense feature near E = 14.5 meV, which has been attributed
to phonon contamination,’” and the presence of small extra
peaks at T=2 K, which coincide with strong peaks in the A
phase. The latter features are readily understood in terms of
domain boundaries.>!*

It seems reasonable to assume that the model described
above should be employed to explain the Raman spectra
from RbCoCl, ,% and the neutron!! and Raman’ results from
CsCoBrj3, since these are qualitatively similar to those from
CsCoCls. It should also be used when the above systems are
doped with nonmagnetic ions, such as CsCo,Mg;_,Cl;. The
doping breaks up the chain, and as well as the two-soliton
peak at E~2J, there is a peak at E~J associated with spins
at the ends of the finite chains.?® In fact, it has proved im-
possible to explain the O dependence of the peak near
E~J using a dispersive NNN term.?’
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VII. CONCLUSIONS

‘We have derived a theory which properly takes account of
the exchange mixing of higher levels in CsCoCl;. The asym-
metric splitting of the lowest Kramers doublet of the Co?*
ion in a molecular field leads to the conclusion that the spin-
wave states are lower in energy than the other two-soliton
states. This means that an extra exchange mixing term A
must be incorporated in the effective spin Hamitonian. Using
the time-of-flight neutron spectrometer MARI we have mea-
sured S(Q,w) across the Brillouin zone, at higher resolution
than before, and without contamination from phonon scatter-
ing. From our results we are able to deduce a value of A that
is in quantitative agreement with the value calculated using
the known crystal-field parameters. The theory is consistent
with all of the available neutron and Raman data on
CsCoCl;, and so there is no evidence for a large next-
nearest-neighbor intrachain interaction. These developments
should also be taken into account when analyzing other pure
and doped M CoX; systems.
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FIG. 1. The chemical structure of CsCoCl;, showing the chains
of Co** ions, coordinated by trigonally distorted octahedra of
Cl™ ions. In the one-dimensional magnetic phase the spins on the
Co*" ions align antiferromagnetically along the hexagonal ¢ axis.
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FIG. 2. The magnetic structure in the ab plane in the three-
dimensionally ordered phases. For clarity only the Co?* chains are
shown.



