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We develop a theoretical formulation of nonequilibrium superconducting phenomena, including singlet and
triplet pairing, which is especially well suited for spatially inhomogeneous problems. We start from the general
Keldysh-Nambu-Gor’kov Green'’s functions in the quasiclassical approximation and represent them in terms of
2X2 spin-matrix coherence functions and distribution functions for particle-type and hole-type excitations.
The resulting transport equations for the distribution functions may be interpreted as a generalization to the
superconducting state of Landau’s transport equation for the normal Fermi liquid of conduction electrons. The
equations are well suited for numerical simulations of dynamical phenomena. Using our formulation we solve
an open problem in quasiclassical theory of superconductivity, the derivation of an explicit representation of
Zaitsev's nonlinear boundary conditiofs. V. Zaitsev, Zh. Ksp. Teor. Fiz86, 1742(1984 [Sov. Phys. JETP
59, 1015(1984]; A. L. Shelankov, Fiz. Tverd. TeléLeningrad 26, 1615(1984 [Sov. Phys. Solid Stat26,

981 (1984]) at surfaces and interfaces. These boundary conditions include nonequilibrium phenomena and
spin singlet and triplet unconventional pairing. We eliminate spurious solutions as well as numerical stability
problems present in the original formulation. Finally, we formulate the Andreev scattering problem at inter-
faces in terms of the introduced distribution functions and present a theoretical analysis for the study of time
reversal symmetry breaking states in unconventional superconductors via Andreev spectroscopy experiments at
normal-metal—superconductor interfaces with finite transmission. We include impurity scattering
self-consistently.

[. INTRODUCTION ticle interactions-® In the absence of first principles calcula-
tions these material parameters have to be taken from the
Conduction electrons in normal metals are generally welexperiment.

described by Landau’s Fermi liquid thecryccording to Eilenbergef and Larkin and Ovchinnikdiformulated the
Landau a system of strongly interacting electrons may b&CS pairing theory of superconductdrim equilibrium in
viewed as an ensemble of quasiparticles which can be repréerms of quasiclassical transport equations. This theory was
sented by a classical distribution function and obeys a semgeneralized to nonequilibrium phenomena by Eliashberg
classical Landau-Boltzmann transport equaticfhis semi- ~and Larkin and Ovchinnikol? We regard this theory as the
classical behavior of a quantum many-body system is &OP€r generalization of Landau’s Fermi liquid theory to the

consequence of Pauli's exclusion principle which restrictsSUPerconducting state, and call this theory, following Larkin

the momentum space accessible to low-energy quasiparticl |vi(tj OvchinnikoV; the quasiclassical theory of superconduc-
to a thin shell near the Fermi surface. The ratio of the volumeé '~

of the accessible momentum space to the total volume ens The derivation of the quasiclassical equations starts from

: . . or'’kov’s formulation of the theory of superconductivity in
closed by the Fermi surface is of the orétgil/Er<1,andis ..« ot Nambu-Gorkov matrix Green's functiohs.

the fundamental expansion parameter of Fermi liquid theoryg -y o\'s Green’s functions contain detailed information on

Landau’s Fermi liquid theory is exact in leading order in an4iomic scale properties which average out on the supercon-
asymptotic expansion ikgT/E and other small parameters qycting scales. To derive the quasiclassical equations one has

of an electronic Fermi liquid such askjér, fiw/E¢, 1kil,  to integrate out atomic scale features in the Green’s func-
whereE;, ki, &7, o, andl are Fermi energy, Fermi wave tions, but keep all relevant information for superconductiv-
vector, thermal coherence lengtiE+&nv/2wksT), fre-  ity. The resulting quasiclassical Green’s functions vary on

quency of time-dependent perturbations, and quasiparticlarge scales such as the coherence lerdgthziv/2mkgT,
mean free path. Phase space arguments can be used to detwel the time scale given by the inverse ggp7/A, and are
Landau's Fermi liquid theory by converting a formal dia- free of the irrelevant fine-scale structures. The quasiclassical
grammatic expansion of many-body Green’s functions intcequations should be compared with Andreev’s equatfons
an asymptotic expansion in the above small paramétérs. which he obtained by factorizing out rapidly oscillating
Only a few of the resummed Feynman self-energy diagramgerms in Bogoljubov's equatiors:** Andreev’s method is
contribute in leading orders, and the dynamical equations foequivalent to the quasiclassical theory for superconductors
Green’s functions can be transformed into Landau’s transwith infinitely long-lived quasiparticles, i.e., without impuri-
port equation for quasiparticle distribution functioffs>® fties, electron-phonon coupling or electron-electron scatter-
The price one has to pay for the simplifications of the quaing. Both theories give identical results in these cases.
siparticle theory is the need to introduce phenomenologicaHence, the quasiclassical theory of Eilenberger, Larkin,
parameters, such as the quasiparticle velocities and quasip@vchinnikov, and Eliashberg may be considered a generali-
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zation of Andreev’s equations to systems with disorder andetween a normal metal and a layerddvave supercon-
finite lifetimes of quasiparticles. The generalized theory cov-ductor. Our formulation generalizes earlier work to in-
ers basically all typical superconducting phenomena includelude disorder. We propose an anomalous feature in the re-
ing Andreev’s retroreflectioff Tomasch oscillations, vor-  flection amplitudes for(110) interfaces as a test for time
tex bound state¥ etc. reversal symmetry breaking states. This feature, a strong sup-
The complexity of dynamical phenomena in Supercon_pression of the regular reflection for low-energy quasiparti-
ductors makes the elimination of atomic scale fine structur&'es at interfaces with finite transmission, is sensitive to sign
an important step towards a solution of dynamical problemschanges in the order parameter, and has the same origin as
The dynamical equations of the quasiclassical theory can b€ Zero-energy surface bound states. Combined with this
formulated most compactly by using the Green's functionSUPPression is an enhancement of the excess current due to

technique of KeldysA? It is often useful to distinguish two Andreev reflection for low energy quasiparticles. The sensi-

sources of time-dependent phenomena. First, time depeHyity of this phgnomenon to time reversal symmetry break-
dences can arise from changes in the occupation of quasipald States provides an additional tool to study the symmetry
ticle states. In the normal phase of a Fermi liquid this isof the order parameter. We study the effect of disorder on

indeed the only fundamental dynamical process. Here, thQOth regularly and Andreev reflected currents. For Andreev

quasiparticle states are robust and changes of the quasiparfPECLroScopy in unconventional superconductors the low-
cle wave function can be neglected. This is no longer th&Neray behawor. of re_gular reflection is the spectral feature
case in the superconducting phase. Quasiparticle states fpost stable against disorder.

superconductors are coherent mixtures of particle and hole

states determined by the superconducting order parameter. Il. KELDYSH SPACE STRUCTURE

Since the order parameter will, in general, change in a dy- . I . .
namical process the quasiparticle states will also change. Su- The fundamental quantity |n.noneqU|I|b.r|um quasmlass[-
perconducting dynamics is thus governed by the coupled d>;;al theorvy of superconductmty. is the quasiclassical Qreen S
namics of both the quasiparticle states and their occupatiofunctiong=g(ps R, €,1) 42?1t is a 2x 2 Keldysh matrix’
The Keldysh technique is convenient in this case since iff the form

works with two types of Green’s functiongt* and g¥) o

and can be used to introduce dynamical spectral functions . [gR ¥

describing the time development of quasiparticle states and 9= 0 o) 1)
dynamical distribution functions describing the time- 9

dependent occupation of the states. Dynamical distributioq}vhere the elements arex4-Nambu-Gorkov matrices

functions in the superconducting state were introduced bypich gescribe the two important residual quantum mechani-

Larkin and Ovchinniko’ and by ShelankoV? cal (interna) degrees of freedom: the spin degree of freedom
In this paper we present an exact parametrization of the . ~p "R
guasiclassical Keldysh Green’s functions in terms of fourand the partlcle-AhoIeA degree of freedagT=g"(py ’R’eLt)
coherence functions and two distribution functions. The cois the retardedg”=g"(ps,R,€,t) the advanced, ang®
herence functions are generalizations of the Riccati ampli=g*(ps,R,e,t) the Keldysh Green’s function. The classical
tudes introduced recentf?°for superconductors in equilib- (externa) degrees of freedom are described by a motion of
rium, whereas the distribution functions are thethe quasiparticles along classical trajectories. All trajectories
generalizations of the distribution function of Landau’sthrough a spatial poirR are parametrized by the Fermi mo-
Fermi liquid theory of the normal state. Compared to thementump; and their directions coincide with the directions
conventional quasiclassical theory our formulation leads taf the Fermi velocities;(p;). Along a given trajectory with
intuitively appealing aneéxplicit boundary conditions at sur- fixed p; all quasiparticles travel with the same velocity
faces and interfaces, is numerically very stable, and allows;(p;). In general there can be several branches of quasipar-
for a more transparent interpretation of quasiclassical dyticles moving with the same velocity but having different
namics in terms of particle-type and hole-type excitations. momenta. Also the directions @k andv;(p;) are generally
The general framework of the quasiclassical theory isdifferent. However, for spherical or cylindrical Fermi sur-
briefly reviewed in Secs. II, lll, where we also introduce ourfacesp; andv;(ps) differ only by a scaling factor. The re-
notation. Dynamical equations for the coherence functionsnaining parameters are the energy(measured from the
are derived in Sec. IV together with dynamical equations forchemical potentialand the timet.
the distribution functiongtransport equationsin Sec. V we The quasiclassical Green’s function is solution of the fol-
solve Zaitsev’s nonlinear boundary conditions for quasiclastowing transport equation along a given trajectory, and of the
sical Green’s functions at interfaces, and obtain physically-orresponding normalization conditibh®(the ® product

appealing boundary conditions for our coherence functiongs noncommutative and is explained in Appendix A
and distribution functions. In Sec. VI we present the general

linear response equations in terms of the introduced func- c—hal.+iiv.Va=0 g®g=-m21 2
tions. Finally, we formulate in Sec. VIl the Andreev scatter- le=h.gle vg=t gegmT L @

ing problem at interfaces between a normal metal and apye ez _ 7 3 represents the energy variable andombines
unconventional superconductor using our theoretical formu-

lation and the resulting boundary conditions. We present ref[—he mplecular(or mea field seIf-energ|es_zvrMF=aMF1, the
sults for the Andreev reflection amplitudes and the regularlympurity and electron-phonon self-energies and external

reflected amplitudes d10) interfaces and100) interfaces  potentialS,y ey= v exil
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... . _[R®AK a(ps R, t)=d(—ps R, —e)*. (10
hIO'MF-I—a'i-I—vext:( . "A)' ©)]

0 h The conjugation operator § defines an important transfor-
Disorder will be included by following standard averaging mation of quasiclassical Green’s functions and self-energies.
procedure for dilute impurity concentratiofsWe denote \We will use it extensively in the following.
impurity self-energies by}imp. In quasiclassical approxima-
tion (I>1/k;), the impurity self-energy can be written in IV. COHERENCE FUNCTIONS AND DISTRIBUTION

terms of the concentratiorts of impurities of typei and the FUNCTIONS
single impurityt matricest; The numerical solution of the transport equations for the
N quasiclassical Green’s functions can be simplified consider-
Timpl P ,R,e,t)=2 citi(pr,pr iR, €). (4) ably b)_/ mtrod_ucmg a special pa_rame;nzg’g(in in terr_ns.of 2
i=1 X 2 spin matrix coherence functiong*?, y*A, and distri-
The t matrices are solutions of the following equatiomee  bution functionsx® and x¥, which transforms the original
suppress the variablds, e,t for conveniencg boundary value problem fag into initial value problems for
. L , the coherence and distribution spin matrices. The normaliza-
ti(Ps,Pf) = Ui(Ps,Ps) tion condition is eliminated completely in this formulation.

. e, We present here the resulting equations and refer for their
+Ne(Ui(pr.P) @9(P) @ ti(Pr.P1))prs (5)  derivation to Appendixes B and C. Before doing this we give
. ) ) ) ) ) a short physical interpretation for the coherence functions. In
whereu; (pr,pr) is the scattering potential of an impurity of the apsence of particle-hole coherence, as in the equilibrium
type i. The Fermi surface average: )y is explained in 00 state, the functiong®”, 5RA vanish. A supercon-

Appendix A. The impurity potential is diagonal in Keldysh ductor, or a normal metal in proximity to a superconductor,
space. can be described in equilibrium and in the clean limit by
Andreev’s equatiortd with Andreev amplitudesu and v.
I1l. NAMBU-GOR’KOV SPACE STRUCTURE Then, the coherence functiog®, for example, is given in
terms of theu- andv-spin matricegfor positive energiesby

. . . 4
In a standard notation of quasiclassical th&8Rf* the the solution of the finear systeliUz75,=v.5. Thus, the

distribution functions are % 4 matrices which reflects their oherence functions are the transformation matrices between
guantum mechanical structure as density matrices in th

four-dimensional Hilbert space of internal degrees of free- € particlelike and holelike Andreev amplitudes. In the pres-

dom (Nambu-Gor’kov spade We parametrize the elements ence of quasiparticle damping the Andree_v descrip_tion
of the Nambu matrices in the following way’ breaks down, nevertheless one ciinegeneralized ampli-

tudesuR” andv ™. In nonequlilbrium they are defined by

gRA  fRA g K relations such asiR® yR=vR. Note that these generalized
@R»A:(~RA ~RA)' QK:< — ~K>, (6) amplitudes are defined by the quasiclassical Green’s func-
f=n gn - —g tions, not by wave functions.
The quasiclassical Green’s functions are conveniently pa-
R,A R,A K K .
— XE0A = A rametrized by
h™%= ARA SRAJ h®= _AK 3K/ (@)
~ QR,A: Fim
HeregRA, TRA AKX etc. are X2 spin matrices. B
The molecular fields are determined by Landau’s quasi- coa [(1F YRAR YRA) 29RA
particle interaction functionA(ps,p;), leading to a self- XN _o3RA (14 5RAG yRAY '
energy spin matrixvq¢(ps,R,€,t), which is diagonal in
particle-hole space. In superconductors this interaction must 11
be supplemented by the pairing interaction of quasiparticles
V(ps,p;) which lead to an off-diagonal self-energy in gk=—2i
particle-hole spacémf(pf ,R,€,1). Thus,
o [ KE=yRexteyt) - (Rext—xteyh)

(}MF: ;MF+AMF' (8) XNR®

—(Fex =X ey (X-Fex ey
The mean-field self energies, E@8), are diagonal in
Keldysh spacé.Their matrix structure in Nambu space is

®NA, (12
A= NO Awr - Y NO ) (99  With the “normalization matrices”
Aye O ' 0 wye
_ A RALTRA -1
Not all the matrix elements are independent from each other, RRA— (1= y™) 0
but are related by symmetry relatioh§or instance, a quan- 0 (1-FRAg yRA) 71 '

tity g and the conjugated quantity are related by (13
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In Eq. (11) the factorNRA may be written on the left- or

. _ . . H R~A K ~R A~K
nght_hand s_|de. The transport equations for the 2 spin A Ty oYy Xy
matrix functions are ~ R A K R~ A K
I, X, LA P
iV, V yRA+2eyRA
— yR,A®ZR,A® YRALSRAG HRA_ ,yR,A®§R,A_AR,A,
(14
iV VyRA—2eyRA
:’;R,A®AR,A®")',R,A+ER,A(X)',‘)',R,A_T)'/R,A@ER,A_ZR,A, ’Y1R,’71A1X1
(15 f‘1R,r1 ,
iV VXK +ifgxK
+(—PR@AR-3IR) o xK+ xKe (- ArYA+3A)
~  ~ ~ ~ FIG. 1. Notation for the Green’s functions at the interface. In-
e AROSKoTAL AKSTAL R AK_$K
=—y i@y +A ey +y @A -3, (180 gices 1 and 2 refer to the sides of the interface. The arrows for the
~ _ Fermi momentddotted are for particlelike excitations. The Fermi
iV VXK =it gxK velocity directions(full lines) are given by the directions perpen-
_ ~ o ~ ~ dicular to the Fermi surfacgull curves at the corresponding Fermi
+(— YR AR-IR) XK+ xXe (- Are yA+34) momentum. The components of the Fermi momenta parallel to the
- ~ - - surface are conservdihdicated by the thin dotted lings
= - YRo3K® YA+ AK® YA+ RO AK-SK, (17)

V. EXPLICIT SOLUTION OF ZAITSEV'S NONLINEAR

Equations(11), (14), and (15) generalize a useful formula- BOUNDARY CONDITIONS

tion of the equilibrium theory in terms of Riccati-type trans-
port equationjg"20 to n_onequilibrium phenomena.' Equations In the previous sections we have introduced a parametri-
(11)—(17) aré® numerically very stable and provide an effi- ,ation of the nonequilibrium Keldysh Green’s functigrin

cient way to solve nonequilibrium problems in superconductyerms of four coherence functions and two distribution func-
ors. Equationg14)—(17) need to be supplemented by initial tjons (2x2 spin matrices

conditions. They are imposed foRR, 72, andx® at the be-

ginning of the trajectory, and foy®, 7R, andxX at the end of g=g[y® YR YA YA (21)
the trajectory. .For corFEeEtIy chos:zn initial co.nd|t|0r?s. theAn important problem is the formulation of boundary condi-
transport equations foy®, »*, andx® are stable in POSItiVE  tions for these parameters at surfaces and interfcé$A

" , ~R K ¢
vy direction, and the transport equations _fVﬁ' v", andx™  poundary condition fog was obtained by Zaitsed, which
are stable in negative; direction. In addition to the conju- i yrinciple solves this problem for perfect interfaces. How-
gation symmetries the coherence and distribution functlongver, Zaitsev's nonlinear boundary conditions have unphysi-

obey the following symmetries cal spurious solutions which require special care, e.g., in a
N ~R + numerical implementation. A linearization of Zaitsev's
Y(P1,R,e1)=77(ps,R,e1)7, (18 poundary conditions for the equilibirium was achieved re-
cently by Yip*® for the case of an interface connected to
x(pr,R,e,t)=xK(p; ,R,e,t)" (19 i - :
Pr. K€, PR, &) infinite half spaces. Our solution generalizes these results to

any interface geometry and to nonequilibrium phenomena.
Zaitsev’'s condition relates the quasiclassical Green’s func-
tions with Fermi velocity pointing in direction towards the

surfaceélym, éz,in. and those with Fermi velocity pointing

€
K _ RTA - >
Xeq— (1= ¥y )tanhy=. (20 away@; gu Jz0u. Indices 1 and 2 refer to the two sides of

the interfacesee Fig. 1 Using the definitions
There is no unique definition of quasiclassical distribution

functions for superconductors. Various different but physi- . [ . . [ .
cally equivalent distribution functions have been P1=5_(91int Growds  P2=5_(G2int 92,0, (22)
introduced'23241827=3%yr distribution functionsx and

XK are similar to the distribution functions of Shelank8v. . i . i .

The relation between Shelankov’s distribution functions and Pa=5_(91in~ 91,00 =5 (92,00~ G2in) (23
our’s is given in Eq(C11). These distribution functions have

the direct physical interpretation in terms of particle-type andwhich fulfill the relations

hole-type excitations, i.e., excitations whose velocity is along L

and opposite to their momentum. P.®P;+P,®P,=0, P, @P,+P,®P,;=1, (249

Note that thex®(p;,R,e,t), XX(ps,R,€,t) are Hermitean
spin matrices. In equilibrium,
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PoP,+P@P,=0, P.eP,+P,eP,=1, (29 ITA=RiAe7 A+ D e Y5 "
Zaitsev's boundary conditions re¥d =FRAQRRAL FRAGDRA, (33)
[(1-Pa)®P1®P,—(1+P,)®P,®P](1-R) Note the intuitively appealing structure of the relations. The
. . v . outgoing functions are weighted averages of two incoming
=—2P®(1-Pa@Py)(1+R). (260 functions. The weights depend on the incoming parameters

Here, and in the followingR =R (p;) andD="D(p;) are the &S well, which reflects the coherence during Andreev reflec-
reflection and transmission coefficients of the interface fofion- The d_'St”bUt'O” functions have the following boundary
quasiparticles in the normal state correspondingdp;)  conditions:

+D(ps)=1. In the following we present the explicit solution

of Zaitsev’'s nonlinear boundary conditions at spin- « R « Ry Df «_ D1
conserving interfaces in terms of the coherence functions and X1 R ORX® R + D ®DxX;® D
distribution functions introduced above. It is useful for this o

purpose to introduce a notation which indicates the stability —AR@RDXE®AL,, (34)
properties of solutions of the transport equations. We use

capital letters [RA TRA XK XX) for functions, which are .. RY _ RA DR _ DA

stable solutions when integrating the transport equation to- XT=%®RXT® 7+ 3®Dx§® D

wards the surface. Small case lettes& ¢, y**,xK x¥) are

used for functions, which are stable in the direction away ~AR@RDxEAL. (35

from the surface. We also generalize the notation for the _ _ _ _
conjugation operation. It includes a conversion from smallAnalogous relations, obtained by interchanging the sub-

case to capital case letters scripts 1 and 2, hold for the other side of the interface. The
terms proportional to the produ&D =D(1— D), are due to
a(ps,R,e,)=Q(—ps,R, —€,)* (27)  particle-hole interference and do not arise in the classical

. , o limit. Insertion of these equations into Zaitsev's boundary
and vice versa. By |2t;ag;~rgtlng}<|n~g|r<a.ctlon towards the sur¢ongitions shows, that they solve the nonlinear problem and
face, the quantitiesy["", " ,x;",X;" (j=1,2) are known. eliminate all spurious solutions.

The quantitiesI* T X1 X are to be determined by

integrating in direction away from the surface. At the surface VI. LINEAR RESPONSE THEORY
the second set of quantities is determined in terms of the first ) )
one by boundary conditions. The general linear response theory in terms of the coher-

The incoming quasiclassical retarded Green’s functiong€nce functions and distribution functions was developed in
(with velocity direction towards the interfacen each side Refs. 26 and 38. Here we give a short review of the relevant

of the interface are given then ligee Fig. 1 equations and generalize them for spin dependent phenom-
ena. For the special case of the diamagnetic response see
Grin=GLYR.TRTA 74 XK XK, (28)  Belzig, Bruder, and FaucErre.SO We assume a small external
perturbation and expand and h around the unperturbed
Goin=0l YR, TR.I5 .75 x5, XK1, (29)  solutions. With the replacemengs—g+ 6g andh—h+ sh

] ] S we arrive in linear order at the equations
and the outgoing ondsvith velocity direction away from the

interface [e—h,89],+ifiviVog=[5h,g]s, (36)

9rou= OLTE 7,72 T1 XS X1, (30) e
1,out 1 1 1 1 171 5g®g+g®5g=0. (37)
~ _ YR TR _A TA K TK .
92.0u=0[T'2. 72, 72,12, X5 . X3]. (31) Here the linearized self-consistency equations deterdime
Using our parametrization, Zaitsev's boundary conditions=or @ specially chosen parametrization given at the end of
can be solved for the unknown quantities in a straightforward®Ppendixes B and C, the linear correction of the Green’s
way. In the superconducting state we define effective reflecfunction 5§g can be written in terms of the linear corrections
tion and transmission coefficients, which we present in Aptg the coherence functionsy™*, 5y and linear correc-
pendix D. The sum of each generalized reflection coefficien{ions to the distribution functionsxX  sxK
with |ts.correspond|ng. transmission cqefﬁment is equal to It is convenient to transform from the Keldysh response
one. Using these coefficients we can write the general bound5—A K h | ~a
ary conditions for the six unknown spin matrix distributions 9" to theanomalous responség

functions in a compact form. For the coherence functions we . . . -
have’ 69%= 6gK_ 5gR® Feq+ Feq® 5gA: (38

I‘?’A= RE’A@ y?,A+ D%A@) 7§'A with F¢,=tanhe/2T. Using the anomalous self-energies

=yF oRY + 5 e DRA, (32) Sha= oRK — ShR® F ot Foq® SNA, (39)
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we define the following short-hand notation for the driving SX2= 6K+ YROF o ® 877+ 6YRD Fog® 7 (41)
terms in the transport equations: ed e
R,A R,A a a ~ ~ ~ ~
spac| A o ( 2T N ) | = KK - TROF o0 67~ SYR&F @7, (42)
SARA SSRAJT —6A% — 532

(400  thespectral responség™* and the anomalous responsg?
Then, with the definition of the anomalous components ofogether with the transport equations for the spin matrices
the distribution spin matrices SyRA, 8yRA, 6x3, and 6x?, are given by

5§RA L NRA@ (5,yR,A®';/R,A+ ’)/R’A® 5';/R,A) (5’)/R’A+ ,yR,A® é\'",)/R,A® ,yR,A) ) - (43)
=42 ! - _ _ ~ ~ e
_ (57R,A+ ,yR,A® 5’)’R’A® ,yR,A) _(5,}/R,A® ,yR,A+ ,yR,A® 5’)/R’A)
. o [ (= FRedeyy)  —(Fesd-axeaN|
og*=—2mi NRe| co ~Ro ~oan A | ©NG (44)
(YRooxd—oxey?)  (ox*—ryReoxtey?)
iV 57R,A+265,}/R,A_(,yR,AZR,A+ER,A)® 5,yR,A+ 57R,A®(_ZR,A,YR,A+§R,A)
— ,yR,A® 5ZR,A® ,yR,A+ 52R,A® ‘}/R'A_ ‘)’R'A® 5ER,A_ 5AR,A, (45)
iﬁVfV 5’,}R,A_265',;/R,A_(’,;,R,AAR,A_}_ER,A)@ 5’,;/R,A+ 5’,’yR,A®(_AR,A',;/R,A+2R,A)
:",)'/R,A® 5AR,A®",}'IR,A+ 52R,A®",;/R,A_',")',R,A® 52R,A_ 5ZR,A’ (46)
iV V ox2+i10,0x3+ (— yRAR—3R) @ 6x3+ 6x2@ (— ANYA+3A)
=— YR 8320y A+ A2 YA+ yRe 6A2— 532, (47)
iV V X2~ i13,0x2+ (— yRAR—-SR) @ 5x2+ ox2® (— ARyA+SA)
=—R@ 6320 YA+ 5A%® YA+ YRe A2 552, (48)

One convenient feature of our parametrization is the factwe obtain the boundary conditions for the corrections to the
that the linear response transport equatiofs)—(48) de-  coherence functions and distribution functions
couple for given self-energies. Furthermore, the transport

equations for6yR, 67", 6x2 are stable in direction o, R R R R
_ - - _ R RR D D
and the transport equations féyR, 5y*, 5x2 are stable in STR=—2 @ RoyRO— + = @ DoyRR—
direction of —v;. This makes a numerical treatment much R R D D
easier than solving the boundary value problem for the R ~R_ R
coupled transport equatiori86), (37). The R points for the TANORD Y ® A, (5D
initial condition correspond to the final point or the initial
point of the trajectory depending on the direction of stability 2R 2R BR ~Rr
of the transport equation. ~Rr_ il ~R._ Dr 1l ~R_ 1
Finally we present the boundary conditions for the coher- Sl="5 @Ry @+ @Dy, @~

ence functions and for the distribution functions in linear _ _
response. With an analogous definition of the anomalous +A1R|®RD5y§®A1Rr, (52
components of the outgoing distribution spin matrices

OX3= SXK+TRQF o® ST A+ STROF @ TA, (49 2R .. Rir D .. D
eq eq ’ 5X1—%®R5X1®%+6®D5X2® D

5X3= 5XK-TRF 0 oTA— STR@Fo@T?, (50 ~Af@RDSX5®AY, , (53
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~R§| Rf 51R| Df the Green'’s function on the normal side, following from Egs.
a__— I X2® —— 28), (30), and(11), has the form
OX]=Tr @ RX|® = + - @ DOXG® — (28), (30) 11
—Af@RDX3RAY, . (54) X 1 0
giin: - I ™ . -~ ’ (55)
—2i (Tyrl -1
VIl. ANDREEV SPECTROSCOPY AT N-S INTERFACES
FOR UNCONVENTIONAL SUPERCONDUCTORS R ] 1 2 oyl“l
. . T 10 —I7 _ (56)
To illustrate the physical content of the new distribution 0 1

functions we discuss in this section the Andreev reflection
r n interf ween a hormal ri . ~ . .
gn%lci\sj-\z;se s&%e?ggnzitctgéulfscr(i)pt ;_ r;_’(ﬁ;tb Sfoglte?n The nonzero quantitiek; and I';, describe the~prOX|m|ty
was studied by Blonder, Tinkham, and KlapwijKor con-  €ffect at theN-Sinterface. The solutions fdr; andI'; in the
ventional swave superconductors, and was generalized téormal metal in equilibrium are
unconventional superconductors by Bruéfewe generalize
these calculations to include finite impurity scattering and ['1(x,€)=T,(e)e'@etvnxg=xlvim (57)
identify features which are sensitive to time reversal symme-
try breaking states. In an Andreev reflection experiment a
beam of normal quasiparticles with energigsand momenta T1(x,e)=T(e)e @ehvixgxlvim (58
Pt b IS injected across the interface into the superconductor.
Two types of reflections will occur. Part of the beam will be . . S -
regularly reflected at the interface, which amounts to a reWhere the spatial trajectory coordinatés measured in di-
flection of the quasiparticle’s velocity, momentum, and cur-"ection ofv; and is zero at the interface, positive oy and
rent, and part will be Andreev reflected. Andreev’s retrore-negative forl’;, and 7, is the lifetime in the normal metal.
flection is caused by particle-hole conversion which reverseBoth amplitudes decay from the interface towards the normal
the velocity but conserves momentum and current to verynetal on a scale 7. For simplicity, we assume in all what
good approximation. Because the current is affected quitéollows that the normal metal is in the clean limit. The To-
differently by regular reflection and Andreev reflection, amasch oscillation factorS, with Tomasch wave length
measurement of the current-voltage characteristics providestfiv,/e, are carried byl’;, T, WhereaSy§ and 3/2 vary
direct information on the balance between these two reflecenly in the region of varying order parameter near the inter-
tion processes. Together with a thorough theoretical analysigice and are constant far away. Similarly, on the supercon-
such measurements inform about fundamental properties efucting side, far away from the interface, the deviations of
the superconductor such as the symmetry of paffinle  the outgoing coherence functions from their homogeneous
gap size and anisotropies, and interface resonance &tates. solutionsT»(X) — T 5 noms ©2(X) — ' pom: Carry the Tomasch

For anisotropic superconductors both the current density ingqiliations with wavelengthrfiv /€2 — [A[Z if |e|>|A]. In

the reflected and the Andreev reflected beams will depeng,q foj1owing all quantities without spatial argument refer to
strongly on the direction of the incoming beam, in add't'ontheir values at the interface.

to their dependence on the energy of the incoming quasipar-
ticles.
The following calculation of Andreev reflection includes

In quasiclassical approximation the incoming beam of
nonequilibrium excitations with energy,,, and momentum

. . i . . ps p is described by the “scattering” part of the Keldysh
anisotropic pairing, a finite mean free path in the supercon-'" | . “K_"K ~K .
ductor, a finite transparency of the normal-metal—C'€eN'S functionAgh=g"—ge, where the equilibrium
superconductorN-S) interface, the layer of a strongly dis- Keldysh Green’s functiomg, is subtracted. In the following
torted order parameter near the interface, and the effects o¥e assume, for simplicity, a spin unpolarized incoming
the interface on the excitation spectrum, in particular thébeam. The calculations for spin-polarized beams pose no
low-energy bound states. We consider a layatedave su- new problems but are of interest only for high-field
perconductor with cylindrical Fermi surface and isotropic Superconductivity? spin-triplet pairing}’ contacts be-
Fermi velocity along the layers. The interface lies perpentween superconductors and magnetic matefials; spin-
dicular to the layers and we assume, for simplicity, the sam@ctive interfaces?* The incoming beam is then character-
Fermi velocity in the normal and the superconducting partszed by unit spin-matrix distribution functiondxj and
of the N-S contact. AXX . To obtain a physical interpretation of this distribution

The coherence functions§, 5, are determined by functions we consider a solution of E(L6) in form of a
boundary conditions at infinity, EqQ$C7), (C8), whereas traveling wave with frequencwy,

T'R, T} are determined by the interface boundary conditions,
Eqgs.(32), (33). For the spin singlet superconductor we write

YWR=ioyy, YR=io,y, R=io ', andTR=ig,T', wherey,
y, I', I are scalar functions. On the normal side the incom-The corresponding part of the Keldysh Green’s function fol-

ing coherence functiong, , v, are zero as a consequence of lows from Eq.(12), and after performing the time convolu-
their zero initial values at infinity. Thus, the retarded part oftions, Eq.(Al), we obtain

AxS(x,e,t)=AxK(e)el(@/vx—vit), (59)
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AGY (X, €,1)= —2mi

gl (w/vg)(x—v¢t) —ij O.yfik( e— h;) gi(kpx—wt)
x{ Ax{(e)
= ho| . ~ ho)~ ho| .
_|0.y1"1( e+ 7 e i(kpxtot) _1"1( e+ 7 Filr ( e— 7)6 i(wlvg)(x+vgt)
0 0
“lo ax : 60
0 AXX(x,e,t) (60)

wherekr=2e/hv; is the Tomasch wave vector. This gives 1 o
us a very transparent interpretation for the processes covered Aéfin: —2mi Axf _ Ny ! ) , (62)
by Ax. The upper left entry describes an incoming particle ' —io,Ly —|T4?

with velocityv¢. The lower right entry describes an Andreev
reflected hole with velocity-v;, coming from the interface ~K UK

, - : - Agh.  =—2miAX . (63)
due to retroreflection combined with particle hole conver- Lout o o
sion. The off-diagonal components describe particle- and o .
holelike Tomasch oscillations due to particle-hole coherencel he vanishing off-diagonal elements of the reflected Green’s
The degree of coherence between particles and holes in tifgnction show that there is no hole admixing in the reflected
incoming distributionAx¥ is given by the coherence func- Particle beam.

tion T';. This gives a direct physical interpretation of thef ThE bcztég;ja(rgs)condnmns for thél-S interface follow
coherence functions. Similarly;, is the amplitude for An- rom £0s.(32)=(59),

dreev reflected particles due to an incoming hole excitation 14 v |2

beam. On the other hand, the distribution functitk! de- AXK=R # AxE, (64)
scribes an incoherent hole coming from the interface. This 1+ Ryay2

component can be nonzero only if there is an incoming hole 3 5

in the Green’s functiodg¥ ., or Ag¥ ., which we exclude AXz=DAxy, AX3=-RD[y,|’Ax{, (69
in our scattering boundary condition. Thus, the correct

boundary conditions for the scattering problem take the in- Vs

tuitively appealing form, to allow for the incoming particle I'y= 1t Ry I'2=Rya, (66)
beam only an incoming distribution functiaxx’ and for all Y2y2

outgoing channels only outgoing distribution functions ~

AXE, AXS, AXS. All other distribution function compo- T=D— 2 T,=R7y,. (67)
nents are zero. 1+Ryay2

In the following we assume a stationary £ 0) situation, e tota] current densities are given in terms of the Keldysh
where an incoherent beam is injected, which allows us treen’s functions via the formula |

consider the incoming beam spatially homogeneous along . AR Ay .
the trajectory. Furthermore, it is sufficient to solve the prob-_ &N/ (de/8mi) Tr(7sv;Ag™).” Using the boundary condi-
lem for the distribution function tions (64)—(67), this gives directly the total current densities

at the interface in terms of the injected current density

~ 2
Y2

Ax§=—8mSes(e— €,) A(Pr—Pr,p), (61) Jn_y oo -
~ Jo 1+R”}2'}’2
wherep; denotes a unit vector in directign}, andde is the
energy resolution of the beam. Any other distribution of in- i1 out 1+ 575 ‘2
coming excitations is then given by a linear combination of = =~ (69
such solutions with properly chosen weight functions. The lo 1+R727’2’
current density of the incoming beamjis=2eN;v;Se. For -
a current density much smaller than the critical current den- J2in [72l*(14]72l?) 70
sity in the superconductor, one can neglect the effect of the K_ |1+R3/272|2 ' (70)
beam on the self-consistent order parameter and impurity
self-energies. . 1472
For the scattering parts of the Keldysh Green'’s function at J2.0ut_ Y2 (71)

the normal side we obtain o |1+ Ryzyal?
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means zero transmission. For finite transmission the bound
states broaden into interface resonances. Impurity scattering
further broadens these resonances. In Fig. 2 we show our
=2y ;M self-consistent solutions for thé-wave order parametek

¢/ ] =/2 cos 2/ and for the local density of quasiparticle states

v at the interface. For definiteness, we modeled the angular
L dependence of the transmission coefficient forNkll inter-

face by

NV D(g)= D05 73)

 Ro+Dosirte’

N I B T S
oo el _6';)(/_&4(',0 o B/ appropriate for a-function potential barrier. Herep is the

e impact angle between incoming trajectory and interface. The

FIG. 2. Order parameter amplitudieft) and local density of parameterd, andRy=1—"D, are the transmission and re-
states at the interfac&ight) for an interface between d-wave flection coefficients for perpendicular impact€ 7/2). The
superconductor and a normal metal,(¥00 direction(top) and in  impurity self-energy was calculated self-consistently in Born
(110 direction(bottom. The interface is at=0, the normal metal  approximation with a mean free path lbf 10¢,. The tem-
extends tox>0. The transmission coefficients for the different perature was choseh=0.3T., leading to a maximal gap of
curves areDo=0.1 (full line), Dy=0.5 (long dashell Do=0.9 A _ —2 29T . For the(100) orientation of the interface the
(dashedl andDo= 1.0 (dotted. The temperature i§=0.3Tc, and  order parameter is constant in the superconductor for zero
the mean free path=10¢. transmission and is suppressed at the interface for finite
transmission. In contrast for thd10 orientation the order
parameter is suppressed to zero at the surfac®fed and
is suppressed to a finite valueZif is nonzerd® In the (100)

Here, j 1, describes the incoming current including the ex-
cess currentj,;, the regularly reflected currenjy o, the

regularly transmitted current, ang, describes the process oientation there is no subgap resonance, whereas a zero en-
where the Andreev reflected holes are regularly reflecte rgy resonance typical fad-wave pairing at properly ori-

back to the superconductor at the interface. For energies b%’nted surfaces is present @0 orientation* Above the
low the gap the transmitted current densitieg,, j, oy, de- '

DA _ . . maximal gap the density of states is enhanced I60) ori-

cay with distance from the interface into the superconducting, \+arion. There is no such enhancement in the density of
region, where they are converted into super-currents. It igiates at the interface above the gap(ft0) orientation.
straightforward to show the conservation layn+jzin Figures 3 and 4 show selected results of our calculations
=) zout J2,0ut E.qs.(68)—(71) hold for geqeral almlso_trop|c- of Andreev reflection at a contact between a normal metal
and unconventional superconductors, including impurity,nq ad-wave superconductor. Our calculations are done for
scattering. The quantitiey, and y, follow from solving  T=0.3T,, for three mean free patHs=2&,,10&,, 100¢,,
numerically their transport equations, Ed44) and (15,  and for two orientations of the interface. Figure 3 shows for
with self-consistently determined self-energies and order pahree energies the dependence of the excess current due to
rameter. For conventionawave superconductors, and as- Andreev reflection(top panels and the regularly reflected
suming a step function for the order parameter our formulagurrent (bottom panelson the impact angle for transmis-
agree with the results of Blonder, Tinkham, and Klapwiik. sions D,=0.5 (left picturg and for transmissiorD,=0.9

It is clear from Eq.(68) that the Andreev reflected beam (right picture. The positions of the gap nodes show up
always enhances the current density in the injection beanglearly in the Andreev reflection amplitude, which breaks
giving rise to the excess current. The enhancement is propogown for quasiparticles transmitted into the nodal directions.
tional to D2, reflecting the fact that both the incoming par- The regular reflection approaches for the nodal direction the
ticle and the Andreev reflected hole have to cross the intefyalue R(¢). The width of this breakdown regions broadens
face. On the other hand, the current density of thewith energy. At energies above the maximal g&p.,, the
conventionally reflected beam, described by &§), can be  Andreev amplitude approaches zero and the regularly re-

below or above the valug- . flected amplitude approaches the val@¢¢). The depen-
The angle resolved density of states at the superconducgtence on the energy of the incoming quasiparticles is shown
ing side of the interface is given by for one representative impact angle in Fig. 4 for three values

- of mean free path, again for transmissibg= 0.5 (left) and

1-Ryay2 for transmissiorD,= 0.9 (right). For the (100) interface as

N(e,ps)=N¢Re (72

shown in Figs. 3 and 4, the behavior at low energies is
clearly distinct from the behavior for &110 interface.
The local density of states is given by the Fermi surfaceyhereas for g110) interface the regular reflection is sup-
average over this expression. Equati@g) shows that inter-  pressed for low energies, it is enhanced f¢1@0) interface.
face bound states are given by the solution of the equatiohe excess current shows a peak at low energies for the
1+7Rvy,y,=0. Because the absolute valuesygfandy, are (110 interface, but thg100) interface shows a minimum.

in equilibrium always smaller than or equal to unity, boundThe features at the gap edges are small for(&) orien-
states at an interface can strictly occur only fo=1, that tation, but are strong for th€l00) orientation. And finally,

1+Rysvs
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FIG. 3. Current densities in the injected beéop panelsand in the regularly reflected bedbottom panels as a function of the impact
angle for three energiesg;, =0 (full line), 0.4A ., (dashed, and 1.4 . (dotted. The left part of each picture is for(@10 interface, and
the right part of each picture for(400) interface between @wave superconductor and a normal metal. The left picture is for a transmission
coefficientDy=0.5, and the right picture for a transmission coeffici®gt=0.9. The temperature i§=0.3T;, and the mean free path

=108,.

the signal above the gap edges is small f@L 80 interface  contrast, the zero energy values for (&0 interface of two
but extends well up to twice the gap for(B00) interface. for the incoming and of zero for the reflected beam are very
In the clean limit the zero energy current density of thesensitive to impurity scattering. In fact, as can be seen from
incoming beam isjyn/jo=2 for a (110 interface, and Fig. 4, is the first value reduced to about 1.2 for half trans-
j1Yin/j0:2(1+R2)/(1+R)2<2 for a (100) interface; for mission and a realistic mean free path of ten coherence
the regularly reflected beam the zero energy limit islengths, and the second value is larger than 0.2 in this case.
j1oulio=0 for a (110 interface, andj;,./jo=4R/(1  Also the structures around the gap edges for(&@) sur-
+R)?=R for a (100 interface. The values for th€100) face are very sensitive to impurity scattering. For a mean free
interface coincide with the values for a conventional isotro-path of two coherence lengths the Andreev signal is already
pic swave superconductor, and are in agreement withstrongly reduced, as our calculations in Fig. 4 show. This
Blonderet al?* and Shelankov? Explicit values for the zero may explain the small signal of only a few percent in many
energy limits at §100) surface are for perpendicular impact Andreev experiments. The different behavior at low energies
J1inflo=1.11, j10u/jo=0.89 for D=0.5, and j;3/jo  for the regular reflection is the only remaining difference
=1.67, j10u/jo=0.33 for D=0.9. These values agree with between(100 and (110 orientation for mean free paths
our numerical calculations for mean free patbksl00%,. In  comparable to the coherence length for unconventional su-

FIG. 4. Current densities in the injected beéwp panels and in the regularly reflected beatmottom panels as a function of energy
for three different mean free path values for the superconductdt00%, (full line), 10, (dotted, and 2, (dashed The impact angle is
¢/ 7=0.4. The left part of each picture is for(410) interface, and the right part of each picture fo(1®0) interface between d-wave
superconductor and a normal metal. The left picture is for a transmission coefflgjend.5, and the right picture for a transmission
coefficient Dy=0.9. The temperature i$=0.3T.. The values for the maximal gaps at this temperatureAgrg(l=100¢,) =2.13T (!
=1000), Amadl =1080) =2.29T(1=1050), Amafl=280)=2.85T(l=2&).
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FIG. 5. Current densities in the injected beéop panelsand in the regularly reflected bedimttom panelsat a(110) interface. Dotted
lines are for a temperatufe=0.3T4, which is above the transition temperature frord 80 ad+is state. Full lines are for a temperature
T=0.1T4, which is below this transition to the spontaneaously time reversal symmetry broken state. The left picture is for mean free path
1=10¢,, and the right picture for mean free pdths 100¢,. The left part in each picture shows the energy dependence for impact angle
¢/ w=0.348, and the right part of each picture shows the dependence on impact anglef@\ ... The transmission coefficient is
Dy=0.2. The subdominant transition temperaturd jg=0.3T .

perconductors. The suppression of the regularly reflectedomponent is localized in a layer of a few coherence lengths
beam at low energies for all anglésxcept in nodal direc- near the interface. The left picture is fbr=10&, and the
tion), as seen for 4110 interface in the lower left panels of right picture forl =100¢, The coupling strength of the sub-
Figs. 3 and 4, is a direct consequence of the sign change @bminant component is characterized by its “bare” transi-
the order parameter during reflection of quasiparticles. Thegn temperaturels, (in the absence of the dominant com-
origin of this effect is the same as for the zero energy resoponeny. This transition temperature is reduced in the
nance (and follows from the Atiyah-Patodi-Singer presence of the dominant compon&i®5Swe choseT,,
theoreni®). Both effects are destroyed by time reversal sym-_ 0.3T4, where T, is the transition temperature from the

metry breaking and both effects are washed out by impuri%ormal state to the purd-wave state. This value dF, g is

scattering. Ho_wever, in contrast to the zero energy "% elow the critical value for a possible transition into a bulk
nance, which is not an exact bound state anymore for finitg

transmission even for zero impurity scattering, the stronac:;'s state’” Nevertheless, the transition intodaris state

suppression at low energies of the regularly reflected bea calized near the interface is possible. According to our cal-

remains a stable phenomenon for all transmissions in thgulations the subdominant component is strongly suppressed

clean limit. The effect is reduced by finite impurity scatter- PY finite transmission, so we chose a small valg=0.2.
ing, and in this case it is further reduced if the transmission i/ he dotted curves show the current densities of the reflected
comparable or smaller than the scattering rate. Thus, thBeams for a temperature=0.3T4. The system is at this
zero-energy resonance and the blocking of the regular refleéemperature above the transition into the time reversal sym-
tion are two complementary phenomena: the first one is welmetry breaking state. Full curves are fo=0.1T4, which
established only for interfaces with small transmissionscorresponds to the interfacetis state. As can be seen from
whereas the latter one is well established at interfaces wheifgg. 5, the suppression of the reflection and the enhancement
the transmission is not too small. of Andreev reflection are shifted to negative energies. Due to
The low-energy behavior of the regularly reflected beanfinite impurity scattering, and resulting mixing of different
can be used to prove a sign change of the order parametatomentum directions, there is also a shadow-feature at posi-
during reflection of the quasiparticles at an interface. Specifitive energies. The broadening of the feature itself is reduced,
cally, our results show that at low energies for all impactleading to a much sharper effect compared to the pure
angles this reflection amplitude is alwagbovethe normal d-wave state. The zero energy values for regular reflection
state reflectionR(¢), whereas for th€110) interface it is are changed in thd+is state to almost 1. Also shown in
for all directions clearlybelow R(¢) (the normal state re- Fig. 5 is the dependence of the reflected current densities on
flection can be obtained for a beam wigh well above the the impact angle. The small dip &= 7/2 is due to the fact
maximal gap. that the energy of the incoming particles is above the gap in
Finally, we show that the low-energy suppression of thethese directions. Below the transition into tde-is state
regular reflection and enhancement of the excess current isteere is a strong anisotropy with respect to the interface nor-
sensitive test for time reversal symmetry breaking states. Imal. This effect is a consequence of the spontaneous super-
Fig. 5 we show our results for a dominaihtvave coupled to  currents at the superconducting side of the interf¢@r an
a subdominantswave component. Below the interface incoming particle beam with a projection on the interface
transitior?>>*>°they couple to the spontaneously time rever-counter-moving with the current the regular reflection is
sal symmetry breaking state+is,*>>* where theswave  strongly reduced compared to the pdra/ave state, whereas
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the Andreev reflection is enhanced for this case. For a beam A . . hw

with a projection comoving with the supercurrent these ef- A® B(é,w)=A(6.w)B( €— 7) (A4)
fects are absent or inverted. The shift of the feature in the .

energy dependence of the reflected current densities is detdMs0 we generalize the commutator

mined by the Doppler shift of the quasiparticle spectrum du_e [A,B]®=A®I§— BoA. (A5)
to the spontaneous supercurrent at the superconducting side , ) .

of the interface. Thus, thsign of the shift for a chosen 1he Fermi surface averade- ), is defined by

impact angle can be positive or negative dependent on the 1 d?p]
direction of the spontaneous interface currgstsiilarly the (- p = —f = o (AB)
asymmetry around the interface normal changes its) sign © N @27h)3ve(pt)|

whereN; is the total density of states at the Fermi surface in

VIIl. CONCLUSIONS the normal state
We have developed a theoretical formulation of nonequi- d?py
librium superconducting phenomena, including singlet and f:fm—, (A7)
triplet pairing, in terms of coherence functions and distribu- (27h)|vi(py)]
tion functions. Our central results are Eq41)—(17), to-  andv¢(p;) is the normal state Fermi velocity at the position
gether with boundary conditions at interfaces, E@2)—  p/ on the Fermi surface
(35. We used this formulation to present the theory for
Andreev spectroscopy at interfaces between a normal metal " de(p)
Vf(pf) ap |p:pf’- (A8)

and an unconventional superconductor in a transparent way.

consistent manner. We proposed an anomalous Suppressigiarticle band crossing the Fermi levelpt.
of the regularly reflected quasiparticle beam as a test for time

reversal symmetry breaking states. This test is especially
suitable for not too small transmission, where the zero en-
ergy interface resonances become ill-defined and cannot be Following Shelanko#® we introduce the following pro-
used as a test for time-reversal symmetry breaking anymorgectors:
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P,+P_=1, (B3)
APPENDIX A: NOTATION P.eP_ =P oP,=0. (B4)
. The noncommutatived product is defined in the follow- The quaf,iclassjcal Green’s functions may be expressed in
Ing way: terms of P, or P_,
A@B(e,t)=elMDR-RIDA (e )B(e1). (A1) §=—imB.—B)

If one of the factors is both independent efandt, the ® . S TP S
product reduces to the usual matrix product. =-im(2P, ~1)=~im(1-2P). (B5)

For Fourier transformed quantities—¢ ») we have Equations of motion for the projectors can be extracted from
the corresponding equations for the quasiclassical Green’s

I » do' do” i
A@B(e,w)zf —— 80 t0" ) functions
_ 2 27 .. ) . .
[e—h,P.]e+iiviVP.=0. (B6)
~ ho' N he" . )
XA| e+ T,w” Bl e— T,w’ The Keldysh component of the Green’s functiafsfulfills
the relation gRe@gX+g“@g”=0. This implies PRegX
i R i (A2) @Ph=0 andPRegke P2 =0, leading to
If A(e,t)=A(e) is independent ot, that meansA is an L
equilibrium quantity, then gk=PReg"e P2 +PRagke P’ . (B7)
AeB(e.0)=Al e+ ho Blew) (A3)  Thevalue ofPR@g"®PA does not determing uniquely.
2 It is possible to adPR®A+B® P4 to g~ with any matrix

and, analogously, iB is an equilibrium quantity function A andB without changingPR © g¥® P2 (similarly
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for PReg @ P%). One can use this property to obtain a

proper parametrization cﬁ" and to eliminate the unneces-

sary information ingX. We write
gf=—-2mi(PRoXX e PA+PRaVY e P?h), (BY)

whereXX and Y contain only one free spin matrix function
as parameter. Th&X and Y¥ have to fulfill fundamental
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(1+a®b) o (1+a®b)=1. (C3

One immediately proveB? @ PR =P% , PR@ PR=PR and
PRoPR=PRePR=0. A useful identity is

(1+a®b) '®a=a®(1l+b®a)?, (CH

which may be used to obtaiR? + PR =1. The uniqueness
of the projectors is ensured by the symmetry relations be-

symmetry relations, following from the symmetry relations tween the matrix elements of the retarded and advanced

for the quasiclassical Green’s functiog, From the equa-
tions of motion of the Keldysh Green’s functions

(em3—hR @ gKk—gk® (em3— M) +ikv,V gk

—(gRohK—hXeg"), (B9)

we obtain the equations of motion f&* and YX using Eq.
(B6)

PR&{(eT3— R @ X" - XK@ (e73— ") +hK

+ifvi VX @ PA=0, (B10)
PR@{(er3— hR) @ YK—YK® (er3— h*) — X
+ihv, VYK @ P4 =0. (B11)

Tracing these equations properly in the Nambu space and

respecting the symmetries &< and Y¥, one obtains two
equations for both undetermineck2 spin matrix functions,

which parametrize&X® and YX.

Green’s functions. We may obtain the advanced Green’s
functions either by the fundamental symmetry relatgh
=T15(g®) 73 or analogously to the retarded case using ad-
vanced projector®” = 75(PR) 75, PA=75(PR) "7,

ﬁﬁ:(_l B(1-Yey) (AL, (€5

. 1 -

P’i:< ~a|®(1=y0Y) Te(1Y.  (CH)
-7

Here v*= (™)', Y*=(»®" holds. Introducing Eqs(C1),
(C2), (CH, (CH into Eg. (B6), and usinge®a+ake
=2ea leads to the transport equations feR* and yR4,
Egs.(14) and(15), which are generalized Riccati differential
equations. They are supplemented by properly chosen initial
conditions. The solutiong®*, y®A are introduced into Egs.
(C1), (C2), (CH), (C6) to obtain the quasiclassical Green’s
functions, Egs(11), (13), via Eq. (B5).

The solutions for the coherence functions in a homoge-

Analogously we proceed for the linear response. From theegus singlet superconductor in equilibrium are

first-order normalization conditiong37) we have PRA
® 8gR 2 PR*=0 and PR*g sgR* @ PRA=0; as a conse-
quence the spectral respongg®*, can be written as

SgRA=F2mi[ PRAR X7 AR PRA—PRAgG sYRAR PRA].
(B12)

Analogously, for the anomalous response the normalization

condition (37) leads to PR®692@ P4 =0 and PR® 692
®PA =0, so thatsg? can be written in the following form:

592=—27i[PR @ sX2@ PA + PR e sY20 P4 .
(B13)

APPENDIX C: PARAMETER REPRESENTATIONS OF
THE QUASICLASSICAL GREEN’S FUNCTIONS

The projectorsP® and PR may be parametrized in the
following way by complex spin matriceg™(ps,R,€,t) and

AT RAE

1

ﬁﬁ:(—“yR (1- 7R (1R,  (CI)
_,},R

AR:( | |ea=feyte(RY. (€2

Here (1+a®b) ! is defined by

AR’A
Yhom=— = . (€D
SR'Ai | \/_ AR’AAR'A— (SR,A)Z
ZR,A
Yhon= : (C8)

eRAL \/_ZR,AAR,A_(SR,A)Z

where eRA=e— (SRA-SRA) /2. Note that ARAARA) is
proportional to the unit spin matrix and that in the clean limit
(ARAARAY = —|A|2. In the presence of a constant superflow
with momentumpg one has to make the replacement e
~ Vi Ps-

Using this parametrization the following representation
for the Keldysh component with Hermitean spin matrices

xK(ps R, e,t) andx(p;,R, €,t) is convenient. Substituting
0 O

x£ 0 oK
0 0 Lo k)

into Eq.(B8), using the equation of motion f@, Eq. (B9),
leads to the transport equations f¢r andx*, Egs.(16) and
(17). Note thate® a—a® e=ifd;a. These transport equa-
tions have to be supplemented by initial conditions. For the
Keldysh Green’s function EqC9) leads to Eq(12).

It is possible to introduce Shelankov’'s distribution

functions® F andF, which are given by the parametrization

5<K:< (C9
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YK= (C10

Gk F o) F O
\o FJ o E/)
They obey the symmetry relations(ps,R,e,t)=F
(—ps.R,—e,)*, F(ps,R,e,t)=F(ps,R,e,t)". ThexX and
XK are expressed in terms of them in the following way:

xK=(F—yRaFa7"),

XK= (F-7RaF o y"). (C11)

MATTHIAS ESCHRIG

Using the introduced parametrization in terms of coherence

functions, the transport equation fbrhas the form
(ihviVF+itaF)— yRe(ihv,VF—ihoF)ey*
+(—2ReF+Fe3A+3K)
—Re(~SReF+FaSA-SKgIA
- R (AR® F—FoAA+AK)
+(AR®F-FoAA-AK) @y =0. (C12

The transport equation fdf follows by application of the

conjugation operation, Eq10), to this equation. Thg* are
obtained by introducing Eq(C11) into Eq. (12). The later

parametrization is a convenient starting point for perturba- Ry
tion theory from the equilibrium, because in the equilibrium

€ ~
Feq™ tanhz—_l_ =—Fe¢qy (C13

holds and all expression in the braces in EQ12 vanish
independently.

PRB 61
RS =Rp5%® (Rp5+Dply) L,
RE = (Rp5,+Dp5) '@ Rp5,, (D2)
R =Rp5® (Rp5+Dpiy) %,
RE.=(Rp5y+ Dphy) *@Rp5, (D3)
Al = (YR - y5) @ (RpS+ Dp5p 2,
AL =(Rp5tDpTo) '@ (71— 73), (D4)
Afi= (-5 e (RpS+Dp5) %,
Af=(Rp5+ Dpty) ro (7 =75), (D5)

andDf=1-R}, DR =1-R} DR=1-R{ DR =1-R%.

Analogously we define these quantities on the other side of
the interface by interchanging 1 and 2. Advanced quantities
are given by the same expressions with the change in the

superscriptR—A. The following relations are shown to
hold:

R R R R

Dll er Dlr

I= @V~ ®%5, AL=M® =~ %8,
(D6)

~rn RY - DY o o ~s RE -, Df
A5=§®7§e—3®7§, A?r=7§®7—7§®3-
(D7)

Finally we make the connection to our parametrization in

the linear response. With the choices

55(RA 0 57R’A 6QRA 0 0
o o ) L &5RA o)

As an example we consider the equilibrium spin-singlet case.
In equilibrium the® product reduces to a matrix product. In

this case we can write®=ioyy, YR=io,y, R=ig,T,
TR=io,T, wherey, 5, T, T are scalar functions. The ef-

(c14  fective reflection and transmission coefficients are
in Eqg. (B12), and ~
_ 1+y,72
a 0 o Ri=R = -, (D8)
55(&2 5)( O 5?32 (ClS) 1+R72y2+D7172
o 0/ 0 osx2)’
in Eq. (B13), we arrive at Eqs(41)—(48). With this param- D,=D 1+~7271 — (D9)
etrization the linear corrections to the distibution spin matri- 1+Rysy,+Dyiy»
cesyRA, YRA XK XK are given bysyR#A, s§yRA, 8xK, and
5xX, respectively. N 1+ oy
Ri=R— j”; _— (D10)
APPENDIX D: REFLECTION AND TRANSMISSION TRy Pyam
COEFFICENTS 5
. . . . ~ 1+
In the superconducting state we define effective reflection D,=D ~7271 — (D11
and transmission coefficients by 1+Ryoy2+Dy2y1

pi=(1-9ey), pi=(1-Yey), (i.j=12),
(DY)

(and analogously for the other side of the interfasehich
fulfill R;+D;=1 andR;+D;=1 (j=1,2).
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