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Distribution functions in nonequilibrium theory of superconductivity and Andreev spectroscopy
in unconventional superconductors
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Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60208

~Received 13 September 1999!

We develop a theoretical formulation of nonequilibrium superconducting phenomena, including singlet and
triplet pairing, which is especially well suited for spatially inhomogeneous problems. We start from the general
Keldysh-Nambu-Gor’kov Green’s functions in the quasiclassical approximation and represent them in terms of
232 spin-matrix coherence functions and distribution functions for particle-type and hole-type excitations.
The resulting transport equations for the distribution functions may be interpreted as a generalization to the
superconducting state of Landau’s transport equation for the normal Fermi liquid of conduction electrons. The
equations are well suited for numerical simulations of dynamical phenomena. Using our formulation we solve
an open problem in quasiclassical theory of superconductivity, the derivation of an explicit representation of
Zaitsev’s nonlinear boundary conditions„A. V. Zaitsev, Zh. Éksp. Teor. Fiz.86, 1742~1984! @Sov. Phys. JETP
59, 1015~1984!#; A. L. Shelankov, Fiz. Tverd. Tela~Leningrad! 26, 1615~1984! @Sov. Phys. Solid State26,
981 ~1984!#… at surfaces and interfaces. These boundary conditions include nonequilibrium phenomena and
spin singlet and triplet unconventional pairing. We eliminate spurious solutions as well as numerical stability
problems present in the original formulation. Finally, we formulate the Andreev scattering problem at inter-
faces in terms of the introduced distribution functions and present a theoretical analysis for the study of time
reversal symmetry breaking states in unconventional superconductors via Andreev spectroscopy experiments at
normal-metal–superconductor interfaces with finite transmission. We include impurity scattering
self-consistently.
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I. INTRODUCTION

Conduction electrons in normal metals are generally w
described by Landau’s Fermi liquid theory.1 According to
Landau a system of strongly interacting electrons may
viewed as an ensemble of quasiparticles which can be re
sented by a classical distribution function and obeys a se
classical Landau-Boltzmann transport equation.1 This semi-
classical behavior of a quantum many-body system i
consequence of Pauli’s exclusion principle which restri
the momentum space accessible to low-energy quasipart
to a thin shell near the Fermi surface. The ratio of the volu
of the accessible momentum space to the total volume
closed by the Fermi surface is of the orderkBT/Ef!1, and is
the fundamental expansion parameter of Fermi liquid theo
Landau’s Fermi liquid theory is exact in leading order in
asymptotic expansion inkBT/EF and other small parameter
of an electronic Fermi liquid such as 1/kfjT , \v/Ef , 1/kf l ,
whereEf , kf , jT , v, and l are Fermi energy, Fermi wav
vector, thermal coherence length (jT5\v f /2pkBT), fre-
quency of time-dependent perturbations, and quasipar
mean free path. Phase space arguments can be used to
Landau’s Fermi liquid theory by converting a formal di
grammatic expansion of many-body Green’s functions i
an asymptotic expansion in the above small parameter2–4

Only a few of the resummed Feynman self-energy diagra
contribute in leading orders, and the dynamical equations
Green’s functions can be transformed into Landau’s tra
port equation for quasiparticle distribution functions.5,6,2,3

The price one has to pay for the simplifications of the q
siparticle theory is the need to introduce phenomenolog
parameters, such as the quasiparticle velocities and quas
PRB 610163-1829/2000/61~13!/9061~16!/$15.00
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ticle interactions.1,6 In the absence of first principles calcula
tions these material parameters have to be taken from
experiment.

Eilenberger7 and Larkin and Ovchinnikov8 formulated the
BCS pairing theory of superconductors9 in equilibrium in
terms of quasiclassical transport equations. This theory
generalized to nonequilibrium phenomena by Eliashbe3

and Larkin and Ovchinnikov.10 We regard this theory as th
proper generalization of Landau’s Fermi liquid theory to t
superconducting state, and call this theory, following Lark
and Ovchinnikov,8 the quasiclassical theory of supercondu
tivity.

The derivation of the quasiclassical equations starts fr
Gor’kov’s formulation of the theory of superconductivity i
terms of Nambu-Gor’kov matrix Green’s functions.11

Gor’kov’s Green’s functions contain detailed information o
atomic scale properties which average out on the super
ducting scales. To derive the quasiclassical equations one
to integrate out atomic scale features in the Green’s fu
tions, but keep all relevant information for superconduct
ity. The resulting quasiclassical Green’s functions vary
large scales such as the coherence lengthj05\v f /2pkBTc
and the time scale given by the inverse gapt05\/D, and are
free of the irrelevant fine-scale structures. The quasiclass
equations should be compared with Andreev’s equation12

which he obtained by factorizing out rapidly oscillatin
terms in Bogoljubov’s equations.13,14 Andreev’s method is
equivalent to the quasiclassical theory for superconduc
with infinitely long-lived quasiparticles, i.e., without impur
ties, electron-phonon coupling or electron-electron scat
ing. Both theories give identical results in these cas
Hence, the quasiclassical theory of Eilenberger, Lark
Ovchinnikov, and Eliashberg may be considered a gene
9061 ©2000 The American Physical Society
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9062 PRB 61MATTHIAS ESCHRIG
zation of Andreev’s equations to systems with disorder a
finite lifetimes of quasiparticles. The generalized theory c
ers basically all typical superconducting phenomena incl
ing Andreev’s retroreflection,12 Tomasch oscillations,15 vor-
tex bound states,16 etc.

The complexity of dynamical phenomena in superco
ductors makes the elimination of atomic scale fine struct
an important step towards a solution of dynamical proble
The dynamical equations of the quasiclassical theory can
formulated most compactly by using the Green’s funct
technique of Keldysh.17 It is often useful to distinguish two
sources of time-dependent phenomena. First, time de
dences can arise from changes in the occupation of quas
ticle states. In the normal phase of a Fermi liquid this
indeed the only fundamental dynamical process. Here,
quasiparticle states are robust and changes of the quasi
cle wave function can be neglected. This is no longer
case in the superconducting phase. Quasiparticle state
superconductors are coherent mixtures of particle and
states determined by the superconducting order param
Since the order parameter will, in general, change in a
namical process the quasiparticle states will also change.
perconducting dynamics is thus governed by the coupled
namics of both the quasiparticle states and their occupa
The Keldysh technique is convenient in this case sinc
works with two types of Green’s functions (gR,A and gK)
and can be used to introduce dynamical spectral funct
describing the time development of quasiparticle states
dynamical distribution functions describing the tim
dependent occupation of the states. Dynamical distribu
functions in the superconducting state were introduced
Larkin and Ovchinnikov10 and by Shelankov.18

In this paper we present an exact parametrization of
quasiclassical Keldysh Green’s functions in terms of fo
coherence functions and two distribution functions. The
herence functions are generalizations of the Riccati am
tudes introduced recently19,20 for superconductors in equilib
rium, whereas the distribution functions are t
generalizations of the distribution function of Landau
Fermi liquid theory of the normal state. Compared to t
conventional quasiclassical theory our formulation leads
intuitively appealing andexplicit boundary conditions at sur
faces and interfaces, is numerically very stable, and allo
for a more transparent interpretation of quasiclassical
namics in terms of particle-type and hole-type excitations

The general framework of the quasiclassical theory
briefly reviewed in Secs. II, III, where we also introduce o
notation. Dynamical equations for the coherence functi
are derived in Sec. IV together with dynamical equations
the distribution functions~transport equations!. In Sec. V we
solve Zaitsev’s nonlinear boundary conditions for quasicl
sical Green’s functions at interfaces, and obtain physic
appealing boundary conditions for our coherence functi
and distribution functions. In Sec. VI we present the gene
linear response equations in terms of the introduced fu
tions. Finally, we formulate in Sec. VII the Andreev scatte
ing problem at interfaces between a normal metal and
unconventional superconductor using our theoretical form
lation and the resulting boundary conditions. We present
sults for the Andreev reflection amplitudes and the regula
reflected amplitudes at~110! interfaces and~100! interfaces
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between a normal metal and a layeredd-wave supercon-
ductor. Our formulation generalizes earlier work21,22 to in-
clude disorder. We propose an anomalous feature in the
flection amplitudes for~110! interfaces as a test for tim
reversal symmetry breaking states. This feature, a strong
pression of the regular reflection for low-energy quasipa
cles at interfaces with finite transmission, is sensitive to s
changes in the order parameter, and has the same orig
the zero-energy surface bound states. Combined with
suppression is an enhancement of the excess current d
Andreev reflection for low energy quasiparticles. The sen
tivity of this phenomenon to time reversal symmetry brea
ing states provides an additional tool to study the symme
of the order parameter. We study the effect of disorder
both regularly and Andreev reflected currents. For Andre
spectroscopy in unconventional superconductors the l
energy behavior of regular reflection is the spectral feat
most stable against disorder.

II. KELDYSH SPACE STRUCTURE

The fundamental quantity in nonequilibrium quasiclas
cal theory of superconductivity is the quasiclassical Gree
function ǧ5ǧ(pf ,R,e,t).4,23,24It is a 232 Keldysh matrix17

of the form

ǧ5S ĝR ĝK

0̂ ĝAD , ~1!

where the elements are 434-Nambu-Gor’kov matrices,
which describe the two important residual quantum mecha
cal ~internal! degrees of freedom: the spin degree of freed
and the particle-hole degree of freedom.ĝR5ĝR(pf ,R,e,t)
is the retarded,ĝA5ĝA(pf ,R,e,t) the advanced, andĝK

5ĝK(pf ,R,e,t) the Keldysh Green’s function. The classic
~external! degrees of freedom are described by a motion
the quasiparticles along classical trajectories. All trajector
through a spatial pointR are parametrized by the Fermi mo
mentumpf and their directions coincide with the direction
of the Fermi velocitiesvf(pf). Along a given trajectory with
fixed pf all quasiparticles travel with the same veloci
vf(pf). In general there can be several branches of quasi
ticles moving with the same velocity but having differe
momenta. Also the directions ofpf andvf(pf) are generally
different. However, for spherical or cylindrical Fermi su
facespf and vf(pf) differ only by a scaling factor. The re
maining parameters are the energye ~measured from the
chemical potential! and the timet.

The quasiclassical Green’s function is solution of the f
lowing transport equation along a given trajectory, and of
corresponding normalization condition3,7,8,10 ~the ^ product
is noncommutative and is explained in Appendix A!

@ ě2ȟ,ǧ# ^ 1 i\vf“ǧ50̌, ǧ^ ǧ52p2 1̌. ~2!

Hereě5et̂31̌ represents the energy variable andȟ combines
the molecular~or mean! field self-energiesšMF5ŝMF1̌, the
impurity and electron-phonon self-energiesš i , and external
potentials,v̌ext5 v̂ext1̌
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ȟ5šMF1š i1 v̌ext5S ĥR ĥK

0̂ ĥAD . ~3!

Disorder will be included by following standard averagin
procedure for dilute impurity concentrations.25 We denote
impurity self-energies byš imp . In quasiclassical approxima
tion (l @1/kf), the impurity self-energy can be written i
terms of the concentrationsci of impurities of typei and the
single impurityt matricesť i

š imp~pf ,R,e,t !5(
i 51

N

ci ť i~pf ,pf ;R,e,t !. ~4!

The t matrices are solutions of the following equations~we
suppress the variablesR,e,t for convenience!:

ť i~pf ,pf8!5ǔi~pf ,pf8!

1Nf^ǔi~pf ,pf9! ^ ǧ~pf9! ^ ť i~pf9 ,pf8!&p
f9
, ~5!

whereǔi(pf ,pf9) is the scattering potential of an impurity o
type i. The Fermi surface averagê•••&p

f9
is explained in

Appendix A. The impurity potential is diagonal in Keldys
space.

III. NAMBU-GOR’KOV SPACE STRUCTURE

In a standard notation of quasiclassical theory4,23,24 the
distribution functions are 434 matrices which reflects thei
quantum mechanical structure as density matrices in
four-dimensional Hilbert space of internal degrees of fr
dom ~Nambu-Gor’kov space!. We parametrize the elemen
of the Nambu matrices in the following way:

ĝR,A5S gR,A f R,A

f̃ R,A g̃R,AD , ĝK5S gK f K

2 f̃ K 2g̃KD , ~6!

ĥR,A5S SR,A DR,A

D̃R,A S̃R,AD , ĥK5S SK DK

2D̃K 2S̃KD . ~7!

HeregR,A, f̃ R,A, DK, etc. are 232 spin matrices.
The molecular fields are determined by Landau’s qua

particle interaction functionA(pf ,pf8), leading to a self-

energy spin matrixn̂m f(pf ,R,e,t), which is diagonal in
particle-hole space. In superconductors this interaction m
be supplemented by the pairing interaction of quasipartic
V(pf ,pf8) which lead to an off-diagonal self-energy

particle-hole spaceD̂m f(pf ,R,e,t). Thus,

ŝMF5 n̂MF1D̂MF . ~8!

The mean-field self energies, Eq.~8!, are diagonal in
Keldysh space.4 Their matrix structure in Nambu space is

D̂MF5S 0 DMF

D̃MF 0 D ,n̂MF5S nMF 0

0 ñMF
D . ~9!

Not all the matrix elements are independent from each ot
but are related by symmetry relations.4 For instance, a quan
tity q and the conjugated quantityq̃ are related by
e
-

i-

st
s

r,

q̃~pf ,R,e,t !5q~2pf ,R,2e,t !* . ~10!

The conjugation operator (˜ ) defines an important transfor
mation of quasiclassical Green’s functions and self-energ
We will use it extensively in the following.

IV. COHERENCE FUNCTIONS AND DISTRIBUTION
FUNCTIONS

The numerical solution of the transport equations for
quasiclassical Green’s functions can be simplified consid
ably by introducing a special parametrization in terms o
32 spin matrix coherence functionsgR,A, g̃R,A, and distri-
bution functionsxK and x̃K, which transforms the origina
boundary value problem forǧ into initial value problems for
the coherence and distribution spin matrices. The normal
tion condition is eliminated completely in this formulation
We present here the resulting equations and refer for t
derivation to Appendixes B and C. Before doing this we gi
a short physical interpretation for the coherence functions
the absence of particle-hole coherence, as in the equilibr
normal state, the functionsgR,A, g̃R,A vanish. A supercon-
ductor, or a normal metal in proximity to a superconduct
can be described in equilibrium and in the clean limit
Andreev’s equations12 with Andreev amplitudesu and v.
Then, the coherence functiongR, for example, is given in
terms of theu- andv-spin matrices~for positive energies! by
the solution of the linear system(buabgbd

R 5vad . Thus, the
coherence functions are the transformation matrices betw
the particlelike and holelike Andreev amplitudes. In the pr
ence of quasiparticle damping the Andreev descript
breaks down, nevertheless one candefinegeneralized ampli-
tudesuR,A and vR,A. In nonequlilbrium they are defined b
relations such asuR

^ gR5vR. Note that these generalize
amplitudes are defined by the quasiclassical Green’s fu
tions, not by wave functions.

The quasiclassical Green’s functions are conveniently
rametrized by

ĝR,A57 ip

3N̂R,A
^ S ~11gR,A

^ g̃R,A! 2gR,A

22g̃R,A 2~11g̃R,A
^ gR,A!

D ,

~11!

ĝK522p i

3N̂R
^ S ~xK2gR

^ x̃K
^ g̃A! 2~gR

^ x̃K2xK
^ gA!

2~ g̃R
^ xK2 x̃K

^ g̃A! ~ x̃K2g̃R
^ xK

^ gA!
D

^ N̂A, ~12!

with the ‘‘normalization matrices’’

N̂R,A5S ~12gR,A
^ g̃R,A!21 0

0 ~12g̃R,A
^ gR,A!21D .

~13!
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In Eq. ~11! the factorN̂R,A may be written on the left- or
right-hand side. The transport equations for the 232 spin
matrix functions are

i\vf“gR,A12egR,A

5gR,A
^ D̃R,A

^ gR,A1SR,A
^ gR,A2gR,A

^ S̃R,A2DR,A,

~14!

i\vf“g̃R,A22eg̃R,A

5g̃R,A
^ DR,A

^ g̃R,A1S̃R,A
^ g̃R,A2g̃R,A

^ SR,A2D̃R,A,

~15!

i\vf“xK1 i\] tx
K

1~2gR
^ D̃R2SR! ^ xK1xK

^ ~2DA
^ g̃A1SA!

52gR
^ S̃K

^ g̃A1DK
^ g̃A1gR

^ D̃K2SK, ~16!

i\vf“ x̃K2 i\] tx̃
K

1~2g̃R
^ DR2S̃R! ^ x̃K1 x̃K

^ ~2D̃A
^ gA1S̃A!

52g̃R
^ SK

^ gA1D̃K
^ gA1g̃R

^ DK2S̃K. ~17!

Equations~11!, ~14!, and ~15! generalize a useful formula
tion of the equilibrium theory in terms of Riccati-type tran
port equations19,20 to nonequilibrium phenomena. Equation
~11!–~17! are26 numerically very stable and provide an ef
cient way to solve nonequilibrium problems in supercondu
ors. Equations~14!–~17! need to be supplemented by initi
conditions. They are imposed forgR, g̃A, andxK at the be-
ginning of the trajectory, and forgA, g̃R, andx̃K at the end of
the trajectory. For correctly chosen initial conditions t
transport equations forgR, g̃A, andxK are stable in positive
vf direction, and the transport equations forgA, g̃R, and x̃K

are stable in negativevf direction. In addition to the conju
gation symmetries the coherence and distribution functi
obey the following symmetries

gA~pf ,R,e,t !5g̃R~pf ,R,e,t !†, ~18!

xK~pf ,R,e,t !5xK~pf ,R,e,t !†. ~19!

Note that thexK(pf ,R,e,t), x̃K(pf ,R,e,t) are Hermitean
spin matrices. In equilibrium,

xeq
K 5~12gRg̃A!tanh

e

2T
. ~20!

There is no unique definition of quasiclassical distributi
functions for superconductors. Various different but phy
cally equivalent distribution functions have bee
introduced.10,23,24,18,27–30Our distribution functionsxK and
x̃K are similar to the distribution functions of Shelankov18

The relation between Shelankov’s distribution functions a
our’s is given in Eq.~C11!. These distribution functions hav
the direct physical interpretation in terms of particle-type a
hole-type excitations, i.e., excitations whose velocity is alo
and opposite to their momentum.
t-

s

-

d

d
g

V. EXPLICIT SOLUTION OF ZAITSEV’S NONLINEAR
BOUNDARY CONDITIONS

In the previous sections we have introduced a parame
zation of the nonequilibrium Keldysh Green’s functionǧ in
terms of four coherence functions and two distribution fun
tions (232 spin matrices!

ǧ5ǧ@gR,g̃R,gA,g̃A,xK,x̃K#. ~21!

An important problem is the formulation of boundary cond
tions for these parameters at surfaces and interfaces.31–36 A
boundary condition forǧ was obtained by Zaitsev,31 which
in principle solves this problem for perfect interfaces. Ho
ever, Zaitsev’s nonlinear boundary conditions have unph
cal spurious solutions which require special care, e.g., i
numerical implementation. A linearization of Zaitsev
boundary conditions for the equilibirium was achieved
cently by Yip36 for the case of an interface connected
infinite half spaces. Our solution generalizes these result
any interface geometry and to nonequilibrium phenome
Zaitsev’s condition relates the quasiclassical Green’s fu
tions with Fermi velocity pointing in direction towards th
surfaceǧ1,in , ǧ2,in , and those with Fermi velocity pointing
away ǧ1,out, ǧ2,out. Indices 1 and 2 refer to the two sides
the interface~see Fig. 1!. Using the definitions

P̌15
i

2p
~ ǧ1,in1ǧ1,out!, P̌25

i

2p
~ ǧ2,in1ǧ2,out!, ~22!

P̌a5
i

2p
~ ǧ1,in2ǧ1,out!5

i

2p
~ ǧ2,out2ǧ2,in!, ~23!

which fulfill the relations

P̌a^ P̌11 P̌1^ P̌a50̌, P̌a^ P̌a1 P̌1^ P̌151̌, ~24!

FIG. 1. Notation for the Green’s functions at the interface.
dices 1 and 2 refer to the sides of the interface. The arrows for
Fermi momenta~dotted! are for particlelike excitations. The Ferm
velocity directions~full lines! are given by the directions perpen
dicular to the Fermi surface~full curves! at the corresponding Ferm
momentum. The components of the Fermi momenta parallel to
surface are conserved~indicated by the thin dotted lines!.
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P̌a^ P̌21 P̌2^ P̌a50̌, P̌a^ P̌a1 P̌2^ P̌251̌, ~25!

Zaitsev’s boundary conditions read31

@~ 1̌2 P̌a! ^ P̌1^ P̌22~ 1̌1 P̌a! ^ P̌2^ P̌1#~12R!

522P̌a^ ~ 1̌2 P̌a^ P̌a!~11R!. ~26!

Here, and in the followingR5R(pf) andD5D(pf) are the
reflection and transmission coefficients of the interface
quasiparticles in the normal state correspondingly,R(pf)
1D(pf)51. In the following we present the explicit solutio
of Zaitsev’s nonlinear boundary conditions at sp
conserving interfaces in terms of the coherence functions
distribution functions introduced above. It is useful for th
purpose to introduce a notation which indicates the stab
properties of solutions of the transport equations. We
capital letters (GR,A,G̃R,A,XK,X̃K) for functions, which are
stable solutions when integrating the transport equation
wards the surface. Small case letters (gR,A,g̃R,A,xK,x̃K) are
used for functions, which are stable in the direction aw
from the surface. We also generalize the notation for
conjugation operation. It includes a conversion from sm
case to capital case letters

q̃~pf ,R,e,t !5Q~2pf ,R,2e,t !* ~27!

and vice versa. By integrating in direction towards the s
face, the quantitiesg j

R,A ,g̃ j
R,A ,xj

K ,x̃ j
K ( j 51,2) are known.

The quantitiesG j
R,A ,G̃ j

R,A ,Xj
K ,X̃j

K are to be determined b
integrating in direction away from the surface. At the surfa
the second set of quantities is determined in terms of the
one by boundary conditions.

The incoming quasiclassical retarded Green’s functi
~with velocity direction towards the interface! on each side
of the interface are given then by~see Fig. 1!

ǧ1,in5ǧ@g1
R,G̃1

R,G1
A ,g̃1

A ,x1
K ,X̃1

K#, ~28!

ǧ2,in5ǧ@g2
R,G̃2

R,G2
A ,g̃2

A ,x2
K ,X̃2

K#, ~29!

and the outgoing ones~with velocity direction away from the
interface!

ǧ1,out5ǧ@G1
R,g̃1

R,g1
A ,G̃1

A ,X1
K ,x̃1

K#, ~30!

ǧ2,out5ǧ@G2
R,g̃2

R,g2
A ,G̃2

A ,X2
K ,x̃2

K#. ~31!

Using our parametrization, Zaitsev’s boundary conditio
can be solved for the unknown quantities in a straightforw
way. In the superconducting state we define effective refl
tion and transmission coefficients, which we present in A
pendix D. The sum of each generalized reflection coeffici
with its corresponding transmission coefficient is equal
one. Using these coefficients we can write the general bou
ary conditions for the six unknown spin matrix distributio
functions in a compact form. For the coherence functions
have37

G1
R,A5R1l

R,A
^ g1

R,A1D1l
R,A

^ g2
R,A

5g1
R,A

^ R1r
R,A1g2

R,A
^ D1r

R,A , ~32!
r
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G̃1
R,A5R̃1l

R,A
^ g̃1

R,A1D̃1l
R,A

^ g̃2
R,A

5g̃1
R,A

^ R̃1r
R,A1g̃2

R,A
^ D̃1r

R,A . ~33!

Note the intuitively appealing structure of the relations. T
outgoing functions are weighted averages of two incom
functions. The weights depend on the incoming parame
as well, which reflects the coherence during Andreev refl
tion. The distribution functions have the following bounda
conditions:

X1
K5

R1l
R

R ^ Rx1
K

^
R̃1r

A

R 1
D1l

R

D ^ Dx2
K

^
D̃1r

A

D
2A1l

R
^ RDx̃2

K
^ Ã1r

A , ~34!

X̃1
K5

R̃1l
R

R ^ Rx̃1
K

^
R1r

A

R 1
D̃1l

R

D ^ Dx̃2
K

^
D1r

A

D
2Ã1l

R
^ RDx2

K
^ A1r

A . ~35!

Analogous relations, obtained by interchanging the s
scripts 1 and 2, hold for the other side of the interface. T
terms proportional to the productRD5D(12D), are due to
particle-hole interference and do not arise in the class
limit. Insertion of these equations into Zaitsev’s bounda
conditions shows, that they solve the nonlinear problem
eliminate all spurious solutions.

VI. LINEAR RESPONSE THEORY

The general linear response theory in terms of the coh
ence functions and distribution functions was developed
Refs. 26 and 38. Here we give a short review of the relev
equations and generalize them for spin dependent phen
ena. For the special case of the diamagnetic response
Belzig, Bruder, and Fauche`re.30 We assume a small externa
perturbation and expandǧ and ȟ around the unperturbed
solutions. With the replacementsǧ→ǧ1dǧ and ȟ→ȟ1dȟ
we arrive in linear order at the equations

@ ě2ȟ,dǧ# ^ 1 i\vf“dǧ5@dȟ,ǧ# ^ , ~36!

dǧ^ ǧ1ǧ^ dǧ50̌. ~37!

Here the linearized self-consistency equations determinedȟ.
For a specially chosen parametrization given at the end
Appendixes B and C, the linear correction of the Gree
function dǧ can be written in terms of the linear correction
to the coherence functionsdgR,A, dg̃R,A and linear correc-
tions to the distribution functionsdxK, d x̃K.

It is convenient to transform from the Keldysh respon
dĝK to theanomalous responsedĝa

dĝa5dĝK2dĝR
^ Feq1Feq^ dĝA, ~38!

with Feq5tanhe/2T. Using the anomalous self-energies

dĥa5dĥK2dĥR
^ Feq1Feq^ dĥA, ~39!
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we define the following short-hand notation for the drivin
terms in the transport equations:

dĥR,A5S dSR,A dDR,A

dD̃R,A dS̃R,AD , dĥa5S dSa dDa

2dD̃a 2dS̃aD .

~40!

Then, with the definition of the anomalous components
the distribution spin matrices
c
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er
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f

dxa5dxK1gR
^ Feq^ dg̃A1dgR

^ Feq^ g̃A, ~41!

d x̃a5d x̃K2g̃R
^ Feq^ dgA2dg̃R

^ Feq^ gA, ~42!

thespectral responsedĝR,A and the anomalous responsedĝa

together with the transport equations for the spin matri
dgR,A, dg̃R,A, dxa, andd x̃a, are given by
dĝR,A572p i N̂R,A
^ S ~dgR,A

^ g̃R,A1gR,A
^ dg̃R,A! ~dgR,A1gR,A

^ dg̃R,A
^ gR,A!

2~dg̃R,A1g̃R,A
^ dgR,A

^ g̃R,A! 2~dg̃R,A
^ gR,A1g̃R,A

^ dgR,A!
D ^ N̂R,A, ~43!

dĝa522p i N̂R
^ S ~dxa2gR

^ d x̃a
^ g̃A! 2~gR

^ d x̃a2dxa
^ gA!

2~ g̃R
^ dxa2d x̃a

^ g̃A! ~d x̃a2g̃R
^ dxa

^ gA!
D ^ N̂A, ~44!

i\vf“dgR,A12edgR,A2~gR,AD̃R,A1SR,A! ^ dgR,A1dgR,A
^ ~2D̃R,AgR,A1S̃R,A!

5gR,A
^ dD̃R,A

^ gR,A1dSR,A
^ gR,A2gR,A

^ dS̃R,A2dDR,A, ~45!

i\vf“dg̃R,A22edg̃R,A2~ g̃R,ADR,A1S̃R,A! ^ dg̃R,A1dg̃R,A
^ ~2DR,Ag̃R,A1SR,A!

5g̃R,A
^ dDR,A

^ g̃R,A1dS̃R,A
^ g̃R,A2g̃R,A

^ dSR,A2dD̃R,A, ~46!

i\vf“dxa1 i\] tdxa1~2gRD̃R2SR! ^ dxa1dxa
^ ~2DAg̃A1SA!

52gR
^ dS̃a

^ g̃A1dDa
^ g̃A1gR

^ dD̃a2dSa, ~47!

i\vf“d x̃a2 i\] td x̃a1~2g̃RDR2S̃R! ^ d x̃a1d x̃a
^ ~2D̃AgA1S̃A!

52g̃R
^ dSa

^ gA1dD̃a
^ gA1g̃R

^ dDa2dS̃a. ~48!
the
One convenient feature of our parametrization is the fa
that the linear response transport equations~45!–~48! de-
couple for given self-energies. Furthermore, the transp
equations fordgR, dg̃A, dxa are stable in direction ofvf ,
and the transport equations fordg̃R, dgA, d x̃a are stable in
direction of 2vf . This makes a numerical treatment mu
easier than solving the boundary value problem for
coupled transport equations~36!, ~37!. The R points for the
initial condition correspond to the final point or the initi
point of the trajectory depending on the direction of stabil
of the transport equation.

Finally we present the boundary conditions for the coh
ence functions and for the distribution functions in line
response. With an analogous definition of the anomal
components of the outgoing distribution spin matrices

dXa5dXK1GR
^ Feq^ dG̃A1dGR

^ Feq^ G̃A, ~49!

dX̃a5dX̃K2G̃R
^ Feq^ dGA2dG̃R

^ Feq^ GA, ~50!
t,

rt
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s

we obtain the boundary conditions for the corrections to
coherence functions and distribution functions

dG1
R5

R1l
R

R ^ Rdg1
R

^
R1r

R

R 1
D1l

R

D ^ Ddg2
R

^
D1r

R

D
1A1l

R
^ RDdg̃2

R
^ A1r

R , ~51!

dG̃1
R5

R̃1l
R

R ^ Rdg̃1
R

^
R̃1r

R

R 1
D̃1l

R

D ^ Ddg̃2
R

^
D̃1r

R

D
1Ã1l

R
^ RDdg2

R
^ Ã1r

R , ~52!

dX1
a5

R1l
R

R ^ Rdx1
a

^
R̃1r

A

R 1
D1l

R

D ^ Ddx2
a

^
D̃1r

A

D
2A1l

R
^ RDd x̃2

a
^ Ã1r

A , ~53!
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dX̃1
a5

R̃1l
R

R ^ Rd x̃1
a

^
R1r

A

R 1
D̃1l

R

D ^ Dd x̃2
a

^
D1r

A

D
2Ã1l

R
^ RDdx2

a
^ A1r

A . ~54!

VII. ANDREEV SPECTROSCOPY AT N-S INTERFACES
FOR UNCONVENTIONAL SUPERCONDUCTORS

To illustrate the physical content of the new distributi
functions we discuss in this section the Andreev reflect
process at an interface between a normal metal~subscript 1!
and a d-wave superconductor~subscript 2!. This problem
was studied by Blonder, Tinkham, and Klapwijk21 for con-
ventional s-wave superconductors, and was generalized
unconventional superconductors by Bruder.22 We generalize
these calculations to include finite impurity scattering a
identify features which are sensitive to time reversal symm
try breaking states. In an Andreev reflection experimen
beam of normal quasiparticles with energieseb and momenta
pf ,b is injected across the interface into the superconduc
Two types of reflections will occur. Part of the beam will b
regularly reflected at the interface, which amounts to a
flection of the quasiparticle’s velocity, momentum, and c
rent, and part will be Andreev reflected. Andreev’s retro
flection is caused by particle-hole conversion which rever
the velocity but conserves momentum and current to v
good approximation. Because the current is affected q
differently by regular reflection and Andreev reflection,
measurement of the current-voltage characteristics prov
direct information on the balance between these two refl
tion processes. Together with a thorough theoretical anal
such measurements inform about fundamental propertie
the superconductor such as the symmetry of pairing,39 the
gap size and anisotropies, and interface resonance states40–45

For anisotropic superconductors both the current densit
the reflected and the Andreev reflected beams will dep
strongly on the direction of the incoming beam, in additi
to their dependence on the energy of the incoming quasi
ticles.

The following calculation of Andreev reflection include
anisotropic pairing, a finite mean free path in the superc
ductor, a finite transparency of the normal-meta
superconductor (N-S) interface, the layer of a strongly dis
torted order parameter near the interface, and the effec
the interface on the excitation spectrum, in particular
low-energy bound states. We consider a layeredd-wave su-
perconductor with cylindrical Fermi surface and isotrop
Fermi velocity along the layers. The interface lies perp
dicular to the layers and we assume, for simplicity, the sa
Fermi velocity in the normal and the superconducting pa
of the N-S contact.

The coherence functionsg1
R , g̃1

A are determined by
boundary conditions at infinity, Eqs.~C7!, ~C8!, whereas
G̃1

R , G1
A are determined by the interface boundary conditio

Eqs.~32!, ~33!. For the spin singlet superconductor we wr
gR5 isyg, g̃R5 isyg̃, GR5 isyG, andG̃R5 isyG̃, whereg,
g̃, G, G̃ are scalar functions. On the normal side the inco
ing coherence functionsg1 , g̃1 are zero as a consequence
their zero initial values at infinity. Thus, the retarded part
n
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the Green’s function on the normal side, following from Eq
~28!, ~30!, and~11!, has the form

ĝ1,in
R 52 ipS 1 0

22isyG̃1 21D , ~55!

ĝ1,out
R 52 ipS 1 2isyG1

0 21 D . ~56!

The nonzero quantitiesG1 and G̃1, describe the proximity
effect at theN-S interface. The solutions forG1 andG̃1 in the
normal metal in equilibrium are

G1~x,e!5G1~e!ei (2e/\v f )xe2x/v ft1, ~57!

G̃1~x,e!5G̃1~e!e2 i (2e/\v f )xex/v ft1, ~58!

where the spatial trajectory coordinatex is measured in di-
rection ofvf and is zero at the interface, positive forG1 and
negative forG̃1, andt1 is the lifetime in the normal metal
Both amplitudes decay from the interface towards the nor
metal on a scalev ft1. For simplicity, we assume in all wha
follows that the normal metal is in the clean limit. The T
masch oscillation factors,15 with Tomasch wave length
p\v f /e, are carried byG1 , G̃1, whereasg2

R and g̃2
A vary

only in the region of varying order parameter near the int
face and are constant far away. Similarly, on the superc
ducting side, far away from the interface, the deviations
the outgoing coherence functions from their homogene
solutionsG2(x)2G2,hom, G̃2(x)2G̃2,hom, carry the Tomasch
oscillations with wavelengthp\v f /Ae22uDu2 if ueu.uDu. In
the following all quantities without spatial argument refer
their values at the interface.

In quasiclassical approximation the incoming beam
nonequilibrium excitations with energy,eb , and momentum
pf ,b is described by the ‘‘scattering’’ part of the Keldys
Green’s function DĝK5ĝK2ĝeq

K , where the equilibrium

Keldysh Green’s functionĝeq
K is subtracted. In the following

we assume, for simplicity, a spin unpolarized incomi
beam. The calculations for spin-polarized beams pose
new problems but are of interest only for high-fie
superconductivity,46 spin-triplet pairing,47–50 contacts be-
tween superconductors and magnetic materials,51 or spin-
active interfaces.32,51 The incoming beam is then characte
ized by unit spin-matrix distribution functionsDx1

K and

DX̃1
K . To obtain a physical interpretation of this distributio

functions we consider a solution of Eq.~16! in form of a
traveling wave with frequencyv,

Dx1
K~x,e,t !5Dx1

K~e!ei (v/v f )(x2v f t). ~59!

The corresponding part of the Keldysh Green’s function f
lows from Eq.~12!, and after performing the time convolu
tions, Eq.~A1!, we obtain
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Dĝ1,in
K ~x,e,t !522p i

3H Dx1
K~e!S ei (v/v f )(x2v f t) 2 isyG̃1* S e2

\v

2 Dei (kTx2vt)

2 isyG̃1S e1
\v

2 De2 i (kTx1vt) 2G̃1S e1
\v

2 D G̃1* S e2
\v

2 De2 i (v/v f )(x1v f t)
D

1S 0 0

0 DX̃1
K~x,e,t !

D J , ~60!
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wherekT52e/\v f is the Tomasch wave vector. This give
us a very transparent interpretation for the processes cov
by Dx1

K . The upper left entry describes an incoming parti
with velocity v f . The lower right entry describes an Andree
reflected hole with velocity2v f , coming from the interface
due to retroreflection combined with particle hole conv
sion. The off-diagonal components describe particle- a
holelike Tomasch oscillations due to particle-hole coheren
The degree of coherence between particles and holes in
incoming distributionDx1

K is given by the coherence func

tion G̃1. This gives a direct physical interpretation of th
coherence functions. Similarly,G1 is the amplitude for An-
dreev reflected particles due to an incoming hole excita
beam. On the other hand, the distribution functionDX̃1

K de-
scribes an incoherent hole coming from the interface. T
component can be nonzero only if there is an incoming h
in the Green’s functionDĝ1,out

K or Dĝ2,out
K , which we exclude

in our scattering boundary condition. Thus, the corr
boundary conditions for the scattering problem take the
tuitively appealing form, to allow for the incoming particl
beam only an incoming distribution functionDx1

K and for all
outgoing channels only outgoing distribution functio
DX1

K , DX2
K , DX̃2

K . All other distribution function compo-
nents are zero.

In the following we assume a stationary (v50) situation,
where an incoherent beam is injected, which allows us
consider the incoming beam spatially homogeneous al
the trajectory. Furthermore, it is sufficient to solve the pro
lem for the distribution function

Dx1
K528pded~e2eb!d~ p̂f2p̂f ,b!, ~61!

wherep̂f denotes a unit vector in directionpf , andde is the
energy resolution of the beam. Any other distribution of
coming excitations is then given by a linear combination
such solutions with properly chosen weight functions. T
current density of the incoming beam isj 052eNfv fde. For
a current density much smaller than the critical current d
sity in the superconductor, one can neglect the effect of
beam on the self-consistent order parameter and impu
self-energies.

For the scattering parts of the Keldysh Green’s function
the normal side we obtain
ed
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Dĝ1,in
K 522p iDx1

KS 1 2 isyG̃1*

2 isyG̃1 2uG̃1u2
D , ~62!

Dĝ1,out
K 522p iDX1

KS 1 0

0 0D . ~63!

The vanishing off-diagonal elements of the reflected Gree
function show that there is no hole admixing in the reflec
particle beam.

The boundary conditions for theN-S interface follow
from Eqs.~32!–~35!,

DX1
K5RU 11g2g̃2

11Rg2g̃2
U2

Dx1
K , ~64!

DX2
K5DDx1

K , DX̃2
K52RDug̃2u2Dx1

K , ~65!

G15D g2

11Rg2g̃2

, G25Rg2 , ~66!

G̃15D g̃2

11Rg2g̃2

, G̃25Rg̃2 . ~67!

The total current densities are given in terms of the Keldy
Green’s functions via the formula j
5eNf*(de/8p i )Tr^t3vfDĝK&.4 Using the boundary condi
tions ~64!–~67!, this gives directly the total current densitie
at the interface in terms of the injected current density

j 1,in

j 0
511D 2U g̃2

11Rg̃2g2
U2

, ~68!

j 1,out

j 0
5RU 11g2g̃2

11Rg2g̃2
U2

, ~69!

j 2,in

j 0
5RDug̃2u2~11ug2u2!

u11Rg̃2g2u2
, ~70!

j 2,out

j 0
5D 11ug̃2u2

u11Rg2g̃2u2
. ~71!
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Here, j 1,in describes the incoming current including the e
cess current,j 2,in the regularly reflected current,j 2,out the
regularly transmitted current, andj 2,in describes the proces
where the Andreev reflected holes are regularly reflec
back to the superconductor at the interface. For energies
low the gap the transmitted current densitiesj 2,in , j 2,out, de-
cay with distance from the interface into the superconduc
region, where they are converted into super-currents. I
straightforward to show the conservation lawj 1,in1 j 2,in
5 j 1,out1 j 2,out. Eqs. ~68!–~71! hold for general anisotropic
and unconventional superconductors, including impu
scattering. The quantitiesg2 and g̃2 follow from solving
numerically their transport equations, Eqs.~14! and ~15!,
with self-consistently determined self-energies and order
rameter. For conventionals-wave superconductors, and a
suming a step function for the order parameter our formu
agree with the results of Blonder, Tinkham, and Klapwijk21

It is clear from Eq.~68! that the Andreev reflected bea
always enhances the current density in the injection be
giving rise to the excess current. The enhancement is pro
tional to D 2, reflecting the fact that both the incoming pa
ticle and the Andreev reflected hole have to cross the in
face. On the other hand, the current density of
conventionally reflected beam, described by Eq.~69!, can be
below or above the valueR• j 0.

The angle resolved density of states at the supercond
ing side of the interface is given by

N~e,pf !5NfRe
12Rg2g̃2

11Rg2g̃2

. ~72!

The local density of states is given by the Fermi surfa
average over this expression. Equation~72! shows that inter-
face bound states are given by the solution of the equa
11Rg2g̃250. Because the absolute values ofg2 andg̃2 are
in equilibrium always smaller than or equal to unity, bou
states at an interface can strictly occur only forR51, that

FIG. 2. Order parameter amplitude~left! and local density of
states at the interface~right! for an interface between ad-wave
superconductor and a normal metal, in~100! direction ~top! and in
~110! direction~bottom!. The interface is atx50, the normal metal
extends tox.0. The transmission coefficients for the differe
curves areD050.1 ~full line!, D050.5 ~long dashed!, D050.9
~dashed!, andD051.0 ~dotted!. The temperature isT50.3Tc , and
the mean free pathl 510j0.
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means zero transmission. For finite transmission the bo
states broaden into interface resonances. Impurity scatte
further broadens these resonances. In Fig. 2 we show
self-consistent solutions for thed-wave order parameterD
5A2 cos 2c and for the local density of quasiparticle stat
at the interface. For definiteness, we modeled the ang
dependence of the transmission coefficient for theN-N inter-
face by

D~f!5
D 0sin2f

R01D0sin2f
, ~73!

appropriate for ad-function potential barrier. Here,f is the
impact angle between incoming trajectory and interface. T
parametersD0 andR0512D0 are the transmission and re
flection coefficients for perpendicular impact (f5p/2). The
impurity self-energy was calculated self-consistently in Bo
approximation with a mean free path ofl 510j0. The tem-
perature was chosenT50.3Tc , leading to a maximal gap o
Dmax52.29Tc . For the~100! orientation of the interface the
order parameter is constant in the superconductor for z
transmission and is suppressed at the interface for fi
transmission. In contrast for the~110! orientation the order
parameter is suppressed to zero at the surface forD50 and
is suppressed to a finite value ifD is nonzero.22 In the ~100!
orientation there is no subgap resonance, whereas a zer
ergy resonance typical ford-wave pairing at properly ori-
ented surfaces is present at~110! orientation.41 Above the
maximal gap the density of states is enhanced for~100! ori-
entation. There is no such enhancement in the density
states at the interface above the gap for~110! orientation.

Figures 3 and 4 show selected results of our calculati
of Andreev reflection at a contact between a normal me
and ad-wave superconductor. Our calculations are done
T50.3Tc , for three mean free pathsl 52j0 ,10j0 , 100j0,
and for two orientations of the interface. Figure 3 shows
three energies the dependence of the excess current d
Andreev reflection~top panels! and the regularly reflected
current ~bottom panels! on the impact angle for transmis
sions D050.5 ~left picture! and for transmissionD050.9
~right picture!. The positions of the gap nodes show u
clearly in the Andreev reflection amplitude, which brea
down for quasiparticles transmitted into the nodal directio
The regular reflection approaches for the nodal direction
valueR(f). The width of this breakdown regions broade
with energy. At energies above the maximal gapDmax, the
Andreev amplitude approaches zero and the regularly
flected amplitude approaches the valueR(f). The depen-
dence on the energy of the incoming quasiparticles is sho
for one representative impact angle in Fig. 4 for three val
of mean free path, again for transmissionD050.5 ~left! and
for transmissionD050.9 ~right!. For the~100! interface as
shown in Figs. 3 and 4, the behavior at low energies
clearly distinct from the behavior for a~110! interface.
Whereas for a~110! interface the regular reflection is sup
pressed for low energies, it is enhanced for a~100! interface.
The excess current shows a peak at low energies for
~110! interface, but the~100! interface shows a minimum
The features at the gap edges are small for the~110! orien-
tation, but are strong for the~100! orientation. And finally,
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FIG. 3. Current densities in the injected beam~top panels! and in the regularly reflected beam~bottom panels!, as a function of the impac
angle for three energies:eb50 ~full line!, 0.4Dmax ~dashed!, and 1.6Dmax ~dotted!. The left part of each picture is for a~110! interface, and
the right part of each picture for a~100! interface between ad-wave superconductor and a normal metal. The left picture is for a transmis
coefficientD050.5, and the right picture for a transmission coefficientD050.9. The temperature isT50.3Tc , and the mean free pathl
510j0.
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the signal above the gap edges is small for a~110! interface
but extends well up to twice the gap for a~100! interface.

In the clean limit the zero energy current density of t
incoming beam isj 1,in / j 052 for a ~110! interface, and
j 1,in / j 052(11R 2)/(11R)2<2 for a ~100! interface; for
the regularly reflected beam the zero energy limit
j 1,out/ j 050 for a ~110! interface, and j 1,out/ j 054R/(1
1R)2>R for a ~100! interface. The values for the~100!
interface coincide with the values for a conventional isot
pic s-wave superconductor, and are in agreement w
Blonderet al.21 and Shelankov.52 Explicit values for the zero
energy limits at a~100! surface are for perpendicular impa
j 1,in / j 051.11, j 1,out/ j 050.89 for D50.5, and j 1,in / j 0
51.67, j 1,out/ j 050.33 for D50.9. These values agree wit
our numerical calculations for mean free pathsl>100j0. In
-
h

contrast, the zero energy values for the~110! interface of two
for the incoming and of zero for the reflected beam are v
sensitive to impurity scattering. In fact, as can be seen fr
Fig. 4, is the first value reduced to about 1.2 for half tran
mission and a realistic mean free path of ten cohere
lengths, and the second value is larger than 0.2 in this c
Also the structures around the gap edges for the~100! sur-
face are very sensitive to impurity scattering. For a mean f
path of two coherence lengths the Andreev signal is alre
strongly reduced, as our calculations in Fig. 4 show. T
may explain the small signal of only a few percent in ma
Andreev experiments. The different behavior at low energ
for the regular reflection is the only remaining differenc
between~100! and ~110! orientation for mean free path
comparable to the coherence length for unconventional
n

FIG. 4. Current densities in the injected beam~top panels! and in the regularly reflected beam~bottom panels!, as a function of energy
for three different mean free path values for the superconductor:l 5100j0 ~full line!, 10j0 ~dotted!, and 2j0 ~dashed!. The impact angle is
f/p50.4. The left part of each picture is for a~110! interface, and the right part of each picture for a~100! interface between ad-wave
superconductor and a normal metal. The left picture is for a transmission coefficientD050.5, and the right picture for a transmissio
coefficientD050.9. The temperature isT50.3Tc . The values for the maximal gaps at this temperature areDmax(l5100j0)52.13Tc( l
5100j0), Dmax(l510j0)52.29Tc( l 510j0), Dmax(l52j0)52.85Tc( l 52j0).
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FIG. 5. Current densities in the injected beam~top panels! and in the regularly reflected beam~bottom panels! at a~110! interface. Dotted
lines are for a temperatureT50.3Td , which is above the transition temperature from ad to a d1 is state. Full lines are for a temperatur
T50.1Td , which is below this transition to the spontaneaously time reversal symmetry broken state. The left picture is for mean f
l 510j0, and the right picture for mean free pathl 5100j0. The left part in each picture shows the energy dependence for impact
f/p50.348, and the right part of each picture shows the dependence on impact angle fore50.2Dmax. The transmission coefficient is
D050.2. The subdominant transition temperature isTs,050.3Tc .
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perconductors. The suppression of the regularly reflec
beam at low energies for all angles~except in nodal direc-
tion!, as seen for a~110! interface in the lower left panels o
Figs. 3 and 4, is a direct consequence of the sign chang
the order parameter during reflection of quasiparticles. T
origin of this effect is the same as for the zero energy re
nance ~and follows from the Atiyah-Patodi-Singe
theorem53!. Both effects are destroyed by time reversal sy
metry breaking and both effects are washed out by impu
scattering. However, in contrast to the zero energy re
nance, which is not an exact bound state anymore for fi
transmission even for zero impurity scattering, the stro
suppression at low energies of the regularly reflected be
remains a stable phenomenon for all transmissions in
clean limit. The effect is reduced by finite impurity scatte
ing, and in this case it is further reduced if the transmissio
comparable or smaller than the scattering rate. Thus,
zero-energy resonance and the blocking of the regular re
tion are two complementary phenomena: the first one is w
established only for interfaces with small transmissio
whereas the latter one is well established at interfaces w
the transmission is not too small.

The low-energy behavior of the regularly reflected be
can be used to prove a sign change of the order param
during reflection of the quasiparticles at an interface. Spe
cally, our results show that at low energies for all impa
angles this reflection amplitude is alwaysabovethe normal
state reflection,R(f), whereas for the~110! interface it is
for all directions clearlybelow R(f) ~the normal state re
flection can be obtained for a beam witheb well above the
maximal gap!.

Finally, we show that the low-energy suppression of
regular reflection and enhancement of the excess curren
sensitive test for time reversal symmetry breaking states
Fig. 5 we show our results for a dominantd-wave coupled to
a subdominants-wave component. Below the interfac
transition42,54,55they couple to the spontaneously time rev
sal symmetry breaking stated1 is,42,54 where thes-wave
d
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component is localized in a layer of a few coherence leng
near the interface. The left picture is forl 510j0 and the
right picture forl 5100j0 The coupling strength of the sub
dominant component is characterized by its ‘‘bare’’ tran
tion temperatureTs,0 ~in the absence of the dominant com
ponent!. This transition temperature is reduced in t
presence of the dominant component.42,54,55 We choseTs,0

50.3Td , where Td is the transition temperature from th
normal state to the pured-wave state. This value ofTs,0 is
below the critical value for a possible transition into a bu
d1 is state.42 Nevertheless, the transition into ad1 is state
localized near the interface is possible. According to our c
culations the subdominant component is strongly suppres
by finite transmission, so we chose a small valueD050.2.
The dotted curves show the current densities of the refle
beams for a temperatureT50.3Td . The system is at this
temperature above the transition into the time reversal s
metry breaking state. Full curves are forT50.1Td , which
corresponds to the interfaced1 is state. As can be seen from
Fig. 5, the suppression of the reflection and the enhancem
of Andreev reflection are shifted to negative energies. Du
finite impurity scattering, and resulting mixing of differen
momentum directions, there is also a shadow-feature at p
tive energies. The broadening of the feature itself is reduc
leading to a much sharper effect compared to the p
d-wave state. The zero energy values for regular reflec
are changed in thed1 is state to almost 1. Also shown in
Fig. 5 is the dependence of the reflected current densitie
the impact angle. The small dip atf5p/2 is due to the fact
that the energy of the incoming particles is above the gap
these directions. Below the transition into thed1 is state
there is a strong anisotropy with respect to the interface n
mal. This effect is a consequence of the spontaneous su
currents at the superconducting side of the interface.56 For an
incoming particle beam with a projection on the interfa
counter-moving with the current the regular reflection
strongly reduced compared to the pured-wave state, wherea
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the Andreev reflection is enhanced for this case. For a b
with a projection comoving with the supercurrent these
fects are absent or inverted. The shift of the feature in
energy dependence of the reflected current densities is d
mined by the Doppler shift of the quasiparticle spectrum d
to the spontaneous supercurrent at the superconducting
of the interface. Thus, thesign of the shift for a chosen
impact angle can be positive or negative dependent on
direction of the spontaneous interface currents~similarly the
asymmetry around the interface normal changes its sign!.

VIII. CONCLUSIONS

We have developed a theoretical formulation of noneq
librium superconducting phenomena, including singlet a
triplet pairing, in terms of coherence functions and distrib
tion functions. Our central results are Eqs.~11!–~17!, to-
gether with boundary conditions at interfaces, Eqs.~32!–
~35!. We used this formulation to present the theory
Andreev spectroscopy at interfaces between a normal m
and an unconventional superconductor in a transparent w
This formulation allows to include disorder in a se
consistent manner. We proposed an anomalous suppre
of the regularly reflected quasiparticle beam as a test for t
reversal symmetry breaking states. This test is espec
suitable for not too small transmission, where the zero
ergy interface resonances become ill-defined and canno
used as a test for time-reversal symmetry breaking anym
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APPENDIX A: NOTATION

The noncommutativê product is defined in the follow-
ing way:

Â^ B̂~e,t !5e( i\/2)(]e
A] t

B
2] t

A]e
B)Â~e,t !B̂~e,t !. ~A1!

If one of the factors is both independent ofe and t, the ^

product reduces to the usual matrix product.
For Fourier transformed quantities (t→v) we have

Â^ B̂~e,v!5E
2`

` dv8

2p

dv9

2p
d~v81v92v!

3ÂS e1
\v8

2
,v9D B̂S e2

\v9

2
,v8D .

~A2!

If Â(e,t)5Â(e) is independent oft, that means,Â is an
equilibrium quantity, then

Â^ B̂~e,v!5ÂS e1
\v

2 D B̂~e,v!, ~A3!

and, analogously, ifB̂ is an equilibrium quantity
m
-
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e

e
at

Â^ B̂~e,v!5Â~e,v!B̂S e2
\v

2 D . ~A4!

Also we generalize the commutator

@Â,B̂# ^ 5Â^ B̂2B̂^ Â. ~A5!

The Fermi surface average^•••&p8 is defined by

^•••&p
f8
5

1

Nf
E d2pf8

~2p\!3uvf~pf8!u
•••, ~A6!

whereNf is the total density of states at the Fermi surface
the normal state

Nf5E d2pf8

~2p\!3uvf~pf8!u
~A7!

andvf(pf8) is the normal state Fermi velocity at the positio
pf8 on the Fermi surface

vf~pf8!5
]«~p!

]p
up5p

f8
. ~A8!

Here,«(p) describes the normal state dispersion of the q
siparticle band crossing the Fermi level atpf8 .

APPENDIX B: PROJECTORS

Following Shelankov,18 we introduce the following pro-
jectors:

P̌65
1

2 S 1̌6
1

2 ip
ǧD . ~B1!

From the normalization condition,ǧ^ ǧ52p21̌, it follows
that P̌1 and P̌2 are projection operators

P̌1 ^ P̌15 P̌1 , P̌2 ^ P̌25 P̌2 ~B2!

and project orthogonal to each other

P̌11 P̌251̌, ~B3!

P̌1 ^ P̌25 P̌2 ^ P̌150̌. ~B4!

The quasiclassical Green’s functions may be expresse
terms ofP̌1 or P̌2 ,

ǧ52 ip~ P̌12 P̌2!

52 ip~2P̌121̌!52 ip~ 1̌22P̌2!. ~B5!

Equations of motion for the projectors can be extracted fr
the corresponding equations for the quasiclassical Gre
functions

@ ě2ȟ,P̌6# ^ 1 i\vf“ P̌650̌. ~B6!

The Keldysh component of the Green’s functionsĝK fulfills
the relation ĝR

^ ĝK1ĝK
^ ĝA50̂. This implies P̂1

R
^ ĝK

^ P̂1
A 50̂ and P̂2

R
^ ĝK

^ P̂2
A 50̂, leading to

ĝK5 P̂1
R

^ ĝK
^ P̂2

A 1 P̂2
R

^ ĝK
^ P̂1

A . ~B7!

The value ofP̂1
R

^ ĝK
^ P̂2

A does not determineĝK uniquely.

It is possible to addP̂2
R

^ Â1B̂^ P̂1
A to ĝK with any matrix

function Â andB̂ without changingP̂1
R

^ ĝK
^ P̂2

A ~similarly
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for P̂2
R

^ ĝK
^ P̂1

A ). One can use this property to obtain

proper parametrization ofĝK and to eliminate the unneces
sary information inĝK. We write

ĝK522p i ~ P̂1
R

^ X̂K
^ P̂2

A 1 P̂2
R

^ ŶK
^ P̂1

A !, ~B8!

whereX̂K andŶK contain only one free spin matrix functio
as parameter. TheX̂K and ŶK have to fulfill fundamental
symmetry relations, following from the symmetry relatio
for the quasiclassical Green’s function,ǧ. From the equa-
tions of motion of the Keldysh Green’s functions

~et̂32ĥR! ^ ĝK2ĝK
^ ~et̂32ĥA!1 i\vf“ĝK

52~ ĝR
^ ĥK2ĥK

^ ĝA!, ~B9!

we obtain the equations of motion forX̂K and ŶK using Eq.
~B6!

P̂1
R

^ $~et̂32ĥR! ^ X̂K2X̂K
^ ~et̂32ĥA!1ĥK

1 i\vf“X̂K% ^ P̂2
A 50̂, ~B10!

P̂2
R

^ $~et̂32ĥR! ^ ŶK2ŶK
^ ~et̂32ĥA!2ĥK

1 i\vf“ŶK% ^ P̂1
A 50̂. ~B11!

Tracing these equations properly in the Nambu space
respecting the symmetries ofX̂K and ŶK, one obtains two
equations for both undetermined 232 spin matrix functions,
which parametrizeX̂K and ŶK.

Analogously we proceed for the linear response. From
first-order normalization conditions~37! we have P̂1

R,A

^ dĝR,A
^ P̂1

R,A50̂ and P̂2
R,A

^ dĝR,A
^ P̂2

R,A50̂; as a conse-

quence the spectral response,dĝR,A, can be written as

dĝR,A572p i @ P̂1
R,A

^ dX̂R,A
^ P̂2

R,A2 P̂2
R,A

^ dŶR,A
^ P̂1

R,A#.
~B12!

Analogously, for the anomalous response the normaliza
condition ~37! leads to P̂1

R
^ dĝa

^ P̂1
A 50̂ and P̂2

R
^ dĝa

^ P̂2
A 50̂, so thatdĝa can be written in the following form:

dĝa522p i @ P̂1
R

^ dX̂a
^ P̂2

A 1 P̂2
R

^ dŶa
^ P̂1

A #.
~B13!

APPENDIX C: PARAMETER REPRESENTATIONS OF
THE QUASICLASSICAL GREEN’S FUNCTIONS

The projectorsP̂1
R and P̂2

R may be parametrized in th
following way by complex spin matricesgR(pf ,R,e,t) and
g̃R(pf ,R,e,t):

P̂1
R 5S 1

2g̃RD ^ ~12gR
^ g̃R!21

^ ~1,gR!, ~C1!

P̂2
R 5S 2gR

1 D ^ ~12g̃R
^ gR!21

^ ~ g̃R,1!. ~C2!

Here (11a^ b)21 is defined by
nd

e

n

~11a^ b!21
^ ~11a^ b!51. ~C3!

One immediately provesP̂1
R

^ P̂1
R 5 P̂1

R , P̂2
R

^ P̂2
R 5 P̂2

R and

P̂1
R

^ P̂2
R 5 P̂2

R
^ P̂1

R 50̂. A useful identity is

~11a^ b!21
^ a5a^ ~11b^ a!21, ~C4!

which may be used to obtainP̂1
R 1 P̂2

R 51. The uniqueness
of the projectors is ensured by the symmetry relations
tween the matrix elements of the retarded and advan
Green’s functions. We may obtain the advanced Gree
functions either by the fundamental symmetry relationĝA

5 t̂3(ĝR)†t̂3 or analogously to the retarded case using
vanced projectorsP̂1

A 5 t̂3( P̂2
R )†t̂3 , P̂2

A 5 t̂3( P̂1
R )†t̂3

P̂1
A 5S 2gA

1 D ^ ~12g̃A
^ gA!21

^ ~ g̃A,1!, ~C5!

P̂2
A 5S 1

2g̃AD ^ ~12gA
^ g̃A!21

^ ~1,gA!. ~C6!

Here gA5(g̃R)†, g̃A5(gR)† holds. Introducing Eqs.~C1!,
~C2!, ~C5!, ~C6! into Eq. ~B6!, and using e ^ a1a^ e

52ea leads to the transport equations forgR,A and g̃R,A,
Eqs.~14! and~15!, which are generalized Riccati differentia
equations. They are supplemented by properly chosen in
conditions. The solutionsg̃R,A, gR,A are introduced into Eqs
~C1!, ~C2!, ~C5!, ~C6! to obtain the quasiclassical Green
functions, Eqs.~11!, ~13!, via Eq. ~B5!.

The solutions for the coherence functions in a homo
neous singlet superconductor in equilibrium are

ghom
R,A52

DR,A

«R,A6 iA2DR,AD̃R,A2~«R,A!2
, ~C7!

g̃hom
R,A5

D̃R,A

«R,A6 iA2D̃R,ADR,A2~«R,A!2
, ~C8!

where «R,A5e2(SR,A2S̃R,A)/2. Note that (DR,AD̃R,A) is
proportional to the unit spin matrix and that in the clean lim
(DR,AD̃R,A)52uDu2. In the presence of a constant superflo
with momentumps one has to make the replacemente→e
2vf•ps .

Using this parametrization the following representati
for the Keldysh component with Hermitean spin matric
xK(pf ,R,e,t) and x̃K(pf ,R,e,t) is convenient. Substituting

X̂K5S xK 0

0 0D , ŶK5S 0 0

0 x̃KD , ~C9!

into Eq.~B8!, using the equation of motion forĝK, Eq. ~B9!,
leads to the transport equations forxK and x̃K, Eqs.~16! and
~17!. Note thate ^ a2a^ e5 i\] ta. These transport equa
tions have to be supplemented by initial conditions. For
Keldysh Green’s function Eq.~C9! leads to Eq.~12!.

It is possible to introduce Shelankov’s distributio
functions18 F andF̃, which are given by the parametrizatio
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X̂K5S F 0

0 F D , ŶK5S F̃ 0

0 F̃
D . ~C10!

They obey the symmetry relationsF̃(pf ,R,e,t)5F

(2pf ,R,2e,t)* , F̃(pf ,R,e,t)5F(pf ,R,e,t)†. The xK and
x̃K are expressed in terms of them in the following way:

xK5~F2gR
^ F ^ g̃A!,

x̃K5~ F̃2g̃R
^ F̃ ^ gA!. ~C11!

Using the introduced parametrization in terms of cohere
functions, the transport equation forF has the form

~ i\vf“F1 i\] tF !2gR
^ ~ i\vf“F2 i\] tF ! ^ g̃A

1~2SR
^ F1F ^ SA1SK!

2gR
^ ~2S̃R

^ F1F ^ S̃A2S̃K! ^ g̃A

2gR
^ ~D̃R

^ F2F ^ D̃A1D̃K!

1~DR
^ F2F ^ DA2DK! ^ g̃A50. ~C12!

The transport equation forF̃ follows by application of the
conjugation operation, Eq.~10!, to this equation. TheĝK are
obtained by introducing Eq.~C11! into Eq. ~12!. The later
parametrization is a convenient starting point for pertur
tion theory from the equilibrium, because in the equilibriu

Feq5tanh
e

2T
52F̃eq, ~C13!

holds and all expression in the braces in Eq.~C12! vanish
independently.

Finally we make the connection to our parametrization
the linear response. With the choices

dX̂R,A5S 0 dgR,A

0 0 D , dŶR,A5S 0 0

dg̃R,A 0D ,

~C14!

in Eq. ~B12!, and

dX̂a5S dxa 0

0 0D , dŶa5S 0 0

0 d x̃aD , ~C15!

in Eq. ~B13!, we arrive at Eqs.~41!–~48!. With this param-
etrization the linear corrections to the distibution spin ma
cesgR,A, g̃R,A, xK, x̃K are given bydgR,A, dg̃R,A, dxK, and
d x̃K, respectively.

APPENDIX D: REFLECTION AND TRANSMISSION
COEFFICENTS

In the superconducting state we define effective reflec
and transmission coefficients by

r i j
R5~12g i

R
^ g̃ j

R!, r̃ i j
R5~12g̃ i

R
^ g j

R!, ~ i , j 51,2!,
~D1!
e

-

-

n

R1l
R 5Rr22

R
^ ~Rr22

R 1Dr12
R !21,

R1r
R 5~Rr̃22

R 1Dr̃21
R !21

^ Rr̃22
R , ~D2!

R̃1l
R 5Rr̃22

R
^ ~Rr̃22

R 1Dr̃12
R !21,

R̃1r
R 5~Rr22

R 1Dr21
R !21

^ Rr22
R , ~D3!

A1l
R 5~g1

R2g2
R! ^ ~Rr̃22

R 1Dr̃21
R !21,

A1r
R 5~Rr22

R 1Dr12
R !21

^ ~g1
R2g2

R!, ~D4!

Ã1l
R 5~ g̃1

R2g̃2
R! ^ ~Rr22

R 1Dr21
R !21,

Ã1r
R 5~Rr̃22

R 1Dr̃12
R !21

^ ~ g̃1
R2g̃2

R!, ~D5!

andD1l
R 512R1l

R , D1r
R 512R1r

R D̃1l
R 512R̃1l

R D̃1r
R 512R̃1r

R .
Analogously we define these quantities on the other side
the interface by interchanging 1 and 2. Advanced quanti
are given by the same expressions with the change in
superscriptR→A. The following relations are shown to
hold:

A1l
R 5

R1l
R

R ^ g1
R2

D1l
R

D ^ g2
R, A1r

R 5g1
R

^
R1r

R

R 2g2
R

^
D1r

R

D ,

~D6!

Ã1l
R 5

R̃1l
R

R ^ g̃1
R2

D̃1l
R

D ^ g̃2
R , Ã1r

R 5g̃1
R

^
R̃1r

R

R 2g̃2
R

^
D̃1r

R

D .

~D7!

As an example we consider the equilibrium spin-singlet ca
In equilibrium the^ product reduces to a matrix product. I
this case we can writegR5 isyg, g̃R5 isyg̃, GR5 isyG,
G̃R5 isyG̃, whereg, g̃, G, G̃ are scalar functions. The ef
fective reflection and transmission coefficients are

R15R 11g2g̃2

11Rg2g̃21Dg1g̃2

, ~D8!

D15D 11g̃2g1

11Rg2g̃21Dg1g̃2

, ~D9!

R̃15R 11g2g̃2

11Rg2g̃21Dg2g̃1

, ~D10!

D̃15D 11g2g̃1

11Rg2g̃21Dg2g̃1

~D11!

~and analogously for the other side of the interface!, which
fulfill Rj1D j51 andR̃j1D̃ j51 ( j 51,2).
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11L.P. Gor’kov, Zh. Éksp. Teor. Fiz.34, 735 ~1958! @Sov. Phys.
JETP7, 505 ~1958!#; 36, 1918~1959! @9, 1364~1959!#.

12A.F. Andreev, Zh. E´ksp. Teor. Fiz.46, 1823~1964! @Sov. Phys.
JETP19, 1228~1964!#.

13N.N. Bogoliubov, Zh. E´ksp. Teor. Fiz.34, 58 ~1958! @Sov. Phys.
JETP7, 41 ~1958!#.

14P. G. de Gennes,Superconductivity in Metals and Alloys~Ben-
jamin, New York, 1966!.

15W.J. Tomasch, Phys. Rev. Lett.15, 672 ~1965!; 16, 16 ~1966!.
16C. Caroli, P.G. de Gennes, and J. Matricon, Phys. Lett.9, 307

~1964!.
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