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Transfer-matrix description of heterostructures involving superconductors and ferromagnets
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Based on the technique of quasiclassical Green’s functions, we construct a theoretical framework for de-
scribing heterostructures consisting of superconductors and/or spin-polarized materials. The necessary bound-
ary conditions at the interfaces separating different metals are formulated in terms of hopping amplitudes in a
t-matrix approximation. The theory is applicable for an interface with arbitrary transmission and exhibiting
scattering with arbitrary spin dependence. Also, it can be used in describing both ballistic and diffusive
systems. We establish the connection between the standard scattering-matrix approach and the existing bound-
ary conditions, and demonstrate the advantages offered hiynttagrix description.
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[. INTRODUCTION tions for the formation of these correlations and the corre-
sponding anomalous proximity effect has given the initial
Low-energy(below the superconducting energy gafec-  motivation for this work.

tron transport through contacts between a superconductor Problems related to superconducting proximity effect with
and a normal metal can be understood in terms of Andreespin-dependent interfacial scattering are of spatially inhomo-
reflection? In this process, an incident electron from the nor-geneous nature and, as such, they can only be studied with
mal side can enter the superconductor by pairing with anspecialized theoretical tools. Such a tool is provided by the
other electron with the opposite spin, leaving a reflected holeuasiclassical theory of superconductity! This theory is
in the normal metal. The phase-coherent nature of this proapplicable for weakly perturbed superconduct@isaracter-
cess results in superconducting correlations being induced igtic length scale of perturbations much larger than Fermi
the normal-metal side, referred to as the proximity effectwave length and characteristic frequencies much less than
The important feature of Andreev reflection is that, with sin-Fermi energy and can be used in both equilibrium and non-
glet superconductors, it involves both spin bands in the norequilibrium situations. It describes quasiparticles with mo-
mal metal. Therefore, the above simple picture has to benenta on the Fermi surface moving along straight classical
modified when the normal metal is replaced by a ferromagtrajectories, the direction of which is given by the corre-
net with two different Fermi surfaces for the two spins, re-sponding Fermi velocity. A ferromagnetic metal has different
sulting in new and interesting physical phenomena. In recerftermi surfaces and, correspondingly, different sets of trajec-
years, interplay between superconductivity and ferromagtories for the two spin orientations. In this case, the quasi-
netism has attracted considerable theorétiCaland classical theory can be used to describe two limiting cases:
experimentd® attention—both out of fundamental scien- (i) weak ferromagnetism, where the energy splitting of the
tific interest and in view of the possibility of novel applica- two Fermi surfaces and the associated deviation of the Fermi
tions and devices. One important consequence of the spivelocities is so small that the two spin trajectories with the
splitting between the two bands in the ferromagnet is that theame momentum direction are fully coherent, éindstrong
phase coherence between the particle—hole pair in the cledsrromagnetism, where the splitting is so large that the co-
(dirty) limit is destroyed over a characteristic distance ofherence is lost completely. While the former limiting case
v¢/h (VDIh), whereuv; is the Fermi velocityD the diffu-  has been exhaustively studied in the literature, the latter has
sion constant, ant an effective exchange energy which de- only recently received attentidd Here we present a theoret-
scribes the spin splitting. Since this distance is typically veryical study of the latter possibility. Even in the absence of
short(of the order of atomic distancgshe superconducting conventional Andreev reflection processgedich would re-
correlations induced to the ferromagnetic material are exguire coherence between particles and holes in opposite spin
pected to be confined to the immediate vicinity of the sepabands, interesting and nontrivial physics emerges due to
rating interface. This raises the question whether, for strongpin-active interfacial scattering. Additional motivation has
ferromagnets, a mechanism of a different type takes over anlseen provided by the growing interest in a new class of ma-
dominates the physics of superconductor/ferroma¢g84%  terials, half-metallic ferromagnet3='® In these materials,
contacts. One such mechanism, recently under active invesne spin band is metallic and the other one insulatiip%
tigation, is the inducement of spin-triplet correlations: polarized ferromagngt Since a half metal has a Fermi sur-
namely, the exchange field only affects correlations of singleface only for one of the two spin orientations, it is clear that
type, i.e., between particles and holes in opposite spin bandthe traditional description for weak ferromagnets is inappli-
In fact, equal-spin triplet correlations are expected to be creeable, and other methods must be employed.
ated by proximity to a ferromagnet due to the breaking of In Sec. Il, we outline the central equations of the quasi-
spin-rotational symmetry. The desire to formulate a theoryclassical theory of superconductivity. Compared with the full
capable of understanding the detailed nature and the condiicroscopic theory, the quasiclassical theory offers consider-
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able S|mpl|f|cat|pns when treating spatially n_']homog(_aneous QEQ’K(FA).R,EJ)=95’;‘K(—f),R,—6,'[)*- 3)
states by reducing the content @mnnecessajpyinformation

carried by the Green’s functions. However, this leads to nonThe quasiclassical Green’s functions satisfy the Eilenberger
trivial boundary conditions which have to be formulated attransport equation

interfaces separating different metals that connect the solu- .. . .

tions of the two sides. Such cons%itions have been derived for [eT3—2,9]s +ivi(p)- Vrg=0. (4)
nonmagnetic interfaces by Zaitsevand for magnetic inter- . 5~ .
faces by Milliset al1® After a short description of this work Generally s_peakmg, the self-ener@(p,R,e,t) includes

in Sec. Ill, we formulate an alternative but equivalent set ofmolecular fields, the superconducting order parameier
boundary conditions, where the transmission through an in=A1, impurity scattering, and external fields. The noncom-
terface is parameterized by a hopping amplitude that conmutative product® combines matrix multiplication with a
tains the information of various processes contributing taconvolution over the internal variables, ang= 1751 is a
particle transfer. This approach enables the formulation opauli matrix in particle—hole space. The quasiclassical

boundary conditions in a simple and appealing form. Thegreen’s functions also satisfy a normalization condition
equivalence to existing methods is demonstrated in Sec. IV.

As explained in Sec. V, the advantages of thmatrix for- geg=—71. (5)

mulation are especially evident in studying interfaces that » : .
separate two materials with a different structure of thel @ddition to Eqs(4) and(S), self-consistency equations for

Green’s functions and/or a different number of trajectoriesdifferent parts of the self-energy have to be provided; e.g.,

such as in the case of a superconductor/strong ferromagn,fﬂr the (weak-coupling order parameter the condition reads

interface. Finally, in Sec. VI, we apply our theory to study e de
the current through a point contact separating a singlet su- A(R,t):)\f __<'fK(6,R,E,t)>’3, (6)
perconductor from a strong ferromagnet. ~e A

where\ is the strength of the pairing interactiof); de-
Il. BASIC EQUATIONS OF QUASICLASSICAL THEORY notes averaging over the Fermi surface, aifdis the
particle—hole off-diagonal part of the quasiclassical Keldysh
Green’s function. The cut-off energy is to be eliminated in

mulated in terms of quasiclassical Green’s functiqos . :
« A hat d q h ol di favor of the transition temperature in the usual manner.
propagatorsg(p,R,e,t) that depend on the spatial coordi-  \yhen the quasiclassical Green's function has been deter-

nateR and timet and describe quasiparticles with enegy nineqd, physical quantities of interest can be calculated; e.g.,
(measured from the chemical potentiahd the momentum  yhe eypression for the current density adopts the form
direction on the Fermi surfaqe=p/p; moving along classi-
cal trajectories with direction given by the Fermi velocity
v;(p).*° The quasiclassical Green's functions arg 2 ma-
trices in Keldysh spacé&enoted by a “check” accet

The quasiclassical theory of superconductitit} is for-

) de N nomy A
J(R,t)=fﬁTﬁevaf(p)ngK(p,R,e,t)h;. (7)

wheree is the electron charge andk is the density of states
~R~K on the Fermi surface. However, to form a complete theory
- (90 (1) for studying heterostructures, the above equations must still
' be supplemented with the boundary conditions connecting
the solutions at the separating interfaces. We introduce these

with three nonzero elementeetarded®, advancedy?, and ~ conditions in the following section.

Keldysh gX). In describing superconductivity, these ele-
ments in turn are X4 Nambu-Gor’kov matrices in com- IIl. BOUNDARY CONDITIONS
bined particle—hole and spin spa@enoted by the hat sym- A. Scattering-matrix approach

bol), for example, the retarded Green’s function has the form . .
Interfaces represent strong perturbations on an atomic

length scale and, therefore, fall out of the applicability range
of quasiclassical theory. However, as was shown in the pio-
neering work of ZaitseV’ interfaces can be brought within

R R R R
g on fyp fy

R giRT gi f?T le the quasiclassical theory by means of effective boundary

of=| __ . (2 conditions that connect trajectories related through interface
fTRT f?i QTRT gﬁ scattering processes. Later these conditions were generalized

for an arbitrary magnetically active interface, i.e., one that

?'} 'f'fl "g'fT a'fi scatters quasiparticles differently depending on their spin

orientation'® The latter case is relevant for studying inter-
All these matrix elements are not independent of each othefaces with spin-polarized materials such as ferromagnets.
Indeed, the elements in the lower half of the matrix are re-The procedure for the derivation of the boundary conditions
lated to the ones in the upper half through the conjugatioegins by isolating a region of quasiclassical sjxe<é
symmetry, e.g., around the interface located at the origin of the perpendicular
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coordinatex (8 much larger than the atomic-size range of theablg. This situation arises in the context of half-metallic
strong interface potential but much smaller than the supemnaterials, where trajectories exist only for one of the spin
conducting coherence leng#). In the half space$x|> 4, orientations.

the solutions for quasiclassical Green’s functions can be

found by standard methods described in the previous chapter. B. Transfer-matrix approach

The solutions for the lefil) and right (r) sides are then

matched via a scattering matrix Due to the abovementioned difficulties we proceed in an

alternative but equivalent routé?® This method requires
(g g §olving for the auxiliary quasiclassical propagatgts and
=( & érr) , (8 g"Yforan impenetrabvleinterface. They are to be calculated
with the self-energiex{g} determined with the full propa-

the form of which is determined by the detailed microscopicdator, and using the simple perfectly-reflecting boundary
structure of the interface region and on the quasiclassictondition
level has to be treated as a phenomenological parameter of cin mivin A
. ;i . 2 . i0_g !,O(SI)T (10)

the theory. The crucial simplifying observation is that, since Your=>in '
t_h? (sjtron_gof thehord:r oflthe_ Fermi (ane_rgmtferface poten-  Jwherei =I,r. They also safisfy the normalization condition,
tial dominates the Hamiltonian in the interface region, t €990 g'°= — 721, The impenetrable interface is character-
scattering matrixX8) corresponds to that of theormal state ) A . )
i.e., does not contain particle—hole mixing. Also, it has noiz€d by two surface scattering matncéSA%_,andSN. Particle
Keldysh space structure. conservation requires them to be unitai§)(=(S) 1. The

The boundary conditions were derived for a smo@h  transmission processes for an interface with arbitrary trans-
the scale of¢) interface, assuming the conservation of mo-parency can be taken into account with-matrix formula-
mentump; parallel to the interface. In the following, all tion. The transfer matrices are determined with effective hop-
momentum-dependent quantities should be understood @sng amplitudesr,, and 7, by the following equations:
having the samgy, unless explicitly stated. In terms of qua-
siclassical Green’s functions they adopt the f6tm

I 7~ Zr02ft , =~ Zr00t o X1,0. %1
tin_Tlrg(r)utTIr+Tlrg(rjutTlr®gin ®ti,, (119

(é!n—iwi>®(§|6'ou$|—§|ééusu>®(é2n+iwi>=0k9a) th=TnGoumn + i Goum ®0n 1, (11D
with 7,,=(7,)" due to particle conservation. The corre-
b &l at & srat A IR A spondingt matrices for outgoing trajectories are related to
+ 1 . . 1)=
(Jourt 1 L) ® (S19in S — Sir GinSir) @ (Jour— 1 71) Okgb) the ones for incoming trajectories through the relation

I _Qifi st
(@171 (8] 60— 800S0 (31 7) =0, fou™ Sl S 12
(90) The t matrix describes the modifications of the decoupled
quasiclassical propagators due to virtual hopping processes
(érout—H771)®(A8rréirnAS:r_ASrlé!nAS;rl)(X)(é(r)ut_i771):0’ to the opposite side. Finally, the boundary condition can be

(9d)  expressed in terms df andg'® to read

with gi,=9(p) andg.,=9(p), wherep (p) is a unit vector gh=0.2+ (g +irl ot o(gl’-irl), (133
along the momentum direction with the perpendicular com- _ _ _ _ _
ponent directed towardgéaway from) the interface. The Jou= Ot (Gua— il ®th, @ (gpo+iml).  (13b

boundary condition consists of four coupled nonlinear equa- . o )

tions for the incoming and outgoing matrix propagators on'n thet-matrix description, the phenomenological parameters
both sides of the interface. Solving this equation system anfOntaining the microscopic information of the interface are
dealing with the possibility of arriving at unphysical solu- € surface scattering matrices and the hopping amplitudes.
tions is evidently not a simple task. Progress towards a mor&N€ particle—hole structures of the surface scattering matrix
convenient form of boundary conditions has been made b§nd the hopping amplitude are connected through

Eschrig (nonmagnetic interfacg and Fogelstrm (mag- S 0 0

netic interfaces?! They employed the powerful Riccati pa- g P Tir (14)
rametrization method which allows for a considerably sim- 0 3 "Mlo @@

pler representation of boundary conditions in terms of the _

Riccati amplitude€®2223However, the conditions in Ref. 21 to ensure the conservation of current. In the general case
were only derived for the equilibriunjretarded and ad- ~ e

vanced propagators. Furthermore, even in equilibrium situ- S(p) =S'(—pp- (19

ations they cannot be used in the published form in the casg this formulation, the boundary problem effectively re-
when the two sides of the interface have a different numbeguces to calculating the auxiliary Green's functions for per-

of trajectories(i.e., when matrice§,, andS,, are not invert-  fectly reflecting interfaces. Numerically this is an extremely

094501-3



J. KOPU, M. ESCHRIG, J. C. CUEVAS, AND M. FOGELSTRO PHYSICAL REVIEW B 69, 094501 (2004

simple task, e.g., employing the procedure of Riccati paramwhere R (D) is the reflection(transmissiop coefficient, R
eterization. Afterwards the boundary Green's functions foryp=1, gl = +(g —ghi)/2, andg: ™ =(gL+gl)/2, with
the partially transmitting interface can be obtained directlyx Ir_( 9/2 In the corresponding limitina case the
from Egs.(13), since solving for the necessatymatrices O ”_ ' A P i g. 9 )

(11) only involves a 4< 4 matrix inversion. When contrasted Surface scatterlng matric&" are unit matrices, the hopping

with solving the group of equation), the t-matrix ap- element can be taken as a real number= 71, and the

proach manifests its usefulness. boundary conditions in thematrix approach are
i _“"0 ~ . ’0_.
IV. RELATION TO OTHER METHODS Oin=9""+ (g +imt'(g""=im), (209
The underlying perturbative nature of thematrix ap- éiout:éiro+(éixo_iW)Ei(éiy0+i7T), (20b)
proach might arise suspicions concerning its applicability B
when the interface in question has high transparency. Theith g gOut g" Oandt =ty =t'. Thet-matrix equations

boundary conditiong13) are, however, valid for arbitrary now take the form
transmission and, in fact, completely equivalent to the corre-

sponding scattering-matrix descriptid8). The connection t'=(1-72g"%"%) ~1:2g"°, (219
between the two approaches is established by the following 5
identification of the full scattering matrix in terms of the t'=(1-72g"%"0) ~1:2g"° (21b

surface scattering matrices and hopping amplitudes: From Egs.(17) we have

S B d)(l 0. e i, B E 22
d

Si S/ 101 —rj\o s which, using Eq(18) and the identity
where we have defined v gy v ]
(1—ab) "a=a(l—ba) -, (23
r=(1+°n ) A m27, 1), (178 immediately gives Eq(19a. This condition ensures the con-
A L L servation of current. To show E¢L9b), we first express it in
r=(1+ T T (=TT, (179 terms of the quantitieg." as follows:
and .
g Ga v, ~
. e (1-R) 1+—agsg;—( _I_a)gg}
d=(1+ 727, 7)) ‘2m7, . (170
The identity(16) serves as a precise definition of the auxil- 2im(RE 1) 1_(%) 2 L o
iary matricesS, andS, in terms of the physical parameters of m( 9a iw |

the full scattering matrix. Using Ed15), the particle §;)

and hole &) parts of Eq.(16) can be seen to be related by where we have used the identity

= ~ S* - ~ |- 18 i= ) i . i
Shipy) (O Sr) o ( P)(O Sr) (18  i=Ir. Using Eq.(17) we find
2
In particular, if the interface scattering matrix is spin- glgi= (1_%> gLogro
inactive, Eqs(9) reduce to those derived by Zaitsev. In the I8 s ¥s

following, we show that the solution of Eq$13) in the

appropriate limit also solve Zaitsev's boundary conditions - Q 2 v 0510
for arbitrary transmission of the interface, and in both equi- 99s=| 1+ 95 Qs (26)
librium and nonequilibrium situations. On the other hand, in
the case of diffusive conductors the boundary conditions ofvhereby Eq(24) transforms to
the t-matrix approach are equivalent to the ones derived by .
Nazarov?® g Ya
{1 (,; r(l R)( )g's°g;°
A. Zaitsev's boundary conditions .
The boundary conditions of Zaitsev reéwe suppress the -1+ ga ;Og'so} 2i7m(R+ 1){:13] =
symbol® and unit matrices for clarity’

(27
e
92~ 0a=Ga: (199 This form exhibits directly the unphysical solutions of Zait-
. viio o v, sev’s boundary conditions, determined by vanishing of the
ga[R(gs )+ (g5 ) ]=—imDgs g5 , (199 first square bracket in Eq27). The physical solutions are
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given by the requirement that the curly bracket of E2y)
vanishes. On inserting Eg&.8) and(19) into this expression
and using the identity

(1-a) ta—(1-b)"b=(1-a) 1-(1-b)"%, (289
one arrives at the condition
[(1-R)(1+ 7% —2(R+1)m27?]g,=0, (29

which is identically fulfilled provided that the transmission
coefficient in thet-matrix description is identified as

2.2

D=1-R= 477—7 (30) FIG. 1. Two quasiclassical pictures of an interface separating a
(1+ 7w27%)2 spin-unpolarized materigleft-hand side of the interfagdrom a

ferromagnet(right-hand sidg (a) weak ferromagnet with a small

splitting of Fermi surfaces for the two spin orientatigiirsdicated

by solid and dashed curveand(b) strong ferromagnet with a large

The boundary conditions for diffusive conductors, pre-splitting. Incoming trajectory from the left-hand side and corre-

sented by Nazarc?? are formulated in terms of a Keldysh- sponding outgoing ones with the same parallel momentum on both

Nambu matrix current, the Keldysh part of which defines thesides are indicated by arrows.

electric current through the interface. In tlenatrix ap-

B. Nazarov’s boundary conditions

therefore, to the quantity sion defining the boundary conditions of Nazarov.
1=[t'g", (3D V. INTERFACE PROBLEM WITH FERROMAGNETS

determined at the left-hand side of the interface. To simplify A. Weak and strong ferromagnetism

the following expressions, we again choage= 71 and real. As already mentioned, the quasiclassical theory is formu-

Furthermore, in the context of diffusive conductors both thelated in terms of quasiparticles travelling along classical tra-
Green’s functions and the hopping elements should be rgectories. Smooth interfaces between different materials in-
garded as trajectory-averaged quantities, i.e., independent gbduce coupling between incoming and outgoing trajectories
[)_ Using Egs.(21a and(23) we obtain with the same momentum parallel to the interface. A ferro-
magnet has a different Fermi surfa@e, equivalently, set of
I=729"¢g'(1-2g9'g") - g'g"(1-2g'g"H ", (32 trajectorieg for each of the two possible spin orientations.
Consequently, two different limiting cases that allow a qua-
where we have dropped the zero from the superscalit sjclassical description naturally emer¢gee Fig. 1 In the
Green’s functions are auxiliary one$\Vriting the matrix cur-  first case the exchange energy splitting of the two Fermi

rent in the form surfaces is small enough that the quasiparticle wave packets
. . oL .. . L. on the two trajectories corresponding to the same parallel
I=7%9'g'(1-*g'g")(1-7%g'g") ~(1-72g'g) * momentum but different spins overlap and, therefore, the two
2% 1% % SIS C1oE 2% Y 2vrvi1 trajectories remain fully coherent in the ferromagnetic region
-79'g'(1-7%g'g") " (1-7*g'g)(1-7"g'gh [Fig. 1(@)]. Technically this means that the fullX2 spin

(33)  structure of the quasiclassical Green's functions, defined by
. . Eqg. (2), is to be retained in the ferromagnetic side of the
and exploiting the fact thag'g" commutes withg'g', we interface. This case, relevant for weak ferromagnets, has

arrive at been widely studied in the literature; the standard description
. oL . . s simply involves a spin-dependent shift in the quasipatrticle
I=—7g.9"1(1-7g'g") Y(i-g'gh* energy, effected by the replacement
=—7g\.91(1-7{g g} + 77 (34 ers—ers—hosl (36

Finally, using Eq.(30) to identify the transmission coeffi- in the Eilenberger equatiof#). Hereh is the exchange-field
cient, and defining3'"=g'""/(i ) because of the different Parameter ands is a Pauli spin matrix. Other Fermi-surface
convéntion for normalizing the Green's functions used inparameters, i.e., Fermi velocities and the density of states,
Ref. 26. we arrive at are assumed identical for the two spin bands in the ferromag-
B net.
DG G In this article we restrict ourselves to the opposite limiting
— , (35) case of strongly ferromagnetic materials, illustrated in Fig.
4+ D({G',G’}—Z) 1(b). That is, we assume the exchange splitting and the re-
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sulting directional deviation of the two spin trajectories shar- The relative phase difference introduced by spin mixing
ing the same parallel momentum to be so large that the caesults in interesting nontrivial phenomena at
herence between them is lost completely. As a consequencgyperconductor/ferromagnet interfaces, even in the absence
the quasiclassical propagators have no matrix structure iof quantum-mechanical coherence between the two spin
spin space. In particular, conventional Andreev reflectiorbands in the ferromagnet. One such example is the recent
processes are forbidden because electrons and holes in opgwediction of a nonvanishing Josephson current in a hetero-
site spin bands occupy different trajectories which do notstructure with a mesoscopic half-metallic piece separating
interfere with each other. Trajectories with different spin ori-two singlet superconductors—driven by spin-triplet pairing
entations can only be coupled incoherently, such as e.g. dumrrelations? (This effect requires, in addition to spin mix-
to elastic spin—flip scattering by magnetic impurities. Iting, also the presence of spin—flip centers at the interfaces.
should be emphasized that no energy shift of the (36) However, even though spin mixing is expected to be an in-
should be introduced in this limit; instead, Fermi velocitiestrinsic feature of any spin-active interface, systematic experi-
and the density of states become spin dependent. The reasorental estimations of the typical magnitudesiadre not yet
for this is that the integration over the energy of relativeavailable. As a guideline for such future experiments, we
motion (“ £ integration”), employed in the formal process of study in the following chapter the differential conductance of
converting the full two-particle Green’s function into quasi- a spin-mixing point contact between a singlet superconductor
classical ones, is now performed separately around the twand a strong ferromagnet—simultaneously offering a view of
different Fermi surfaces. This is in contrast to the case othe t-matrix approach at work.
weak ferromagnets, where the samntegration range is
used for both Fermi surfaces simultaneously. VI. S/E POINT CONTACT WITH SPIN MIXING

A very interesting special case which falls into the latter ) ) ) ) o
category of ferromagnets with strong spin splitting is that of We consider a point contact with arbitrary transmission
half-metallic materials. In fact, half metals are metallic in Se€parating a conventional singlet superconductor and a
one of the spin bands only—the other one is insulating. Sucktrong ferromagnetic material. The smabmpared with the
behavior has recently been reported in Gr®efs. 15,16 coherence length of the supercondu):_t(hmensmns of the
and in certain manganite materidfsand has attracted con- contact and, _consequently, the s_maII size of the current flow-
siderable attention because of possible applications in th®d through it does not appreciably affect the state of the
emerging field of spintronic¥. Since in half metals a Fermi coupled half-spaces from that corresponding to zero trans-
surface only exists for one of the spin orientations, the stanission. This offers a simplification by relieving us from the
dard description for weak ferromagnets is obviously inappli-N€cessity of calculating Fhe superconducting order parameter
cable. However, half metals still allow for a straightforward Self-consistently. According to E¢?), the current, calculated
quasiclassical treatment in the separate-band picture: quadit the interface on the ferromagnetic side, adopts the form
particle trajectories simply exist only for one of the spin

: . ) de A g A
orientations. ]:; fﬁ<eN?0faCOS¢Tr[T3(gilfw_g§ut)]>i1
(38)
wherea=1,| labels the spin band of the ferromagnet, each

The quasiclassical boundary conditions in the hopping de\'/vith its own density of stateN? and the Fermi velocity® .

scription involve surface scattering matric®s that charac-  po, simplicity, the Fermi surfaces are assumed cylindrical
terize a fully reflecting interface. In the case of a magneti-yng the interface specularly reflecting, the generalizations are
cally actl\(e m'gerface the most general _form of such r_nat_”ce§traightforward. The impact anglé determines the angle
(for quasiparticle satisfying the28reqU|rement of unitarity, penveen the trajectory and the current direction. The angular
was pointed out by Tokuyaset al™ to be averaging is to be taken over trajectories with ¢es). The
two spin bands in the ferromagnet give two separate contri-
S= e—i(l)/Ze—i(G/Z)/juo’ (37) butions to the current. From Eg&l3) follows

B. Spin mixing

“K_AK _ o _irY 207K

where u is a unit vector pointing to the direction of the Oin~ Gou= 2L 1.8°J", 39

surface magnetization anglis a vector constructed of Pauli where thet matrix and the auxiliary Green’s functicﬁ‘? (for

spin matrices. The corresponding scattering matrix for quasia perfectly reflecting interfageare to be evaluated on the

holes follows from Eq(15). Dropping the irrelevant overall ferromagnetic side where the latter has the simple form

phase factorb, the surface scattering matrix is determinedgR0o_ _ gAO— _j 77, andgk-°=gR% —FgA° with

by a single parameter, the spin-mixing angleThe physics

behind spin mixing can be visualized as follows: even for a e—eV

fully reflecting interface, incident wave functions penetrate a E 0 tanl‘( T )

small distance into the forbidden, spin-polarized region. This ﬁ;( © ) eV
0 tanl‘(e °

0 Fy

results in different matching conditions for waves with op-
posite spin directions and, consequently, different phase 2T
shifts for the reflected waves. (40
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whereV is the voltage over the contact afds the tempera- ducting side. In the presence of spin mixifdescribed by
ture. We choose the electrical potential to be zero on théhe spin-mixing angled) this has the form
superconducting side of the interface. Writing out the com-

mutator(39), Eq. (38) reads 0 0
€ cosz +Q smz

iTeNfv{ . mon an s_ .. - =
ji=> — 1t ffde(cos¢Tr[t’<—(tRF—F'cA)]>i. 9n=7 0 0’ (44
P 2 esinz — Q) cosz
(41) 2 2
Using now Eq.(11), the relationt?=75(t®) 175, and the whereQ=\A?—¢?, A is the magnitude of the bulk order
properties of the trace, we find parameter, an@i can be obtained by replacing— — 6.

Inserting Eq.(44) into Eq. (43) we obtain
ji=> weN?v?‘f deIm(cose Tr[ (NR) ToRNR(F—Fg) )¢,
(42) =X eN?v?J de(cospj¢)i(Fe—Fo), (45

where we have defined an effective interface poter&ﬁ:ll
=7957", with g8=gR? the auxiliary Green’s function on the
superconducting side of the interface,NR=(1
+imr™) "1, andFo=tanhE/2T). We assume that the in-  j1=
terface does not flip the spin, i.e., hopping processes from an
incoming trajectory in the ferromagnet to an outgoing trajec-

with

2772T%E|mﬂ

27

0 0 0 0
€| sin- +im?7} cos- | — Q| cosz —im? 7T sin
2 2 2 2

tory on the superconducting side are without loss of gener- (46)

ality determined by two real numbers,= 7,1, for the two
ossible spin orientations. In this case E4pR) gives andj! follows from 7,— 7, and #— — 6. For subgap ener-

p p g e 17T

) s \a gies, |e|<A, j¢ vanishes becaus@ is real. This simply
=S e | d 217, 1My, F_F reflects the fact that the contribution from Andreev reflection
i= 4 eNfv§ € COS¢—|1+iWngs 2 (Fe=Fo), processes vanishes in quasiclassical approximation due to the
adaa +

(43) lack of coherence between spin-up and spin-down bands on

the ferromagnetic side. Introducing the normal-state trans-
whereg?, (g7)) is the 1,1(2,2) element of the full 44  mission and reflection coefficients with E(R0), Eq. (46)
auxiliary Green’s function at the interface on the supercon<an be written fofe|=A as

= A\2)? INEA “
[1_@+<1+@>\/1_(_ )

+4 R"‘(— sif—
2
The differential conductanc&=9j/dV for |eV|=A can now be obtained by differentiation, andTat 0 adopts the form

€

G=-2 2e’N{v{(cospji(e=eV)) . (48)

In particular, for a half metal with a conducting spin-up band and a reflection coeffRienR independent of impact angle
¢, the conductancénormalized to the normal-state val@g) reads

A 2
G eV
on 2 49
N

[ (A2 AV 0
1-VR+(1+VR) 1—(— +4 R(—) sif—
eV eV
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variety of materials: superconductdizoth conventional and
unconventiong| normal metals, and both weak and strong
ferromagnets. The most crucial part of this description is the
treatment of boundary conditions at interfaces separating dif-
ferent materials. These conditions are formulated in terms of
hopping amplitudes, containing the information of allowed
transmission processes, and the correspondimngatrices.
Compared with the traditional scattering-matrix approach,
thet matrix approach provides clear advantages for studying
spin-active interfaces, or interfaces which connect materials
with different numbers of trajectories or with different inter-
nal structures of their Green’s functions. A particular ex-
ample are strong ferromagnets of which the half-metallic ma-
terials form a special case. In connection with such materials,
nontrivial physics arises due to spin-dependent interfacial
scattering processes. The crucial parameter controlling the
details of these effects is the degree of spin mixing. At
present, there have been no attempts to determine experi-
mentally the magnitude of this parameter at a spin-active
interface. To provide a guideline for such studies, and to
demonstrate thé-matrix approach, we have calculated the

‘ differential conductance for a superconductor/half metal

1 1.5 2 point contact. In the tunneling limit of such contacts, the
eV/A conductance depends strongly on spin mixing, and should
provide an effective means of determining the importance of
the new physics related to spin-active interfaces.

Finally, it is also worth stressing that the transfer-matrix
formalism presented in this work is also well suited for cal-
culating time-dependent properties such as the current—
voltage characteristics or as current fluctuations in junctions

when|eV|=A. The contribution due to a finite spin-mixing with arbitrary transmission and bias voltage>*°Addition-

angled has the effect of broadening the conductance feature@ Y @S We have shown in Ref. 25 for nonmagnetic situations,
near the gap edge. This is demonstrated in Fig. 2 whiciPur approach can be straightforwardly generalized to deal

shows the normalized conductance as a function of the spir’(yith junctions of unconventional superconductors. In this

mixing angle for three different reflection coefficients of the SENS€; We can for instance address the issue of the interplay

contact. In particular, the characteristic BCS square-root sin,t-’etWeen interface Andreev bound stdtemd the spin polar-

gularity for a tunnel-limit R—1) contact is removed. On '2€d current in ferromagneliwave superconductors con-
the other hand, for perfectly transmitting interfacBs—0 tacts, which has attracted a lot of attention in the last

G/G,

G/G,

FIG. 2. The normalized conductan€/Gy as a function of
eV/A for R=0.1(top figure, R=0.5(middle), andR=1 (bottom).
The different curves in each figure correspond, from top to bottom
to different values of the spin-mixing angle ranging frofs0
(dashed curveto 6= in intervals of7/10.

. .. . . . years32_34
spin mixing has no effect. As an additional detail, the maxi- '
H — 1/4
mum of Eq.(49), attained ateV/A=(1+ JR)/2R when ACKNOWLEDGMENTS
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