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Transfer-matrix description of heterostructures involving superconductors and ferromagnets

J. Kopu,1 M. Eschrig,1 J. C. Cuevas,1 and M. Fogelstro¨m2

1Institut für Theoretische Festko¨rperphysik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany
2Applied Quantum Physics, MC2, Chalmers, S-41296 Go¨teborg, Sweden

~Received 9 July 2003; published 2 March 2004!

Based on the technique of quasiclassical Green’s functions, we construct a theoretical framework for de-
scribing heterostructures consisting of superconductors and/or spin-polarized materials. The necessary bound-
ary conditions at the interfaces separating different metals are formulated in terms of hopping amplitudes in a
t-matrix approximation. The theory is applicable for an interface with arbitrary transmission and exhibiting
scattering with arbitrary spin dependence. Also, it can be used in describing both ballistic and diffusive
systems. We establish the connection between the standard scattering-matrix approach and the existing bound-
ary conditions, and demonstrate the advantages offered by thet-matrix description.
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I. INTRODUCTION

Low-energy~below the superconducting energy gap! elec-
tron transport through contacts between a supercondu
and a normal metal can be understood in terms of Andr
reflection.1 In this process, an incident electron from the n
mal side can enter the superconductor by pairing with
other electron with the opposite spin, leaving a reflected h
in the normal metal. The phase-coherent nature of this p
cess results in superconducting correlations being induce
the normal-metal side, referred to as the proximity effe
The important feature of Andreev reflection is that, with s
glet superconductors, it involves both spin bands in the n
mal metal. Therefore, the above simple picture has to
modified when the normal metal is replaced by a ferrom
net with two different Fermi surfaces for the two spins, r
sulting in new and interesting physical phenomena. In rec
years, interplay between superconductivity and ferrom
netism has attracted considerable theoretical2–5 and
experimental6–9 attention—both out of fundamental scie
tific interest and in view of the possibility of novel applica
tions and devices. One important consequence of the
splitting between the two bands in the ferromagnet is that
phase coherence between the particle–hole pair in the c
~dirty! limit is destroyed over a characteristic distance
v f /h (AD/h), wherev f is the Fermi velocity,D the diffu-
sion constant, andh an effective exchange energy which d
scribes the spin splitting. Since this distance is typically v
short~of the order of atomic distances!, the superconducting
correlations induced to the ferromagnetic material are
pected to be confined to the immediate vicinity of the se
rating interface. This raises the question whether, for str
ferromagnets, a mechanism of a different type takes over
dominates the physics of superconductor/ferromagnet~S/F!
contacts. One such mechanism, recently under active in
tigation, is the inducement of spin-triplet correlation
namely, the exchange field only affects correlations of sing
type, i.e., between particles and holes in opposite spin ba
In fact, equal-spin triplet correlations are expected to be c
ated by proximity to a ferromagnet due to the breaking
spin-rotational symmetry. The desire to formulate a the
capable of understanding the detailed nature and the co
0163-1829/2004/69~9!/094501~9!/$22.50 69 0945
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tions for the formation of these correlations and the cor
sponding anomalous proximity effect has given the init
motivation for this work.

Problems related to superconducting proximity effect w
spin-dependent interfacial scattering are of spatially inhom
geneous nature and, as such, they can only be studied
specialized theoretical tools. Such a tool is provided by
quasiclassical theory of superconductivity.10,11This theory is
applicable for weakly perturbed superconductors~character-
istic length scale of perturbations much larger than Fe
wave length and characteristic frequencies much less
Fermi energy! and can be used in both equilibrium and no
equilibrium situations. It describes quasiparticles with m
menta on the Fermi surface moving along straight class
trajectories, the direction of which is given by the corr
sponding Fermi velocity. A ferromagnetic metal has differe
Fermi surfaces and, correspondingly, different sets of tra
tories for the two spin orientations. In this case, the qua
classical theory can be used to describe two limiting cas
~i! weak ferromagnetism, where the energy splitting of t
two Fermi surfaces and the associated deviation of the Fe
velocities is so small that the two spin trajectories with t
same momentum direction are fully coherent, and~ii ! strong
ferromagnetism, where the splitting is so large that the
herence is lost completely. While the former limiting ca
has been exhaustively studied in the literature, the latter
only recently received attention.12 Here we present a theore
ical study of the latter possibility. Even in the absence
conventional Andreev reflection processes~which would re-
quire coherence between particles and holes in opposite
bands!, interesting and nontrivial physics emerges due
spin-active interfacial scattering. Additional motivation h
been provided by the growing interest in a new class of m
terials, half-metallic ferromagnets.13–16 In these materials,
one spin band is metallic and the other one insulating~100%
polarized ferromagnet!. Since a half metal has a Fermi su
face only for one of the two spin orientations, it is clear th
the traditional description for weak ferromagnets is inapp
cable, and other methods must be employed.

In Sec. II, we outline the central equations of the qua
classical theory of superconductivity. Compared with the f
microscopic theory, the quasiclassical theory offers consid
©2004 The American Physical Society01-1
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able simplifications when treating spatially inhomogeneo
states by reducing the content of~unnecessary! information
carried by the Green’s functions. However, this leads to n
trivial boundary conditions which have to be formulated
interfaces separating different metals that connect the s
tions of the two sides. Such conditions have been derived
nonmagnetic interfaces by Zaitsev,17 and for magnetic inter-
faces by Milliset al.18 After a short description of this work
in Sec. III, we formulate an alternative but equivalent set
boundary conditions, where the transmission through an
terface is parameterized by a hopping amplitude that c
tains the information of various processes contributing
particle transfer. This approach enables the formulation
boundary conditions in a simple and appealing form. T
equivalence to existing methods is demonstrated in Sec
As explained in Sec. V, the advantages of thet-matrix for-
mulation are especially evident in studying interfaces t
separate two materials with a different structure of
Green’s functions and/or a different number of trajectori
such as in the case of a superconductor/strong ferroma
interface. Finally, in Sec. VI, we apply our theory to stu
the current through a point contact separating a singlet
perconductor from a strong ferromagnet.

II. BASIC EQUATIONS OF QUASICLASSICAL THEORY

The quasiclassical theory of superconductivity10,11 is for-
mulated in terms of quasiclassical Green’s functions~or
propagators! ǧ(p̂,R,e,t) that depend on the spatial coord
nateR and timet and describe quasiparticles with energye
~measured from the chemical potential! and the momentum
direction on the Fermi surfacep̂5p/pf moving along classi-
cal trajectories with direction given by the Fermi veloci
vf(p̂).19 The quasiclassical Green’s functions are 232 ma-
trices in Keldysh space~denoted by a ‘‘check’’ accent!,

ǧ5S ĝR ĝK

0 ĝAD , ~1!

with three nonzero elements~retardedĝR, advancedĝA, and
Keldysh ĝK). In describing superconductivity, these el
ments in turn are 434 Nambu-Gor’kov matrices in com
bined particle–hole and spin space~denoted by the hat sym
bol!, for example, the retarded Green’s function has the fo

ĝR5S g↑↑
R g↑↓

R f ↑↑
R f ↑↓

R

g↓↑
R g↓↓

R f ↓↑
R f ↓↓

R

f̃ ↑↑
R f̃ ↑↓

R g̃↑↑
R g̃↑↓

R

f̃ ↓↑
R f̃ ↓↓

R g̃↓↑
R g̃↓↓

R

D . ~2!

All these matrix elements are not independent of each ot
Indeed, the elements in the lower half of the matrix are
lated to the ones in the upper half through the conjuga
symmetry, e.g.,
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R,A,K~ p̂,R,e,t !5gab

R,A,K~2p̂,R,2e,t !* . ~3!

The quasiclassical Green’s functions satisfy the Eilenber
transport equation

@eť32Š,ǧ# ^ 1 ivf~ p̂!•¹Rǧ50. ~4!

Generally speaking, the self-energyŠ(p̂,R,e,t) includes
molecular fields, the superconducting order parameterĎ

5D̂1̌, impurity scattering, and external fields. The nonco
mutative product̂ combines matrix multiplication with a
convolution over the internal variables, andť35 t̂31̌ is a
Pauli matrix in particle–hole space. The quasiclassi
Green’s functions also satisfy a normalization condition

ǧ^ ǧ52p21̌. ~5!

In addition to Eqs.~4! and~5!, self-consistency equations fo
different parts of the self-energy have to be provided; e
for the ~weak-coupling! order parameter the condition read

D̂~R,t !5lE
2ec

ec de

4p i
^ f̂ K~ p̂,R,e,t !& p̂ , ~6!

wherel is the strength of the pairing interaction,^ & p̂ de-
notes averaging over the Fermi surface, andf̂ K is the
particle–hole off-diagonal part of the quasiclassical Keldy
Green’s function. The cut-off energyec is to be eliminated in
favor of the transition temperature in the usual manner.

When the quasiclassical Green’s function has been de
mined, physical quantities of interest can be calculated; e
the expression for the current density adopts the form

j ~R,t !5E de

8p i
Tr^eNfvf~ p̂!t̂3ĝK~ p̂,R,e,t !& p̂ , ~7!

wheree is the electron charge andNf is the density of states
on the Fermi surface. However, to form a complete the
for studying heterostructures, the above equations must
be supplemented with the boundary conditions connec
the solutions at the separating interfaces. We introduce th
conditions in the following section.

III. BOUNDARY CONDITIONS

A. Scattering-matrix approach

Interfaces represent strong perturbations on an ato
length scale and, therefore, fall out of the applicability ran
of quasiclassical theory. However, as was shown in the p
neering work of Zaitsev,17 interfaces can be brought withi
the quasiclassical theory by means of effective bound
conditions that connect trajectories related through interf
scattering processes. Later these conditions were genera
for an arbitrary magnetically active interface, i.e., one th
scatters quasiparticles differently depending on their s
orientation.18 The latter case is relevant for studying inte
faces with spin-polarized materials such as ferromagn
The procedure for the derivation of the boundary conditio
begins by isolating a region of quasiclassical sizeuxu,d
around the interface located at the origin of the perpendic
1-2
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coordinatex (d much larger than the atomic-size range of t
strong interface potential but much smaller than the sup
conducting coherence lengthj). In the half spacesuxu.d,
the solutions for quasiclassical Green’s functions can
found by standard methods described in the previous cha
The solutions for the left~l! and right ~r! sides are then
matched via a scattering matrix

Ŝ5S Ŝll Ŝlr

Ŝrl Ŝrr D , ~8!

the form of which is determined by the detailed microsco
structure of the interface region and on the quasiclass
level has to be treated as a phenomenological paramet
the theory. The crucial simplifying observation is that, sin
the strong~of the order of the Fermi energy! interface poten-
tial dominates the Hamiltonian in the interface region, t
scattering matrix~8! corresponds to that of thenormal state,
i.e., does not contain particle–hole mixing. Also, it has
Keldysh space structure.

The boundary conditions were derived for a smooth~on
the scale ofj) interface, assuming the conservation of m
mentum pi parallel to the interface. In the following, a
momentum-dependent quantities should be understoo
having the samepi , unless explicitly stated. In terms of qua
siclassical Green’s functions they adopt the form18

~ ǧin
l 2 ip1̌! ^ ~Ŝll

† ǧout
l Ŝl l 2Ŝrl

† ǧout
r Ŝrl ! ^ ~ ǧin

l 1 ip1̌!50,
~9a!

~ ǧout
l 1 ip1̌! ^ ~Ŝll ǧin

l Ŝl l
† 2Ŝlr ǧin

r Ŝlr
† ! ^ ~ ǧout

l 2 ip1̌!50,
~9b!

~ ǧin
r 2 ip1̌! ^ ~Ŝrr

† ǧout
r Ŝrr 2Ŝlr

† ǧout
l Ŝlr ! ^ ~ ǧin

r 1 ip1̌!50,
~9c!

~ ǧout
r 1 ip1̌! ^ ~Ŝrr ǧin

r Ŝrr
† 2Ŝrl ǧin

l Ŝrl
† ! ^ ~ ǧout

r 2 ip1̌!50,
~9d!

with ǧin5ǧ(p̂) and ǧout5ǧ(p̂), wherep̂ (p̂) is a unit vector
along the momentum direction with the perpendicular co
ponent directed towards~away from! the interface. The
boundary condition consists of four coupled nonlinear eq
tions for the incoming and outgoing matrix propagators
both sides of the interface. Solving this equation system
dealing with the possibility of arriving at unphysical sol
tions is evidently not a simple task. Progress towards a m
convenient form of boundary conditions has been made
Eschrig ~nonmagnetic interfaces!20 and Fogelstro¨m ~mag-
netic interfaces!.21 They employed the powerful Riccati pa
rametrization method which allows for a considerably si
pler representation of boundary conditions in terms of
Riccati amplitudes.20,22,23However, the conditions in Ref. 2
were only derived for the equilibrium~retarded and ad
vanced! propagators. Furthermore, even in equilibrium si
ations they cannot be used in the published form in the c
when the two sides of the interface have a different num
of trajectories~i.e., when matricesŜlr andŜrl are not invert-
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able!. This situation arises in the context of half-metall
materials, where trajectories exist only for one of the s
orientations.

B. Transfer-matrix approach

Due to the abovementioned difficulties we proceed in
alternative but equivalent route.24,25 This method requires
solving for the auxiliary quasiclassical propagatorsǧl ,0 and
ǧr ,0 for an impenetrableinterface. They are to be calculate
with the self-energiesŠ$g% determined with the full propa-
gator, and using the simple perfectly-reflecting bound
condition

ǧout
i ,05Ŝi ǧin

i ,0~Ŝi !†, ~10!

wherei 5 l ,r . They also satisfy the normalization conditio
ǧi ,0

^ ǧi ,052p21̌. The impenetrable interface is characte
ized by two surface scattering matrices,Ŝl and Ŝr . Particle
conservation requires them to be unitary, (Ŝi)†5(Ŝi)21. The
transmission processes for an interface with arbitrary tra
parency can be taken into account with at-matrix formula-
tion. The transfer matrices are determined with effective h
ping amplitudest̂ lr and t̂ rl by the following equations:

ť in
l 5 t̂ lr ǧout

r ,0t̂ lr
† 1 t̂ lr ǧout

r ,0t̂ lr
†

^ ǧin
l ,0

^ ť in
l , ~11a!

ť in
r 5 t̂ rl ǧout

l ,0t̂ rl
† 1 t̂ rl ǧout

l ,0t̂ rl
†

^ ǧin
r ,0

^ ť in
r , ~11b!

with t̂ rl 5( t̂ lr )
† due to particle conservation. The corr

spondingt matrices for outgoing trajectories are related
the ones for incoming trajectories through the relation

ťout
i 5Ŝi ť in

i ~Ŝi !†. ~12!

The t matrix describes the modifications of the decoup
quasiclassical propagators due to virtual hopping proce
to the opposite side. Finally, the boundary condition can
expressed in terms ofť i and ǧi ,0 to read

ǧin
i 5ǧin

i ,01~ ǧin
i ,01 ip1̌! ^ ť in

i
^ ~ ǧin

i ,02 ip1̌!, ~13a!

ǧout
i 5ǧout

i ,01~ ǧout
i ,02 ip1̌! ^ ťout

i
^ ~ ǧout

i ,01 ip1̌!. ~13b!

In the t-matrix description, the phenomenological paramet
containing the microscopic information of the interface a
the surface scattering matrices and the hopping amplitu
The particle–hole structures of the surface scattering ma
and the hopping amplitude are connected through

Ŝi5S Si 0

0 S̃i D , t̂ lr 5S t lr 0

0 ~S̃l !†t lr* ~S̃r !†D , ~14!

to ensure the conservation of current. In the general cas

S̃~pi!5Str~2pi!. ~15!

In this formulation, the boundary problem effectively r
duces to calculating the auxiliary Green’s functions for p
fectly reflecting interfaces. Numerically this is an extreme
1-3
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simple task, e.g., employing the procedure of Riccati para
eterization. Afterwards the boundary Green’s functions
the partially transmitting interface can be obtained direc
from Eqs. ~13!, since solving for the necessaryt matrices
~11! only involves a 434 matrix inversion. When contraste
with solving the group of equations~9!, the t-matrix ap-
proach manifests its usefulness.

IV. RELATION TO OTHER METHODS

The underlying perturbative nature of thet-matrix ap-
proach might arise suspicions concerning its applicabi
when the interface in question has high transparency.
boundary conditions~13! are, however, valid for arbitrary
transmission and, in fact, completely equivalent to the co
sponding scattering-matrix description~9!. The connection
between the two approaches is established by the follow
identification of the full scattering matrix in terms of th
surface scattering matrices and hopping amplitudes:

Ŝ5S Ŝll Ŝlr

Ŝrl Ŝrr
D 5S Ŝl 0

0 1̂
D S r̂ d̂

d̂† 2 r̂
D S 1̂ 0

0 Ŝr
D , ~16!

where we have defined

r̂ 5~11p2t̂ lr t̂ rl !
21~12p2t̂ lr t̂ rl !, ~17a!

r̂ 5~11p2t̂ rl t̂ lr !
21~12p2t̂ rl t̂ lr !, ~17b!

and

d̂5~11p2t̂ lr t̂ rl !
212pt̂ lr . ~17c!

The identity~16! serves as a precise definition of the aux
iary matricesŜl andŜr in terms of the physical parameters
the full scattering matrix. Using Eq.~15!, the particle (Sp)
and hole (Sh) parts of Eq.~16! can be seen to be related b

Sh~pi!5S S̃l 0

0 S̃r
D Sp* ~2pi!S S̃l 0

0 S̃r
D . ~18!

In particular, if the interface scattering matrix is spi
inactive, Eqs.~9! reduce to those derived by Zaitsev. In th
following, we show that the solution of Eqs.~13! in the
appropriate limit also solve Zaitsev’s boundary conditio
for arbitrary transmission of the interface, and in both eq
librium and nonequilibrium situations. On the other hand,
the case of diffusive conductors the boundary conditions
the t-matrix approach are equivalent to the ones derived
Nazarov.26

A. Zaitsev’s boundary conditions

The boundary conditions of Zaitsev read~we suppress the
symbol ^ and unit matrices for clarity!17

ǧa
l 5ǧa

r 5ǧa , ~19a!

ǧa@R~ ǧs
1!21~ ǧs

2!2#52 ipDǧs
2ǧs

1 , ~19b!
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where R ~D! is the reflection~transmission! coefficient, R

1D51, ǧa
l ,r56(ǧin

l ,r2ǧout
l ,r )/2, andǧs

1,25(ǧs
r6ǧs

l )/2, with

ǧs
l ,r5(ǧin

l ,r1ǧout
l ,r )/2. In the corresponding limiting case th

surface scattering matricesŜl ,r are unit matrices, the hoppin
element can be taken as a real number,t̂ lr 5t1̂, and the
boundary conditions in thet-matrix approach are

ǧin
i 5ǧi ,01~ ǧ01 ip! ť i~ ǧi ,02 ip!, ~20a!

ǧout
i 5ǧi ,01~ ǧi ,02 ip! ť i~ ǧi ,01 ip!, ~20b!

with ǧin
i ,05ǧout

i ,05ǧi ,0 and ť in
i 5 ťout

i 5 ť i . The t-matrix equations
now take the form

ť l5~12t2ǧr ,0ǧl ,0!21t2ǧr ,0, ~21a!

ť r5~12t2ǧl ,0ǧr ,0!21t2ǧl ,0. ~21b!

From Eqs.~17! we have

ǧa
l 5 ip@ ť l ,ǧl ,0#, ǧa

r 52 ip@ ť r ,ǧr ,0#, ~22!

which, using Eq.~18! and the identity

~12ǎb̌!21ǎ5ǎ~12b̌ǎ!21, ~23!

immediately gives Eq.~19a!. This condition ensures the con
servation of current. To show Eq.~19b!, we first express it in
terms of the quantitiesǧs

l ,r as follows:

~12R!F S 11
ǧa

ip
D ǧs

l ǧs
r2S 12

ǧa

ip
D ǧs

r ǧs
l G

22ip~R11!ǧaF12S ǧa

ip
D 2G50, ~24!

where we have used the identity

~ ǧs
i !21~ ǧa!252p2, ~25!

i 5 l ,r . Using Eq.~17! we find

ǧs
l ǧs

r5S 12
ǧa

ip
D 2

ǧs
l ,0ǧs

r ,0 ,

ǧs
r ǧs

l 5S 11
ǧa

ip
D 2

ǧs
r ,0ǧs

l ,0 , ~26!

whereby Eq.~24! transforms to

F12S ǧa

ip
D 2G H ~12R!F S 12

ǧa

ip
D ǧs

l ,0ǧs
r ,0

2S 11
ǧa

ip
D ǧs

r ,0ǧs
l ,0G22ip~R11!ǧaJ 50.

~27!

This form exhibits directly the unphysical solutions of Za
sev’s boundary conditions, determined by vanishing of
first square bracket in Eq.~27!. The physical solutions are
1-4
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given by the requirement that the curly bracket of Eq.~27!
vanishes. On inserting Eqs.~18! and~19! into this expression
and using the identity

~12ǎ!21ǎ2~12b̌!21b̌5~12ǎ!212~12b̌!21, ~28!

one arrives at the condition

@~12R!~11p4t4!22~R11!p2t2#ǧa50, ~29!

which is identically fulfilled provided that the transmissio
coefficient in thet-matrix description is identified as

D512R5
4p2t2

~11p2t2!2
. ~30!

B. Nazarov’s boundary conditions

The boundary conditions for diffusive conductors, pr
sented by Nazarov,26 are formulated in terms of a Keldysh
Nambu matrix current, the Keldysh part of which defines
electric current through the interface. In thet-matrix ap-
proach, this matrix is proportional toǧa of Eq. ~22! and,
therefore, to the quantity

Ǐ 5@ ť l ,ǧl ,0#, ~31!

determined at the left-hand side of the interface. To simp
the following expressions, we again chooset̂ lr 5t1̂ and real.
Furthermore, in the context of diffusive conductors both
Green’s functions and the hopping elements should be
garded as trajectory-averaged quantities, i.e., independe
p̂. Using Eqs.~21a! and ~23! we obtain

Ǐ 5t2ǧr ǧl(1̌2t2ǧr ǧl)212t2ǧl ǧr~ 1̌2t2ǧl ǧr !21, ~32!

where we have dropped the zero from the superscript~all
Green’s functions are auxiliary ones!. Writing the matrix cur-
rent in the form

Ǐ 5t2ǧr ǧl~ 1̌2t2ǧl ǧr !~ 1̌2t2ǧl ǧr !21~ 1̌2t2ǧr ǧl !21

2t2ǧl ǧr~ 1̌2t2ǧl ǧr !21~ 1̌2t2ǧr ǧl !~ 1̌2t2ǧr ǧl !21,

~33!

and exploiting the fact thatǧl ǧr commutes withǧr ǧl , we
arrive at

Ǐ 52t2@ ǧl ,ǧr #~ 1̌2t2ǧl ǧr !21~ 1̌2t2ǧr ǧl !21

52t2@ ǧl ,ǧr #~12t2$ǧl ,ǧr%1p4t4!21. ~34!

Finally, using Eq.~30! to identify the transmission coeffi
cient, and definingǦl ,r[ǧl ,r /( ip) because of the differen
convention for normalizing the Green’s functions used
Ref. 26, we arrive at

Ǐ 5
D@Ǧl ,Ǧr #

41D~$Ǧl ,Ǧr%22!
, ~35!
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which, apart from the prefactor, is the matrix-current expr
sion defining the boundary conditions of Nazarov.

V. INTERFACE PROBLEM WITH FERROMAGNETS

A. Weak and strong ferromagnetism

As already mentioned, the quasiclassical theory is form
lated in terms of quasiparticles travelling along classical t
jectories. Smooth interfaces between different materials
troduce coupling between incoming and outgoing trajecto
with the same momentum parallel to the interface. A fer
magnet has a different Fermi surface~or, equivalently, set of
trajectories! for each of the two possible spin orientation
Consequently, two different limiting cases that allow a qu
siclassical description naturally emerge~see Fig. 1!. In the
first case the exchange energy splitting of the two Fe
surfaces is small enough that the quasiparticle wave pac
on the two trajectories corresponding to the same para
momentum but different spins overlap and, therefore, the
trajectories remain fully coherent in the ferromagnetic reg
@Fig. 1~a!#. Technically this means that the full 232 spin
structure of the quasiclassical Green’s functions, defined
Eq. ~2!, is to be retained in the ferromagnetic side of t
interface. This case, relevant for weak ferromagnets,
been widely studied in the literature; the standard descrip
simply involves a spin-dependent shift in the quasiparti
energy, effected by the replacement

et̂3→et̂32hs31̂ ~36!

in the Eilenberger equation~4!. Hereh is the exchange-field
parameter ands3 is a Pauli spin matrix. Other Fermi-surfac
parameters, i.e., Fermi velocities and the density of sta
are assumed identical for the two spin bands in the ferrom
net.

In this article we restrict ourselves to the opposite limiti
case of strongly ferromagnetic materials, illustrated in F
1~b!. That is, we assume the exchange splitting and the

FIG. 1. Two quasiclassical pictures of an interface separatin
spin-unpolarized material~left-hand side of the interface! from a
ferromagnet~right-hand side!: ~a! weak ferromagnet with a smal
splitting of Fermi surfaces for the two spin orientations~indicated
by solid and dashed curves! and~b! strong ferromagnet with a large
splitting. Incoming trajectory from the left-hand side and corr
sponding outgoing ones with the same parallel momentum on b
sides are indicated by arrows.
1-5
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sulting directional deviation of the two spin trajectories sh
ing the same parallel momentum to be so large that the
herence between them is lost completely. As a conseque
the quasiclassical propagators have no matrix structur
spin space. In particular, conventional Andreev reflect
processes are forbidden because electrons and holes in o
site spin bands occupy different trajectories which do
interfere with each other. Trajectories with different spin o
entations can only be coupled incoherently, such as e.g.
to elastic spin–flip scattering by magnetic impurities.
should be emphasized that no energy shift of the form~36!
should be introduced in this limit; instead, Fermi velociti
and the density of states become spin dependent. The re
for this is that the integration over the energy of relati
motion ~‘‘ j integration’’!, employed in the formal process o
converting the full two-particle Green’s function into quas
classical ones, is now performed separately around the
different Fermi surfaces. This is in contrast to the case
weak ferromagnets, where the samej-integration range is
used for both Fermi surfaces simultaneously.

A very interesting special case which falls into the lat
category of ferromagnets with strong spin splitting is that
half-metallic materials. In fact, half metals are metallic
one of the spin bands only—the other one is insulating. S
behavior has recently been reported in CrO2 ~Refs. 15,16!
and in certain manganite materials.14 and has attracted con
siderable attention because of possible applications in
emerging field of spintronics.27 Since in half metals a Ferm
surface only exists for one of the spin orientations, the st
dard description for weak ferromagnets is obviously inap
cable. However, half metals still allow for a straightforwa
quasiclassical treatment in the separate-band picture: q
particle trajectories simply exist only for one of the sp
orientations.

B. Spin mixing

The quasiclassical boundary conditions in the hopping
scription involve surface scattering matricesŜl ,r that charac-
terize a fully reflecting interface. In the case of a magne
cally active interface the most general form of such matri
~for quasiparticles!, satisfying the requirement of unitarity
was pointed out by Tokuyasuet al.28 to be

S5e2 iF/2e2 i (u/2)m̂•s, ~37!

where m̂ is a unit vector pointing to the direction of th
surface magnetization ands is a vector constructed of Pau
spin matrices. The corresponding scattering matrix for qu
holes follows from Eq.~15!. Dropping the irrelevant overal
phase factorF, the surface scattering matrix is determin
by a single parameter, the spin-mixing angleu. The physics
behind spin mixing can be visualized as follows: even fo
fully reflecting interface, incident wave functions penetrat
small distance into the forbidden, spin-polarized region. T
results in different matching conditions for waves with o
posite spin directions and, consequently, different ph
shifts for the reflected waves.
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The relative phase difference introduced by spin mixi
results in interesting nontrivial phenomena
superconductor/ferromagnet interfaces, even in the abs
of quantum-mechanical coherence between the two s
bands in the ferromagnet. One such example is the re
prediction of a nonvanishing Josephson current in a het
structure with a mesoscopic half-metallic piece separa
two singlet superconductors—driven by spin-triplet pairi
correlations.12 ~This effect requires, in addition to spin mix
ing, also the presence of spin–flip centers at the interfac!
However, even though spin mixing is expected to be an
trinsic feature of any spin-active interface, systematic exp
mental estimations of the typical magnitudes ofu are not yet
available. As a guideline for such future experiments,
study in the following chapter the differential conductance
a spin-mixing point contact between a singlet supercondu
and a strong ferromagnet—simultaneously offering a view
the t-matrix approach at work.

VI. SÕF POINT CONTACT WITH SPIN MIXING

We consider a point contact with arbitrary transmissi
separating a conventional singlet superconductor an
strong ferromagnetic material. The small~compared with the
coherence length of the superconductor! dimensions of the
contact and, consequently, the small size of the current fl
ing through it does not appreciably affect the state of
coupled half-spaces from that corresponding to zero tra
mission. This offers a simplification by relieving us from th
necessity of calculating the superconducting order param
self-consistently. According to Eq.~7!, the current, calculated
at the interface on the ferromagnetic side, adopts the for

j 5(
a

E de

8p i
^eNf

av f
a cosf Tr@ t̂3~ ĝin

K2ĝout
K !#&1

a ,

~38!

wherea5↑,↓ labels the spin band of the ferromagnet, ea
with its own density of statesNf

a and the Fermi velocityv f
a .

For simplicity, the Fermi surfaces are assumed cylindri
and the interface specularly reflecting, the generalizations
straightforward. The impact anglef determines the angle
between the trajectory and the current direction. The ang
averaging is to be taken over trajectories with cosf>0. The
two spin bands in the ferromagnet give two separate con
butions to the current. From Eqs.~13! follows

ĝin
K2ĝout

K 52p i @ ť ,ǧ0#K, ~39!

where thet matrix and the auxiliary Green’s functionǧ0 ~for
a perfectly reflecting interface! are to be evaluated on th
ferromagnetic side where the latter has the simple fo
ĝR,052ĝA,052 ipt̂3, andĝK,05ĝR,0F̂2F̂ĝA,0, with

F̂[S Fe 0

0 Fh
D 5S tanhS e2eV

2T D 0

0 tanhS e1eV

2T D D ,

~40!
1-6
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whereV is the voltage over the contact andT is the tempera-
ture. We choose the electrical potential to be zero on
superconducting side of the interface. Writing out the co
mutator~39!, Eq. ~38! reads

j 5(
a

ipeNf
av f

a

2 E de^cosf Tr@ t̂ K2~ t̂ RF̂2F̂ t̂ A!#&1
a .

~41!

Using now Eq. ~11!, the relation t̂ A5 t̂3( t̂ R)†t̂3, and the
properties of the trace, we find

j 5(
a

peNf
av f

aE de Im^cosf Tr@~N̂R!†v̂RN̂R~ F̂2F0!#&1
a ,

~42!

where we have defined an effective interface potentialv̂R

5 t̂ĝSt̂†, with ĝS5ĝout
R,0 the auxiliary Green’s function on th

superconducting side of the interface,N̂R5(1
1 ipt̂3v̂R)21, andF05tanh(e/2T). We assume that the in
terface does not flip the spin, i.e., hopping processes from
incoming trajectory in the ferromagnet to an outgoing traj
tory on the superconducting side are without loss of gen
ality determined by two real numbers,t̂a5ta1̂, for the two
possible spin orientations. In this case Eq.~42! gives

j 5(
a

eNf
av f

aE deK cosf
2pta

2 Im gaa
S

u11 ipta
2gaa

S u2L
1

a

~Fe2F0!,

~43!

where g↑↑
S (g↓↓

S ) is the 1,1~2,2! element of the full 434
auxiliary Green’s function at the interface on the superc
09450
e
-

an
-
r-

-

ducting side. In the presence of spin mixing~described by
the spin-mixing angleu) this has the form

g↑↑
S 5p

e cos
u

2
1V sin

u

2

e sin
u

2
2V cos

u

2

, ~44!

whereV[AD22e2, D is the magnitude of the bulk orde
parameter, andg↓↓

S can be obtained by replacingu→2u.
Inserting Eq.~44! into Eq. ~43! we obtain

j 5(
a

eNf
av f

aE de^cosf j e
a&1

a ~Fe2F0!, ~45!

with

j e
↑5

2p2t↑
2e Im V

UeS sin
u

2
1 ip2t↑

2 cos
u

2
D 2VS cos

u

2
2 ip2t↑

2 sin
u

2
D U2 ,

~46!

and j e
↓ follows from t↑→t↓ andu→2u. For subgap ener-

gies, ueu<D, j e
a vanishes becauseV is real. This simply

reflects the fact that the contribution from Andreev reflecti
processes vanishes in quasiclassical approximation due t
lack of coherence between spin-up and spin-down band
the ferromagnetic side. Introducing the normal-state tra
mission and reflection coefficients with Eq.~30!, Eq. ~46!
can be written forueu>D as
e

j e
a5

22DaA12S D

e
D 2

F12ARa1~11ARa!A12S D

e
D 2G 2

14ARaS D

e
D 2

sin2
u

2

. ~47!

The differential conductanceG5] j /]V for ueVu>D can now be obtained by differentiation, and atT50 adopts the form

G52(
a

2e2Nf
av f

a^cosf j e
a~e5eV!&1

a . ~48!

In particular, for a half metal with a conducting spin-up band and a reflection coefficientR↑5R independent of impact angl
f, the conductance~normalized to the normal-state valueGN) reads

G

GN

5

4A12S D

eV
D 2

F12AR1~11AR!A12S D

eV
D 2G 2

14ARS D

eV
D 2

sin2
u

2

, ~49!
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when ueVu>D. The contribution due to a finite spin-mixin
angleu has the effect of broadening the conductance featu
near the gap edge. This is demonstrated in Fig. 2 wh
shows the normalized conductance as a function of the s
mixing angle for three different reflection coefficients of t
contact. In particular, the characteristic BCS square-root
gularity for a tunnel-limit (R→1) contact is removed. On
the other hand, for perfectly transmitting interfaces,R→0,
spin mixing has no effect. As an additional detail, the ma
mum of Eq. ~49!, attained ateV/D5(11AR)/2R1/4 when
u50, is shifted towards higher voltages whenu.0, vanish-
ing altogether ifu>p/2.

VII. CONCLUSIONS

We have presented a quasiclassical theory which is su
for detailed studies of heterostructures consisting of a w

FIG. 2. The normalized conductanceG/GN as a function of
eV/D for R50.1 ~top figure!, R50.5 ~middle!, andR51 ~bottom!.
The different curves in each figure correspond, from top to bott
to different values of the spin-mixing angle ranging fromu50
~dashed curve! to u5p in intervals ofp/10.
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variety of materials: superconductors~both conventional and
unconventional!, normal metals, and both weak and stro
ferromagnets. The most crucial part of this description is
treatment of boundary conditions at interfaces separating
ferent materials. These conditions are formulated in term
hopping amplitudes, containing the information of allow
transmission processes, and the correspondingt matrices.
Compared with the traditional scattering-matrix approa
the t matrix approach provides clear advantages for study
spin-active interfaces, or interfaces which connect mater
with different numbers of trajectories or with different inte
nal structures of their Green’s functions. A particular e
ample are strong ferromagnets of which the half-metallic m
terials form a special case. In connection with such materi
nontrivial physics arises due to spin-dependent interfa
scattering processes. The crucial parameter controlling
details of these effects is the degree of spin mixing.
present, there have been no attempts to determine ex
mentally the magnitude of this parameter at a spin-ac
interface. To provide a guideline for such studies, and
demonstrate thet-matrix approach, we have calculated th
differential conductance for a superconductor/half me
point contact. In the tunneling limit of such contacts, t
conductance depends strongly on spin mixing, and sho
provide an effective means of determining the importance
the new physics related to spin-active interfaces.

Finally, it is also worth stressing that the transfer-mat
formalism presented in this work is also well suited for c
culating time-dependent properties such as the curre
voltage characteristics or as current fluctuations in juncti
with arbitrary transmission and bias voltage.25,29,30Addition-
ally, as we have shown in Ref. 25 for nonmagnetic situatio
our approach can be straightforwardly generalized to d
with junctions of unconventional superconductors. In th
sense, we can for instance address the issue of the inte
between interface Andreev bound states31 and the spin polar-
ized current in ferromagnet/d-wave superconductors con
tacts, which has attracted a lot of attention in the l
years.32–34
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