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Dynamical obstruction in a constrained system and its realization in lattices
of superconducting devices
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Hard constraints imposed in statistical mechanics models can lead to interesting thermodynamical behaviors,
but may at the same time raise obstructions in the thoroughfare to thermal equilibration. Here we study a
variant of Baxter’s three-color model in which local interactions and defects are included, and discuss its
connection to triangular arrays of Josephson junctions of superconductors with broken time-reversal symmetry
and kagome´ networks of superconducting wires. The model is equivalent to an Ising model in a hexagonal
lattice with the additional constraint that the magnetization of each hexagon is66 or 0. Defects in the
superconducting models correspond to violations of this constraint, and include fractional and integer vortices,
as well as open strings within two-color loops. In the absence of defects, and for ferromagnetic interactions, we
find that the system is critical for a range of temperatures~critical line! that terminates when it undergoes an
exotic first-order phase transition with a jump from a zero magnetization state into the fully magnetized state
at finite temperature. Dynamically, however, we find that the system becomes frozen into domains. The domain
walls are made of perfectly straight segments, and domain growth appears frozen within the time scales studied
with Monte Carlo simulations, with the system trapped into a ‘‘polycrystalline’’ phase. This dynamical ob-
struction has its origin in the topology of the allowed reconfigurations in phase space, which consist of updates
of closed loops of spins. Only an extreme rare-event dominated proliferation of confined defects may overcome
this obstruction, at much longer time scales. Also as a consequence of the dynamical obstruction, there exists
a dynamical temperature, lower than the~avoided! static critical temperature, at which the system is seen to
jump from a ‘‘supercooled liquid’’ to the polycrystalline phase within our Monte Carlo time scale. In contrast,
for antiferromagnetic interactions, we argue that the system orders for infinitesimal coupling because of the
constraint, and we observe no interesting dynamical effects.

DOI: 10.1103/PhysRevB.69.104529 PACS number~s!: 74.81.Fa, 64.70.Pf
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I. INTRODUCTION

Systems with hard constraints often display interest
thermodynamic properties such as infinite-order phase t
sitions or, on the contrary, very sharp first-order phase tr
sitions. Many of these models can be described in term
vertex models and some of them are exactly solvable.
amples of such systems are given by dimer models,1 the
planar ice model,2 or the three-coloring model of the hexag
nal lattice.3

It is very natural to ask whether the hard constraint, wh
leads to the interesting thermodynamics, may at the s
time pose obstructions in the~possible! path to thermal
equilibration. In essence, equilibrium properties require
erages over all the configurations allowed by the constra
weighted in accordance with the appropriate Boltzma
Gibbs distribution. Dynamically, the system must sample
different allowed states in a manner that satisfies deta
balance. However, leaping from an allowed configuration
another might require large rearrangements, and physic
one must investigate which mechanisms could possibly l
to these moves in phase space and what are the corresp
ing time scales. Sometimes the constraint forbids any lo
rearrangement of the system~as in the present case!, and it
ought to be softened in order to allow for a local dynami
The system then evolves by formation of constraint-violat
defects that propagate and recombine.
0163-1829/2004/69~10!/104529~21!/$22.50 69 1045
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Plenty of issues arise regarding the dynamical genera
and recombination of defects, which depend on the mic
scopic details of the physical system, and the energetic
the states outside the manifold of constraint-satisfying sta
For example, paying the energy cost to create a defec
ready slows down the dynamics; however, this waiting
the defect generation simply rescales the time scales for
namical evolution in a trivial way. More interesting are tho
issues related to the possible energy costs for moving def
around. In particular, if the microscopics are such that
defects~when created in pairs! are confined, one would ex
pect further and nontrivial slowing down of the dynamics

Glassy behavior in constrained three-color models w
infinite range interactions has indeed been recently found
Chakraborty, Das, and Kondev.4 This is an interesting ex-
ample of glassy behavior in a Hamiltonian model witho
quenched disorder, where it was found that the character
time scales obeyed a Vogel-Fulcher law as the tempera
approached a dynamical transition temperature, mimick
fragile structural glasses. In order to maneuver within
phase space of allowed states, nonlocal loop dynamics
implemented.

In this paper, we study variations of the Baxter three-co
model with short-range interactions and discuss the poss
mechanism for defect motion. In particular, we argue that
loop updates used by Chakrabortyet al.4 correspond to the
unbinding of certain defect pairs that are deconfined, a
thus they are the least costly mechanism for dynamical e
©2004 The American Physical Society29-1
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lution. We find that finite range ferromagnetic interactio
lead to a frozen ‘‘polycrystal,’’ as opposed to a fragile gla
as in the case of infinite range interactions. We present
possible experimental realizations using lattice arrays of
perconducting devices that could in principle be experim
tal settings for studying sluggish relaxation or nonequil
rium effects in Hamiltonian systems without quench
disorder.

In Sec. II we present in detail the three-color model, a
show that it is equivalent to an Ising model on a hexago
lattice, with the constraint that the magnetization of ea
hexagon must be66 or 0. In the Ising language the extr
interaction that we add to the three-color model has a sim
form: it is a nearest-neighbor spin-spin interaction. Such
teraction is present in the possible experimental realizat
of the model in two different two-dimensional~2D! super-
conducting geometries. Because of the constraint impose
the plaquettes, the system is critical in the absence of t
spin interactions (J50) and is described by ac52 confor-
mal field theory~CFT!.5 In Sec. III, we use this descriptio
to argue about the behavior of the model in the presenc
nonzero two-spin interactions. While for arbitrarily small a
tiferromagnetic coupling (J,0) the system orders, it re
mains critical for small ferromagnetic coupling (J.0). The
CFT description near theJ50 point is ill suited for strong
couplings. In this regime we use instead a cluster mean-fi
method~CMFM! which has proven to be very accurate
describing constrained system such as the ice model.6 We
find a strong first-order phase transition where the sys
jumps from the disordered configuration to the fully magn
tized ferromagnetic state~FMFS!.

When the hard constraint is softened, defects are allo
in the system at a high-energy scaleU, which enters in the
defect formation energy and in the defect pair interactions
Sec. IV, we discuss the role of these defects and their im
cations in the dynamics of the system. In the supercond
ing realizations there are a number of different defects: fr
tional vortices, integer vortices, and open segments of clo
two-color loops. Integer and fractional vortices can be sho
to be confined below a Kosterlitz-Thouless transition te
perature that can be rather high depending on the en
scale U. Thus, these defects are rather ineffective as
mechanism to move from one allowed state to another.
show, on the other hand, that the end points of open s
ments of closed loops made of two alternating colors
deconfined, they can move around and travel a whole clo
loop, and therefore they are the main actors for the evolu
of the system. For defect formation rates much smaller t
the defect recombination rates, this evolution correspo
essentially to the loop dynamics that we use in the pres
paper.

In Sec. V we study the dynamics of the constrained s
tem. By fitting the value of the free energy for the disorder
state as a function of temperature and comparing it to the
of the ordered state we first obtain an accurate estimate
the transition temperature, which is in good agreement w
the result from the CMFM. We then show that there is
sign of the above-mentioned thermodynamic transition to
FMFS. The system instead becomes supercooled and u
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goes a lower-temperature nonequilibrium transition from
supercooled liquid phase to a frozen ‘‘polycrystalline’’ phas
The transition shows features that are characteristic of fi
order phase transitions, such as a hysteretic behavior
function of temperature. The underlying physics behind t
phenomenon is understood by studying the spin-spin a
correlation function as well as the evolution of the intern
energy and other physical quantities when we cool the s
tem at different cooling rates or after a quench from infin
temperature.

II. THE MODEL AND ITS POSSIBLE EXPERIMENTAL
REALIZATIONS

In this section we review Baxter’s three-color model, a
present two of its possible experimental realizations in
tices of superconducting devices in some detail. We sh
that the three-color model and these two realizations can
described as an Ising model on a hexagonal lattice, wit
plaquette constraint of66,0 for the sum of the spins aroun
each hexagon. It is important to notice that while the thr
color model is onlyZ2 symmetric in the Ising spin represen
tation, the superconducting realizations have a largerZ2
3U(1) symmetry due to the superconducting phase. T
difference is particularly relevant for the possible defects t
can originate in an allowed configuration and for their d
namic behavior.

The one extra ingredient that we add to Baxter’s thr
color model is a local interaction. In the Ising spin represe
tation, this interaction takes the form of a nearest-neigh
spin-spin interaction. It has the effect, in the three-co
model, of favoring or opposing to the alignment of bonds
the same color on neighboring sites. The extra interactio
responsible for all the interesting thermodynamical and
namical effects that are studied in this paper. Moreover
the lattices of superconducting devices these interactions
always present.

A. The three-color model

The three-color model consists of vertices having th
bonds of different colors: A, B and C. These different colo
can be thought of as three different phases differing pairw
by 62p/3, which is how we will later connect the model t
arrays of superconducting devices. One can naturally ass
ate to each vertex a chirality spin61 depending on the
counterclockwise or clockwise ordering of the phases,
shown in Fig. 1. A hexagonal lattice is constructed with the
vertices by connecting the bonds, where the connected bo
must share the same color. As we show below, the chira
spins cannot adopt an arbitrary configuration. Indeed,
spins must satisfy the constraint that their sum around
hexagon of the lattice is66,0. On the other hand, given a
allowed configuration of the spins, there are clearly th
different corresponding color configurations, since any g
bal even permutation of the colors in the lattice gives rise
the same spin configuration. In the absence of any kind
interaction this model corresponds to the Baxter’s thr
coloring model on the hexagonal lattice. The partition fun
tion Z has a purely entropic origin and its value is given
9-2
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
the number of ways of coloring the bonds of the hexago
lattice. This number is known to grow exponentially with th
system size. Indeed, Baxter solved exactly this model
showed thatZ5WN for large values of the number of site
N, whereW51.2087 . . . is theentropy per site.3

It is worth discussing in detail how the system can re
range from one allowed configuration to another. No sing
bond flip or double-bond exchange is allowed without v
lating the constraint in the neighboring vertices. Howev
we can notice that by choosing one vertex and two colo
say A and B, we can uniquely define a loop by taking t
sequence of ABAB . . . bonds starting from the chosen ve
tex. The loop must be non-self-intersecting and closed,
last property holding only if the system has periodic boun
ary conditions. Clearly, if we pick one such loop and we fl
the color sequence, say ABAB . . . to BABA . . . , the color
constraint is preserved. These loop flips~or updates! provide
a mechanism for the system to move around the phase s
of allowed configurations. In Sec. IV we will show how th
loop updates originate from local constraint-violating d
fects.

Notice that, given any allowed configuration, every vert
belongs to one and only one of such loops. Thus, by sim
removing all the bonds of one of the three colors~say C!, we
realize one of the three possible simultaneous mapping
the system to a fully packed loop configuration on the h
agonal lattice which, at large scales, can be described b
SU~3! level 1 Wess-Zumino-Novikov-Witten~WZNW!
model.5

The three-color model becomes even richer when we
troduce a nearest-neighbor spin-spin interaction in the Is
representation, which we do in Sec. II E, after we discuss
experimental realizations right below.

B. The Josephson-junction array of superconductors

A possible experimental realization of the model is giv
by a Josephson-junction array of triangles of a superc

FIG. 1. ~Color online! The gluing of the ABC vertices gives
Baxter’s three-coloring model on the hexagonal lattice. To ev
vertex we can associate a chirality spin depending on the orde
which the three colors appear counterclockwise around the ve
1/2 for even/odd permutations of the sequence ABC.
10452
l

d

-
-

-
r,
s,
e

e
-

ce

-

ly

of
-
an

-
g
e

n-

ductor with broken time-reversal symmetry. For examp
there is experimental evidence of apx6 ipy order parameter
in the compound Sr2RuO4;7,8 here the two possible state
px6 ipy correspond to the chirality spin61 defined above.
The same geometry we propose here withp6 ip states has
also been studied by Moore and Lee, who in addition to
p-wave states have also looked atd6 id superconductors,9

believed to be realized by the recently discovered hydra
cobalt oxide compounds. In their work, they have also d
cussed other type of arrays in triangular and square latti

In the px6 ipy Josephson-junction arrays, the three colo
correspond to the three relative phases of the order param
in the middle of each of the edges of the triangles, wh
differ by 62p/3 ~see Fig. 2!. ~To be precise, the phase of th
order parameters is defined in momentum space; but, a
can be deduced from the analysis carried out in the App
dix, one can think in real space by considering the phases
the momenta that point along the directions perpendicula
the three faces of each triangle.! The superconducting orde
parameter of each triangle has also an overall U(1) degre
freedom. Therefore, at the center of each of its three ed
one can define a phaseu i ,a5u i6(2p/3)a for the triangle at
site i, along itsath edge (a50,1,2), where the edges ar
labeled counterclockwise starting from the horizontal o
~see Fig. 3!. The 6 sign corresponds to the chiralitys i5
61 of the px6 ipy state at sitei. The Josephson coupling
2U cos(ui,a2uj,a) along an edge shared by two neighbori
triangles tends to align the phasesu i ,a and u j ,a . In the U
→` limit one recovers Baxter’s three-coloring mode
modulo a global U(1) phase. Notice that, in this infiniteU
coupling limit, the only difference between this system a
the three-color model~in the spin representation! described
in the preceding section is aZ23U(1) symmetry instead of a
simpleZ2 symmetry. We will show in Sec. IV how this dif

y
in
x: FIG. 2. ~Color online! An example of the correspondence b
tween the Josephson-junction array and the three-color model,
vided we identify the three colors with the values of the phases
the order parameter in the middle of each triangle edge. Notice
ferromagnetic order among nearest-neighboring spins corresp
to aligning the bonds with the same color along the same direct
9-3
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
ference allows for a wider variety of defects in th
Josephson-junction array rather than in the three-colo
model.

C. The kagoménetwork of superconducting wires

Another ~related! realization of the three-color model i
given by a superconductingkagome´ wire network in the
presence of a magnetic field10–12such that the magnetic flu
per triangular plaquette is one-half of a flux quantumf
51/2). Using a Ginzburg-Landau analysis, Park and Hus12

showed that the possible superconducting phases must
a gauge-invariant phase change around each elementar
angle equal to6p and a gauge-invariant phase change alo
each wire segment equal to6p/3. They also show that the
allowed minimum free-energy states of this model a
equivalent to ground states of theXY kagoméantiferromag-
net, which are in one-to-one correspondence to the th
color model configurations, modulo a U(1) phase analog
to the one in the Josephson-junction array. The61 chirality
spin can be immediately read from the value of the~counter-
clockwise! phase change around each triangle6p, i.e., from
the value of the induced flux through each triangle: 0 o
flux quantum. Even though this realization seems quite si
lar to the previous one, there are differences that arise ma
from the fact that time reversal is explicitly broken by th
external field in the wire networks. For example, the6p
chiralities do not have the same energy in the case of w
of finite width. We refer the reader to the thorough discuss
of the energetics by Park and Huse.12

D. Mapping to a constrained Ising model

The hard constraint of the three-color model impose
hard constraint in the allowed configurations of the chira
61 Ising spins. Here we show that in the spin representa
the hard constraint requires that any elementary hexag
plaquetteP must have total magnetization:

FIG. 3. Labeling of the edges of the up and down triangles, w

the relative unit vectorsêi ,a . While the chirality spinssp sit at the
centers of the triangles, the ‘‘gauge’’ fields~an example of which is
shown in one of the triangles! sit at the midpoints of the segmen
joining the centers of the triangles to the corresponding edges.
amples of the U(1) phaseu r and of the edge phasesuq,a , a
50,1,2 are also shown.
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˝5(

i PP
s i566,0. ~1!

A similar result was obtained by Di Francesco and Guit
when connecting the folding problem in the triangular latti
to the three-coloring model.13 In our proof, we make use o
phases accumulated along paths on the hexagonal lattice
quiring that these phases are single valued. This approa
more appropriate to the discussion of superconducting
tems and their defects~integer and fractional vortices! that
we present in this paper.

Indeed, as we show, one can obtain a simple interpreta
of the hard constraint by identifying the accumulated ph
around any loop lying on links of the hexagonal lattice w
the circulation of a vector potential. For concreteness,
will use the example of the Josephson-junction array in
discussion, but the argument is general.

The phaseu i ,a on the edgea of the superconducting tri-
anglei can be written as

u i ,a5u i1êi ,a•AW i ,a , ~2!

where êi ,a is the unit vector that points from the center
triangle i to its ath edge, and the ‘‘gauge’’ potentialAW i ,a is
defined at the center of such segment~see Fig. 3!.

The phase difference across a facea between trianglesi
and j is

u i ,a2u j ,a5u i2u j1@ êi ,a•AW i ,a2êj ,a•AW j ,a#. ~3!

The last term is simply the discrete sum equivalent
*d,W •AW ~notice that for neighboring sitesi , j the unit vectors
are opposed,êi ,a52êj ,a).

Now recall that one can writeu i ,a5u i1(2p/3)a s i and
hence the vector potential is such that

êi ,a•AW i ,a5
2p

3
as i . ~4!

What is the corresponding magnetic field? This is sim
to answer, by looking at the accumulated phase aroun
loop. Consider an elementary counterclockwise hexago
loop. The loop visits six triangles, and the portion of the lo
within each triangle enters through facea and exits through
face a21 ~mod3!, so that the accumulation of the vecto
potential along that portion of the loop is

êi ,a21•AW i ,a212êi ,a•AW i ,a5
2p

3
~a21!s i2

2p

3
as i

52
2p

3
s i . ~5!

The above result, that each of the six sites visited by
elementary hexagon loop contributes2(2p/3)s i to a coun-
terclockwise accumulation of phase around the loop, ha
very simple interpretation. Each Ising spins i561 corre-
sponds to a72p vortex sitting at a vertex of the hexagon
lattice. Each vertex is shared by three hexagons; hence
hexagon can be thought to contain 1/3 of that vortex,

h

x-
9-4
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
depicted in Fig. 4. This is why the contribution from th
hexagonal path going through vertexi picks up the phase
2(2p/3)s i as shown above. Basically, the vortex is divid
equally among the three neighboring hexagons sharing
common vertex.

Using Eq.~5! we can now compute the flux encircled b
an elementary hexagon on plaquetteP; it is given by

FP
˝522p/3(

i PP
s i522p/3sP

˝ . ~6!

Therefore the flux enclosed by an elementary hexagonal
is just 1/3 of the sum of the vorticities in the six sites. No
matching the color scheme after going around any clo
loop requires the phase around any hexagon to be uniq
defined (mod2p), which in turn requires the flux to be
multiple of 2p: 2p/3sP

˝50 (mod2p), that is,sP
˝566,0

~notice thatsP
˝ is even!. Since the total flux inside any loo

is given by the sum of the fluxes through each elemen
hexagon, then the conditionsP

˝566,0 grants the phase t
be uniquely defined (mod2p) around any loop.

Once thesP
˝566,0 constraint is satisfied, there is a on

to-three mapping of any spin configuration to a configurat
of the color model, since there are three even permutation
the colors that produce the same chirality spin configurat

In the case of the kagome´ wire networks at half-fluxper
triangle~or vertex of the hexagonal lattice!, each triangle will
accommodate either 0 or 1 vortex. So instead ofs i561 one
has a variableni50,1. Still, the vortices are split equally int
three pieces, and the circulation around a hexago
plaquetteP going through the centers of the kagome´ tri-
angles is (2p/3)NP

˝5(2p/3)( i PPni . The circulation is a
multiple of 2p if NP

˝56,3,0. Indeed, the fact that the vort
ces in the elementary triangles are shared by three sites
used by Park and Huse12 in their argument for fractionalized
vortices in the kagome´ superconducting wire networks.

For finite U, there are defects that violate thesP
˝566,0

constraint; we shall discuss these defects in detail in Sec
where we study integer and fractional vortices, as well
open segments of closed two-color loops. We anal
whether these different defects are confined or deconfin
and their importance in determining the ilk of the proces
responsible for the dynamics.

FIG. 4. A vortex sitting at each vertex in the hexagonal lattice
shared by three hexagons. Hence, the contribution to a cou
clockwise accumulation of phase around a hexagon encloses
third of each of the six vortices sitting at the six vertices in the lo
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E. Interactions

Each experimental realization of our model contains s
dominant effects that may lead to a degeneracy lifting of
ground state. In this paper we concentrate on the effect
duced by nearest-neighbor interactions between the chir
spins:

H52(
^ i , j &

Js is j , ~7!

where the couplingJ depends on the microscopic details
the problem. Such a coupling can arise, for example, if o
considers the higher-order effects of having an exten
Josephson-junction barrier between two neighboring
angles in the array geometry. In the Appendix we show h
to derive the constantsU and J from a microscopic Hamil-
tonian for the array of Josephson couplings and we disc
the conditions for havingU@J. The sign of theJ coupling is
positive in this case.

This nearest-neighbor interaction leads, in the color l
guage, to an aligning or antialigning interaction between
bonds, depending on the sign of the coupling constantJ as it
can be easily seen with the help of Fig. 2. ForJ positive, the
spin interaction is ferromagnetic and the zero-tempera
ground state~g.s.! of the system has all the bonds with th
same color aligned in the same direction. We will refer
this translation invariant state as the FMFS state or sin
crystal state. ForJ negative, the spin interaction is antiferro
magnetic and the zero-temperature g.s. of the system
configuration where the six bonds in every hexagon form
sequence of only two alternating colors, which is simply t
Néel order in the hexagonal lattice.

In the following section, we discuss the thermodynam
of this system considering only the phase space of the c
figurations allowed by the ABC coloring constraint o
equivalently, by thesP

˝566,0 constraint.

III. THERMODYNAMICS OF THE DEFECT-FREE MODEL

A. Small J and the CFT description

Since the model without interactions can be described
a WZNW CFT, it is tempting to use this technique to analy
its behavior for small values of the spin-spin interaction.

The first step is to represent the system by a height mo
~see Kondevet al. for details5!. Flat configurations of this
height model correspond to the different Ne´el states of the
system. In terms of the colors there is a total of six of tho
configurations which are arranged to form an hexagonal
tice. The coarse-grained version is described by two fie
hW 5(h1 ,h2) and a locking potentialV(hW ) that favors the
fields to lie in one of the flat configurations; this potential h
then the periodicity of the hexagonal lattice. The action re

S5E d2xS p

2 U“hWU21V~hW ! D . ~8!

In this language, the spin-spin interaction introduces a p
turbation which is proportional to the ‘‘locking potential
since, depending on the sign ofJ, it favors or opposes the

s
er-
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
locking in one of the flat configurations. In the WZNW lan
guage, the locking potential can be written as a curre
current perturbation of the underlying WZNW model.5

When the spin-spin interaction is turned on, we can
this description to propose an action for the perturbed C
Since the A,B,C permutation symmetry is preserved, we
argue that the perturbing term to the pure CFT action sho
read

E d2xFlHS (
i 51

2

JR
HiJL

Hi D 1lES (
j 51

3

JR
a jJL

2a j1JR
2a jJL

a j D G ,

~9!

wherea j ’s are the generators of the root lattice of su(3), and
the Cartan generatorsJHi are simply given by the derivative
of the height fields]hi . The caselE5lH corresponds to the
SU(3) symmetric case. The one-loop renormalization-gro
~RG! equation in this case reads

l̇52
3

2p
l2, ~10!

and for l.0 the flow is toward the unperturbed level
SU(3) WZNW model, which can be identified with theJ
50 case. In general, however, we just have the A,B,C p
mutation symmetry, and we cannot exclude the possibility
lHÞlE . Definingdl5lH2lE , the RG is now

dl̇5
1

p
dl lE ,

l̇E52
3

2p
lE

22
1

p
dl lE , ~11!

where, at least for a small spin-spin interaction, we assu
udlu!lE . The RG flow is as follows~see Fig. 5!. For dl
.0, the system flows to the line of fixed pointslE50.
While the SU(3) symmetry is broken, the system rema
critical. We propose that this case corresponds to a ferrom
netic interaction, since it is equivalent to a decrease of
locking potential. This result is valid for small interspin co
plings. As we show below, for large enough couplings a fir
order phase transition takes place. Since this is highly n
perturbative in the CFT language, this scenario is mu
better described by the cluster mean-field method that
explain below. For an antiferromagnetic coupling,dl,0
and the flow goes toward strong coupling, bringing the s
tem off criticality and forcing the system into antiferroma
netic ordering, as was argued by Huse and Rutenberg14 in
their studies of the related classical kagome´ XY model.

B. The cluster mean field method: General approach

The CMFM is a technique that has proven to be ve
powerful in studying structural phase transitions in cryst
and the thermodynamics of vertex models.6 When a system
is constrained, fluctuations are considerably reduced an
appropriate mean-field treatment can give very good res
if the constraint is taken into account. The idea is to consi
as the fundamental entity coupled to a ‘‘molecular’’ fiel
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instead of a single spin, a cluster in which the allowed s
configurations are restricted by the constraint. The bigger
cluster, the more accurately fluctuations and constraints
taken into account. This method has given very precise
sults for the ice model6 and is a good candidate for giving a
accurate picture of our constrained spin model in the hexa
nal lattice.

It is particularly simple to introduce the CMFM in th
case of a corner sharing plaquette15 lattice with Hamiltonian

H5(
i , j

Ji , js is j1h(
i

s i , ~12!

where the range of theJi , j interaction is shorter than th
distance between the two farthest spins in a plaquette. Th
the case for the present system. Let us assume that the la
hasN spins and 2N/S plaquettes, where each plaquette haS
sites. The sums in the Hamiltonian can be rearranged as

H5(
P

F (
i , j PP

Ji , js is j1h(
i PP

s i G2h(
i

s i , ~13!

where the first sum is over all plaquettesP and the last term
compensates for the double counting of the site energy te
The mean-field approximation is obtained by consider
each term as the sum over an elementary cluster~of S and 1
spins, respectively! coupled to an effective field representin
the interaction with the rest of the lattice:

FIG. 5. Diagram of the RG flow for our model, where the ho
zontal axis corresponds todl and the vertical tolE . The solid lines
are numerical solutions of the system of equations~11! for three
different initial conditions, and are drawn for visualization purpos
only.
9-6



,
r
th

r

n-

ed
n-

-
ai
re

fo

er
i

s

in
a

na

th
on

r

an

gon

s
n-
f
s-

-
int.
to

esti-

t
e

tion

en-

t
nd

ure

he

the

DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
H.
2N

S F (
i , j PP

Ji , js is j1~h1fext!(
i PP

s i G2N@~h1f!s i #

5
2N

S
HS2NH1 , ~14!

whereHS andH1 are theS- and 1-spin cluster Hamiltonian
respectively. Here,f andfext are proportional to the numbe
of spins that are external to the cluster but connected to
internal spins. Since for the 1-spin clusters such numbe
external spins is twice the number for theS-spin clusters, we
havef52fext . Let us now define the effective internal e
ergy per spin

«5
2

S
^HS&S2^H1&1 , ~15!

where^•••&S and^•••&1 are the thermal averages comput
with HS and H1, respectively. Integrating then over the i
verse temperatureb we get an effective free energy:

bF52
2

S
ln ZS1 ln Z1 , ~16!

whereZi5Tr$exp(2bHi)%, i 5S,1, and the integration con
stant has been chosen such that in the case of unconstr
spins we get the trivial entropy ln(2) at infinite temperatu
Minimizing the effective free energy with respect tof:

]F

]f
50 ~17!

is equivalent to imposing the self-consistency equation
the magnetization:

^s&S5^s&1 ~18!

and it gives us the optimal value for the fieldf, which
determines the behavior of the system at a given temp
ture. An important benefit of this method is the fact that
can be extended to larger and larger clusters. This allow
to improve systematically the accuracy of the results.

C. Application of the CMFM to the defect-free model

In order to be able to apply the CMFM to our problem
a straightforward way, it is convenient to switch to a bidu
representation and describe our system in terms of spinsSi j
561 sitting on the links of the hexagonal lattice~see Fig.
7!. These spins are given by the product of the origi
chirality spins s i at the two vertices of each link:Si j
5s is j . Obviously, the number of configurations of theS
spins is half the number of originals spin configurations,
due to theZ2 invariance of the products is j . The advantage
of this mapping is that our lattice becomes now the~corner
sharing hexagons! kagomé net in which each spinSi is
shared by two elementary plaquettes. In this description,
Hamiltonian~7! restricted to the nearest-neighbor interacti
reads simply
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H52J(
a

Sa , ~19!

where the indexa refers to a link of the hexagonal lattice o
a site of the bidual kagome´ lattice. The CMFM implementa-
tion is particularly easy since in this picture we just have
effective magnetic fieldJ in Eq. ~12!. The clusters that we
use are the single-spin cluster and the elementary hexa
cluster~with 11 different configurations for theSspins!, and
the corresponding partition functions are given by

Z15ax211/~ax2!,

Z65a6x61a26x2613~ax!216/~ax!2, ~20!

wherea5ebJ and x5ebf/2. We can now obtain the value
fopt corresponding to the minima of the effective free e
ergy. Notice thatfopt determines the equilibrium value o
^S&, i.e., of the internal energy per link of the original sy
tem. This method predicts the following scenario: forT
→` we have^S&51/3, which corresponds to an antiferro
magnetic coupling in the system solely due to the constra
This nontrivial value of the energy density is very close
the result obtained with the numerical method~see Sec. V!.
The cluster mean-field method also gives a reasonable
mate for Baxter’s entropy in the limitT→`. Substituting
Eq. ~20! into Eq. ~16! and taking the limitT→` we obtain
the entropy per siteS5 ln(11/8)/2.1.1726, while the exac
value is 1.2087 . . . . Since the analytical expressions for th
forthcoming quantities are too cumbersome, we just men
here their numerical values. AtT.9.872J the system under-
goes a first-order phase transition in which the energy d
sity jumps from^S&;0.05 to a fully polarized state in which
^S& is exactly21 ~see Fig. 6!. This transition has been firs
noticed via transfer matrix analysis by Di Francesco a
Guitter16 in the context of a folding transition. Our CMFM
result is very close to their estimated critical temperat

FIG. 6. Plot of the internal energy per link as a function of t
temperature~in units of the coupling constantJ). The solid line is
the prediction from the CMFM and the doted-dashed line is
result from the numerical simulation.
9-7
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(9.1J) and even closer to our Monte Carlo estimate 9.6J ~see
Sec. V A 1!. In terms of the original spins, this behavio
corresponds to the exotic scenario in which the magnet
tion jumps from 0 to the fully saturated value 1 at the critic
point, as was argued by Di Francesco and Guitter.16 A similar
kind of transition is also found in a frustrated spin model
the triangular lattice,17 which turns out to be equivalent to
dimer model on the hexagonal lattice. Such kind of transit
is accompanied by slow dynamics and aging. As we will s
below, slow dynamics is also a central issue in our case

Another temperature that we can compute via the CM
is the spinodal temperature of the system. This is typica
first-order phase transitions, where an appropriate fast c
ing process can avoid crystallization and bring the sys
into a supercooled liquid phase. The spinodal tempera
Tsp is the temperature at which the supercooled liquid
comes unstable due to the crystal nucleation process. In
case, we can study the shape of the CMFM effective f
energy as a function off for different temperatures. Startin
from T;` and lowering the temperature, the minimum co
responding to the liquid phase first becomes a local m
mum ~metastability! and eventually disappears. This met
stability limit corresponds to the spinodal temperatureTsp

.7.56 of the present model.
The choice of the bidual spin representation to implem

the CMFM is due to the fact that the system become
model for which the CMFM is particularly suitable. Indee
in terms of the bidual spins, the system becomes a kag´
lattice seen as an array of corner sharing hexagons, in w
now the new spins are sitting at the vertices. By associa
to each of the 11 configurations for each hexagon its co
sponding energy, the model can also be described as a
vertex model on the triangular lattice dual to the hexagon
This choice of variable usually limits the analysis since
does not allow us to measure the magnetization of the
tem, which is the typical order parameter used to study ph
transitions. In the present case however the energy den
variable gives very good results in the characterization of
system since the transition is first order. For continuo
phase transitions the situation is different. Even though
CMFM still gives a quite accurate result for the numeric
value of the energy density~in contrast to the normal mean
field method!, it may fail in reproducing a subtle behavio
such as an infinite slope point atTc in the energy vs tem-
perature curve. In this case, measuring the magnetizatio
the system is a much more powerful tool to detect and st
the second-order phase transition. Thus, one needs to
back to the original spins instead of the bidual ones. Imp
menting the CMFM technique within the context of the re
spins has two main disadvantages in our case. On one h
the spins do not form corner sharing plaquettes, and rela
the mean fields acting on the one-spin cluster and on
six-spin cluster becomes more difficult. On the other ha
since the couplingJ is a two-spin nearest-neighbor intera
tion, a single variational mean field cannot take simul
neously into account both theJ interaction~for which each
spin interacts with its three neighbors! and the effective in-
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teraction due to the constraint~for which each spin interacts
with all the 12 spins belonging to the three adjacent he
gons!.

D. Free-energy argument for a first-order phase transition

The key point for understanding this particular phase tr
sition is to understand the very peculiar nature of its FM
ground state. As we already discussed before, in the FM
state all the bonds of the same color are aligned in the s
direction. As a result, any two-color loop is maximal
straight and winds around the whole system. Thus, the sm
est possible rearrangement of the FMFS configuration
produces another allowed configuration is the update of
of such loops. This is a striking feature of the ferromagne
three-coloring model: the g.s. is separated from the first~1-
loop! ‘‘excited’’ state by a system-spanning update whi
costs an energy:E1-loop2EFMFS52JL, where EFMFS
523JL2 and L is the system size (2L2 sites, 3L2 bonds!.
Notice that if one prepares the system in theT50 FMFS and
starts to heat, the system is likely to remain in that state e
for T→` for fast enough heating rates. Indeed, such an
ergy separation is likely to make the FMFS state metasta
even forT→`, in the thermodynamic limit. Since the FMF
state has zero entropy and the entropy of a straight wind
loop is ln(3L), we can write the free energies of the tw
states

FFMFS523JL2,

F1-loop523JL212JL2T ln~3L !. ~21!

Clearly in the thermodynamic limit the energy costDE;L
overwhelms the entropic gainDS; ln L and the excited state
will never be favored over the FMFS state at any tempe
ture. A similar argument applies to higher excited states
long as their entropy is not exponential in the system s
The system is incapable~at equilibrium! to move out of its
ground state in a ‘‘smooth way.’’ In terms of configuration
it has to jump from a fully ordered state into a state w
finite-domain size. Since it is reasonable to assume th
finite-domain-size configuration has negligible magneti
tion, we can intuitively understand the origin of the comple
first-order phase transition observed with the CMFM.

The peculiarity of this transition and the relatively sma
variation of the internal energy in the disordered phase m
it possible to obtain an estimate for the transition tempera
by comparing the free energy of the FMFS configurati
with the free energy of the disordered configuration. In ord
to compute the free energy of a disordered configuration,
use the average infinite-temperature internal energy of
systemE`5JL2, an estimate derived via the CMFM in th
preceding section and confirmed by the numerical res
~see Sec. V!. Then, we can use Baxter’s exact result for t
residual entropy as an estimate of the entropy and obtain
free energy of a disordered state at all temperatures:

Fdisordered5JL22T2L2ln~1.2087!. ~22!

By comparing the free energy of the FMFS stateFFMFS
523JL2 with Fdisorderedwe obtain an estimate for the tran
9-8
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
sition temperature 2J/( ln 1.2087).10.55J, which is reason-
ably close to the result from the CMFMTc.9.872J.

IV. DEFECTS AND THEIR ROLE IN THE DYNAMICS

In this section we discuss the importance of defects
determining how the system can, dynamically, move fr
one of the allowed low-energy configurations to another.
concreteness, let us start by discussing the Joseph
junction arrays, i.e., the case ofZ23U(1) symmetry.

A. Integer vortices

For finiteU, it is best to understand the system in terms
the chirality Ising spins, plusXY spin waves of the U(1)
sector. The lowest-energy excitations over any configura
with Ising spins satisfyingsP

˝566,0 are topologically
trivial ~no vortices! XY spin waves.

WhensP
˝566,0 is preserved, vortices of the U(1) sect

can only have vorticity that is an integer multiple of 2p.
These vortices cost an energy of order of magnitudeU, the
vortex core energy. The U(1) phase twist leads to the us
logarithmic interaction between a vortex/antivortex pair,

E1}U2p ln R. ~23!

and these pairs are confined below a Kosterlitz-Thoule
type transition at a temperature scaleTKT

(1)}U. Since we are
interested in the regime of temperaturesT!U such that the
three-color constraint is enforced, these integer vortices
be confined.

Now, what are the accessible excitations that break
sP
˝566,0 constraint?

B. Fractional vortices

A fractional vortex excitation is illustrated in Fig. 7. Suc
fractional vortices are always created in pairs via a near
neighbor exchange of opposite pointing spins and they h
been discussed by Park and Huse12 in the case of the super
conducting kagome´ network. A fractional vortex excitation
corresponds to a single hexagon that violates thesP

˝5
66,0 constraint. We define its fractional vorticity asG
52pn5(2p/3)sP

˝ (mod2p). Thus, we haven561/3 for
sP
˝572 or sP

˝564.
The presence of defects causes a fractional accumula

of the link sum of the vector potentialAW i ,a , the equivalent of
rd,W •AW in the continuum limit, that equals62p/3
(mod2p). Once again it is useful to resort to the picture
Fig. 4 to understand that only one-third of the vorticity ass
ciated to an Ising spin at a vertex is included in the circu
tion around an elementary hexagon, and hence the flu
1
3 2psP

˝ .
To minimize the energy cost across the Josephson ju

tions, the superconducting phasesu i in the triangles must
adjust accordingly to pick this extra phase differen
62p/3. Hence, an excited state that breaks thesP

˝566,0
constraint in the Ising sector must be accompanied by a U
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phase twist that scales with the distancer from the defect as
1/(3r ) ~in units of the lattice spacing!.

The U(1) phase twist leads to a logarithmic interacti
between a fractional vortex/antivortex pair a distanceR
apart:

E1/3}U
2p

32
ln R. ~24!

Thermodynamically, there is an entropic contribution to t
free energy, which was calculated by Moore and Lee,9 and
shown to also be logarithmic. Therefore, there is a confin
transition of the Kosterlitz-Thouless-type at a temperat
TKT

(1/3)}U/9. If the Josephson couplingU is large compared to
the temperatureT, which is the regime we are interested i
then one is deep in the confined phase, and fractional vo
ces are rather ineffective as a source of phase-space re
figurations.

C. Open segments of closed two-color loops

There is a special way to flip Ising spins along certa
strings lying on the hexagonal lattice that, while violating t
sP
˝566,0 constraint, only costs energy at the extremities

the string, irrespective of its length.
To understand these excitations, let us start by looking

the simple case of a single spin flip that violates the c
straint on three neighboring hexagons. In terms of the co
model, all colors remain perfectly well defined, with the e
ception of the one vertex where the spin flip occurred. T
energy cost of this defect is of orderU. It is possible that
locally adjusting the U(1) phase near the defect mig
slightly relieve this cost, but we have not investigated t

FIG. 7. A pair of 61/3 vortices created by a nearest-neighb
spin exchange. The solid-line lattice represents the kagome´ network
considered by Park and Huse~Ref. 12!. The Josephson-junction
triangular array is represented instead by the bold triangles.
corresponding hexagonal lattice in our model is shown only aro
the two defects~dashed line!. In the bottom right part of the picture
we show the mapping to the bidual representation used in
CMFM.
9-9
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FIG. 8. ~Color online! Defect
pair at the end points of an ope
string, with end points highlighted
~shaded circles! and the relative
two-color path~bold links! shown
in a configuration of the three
color representation of the mode
The end points can travel freel
along the path via nearest
neighbor color exchanges, such a
the one outlined by the double ar
row. Eventually, the two end
points recombine by either ex
changing all the bonds along th
path or by leaving them all un-
changed.
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issue. A single spin flip could split into a11/3 and12/3 ~or
equivalently, a21/3) fractional vortex pair. These, howeve
are confined together at low temperatures compared toU, as
we argued above.

In the three-coloring model, this spin-flip defect corr
sponds to the initial step of creating an open segment de
described hereafter. Out of the three bonds departing f
the spin-flipped site, two must have exchanged color~in or-
der to change the chirality of the vertex!, thus violating the
color matching with the corresponding two neighbori
sites. If we now move these two color defects starting fr
the two neighboring sites and performing the same orig
color exchange, we can propagate the defects at zero en
cost along a predefined path. Indeed, every color excha
will fix the previous color mismatch and create a new o
one lattice spacing apart. Notice that this process will flip
the spins between the two end points along the path.
useful to recall the color description of the allowed low
energy states. Imagine one follows an ABAB . . . sequence
that always forms a closed loop in an allowed configurati
We have already seen that flipping the whole loop
BABA . . . maintains the system in an allowed configur
tion. It is also trivial to show that this update flips all Isin
spins visited by the loop. While this is a rather nonloc
move, starting from a single spin flip~color exchange! and
propagating the color defects as above, we can realize
move through a sequence of local updates. Instead of
ping the whole loop at once, one can do it in steps, flipp
the spins along a piece of the loop sequentially. Notice t
the energy cost of this string is paid only at the end poi
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and is of orderU, as long as the sequence of spin flips mov
on its two-color track. The end points can be thought of a
defect pair connected by a string. This special path is hid
in the constrained Ising representation, but is clear in
three-color one~see Fig. 8!. The defect pair, once formed
can diffuse around the one-dimensional loop, and it has
channels to decay back into an allowed state: either the
fects recombine by going around the whole loop, leading
the BABA . . . configuration, or they recombine withou
winding around the loop back to the original ABAB . . .
configuration. These are the defects considered by Kon
et al.5 In the CFT description, they correspond to vertex o
erators with conformal dimension 1/2. While, as we me
tioned, for a fixed configuration of colors there is no confi
ing force between pairs, an effective interaction appe
because of entropic reasons, producing an algebraic d
with the separation distance for the partition function in t
presence of such defects. However, for the dynamics on
really interested in the cost for a given configuration. The
fore, the formation and recombination of these defect pa
constitute the main mechanism responsible for the dynam
evolution of the system.

The defect formation time just enters as an overall res
ing of the time steps for loop updates. Also, since the tim
takes for the defects to move diffusively around the 1D lo
is algebraic in the loop length~and not exponential!, we can
neglect this correction and simply treat the whole loop u
date as a nonlocal elementary move, now with a justifi
local origin.
9-10
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
V. DYNAMICS

In order to study the dynamic properties of the system,
use Monte Carlo~MC! simulation techniques of anN
52L2-site hexagonal lattice (3L2 bonds! with periodic
boundary conditions. As we discussed in Sec. II, the cho
of the single-step update is nontrivial due to the color c
straint. In Sec. IV we argued that the open segments
closed two-color loops are the main actors in the dynam
evolution of the system, based on energy and confinem
considerations. Thus, without loss of generality, we consi
only loop updates as single-step updates of our MC te
nique. We also assume that the rate of formation of the o
segment defects is low enough not to allow for defect p
liferation ~i.e., for the intersection of two different open se
ments before they recombine!.

To implement a loop update we proceed as follows:
first choose one site and two colors at random; then we c
pute the energy difference in the system for the update of
corresponding loop; eventually we accept or reject the
date based on the usual Boltzmann probability. Notice t
with this choice of the single MC step, the update of a lo
takes one unit of time, independent of its length. In a p
sible experimental realization we expect the two ends of
open segment defect to walk randomly along the correspo
ing closed path, until they recombine. Thus, our MC dyna
ics is accelerated and the rescaling of our MC time w
respect to a possible ‘‘real’’ time is highly nontrivial. Sinc
we are interested in studying the slowing down and freez
of the dynamics in the three-coloring model, we choose
use the accelerated loop dynamics in order to be able
sample much longer time scales, otherwise inaccessible
a realistic update mechanism based on defect formation
recombination.

In terms of the loops, one can notice that the two orde
configurations FMFS and Ne´el ~ferromagnetic and antiferro
magnetic, respectively! correspond to the two extrema i
loop curvature. In the FMFS configuration, the loops a
completely straight loops, winding around the whole syste
In the Néel configuration, the loops are maximally curve
into single-hexagon loops. For these reasons, we expec
entropic jamming in the approach to the FMFS state, fo
ferromagnetic choice (J.0) of the interaction, as discusse
in the case of infinite range interactions by Chakrabo
et al.4 Indeed, entropy favors rough and entangled loo
which in the infinite-temperature limit have a fractal dime
sion equal to 1.5.5,18 This creates a phase-space bottlene
due to the small number of configurations that allow t
system to reach the FMFS state with straight, packed lo
On the other hand, the approach to the Ne´el state in the
antiferromagnetic interaction case (J,0) is much smoother
for the system. Even though this state has zero entropy
itself, single-hexagon flips allow the system to achieve a g
in entropy of the order of lnL2 with an energy cost of the
order of 6J. Indeed the Ne´el state corresponds to theideal
statesdefined by Kondev and Henley,5 which have maxi-
mum entropy density in the sense that they allow for a ma
mum number of local rearrangements of the spins in acc
with the constraint. Thus, we do not expect any jamm
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phenomena to play a role in this case.
In this section we consider only the case of ferromagne

interactions and we setJ51 as the unit of measure of ene
gies and temperatures. In order to be able to access l
simulation times, we choose the smallest system size
which our results do not show a significant dependence
system size (L518).

A. Transition temperatures

1. Estimate of the thermodynamic transition temperature

The first result that we observe both in cooling/heati
simulations and in quenching simulations is the phase-sp
‘‘isolation’’ of the single-crystal phase or FMFS. Eve
though at equilibrium the system must eventually favor
FMFS, we were unable to reach it within any simulatio
time, up to 107 MC steps. The system prefers to settle into
frozen polycrystalline~P-xtal! phase with zero or close to
zero average magnetization, and with very slow, eve
dominated dynamics. In Fig. 9 we show the time evoluti
of the system after a quench in temperature fromT;` to
T56.0. After a single MC iteration@Fig. 9~a!#, only a few
small crystalline seeds are visible in a disordered liq
background. These seeds quickly develop into well-defin
domains@Fig. 9~b!#, whose size grows with time until the
system becomes frozen into the P-xtal phase@Fig. 9~d!#. No-
tice the domain boundaries following the ‘‘crystallin
planes’’ of the hexagonal lattice in the polycrystal. The d
pendence of the crystalline massm on time t reflects the
remarkable slowing down in the dynamics once the sys
enters the polycrystalline phase.

Even melting simulations starting from the FMFS pha
and increasing the temperature are not useful to estimate
transition temperature. Indeed, they result in a large ove
timate of Tc , since the melting time remains much larg
than the simulation time well aboveTc .

The only measure we can achieve of the thermodyna
transition temperatureTc is by computing the free energy i
the liquid and crystal phases by integration of the inter
energy. For a single crystal we know thatf FMFS521 at all
temperatures, wheref 5F/(3L2) is the free energy per bond
For the liquid phase, we use the curves in Fig. 13 show
the dependence of the internal energy on the tempera
Notice that the asymptotic value of the internal energy
infinite temperature is different than zero. This is purely d
to the constraint, which appears to be slightly antiferrom
netic in nature. A simple way to visualize this effect is
look at an infinite-temperature configuration after performi
a spin-flip operation on one of the two sublattices of t
hexagonal lattice. The result is shown in Fig. 10.

An appropriate fit of the common high-temperature reg
of the internal energy~per bond! curves,19

Eliquid~T!5c2a/Tb ~25!

gives a.4.3, b.1.22, andc.0.336. Notice that a naive
high-temperature expansion in powers of 1/T may be
plagued by the criticality at high temperatures. In this se
9-11
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
FIG. 9. ~Color online! Time evolution snapshots of the system after a quench fromT;` to T56.0 ~at time t50) below the transition
temperatureT* .8.1. The dots represent the 2L2 vertices of the hexagonal lattice (L536) and the two colors correspond to the two valu
of the chirality spin. The lattice is wrapped along the horizontal axis and along the 60° axis rotated counterclockwise above the h
For each configuration, we report the measured crystalline massm and the timet from the temperature quench:~a! m50.08, t51 MC step;
~b! m50.24, t528 MC steps;~c! m50.32, t549 MC steps;~d! m50.50, t5192 MC steps;~e! m50.68, t55.73104 MC steps; and~f!
m50.73, t55.43105 MC steps.
104529-12
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
the nontrivial exponentb may have an interpretation in term
of the CFT description atT→`. We can then integrate to
obtain the free energy:

b f ~b!5b0f ~b0!1E
b0

b

db8E~b8!; ~26!

settingb050 for the liquid phase and using the known r
sidual entropy of the system, we obtain

f liquid~T!52
2

3
ln~1.2087!T1c2

a

~b11!Tb
, ~27!

where the 2/3 factor in front of the residual entropy com
from the fact that there are three bonds every two sp
Settingf liquid(T)5 f FMFS521 gives the melting temperatur
Tc59.6, in good agreement with the results from the CM
method.

Even thoughTc is the actual thermodynamic transitio
temperature, we are unable to observe this transition du
the incredibly large time scales involved in the approach

FIG. 10. ~Color online! Two pictures of anL536 system con-
figuration at infinite temperature:~a! the original chirality spins;~b!
the same configuration after we performed a spin-flip operation
one of the two sublattices. The antiferromagnetic correlations or
nating solely from the constraint are clearly visible.
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the FMFS state. As it appears from the results below,
system seems to be completely unable to sample the ph
space region corresponding to the crystalline phase, at l
on our simulation time scales, and it is confined to an ‘‘e
fective phase space.’’

2. The dynamic freezing transition

Instead of going through the thermodynamic transitio
the system remains in a supercooled liquid state belowTc ,
until it reaches a temperatureT* where it evolves into a
frozen polycrystalline state.

Looking at Fig. 9~f!, we can clearly see that the polycry
tallization is complete, in the sense that the domain bou
aries are fully one dimensional, with almost no interstit
liquid left. While the size of these domains increases w
longer waiting times, the growth becomes extremely slo
basically stopped within our Monte Carlo time scales bef
reaching the single-crystal configuration. This can be
served, for example, in the behavior of the zero-tempera
saturation value of the energy in Figs. 13 and 14. The ene
is in fact a measure of the area-to-perimeter ratio in the po
crystalline phase, provided complete polycrystallization h
been achieved. This is clearly the case in theT→0 plateaus
in Fig. 13. Instead of approaching the value21, character-
istic of the FMFS state, these plateaux seem to approa
limiting value E P-xtal(T50);20.74 for larger cooling
times.

The transition atT* can be seen as a dynamic phase tr
sition and does not have a thermodynamic origin. Howev
we can reasonably establish a correspondence of this tra
tion to a ‘‘true’’ thermodynamic phase transition in a relate
more constrained system. As we show with the followi
analysis, the origin of the dynamic transition atT* resides in
a free-energy barrier that prevents the system from visitin
phase-space region around the FMFS phase, at least w
our simulation time scales. Since only winding loop upda
can change the number of bonds per color per direction,
possible to divide the phase space into topologically se
rated sectors by forbidding the update of winding loops. T
FMFS configuration would then be in a topological sector
itself, and starting from an infinite-temperature configurati
with equal number of bonds per color per direction it wou
be impossible for the system to reach its natural ground st
With this constraint, the system is expected to show a ph
transition into a state which is not the FMFS, with a behav
analogous to the one observed in the present model.

This polycrystal transition is an intrinsic transition of th
supercooled liquid phase, which would not exist in the in
nite time limit. If we were able to wait infinite simulation
times, we expect the dynamic transition atT* to disappear,
replaced by the equilibrium transition atTc.T* .

Since we cannot apply the same technique used abov
Tc to the polycrystalline state, we have to measureT* with a
somehow more empirical method. We first prepare the s
tem into an almost completely polycrystallized state by co
ing it at very low rates. We then chose a particular value
the temperatureT and let it evolve in time. If it eventually
reaches the liquid state, then we conclude thatT.T* ; con-
versely if it completes the polycrystallization process. T

n
i-
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
choice of the initial state closer to the polycrystalline st
rather than to the liquid one is merely due to the stron
metastability of the liquid phase, as it appears from
asymmetry in the hysteretic process with respect toT* @see
Fig. 13~a!#. In Fig. 11~top! we present the results in terms
time evolution of the energy. Even though we do not hav
sharp distinction between the behavior above and belowT* ,
we can clearly identify a transition atT* .8.160.1. When
the system is set to a temperatureT.8.2, it quickly departs
from the quasipolycrystallized initial state, while forT,8.0
it completes the polycrystallization process, thus lowering
energy. It is interesting to notice that all the quenching te
peratures are below the thermodynamic transition temp
tureTc59.6, while the system behaves as if it is incapable
visiting the favored FMFS configuration.

Since the total magnetization of the system remains c
to zero for all temperatures and time scales that we are
to sample, it cannot be used as an order parameter for
transition. A more appropriate order parameter is proba
the crystalline massm, shown in Fig. 11~bottom!. As pro-
posed by Cavagnaet al.,20 the crystalline mass measures t
fraction of crystallized spins independently of the size of

FIG. 11. Time evolution of the internal energy and crystalli
mass, after the system has been prepared in an almost polycr
lized configuration. The curves correspond to different quench
temperatures~expressed in units ofJ) both above and below the
transition temperatureT* .8.160.1. Note that all the temperature
are below the thermodynamic transition temperatureTc.9.6, while
the system behaves as if it is incapable of visiting the favo
FMFS configuration.
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polycrystals. We first define the elementary crystal unit as
four-spin cluster composed of one spin and its three nea
neighbors. To avoid double counting, we choose the cen
spin exclusively in one of the two sublattices of the hexag
nal lattice. Then, we define the~dimensionless! crystal mass
density mP@0,1# as the number of these elementary un
present in a given configuration, normalized by the to
number of unitsL2. Since we need to keep the elementa
unit small enough to be sensitive to small amounts of cry
mass, we have a limited power of resolution. In fact, eve
random configuration has a nonzero average crystalline m
m050.01, which we consider as the effective zero ofm. The
results obtained by measuring the time evolution ofm are in
good agreement with the conclusion thatT* .8.160.1.

3. Some considerations on the dynamics of the polycrystal

The data shown in Fig. 11 are averages over 32 differ
histories starting from the same initial configuration. T
reasons for the large time fluctuations and the lack of a sh
distinction between above-T* and below-T* behavior, as
shown instead in the system studied by Cavagnaet al.,20 are
to be found in the peculiar, rare-event-dominated dynam
of the polycrystalline phase. It is worth to analyze this d
namics in detail, as it helps understanding also the pha
space isolation of the thermodynamic g.s., i.e., the FM
crystal.

With some simple reasoning about the colors and
chirality spins, one can see that within a single, ferrom
netically ordered domain, all the bonds of the same color
aligned in the same direction. Thus, any two-color seque
inside the domain follows a straight path from one side to
other along one of the three crystalline directions~or crystal-
line planes! of the hexagonal lattice. This high level of orde
is responsible for the first important difference with resp
to usual domain growth: there are no small loops across
boundary of a domain~but for possible corner loops! and the
domain is not capable of small rearrangements of its wa
While, for example, in a normal Ising model a domain c
expand gradually, in our constrained Ising model a dom
can only crack from side to side. It is important to notice th
these cracks will almost always bring the system into
excited state with higher energy, the energy difference be
proportional to the length of the crack.

If we now extend these considerations to the almost co
plete polycrystalline phase that the system is able to ach
belowT* ~see Fig. 9!, we can see that any loop has to cro
a few domains before closing on itself. In fact, bending
the loops are allowed only at domain boundaries. Theref
we have a second important difference with respect to us
domain growth: one domain cannot expand at the expen
of a single other domain; rather, the above cracks involve
least six domains~but for the case of winding loops!, since
every domain boundary corresponds to a 60° bending in
loop. One can easily convince oneself that the closer
system is to the polycrystalline phase, the more the dynam
become frozen, requiring entangled, multiple-domain cra
ing in order to move from one configuration to another. Th
behavior can be seen, for example, by looking at the beh
ior of the spin-spin autocorrelation function@see Eq.~29!#,

tal-
g

d
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
FIG. 12. Spin-spin autocorrelation functionC(tw ,t) for a single MC simulation and four different values of the waiting timetw : ~a!
tw520 MC steps;~b! tw523102 MC steps. Note the rescaling of the time axis with respect to the previous figure;~c! tw523103 MC
steps; and~d! tw523104 MC steps. The temperature is quenched att50 from T5` to T56, the same used in Fig. 9. Attw520, the
system is still in a rapidly changing liquid phase@see Fig. 9~b!#. As the system gets deeper into the polycrystalline phase attw523103 or
even more attw523104 @see Fig. 9~d!#, the behavior of the correlation function becomes discontinuous, reflecting a rare-event dom
dynamics where the system undergoes highly nonlocal rearrangements. Notice theZ2 symmetry of the system@Fig. 12~c!#. When the
dynamics become highly entangled in the polycrystalline phase@see Fig. 9~e!#, the number of allowed configurations drops dramatically a
rearrangements that bring the system from one configuration to its mirror image play a significant role in the evolution of the sys
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shown in Fig. 12. For small values oftw , the system is still
in a rapidly changing liquid phase@see Fig. 9~b!#, and the
correlation function roughly follows the stretched expone
tial behavior with a very short relaxation time discussed
Sec. V B 2. As the system gets deeper into the polycrys
line phase fortw523103 or even more fortw523104 @see
Fig. 9~d!#, the behavior of the correlation function show
how the system now evolves mostly via rare events that
responsible of extended changes in the system configura
Notice theZ2 symmetry of the system. When the dynami
become highly entangled in the polycrystalline phase@see
Fig. 9~e!#, the number of allowed configurations drops dr
matically and rearrangements that bring the system from
configuration to its mirror image play a significant role in t
evolution of the system@Fig. 12~c!#.

It is important to underline the large energy cost of the
updates, which scale with the linear sizej of the domains.
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Indeed, we can interpret this energy difference as the act
tion energyEA(j) for domain growth. Processes where t
activation energy depends onj, or more generally where
freezing involves a collective behavior dependent onj be-
long to classes 3 and 4 for growth kinetics.21 In the following
paragraph, we will address this classification in greater
tail.

Even if the system is able to overcome the activation
ergy barrier, the three-coloring constraint plays a new k
role in preventing the system from reaching a new confi
ration. Let us consider an excited state after one loop
been updated in the polycrystalline phase. The system
then three types of updates available: the trivial repair of
crack, with consequent lowering of the energy; an indep
dent update, which requires to overcome a similar activat
energy; and the peculiar loop updates that are adjacent to
open crack. Clearly, since a loop update corresponds to
9-15
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
ping all the spins along the loop, the latter update ha
vanishing energy cost because the original crack cro
crystalline ordered domains. Thus, the system is able,
these adjacent loops, to expand or contract a crack with
sentially equal probability. Indeed we expect this process
be similar in nature to a random walk, with two possib
outcomes: the crack eventually contracts and closes on it
or all the domains involved in the original crack get ess
tially flipped, with minimal structural change in the origin
configuration. Notice that the last update in this process i
the repair type, with the system getting back to a low
energy state. The time to complete this process is the lifet
td of a crack in the system, while the formation time of
new crack is determined by the activation energy barriert f
;exp@2bEA(j)#. At low temperatures,td is much shorter
than t f ; the system freezes into a specific polycrystalli
configuration and the dynamics involve only rare eve
where entire domains are flipped simultaneously. At tempe
tures close toT* instead,td becomes comparable tot f and
multiple cracks allow the system to deeply rearrange the
mains. Notice, however, that it is still a rare-event depend
dynamics. In a typical process of configuration change,
system visits highly excited states with complete ‘‘meltin
of extended areas of the polycrystal, before freezing ag
into a new polycrystalline configuration . These highly e
cited intermediary states easily become long lived due to
metastability of the liquid phase, which has instead very f
dynamics~see Fig. 15 and the results hereafter!.

B. One-time quantities

1. Energy vs temperature and growth dynamics

In order to get a better insight in the dynamics of t
model, we study the behavior of the system through temp
ture hysteresis with different cooling/heating rates. We v
the temperature fromT540, where the liquid phase is stab
and equilibrates very easily, down toT50 and up again to
T540, with a constant rate given byr 5DT/Dt, Dt being
the total time to go fromT540 toT50. During these simu-
lations we measure all the relevant quantities in our syst
the internal energy, the magnetization, the staggered ma
tization, and the crystalline mass. Both magnetizations
main close to zero for any temperature and cooling/hea
rate. The behavior of the internal energy is shown in Fig.
for some of the cooling/heating rates that we consider. T
behavior of the crystalline mass is in agreement with
internal energy and does not provide any additional inform
tion.

The hysteresis observed in the energy curves is typica
first-order phase transitions. From Fig. 13 we can see tha
hysteresis gets narrower for smaller values ofr, indicating a
transition temperature that is consistent with our previo
estimateT* .8.160.1 ~that estimate is also confirmed b
looking at the position of the peaks in the specific heat, m
sured from the energy fluctuations, for different coolin
heating rates!. Notice the asymmetry of the hysteresis towa
the liquid phase, particularly evident for large coolin
heating rates, due to the metastability of the liquid with
spect to the polycrystalline phase. For large cooling ra
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see, for example,r 50.4 in Fig. 13, the energy curves nev
cross below the extrapolatedEliquid(T) curve ~dashed line in
the figure!. Thus,20 the system does not polycrystallize and
remains in a supercooled liquid phase with respect to
polycrystalline phase untilT50 ~recall that the liquid is al-
ready supercooled with respect to the FMFS phase foT
,9.6). This is confirmed also by the absence of a peak in
specific-heat curves. As the temperature is lowered to z

FIG. 13. ~Color online! Internal energy vs temperature behavi
for our system, in the temperature rangeTP(0,40): ~a! temperature
hysteresis for three different values of the cooling/heating rater
50.04, 0.004, and 0.00 004. The hysteretic behavior is typical o
first-order phase transition and it is in good agreement with
measure ofT* ; ~b! cooling curves for five different cooling rates
r 50.4, 0.04, 0.004, 0.0004 and 0.00 004. The dashed line is
extrapolated internal energy of the liquid phase@Eq. ~25!#. Notice
that, for r 50.4, the system stays in the liquid phase untilT50,
since the energy curve remains above the dashed line at any
perature~Ref. 20!. Energy and temperatures are in units ofJ, while
the cooling/heating rates are expressed in units ofJ/MC step. These
curves are obtained from simulations where the temperatur
changed at a constant cooling/heating rate. For large tempera
(T.15), all the curves overlap and the system is at equilibrium
the liquid phase. Notice that there is no sign of the thermodyna
transition atTc59.6, as the system goes smoothly into the sup
cooled liquid phase.
9-16
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
the curves reach a final value of the energy that decre
monotonically with smaller cooling rates. But for very larg
values ofr ~larger than 0.4), this final value of the energy
reached already at a finite temperature and the curves sh
plateau typical of frozen or very slow dynamics. While w
expect this behavior when the system enters the polycry
line phase, we can notice that this plateau is also presen
curves where the system remains in the supercooled liq
phase@e.g., see the curve forr 50.4 in Fig. 13#. A detailed
analysis of this behavior is beyond the scope of the pre
paper and will be addressed in the future.

The dependence of theT50 value of the energy on th
cooling rate reflects the type of domain growth in the syste
In particular, when the system enters the polycrystall
phase where domain boundaries are one dimensional
energy differenceE(T50)2EFMFS5E(T50)11 is propor-
tional to the inverse of the linear size of the domains.20 In
Fig. 14 we show the behavior ofE(T50)2EFMFS as a func-
tion of r.

As long as the system remains in the liquid phase, i.e.,
energy curves never cross below the extrapolatedEliquid(T)
curve, the energy follows a power-law dependence onr: E
2EFMFS;r 0.11. This is typical of class 1 growth kinetics
where freezing originates from local defects with activati
energies independent of the domain sizej.20,21

As we lower the cooling rate, we reach a threshold wh
the energy curves start crossing the extrapolatedEliquid(T)
curve and the system polycrystallizes. This threshold h
pens atr th.0.2 andEth.20.39. Below this threshold, the
behavior of the energy changes abruptly into a logarithm
form:

E~T50!2EFMFS5
1

11AF lnS 1

r t1
D Gm . ~28!

FIG. 14. Semilogarithmic plot of the plateau value of the int
nal energy with respect to the g.s. energy of the perfect cry
(EFMFS521) vs the cooling rater 5DT/Dt. Three distinct behav-
iors can be identified: a power-law behaviorE;r 0.11 for r .0.2,
when the system remains in the liquid phase; a logarithmic beha
E 21; ln(1/r 0.85) for 831025<r<0.2; and a saturation plateau
E P-xtal(T50);20.74 for r ,831025.
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From a fit of the results we obtainm.0.85, even though ou
numerical data do not have enough accuracy to exclude
casem51. If our measurement ofmÞ1 is confirmed, it
implies that the behavior of our system forr P@8
31025,0.2# belongs to class 4 growth kinetics.21 Both class
3 ~corresponding to the case ofm51) and class 4 kinetics
are typical of processes that involve aj-dependent collective
behavior in the frozen phase. As discussed above, we ind
expected the system to show this logarithmic behavior.

Eventually, forr ,831025 the energy saturates to a lim
iting valueE P-xtal(T50);20.74, in agreement with the en
tropic argument we provided before. The system behave
if a whole region of phase space around the FMFS confi
ration is dynamically inaccessible due to a very large fr
energy barrier.

To further confirm this peculiar free-energy landscape,
use again the CMFM described in Sec. III C. From the n
merical results, we assume as a first-order approximation
the dynamically excluded configurations correspond to s
tem energies smaller than the limiting valueE P-xtal(T50)
;20.74. We then impose appropriate constraints on
variational parameter such that the only allowed energie
the CMFM are larger thanE P-xtal(T50). Under these con-
straints, the method predicts a first-order phase transitio
T* .8.36, in good agreement with the numerical valueT*
.8.160.1, considering the approximations underlying th
CMFM result.

2. Domain nucleation vs liquid relaxation

Here we study the equilibration time of the liquid phase
comparison to the nucleation time for the polycrystalli
phase.

We measure the connected piece of the two-times a
correlation function

C~ tw ,t !5
1

2L2 (
i

^s i~ tw!s i~ t !&, ~29!

where^•••& indicates the average over initial configuratio
of different MC simulations. Notice that( is i(t).0 for all
values oft within our simulation time scale, thus the disco
nected piece of the autocorrelation function vanishes. Si
we are interested in the relaxation time of the liquid phase
equilibrium, we quench the system from infinite temperatu
down to the target temperatureT and we wait for it to equili-
brate. The correlation function becomes time-translation
variant and depends only on the time differencet2tw . At
equilibrium, we adequately fitC(t2tw) with a stretched ex-
ponential, which is the expected equilibrium behavior in s
percooled liquids:20

C~ t !5exp@2~ t/t!b#. ~30!

From the fit we obtain the relaxation timet as a function of
the quenching temperature, as shown in Fig. 15. We
extend the measurement oft belowT* because of the meta
stability of the liquid phase. The system is able to equilibr
as a supercooled liquid well before the polycrystal transit
takes place, at least for temperatures close enough toT* .
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CASTELNOVO, PUJOL, AND CHAMON PHYSICAL REVIEW B69, 104529 ~2004!
Notice that there is no dynamic signature of the polycrys
transition atT* in the liquid relaxation time. The Kohlrausc
exponentb of the stretched exponential fit decreases w
temperature, as for realistic models of liquids. In Fig. 15
show the fit of thet data both with a power law,

t5
A

~T2Tc
lq!g

, Tc
lq57.0, g51.0, ~31!

and with a Vogel-Fulcher-Tamman~VFT! form,

t5t0expS D

T2T0
D , T054.4, D511.1. ~32!

The results of these fits have to be considered with extre
care. Because of the accelerated nonlocal dynamics and
cause of the onset of polycrystal nucleation, the tempera
range where we are able to measure the relaxation tim
the liquid phase allows fort to vary only over a narrow
interval, from 0.05 to 0.5 MC steps. As a consequence,
values obtained for the fitting parameters lack in accura
since the fit spans a single decade of data. Moreover, a
behavior typically involves the larget limit of the t(T)
curve, which is not accessible in the present system du
the rapid nucleation of the polycrystal. Indeed, our numer
data are the tail of a possible VFT behavior, and they sug
that a VFT behavior may be observed in the liquid phase
this system if the polycrystallization process were to
avoided.

Since the correlation function decays to zero in'20t, we
can take this value as the equilibration time for the liqu
phase at a given temperature:20 teq(T)520t(T).

Measuring the nucleation time of the polycrystallin
phase in this system is instead more complicated. Due to
frozen nature of the polycrystalline phase, we cannot co
pute its free energy as a function of temperature as we did

FIG. 15. Liquid phase relaxation timet as a function of tem-
perature, as measured from the stretched exponential fit of the
tocorrelation function at equilibrium. The dashed line correspo
to a power-law fit while the dotted line corresponds to a Vog
Fulcher-Tamman fit. Notice that there is no dynamic signature
the transition at temperatureT* .
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the liquid phase~see Sec. V A 1!. Thus, methods such as th
one in Cavagnaet al.20 are not applicable. More naively, w
have to estimatetnucl directly observing the time evolution o
the system. In Fig. 16 we plot the energy dependence on
for quenches of the system from infinite temperature to
target temperatureT. As we discussed above, the syste
polycrystallizes when the energy falls below a thresh
valueEth.20.39. Here we use this value in order to ide
tify the onset of the polycrystallization process in the ene
curves in Fig. 16. The time when the system starts deve
ing a polycrystalline phase is indeed the nucleation timetnucl
we are interested in. We can see thattnucl.800 atT57.5
while it drops totnucl.170 atT57.0.

Comparing these results with the ones of Fig. 15, p
vided we perform the rescalingteq520t, we can see tha
the crossoverteq5tnucl will happen at a temperatureTsp

close toTc
lq , where the liquid relaxation time shows a rap

growth. We can reasonably locate this crossover in the t
perature range 7.0,Tsp,7.5. This temperature is the spin
odal temperature corresponding to the metastability limit
the liquid, when the liquid equilibration time scales becom
of the same order of the nucleation time scales and the liq
phase becomes unstable. The system reaches this limit
time tsp of the order of a few hundred MC steps.

VI. CONCLUSIONS

In this paper we have studied the very interesting prop
ties of a model for describing the behavior, both static a
dynamic, of different arrays of superconducting devic
Among the examples discussed, the main candidate to
such a rich phenomenology is a Josephson-junction arra
triangular grains of superconductors withpx6 ipy order pa-
rameter. In the limit of very strong Josephson couplings,
system is equivalent to Baxter’s three-color model in t
hexagonal lattice. This model can in turn be represented

u-
s
-
f

FIG. 16. Time evolution of the energy of the system, after
quench from infinite temperature down to a target temperaturT
55.5,6.0,6.5,7.0,7.5,8.0, and 8.5~both energy and temperature a
measured in units ofJ). The horizontal line corresponds to th
energy threshold for polycrystallizationEth.20.39, as identified
above.
9-18
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DYNAMICAL OBSTRUCTION IN A CONSTRAINED . . . PHYSICAL REVIEW B69, 104529 ~2004!
an Ising model with a constraint on the total magnetizat
for each hexagonal plaquette,sP

˝566,0. In this paper we
have presented a proof of this mapping based on the co
tion of the single valuedness of a superconducting order
rameter. The Ising degrees of freedom correspond, in
Josephson arrays withp-wave islands, to the chirality of the
px6 ipy order parameter.

Within the constrainedsP
˝566,0 space, the system

critical at infinite temperature but orders at any finite te
perature if antiferromagnetic interactions between the Is
spins are present. For ferromagnetic interactions, it rem
critical until a very particular first-order phase transitio
takes place, where the system orders completely. This be
ior is due to the peculiar nature of the ordered state, whic
isolated in phase space from any of its excitations by
energy of the order of the system size.

For a finite Josephson coupling strength, defects
present in the system, and there are violations of the c
and, consequently,sP

˝566,0 plaquette constraint. A par
ticularly interesting kind of defect is a fractional vortex pa
Within the context of the Josephson array ofpx6 ipy super-
conducting islands, not only there is a large energetic cos
create these excitations, but they are also confined at
temperatures by logarithmic interactions. The other kind
interesting excitation is formed by flipping the spins alo
open segments of closed two-color loops. While there is a
an energetic cost to create them, these defects can circ
on the lattice without further energetic cost, in contrast w
the fractional vortices. Moreover, a new defect-free co
configuration is obtained through the process of creation
string of spin-flip excitations, the propagation of the defe
along the two-color loop, and the recombination of the en
of the string after closing the loop. This mechanism is p
cisely the microscopic origin of the Monte Carlo dynami
that we implement in this paper.

Because of the constraint, the dynamics of the system
very peculiar. While the existence of a supercooled liq
phase is typical of first-order transitions, for our constrain
system we find a whole temperature range in which s
supercooled liquid is stable for extremely long time scal
Indeed, at all the time scales studied in this paper, the f
order phase cannot be reached and the system orders i
polycrystalline phase in which the globalZ2 symmetry is
unbroken. The transition from the liquid state to the po
crystal takes place at a critical temperatureT* , smaller than
the static~avoided! critical temperature. This dynamical tem
peratureT* has been obtained both by studying the tim
evolution of the system after preparing it in a polycrystalli
configuration, and by quenching the system from the liq
phase. The values obtained forT* are in agreement with the
naive estimate that we are able to obtain from the CMF
technique. The numerical analysis of the nucleation time
the liquid phase relaxation time allows us to give an estim
of the spinodal temperature of the liquid.

The rich phenomenology of the dynamics of this syst
is also reflected in the dependence of the difference betw
the final internal energy reached by the system and tha
the fully ordered state on the cooling rate. While for very fa
cooling rates this dependence shows a typical power-
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scaling, the nucleation of the polycrystalline phase produ
a logarithmic behavior until a total arrest in the doma
growth is reached, meaning probably another logarithm
growth but with a much longer time scale. The origin of th
scenario is the fact that the energy barriers through which
system has to pass to reach states with larger clusters g
with the size of the clusters. This places our system as on
the rare cases without randomness in which the dynamic
of class 3 or 4 in the classification of Laiet al.21

An important open problem concerns the possible mec
nism to get out of the polycrystalline state. Proliferation
other~confined! type defects, such as fractional vortices, is
possible mechanism to help overcome the totally arres
dynamics in the polycrystalline phase. In this case, the la
time-scale dynamics could be governed by the energetic
of making a rather rare-event dominated proliferation a
circulation of such~confined! defects. It is noteworthy that
in the polycrystalline phase, not only the fractional vortic
are confined~logarithmically, with a prefactor of orderU),
but also the excitations that we argued are responsible for
microscopic dynamics, the open segments of closed t
color loops. The confinement of the two-color segments
proportional to the string length~linear! inside any ferromag-
netically aligned domain, with a prefactor of orderJ. The
example that we studied in this paper suggests an interes
scenario where defect confinement at the microscopic lev
responsible for the slow dynamics and out-of-equilibrium b
havior of a macroscopic system.
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APPENDIX: MICROSCOPIC ORIGIN OF THE U
AND J TERMS

In this appendix we estimate the relative values ofU and
J in terms of some microscopics for the tunneling through
Josephson barrier. Consider two neighboring triangles a
Fig. 3 sharing a common edge labeled bya. The microscopic
tunneling Hamiltonian from a triangle labeled 1 to a neig
boring triangle labeled 2 can be written as

H52(
kW ,qW

tkW ,qW ckW
1†

cqW
2
1H.c. ~A1!

Using second-order perturbation theory, we can estim
from this expression the Josephson coupling between the
superconductors in a standard way. The result is
9-19
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EJ;2(
kW ,qW

utkW ,qW u2

ED
^c2kW

1†
ckW

1†
&^cqW

2
c

2qW
2

&, ~A2!

where we usedtkW ,qW5t
2kW ,2qW
* and ED is the superconducting

energy gap.
It is useful to define the anglesf k̂ andf q̂ as those formed

by the vectorskW ,qW and the reference unit vectorê1,0. Notice
that theath unit vectorêi ,a is normal to the side labeled bya
~see Fig. 3 for the definition of these unit vectors!.

The order parameters can be written as

^c2kW
1†

ckW
1†

&5~DkW
1
!* 5De2 i (u11s1fkW), ~A3!

^cqW
2
c

2qW
2

&5DqW
2
5Dei (u21s2fqW ), ~A4!

whereD is the order parameter magnitude,u1,2 are the over-
all phases of grains 1,2, ands1,2 are the chiralities of thep
6 ip order parameter in each grain.

As we show below, the constantsU andJ strongly depend
on the behavior oftkW ,qW , which is in general very difficult to
obtain from first principles. For a flat interface, the comp
nent of momentum parallel to the junction is conserved, i
ki5qi . If the momenta involved are close to the Fermi m
mentum~and assuming for simplicity a spherically symme
ric Fermi surface!, then one has~approximately! that ki

2

1k'
2 'kF

2'qi
21q'

2 ; hence, k''q' or k''2q' , corre-
sponding to forward and backward scattering in the norm
direction to the barrier, respectively.

There should be a strong suppression of tunneling w
the vectorskW , qW are not normal to the interface. The reason
that the smaller the perpendicular component, the more
ponentially suppressed is the tunneling amplitude~for ex-
ample, consider a WKB approximation: the smallerk' and
q', the lower the particle energy is with respect to the b
rier!. If dw is a small angle that measures deviations fr
normal incidence andf ê1,a

5(2p/3)a, one can show that the
main contribution to the Josephson tunneling Hamilton
comes from choosing any of the following four combin
tions:

f k̂5
2p

3
a1dw or f k̂5

2p

3
a1dw1p ~A5!

and

f q̂5f k̂ or f q̂5f k̂1p22dw, ~A6!
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where the last choice corresponds to forward or backw
scattering, respectively.

The Josephson coupling can be written in terms of th
choices as

EJ;2
D2

ED
E ddw@ utF~dw!u2cos$u1,a2u2,a1~s12s2!dw%

2utB~dw!u2cos$u1,a2u2,a1~s11s2!dw%#, ~A7!

wheretF(dw) and tB(dw) are forward and backward smal
angle scattering amplitudes~also, recall the definitionu i ,a
5u i1(2p/3)a s i from Sec. II!.

Expanding around smalldw before carrying out the angu
lar integral, one obtains

EJ;2@U1Js1s2#cos~u1,a2u2,a!, ~A8!

where

U5
D2

ED
E d dw@ utF~dw!u22utB~dw!u2#~12dw!2

~A9!

and

J5
D2

ED
E d dw@ utF~dw!u21utB~dw!u2#dw2. ~A10!

As we discussed above, the barrier is more transparen
close to normal incidence, and can be engineered so thadw
must remain small, and thus the ratioJ/U as obtained above
can be made controllably small. The precise condition
havingJ!U depends on the details oftF,B(dw). As a simple
example, for tunneling through a square barrier in ordin
quantum mechanics, the ratioJ/U will depend on the height
of the barrierV and onkFa, wherea is the length of the
barrier. The largerkFa, the smallerJ/U. This model may not
capture in full detail the underlying physics of the Josephs
coupling problem;22 nevertheless, simple as it is, it show
how the structure of the barrier can be used to tune the r
J/U.

If J!U, then in the temperature regimeJ!T!U the
system is effectively constrained to the three-color manif
of states:u1,a2u2,a50(mod2p). In this case, the effective
Hamiltonian for the coupling between triangles 1 and 2
simply

H1,252Js1s2 , ~A11!

with J.0 ~ferromagnetic coupling!.
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