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Hard constraints imposed in statistical mechanics models can lead to interesting thermodynamical behaviors,
but may at the same time raise obstructions in the thoroughfare to thermal equilibration. Here we study a
variant of Baxter’'s three-color model in which local interactions and defects are included, and discuss its
connection to triangular arrays of Josephson junctions of superconductors with broken time-reversal symmetry
and kagomenetworks of superconducting wires. The model is equivalent to an Ising model in a hexagonal
lattice with the additional constraint that the magnetization of each hexagar6ior 0. Defects in the
superconducting models correspond to violations of this constraint, and include fractional and integer vortices,
as well as open strings within two-color loops. In the absence of defects, and for ferromagnetic interactions, we
find that the system is critical for a range of temperatycesical line) that terminates when it undergoes an
exotic first-order phase transition with a jump from a zero magnetization state into the fully magnetized state
at finite temperature. Dynamically, however, we find that the system becomes frozen into domains. The domain
walls are made of perfectly straight segments, and domain growth appears frozen within the time scales studied
with Monte Carlo simulations, with the system trapped into a “polycrystalline” phase. This dynamical ob-
struction has its origin in the topology of the allowed reconfigurations in phase space, which consist of updates
of closed loops of spins. Only an extreme rare-event dominated proliferation of confined defects may overcome
this obstruction, at much longer time scales. Also as a consequence of the dynamical obstruction, there exists
a dynamical temperature, lower than tf@voided static critical temperature, at which the system is seen to
jump from a “supercooled liquid” to the polycrystalline phase within our Monte Carlo time scale. In contrast,
for antiferromagnetic interactions, we argue that the system orders for infinitesimal coupling because of the
constraint, and we observe no interesting dynamical effects.
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[. INTRODUCTION Plenty of issues arise regarding the dynamical generation
and recombination of defects, which depend on the micro-
Systems with hard constraints often display interestingscopic details of the physical system, and the energetics of
thermodynamic properties such as infinite-order phase trarihe states outside the manifold of constraint-satisfying states.
sitions or, on the contrary, very sharp first-order phase tranFor example, paying the energy cost to create a defect al-
sitions. Many of these models can be described in terms dieady slows down the dynamics; however, this waiting for
vertex models and some of them are exactly solvable. Exthe defect generation simply rescales the time scales for dy-
amples of such systems are given by dimer moHelse nam|cal evolution in atnw'al way. More interesting are those
planar ice model,or the three-coloring model of the hexago- 'SSU€S related to the p(_)ssmle energy costs for moving defects
nal lattice® around. In particular, |_f the_mlcroscoplcs are such that the
It is very natural to ask whether the hard constraint, whicthfGCts(When created in paisare confined, one would ex-

leads to the interesting thermodynamics, may at the sam%em further and nontrivial slowing down of the dynamics.

time pose obstructions in théossible path to thermal Glassy behavior in constrained three-color models with
> POt A path, . infinite range interactions has indeed been recently found by
equilibration. In essence, equilibrium properties require av

: . *VChakraborty, Das, and KondévThis is an interesting ex-
erages over all the configurations allowed by the constralntample of glassy behavior in a Hamiltonian model without

weighted in accordance with the appropriate Boltzmanny,enched disorder, where it was found that the characteristic

Gibbs distribution. Dynamically, the system must sample thgje scales obeyed a Vogel-Fulcher law as the temperature
different allowed states in a manner that satisfies detailedpproached a dynamical transition temperature, mimicking
balance. However, leaping from an allowed configuration tfragile structural glasses. In order to maneuver within the
another might require large rearrangements, and physicallyhase space of allowed states, nonlocal loop dynamics was
one must investigate which mechanisms could possibly leafinplemented.

to these moves in phase space and what are the correspond-in this paper, we study variations of the Baxter three-color
ing time scales. Sometimes the constraint forbids any locanodel with short-range interactions and discuss the possible
rearrangement of the systef@s in the present caseand it  mechanism for defect motion. In particular, we argue that the
ought to be softened in order to allow for a local dynamics.loop updates used by Chakraboryal* correspond to the
The system then evolves by formation of constraint-violatingunbinding of certain defect pairs that are deconfined, and
defects that propagate and recombine. thus they are the least costly mechanism for dynamical evo-
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lution. We find that finite range ferromagnetic interactionsgoes a lower-temperature nonequilibrium transition from the
lead to a frozen “polycrystal,” as opposed to a fragile glasssupercooled liquid phase to a frozen “polycrystalline” phase.
as in the case of infinite range interactions. We present twd he transition shows features that are characteristic of first-
possible experimental realizations using lattice arrays of suorder phase transitions, such as a hysteretic behavior as a
perconducting devices that could in principle be experimenfunction of temperature. The underlying physics behind this

tal settings for studying sluggish relaxation or nonequilib-Phenomenon is understood by studying the spin-spin auto-
rium effects in Hamiltonian systems without quenchedcorrelation function as well as the evolution of the internal

disorder. energy and other physical quantities when we cool the sys-
In Sec. Il we present in detail the three-color model, and€Mm at different cooling rates or after a quench from infinite

show that it is equivalent to an Ising model on a hexagonal€émperature.

lattice, with the constraint that the magnetization of each

hexagon must be=6 or 0. In the Ising language the extra Il. THE MODEL AND ITS POSSIBLE EXPERIMENTAL

interaction that we add to the three-color model has a simple REALIZATIONS

form: it is a nearest-neighbor spin-spin interaction. Such in-

T . ) : o In this section we review Baxter’s three-color model, and
teraction is present in the possible experimental realization

of the model in two different two-dimension&2D) super- Sresent two of its possible experimental realizations in lat-
conducting geometries. Because of the constraint imposed fices of superconducting devices in some detail. We show
99 : DA P YRat the three-color model and these two realizations can be
th‘? p_Iaquettgs, the system 1S cr|t|ca}l in the absence of tWOdescribed as an Ising model on a hexagonal lattice, with a
sr,rf)ell? ﬁg}g?ﬁg&ﬁg;ﬁ )5 ?Q%fcdﬁfcxgefsgﬁﬁ; fje(':s(z:rr]ifotri;)n plaguette constraint of 6,0 for the sum of the spins around
Y T : P (?ach hexagon. It is important to notice that while the three-
to argue about _th_e behav_lor of the_: model N ”‘9 Presence absior model is onlyZ, symmetric in the Ising spin represen-
nonzero two-spin interactions. While for arbitrarily small an-__.. 2 . N
. . . : tation, the superconducting realizations have a larger
tlferroma_g_neUc coupling 1<0) the_system_ orders, it re- X U(1) symmetry due to the superconducting phase. This
gé?%ggﬁali;?: r?;na?"trzfirioomag&?t:g ﬁ?gﬁ:;gg:?:r) ét-{:rf difference is particularly relevant for the possible defects that
. ptior . =9 por 9 can originate in an allowed configuration and for their dy-
couplings. In this regime we use instead a cluster mean-fiel amic behavior
meth(.)d.(CMFM) W.h'Ch has proven to be very acr%lcj)rate N The one ext.ra ingredient that we add to Baxter’s three-
describing constrained system such as the ice e, color model is a local interaction. In the Ising spin represen-

.f'nd a strong flrs_t-order phase.trans!tmn where the syStenE‘ation, this interaction takes the form of a nearest-neighbor
jumps from the disordered configuration to the fully magne'spin—spin interaction. It has the effect, in the three-color

tlz?/?/ffg:]r?f?;aﬁgre(jliosrﬁﬁmfiss).Softened defects are allowe odel, of favoring or opposing to the alignment of bonds of
' e same color on neighboring sites. The extra interaction is

in the system at a high-energy scale which enters n the responsible for all the interesting thermodynamical and dy-

. 1oNS. I}, amical effects that are studied in this paper. Moreover, in
Sec;. IV, we discuss the role of these defects and their ImpII'Ehe lattices of superconducting devices these interactions are
cations in the dynamics of the system. In the superconduc Jwa
. o . ) VS present.
ing realizations there are a number of different defects: frac-
tional vortices, integer vortices, and open segments of closed
two-color loops. Integer and fractional vortices can be shown
to be confined below a Kosterlitz-Thouless transition tem- The three-color model consists of vertices having three
perature that can be rather high depending on the enerdyonds of different colors: A, B and C. These different colors
scale U. Thus, these defects are rather ineffective as aan be thought of as three different phases differing pairwise
mechanism to move from one allowed state to another. Wey = 2#/3, which is how we will later connect the model to
show, on the other hand, that the end points of open segrrays of superconducting devices. One can naturally associ-
ments of closed loops made of two alternating colors arete to each vertex a chirality spirtl depending on the
deconfined, they can move around and travel a whole closecbunterclockwise or clockwise ordering of the phases, as
loop, and therefore they are the main actors for the evolutioshown in Fig. 1. A hexagonal lattice is constructed with these
of the system. For defect formation rates much smaller tharertices by connecting the bonds, where the connected bonds
the defect recombination rates, this evolution correspondmust share the same color. As we show below, the chirality
essentially to the loop dynamics that we use in the preserdgpins cannot adopt an arbitrary configuration. Indeed, the
paper. spins must satisfy the constraint that their sum around any
In Sec. V we study the dynamics of the constrained syshexagon of the lattice i< 6,0. On the other hand, given an
tem. By fitting the value of the free energy for the disorderedallowed configuration of the spins, there are clearly three
state as a function of temperature and comparing it to the ondifferent corresponding color configurations, since any glo-
of the ordered state we first obtain an accurate estimate fdyal even permutation of the colors in the lattice gives rise to
the transition temperature, which is in good agreement withthe same spin configuration. In the absence of any kind of
the result from the CMFM. We then show that there is nointeraction this model corresponds to the Baxter’s three-
sign of the above-mentioned thermodynamic transition to theoloring model on the hexagonal lattice. The partition func-
FMFS. The system instead becomes supercooled and undeien Z has a purely entropic origin and its value is given by

A. The three-color model
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FIG. 1. (Color online The gluing of the ABC vertices gives
Baxter’'s three-coloring model on the hexagonal lattice. To every
vertex we can associate a chirality spin depending on the order in
which the three colors appear counterclockwise around the vertex: F|G. 2. (Color onling An example of the correspondence be-
+/— for even/odd permutations of the sequence ABC. tween the Josephson-junction array and the three-color model, pro-

vided we identify the three colors with the values of the phases of
the number of ways of coloring the bonds of the hexagonathe order parameter in the middle of each triangle edge. Notice that
lattice. This number is known to grow exponentially with the ferromagnetic order among nearest-neighboring spins corresponds
system size. Indeed, Baxter solved exactly this model an&p aligning the bonds with the same color along the same direction.

showed thaZ=WN for large values of the number of sites ) ]
N, whereW=1.20& . .. is theentropy per sité. ductor with broken time-reversal symmetry. For example,

It is worth discussing in detail how the system can rear{here is experimental ewdsgce opga+ip, order parameter
range from one allowed configuration to another. No singledn the compound SRuQ,; " here the two possible states
bond flip or double-bond exchange is allowed without vio-Px*iPy correspond to the chirality spin 1 defined above.
lating the constraint in the neighboring vertices. However,The same geometry we propose here withip states has
we can notice that by choosing one vertex and two colorsalS0 been studied by Moore and Lee, who in addition to the
say A and B, we can uniquely define a loop by taking theP-Wave states have also looked dit-id superconductor$,
sequence of ABB ... bonds starting from the chosen ver- believed to be realized by the recently discovered hydrated
tex. The loop must be non-self-intersecting and closed, th€obalt oxide compounds. In their work, they have also dis-
last property holding only if the system has periodic bound-cussed other type of arrays in triangular and square lattices.
ary conditions. Clearly, if we pick one such loop and we flip N the p,*ip, Josephson-junction arrays, the three colors
the color sequence, say ABA .. toBABA. .., thecolor ~ correspond to the three relative phases of the order parameter
constraint is preserved. These loop flips updatesprovide ~ In the middle of each of the edges of the triangles, which
a mechanism for the system to move around the phase spa@ifer by +2/3 (see Fig. 2 (To be precise, the phase of the -
of allowed configurations. In Sec. IV we will show how the order parameters is defined in momentum space; but, as it
loop updates originate from local constraint-violating de-can be deduced from the analysis carried out in the Appen-
fects. dix, one can think in real space by considering the phases for
belongs to one and only one of such loops. Thus, by simplyhe three faces of e:_:lch triangl@he superconducting order
removing all the bonds of one of the three coltsay O, we ~ Parameter of each triangle has also an overaII_U(l) degree of
realize one of the three possible simultaneous mappings dfeedom. Therefore, at the center of each of its three edges,
the system to a fully packed loop configuration on the hexOne can define a phasge,= ;= (2w/3)a for the triangle at
agonal lattice which, at large scales, can be described by &ite i, along itsath edge €=0,1,2), where the edges are
SUB3) level 1 Wess-Zumino-Novikov-Witten(WZNW) labeled counterclockwise starting from the horizontal one
model® (see Fig. 3 The = sign corresponds to the chirality,=

The three-color model becomes even richer when we in=1 of the p,=ip, state at sitéd. The Josephson coupling
troduce a nearest-neighbor spin-spin interaction in the Ising-U cos( .— 6, ») along an edge shared by two neighboring
representation, which we do in Sec. Il E, after we discuss th&iangles tends to align the phasés, and 6; . In the U
experimenta| realizations r|ght below. —o |limit one recovers Baxter's three-COlOfing mOdEL
modulo a global U(1) phase. Notice that, in this infinide
coupling limit, the only difference between this system and
the three-color mode(in the spin representatiprescribed

A possible experimental realization of the model is givenin the preceding section isZg X U(1) symmetry instead of a
by a Josephson-junction array of triangles of a superconsimpleZ, symmetry. We will show in Sec. IV how this dif-

B. The Josephson-junction array of superconductors
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op=2 0=%60. (6
ieP

A similar result was obtained by Di Francesco and Guitter
when connecting the folding problem in the triangular lattice
to the three-coloring modéf. In our proof, we make use of
phases accumulated along paths on the hexagonal lattice, re-
quiring that these phases are single valued. This approach is
more appropriate to the discussion of superconducting sys-
tems and their defecténteger and fractional vorticgghat
we present in this paper.

Indeed, as we show, one can obtain a simple interpretation
of the hard constraint by identifying the accumulated phase
around any loop lying on links of the hexagonal lattice with

FIG. 3. Labeling of the edges of the up and down triangles, withthe circulation of a vector potential. For concreteness, we
the relative unit vectors, ,. While the chirality spinsr, sit at the ~ Will use the example of the Josephson-junction array in the
centers of the triangles, the “gauge” fiel@an example of which is ~ discussion, but the argument is general.
shown in one of the trianglgsit at the midpoints of the segments ~ The phasey; , on the edgea of the superconducting tri-
joining the centers of the triangles to the corresponding edges. Exanglei can be written as
amples of the U(1) phasé, and of the edge phase ., a R .
=0,1,2 are also shown. Oia=0i+e A4, (2

ference allows for a wider variety of defects in the Wheree; is the unit vector that points from the center of
Josephson-junction array rather than in the three-coloringfianglei to its ath edge, and the “gauge” potentid; , is

model. defined at the center of such segmésge Fig. 3.
The phase difference across a facbetween triangles
C. The kagomenetwork of superconducting wires andj is
Another (related realization of the three-color model is 00— ;2= 0;— 0, +[éi,a"&i — éj,a"&j,a]- 3)

given by a superconductingagomewire network in the

presence of a magnetic fiéft2such that the magnetic flux The last term is simply the discrete sum equivalent of
per triangular plaquette is one-half of a flux quantufn ( fdé-A (notice that for neighboring sitésj the unit vectors
=1/2). Using a Ginzburg-Landau analysis, Park and Fuse g¢ opposed; ;= —¢€ ,).

showed that the possible superconducting phases must have now recaIII’tahm oﬁg can writé; ,= 6;+ (2m/3)a o; and

a gauge-invariant phase change around each elementary tfjance the vector potential is such that

angle equal ta- 7w and a gauge-invariant phase change along

each wire segment equal tb7/3. They also show that the ~ 2

allowed minimum free-energy states of this model are ei,a'Ai,a:?an . (4)
equivalent to ground states of the¥ kagomeantiferromag-

net, which are in one-to-one correspondence to the three- What is the corresponding magnetic field? This is simple
color model configurations, modulo a U(1) phase analogougso answer, by looking at the accumulated phase around a
to the one in the Josephson-junction array. Bhe chirality  loop. Consider an elementary counterclockwise hexagonal
spin can be immediately read from the value of tbeunter-  |oop. The loop visits six triangles, and the portion of the loop
clockwise phase change around each triangle, i.e., from  within each triangle enters through faaeand exits through

the value of the induced flux through each triangle: O or 1face a—1 (mod3, so that the accumulation of the vector
flux quantum. Even though this realization seems quite simipotential along that portion of the loop is

lar to the previous one, there are differences that arise mainly

from the fact that time reversal is explicitly broken by the A > A 2
external field in the wire networks. For example, ther eivafl'Ai'afl_eiva'Aiva:?
chiralities do not have the same energy in the case of wires

of finite width. We refer the reader to the thorough discussion 2m

of the energetics by Park and Hu<e. -3 Y% ©)

2w
(a— 1)0'i— ?a()’i

The above result, that each of the six sites visited by an
elementary hexagon loop contributeg27/3)0; to a coun-

The hard constraint of the three-color model imposes derclockwise accumulation of phase around the loop, has a
hard constraint in the allowed configurations of the chiralityvery simple interpretation. Each Ising spin==*=1 corre-
+1 Ising spins. Here we show that in the spin representatiosponds to a2 vortex sitting at a vertex of the hexagonal
the hard constraint requires that any elementary hexagonéilttice. Each vertex is shared by three hexagons; hence each
plaquetteP must have total magnetization: hexagon can be thought to contain 1/3 of that vortex, as

D. Mapping to a constrained Ising model

104529-4



DYNAMICAL OBSTRUCTION IN A CONSTRAINED.. .. PHYSICAL REVIEW B69, 104529 (2004

E. Interactions

1/3 Each experimental realization of our model contains sub-
dominant effects that may lead to a degeneracy lifting of the
1/311/3 ground state. In this paper we concentrate on the effect pro-
duced by nearest-neighbor interactions between the chirality
spins:
H=—<Z> Jojay, 7
i

FIG. 4. A vortex sitting at each vertex in the hexagonal lattice iswhere the couplingl depends on the microscopic details of
shared by three hexagons. Hence, the contribution to a countethe problem. Such a coupling can arise, for example, if one
clockwise accumulation of phase around a hexagon encloses ongonsiders the higher-order effects of having an extended
third of each of the six vortices sitting at the six vertices in the |OOP-Josephson-junction barrier between two neighboring tri-

angles in the array geometry. In the Appendix we show how
depicted in Fig. 4. This is why the contribution from the to derive the constants andJ from a microscopic Hamil-
hexagonal path going through vertéxpicks up the phase tonian for the array of Josephson couplings and we discuss
—(2m/3)o; as shown above. Basically, the vortex is dividedthe conditions for having>J. The sign of thel coupling is
equally among the three neighboring hexagons sharing thgositive in this case.

common vertex. . This nearest-neighbor interaction leads, in the color lan-
Using Eq.(5) we can now compute the flux encircled by guage, to an aligning or antialigning interaction between the
an elementary hexagon on plaque®git is given by bonds, depending on the sign of the coupling consiat it

can be easily seen with the help of Fig. 2. Bgrositive, the
spin interaction is ferromagnetic and the zero-temperature
DP=—-27/32, o=—2ml30y. (6)  ground stateg.s) of the system has all the bonds with the
<P same color aligned in the same direction. We will refer to
Therefore the flux enclosed by an elementary hexagonal Ioothis translation invarian_t state as_th_e FMFS state or single
grystal state. Fod negative, the spin interaction is antiferro-

is just 1/3 of the sum of the vorticities in the six sites. Now, agnetic and the zero-temperature g.s. of the system is a
matching the color scheme after going around any closeg/1

loob requires the phase around anv hexadon to be uniaue onfiguration where the six bonds in every hexagon form a
P req phase ¢ v 9 q equence of only two alternating colors, which is simply the

defined (modzr), which in turn requires the flux to be a Néel order in the hexagonal lattice

multiple of 27: 27/305=0 (mod2r), that is,op=*6,0 '

) o ] e In the following section, we discuss the thermodynamics
(notice thatop is even. Since the total flux inside any l0op  tnis system considering only the phase space of the con-

is given by the sum of the fluxes through each eIementar:ﬂguraﬂOns allowed by the ABC coloring constraint or,
hexagon, then the conditioms = +6,0 grants the phase to equivalently, by therS=+6,0 constraint.

be uniquely defined (mod2) around any loop.
Once theoss= *+6,0 constraint is satisfied, there is a one- IIl. THERMODYNAMICS OF THE DEFECT-FREE MODEL

to-three mapping of any spin configuration to a configuration
of the color model, since there are three even permutations of A. Small J and the CFT description
the colors that produce th(g same chirality spin configuration. gjnce the model without interactions can be described by

_In the case of the kagomeire networks at half-fluper 5 WwzNw CFT, it is tempting to use this technique to analyze
triangle(or vertex of the hexagonal latticeeach triangle will s hehavior for small values of the spin-spin interaction.
accommodate either O or 1 vortex. So insteadef =1 one The first step is to represent the system by a height model
has a variable;=0,1. Still, the vortices are splitequally into (see Kondevet al. for detail$). Flat configurations of this
three pieces, and the circulation around a hexggonaﬁ\eight model correspond to the different dlistates of the
plaquetteP going through the centers of the kagomie  gystem. In terms of the colors there is a total of six of those
angles is (2r/3)Np=(27/3)%; pn;. The circulation is a configurations which are arranged to form an hexagonal lat-
multiple of 27 if N5=6,3,0. Indeed, the fact that the vorti- tice. The coarse-grained version is described by two fields
ces in the elementary trianglt_as are shared by thr_ee s@tes Wﬁs:(hl,hz) and a locking potentia}\/(ﬁ) that favors the
used by Park and HuSkin their argument for fractionalized fig|s 1 lie in one of the flat configurations; this potential has

vortices in the kagomeuperconducting wire networks. then the periodicity of the hexagonal lattice. The action reads
For finite U, there are defects that violate the=+6,0

constraint; we shall discuss these defects in detail in Sec. 1V, o (7o els -

where we study integer and fractional vortices, as well as Szj d™| 7| Vhi=+V(h) |. (8)

open segments of closed two-color loops. We analyze
whether these different defects are confined or deconfinedn this language, the spin-spin interaction introduces a per-
and their importance in determining the ilk of the processegurbation which is proportional to the “locking potential”
responsible for the dynamics. since, depending on the sign 4af it favors or opposes the
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locking in one of the flat configurations. In the WZNW lan-

guage, the locking potential can be written as a current- LLLLLLEEETTE L )b
current perturbation of the underlying WZNW model. ???? ?? ? ; é é f f % k % %
When the spin-spin interaction is turned on, we can use /7777701011 HImAE!
this description to propose an action for the perturbed CFT. oor7777700 0111 It N
Since the A,B,C permutation symmetry is preserved, we can cor777710 00 A
argue that the perturbing term to the pure CFT action should s’/ " L \ |\
read ceeerz/ TN
TN ==

2 Hj 1H; @j 1= qj —aj 1@ S £
J d?x AH(; NN EE ]_}:)l NIRRT IR ” e /1IN
9) sl ] ] ] L)Y
whereqa;’s are the [ RSSO EE] S RN
i generators of the root lattice of 3y, and ST I [z 3 S
the Cartan generato®'i are simply given by the derivatives NS S AL
of the height field$)h; . The case\g=\y corresponds to the NN~/ / AR
SU(3) symmetric case. The one-loop renormalization-group SN =277 25 AR R
(RG) equation in this case reads NN 72\ A\
NN TV Y

. 3 2 LN N NI N N L NGO NN N N 9 ;
A== 222, (10) S S S R SRS Y T

2 o

and for \>0 the flow is toward the unperturbed level 1 _ .
SU(3) WZNW model, which can be identified with te " 'C: 5 Diagram of the RG flow for our model, where the hori-
—0 case. In general, however, we just have the A,B,C pergontal aX|s.corresp0.nds ®\ and the vertical to.g . The solid lines

) ’ ’ Y re numerical solutions of the system of equati¢hd for three

mutation Symmetry, and we cannot eXCll_Jde the possibility c)ﬁif'ferent initial conditions, and are drawn for visualization purposes
Ay # Ag. Defining SA =Ny—Ag, the RG is now

only.
O\ = - Oh Mg, instead of a single spin, a cluster in which the allowed spin
configurations are restricted by the constraint. The bigger the
3 1 cluster, the more accurately fluctuations and constraints are
)'\E: — Z)\é_; SN g, (11) taken into account. This method has given very precise re-

sults for the ice modéland is a good candidate for giving an
where, at least for a small spin-spin interaction, we assum@ccurate picture of our constrained spin model in the hexago-
|6\ <\g. The RG flow is as followgsee Fig. 5 For s  nal lattice. - _ _ _

>0, the system flows to the line of fixed poinis:=0. It is particularly S|r_nple to mtrodgce the CMFM in the
While the SU(3) symmetry is broken, the system remain<ase of a corner sharing plaquéttkattice with Hamiltonian
critical. We propose that this case corresponds to a ferromag-

netic interaction, since it is equivalent to a decrease of the

locking potential. This result is valid for small interspin cou- H= 2 Jijoio;+ hz o, (12
plings. As we show below, for large enough couplings a first- b :

order phase transition takes place. Since this is highly non-

perturbative in the CFT language, this scenario is muclhere the range of thd;; interaction is shorter than the
better described by the cluster mean-field method that weistance between the two farthest spins in a plaquette. This is
explain below. For an antiferromagnetic couplingh<0  the case for the present system. Let us assume that the lattice
and the flow goes toward strong coupling, bringing the syshasN spins and /S plaquettes, where each plaquette Bas

tem off criticality and forcing the system into antiferromag- sites. The sums in the Hamiltonian can be rearranged as
netic ordering, as was argued by Huse and Rutertbéng

their studies of the related classical kagoXé model.
H= J .oo;+h gi|—h o, 13
B. The cluster mean field method: General approach ; i,jEeP W igP ' Z ' 13
The CMFM is a technique that has proven to be very

powerful in studying structural phase transitions in crystalswhere the first sum is over all plaquetteésand the last term
and the thermodynamics of vertex modtM/hen a system compensates for the double counting of the site energy term.
is constrained, fluctuations are considerably reduced and arhe mean-field approximation is obtained by considering
appropriate mean-field treatment can give very good resultsach term as the sum over an elementary cluste® and 1
if the constraint is taken into account. The idea is to considespins, respectivelycoupled to an effective field representing
as the fundamental entity coupled to a “molecular” field, the interaction with the rest of the lattice:
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2N
H=— i‘J_EEp 30107+ (N4 dex) 2, 01| ~NL(h+ )] I

2N 0.2f P

= 5 Hs—NHy, (14) ol :,/:'
_ o - - T,=9.872 T

whereHg andH, are theS and 1-spin cluster Hamiltonian, © -0-2
respectively. Herep and ¢, are proportional to the number 2 04 T o7 ;56
of spins that are external to the cluster but connected to th@®@ sp
internal spins. Since for the 1-spin clusters such number ol  -o0.6f :
external spins is twice the number for tBespin clusters, we — CMFM
have p=2d¢.,;. Let us now define the effective internal en- 08 L - MC simulation
ergy per spin b :

0 5 10 15 20 25 30 35 40

2
= Z(Ho)s—(Hy)q, 15
e=g(Hos=(Hi (15 temperature

where(- - -)gand(- - -), are the thermal averages computed FIG. 6. Plot of the internal energy per link as a function of the
with Hg andH4, respectively. Integrating then over the in- temperaturein units of the coupling constadd). The solid line is

verse temperaturg we get an effective free energy: the prediction from the CMFM and the doted-dashed line is the
result from the numerical simulation.

2

S H=—3>'s,, (19
whereZ;=Tr{exp(—8H;)}, i=S,1, and the integration con-
stant has been chosen such that in the case of unconstrainetiere the index refers to a link of the hexagonal lattice or
spins we get the trivial entropy In(2) at infinite temperature.a site of the bidual kagomattice. The CMFM implementa-

Minimizing the effective free energy with respect ¢o tion is particularly easy since in this picture we just have an
effective magnetic field in Eq. (12). The clusters that we
JF use are the single-spin cluster and the elementary hexagon
—=0 (170 cluster(with 11 different configurations for th® sping, and
d . " . .
the corresponding partition functions are given by
is equivalent to imposing the self-consistency equation for 5 5
the magnetization: Zy=ax“+(ax?),
(0)s=(o); (18 Zs=a%®+a % ®+3(ax)?+6/(ax)?, (20)

. . . _ Bl — B2 -
and it gives us the optimal value for the fiel, which wherea=e”’ andx=e”%. We can now obtain the values

determines the behavior of the system at a given temperaopt COrreésponding to the minima of the effective free en-
ture. An important benefit of this method is the fact that it€rgy. Notice thate,,, determines the equilibrium value of
can be extended to larger and larger clusters. This allows Us). i-€., of the internal energy per link of the original sys-

to improve systematically the accuracy of the results. tem. This method predicts the following scenario: for
—oo we have(S)=1/3, which corresponds to an antiferro-

magnetic coupling in the system solely due to the constraint.
This nontrivial value of the energy density is very close to
In order to be able to apply the CMFM to our problem in the result obtained with the numerical methege Sec. V.
a straightforward way, it is convenient to switch to a bidual The cluster mean-field method also gives a reasonable esti-
representation and describe our system in terms of spjns mate for Baxter’s entropy in the limiT —c. Substituting
= =*1 sitting on the links of the hexagonal latti¢eee Fig. Eq. (20) into Eq. (16) and taking the limitT—o we obtain
7). These spins are given by the product of the originalthe entropy per sit&=In(11/8)/2=1.1726, while the exact
chirality spins o; at the two vertices of each linkS; value is 1.208 . . . . Since the analytical expressions for the
=ojo;. Obviously, the number of configurations of t&e forthcoming quantities are too cumbersome, we just mention
spins is half the number of originat spin configurations, here their numerical values. At=9.872] the system under-
due to theZ, invariance of the produat;o;. The advantage goes a first-order phase transition in which the energy den-
of this mapping is that our lattice becomes now therner  sity jumps from(S)~0.05 to a fully polarized state in which
sharing hexagonskagomenet in which each spir§; is  (S) is exactly—1 (see Fig. . This transition has been first
shared by two elementary plaquettes. In this description, thaoticed via transfer matrix analysis by Di Francesco and
Hamiltonian(7) restricted to the nearest-neighbor interactionGuitter® in the context of a folding transition. Our CMFM
reads simply result is very close to their estimated critical temperature

C. Application of the CMFM to the defect-free model
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(9.1J) and even closer to our Monte Carlo estimateld€ee  teraction due to the constraiffor which each spin interacts
Sec. VAD. In terms of the original spins, this behavior with all the 12 spins belonging to the three adjacent hexa-
corresponds to the exotic scenario in which the magnetizagons.

tion jumps from O to the fully saturated value 1 at the critical

point, as was argued by Di Francesco and Gulfarsimilar D. Free-energy argument for a first-order phase transition

kind (_)f transition _is ::71Iso _found in a frustrated spin model on  The key point for understanding this particular phase tran-
the triangular lattice;” which turns out to be equivalent to a sition is to understand the very peculiar nature of its FMFS
dimer model on the hexagonal lattice. Such kind of transitionyround state. As we already discussed before, in the FMFS
is accompanied by slow dynamics and aging. As we will seestate all the bonds of the same color are aligned in the same
below, slow dynamics is also a central issue in our case. direction. As a result, any two-color loop is maximally
Another temperature that we can compute via the CMFMstraight and winds around the whole system. Thus, the small-
is the spinodal temperature of the system. This is typical ost possible rearrangement of the FMFS configuration that
first-order phase transitions, where an appropriate fast cooproduces another allowed configuration is the update of one
ing process can avoid crystallization and bring the systenof such loops. This is a striking feature of the ferromagnetic
into a supercooled liquid phase. The spinodal temperaturthree-coloring model: the g.s. is separated from the (irst
Tsp is the temperature at which the supercooled liquid beloop) “excited” state by a system-spanning update which
comes unstable due to the crystal nucleation process. In th@9sts an energy:Ej joop— Epmps=2JL, where Egyes
case, we can study the shape of the CMFM effective free= —3JL? andL is the system size (2 sites, 3% bonds.
energy as a function ap for different temperatures. Starting Notice that if one prepares the system in The0 FMFS and
from T~ and lowering the temperature, the minimum cor- Starts to heat, the system is Ilk_ely to remain in that state even
responding to the liquid phase first becomes a local minifor T— for fast enough heating rates. Indeed, such an en-
mum (metastability and eventually disappears. This meta-€9Y separation is likely to make the FMFS state metastable

stability limit corresponds to the spinodal temperatilicg even forT—e, in the thermodynamic limit. Since ?he FMFS.
~7.56 of the present model. state has zero entropy and the entropy of a straight winding

The choice of the bidual spin representation to implemenlscigfeés @), we can write the free energies of the two
the CMFM is due to the fact that the system becomes a

model for which the CMFM is particularly suitable. Indeed, Femps= — 3JL2,
in terms of the bidual spins, the system becomes a kagome
lattice seen as an array of corner sharing hexagons, in which F1-100p= —3J L2+2JL—TIn(3L). (21

now the new spins are sitting at the vertices. By associatin . S
to each of the 11 configurations for each hexagon its corre%Iz?\%:ng?h?ig‘gﬁ@g:ﬁ;ﬂ: Ifh:ngr;ﬁ;ggxi?tifj sl_ate

sponding energy, the model can glso be described as an ill never be favored over the FMFS state at any tempera-
vertex model on the triangular lattice dual to the hexagonalture_ A similar argument applies to higher excited states, as

This choice of variable usually limits the _ana_lysis since itlong as their entropy is not exponential in the system size.
does nqt al_low us tq measure the magnetization of the SYSThe system is incapabl@t equilibrium) to move out of its
tem, which is the typical order parameter used to study phasground state in a “smooth way.” In terms of configurations,
transitions. In the present case however the energy densify has to jump from a fully ordered state into a state with
variable gives very good results in the characterization of thginite-domain size. Since it is reasonable to assume that a
system since the transition is first order. For continuouSinite-domain-size configuration has negligible magnetiza-
phase transitions the situation is different. Even though théon, we can intuitively understand the origin of the complete
CMFM still gives a quite accurate result for the numericalfirst-order phase transition observed with the CMFM.

value of the energy densityn contrast to the normal mean-  The peculiarity of this transition and the relatively small
field method, it may fail in reproducing a subtle behavior variation of the internal energy in the disordered phase make
such as an infinite slope point @t in the energy vs tem- it possible to obtain an estimate for the transition temperature
perature curve. In this case, measuring the magnetization & comparing the free energy of the FMFS configuration
the system is a much more powerful tool to detect and studyith the free energy of the disordered configuration. In order
the second-order phase transition. Thus, one needs to gé compute the free energy of a disordered configuration, we
back to the original spins instead of the bidual ones. ImpleUse the average infinite-temperature internal energy of the
menting the CMFM technique within the context of the real system.Eoc=JL2., an estimate derived via the CMFM in the
spins has two main disadvantages in our case. On one hant&ecedmg section and confirmed by ,the numerical results
the spins do not form corner sharing plaquettes, and relating®8 S€c- ¥ Then, we can use Baxter's exact result for the
the mean fields acting on the one-spin cluster and on th esidual entropy as an estimate of the entropy and optaln the
six-spin cluster becomes more difficult. On the other hand!'€€ €nergy of a disordered state at all temperatures:

since the couplingl is a two-spin nearest-neighbor interac- _ —112_ 2

tion, a single variational mean field cannot take simulta- Faisorgereq™JL"~ T2L7In(1.2087. 22
neously into account both theinteraction(for which each By comparing the free energy of the FMFS st&igyrs
spin interacts with its three neighbpmnd the effective in- = —3JL2 With F gisorgeregW€ Obtain an estimate for the tran-
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sition temperature 2/ (In 1.2087)=10.55], which is reason- + -
ably close to the result from the CMFW,=9.872].

IV. DEFECTS AND THEIR ROLE IN THE DYNAMICS

In this section we discuss the importance of defects in +
determining how the system can, dynamically, move from
one of the allowed low-energy configurations to another. For
concreteness, let us start by discussing the Josephson-
junction arrays, i.e., the case 8§x U(1) symmetry. _

A. Integer vortices

For finite U, it is best to understand the system in terms of
the chirality Ising spins, pluXY spin waves of the U(1)
sector. The lowest-energy excitations over any configuration
with Ising spins satisfyingop=+6,0 are topologically FIG. 7. A pair of =1/3 vortices created by a nearest-neighbor
trivial (no vorticeg XY spin waves. spin exchange. The solid-line lattice represents the kagwtweork

Wheno 5= +6,0 is preserved, vortices of the U(1) sector considered by Park and Hug®ef. 12. The Josephson-junction
can only have vorticity that is an integer multiple ofr2 triangular array is represented instead by the bold triangles. The
These vortices cost an energy of order of magnitugéhe  corresponding hexagonal lattice in our model is shown only around
vortex core energy. The U(1) phase twist leads to the usudhe two defectg¢dashed ling In the bottom right part of the picture

logarithmic interaction between a vortex/antivortex pair, ~ We show the mapping to the bidual representation used in the
CMFM.

&xU27InR. (23)

S'Qhase twist that scales with the distamdeom the defect as
1/(3r) (in units of the lattice spacing

The U(1) phase twist leads to a logarithmic interaction
Petween a fractional vortex/antivortex pair a distariRe

and these pairs are confined below a Kosterlitz-Thoules
type transition at a temperature scil%T)ocU. Since we are
interested in the regime of temperatufiegU such that the
three-color constraint is enforced, these integer vortices wil

" apart:
be confined.
Now, what are the accessible excitations that break the 5
O__ H a
O'P ==X 6,0 COﬂStraInt? 51/3OCU ?In R (24)

B. Fractional vortices Thermodynamically, there is an entropic contribution to the

A fractional vortex excitation is illustrated in Fig. 7. Such free energy, which was calculated by Moore and femd
fractional vortices are always created in pairs via a hearesshown to also be logarithmic. Therefore, there is a confining
neighbor exchange of opposite pointing spins and they haveansition of the Kosterlitz-Thouless-type at a temperature
been discussed by Park and Hifsie the case of the super- T{cU/9. If the Josephson couplingis large compared to
conducting kagomaetwork. A fractional vortex excitation the temperaturd, which is the regime we are interested in,
corresponds to a single hexagon that violates = then one is deep in the confined phase, and fractional vorti-
+6,0 constraint. We define its fractional vorticity 45  ces are rather ineffective as a source of phase-space recon-
=2mv=(27I3)o5 (mod2r). Thus, we haver==+1/3 for  figurations.
gp=F2 orog=*4.

The presence of defects causes a fractional accumulation C. Open segments of closed two-color loops
of tbe»link sum of the vector potentid; ,, the equivalent of There is a special way to flip Ising spins along certain
$d¢-A in the continuum limit, that equals=2w/3  strings lying on the hexagonal lattice that, while violating the
(mod2r). Once again it is useful to resort to the picture in 9= +6,0 constraint, only costs energy at the extremities of
Fig. 4 to understand that only one-third of the vorticity asso-the string, irrespective of its length.
ciated to an Ising spin at a vertex is included in the circula-  To understand these excitations, let us start by looking at
tion around an elementary hexagon, and hence the flux ighe simple case of a single spin flip that violates the con-
32mop. straint on three neighboring hexagons. In terms of the color

To minimize the energy cost across the Josephson jungnodel, all colors remain perfectly well defined, with the ex-
tions, the superconducting phasésin the triangles must ception of the one vertex where the spin flip occurred. The
adjust accordingly to pick this extra phase differenceenergy cost of this defect is of ordérl. It is possible that
+2m/3. Hence, an excited state that breaks d@te==+6,0 locally adjusting the U(1) phase near the defect might
constraint in the Ising sector must be accompanied by a U(13lightly relieve this cost, but we have not investigated this
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FIG. 8. (Color online Defect
pair at the end points of an open
string, with end points highlighted
(shaded circlesand the relative
two-color path(bold links) shown
in a configuration of the three-
color representation of the model.
The end points can travel freely
along the path via nearest-
neighbor color exchanges, such as
the one outlined by the double ar-
row. Eventually, the two end
points recombine by either ex-
changing all the bonds along the
path or by leaving them all un-
changed.

issue. A single spin flip could split into&1/3 and+2/3(or  and is of ordetd, as long as the sequence of spin flips moves
equivalently, a—1/3) fractional vortex pair. These, however, on its two-color track. The end points can be thought of as a
are confined together at low temperatures comparédi s  defect pair connected by a string. This special path is hidden
we argued above. in the constrained Ising representation, but is clear in the
In the three-coloring model, this spin-flip defect corre- three-color ongsee Fig. 8 The defect pair, once formed,
sponds to the initial step of creating an open segment defeglan diffuse around the one-dimensional loop, and it has two
described hereafter. Out of the three bonds departing fromhannels to decay back into an allowed state: either the de-
the spin-flipped site, two must have exchanged c@loor- — fects recombine by going around the whole loop, leading to
der to change the chirality of the verpexhus violating the the BABA ... configuration, or they recombine without
color matching with the corresponding two neighboringwinding around the loop back to the original ARA . .

sites. If We now move these wo coIor.defects starting .frpmfonfiguration. These are the defects considered by Kondev
the two neighboring sites and performing the same origina

t al®In the CFT ription, th rr nd to vertex op-
color exchange, we can propagate the defects at zero energy > e CFT description, they correspond to vertex op

cost along a predefined path. Indeed, every color exchan ge}(ators with gonformal_ d|me_n3|on 1/2. While, as we men-
will fix the previous color mismatch and create a new One_|oned, for a fixed configuration of colors there is no confin-

one lattice spacing apart. Notice that this process will flip all"d force between pairs, an effective interaction appears
the spins between the two end points along the path. It i9€cause of entropic reasons, producing an algebraic decay
useful to recall the color description of the allowed low- with the separation distance for the partition function in the
energy states. Imagine one follows an ABA. . sequence Presence of such defects. However, for the dynamics one is
that always forms a closed loop in an allowed configurationr€ally interested in the cost for a given configuration. There-
We have already seen that flipping the whole loop tofore, the formation and recombination of these defect pairs
BABA ... maintains the system in an allowed configura-constitute the main mechanism responsible for the dynamical
tion. It is also trivial to show that this update flips all Ising evolution of the system.

spins visited by the loop. While this is a rather nonlocal The defect formation time just enters as an overall rescal-
move, starting from a single spin flifgolor exchangeand  ing of the time steps for loop updates. Also, since the time it
propagating the color defects as above, we can realize thiskes for the defects to move diffusively around the 1D loop
move through a sequence of local updates. Instead of flipis algebraic in the loop lengtfand not exponentiglwe can
ping the whole loop at once, one can do it in steps, flippingneglect this correction and simply treat the whole loop up-
the spins along a piece of the loop sequentially. Notice thatlate as a nonlocal elementary move, now with a justified
the energy cost of this string is paid only at the end pointdocal origin.
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V. DYNAMICS phenomena to play a role in this case.

. . In this section we consider only the case of ferromagnetic
In order to study the dyljamlc 'properues_ of the system, Wenteractions and we sét=1 as the unit of measure of ener-
Lise 2I\/Io_nte Carlo(MC) &_mula’uon technlqges of _am_\l gies and temperatures. In order to be able to access large
=2L%site hexagonal latice (F bond$ with periodic  gimylation times, we choose the smallest system size for

boundary conditions. As we discussed in Sec. I, the choiChich our results do not show a significant dependence on
of the single-step update is nontrivial due to the color CONsystem size l( = 18).

straint. In Sec. IV we argued that the open segments of
closed two-color loops are the main actors in the dynamical
evolution of the system, based on energy and confinement
considerations. Thus, without loss of generality, we consider 1. Estimate of the thermodynamic transition temperature
only loop updates as single-step updates of our MC tech-

nigue. We also assume that the rate of formation of the open The first result that we observe both in cooling/heating
que. P€imulations and in quenching simulations is the phase-space

segment defects is low enough not to allow for defect Pro<igolation” of the single-crystal phase or FMFS. Even
liferation (i.e., for the intersection of two different open seg- though at equilibrium the system must eventually favor the
ments before they recombine FMFS, we were unable to reach it within any simulation
~ To implement a loop update we proceed as follows: W&me, up to 18 MC steps. The system prefers to settle into a
first choose one site and two colors at random; then we cOMygzen polycrystalline(P-xta) phase with zero or close to
pute the energy difference in the system for the update of thgero average magnetization, and with very slow, event-
corresponding loop; eventually we accept or reject the Upgominated dynamics. In Fig. 9 we show the time evolution
date based on the usual Boltzmann probability. Notice thatys the system after a quench in temperature fféme to
with this choice of the single MC step, the update of a loopr—g 0. After a single MC iteratiofiFig. 9@)], only a few
takes one unit of time, independent of its length. In a poSymg| crystalline seeds are visible in a disordered liquid
sible experimental realization we expect the two ends of ahackground. These seeds quickly develop into well-defined
open segment defect to walk randomly along the CWreSpo”‘homains[Fig. Ab)], whose size grows with time until the
ing closed path, until they recombine. Thus, our MC dynam'system becomes frozen into the P-xtal phia&g. 9(d)]. No-
ics is accelerated and the rescaling of our MC time Wwithiice the domain boundaries following the “crystalline
respect to a possible “real” time is highly nontrivial. Since planes” of the hexagonal lattice in the polycrystal. The de-
we are interested in studying the slowing down and freezmﬁbendence of the crystalline mass on time t reflects the
of the dynamics in the three-coloring model, we choose tGemarkable slowing down in the dynamics once the system
use the accelerated loop dynamics in order to be able t@niers the polycrystalline phase.
sample much longer time scales, otherwise inaccessible with gyen melting simulations starting from the FMFS phase
a realistic update mechanism based on defect formation anghq increasing the temperature are not useful to estimate the
recombination. . transition temperature. Indeed, they result in a large overes-
In terms of the loops, one can notice that the two orderegimate of T, , since the melting time remains much larger
configurations FMFS and & (ferromagnetic and antiferro- o1 the simulation time well abovE. .
magnetic, respectivelycorrespond to the two extrema in  The only measure we can achieve of the thermodynamic
loop curvature. In the FMFS configuration, the loops areyansition temperaturg, is by computing the free energy in
completely straight loops, winding around the whole systeme jiquid and crystal phases by integration of the internal
In the Neel configuration, the loops are maximally curved energy. For a single crystal we know thigges= — 1 at all

into single-hexagon loops. For these reasons, we expect 'ﬁ‘Qmperatures wherfe= F/(3L?) is the free energy per bond.
entropic jamming in the approach to the FMFS state, for g 1o jiquid phase, we use the curves in Fig. 13 showing
ferromagnetic choiceJ(>0) of the interaction, as discussed 4 dependence of the internal energy on the temperature.
in th4e case of infinite range interactions by Chakrabortyytice that the asymptotic value of the internal energy at
etal.” Indeed, entropy favors rough and entangled 100pSjnfinite temperature is different than zero. This is purely due
WhICh in the |nf|n|tles—tenjperature limit have a fractal dimen-q ihe constraint, which appears to be slightly antiferromag-
sion equal to 1.5:"° This creates a phase-space bottleneck qtic in nature. A simple way to visualize this effect is to

due to the small number of configurations that allow thej,qy at an infinite-temperature configuration after performing
system to reach the FMFS state with straight, packed 100ps; gpin flip operation on one of the two sublattices of the
On the other hand, the approach to theeNstate in the oy ag0nal Jattice. The result is shown in Fig. 10.

antiferromagnetic interaction ca_sé<( 0) is much smoother An appropriate fit of the common high-temperature region
for the system. Even though this state has zero entropy byt the internal energyper bond curves®

itself, single-hexagon flips allow the system to achieve a gain

in entropy of the order of Ih? with an energy cost of the b

order of 6). Indeed the Nel state corresponds to theeal Eiiqua(T)=c—alT (25
statesdefined by Kondev and Henl@ywhich have maxi-

mum entropy density in the sense that they allow for a maxigives a=4.3, b=1.22, andc=0.336. Notice that a naive
mum number of local rearrangements of the spins in accordigh-temperature expansion in powers ofT 1may be
with the constraint. Thus, we do not expect any jammingplagued by the criticality at high temperatures. In this sense

A. Transition temperatures
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(a) (d)

FIG. 9. (Color online Time evolution snapshots of the system after a quench ffeme to T=6.0 (at timet=0) below the transition
temperaturd* =8.1. The dots represent thé& 2vertices of the hexagonal latticé € 36) and the two colors correspond to the two values
of the chirality spin. The lattice is wrapped along the horizontal axis and along the 60° axis rotated counterclockwise above the horizontal.
For each configuration, we report the measured crystalline masgl the time from the temperature quenct@ m=0.08,t=1 MC step;
(b) m=0.24,t=28 MC stepsj{c) m=0.32,t=49 MC steps{d) m=0.50,t=192 MC steps{e) m=0.68,t=5.7x 10" MC steps; andf)
m=0.73,t=5.4x10° MC steps.

104529-12



DYNAMICAL OBSTRUCTION IN A CONSTRAINED. .. PHYSICAL REVIEW B69, 104529 (2004

S RCECR B e S R 3 R the FMFS state. As it appears from the results below, the
system seems to be completely unable to sample the phase-
space region corresponding to the crystalline phase, at least
on our simulation time scales, and it is confined to an “ef-

fective phase space.”

2. The dynamic freezing transition

Instead of going through the thermodynamic transition,
chete, the system remains in a supercooled liquid state bélgw
until it reaches a temperatufB* where it evolves into a
frozen polycrystalline state.

Looking at Fig. 9f), we can clearly see that the polycrys-

” tallization is complete, in the sense that the domain bound-
o o ea"s" 0 A e aries are fully one dimensional, with almost no interstitial
rineiahiiott e liquid left. While the size of these domains increases with
longer waiting times, the growth becomes extremely slow,
basically stopped within our Monte Carlo time scales before
reaching the single-crystal configuration. This can be ob-
served, for example, in the behavior of the zero-temperature
saturation value of the energy in Figs. 13 and 14. The energy
is in fact a measure of the area-to-perimeter ratio in the poly-
crystalline phase, provided complete polycrystallization has
been achieved. This is clearly the case inThe 0 plateaus

in Fig. 13. Instead of approaching the valu€l, character-
istic of the FMFS state, these plateaux seem to approach a
limiting value £P*®(T=0)~—-0.74 for larger cooling
times.

The transition aff* can be seen as a dynamic phase tran-
sition and does not have a thermodynamic origin. However,
we can reasonably establish a correspondence of this transi-

(b) tion to a “true” thermodynamic phase transition in a related,
more constrained system. As we show with the following

FIG. 10. (Color onling Two pictures of arL =36 system con-  analysis, the origin of the dynamic transitionTat resides in
figuration at infinite temperaturéa) the original chirality spins(b)  a free-energy barrier that prevents the system from visiting a
the same configuration after we performed a spin-flip operation ophase-space region around the FMFS phase, at least within
one of the two sublattices. The antiferromagnetic correlations origipur simulation time scales. Since only winding loop updates
nating solely from the constraint are clearly visible. can change the number of bonds per color per direction, it is

possible to divide the phase space into topologically sepa-
the nontrivial exponerth may have an interpretation in terms rated sectors by forbidding the update of winding loops. The
of the CFT description al—. We can then integrate to FMFS configuration would then be in a topological sector by

obtain the free energy: itself, and starting from an infinite-temperature configuration
5 with equal number of bonds per color per direction it would
£(B)= Bof +j dg'E(B"): 26 be impossible for the system to reach its natural ground state.
BT(B)=Bol(Bo) Bo BER) (29 With this constraint, the system is expected to show a phase

, o , transition into a state which is not the FMFS, with a behavior
setting Bo=0 for the liquid phase and using the known re- 5n5i0g0us to the one observed in the present model.
sidual entropy of the system, we obtain This polycrystal transition is an intrinsic transition of the
supercooled liquid phase, which would not exist in the infi-
27) nite time limit. If we were able to wait infinite simulation
times, we expect the dynamic transitionTdt to disappear,
replaced by the equilibrium transition ag>T*.
where the 2/3 factor in front of the residual entropy comes Since we cannot apply the same technique used above for
from the fact that there are three bonds every two spinsT, to the polycrystalline state, we have to measTifewith a
Settingfiquia(T) = frves= — 1 gives the melting temperature somehow more empirical method. We first prepare the sys-
T.=9.6, in good agreement with the results from the CMFtem into an almost completely polycrystallized state by cool-
method. ing it at very low rates. We then chose a particular value for
Even thoughT, is the actual thermodynamic transition the temperaturd and let it evolve in time. If it eventually
temperature, we are unable to observe this transition due ti@aches the liquid state, then we conclude ThatT*; con-
the incredibly large time scales involved in the approach toversely if it completes the polycrystallization process. The

2
fliquid(T) =— §In(1.2083T+ C—m,
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polycrystals. We first define the elementary crystal unit as the

o T-78 : . :
O e T279 four-spin cluster composed of one spin and its three nearest
ool —— T=8.0 neighbors. To avoid double counting, we choose the central
—— T=8.1 spin exclusively in one of the two sublattices of the hexago-
S-03| < T=82 nal lattice. Then, we define tHeimensionlesscrystal mass
B ol T=83 densityme[0,1] as the number of these elementary units
© - T=84 present in a given configuration, normalized by the total
(]

number of unitsL2. Since we need to keep the elementary
unit small enough to be sensitive to small amounts of crystal
mass, we have a limited power of resolution. In fact, even a
random configuration has a honzero average crystalline mass
my=0.01, which we consider as the effective zeramofThe

10 results obtained by measuring the time evolutiomodire in
good agreement with the conclusion tA&t=8.1+0.1.

10° 10° 10* 10

3. Some considerations on the dynamics of the polycrystal

The data shown in Fig. 11 are averages over 32 different

E 055 histories starting from the same initial configuration. The
g 0 reasons for the large time fluctuations and the lack of a sharp
GE)MS - T=78 distinction between abovE* and belowI* behavior, as

£ e T=79 shown instead in the system studied by Cavagnal,?° are

= 0032 - T=80 to be found in the peculiar, rare-event-dominated dynamics
=~ —+— T=281 of the polycrystalline phase. It is worth to analyze this dy-

0251 —— T=8.2
021 =% T=83
015/ &~ T =84

namics in detail, as it helps understanding also the phase-
space isolation of the thermodynamic g.s., i.e., the FMFS
‘ . . ‘ crystal.
L L U (AU CNS N With some simple reasoning about the colors and the
() time (MC steps) chirality spins, one can see that within a single, ferromag-
FIG. 11. Time evolution of the internal energy and crystalline netlcally_ ordered dom‘?"”' ?‘” the bonds of the same color are
mass, after the system has been prepared in an almost polycrystgll-'gned in the same direction. Thus, any two-color sequence
lized configuration. The curves correspond to different quenching’'Side the domain follows a straight path from one side to the
temperaturegexpressed in units o) both above and below the Other along one of the three crystalline directi¢ascrystal-
transition temperatur* =8.1+0.1. Note that all the temperatures lIN€ planes of the hexagonal lattice. This high level of order
are below the thermodynamic transition temperafyre 9.6, while IS responsible for the first important difference with respect
the system behaves as if it is incapable of visiting the favored©O usual domain growth: there are no small loops across the
FMFS configuration. boundary of a domaifbut for possible corner loopand the
domain is not capable of small rearrangements of its walls.
choice of the initial state closer to the polycrystalline statewhile, for example, in a normal Ising model a domain can
rather than to the liquid one is merely due to the strongeexpand gradually, in our constrained Ising model a domain
metastability of the liquid phase, as it appears from thecan only crack from side to side. It is important to notice that
asymmetry in the hysteretic process with respecttdsee these cracks will almost always bring the system into an
Fig. 13a)]. In Fig. 11(top) we present the results in terms of excited state with higher energy, the energy difference being
time evolution of the energy. Even though we do not have groportional to the length of the crack.
sharp distinction between the behavior above and bdlbw If we now extend these considerations to the almost com-
we can clearly identify a transition 8t* =8.1+0.1. When plete polycrystalline phase that the system is able to achieve
the system is set to a temperatdiz 8.2, it quickly departs belowT* (see Fig. 9, we can see that any loop has to cross
from the quasipolycrystallized initial state, while fokx8.0  a few domains before closing on itself. In fact, bending of
it completes the polycrystallization process, thus lowering itghe loops are allowed only at domain boundaries. Therefore,
energy. It is interesting to notice that all the quenching temwe have a second important difference with respect to usual
peratures are below the thermodynamic transition temperatomain growth: one domain cannot expand at the expenses
tureT.=9.6, while the system behaves as if it is incapable ofof a single other domain; rather, the above cracks involve at
visiting the favored FMFS configuration. least six domaingbut for the case of winding loopssince
Since the total magnetization of the system remains closevery domain boundary corresponds to a 60° bending in the
to zero for all temperatures and time scales that we are ableop. One can easily convince oneself that the closer the
to sample, it cannot be used as an order parameter for thig/stem is to the polycrystalline phase, the more the dynamics
transition. A more appropriate order parameter is probablypbecome frozen, requiring entangled, multiple-domain crack-
the crystalline massn, shown in Fig. 11(bottom). As pro-  ing in order to move from one configuration to another. This
posed by Cavagnet al,?° the crystalline mass measures the behavior can be seen, for example, by looking at the behav-
fraction of crystallized spins independently of the size of theior of the spin-spin autocorrelation functideee Eq.(29)],
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FIG. 12. Spin-spin autocorrelation functidatft,, ,t) for a single MC simulation and four different values of the waiting titge (a)
t,,=20 MC steps;(b) t,,=2x 10?> MC steps. Note the rescaling of the time axis with respect to the previous figirg;=2x 10° MC
steps; andd) t,=2x10* MC steps. The temperature is quenched=ad from T=« to T=6, the same used in Fig. 9. A,=20, the
system is still in a rapidly changing liquid phalsee Fig. ®)]. As the system gets deeper into the polycrystalline phasg=a2x 10° or
even more at,,=2Xx 10* [see Fig. @)], the behavior of the correlation function becomes discontinuous, reflecting a rare-event dominated
dynamics where the system undergoes highly nonlocal rearrangements. Notiég shmmetry of the systemFig. 12c)]. When the
dynamics become highly entangled in the polycrystalline phsese Fig. 9)], the number of allowed configurations drops dramatically and
rearrangements that bring the system from one configuration to its mirror image play a significant role in the evolution of the system.

shown in Fig. 12. For small values tf, the system is still Indeed, we can interpret this energy difference as the activa-
in a rapidly changing liquid phaseee Fig. ®)], and the tion energyE,(£) for domain growth. Processes where the
correlation function roughly follows the stretched exponen-activation energy depends df or more generally where
tial behavior with a very short relaxation time discussed infreezing involves a collective behavior dependentéohe-
Sec. V B 2. As the system gets deeper into the polycrystallong to classes 3 and 4 for growth kinetf¢dn the following
line phase fott,,=2X 10° or even more fot,,=2x 10" [see  paragraph, we will address this classification in greater de-
Fig. 9d)], the behavior of the correlation function shows tail.
how the system now evolves mostly via rare events that are Even if the system is able to overcome the activation en-
responsible of extended changes in the system configuratioergy barrier, the three-coloring constraint plays a new key
Notice theZ, symmetry of the system. When the dynamicsrole in preventing the system from reaching a new configu-
become highly entangled in the polycrystalline phasee ration. Let us consider an excited state after one loop has
Fig. Ae)], the number of allowed configurations drops dra-been updated in the polycrystalline phase. The system has
matically and rearrangements that bring the system from onthen three types of updates available: the trivial repair of the
configuration to its mirror image play a significant role in the crack, with consequent lowering of the energy; an indepen-
evolution of the systeriFig. 12c)]. dent update, which requires to overcome a similar activation
It is important to underline the large energy cost of theseenergy; and the peculiar loop updates that are adjacent to the
updates, which scale with the linear sigeof the domains. open crack. Clearly, since a loop update corresponds to flip-
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ping all the spins along the loop, the latter update has a 0.2 - , = ‘ ,
vanishing energy cost because the original crack crosses ¢4 | =~ :8-8834 [
crystalline ordered domains. Thus, the system is able, via & r=0.00004 ;
these adjacent loops, to expand or contract a crack with es- i
sentially equal probability. Indeed we expect this process to 2 -0}
be similar in nature to a random walk, with two possible 8 02l
outcomes: the crack eventually contracts and closes on itself,
or all the domains involved in the original crack get essen-

tially flipped, with minimal structural change in the original & -0.4t
configuration. Notice that the last update in this process is of @

the repair type, with the system getting back to a lower- o
energy state. The time to complete this process is the lifetime ~ ~9-6L¢
74 Of a crack in the system, while the formation time of a 0.7}y
new crack is determined by the activation energy barrier =

~exd —BEA(9]- At low temperaturesyy is much shorter 5 6 7 8

than 7;; the system freezes into a specific polycrystalline () temperature

configuration and the dynamics involve only rare events 0.4 , . : , . , ,
where entire domains are flipped simultaneously. At tempera- oal

tures close tar* instead,ry becomes comparable tg and 53k

multiple cracks allow the system to deeply rearrange the do- __
mains. Notice, however, that it is still a rare-event dependent @
dynamics. In a typical process of configuration change, the 9 or

system visits highly excited states with complete “melting” 5 -01f ‘ r=04
of extended areas of the polycrystal, before freezing again & -o.2f il DAy
into a new polycrystalline configuration . These highly ex- > _g3 r = 0.0004
cited intermediary states easily become long lived due to the §_0.4 —o— r=0.00004
metastability of the liquid phase, which has instead very fast S _os T liquid
dynamics(see Fig. 15 and the results heregfter 0'6
B. One-time quantities ~07 - E=-0.74
-0.8 ; ; ~ : : : :
1. Energy vs temperature and growth dynamics f 8 o 15 20 25 30 ©F 40
(0) temperature

In order to get a better insight in the dynamics of the

model, we study the behavior of the system through tempera- FIG. 13. (Color onling Internal energy vs temperature behavior
ture hysteresis with different cooling/heating rates. We varyfor our system, in the temperature range (0,40): (a) temperature
the temperature fromh =40, where the liquid phase is stable hysteresis for three different values of the cooling/heating nate:
and equilibrates very easily, down To=0 and up again to =0.04, 0.004, and 0.00 004. The hysteretic behavior is typical of a
T=40, with a constant rate given by=AT/At, At being first-order phase transition and it is in good agreement with our
the total time to go fronrT =40 toT=0. During these simu- measure off*; (b) cooling curves for five different cooling. rates:
lations we measure all the relevant quantities in our systend:=9-4. 0.04, 0.004, 0.0004 and 0.00004. The dashed line is the
the internal energy, the magnetization, the staggered magngXtrapolated internal energy of the liquid phase. (25)]. Notice

tization, and the crystalline mass. Both magnetizations refhat: forr=0.4, the system stays in the liquid phase ufit0,

main close to zero for any temperature and cooling/heating"ce the energy curve remains above the dashed line at any tem-
rate. The behavior of the internal energy is shown in Fig. 1 erature(Ref. 20. Energy and temperatures are in unitslpivhile
) . the cooling/heating rates are expressed in unity BIC step. These

for some of the cooling/heating rates that we consider. Th%urves are obtained from simulations where the temperature is

behavior of the crystalline mass is in agreement with thechanged at a constant cooling/heating rate. For large temperatures

internal energy and does not provide any additional |nformaz.|.> 15), all the curves overlap and the system is at equilibrium in

tion. the liquid phase. Notice that there is no sign of the thermodynamic

~ The hysteresis observed in the energy curves is typical ofansition atT,=9.6, as the system goes smoothly into the super-
first-order phase transitions. From Fig. 13 we can see that thgyoled liquid phase.

hysteresis gets narrower for smaller values,ahdicating a

transition temperature that is consistent with our previousee, for example,=0.4 in Fig. 13, the energy curves never
estimateT*=8.1+0.1 (that estimate is also confirmed by cross below the extrapolatefj,,q(T) curve (dashed line in
looking at the position of the peaks in the specific heat, meathe figurd. Thus?® the system does not polycrystallize and it
sured from the energy fluctuations, for different cooling/remains in a supercooled liquid phase with respect to the
heating ratels Notice the asymmetry of the hysteresis towardpolycrystalline phase untif=0 (recall that the liquid is al-
the liquid phase, particularly evident for large cooling/ ready supercooled with respect to the FMFS phaseTfor
heating rates, due to the metastability of the liquid with re-<9.6). This is confirmed also by the absence of a peak in the
spect to the polycrystalline phase. For large cooling ratesspecific-heat curves. As the temperature is lowered to zero,
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1.2pm - - - ‘ ‘ - - From a fit of the results we obtam=0.85, even though our
11k ;o numerical data do not have enough accuracy to exclude the
| casem=1. If our measurement om#1 is confirmed, it
= power-law implies that the behavior of our system fore[8
~ 09r liquid / polycrystal ) X 1075,0.2] belongs to class 4 growth kineti€sBoth class
T o8t threshold ’ 3 (corresponding to the case of=1) and class 4 kinetics
w 7 g are typical of processes that involv&alependent collective
/'\ o7 \ behavior in the frozen phase. As discussed above, we indeed
T %% S expected the system to show this logarithmic behavior.
= o5l g 1 Eventually, forr <8x 10~ ° the energy saturates to a lim-
W " logarithmic | iting value£P*'@(T=0)~ —0.74, in agreement with the en-

' o tropic argument we provided before. The system behaves as
031" sepoe—T"" . saturation at E ~ —0.74 if a Wh_ole region of phase space around the FMFS configu-
0.2k . . . ‘ ‘ . . ration is dynamically inaccessible due to a very large free-

10° 10 100 0% 107 10 10" 10° energy barrier.
cooling rate (J/MC step) To further confirm this peculiar free-energy landscape, we

FIG. 14. Semilogarithmic plot of the plateau value of the inter- use.agaln the CMFM described !n Sec. Il C. Frqm the nu-
nal energy with respect to the g.s. energy of the perfect Crystar|ner|cal results, we assume as a first-order approximation that

(Ermes= — 1) vs the cooling rate = AT/At. Three distinct behav- 1€ dynamically excluded configurations Corriigond to sys-
iors can be identified: a power-law behaviér-r%L! for r>0.2,  tem energies smaller than the limiting valgé*?(T=0)

when the system remains in the liquid phase; a logarithmic behavior- —0.74. We then impose appropriate constraints on the
£ 1~In(1/r%8) for 8x 10~ °<r=<0.2; and a saturation plateau at Vvariational parameter such that the only allowed energies in

EPXAT=0)~—0.74 forr<8x107°. the CMFM are larger thag"*®(T=0). Under these con-

i straints, the method predicts a first-order phase transition at
the curves reac_h a final value _of the energy that decreasq&=8'36’ in good agreement with the numerical valiie
monotonically with smaller coqllng rates. But for very Iarg.e ~8.1+0.1, considering the approximations underlying this
values ofr (larger than 0.4), this final value of the energy is CMEM result
reached already at a finite temperature and the curves showa ’
plateau typical of frozen or very slow dynamics. While we
expect this behavior when the system enters the polycrystal-
line phase, we can notice that this plateau is also present for Here we study the equilibration time of the liquid phase in
curves where the system remains in the supercooled liquigomparison to the nucleation time for the polycrystalline
phasefe.g., see the curve far=0.4 in Fig. 13. A detailed ~ phase.
analysis of this behavior is beyond the scope of the present We measure the connected piece of the two-times auto-
paper and will be addressed in the future. correlation function

The dependence of thE=0 value of the energy on the
cooling rate reflects the type of domain growth in the system. 1
In particular, when the system enters the polycrystalline C(tw't)zﬁzi (oi(tw)oi(V)),
phase where domain boundaries are one dimensional, the
energy difference&(T=0)—Eryrs=E(T=0)+1 is propor-  where(- - -) indicates the average over initial configurations
tional to the inverse of the linear size of the domaihin of different MC simulations. Notice that;o;(t)=0 for all
Fig. 14 we show the behavior 8{T=0)—Eryes @s a func-  values oft within our simulation time scale, thus the discon-
tion of r. nected piece of the autocorrelation function vanishes. Since
As long as the system remains in the liquid phase, i.e., theve are interested in the relaxation time of the liquid phase at
energy curves never cross below the extrapolaiggq(T) equilibrium, we quench the system from infinite temperature
curve, the energy follows a power-law dependence:0f  down to the target temperatufeand we wait for it to equili-
—Ermes~ 1L This is typical of class 1 growth kinetics, brate. The correlation function becomes time-translation in-
where freezing originates from local defects with activationvariant and depends only on the time differeneset,,. At
energies independent of the domain sfz& %! equilibrium, we adequately fi(t—t,,) with a stretched ex-
As we lower the cooling rate, we reach a threshold whergoonential, which is the expected equilibrium behavior in su-
the energy curves start crossing the extrapolaggq(T) percooled liquid<?
curve and the system polycrystallizes. This threshold hap-
pens atr,=0.2 and&;,=—0.39. Below this threshold, the C(t)=exd — (t/7)7]. (30

behavior of the energy changes abruptly into a Iogarithmiq:rom the fit we obtain the relaxation timeas a function of

form: the quenching temperature, as shown in Fig. 15. We can
1 extend the measurement obelow T* because of the meta-
T 7w (289 stability of the liquid phase. The system is able to equilibrate
1+ A In(—) as a supercooled liquid well before the polycrystal transition
rm takes place, at least for temperatures close enougdh*to

2. Domain nucleation vs liquid relaxation

(29

E(T=0)~Ermrs=
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FIG. 15. Liquid phase relaxation time as a function of tem- FIG. 16. Time evolution of the energy of the system, after a

perature, as measured from the stretched exponential fit of the aguench from infinite temperature down to a target temperafure
tocorrelation function at equilibrium. The dashed line corresponds=5.5,6.0,6.5,7.0,7.5,8.0, and 83oth energy and temperature are
to a power-law fit while the dotted line corresponds to a Vogel-measured in units o8). The horizontal line corresponds to the
Fulcher-Tamman fit. Notice that there is no dynamic signature ofenergy threshold for polycrystallizatiofi,= —0.39, as identified
the transition at temperatuf*. above.

Notice that there is no dynamic signature of the polycrystathe liquid phasdésee Sec. V A L Thus, methods such as the
transition afT* in the liquid relaxation time. The Kohlrausch one in Cavagnat al® are not applicable. More naively, we
exponentB of the stretched exponential fit decreases withhave to estimate,, directly observing the time evolution of
temperature, as for realistic models of liquids. In Fig. 15 wethe system. In Fig. 16 we plot the energy dependence on time
show the fit of ther data both with a power law, for quenches of the system from infinite temperature to the
target temperaturd. As we discussed above, the system
polycrystallizes when the energy falls below a threshold

= T Td=7.0, y=10, (31)  valueEg=—0.39. Here we use this value in order to iden-
( c) tify the onset of the polycrystallization process in the energy
and with a Vogel-Fulcher-TammaVFT) form, curves in Fig. 16. The time when the system starts develop-

ing a polycrystalline phase is indeed the nucleation timg
A we are interested in. We can see thgj,=800 atT=7.5
T= TOeXF{T_—TO)' To=44, A=111 (32  while it drops tor,, =170 atT=7.0.
Comparing these results with the ones of Fig. 15, pro-
The results of these fits have to be considered with extremgided we perform the rescalinge,= 207, we can see that
care. Because of the accelerated nonlocal dynamics and bgre Crossoverreq= Th,q Will happen at a temperaturgs,
cause of the onset of polycrystal nucleation, the temperaturgiose toT!%, where the liquid relaxation time shows a rapid
range where we are able to measure the relaxation time Qfrowth. We can reasonably locate this crossover in the tem-
the liquid phase allows for- to vary only over a narmow perature range 7-0T,,<7.5. This temperature is the spin-
interval, from 0.05 to 0.5 MC steps. As a consequence, thgqa| temperature corresponding to the metastability limit of
values obtained for the fitting parameters lack in accuraCyne Jiquid, when the liquid equilibration time scales become
since the fit spans a single decade of data. Moreover, a VF{f the same order of the nucleation time scales and the liquid
behavior typically involves the large limit of the 7(T)  phase becomes unstable. The system reaches this limit in a

curve, which is not accessible in the present system due i@me t_ of the order of a few hundred MC steps.
the rapid nucleation of the polycrystal. Indeed, our numerical P

data are the tail of a possible VFT behavior, and they suggest
that a VFT behavior may be observed in the liquid phase of
this system if the polycrystallization process were to be In this paper we have studied the very interesting proper-
avoided. ties of a model for describing the behavior, both static and
Since the correlation function decays to zere<i20r, we  dynamic, of different arrays of superconducting devices.
can take this value as the equilibration time for the liguidAmong the examples discussed, the main candidate to see
phase at a given temperathPefeq(T)=20 7(T). such a rich phenomenology is a Josephson-junction array of
Measuring the nucleation time of the polycrystalline triangular grains of superconductors wiph=+ip, order pa-
phase in this system is instead more complicated. Due to theameter. In the limit of very strong Josephson couplings, the
frozen nature of the polycrystalline phase, we cannot comsystem is equivalent to Baxter's three-color model in the
pute its free energy as a function of temperature as we did fdnexagonal lattice. This model can in turn be represented by

VI. CONCLUSIONS
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an Ising model with a constraint on the total magnetizatiorscaling, the nucleation of the polycrystalline phase produces
for each hexagonal plaquettes=+6,0. In this paper we a logarithmic behavior until a total arrest in the domain
have presented a proof of this mapping based on the condgrowth is reached, meaning probably another logarithmic
tion of the single valuedness of a superconducting order pagrowth but with a much longer time scale. The origin of this
rameter. The Ising degrees of freedom correspond, in thecenario is the fact that the energy barriers through which the
Josephson arrays witirwave islands, to the chirality of the system has to pass to reach states with larger clusters grow
px*ipy order parameter. with the size of the clusters. This places our system as one of
Within the constrainedr5=+6,0 space, the system is the rare cases without randomness in which the dynamics is

critical at infinite temperature but orders at any finite tem-Of class 3 or 4 in the classification of Lat al**
perature if antiferromagnetic interactions between the Ising An important open problem concerns the possible mecha-
spins are present. For ferromagnetic interactions, it remaingism to get out of the polycrystalline state. Proliferation of
critical until a very particular first-order phase transition other(confined type defects, such as fractional vortices, is a
takes place, where the system orders completely. This behaRossible mechanism to help overcome the totally arrested
ior is due to the peculiar nature of the ordered state, which iflynamics in the polycrystalline phase. In this case, the large
isolated in phase space from any of its excitations by arime-scale dynamics could be governed by the energetic cost
energy of the order of the system size. of making a rather rare-event dominated proliferation and
For a finite Josephson coupling strength, defects aréirculation of such(confined defects. It is noteworthy that,
present in the system, and there are violations of the colof the polycrystalline phase, not only the fractional vortices
and, consequentlyrS=+6,0 plaquette constraint. A par- are confinedlogarithmically, with a prefactor of ordew),
ticularly interesting kind of defect is a fractional vortex pair. but also the excitations that we argued are responsible for the
Within the context of the Josephson arraypgf-ip, super- ~ Mmicroscopic dynamics, the open segments of closed two-
conducting islands, not only there is a large energetic cost t60lor loops. The confinement of the two-color segments is
create these excitations, but they are also confined at loWroportional to the string lengtftinean inside any ferromag-
temperatures by logarithmic interactions. The other kind off€tically aligned domain, with a prefactor of ordérThe
interesting excitation is formed by flipping the spins along&*@mple that we studied in this paper suggests an interesting
open segments of closed two-color loops. While there is als§cenario where defect confinement at the microscopic level is
an energetic cost to create them, these defects can circuldi@sPonsible for the slow dynamics and out-of-equilibrium be-
on the lattice without further energetic cost, in contrast withhavior of a macroscopic system.
the fractional vortices. Moreover, a new defect-free color
configuratio_n is_obtair_led_ through the process of creation of a ACKNOWLEDGMENTS
string of spin-flip excitations, the propagation of the defect
along the two-color loop, and the recombination of the ends We would like to thank H. Castillo and M. Kennett for
of the string after closing the loop. This mechanism is pre-enlightening discussions. We are particularly thankful to B.
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Because of the constraint, the dynamics of the system ikem, and J. Moore for several discussions and correspon-
very peculiar. While the existence of a supercooled liquiddence on the issue of superconducting realizations of the
phase is typical of first-order transitions, for our constrainednodel. This work was supported in part by the NSF Grant
system we find a whole temperature range in which suciNo. DMR-0305482(C. Castelnovo and C. ChamorP.P.
supercooled liquid is stable for extremely long time scaleswould like to thank the warm hospitality of the Boston Uni-
Indeed, at all the time scales studied in this paper, the fullywersity Physics Department, where this work was carried out.
order phase cannot be reached and the system orders into a
polycrystalline phase in which the glob@, symmetry is
unbroken. The transition from the liquid state to the poly-
crystal takes place at a critical temperatiife smaller than
the static(avoided critical temperature. This dynamical tem-  |n this appendix we estimate the relative valuesJoénd
peratureT* has been obtained both by studying the timeJ in terms of some microscopics for the tunneling through a
evolution of the system after preparing it in a polycrystalline Josephson barrier. Consider two neighboring triangles as in
configuration, and by quenching the system from the liquidrig. 3 sharing a common edge labeledebyhe microscopic
phase. The values obtained fbf are in agreement with the tunneling Hamiltonian from a triangle labeled 1 to a neigh-
naive estimate that we are able to obtain from the CMFMporing triangle labeled 2 can be written as
technique. The numerical analysis of the nucleation time and
the liquid phase relaxation time allows us to give an estimate
of the spinodal temperature of the liquid. H=—> ti CETC%JF H.c. (A1)
The rich phenomenology of the dynamics of this system kg a
is also reflected in the dependence of the difference between
the final internal energy reached by the system and that dfsing second-order perturbation theory, we can estimate
the fully ordered state on the cooling rate. While for very fastfrom this expression the Josephson coupling between the two
cooling rates this dependence shows a typical power-lavguperconductors in a standard way. The result is

APPENDIX: MICROSCOPIC ORIGIN OF THE U
AND J TERMS
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It o|2 where the last choice corresponds to forward or backward
k,q 11 1T . .
_Z £ (CTck Mceae® o, (A2)  scattering, respectively.

A The Josephson coupling can be written in terms of these

t* kg andE, is the superconducting choices as

where we used 4

energy gap. A? 2
It is useful to define the angles;, and ¢; as those formed By~ — af dog[|te(8¢)|*coq 15— 25+ (01— 02) S}

by the vectorsk,q and the reference unit vecter o. Notice

that theath unit vectore, , is normal to the side labeled fay —[te(5¢)|?coq 61 2= 20+ (01 + 072) S0} ], (A7)
(see Fig. 3 for the definition of these unit vecjors wheretg(5¢) andtg(d¢) are forward and backward small-
The order parameters can be written as angle scattering amplitudegilso, recall the definitiory; ,
_ = 6;+(2m/3)a o; from Sec. I).
<clJr ”} AE)* =Ae (01to1dd (A3) Expanding around smadle before carrying out the angu-
lar integral, one obtains
<Cq —q> A =Aellfzr o2, (Ad) Ey~—[U+Joi0;]coq 015~ 025), (A8)

whereA is the order parameter magnitudhg,, are the over-  where
all phases of grains 1,2, ang, , are the chiralities of the A2
+ip order parameter in each grain. _=2 2_ 2901 _ 2

As we show below, the constaritsandJ strongly depend U= EAI d o[[te(99)"~ [ta(5¢)[*](1 - d¢)
on the behavior ofi 5, which is in general very difficult to (A9)
obtain from first principles. For a flat interface, the compo-gnq
nent of momentum parallel to the junction is conserved, i.e.,

k=g . If the momenta involved are close to the Fermi mo- _ 2 210 2

mentum(and assuming for simplicity a spherically symmet— J= E, d Se[|te(5¢)|*+[ta(S¢)|*] 69"  (A10)

ric Fermi surfacg then one hagapproximately that k” ) o

+K2~K2~ qurqL . hence,k, ~q, or k,~—q,, corre- As we discussed above, the barrier is more transparent for

Flose to normal incidence, and can be engineered soSthat
must remain small, and thus the rafilJ as obtained above
an be made controllably small. The precise condition for
avingJ<U depends on the details tf g(5¢). As a simple
example, for tunneling through a square barrier in ordinary
)&uantum mechanics, the ratiéU will depend on the height
. R of the barrierV and onkga, wherea is the length of the
ample, consider a WKB approximation: the smaker and barrier. The largekra, the smalled/U. This model may not
q.. the lower the particle energy is with respect to the bar. ‘capture in full detail the underlying physics of the Josephson
rier). If d¢ is a small angle that measures deviations from coupling problenf? nevertheless, simple as it is, it shows
normal incidence ancbe _(277/3)3 one can show that the how the structure of the barrier can be used to tune the ratio
main contribution to the Josephson tunneling Hamiltoniany;y |
comes from choosing any of the following four combina- | j<u, then in the temperature regimk<T<U the
tions: system is effectively constrained to the three-color manifold
o o of stgtesz.alva 0,,=0(mod2r). In this case, the effective_
bi=—a+dp Or ¢py=—a+ o+ (A5)  Hamiltonian for the coupling between triangles 1 and 2 is

spondlng to forward and backward scattering in the norma
direction to the barrier, respectively.

There should be a strong suppression of tunneling wheﬁ
the vectors, q are not normal to the interface. The reason is
that the smaller the perpendicular component, the more e
ponentially suppressed is the tunneling amplitutte ex-

3 3 simply
and Hy o= — o0, (AL1)
da=dk Or  Pg=di+T—250, (A6)  with J>0 (ferromagnetic coupling
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