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Bound-state instability of the chiral Luttinger liquid in one dimension
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We have developed a “bootstrap” method for solving a class of interacting one-dimensional chiral fermi-
ons. The conventional model for interacting right-moving electrons with spin has &) $@nmetry, and can
be written as four interacting Majorana fermions, each with the same velocity. We have found a method for
solving some cases when the velocities of these Majorana fermions are no longer equal. We demonstrate in
some detail the remarkable result that corrections to the skeleton self-energy identically vanish for these
models, and this enables us to solve them exactly. For the cases where the model can be solved by bosoniza-
tion, our method can be explicitly checked. However, we are also able to solve some cases where the excitation
spectrum differs qualitatively from a Luttinger liquid. Of particular interest is the so-callé8)$@del, where
a triplet of Majorana fermions, moving at one velocity, interact with a single Majorana fermion moving at
another velocity. Using our method we show, that a sharp bdondntibound state splits off from the
original Luttinger-liquid continuum, cutting off the x-ray singularity to form a broad incoherent excitation with
a lifetime that grows linearly with frequency.

[. INTRODUCTION left- and right-moving particles are separately conserved.
The spin and charge current densities of the rigot-left-)

The anomalous normal-state behavior discovered in cumoving particles are then simply proportional to the corre-
prate superconductors has stimulated enormous interest gponding spin and charge densities:
the possibility of types of electronic fluid that might provide
an alternative to Fermi-liquid behavior. The classic model IR=vpR,
for non-Fermi-liquid behavior is provided by the one-
dimensional1D) electron gas, where the generic fixed-point
behavior is a Luttinger liquid. Thanks to a wide array of

nonperturbative techniques, there is a rather solid undeiso that the continuity equation assumes a special form
standing of the non-Fermi-liquid properties in such 1D sys-

R__ R
Jo=vgeps,

tems. Motivated by an early suggestion of Anderéomany (9,— v cdy) pR.=0.
authors have attempted to generalize the Luttinger liquid ’ e
concept to higher dimensioAs> As noted long ago by Dzyaloshinskii and Larkifalso see

The Luttinger liquid in one dimension is truly special in Ref. 3, these conservation laws lead to the vanishing of the
that it has no quasiparticle poles but a branch cut singularityN-point connected current correlation functions fe>2
its correlation functions are scale invariant, with an associ{“loop cancellation theorem”; see Sec. ]Mvhich leads to a
ated beta function that is zero to all orders in perturbationGaussian theory for the spin and charge bosons in the To-

theory’ for a wide range in the coupling: monaga Luttinger model, and also for the low energy effec-
tive theory of the Hubbard model in one dimension.
B(g)=0. Unfortunately, the special kinematics of one dimension do

not survive in higher dimensions, and largely for this reason,

That the 8 function is zero is not in itself special to the attempts to generalize the Luttinger liquid tb=2 with
Luttinger liquid. For example, in the absence of nesting, or astrictly local interactions have been unsuccessful. In one di-
Cooper instability, the3 function associated with Landau’s mension, energy and momentum conservation impose a
Fermi-liquid fixed point is also zero for the forward scatter-single constraint on the forward-scattering processes,
ing channef.’ whereas, in higher dimensions, they impose independent

The profound differences between the Luttinger-liquidconstraints on the scattering processes. These additional con-
and Landau-Fermi-liquid fixed points originate in the specialstraints eliminate many of the potentially dangerous singu-
kinematics of one dimension. In one dimension, the Fermlarities present in one-dimensional scattering processes, sta-
surface consists of just two pointsk; where the electrons bilizing the Fermi liquid in two or higher dimensiors.Lin
interact very strongly, and asymptotically near these Fermét al® arrived at the same conclusion, making the passage
points, energy and momentum conservation imposagle  from one to two dimensions by couplifg Hubbard chains
constraint on scattering processes, giving rise to a qualitativeogether and taking the limil— .1 While it is possible to
enhancement in scattering phase space. This causes the eleteumvent the Fermi liquid in two dimensions by introduc-
tron to lose its eigenstate status to the collective spin- anihg long-range or singular interactiohs'*?a route to non-
charge-density bosonic modes. Luttinger-liquid behavior reFermi-liquid behavior in two dimensions that involves
quires the absence of umklapp interactions, and in this casefrictly local interactions has not yet been found.
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FIG. 2. Renormalized “skeleton self-energy(SSH, where

U <Up3="0 double lines represent full propagators.
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While the main motivation of our model has been to find
a fixed-point behavior in one dimension, our mof&d. (3)]
also has physical relevance to these recent work.

(i) The transport phenomenology of the cupratesig-

FIG. 1. Schematic diagram showing the evolution of the spectrafjests that electrons near the Fermi surface might divide into
weight as we introduce a velocity difference to the fermions. They,q Majorana modes with different scattering rates and dis-
inset indicates the bare spectral function, without interactions. persion. To date, this kind of behavior has only been realized

_ in impurity model$® and their infinite-dimensional

Howev%r, an alternative approach was advocated byeneralizatiort” We shall show that by breaking the velocity
And_ersorﬁ who noted that higher-dimensional non-Fermi- joqeneracy of the original chiral Luttinger model, we obtain
liquid behavior might derive from the formation of bound or a one-dimensional realization of this behavior: a sharp Ma-

?St'b?nung zaageos r?(;)z\tlzteasndlabeg)rwrrtmh%rtsgr]l?lreo-ll?aa'rr??:?e (f:grrlbrana mode intimately coexisting with an incoherent con-
inuum. su und > play an important ' tinuum of excitations, reminiscent of the higher-dimensional
mation of the one dimensional Luttinger liquid, where they

T L - g . henomenology.
give rise to a finite scattering phase shift at the Fermi energ)}? . .
driving the formation of x-ray singularities in the spinon- (i) Frahmet al.™ proposed that the low-energy effective

holon continuum. Hamiltonian of an integrable spin-1 Heisenberg chain doped

. e o :
In this paper, we are motivated by this discussion to exWith mobile spinz holes is given by Eq(3), with one Ma-

amine whether such singularities are robust against the réo'ana fermionw (%) describing a slow moving excitation
moval of some of the special kinematic symmetries of onecoming from the dopant, interacting with three rapidly mov-
dimension. By modifying the 1D kinematics, we show that iting Majorana fermions that describe the spin-1 excitaffbns
is possible to actually split-off bound states from the spinonof the spin-chair(see Sec. V)l Such doped spin-chain mod-
holon continuum giving rise to a type of one-dimensionalels may be relevant to certain experimental systems such as
non-Fermi liquid that does not rely on the special 1D sym-Y,_,CaBa Ni O5.%°
metries mentioned above. The key to our idea is as follows. (i) Recently Naudet al?! found that in a particular
The electron fluid on the Fermi surface is made up of spin-uglouble-layer quantum Hall system with interlayer tunneling,
and -down electrons and holes. Borrowing from the Diracthe spectrum of the edge state consists of two Majorana fer-
equation, we can rewrite the electrons and holes as charggnions with different, dynamically generated, velocities. The
conjugation eigenstates, class of models analyzed here may well be relevant to such
multilayer, coupled quantum Hall systems.

Whereas the S@) model can be treated by
bosonizatior;?? by changing the velocity of aingle Majo-
rana fermion we introduce a nonlinear term into the
where ¥® [a=(0,1,2,3) represent four chiral Majorana bosonized Hamiltonian that preclude a separation in terms of
fermiong* such that? (@ (x) =¥ ®@7(x). Instead of changing Gaussian spin and charge bosgsee Sec. VL
the interaction, we modify the scattering kinematics by mak- To tackle this S@) model, we have developed a fermi-
ing one of the Majorana fermions to have a different velocityonic “bootstrap” method, that has its basis the diagrammatic
to the others. In the classic Tomonaga Luttinger model, alapproach of Dzyaloshinskii and Larkii1974.2 Their
four Majorana fermions have the same velodigxhibiting  method depends crucially on the existence of conserved cur-
the full SO4) symmetny, and this leads to the special 1D rents to eliminate large sets of diagrams, leading to a closed
kinematics mentioned above. But in our mofislth the re-  set of equations that can be solved analytically for the Green
duced S@) symmetry, lifting the velocity degeneracy function. On first glance, the reduced number of conserved
causes the energy and momentum conservation to be distinctirrents in the S@) model[compared to the S@) model|
constraints in scattering phase space. We shall show that, sauses the Dzyaloshinskii-Larkin method to be inapplicable,
this case, the reducdtelative to the Luttinger modgkcat- because one has to deal with nonconserved current vertices
tering cuts off the x-ray catastrophe associated with thehat involve the singlet Majorana fermion of different veloc-
Luttinger-liquid behavior. The “hornlike” feature in the ity. We have found, however, that by dealing directly with
spectral weight of the Luttinger liquid is then split into a fermionic propagators and the four-leg fermionic vertex, by-
sharp boundor antiboundl state that coexists with an inco- passing the intermediate currents, there are enough conserva-
herent spin-charge decoupled continuum. We summarizgon laws after all to eliminate all vertex corrections to the
these results in Fig. 1. skeleton self-energyFig. 2), allowing us to write down a
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compact set of coupled equations involving only the fully lattice S@3) model in high dimension¥. We will show that,

renormalized skeleton self-energy and the exact Green fundyy making the velocity of one Majorana fermion different,

tion of the theory. the scattering phase space decreases drastically, leading to
The plan of the paper is as follows. In Sec. Il, we definethis singlet splitting off from the Luttinger continuum to

the class of models of interest here. In Sec. lll, we describéorm a sharp bound-antibound state. Thus this is a system

our modification of the classic Dzyaloshinskii-LarRidia-  that has two qualitatively distinct relaxation rates, a dramatic

grammatic method for solving one-dimensional fermionicdeparture from the Luttinger-liquid scenario.

systems, to deal with our case where not all the velocities are The SO(2)XSO(2) model, wherevg=v,#v,=v3 IS

the same. In Sec. IV, we take advantage of the purely chiradlso solvable by bosonization, and interestingly, our boot-

nature of our model3) to write down a scaling form to strap method also works her&ee Secs. V and V.

simplify considerably the bootstrap equations derived in Sec. Finally, we shall also briefly look at the $2) model

[ll. In Sec. V, we derive asymptotic solutions for frequencieswhere vo#v,#v,=v3. While we do not know if our

near the spectral weight singularities, and demonstrate ounethod works here, we expect that due to the separate en-

results with numerical solutions. In Sec. VI, we discuss theergy and momentum conservation, there is still a restriction

nature of this new fixed point. Some of the results appearedf scattering phase space, and the theme of split-off sharp

in a brief form in Ref. 23. bound-antibound state continues. Note that the number of
degrees of freedom and the interaction are the same in all the
II. MODEL cases; the variety of behavior seen is due solely to changes in
) the scattering phase space, when the velocities of the fermi-
The class of model we study here is ons are made to be different.
3
H :f dx[ —i > 0 V@ (x) 0T @ (x) l1l. METHOD—PHILOSOPHY
a=0

Our approach is based on the observation that for the
SO(4) and S@3) models(and possibly others tgpthe renor-
+Q‘P(O)(X)‘P(l)(X)‘P(Z)(X)‘I’(S)(X)], (1) malized skeleton self-energ$SB containing full propaga-
tors, but no vertex correctior(&ig. 2) is exact so that
where W@ are real(Majorana fermions such tha® (¥ (x)
=W @T(x). The fermions are chirgright movers, say this 3 4(X,7) =g%Gp(X, 7)Ge(X, 7) Gy(X, 7), 4
is one crucial property that ensures that the system stays
gapless, and allows for exact solutions in a number of case
In the special case where all velocities are the same, thi
model has an S@) symmetry, where the four Majorana
modes can be associated with the spin-up and -down electron Sk w)=(w—v.k—Gako) L (a=0,1,2,3. (5
and hole excitations of the Fermi surface. To see this, write
CT:(l/\/E)(qf(l)_iqf(Z)) andc, = _(1/\5)(\1}(3)“\1;(0)), Equations(4) and (5) together define a bootstrap method to
wherec,, are the usualchiral) Dirac fermions, and the S@  solve the problem.
model is just the conventional one-branch spihuttinger To show that there are no vertex corrections to the renor-
model: malized skeleton self-energy, we first review and then extend
Dzyaloshinskii and Larkin’'s method. Provided that we have
_ toons a minimal S@3) symmetry, then the three current densities
qu4)—J dx aEU Co(X)i v dxCq(X) +H.C. i13(x) = — i €2 P () WO (x) [a,b,ce(1,2,3)] are con-
’ served classically. Following Dzyaloshinskii and LarRif?*
since charge and current are proportional in a chiral model,
the continuity equation guarantees thatikpoint connected

) o current-current correlation functions vanish for>2 [x;
This SG4) model can be shown by bosonization to be a=(x; 7)]:

Luttinger liquid??
We shall mostly focus on the 3$8) model wherev, (3% j3(X2) - - j3(Xn))e=0 (N>2). (6)
=V,=U3=VFVg!

here G, are the exact, interacting Greens functions and
a,b,c,d} is a cyclic permutation 0f0,1,2,3. These equa-
ons close with the usual relations

—glcl(x)c,(x)—1/2][c](x)c,(x) - 1/2]}. (2)

For the noninteracting system, this result leads to the “loop

B ©) ) @) ) cancellation theorem™: for the amplitude associated with a
H —f dX{Hin(X) + gV )W) W= ()W (x) ], closed fermion loop withN>2 conserved current insertions,
3) the sum over all possible permutations{gf} of the current
3 operators must give zefo:?* In Appendix A, for illustra-
Hiin(X)=—iv >, ¥@(x) 9, %@ (x) tion, we give a derivation for thil=4 case and also for odd
a=1 N. Dzyaloshinskii and Larkin used this cancellation to elimi-
_ivow(O)(X)axw(O)(X)_ nate all diagrams that contain such closed loops, consider-

ably simplifying the vertex function and polarization
Note that this model reduces to the single-impurity model ofoubbles.
Colemanet al*® when the model(¥) is made to localize at ~ We use the loop cancellation theorem in a new way, to
the impurity site, and Ho and Coleman studied the sameur knowledge, to show that the vertex corrections to the
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FIG. 3. (A) lllustrating how the only nonvanishing singlet self-  FIG. 4. List of all classes of free-energy diagrams that generate

energy at ordeg* is constructed by combining a propagator back- non-SSE diagrams at ordgf.
bone with loops containing two vertex insertions. Dotted lines in-
dicate a bare propagator for the singlet Majorana fermiréf. Full insertion |00p. Inserting the four vertices of the fOUf-lOOp
lines indicate a bare propagator for the triplet Majorana fermionsconstruction in various ways into the four vertices of the
(B) lllustrating how the nonskeleton self-energy at ordéiis con-  backbone gives the three diagrams in Fi¢B)3 Note that
structed by combining a propagator backbone with loops containinghis method of generating the diagrams give rise to the cor-
four vertex insertions. rect degeneracy for each of the diagram typ@s, (ii), and
(iii)].
SSE (Fig. 2 identically vanish. Unlike Dzyaloshinskii and To generalize these results to higher-order graphs, it is
Larkin 23?*we discard the intermediate currents and the asmore convenient to look at the set of diagrams for the free
sociated current vertices, and deal only with fermionicenergy. Cutting al(“) line gives back the singlet self-energy
propagators and the four-leg interaction vertex. The loop,. We first note that only even orders @occur in the
cancellation theorem is the same. This method has the adree-energy expansion, because the bare Majorana propaga-
vantage that it is more compagahnly the self-energy and the tors are diagonal in the Majorana flavor index. Next, there is
Green functions are involvédand treats all propagators in a always a closed loop with propagatorgnot necessary of the
symmetric manner. To illustrate the idea, consider the selfsame typgin any of the free-energy diagrams of ordgl.
energy of the singlet Majorana mode in the (30Omodel.  Otherwise, improper and/or disconnected self-energy dia-
Figure 3 lists all such diagrams at ordgt. The Feynman grams would be generated. Then, at ordérfor example,
diagrams contributing to the skeleton self-energy are conwe have the following classes of diagrams listed in Fig. 4
structed by combining loops with two insertions. This isthat might generate non-SSE diagrams.
clearly true for the second-order diagram, and we illustrate The loop cancellation theorem applies to each case where
this using the first nontrivial order, the fourth-order diagramthere is a closed loop with more than two propagators of the
in Fig. 3(A), which holds to all orders in perturbation theory. same kind. Thus casédii) is the only one left. Yet, case
Nonskeleton contributions to the self-energy involve dia-(iii) generates either SSE diagrams, improper self-energy
grams with loops containing more than two current inser-diagrams(where cutting one of the lines lead to two discon-
tions. In these diagrams, the sum over all permutations of thaected parts or else diagrams that have already been
current insertions into the loops is automatically zero, as il-counted in the other cases. The last observation follows from
lustrated to ordeg® in Fig. 3(B). A convenient way to rep- the fact one can always find a closed six- or four-loop con-
resent these diagrams is to split each diagram into a baclstruction buried in the diagram. Hence, all potential non-SSE
bone which is the same in all three diagrams, and the fourgenerating diagrams disappear. One can clearly generalize
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-~ Baym free-energy functionatuncatesat the leading skel-
-a - Q- eton diagram

F=-T{Trn[G7'] + Tr[ZG]} +£_

ﬁ o

FIG. 5. Examples of nonskeleton self-energy diagrams in th
SO(2)XS0O(2) model, where the loop cancellation theorem doe
not apply.

Finally, by differentiating the free-energy functional with re-
spect to the exact Greens functioBs , ; of the triplet Ma-
é'orana fermions, each triplet self-energy is also given by the
Scorresponding skeleton self-energy.

IV. METHOD—DETAILS

the same reasoning to higher-order diagrams. We only need \ye now apply this result, using the limiting case of the
to check that this method deals with the combinatoric factor%o(4) model to check the validity of our results. Our equa-

correctly, i.e., all the degeneracies of the diagrams are sugfyns are dramatically simplified by seeking solutions to Eq.
that there are no non-SSE diagrams left over. Here we appe@A) which satisfy a scaling form

to the fact that in the S@) model, there must also be the

correct loop cancellations, because our method gives the 1

same exact answer as Dzyaloshinskii and Larkin’s method. Gal(X,7)= 5 Ga(7/iX). 9
Even though we have drawn the diagrams treating the triplet

lines as identical, these triplet lines actually must carry arhis form is motivated by the observation that chirality pre-
Majorana flavor index; to generate all possible diagrams/ents space from acquiring an anomalous dimension, when
whether distinct under S@) or not, we must draw all pos- the interaction is marginalin the renormalization-group
sible diagrams with proper indexing of each of the lines.sens¢ Under a Fourier transform, this scaling form is self-
Listing all diagrams this way is independent of which sym-dual,

metry we are dealing with, and consequently, combinator .

factors will automatically be taken care of in performing 1 a1 :

loop cancellations with these Majorana indices on the propa- Zix JalT1X) = 7o GalKli @), (10
gator lines. In particular, the symmetry or combinatoric fac-yhere thesamefunction G, appears on both sides. Inserting

tors for each diagram must be just right to allow loop can-gq, (10) into Eq. (5) and Fourier transforming,
cellation to work in the S@}) case, and hence for the 8D

case too. 1 d2

Thus we can show that the vertex corrections to the self- 3 (x,7)=— —— 5 [1—vau=1/G,4(u) ]y 7ix -
energy3,, of the singlet Majorana fermion cancel to all or- 2m(ix)” du
ders, leaving the fully renormalized SSE as the only remain- (11)

ing contribution. Intriguingly, this argument fails for the giyce the bare Green function scaling form igg(lu)=1
SO(2)xSO(2) model, because each vertex has wo “fast” _, , ‘it does not contribute to the self-energy. Combining
legs and two “slow” legs, unlike in the S@) case where Egs.(4) and (11)

there is only one of the singlet legs. Thus, for example, the

non-SSE diagrams in Fig. 5 do not have a closed loop of o2
only one kind of propagator, which would allow loop can- —[Ga(W)] = —(9/2m)%G(U)G(U) Gy(u), (12
cellation to apply. However, these diagrams cannot contrib- du?

here{a,b,c,d} are cyclic permutations 0f0,1,2,3. The

ute to the exact self-energy either, because the SO(Z%
oundary conditions are

X SO(2) model can be solved exactly by bosonization, or b
a slight extension of Dzyaloshinskii and Larkin's method,
and these results agree exactly with our bootstrap method _ 1Oy —
(see Sec. Y. There must then be more cancellation than that 9a(0)=1, Ga(0)=va, (13

due jUSt to the |00p cancellation theorem in its current formderived from the physica| requirement that, at h|gh frequen_
To complete our proof, we need to show that the tripletcies, the fermions are free particles, moving with thee
Majorana self-energy is also given by the skeleton diagramye|ocity v,. Equations(12) and (13) are the scaling form
We use thefull Kadanoff-Baym free-energy functional version of our bootstrap methdgqs.(4) and(5)]. Note that
the differential Eq.(12), like Eq. (4), is independent of the
FIG]=—T{TrIn[G Y+ TG} + Y[G], (7) sign of the couplingy. Also, Eq.(12) has no information on
which model of the clasgEg. (1)] it refers to; the symmetry
whereY[G] is the sum of all skeleton diagrarfisNow, by  of the model(i.e., the velocities only comes in through
constructionSF[ G]/ §G,=0 generates the equations for the boundary condition$13).
self-energies, and in particulafF[ G]/ Gy must generate For the S@®4) model, whereg,(u)=G(u) (a=0,...,3),
the skeleton self-energy,. This requires that the Kadanoff- Eqgs.(12) reduce to a single differential equation
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30 ' tion. (Fig. 7). A sharp bound state in the singlet channel
v=1.0 develops once a velocity difference is introduced, because
By -1.0 ] energy and momentum conservation now provide distinct
g=t constraints to scatteriqginlike in the S@4) model), leading

wr 1 to much less phase space f6t% to decay into.

To see this, we must analyze Ed2) for the SA3) case:

A(k=0.4,0)

d2
1 @gg% —(9/2m)4(G3)%Go,

g 1 (16)
d2

Go '=—(9/2m)(Gs)®.

0.3 0.‘35 0i4 0.:15 0.5 d u2
o
. A very convenient way to discuss these equations is to map
FIG. 6. Spectral weight of S@) model. them onto a central force problem. If we write

2 =(G51.G5") and F=—(90s/2m)?(Go.G3), then, I=F,

d_z[g(u)]*lz_(g/zﬂ)Z[g(u)]{ (149  wherer=d*/du? i.e., uis like “time.” By inspection, r
d XF=0, so the force is radial, thus the “angular momen-

for which the solution satisfying the boundary conditionstunj"l” I‘7><1I’=Av is a constant. If we use polar coordinates,
G(0)=1, andg’(0)=v is (G5 7,6, ") =r(cosé, sin ) the equations for the Green func-

tion resemble the motion of a fictitious particle under the

1 oy o ap influence of an anisotropic central force:
G(X,7)=s——[1—v.7/ix] Y{1—v_1/ix] 2
27X )
15 . Av
o - S =—(glem? s —,
wherev. =v=*(g/27) andv is the bare velocity. Identical r r3cos@sing
results are obtained by bosonizatfSnwherev ., andv_ are (17)
in fact the velocity of the spin boson and the charge boson. r20=Av.

Thus this confirms that the skeleton self-energy is exact for
the Luttinger model. The velocity difference\v =v — v provides a repulsive cen-

trifugal force. The boundary conditiond3) mean that the
V. RESULTS “particle” starts out atr(0)=12,0(0)=/4, and with a
) ) slope chang®(0)=Av/2.
In the S@4) model, the electron spectral weight displays  \vjithout loss of generality, leAv=<0. ForAp>0 simply
two classic x-ray singularities associated with the degay Ofeplaceu+—>u andg— —g. WhenAp =0, the “particle”
. - . . 2 —_ - )

the electron into a_splrlon and_ h‘?"?” continudkig. 6). falls directly into the origin, and boti; andg, diverge with
We now show that i\v =v —v, is finite, one of these x-ray 5y singularities when the particle first hit the origin at
edge singularities is completely_el_lmlnateQU[j‘<v, we find  wime” u= 1/v, . Then the particle goes purely imaginary in
that the low-velocity “horn,” originally with velocityv .,  poih coordinates, which gives rise to the Luttinger con-
develops_a sharp bound.—stellte pole in th.e singlet channt_al, anduum in the spectral weight, until the time=1/v_ when
a broad incoherent excitation in the triplet channel with ay,o particle goes back to the origin, leading to the other x-ray

lifetime growing linearly in energy. Ifvo>v, the high- g, jarities for bothg, and G,. From then on, the particle
velocity horn splits off a singlet antibound state, and theStays in the real plan€Fig. 9).

triplet channel develops a high-velocity incoherent excita- o
P P 9 y However, onceAv <0 is finite, (0)=Av causes the or-

bit to miss the origin au~1/v, . Instead,#/—0 at some

I e S :‘V’o _ finite “time” u=1/§ (Fig. 8, at which r=C and ¢
ol | [ w11 | 7 =Av/C?. For u~1h}, it follows that (,6)=[C,6(u
= 5 —1/v¥)], from which we can read off the following asymp-
51 totics:
Sl kel.4
< 15 ' Ga(u)t~C, (18)
wt | | = k=0.9 - . .
; # Go(W) 1~(1—uv})/Z, Z=Cuv¥llAv|. (19
olLik04 Thus the associated x-ray singularity in the spectral function
02040608 1 12141618 2 for both G; and G, is eliminated, replaced by an antibound

© state for the single§, with spectral weigh, moving with

FIG. 7. Spectral weight of the $8) model. For clarity, we have Velocity vg , splitting off above the continuum. After this
shifted up the curves for various momenta by eight units. time, r is complex in both coordinates, until eventually, at
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FIG. 8. Quasiparticle weighZ of ¥(© in the SG3) model.

u= 1/}, the particle passes through the origin, giving rise
to the remaining x-ray singularity at=1/v} in both G; and
Yo-

The quantity{=(v—uvg)/g plays the role of a coupling
constant, and approximate analytic solutions are possible i
the limiting cases of small and large For |Av|>|g|/27
interactions can be ignored, 3¢ —uv,, andZ—1". For
|Av|<|g|/27, the “motion” of the fictitious particle emu-
lates that of the S@) model until the angled approaches
zero. We may estimatg; andC by integrating Eq(17) with
the approximationr(u)~T(u), where r=[2(1-v_ u)(1
—v_u)]?is the S@4) solution:

fl/u’(;% __Z_jl/vg Av
o du 4 Jo Ty
(20
C~T(1lv}).

After doing the integral, this estimate givegor |Av|
<|g|/2m)

g g
v§=v++;exp—m, (21)

V2g g
~|7Av eXp_‘K' (22
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FIG. 10. Spectral weight of the SO(R)SO(2) model.

To illustrate these results further, we have carried out nu-
merical solutions of the differential equatio(i) for inter-
mediate values of the coupling constdntusing a standard
adaptive integration routif®. Results are summarized in
iRigs. 7 and 8.

While we have not established the validity of our method
to models of lower symmetribut see Sec. V] we believe
that the method captures the essence of the kinematic con-
straints imposed by energy and momentum conservation, at
least for weak coupling. Thus we have also performed nu-
merical calculations for the SO(X)SO(2) and S@) mod-
els.

For the SO(2XSO(2) model, the pai¥(® and ¥
with the same bare velocity can combine together to form a
boson, and similarly fol(?) and ¥ (®). This leads back to a
Luttinger-liquid form, but with asymmetric power-law singu-
larities at the renormalized velocities, andv _ (Fig. 10.
[Also see Eq(29) in Sec. VI, for an exact analytical solution
for this model]

As we progress to the S@ case, whemwy<vi=v,
<vg3, we see a sharp pole for the fermion which has an
extremal velocity different to all the others, while the Lut-
tinger continuum turns into wide peaks linear in energy for
the fermiorgs) with intermediate velocities; see Fig. 11. This
illustrates once more our contention that making one Majo-
rana degree of freedom to have a differémtrema) veloc-
ity causes drastic collapse of the scattering phase space for
this fermion.

indicating that the formation of the sharp antibound state is

nonperturbative in the velocity difference.
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FIG. 9. “Trajectory” in the (Re 1¢;,Re 145,) plane. The ar-
rows indicate the direction of increasing “timec.
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FIG. 11. Spectral weight of the $2) model. For clarity, we
have shifted up the curves for various momenta by eight units.
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VI. DISCUSSION AND CONCLUSION wherev .. is as before in Eq(15), indicating that these den-
; sities J.. are proportional to the spin boson and the charge
A. 1D Majorana SO(3) model boson®! This then leads to sharp poles in the charge and spin
In summary, we have demonstrated that by breaking theusceptibilities.
velocity degeneracy of a system of interacting chiral fermi-  For the S@3) model, using the same definitiof&q.
ons we restrict the scattering phase space in a way thap3)], we find
causes a sharp bound state or antibound state to split off from
the spin-charge continuum, leading to a system with two g
qualitatively distinct spectral peaks and scattering rates. This  (—J-~v00)J01(Q) = 5—0J25(A) + (v3~v0) Koa(Q),
is a significant departure from the Luttinger-liquid scenario, 27)
and demonstrates an interesting class of one-dimensional g
fixed-point behavior. —9 =2
This fixed-point exhibits properties in common with both (=9, v50dA0) ZWqJOl(q)’

Luttinger and Fermi liquids, and is perhaps closest in char- _ 0)f 11 (1) ,
acter to the marginal Fermi-liquid phenomenology intro-WhereKOl(q)_ | 2,k WE(g—k)W(k). This extra term

duced in the context of cuprate metéfsLike the Fermi ng]esaggéns t:\heecgg;mot:(ta;oij;%é%d :]2? 't((')nitl'gsine;%’
liquid, there is a sharp quasiparticle bound state, but thi osonization in terms of freg spin and char e-bos{or,mn
coexists with a Luttinger-liquid-like continuum which is | RSN 5P 9 y
bounded by two extremal velocities. linear comblnatlon)s_ls impossible. In short, pecauge of the
As mentioned, the S@) model does not appear to be anomaly, the classically conserved @DdensityJ,3 is ad-

solvable by conventional bosonization, forcing us to intro-leeOI with the classically nonconserveg,, leading to the

duce this bootstrap method. Two immediate questions aris 0SS of a sharp pole for the susceptibility corresponding to
»3. This makes it very different to the conformally invariant

the nature of the S@) fixed point, and the range of validity fixed points of the SGI) model and the SO(2)SO(2)

of the bootstrap method. :
In the S@4) model, the fermionic spectral weight has model(see below. Also, the presence of a sharp pole in the
' fermionic spectral weight indicates that there is at least one

x-ray singularities at the velocitias, andv _ (see Sec. IV. . L . . .
By bosonization, the model can be mapped onto a theory ogyggr;ana fermionic degree of freedom in the diagonalized

free bosons(the spin boson and charge bosamoving atv Frahmet al*® has conjectured that this $8 model is the

andv _, where forg>0, vgy,=v_ andv =v,., and . .

for g<0, the role ?)fv+ aES'Z_ are excﬁgﬂggd. fI'his is a Iov_v-energy effective 'theor_y of an mtegrablg model of a

direct consequence of separate charge and spin conserva\tiﬁﬁ')r:j'1ngr]n"’}::n SZE)heed \;Vr:[:a‘:fg'btﬂ?b'lsehg\?vleﬁ' tg;'tn?htehestr;ﬁr;n d

in the modef We can demonstrate this in the Majorana fer- harye sectors of the do éd ho)lles become decou IeF()j at low

mionic representation. The classically conserved densitie g P P

are emperatures, and they calculated the low temperature free
energy of the spin contribution to be

Joa()= =iV O) T (x),

(23) o -
Jpa(X)=— i@ (x)¥C)(x). Fspin 6vg | 2 i T

[By the SQ4) symmetry, we can also define other combina- @8
tions] Using the commutation relations listed in Appendix where A>0 is a constant that depends on the doping only.
B, we obtain the equations of motion With A=0 (undoped cage the first term has been
interpreted® as coming from a single Majorana fermion of
velocity vy, and the second term from a triplet of massless
Majorana fermions with velocity that represent the SB)
(24)  level-2 WZNW model, which was shown by Affletkto be
the low-energy effective theory of the gapless integrable
(—d;=vq)J25(a) = ﬂqJOl(Q)' spin-1 chain. Here a system of fermions with two velocities
) . ) ) cannot be conformally invariant, unless the two species do
The right-hand side of the equations is not ze® would be ot interact with each other and thus form two decoupled
expected for conserved currentsecause of the anomalous gectors that arendividually conformally invarianf? Thus
commutator(Appendix B, this is unlikely to be a conformal field theory. However, the
form of the free energyEq. (28)] suggests that the 38
[Joa(P), Joa(@)]1=[J25(P) . Jos(@) 1=pS(p+a), (29 model is again asymptotically scale invariant, and we have
which is the SW2) level-2 Kac-Moody algebra anomaif. found the coupling of the S@) model to be marginal, at
Fortunately, by diagonalizing systef@4), the linear combi-  least up t00(g%).*

aT?(1 3A 7TT23+3A|A
a7 " e \ 2 an

(=0, 00)30x(@) = 5 -3 0),

nations  J_(q)=Joy(q)—Jp(q) and J,(q)=Joi(q) As for the range of validity of the bootstrap method we
+J,5(q) do satisfy the continuity equations introduced to solve the model, we note that if we change two
Majorana velocities at the same time, so thgtv,; and
(=d,—v,0)J.(q)=0, v,=v3, we would have reduced the symmetry still further, to

(26)  an SO(2)xSO(2) symmetry’® We can solve the differential
(=d,—v_q)J_(q)=0, equationg12) with the results



1696 A. F. HO AND P. COLEMAN PRB 62

—(1/2)+ v —(12)—y ACKNOWLEDGMENT

V4T
iX

V_T

ix

Ga(x,7)= 2iX

We would like to thank Natan Andrei, Thierry Giamarchi,
(290  Alexei Tsvelik, Holger Frahm, Achim Rosch, Edmond Orig-
1 nac, Revaz Ramazashvili, Andrei Lopatin, Shivaji Sondhi,
=T lpedpat )2 291/ and part|cula_rly Walter Metzner for discussions related to
ve=z{votva=lvamvo)™H(g/m)] i this work. This work was supported by NSF Grant No. NSF
DMR 96-14999.

and y=2%(v3—vo){(vs—vo)2+(g/m)? Y2 Interestingly,
this model can be bosonized to a model of free bosons, and APPENDIX A

the bosonization result agrees exactly with E2f). This is In this appendix, we prove by a diagrammatic method, the
surprising because, as far as we can see, the closed-logR,, cancellation theorem for a loop with four current inser-
cancellation is not sufficient in the case .of the _SO(Z)tions. It is easiest to prove this i 7 space(For a proof in
X S0(2) model to cancel all vertex corrections. This sug-nomentum-frequency space, see Kopietal?) Let the

gests that a more general cancellation principle is at worksy r insertions be at,=(x;,m),i=1,...,4Each leg of the
and that the range of validity of our solution may even ex-oop is a free propa:gatorl: '

tend to models with a still smaller, $2), symmetry. To

date, we have not been able to prove this result. 1
We also wish to point out that our differential version Gij=G(X;,7i;X, 7)) =

[Eq. (12)] of the bootstrap equatiorid) and (5) are of such

a simple form only because we have a purely chiral systemenote by[ 1234 the loop where, going clockwise starting

If we allow left and right movers to interact, the scaling form from x;, we successively encountey,x,,X3, andx,, i.e.,

[Eq. (9)] no longer applie4? and we have not found a dif-

ferent scaling form that allows similar simplifications. How- [1234)=G45G32G21G14- (A2)

ever, we expect the bootstrap method still to work, as long agyithout loss of generality, we can fix, and sum over per-

there are separate conservation of left and right currents. Thigtations of the other three vertices. The loop cancellation
is true at least for the S@) model, because Dzyaloshinskii ihegrem then states

and Larkif showed that their method also works for such

U(’Ti_Tj)‘i‘i(Xi_Xj). (Al)

systems, and our method is a generalization of theirs. [1234]+[1243+[1342)+[1324)+[1423+[1432=0.
(A3)
B. Broader issues: Higher dimensions? But for even number of propagators in a loop, going clock-

wise is the same as going anticlockwise; hence, e.g.,

Our work raises the question whether this kind of NON-r 1543=[1342]. Thus we only need to prove

Fermi-liquid behavior might survive in dimensions higher
than oneFig. 12. In higher dimensions energy conservation [1234]+[1243+[1324)=0. (A4)
and momentum conservation are distinct constraints on scat-

tering phase space, and the Luttinger quuigﬂreverts to do do this, we need the important identity

Fermi liquid, at least for short-range interactiorisin con-
trast, the SC8) model does not appear to be solvable by GijGjk=Gix(Gij+ G, (A5)
bosonization, and its unusual properties have reduced relivhich can be proven simply by substituting in E41). Use
ance on the special kinematics in one dimension. Thus, thigis to rewrite the loops

kind of behavior might be more robust in higher dimensions.

In fact, near infinite dimension€,two lifetimes of behavior [1234) = G 14G43G3:G21= G13(G 14+ G43) G3,G51,
persist in the SCB) model, but here, the thermodynamics

near zero temperature is that of a Fermi liquid. The case of  [1243/=G13G34G4,G21=G13(Gast G42) G3,G21,
small, but finite, dimensions is however, still open.

[1324 = G14G42G23G31= G31(G1at G42) G15G23,

and it is clear that they do all cancel, sinGg=—G;; .

From this example, we can see that it is important for the
Vo=V \/ cancellation of loops with an even number of current inser-
=W =Y I tions, that all the propagators be of the same type, to use

1d 2d

Luttinger Liquid | Fermi Liquid

SO(4) | spinon-holon sharp identity (A5). In our context, this means all the propagators
continuum quasi-particles are for fermions of the same velocity.
*Maiorana Liauid1 For an odd number of insertions, identifA5) is not
V=Vy=V, J 9 ? needed, because time-reversal invariance guarantees the can-
Vo £ Vv cellation: a loop[lijkl ...xyz] will be canceled by the
S0G) (anti-) 0 counterclockwise partneflzyx...lkji], thanks to.Gi-J-
bound-states ! =—G; and a total of odd number of propagatof$his is

the analog of Furry’s theorem in QED,; see, e.g., Peskin and
FIG. 12. Schroedef?)
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We note in passing that identitA5) can also be used to
prove the Ward identity by diagrammatic methods, order by Hint= —QJ dxJp1(X)J23(X),
order?® (For further information on the Ward identity and
how it is used for diagrammatic methods for finding the ex-We can straightforwardly obtain

act Green function in some one-dimensional systems, see
Metzneret al?) Y [Joa(P),Hol=vpJoi(p) + (v —vo)Koa(P),

[J23(P),Hol=vpdoa(p).

We can recover S@) results by setting =v,. Ordinarily,
Here we list some commutation relations used to deriveye would expecfJy(p),Hin]=0, but this is spoiled by the
the equations of motion of the variouslassically con-  SU(2) level-2 anomalous commutatdt:
served densities. Start from the canonical anticommutation

relation for the Majorana fermions: [J01(P). Jor( @) 1=[3oo(P) o) | =pS(P+0). (B4

(B3)
APPENDIX B

{T@(x), T (y)}=5,,8(x—y). (Bl)  One can derive this by, e.g., a diagrammatic method; see
Chap. 13 of the book by Tsveli. This then leads to the
With definitions (23), and with the S@) Hamiltonian H only nontrivial commutation relations
:HO+Hint1

g
3 [JOI(p):Hint]:ZpJZS(p)y
H0=f dx—i >, v W@ (x)a,¥@(x) B5)
a=1 g
_ivo‘\lf(o)(x)ax’\[[(o)(x), (B2) [Jo3(p),Hindd = ZDJOKD)-
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to the mean, half-filled cagehencely;+ Jo3 is the total charge SO(2)xS0O(2) model, wherey=v, andv,=v3, this model

density, andlp;— J,3 is the spin density. bosonizes to two free bosons again, with velocitiesandv _
32This is in fact the case for the two bosonizable models mentioned 55 mentioned in Sec. VI.

here: the S@1) model can be bosonized to a free spin boson33a E Ho and P. Colemarunpublished
with velocity v, and a free charge boson with, ;4. For the



