
PHYSICAL REVIEW B 15 JULY 2000-IVOLUME 62, NUMBER 3
Bound-state instability of the chiral Luttinger liquid in one dimension

A. F. Ho* and P. Coleman
Serin Laboratory of Physics, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854

~Received 21 January 2000!

We have developed a ‘‘bootstrap’’ method for solving a class of interacting one-dimensional chiral fermi-
ons. The conventional model for interacting right-moving electrons with spin has an SO~4! symmetry, and can
be written as four interacting Majorana fermions, each with the same velocity. We have found a method for
solving some cases when the velocities of these Majorana fermions are no longer equal. We demonstrate in
some detail the remarkable result that corrections to the skeleton self-energy identically vanish for these
models, and this enables us to solve them exactly. For the cases where the model can be solved by bosoniza-
tion, our method can be explicitly checked. However, we are also able to solve some cases where the excitation
spectrum differs qualitatively from a Luttinger liquid. Of particular interest is the so-called SO~3! model, where
a triplet of Majorana fermions, moving at one velocity, interact with a single Majorana fermion moving at
another velocity. Using our method we show, that a sharp bound~or antibound! state splits off from the
original Luttinger-liquid continuum, cutting off the x-ray singularity to form a broad incoherent excitation with
a lifetime that grows linearly with frequency.
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I. INTRODUCTION

The anomalous normal-state behavior discovered in
prate superconductors has stimulated enormous intere
the possibility of types of electronic fluid that might provid
an alternative to Fermi-liquid behavior. The classic mo
for non-Fermi-liquid behavior is provided by the on
dimensional~1D! electron gas, where the generic fixed-po
behavior is a Luttinger liquid.1 Thanks to a wide array o
nonperturbative techniques, there is a rather solid un
standing of the non-Fermi-liquid properties in such 1D s
tems. Motivated by an early suggestion of Anderson,2 many
authors have attempted to generalize the Luttinger liq
concept to higher dimensions.3–5

The Luttinger liquid in one dimension is truly special
that it has no quasiparticle poles but a branch cut singula
its correlation functions are scale invariant, with an asso
ated beta function that is zero to all orders in perturbat
theory3 for a wide range in the coupling:

b~g!50.

That theb function is zero is not in itself special to th
Luttinger liquid. For example, in the absence of nesting, o
Cooper instability, theb function associated with Landau’
Fermi-liquid fixed point is also zero for the forward scatte
ing channel.6,7

The profound differences between the Luttinger-liqu
and Landau-Fermi-liquid fixed points originate in the spec
kinematics of one dimension. In one dimension, the Fe
surface consists of just two points6kf where the electrons
interact very strongly, and asymptotically near these Fe
points, energy and momentum conservation impose asingle
constraint on scattering processes, giving rise to a qualita
enhancement in scattering phase space. This causes the
tron to lose its eigenstate status to the collective spin-
charge-density bosonic modes. Luttinger-liquid behavior
quires the absence of umklapp interactions, and in this c
PRB 620163-1829/2000/62~3!/1688~11!/$15.00
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left- and right-moving particles are separately conserv
The spin and charge current densities of the right-~or left-!
moving particles are then simply proportional to the cor
sponding spin and charge densities:

Jc
R5vcrc

R ,

Js
R5vsrs

R ,

so that the continuity equation assumes a special form

~]t2 ivs,c]x!rs,c
R 50.

As noted long ago by Dzyaloshinskii and Larkin8 ~also see
Ref. 3!, these conservation laws lead to the vanishing of
N-point connected current correlation functions forN.2
~‘‘loop cancellation theorem’’; see Sec. IV!, which leads to a
Gaussian theory for the spin and charge bosons in the
monaga Luttinger model, and also for the low energy eff
tive theory of the Hubbard model in one dimension.

Unfortunately, the special kinematics of one dimension
not survive in higher dimensions, and largely for this reas
attempts to generalize the Luttinger liquid tod>2 with
strictly local interactions have been unsuccessful. In one
mension, energy and momentum conservation impos
single constraint on the forward-scattering process
whereas, in higher dimensions, they impose independ
constraints on the scattering processes. These additional
straints eliminate many of the potentially dangerous sin
larities present in one-dimensional scattering processes,
bilizing the Fermi liquid in two or higher dimensions.3,7 Lin
et al.9 arrived at the same conclusion, making the pass
from one to two dimensions by couplingN Hubbard chains
together and taking the limitN→`.10 While it is possible to
circumvent the Fermi liquid in two dimensions by introdu
ing long-range or singular interactions,11,12,2a route to non-
Fermi-liquid behavior in two dimensions that involve
strictly local interactions has not yet been found.
1688 ©2000 The American Physical Society
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However, an alternative approach was advocated
Anderson,13 who noted that higher-dimensional non-Ferm
liquid behavior might derive from the formation of bound
antibound states above and below the single-particle c
tinuum. Such bound states play an important role in the
mation of the one dimensional Luttinger liquid, where th
give rise to a finite scattering phase shift at the Fermi ene
driving the formation of x-ray singularities in the spino
holon continuum.

In this paper, we are motivated by this discussion to
amine whether such singularities are robust against the
moval of some of the special kinematic symmetries of o
dimension. By modifying the 1D kinematics, we show tha
is possible to actually split-off bound states from the spin
holon continuum giving rise to a type of one-dimension
non-Fermi liquid that does not rely on the special 1D sy
metries mentioned above. The key to our idea is as follo
The electron fluid on the Fermi surface is made up of spin
and -down electrons and holes. Borrowing from the Dir
equation, we can rewrite the electrons and holes as cha
conjugation eigenstates,

c↑5
1

A2
~C (1)2 iC (2)!, c↓52

1

A2
~C (3)1 iC (0)!,

where C (a) @a5(0,1,2,3)# represent four chiral Majoran
fermions14 such thatC (a)(x)5C (a)†(x). Instead of changing
the interaction, we modify the scattering kinematics by m
ing one of the Majorana fermions to have a different veloc
to the others. In the classic Tomonaga Luttinger model,
four Majorana fermions have the same velocity@exhibiting
the full SO~4! symmetry#, and this leads to the special 1
kinematics mentioned above. But in our model@with the re-
duced SO~3! symmetry#, lifting the velocity degeneracy
causes the energy and momentum conservation to be dis
constraints in scattering phase space. We shall show tha
this case, the reduced~relative to the Luttinger model! scat-
tering cuts off the x-ray catastrophe associated with
Luttinger-liquid behavior. The ‘‘hornlike’’ feature in the
spectral weight of the Luttinger liquid is then split into
sharp bound~or antibound! state that coexists with an inco
herent spin-charge decoupled continuum. We summa
these results in Fig. 1.

FIG. 1. Schematic diagram showing the evolution of the spec
weight as we introduce a velocity difference to the fermions. T
inset indicates the bare spectral function, without interactions.
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While the main motivation of our model has been to fi
a fixed-point behavior in one dimension, our model@Eq. ~3!#
also has physical relevance to these recent work.

~i! The transport phenomenology of the cuprates15 sug-
gests that electrons near the Fermi surface might divide
two Majorana modes with different scattering rates and d
persion. To date, this kind of behavior has only been reali
in impurity models16 and their infinite-dimensiona
generalization.17 We shall show that by breaking the veloci
degeneracy of the original chiral Luttinger model, we obta
a one-dimensional realization of this behavior: a sharp M
jorana mode intimately coexisting with an incoherent co
tinuum of excitations, reminiscent of the higher-dimension
phenomenology.

~ii ! Frahmet al.18 proposed that the low-energy effectiv
Hamiltonian of an integrable spin-1 Heisenberg chain dop
with mobile spin-12 holes is given by Eq.~3!, with one Ma-
jorana fermionC (0) describing a slow moving excitation
coming from the dopant, interacting with three rapidly mo
ing Majorana fermions that describe the spin-1 excitation19

of the spin-chain~see Sec. VI!. Such doped spin-chain mod
els may be relevant to certain experimental systems suc
Y22xCaxBa Ni O5.20

~iii ! Recently Naudet al.21 found that in a particular
double-layer quantum Hall system with interlayer tunnelin
the spectrum of the edge state consists of two Majorana
mions with different, dynamically generated, velocities. T
class of models analyzed here may well be relevant to s
multilayer, coupled quantum Hall systems.

Whereas the SO~4! model can be treated b
bosonization,1,22 by changing the velocity of asingleMajo-
rana fermion we introduce a nonlinear term into t
bosonized Hamiltonian that preclude a separation in term
Gaussian spin and charge bosons~see Sec. VI!.

To tackle this SO~3! model, we have developed a ferm
onic ‘‘bootstrap’’ method, that has its basis the diagramma
approach of Dzyaloshinskii and Larkin~1974!.8 Their
method depends crucially on the existence of conserved
rents to eliminate large sets of diagrams, leading to a clo
set of equations that can be solved analytically for the Gr
function. On first glance, the reduced number of conser
currents in the SO~3! model@compared to the SO~4! model#
causes the Dzyaloshinskii-Larkin method to be inapplicab
because one has to deal with nonconserved current ver
that involve the singlet Majorana fermion of different velo
ity. We have found, however, that by dealing directly wi
fermionic propagators and the four-leg fermionic vertex, b
passing the intermediate currents, there are enough cons
tion laws after all to eliminate all vertex corrections to th
skeleton self-energy~Fig. 2!, allowing us to write down a

al
e

FIG. 2. Renormalized ‘‘skeleton self-energy’’~SSE!, where
double lines represent full propagators.
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1690 PRB 62A. F. HO AND P. COLEMAN
compact set of coupled equations involving only the fu
renormalized skeleton self-energy and the exact Green f
tion of the theory.

The plan of the paper is as follows. In Sec. II, we defi
the class of models of interest here. In Sec. III, we desc
our modification of the classic Dzyaloshinskii-Larkin8 dia-
grammatic method for solving one-dimensional fermion
systems, to deal with our case where not all the velocities
the same. In Sec. IV, we take advantage of the purely ch
nature of our model~3! to write down a scaling form to
simplify considerably the bootstrap equations derived in S
III. In Sec. V, we derive asymptotic solutions for frequenci
near the spectral weight singularities, and demonstrate
results with numerical solutions. In Sec. VI, we discuss
nature of this new fixed point. Some of the results appea
in a brief form in Ref. 23.

II. MODEL

The class of model we study here is

H5E dxH 2 i (
a50

3

vaC (a)~x!]xC
(a)~x!

1gC (0)~x!C (1)~x!C (2)~x!C (3)~x!J , ~1!

whereC (a) are real~Majorana! fermions such thatC (a)(x)
5C (a)†(x). The fermions are chiral~right movers, say!: this
is one crucial property that ensures that the system s
gapless, and allows for exact solutions in a number of ca

In the special case where all velocities are the same,
model has an SO~4! symmetry, where the four Majoran
modes can be associated with the spin-up and -down elec
and hole excitations of the Fermi surface. To see this, w
c↑5(1/A2)(C (1)2 iC (2)) and c↓52(1/A2)(C (3)1 iC (0)),
whereca are the usual~chiral! Dirac fermions, and the SO~4!
model is just the conventional one-branch spin-1

2 Luttinger
model:

HSO(4)5E dxH(
a,s

cs
†~x!i v ]xcs~x!1H.c.

2g@c↑
†~x!c↑~x!21/2#@c↓

†~x!c↓~x!21/2#J . ~2!

This SO~4! model can be shown by bosonization to be
Luttinger liquid.22

We shall mostly focus on the SO~3! model wherev1
5v25v35vÞv0:

H5E dx$Hkin~x!1gC (0)~x!C (1)~x!C (2)~x!C (3)~x!%,

~3!

Hkin~x!52 iv (
a51

3

C (a)~x!]xC
(a)~x!

2 iv0C (0)~x!]xC
(0)~x!.

Note that this model reduces to the single-impurity mode
Colemanet al.16 when the modeC (0) is made to localize a
the impurity site, and Ho and Coleman studied the sa
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lattice SO~3! model in high dimensions.17 We will show that,
by making the velocity of one Majorana fermion differen
the scattering phase space decreases drastically, leadi
this singlet splitting off from the Luttinger continuum t
form a sharp bound-antibound state. Thus this is a sys
that has two qualitatively distinct relaxation rates, a drama
departure from the Luttinger-liquid scenario.

The SO(2)3SO(2) model, wherev05v1Þv25v3 is
also solvable by bosonization, and interestingly, our bo
strap method also works here.~See Secs. V and VI.!

Finally, we shall also briefly look at the SO~2! model
where v0Þv1Þv25v3. While we do not know if our
method works here, we expect that due to the separate
ergy and momentum conservation, there is still a restrict
of scattering phase space, and the theme of split-off sh
bound-antibound state continues. Note that the numbe
degrees of freedom and the interaction are the same in al
cases; the variety of behavior seen is due solely to change
the scattering phase space, when the velocities of the fe
ons are made to be different.

III. METHOD—PHILOSOPHY

Our approach is based on the observation that for
SO~4! and SO~3! models~and possibly others too!, the renor-
malized skeleton self-energy~SSE! containing full propaga-
tors, but no vertex corrections~Fig. 2! is exact, so that

Sa~x,t!5g2Gb~x,t!Gc~x,t!Gd~x,t!, ~4!

where Ga are the exact, interacting Greens functions a
$a,b,c,d% is a cyclic permutation of$0,1,2,3%. These equa-
tions close with the usual relations

Sa~k,v!5~ iv2vak!2Ga~k,v!21 ~a50,1,2,3!. ~5!

Equations~4! and ~5! together define a bootstrap method
solve the problem.

To show that there are no vertex corrections to the ren
malized skeleton self-energy, we first review and then ext
Dzyaloshinskii and Larkin’s method. Provided that we ha
a minimal SO~3! symmetry, then the three current densiti
j a(x)52 i eabcC

(b)(x)C (c)(x) @a,b,cP(1,2,3)# are con-
served classically. Following Dzyaloshinskii and Larkin,8,3,24

since charge and current are proportional in a chiral mo
the continuity equation guarantees that theN-point connected
current-current correlation functions vanish forN.2 @xi
5(xi ,t i)#:

^ j a~x1! j a~x2!••• j a~xN!&C50 ~N.2!. ~6!

For the noninteracting system, this result leads to the ‘‘lo
cancellation theorem’’: for the amplitude associated with
closed fermion loop withN.2 conserved current insertions
the sum over all possible permutations of$xi% of the current
operators must give zero.8,3,24 In Appendix A, for illustra-
tion, we give a derivation for theN54 case and also for odd
N. Dzyaloshinskii and Larkin used this cancellation to elim
nate all diagrams that contain such closed loops, consi
ably simplifying the vertex function and polarizatio
bubbles.

We use the loop cancellation theorem in a new way,
our knowledge, to show that the vertex corrections to
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SSE ~Fig. 2! identically vanish. Unlike Dzyaloshinskii an
Larkin,8,3,24 we discard the intermediate currents and the
sociated current vertices, and deal only with fermion
propagators and the four-leg interaction vertex. The lo
cancellation theorem is the same. This method has the
vantage that it is more compact~only the self-energy and th
Green functions are involved!, and treats all propagators in
symmetric manner. To illustrate the idea, consider the s
energy of the singlet Majorana mode in the SO~3! model.
Figure 3 lists all such diagrams at orderg4. The Feynman
diagrams contributing to the skeleton self-energy are c
structed by combining loops with two insertions. This
clearly true for the second-order diagram, and we illustr
this using the first nontrivial order, the fourth-order diagra
in Fig. 3~A!, which holds to all orders in perturbation theor
Nonskeleton contributions to the self-energy involve d
grams with loops containing more than two current ins
tions. In these diagrams, the sum over all permutations of
current insertions into the loops is automatically zero, as
lustrated to orderg4 in Fig. 3~B!. A convenient way to rep-
resent these diagrams is to split each diagram into a b
bone which is the same in all three diagrams, and the fo

FIG. 3. ~A! Illustrating how the only nonvanishing singlet sel
energy at orderg4 is constructed by combining a propagator bac
bone with loops containing two vertex insertions. Dotted lines
dicate a bare propagator for the singlet Majorana fermionC (0). Full
lines indicate a bare propagator for the triplet Majorana fermio
~B! Illustrating how the nonskeleton self-energy at orderg4 is con-
structed by combining a propagator backbone with loops contain
four vertex insertions.
-
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e
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e
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insertion loop. Inserting the four vertices of the four-loo
construction in various ways into the four vertices of t
backbone gives the three diagrams in Fig. 3~B!. Note that
this method of generating the diagrams give rise to the c
rect degeneracy for each of the diagram types@( i ), (i i ), and
( i i i )#.

To generalize these results to higher-order graphs, i
more convenient to look at the set of diagrams for the f
energy. Cutting aC (0) line gives back the singlet self-energ
S0. We first note that only even orders ing occur in the
free-energy expansion, because the bare Majorana prop
tors are diagonal in the Majorana flavor index. Next, there
always a closed loop withn propagators~not necessary of the
same type! in any of the free-energy diagrams of ordergn.
Otherwise, improper and/or disconnected self-energy d
grams would be generated. Then, at orderg6 for example,
we have the following classes of diagrams listed in Fig
that might generate non-SSE diagrams.

The loop cancellation theorem applies to each case wh
there is a closed loop with more than two propagators of
same kind. Thus case (i i i ) is the only one left. Yet, case
( i i i ) generates either SSE diagrams, improper self-ene
diagrams~where cutting one of the lines lead to two disco
nected parts!, or else diagrams that have already be
counted in the other cases. The last observation follows fr
the fact one can always find a closed six- or four-loop co
struction buried in the diagram. Hence, all potential non-S
generating diagrams disappear. One can clearly gener

-
-

.

g

FIG. 4. List of all classes of free-energy diagrams that gene
non-SSE diagrams at orderg6.
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1692 PRB 62A. F. HO AND P. COLEMAN
the same reasoning to higher-order diagrams. We only n
to check that this method deals with the combinatoric fact
correctly, i.e., all the degeneracies of the diagrams are s
that there are no non-SSE diagrams left over. Here we ap
to the fact that in the SO~4! model, there must also be th
correct loop cancellations, because our method gives
same exact answer as Dzyaloshinskii and Larkin’s meth
Even though we have drawn the diagrams treating the tri
lines as identical, these triplet lines actually must carry
Majorana flavor index; to generate all possible diagra
whether distinct under SO~3! or not, we must draw all pos
sible diagrams with proper indexing of each of the line
Listing all diagrams this way is independent of which sy
metry we are dealing with, and consequently, combina
factors will automatically be taken care of in performin
loop cancellations with these Majorana indices on the pro
gator lines. In particular, the symmetry or combinatoric fa
tors for each diagram must be just right to allow loop ca
cellation to work in the SO~4! case, and hence for the SO~3!
case too.

Thus we can show that the vertex corrections to the s
energyS0 of the singlet Majorana fermion cancel to all o
ders, leaving the fully renormalized SSE as the only rema
ing contribution. Intriguingly, this argument fails for th
SO(2)3SO(2) model, because each vertex has two ‘‘fas
legs and two ‘‘slow’’ legs, unlike in the SO~3! case where
there is only one of the singlet legs. Thus, for example,
non-SSE diagrams in Fig. 5 do not have a closed loop
only one kind of propagator, which would allow loop ca
cellation to apply. However, these diagrams cannot cont
ute to the exact self-energy either, because the SO
3SO(2) model can be solved exactly by bosonization, or
a slight extension of Dzyaloshinskii and Larkin’s metho
and these results agree exactly with our bootstrap me
~see Sec. V!. There must then be more cancellation than t
due just to the loop cancellation theorem in its current for

To complete our proof, we need to show that the trip
Majorana self-energy is also given by the skeleton diagr
We use thefull Kadanoff-Baym free-energy functional

F@G#52T$Tr ln@G21#1Tr@SG#%1Y@G#, ~7!

whereY@G# is the sum of all skeleton diagrams.25 Now, by
construction,dF@G#/dGa50 generates the equations for th
self-energies, and in particular,dF@G#/dG0 must generate
the skeleton self-energyS0. This requires that the Kadanoff

FIG. 5. Examples of nonskeleton self-energy diagrams in
SO(2)3SO(2) model, where the loop cancellation theorem d
not apply.
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Baym free-energy functionaltruncatesat the leading skel-
eton diagram

~8!

Finally, by differentiating the free-energy functional with re
spect to the exact Greens functionsG1,2,3 of the triplet Ma-
jorana fermions, each triplet self-energy is also given by
corresponding skeleton self-energy.

IV. METHOD—DETAILS

We now apply this result, using the limiting case of th
SO~4! model to check the validity of our results. Our equ
tions are dramatically simplified by seeking solutions to E
~4! which satisfy a scaling form

Ga~x,t!5
1

2p ix
Ga~t/ ix !. ~9!

This form is motivated by the observation that chirality pr
vents space from acquiring an anomalous dimension, w
the interaction is marginal~in the renormalization-group
sense!. Under a Fourier transform, this scaling form is se
dual,

1
2p ix

Ga~t/ ix ! ↔
F.T. 1

iv
Ga~k/ iv!, ~10!

where thesamefunction Ga appears on both sides. Insertin
Eq. ~10! into Eq. ~5! and Fourier transforming,

Sa~x,t!52
1

2p~ ix !3

d2

du2
@12vau21/Ga~u!#u5t/ ix .

~11!

Since the bare Green function scaling form is 1/G a
0(u)51

2vau, it does not contribute to the self-energy. Combini
Eqs.~4! and ~11!,

d2

du2
@Ga~u!#2152~g/2p!2Gb~u!Gc~u!Gd~u!, ~12!

where $a,b,c,d% are cyclic permutations of$0,1,2,3%. The
boundary conditions are

Ga~0!51, Ga8~0!5va , ~13!

derived from the physical requirement that, at high frequ
cies, the fermions are free particles, moving with thebare
velocity va . Equations~12! and ~13! are the scaling form
version of our bootstrap method@Eqs.~4! and~5!#. Note that
the differential Eq.~12!, like Eq. ~4!, is independent of the
sign of the couplingg. Also, Eq.~12! has no information on
which model of the class@Eq. ~1!# it refers to; the symmetry
of the model ~i.e., the velocities! only comes in through
boundary conditions~13!.

For the SO~4! model, whereGa(u)[G(u) (a50, . . . ,3),
Eqs.~12! reduce to a single differential equation

e
s
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d2

du2
@G~u!#2152~g/2p!2@G~u!#3, ~14!

for which the solution satisfying the boundary conditio
G(0)51, andG8(0)5v is

G~x,t!5
1

2p ix
@12v1t/ ix#21/2@12v2t/ ix#21/2,

~15!

wherev65v6(g/2p) and v is the bare velocity. Identica
results are obtained by bosonization,22 wherev1 andv2 are
in fact the velocity of the spin boson and the charge bos
Thus this confirms that the skeleton self-energy is exact
the Luttinger model.

V. RESULTS

In the SO~4! model, the electron spectral weight displa
two classic x-ray singularities associated with the decay
the electron into a spinon and holon continuum~Fig. 6!.22

We now show that ifDv5v2v0 is finite, one of these x-ray
edge singularities is completely eliminated. Ifv0,v, we find
that the low-velocity ‘‘horn,’’ originally with velocityv2 ,
develops a sharp bound-state pole in the singlet channel,
a broad incoherent excitation in the triplet channel with
lifetime growing linearly in energy. Ifv0.v, the high-
velocity horn splits off a singlet antibound state, and t
triplet channel develops a high-velocity incoherent exc

FIG. 6. Spectral weight of SO~4! model.

FIG. 7. Spectral weight of the SO~3! model. For clarity, we have
shifted up the curves for various momenta by eight units.
n.
r

f

nd

e
-

tion. ~Fig. 7!. A sharp bound state in the singlet chann
develops once a velocity difference is introduced, beca
energy and momentum conservation now provide disti
constraints to scattering@unlike in the SO~4! model#, leading
to much less phase space forC (0) to decay into.

To see this, we must analyze Eq.~12! for the SO~3! case:

d2

du2
G3

2152~g/2p!2~G3!2G0 ,

~16!
d2

du2
G0

2152~g/2p!2~G3!3.

A very convenient way to discuss these equations is to m
them onto a central force problem. If we writer
5(G3

21 ,G0
21) and F52(gG3/2p)2(G0 ,G3), then, r̈5F,

where r̈[d2r /du2, i.e., u is like ‘‘time.’’ By inspection, r
3F50, so the force is radial, thus the ‘‘angular mome
tum,’’ r3 ṙ5Dv is a constant. If we use polar coordinate
(G3

21 ,G0
21)5r (cosu, sinu) the equations for the Green func

tion resemble the motion of a fictitious particle under t
influence of an anisotropic central force:

r̈ 2
Dv2

r 3
52~g/2p!2

1

r 3cos3u sinu
,

~17!
r 2u̇5Dv.

The velocity differenceDv5v2v0 provides a repulsive cen
trifugal force. The boundary conditions~13! mean that the
‘‘particle’’ starts out at r (0)5A2,u(0)5p/4, and with a
slope changeu̇(0)5Dv/2.

Without loss of generality, letDv<0. ForDv.0 simply
replacev1→v2 andg→2g. WhenDv50, the ‘‘particle’’
falls directly into the origin, and bothG3 andG0 diverge with
x-ray singularities when the particle first hit the origin
‘‘time’’ u51/v1 . Then the particle goes purely imaginary
both coordinates, which gives rise to the Luttinger co
tinuum in the spectral weight, until the timeu51/v2 when
the particle goes back to the origin, leading to the other x-
singularities for bothG3 andG0. From then on, the particle
stays in the real plane~Fig. 9!.

However, onceDv,0 is finite, u̇(0)5Dv causes the or-
bit to miss the origin atu;1/v1 . Instead,u→0 at some
finite ‘‘time’’ u51/v0* ~Fig. 8!, at which r 5C and u̇

5Dv/C2. For u;1/v0* , it follows that (r ,u)5@C,u̇(u
21/v0* )#, from which we can read off the following asymp
totics:

G3~u!21;C, ~18!

G0~u!21;~12uv0* !/Z, Z5Cv0* /uDvu. ~19!

Thus the associated x-ray singularity in the spectral funct
for both G3 andG0 is eliminated, replaced by an antiboun
state for the singletG0 with spectral weightZ, moving with
velocity v0* , splitting off above the continuum. After thi
time, r is complex in both coordinates, until eventually,
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u51/v3* , the particle passes through the origin, giving r
to the remaining x-ray singularity atu51/v3* in bothG3 and
G0.

The quantityz5(v2v0)/g plays the role of a coupling
constant, and approximate analytic solutions are possibl
the limiting cases of small and largez. For uDvu@ugu/2p
interactions can be ignored, sov0* →v0, and Z→12. For
uDvu!ugu/2p, the ‘‘motion’’ of the fictitious particle emu-
lates that of the SO~4! model until the angleu approaches
zero. We may estimatev0* andC by integrating Eq.~17! with

the approximationr (u)' r̃ (u), where r̃ 5@2(12v1u)(1
2v2u)#1/2 is the SO~4! solution:

E
0

1/v0* du

du
du52

p

4
5E

0

1/v0* Dv

r̃ 2~u!
du,

~20!
C' r̃ ~1/v0* !.

After doing the integral, this estimate gives~for uDvu
!ugu/2p)

v0* 5v11
g

p
exp2U g

2DvU, ~21!

Z5UA2g

pDvUexp2U g

4DvU, ~22!

indicating that the formation of the sharp antibound state
nonperturbative in the velocity difference.

FIG. 8. Quasiparticle weightZ of C (0) in the SO~3! model.

FIG. 9. ‘‘Trajectory’’ in the (Re 1/G3 ,Re 1/G0) plane. The ar-
rows indicate the direction of increasing ‘‘time’’u.
in

is

To illustrate these results further, we have carried out
merical solutions of the differential equations~16! for inter-
mediate values of the coupling constantz, using a standard
adaptive integration routine.26 Results are summarized i
Figs. 7 and 8.

While we have not established the validity of our meth
to models of lower symmetry~but see Sec. VI!, we believe
that the method captures the essence of the kinematic
straints imposed by energy and momentum conservation
least for weak coupling. Thus we have also performed
merical calculations for the SO(2)3SO(2) and SO~2! mod-
els.

For the SO(2)3SO(2) model, the pairC (0) and C (1)

with the same bare velocity can combine together to form
boson, and similarly forC (2) andC (3). This leads back to a
Luttinger-liquid form, but with asymmetric power-law singu
larities at the renormalized velocitiesv1 and v2 ~Fig. 10!.
@Also see Eq.~29! in Sec. VI, for an exact analytical solutio
for this model.#

As we progress to the SO~2! case, whenv0,v15v2
,v3, we see a sharp pole for the fermion which has
extremal velocity different to all the others, while the Lu
tinger continuum turns into wide peaks linear in energy
the fermion~s! with intermediate velocities; see Fig. 11. Th
illustrates once more our contention that making one Ma
rana degree of freedom to have a different~extremal! veloc-
ity causes drastic collapse of the scattering phase spac
this fermion.

FIG. 10. Spectral weight of the SO(2)3SO(2) model.

FIG. 11. Spectral weight of the SO~2! model. For clarity, we
have shifted up the curves for various momenta by eight units.
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VI. DISCUSSION AND CONCLUSION

A. 1D Majorana SO„3… model

In summary, we have demonstrated that by breaking
velocity degeneracy of a system of interacting chiral ferm
ons we restrict the scattering phase space in a way
causes a sharp bound state or antibound state to split off
the spin-charge continuum, leading to a system with t
qualitatively distinct spectral peaks and scattering rates. T
is a significant departure from the Luttinger-liquid scenar
and demonstrates an interesting class of one-dimensi
fixed-point behavior.

This fixed-point exhibits properties in common with bo
Luttinger and Fermi liquids, and is perhaps closest in ch
acter to the marginal Fermi-liquid phenomenology intr
duced in the context of cuprate metals.27 Like the Fermi
liquid, there is a sharp quasiparticle bound state, but
coexists with a Luttinger-liquid-like continuum which i
bounded by two extremal velocities.

As mentioned, the SO~3! model does not appear to b
solvable by conventional bosonization, forcing us to int
duce this bootstrap method. Two immediate questions a
the nature of the SO~3! fixed point, and the range of validity
of the bootstrap method.

In the SO~4! model, the fermionic spectral weight ha
x-ray singularities at the velocitiesv1 andv2 ~see Sec. IV!.
By bosonization, the model can be mapped onto a theor
freebosons~the spin boson and charge boson! moving atv1

and v2 , where forg.0, vspin5v2 and vcharge5v1 , and
for g,0, the role ofv1 and v2 are exchanged. This is
direct consequence of separate charge and spin conserv
in the model.3 We can demonstrate this in the Majorana fe
mionic representation. The classically conserved dens
are

J01~x![2 iC (0)~x!C (1)~x!,
~23!

J23~x![2 iC (2)~x!C (3)~x!.

@By the SO~4! symmetry, we can also define other combin
tions.# Using the commutation relations listed in Append
B, we obtain the equations of motion

~2]t2vq!J01~q!5
g

2p
qJ23~q!,

~24!

~2]t2vq!J23~q!5
g

2p
qJ01~q!.

The right-hand side of the equations is not zero~as would be
expected for conserved currents! because of the anomalou
commutator~Appendix B!,

@J01~p!,J01~q!#5@J23~p!,J23~q!#5pd~p1q!, ~25!

which is the SU~2! level-2 Kac-Moody algebra anomaly.30

Fortunately, by diagonalizing system~24!, the linear combi-
nations J2(q)5J01(q)2J23(q) and J1(q)5J01(q)
1J23(q) do satisfy the continuity equations

~2]t2v1q!J1~q!50,
~26!

~2]t2v2q!J2~q!50,
e
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wherev6 is as before in Eq.~15!, indicating that these den
sities J6 are proportional to the spin boson and the cha
boson.31 This then leads to sharp poles in the charge and s
susceptibilities.

For the SO~3! model, using the same definitions@Eq.
~23!#, we find

~2]t2v0q!J01~q!5
g

2p
qJ23~q!1~v32v0!K01~q!,

~27!

~2]t2v3q!J23~q!5
g

2p
qJ01~q!,

whereK01(q)[2 i (kkC (0)(q2k)C (1)(k). This extra term
comes from the commutator ofJ01 and the kinetic energy
and causes the set of equations~27! not to close, and
bosonization in terms of free spin and charge-bosons~or any
linear combinations! is impossible. In short, because of th
anomaly, the classically conserved SO~3! densityJ23 is ad-
mixed with the classically nonconservedJ01, leading to the
loss of a sharp pole for the susceptibility corresponding
J23. This makes it very different to the conformally invaria
fixed points of the SO~4! model and the SO(2)3SO(2)
model~see below!. Also, the presence of a sharp pole in t
fermionic spectral weight indicates that there is at least
~Majorana! fermionic degree of freedom in the diagonalize
system.

Frahmet al.18 has conjectured that this SO~3! model is the
low-energy effective theory of an integrable model of
spin-1 chain doped with spin-1

2 mobile holes. Using the ther
modynamic Bethe ansatz, they showed that the spin
charge sectors of the doped holes become decoupled a
temperatures, and they calculated the low temperature
energy of the spin contribution to be

Fspin52
pT2

6v0
S 1

2
2

3A

4p
ln AD2

pT2

6v S 3

2
1

3A

4p
ln AD1•••,

~28!

whereA.0 is a constant that depends on the doping on
With A50 ~undoped case!, the first term has been
interpreted18 as coming from a single Majorana fermion o
velocity v0, and the second term from a triplet of massle
Majorana fermions with velocityv that represent the SU~2!
level-2 WZNW model, which was shown by Affleck19 to be
the low-energy effective theory of the gapless integra
spin-1 chain. Here a system of fermions with two velociti
cannot be conformally invariant, unless the two species
not interact with each other and thus form two decoup
sectors that areindividually conformally invariant.32 Thus
this is unlikely to be a conformal field theory. However, th
form of the free energy@Eq. ~28!# suggests that the SO~3!
model is again asymptotically scale invariant, and we ha
found the coupling of the SO~3! model to be marginal, a
least up toO(g3).33

As for the range of validity of the bootstrap method w
introduced to solve the model, we note that if we change t
Majorana velocities at the same time, so thatv05v1 and
v25v3, we would have reduced the symmetry still further,
an SO(2)3SO(2) symmetry.28 We can solve the differentia
equations~12! with the results
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G3~x,t!5
1

2p ix F12
v1t

ix G2(1/2)1gF12
v2t

ix G2(1/2)2g

,

~29!

v65
1

2
$v01v36@~v32v0!21~g/p!2#1/2%,

and g5 1
2 (v32v0)$(v32v0)21(g/p)2%21/2. Interestingly,

this model can be bosonized to a model of free bosons,
the bosonization result agrees exactly with Eq.~29!. This is
surprising because, as far as we can see, the closed
cancellation is not sufficient in the case of the SO(
3SO(2) model to cancel all vertex corrections. This su
gests that a more general cancellation principle is at wo
and that the range of validity of our solution may even e
tend to models with a still smaller, SO~2!, symmetry. To
date, we have not been able to prove this result.

We also wish to point out that our differential versio
@Eq. ~12!# of the bootstrap equations~4! and ~5! are of such
a simple form only because we have a purely chiral syst
If we allow left and right movers to interact, the scaling for
@Eq. ~9!# no longer applies,22 and we have not found a dif
ferent scaling form that allows similar simplifications. How
ever, we expect the bootstrap method still to work, as long
there are separate conservation of left and right currents.
is true at least for the SO~4! model, because Dzyaloshinsk
and Larkin8 showed that their method also works for su
systems, and our method is a generalization of theirs.

B. Broader issues: Higher dimensions?

Our work raises the question whether this kind of no
Fermi-liquid behavior might survive in dimensions high
than one~Fig. 12!. In higher dimensions energy conservati
and momentum conservation are distinct constraints on s
tering phase space, and the Luttinger liquid reverts t
Fermi liquid, at least for short-range interactions.3,7 In con-
trast, the SO~3! model does not appear to be solvable
bosonization, and its unusual properties have reduced
ance on the special kinematics in one dimension. Thus,
kind of behavior might be more robust in higher dimensio
In fact, near infinite dimensions,17 two lifetimes of behavior
persist in the SO~3! model, but here, the thermodynami
near zero temperature is that of a Fermi liquid. The case
small, but finite, dimensions is however, still open.

FIG. 12.
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APPENDIX A

In this appendix, we prove by a diagrammatic method,
loop cancellation theorem for a loop with four current inse
tions. It is easiest to prove this inx,t space.~For a proof in
momentum-frequency space, see Kopietzet al.24! Let the
four insertions be atxi5(xi ,t i), i 51, . . . ,4.Each leg of the
loop is a free propagator:

Gi j [G~xi ,t i ;xj ,t j !5
1

v~t i2t j !1 i ~xi2xj !
. ~A1!

Denote by@1234# the loop where, going clockwise startin
from x1, we successively encounterx1 ,x2 ,x3, andx4, i.e.,

@1234#5G43G32G21G14. ~A2!

Without loss of generality, we can fixx1 and sum over per-
mutations of the other three vertices. The loop cancellat
theorem then states

@1234#1@1243#1@1342#1@1324#1@1423#1@1432#50.
~A3!

But for even number of propagators in a loop, going cloc
wise is the same as going anticlockwise; hence, e
@1243#5@1342#. Thus we only need to prove

@1234#1@1243#1@1324#50. ~A4!

To do this, we need the important identity

Gi j Gjk5Gik~Gi j 1Gjk!, ~A5!

which can be proven simply by substituting in Eq.~A1!. Use
this to rewrite the loops

@1234#5G14G43G32G215G13~G141G43!G32G21,

@1243#5G13G34G42G215G13~G341G42!G32G21,
~A6!

@1324#5G14G42G23G315G31~G141G42!G12G23,

and it is clear that they do all cancel, sinceGi j 52Gji .
From this example, we can see that it is important for

cancellation of loops with an even number of current ins
tions, that all the propagators be of the same type, to
identity ~A5!. In our context, this means all the propagato
are for fermions of the same velocity.

For an odd number of insertions, identity~A5! is not
needed, because time-reversal invariance guarantees the
cellation: a loop@1i jkl . . . xyz# will be canceled by the
counterclockwise partner@1zyx . . . lk j i #, thanks to Gi j
52Gji and a total of odd number of propagators.~This is
the analog of Furry’s theorem in QED; see, e.g., Peskin
Schroeder.29!
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We note in passing that identity~A5! can also be used to
prove the Ward identity by diagrammatic methods, order
order.29 ~For further information on the Ward identity an
how it is used for diagrammatic methods for finding the e
act Green function in some one-dimensional systems,
Metzneret al.3!

APPENDIX B

Here we list some commutation relations used to der
the equations of motion of the various~classically! con-
served densities. Start from the canonical anticommuta
relation for the Majorana fermions:

$C (a)~x!,C (b)~y!%5dabd~x2y!. ~B1!

With definitions ~23!, and with the SO~3! Hamiltonian H
5H01Hint ,

H05E dx2 i (
a51

3

vC (a)~x!]xC
(a)~x!

2 iv0C (0)~x!]xC
(0)~x!, ~B2!
y

-
ee

e

n

Hint52gE dxJ01~x!J23~x!,

we can straightforwardly obtain

@J01~p!,H0#5vpJ01~p!1~v2v0!K01~p!,
~B3!

@J23~p!,H0#5vpJ23~p!.

We can recover SO~4! results by settingv5v0. Ordinarily,
we would expect@J01(p),Hint#50, but this is spoiled by the
SU~2! level-2 anomalous commutator:30

@J01~p!,J01~q!#5@J23~p!,J23~q!#5pd~p1q!. ~B4!

One can derive this by, e.g., a diagrammatic method;
Chap. 13 of the book by Tsvelik.30 This then leads to the
only nontrivial commutation relations

@J01~p!,Hint#5
g

2p
pJ23~p!,

~B5!

@J23~p!,Hint#5
g

2p
pJ01~p!.
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