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Quantum-state diffusion model and the driven damped nonlinear oscillator
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We consider a driven damped anharmonic oscillator that classically leads to a bistable steady state and to
hysteresis. The quantum counterpart for this system has an exact analytical solution in the steady state that does
not display any bistability or hysteresis. We use quantum-state diffusion theory to describe this system and to
provide a new perspective on the lack of hysteresis in the quantum regime so as to study in detail the quantum
to classical transition. The analysis is also relevant to measurements of a single periodically driven electron in
a Penning trap where hysteresis has been obse82650-294{@7)02203-9

PACS numbg(s): 03.65.Bz, 42.50.Lc, 05.30.Ch

I. INTRODUCTION tions, which in turn determine the time for random switching
between the two stable states. In this case the classical-
The emergence of classical properties through interactioquantum transition is of a statistical nature and the classical
with the environment has been the subject of extensive studesult appears in the limit where the switching time can be
ies. In this context, a study of simple open quantum systemgonsidered very large compared to an observational time.
can provide a clue to understanding the mechanism of the Bortman and Rori4,5] presented a quantum-mechanical
quantum-classical transition. In this paper we wish to studydescription of asingle atomic systenwhich is accessible to
one of the simplest nonlinear quantum systems — the anhaexperimen{6]. They also state that if one does not deal with
monic oscillator. This system, when it is damped and driventhe effect of fluctuations upon the two stable states, that is,
exhibits different behavior in the steady state when describefis influence upon the time scale of the stability, bistability is
either quantum mechanically or classically, with the latternot destroyed by quantum fluctuations and should be ob-
showing bistability{1,2]. In order to describe the emergence served even in the case of a low level of excitation. Accord-
of classicality, such differences have to be clarified and théng to this description the system is bistable in both regimes
two results reconciled. and the observation of bistability thus depends on the experi-
The anharmonic oscillator is of particular interest for sev-mental setup, with no fundamental restriction on its observa-
eral reasons. First, its simplicity allows any complexity re-tion.
lated to the model to be avoided. Second, it is the archetypi- Motivated by the controversial points of view of Drum-
cal model for dealing with nonlinearities in quantum mond and Wall§3] and Bortman and Rof%,5], we inves-
mechanics and has been widely used to describe a great vidgate in this paper the quantum-classical transition of the
riety of systems. In particular, it was introduced by Drum-driven damped anharmonic oscillator with the help of the
mond and Wall§3] to describe dispersive optical bistability quantum-state diffusiofQSD) method. In the context of
and more recently has been used by Bortman and[R@&h  typical quantum optical problems, for example, the QSD
to study the relativistic motion of a resonantly driven elec-method describes the continuous monitoring of the state of a
tron in a Penning trap. photon source by individual photoelectric detection pro-
Drummond and Wall§3] derived the exact steady-state cesses, which involve heterodyning with a classical intense
expectation values of the photon distribution function, hencephoton sourcq7,8]. However, the QSD method has also
showing that in the quantum regime this model does nobeen proposed as a phenomenological theoretical description
exhibit bistability or hysteresis. One would expect the clas-of arbitrary individual quantum measurement processes
sical or quantum results to be recovered in the appropriatf9—11]. It has already been demonstrated that the QSD
limit. For instance, the level of excitatioga’a), has been method, considered as a dynamical theory dimgle quan-
used to define such a lin{ib]. For low excitation number the tum systemsis a valuable tool in the understanding of the
quantum result should apply while for high excitation num-emergence of classical chaos in open quantum sydte#hs
ber the classical result is expected to give the correct behawhus it is expected that it will also be useful in obtaining
ior. This description is reasonable but it does not demonnew insights into the connection between classical and quan-
strate how the transition from classical to quantum occursal behavior of the driven damped anharmonic oscillator
when the excitation number takes an intermediate value ancbupled to a reservoir, a physical system whose classical
whether the system suddenly becomes bistable or whethelynamics does not exhibit chaos. This is of particular interest
the bistability appears smoothly. here as this quantum system does not exhibit hysteresis
Drummond and Wall§3] state that the extent to which whereas the corresponding classical system does. It will be
bistability is observed will depend on the quantum fluctua-shown that QSD provides a mechanics for bistable motion in
phase space that is consistent with the quantum-mechanical
steady-state result that bistability does not appear for mean
*Electronic address: m.rigo@rhbnc.ac.uk values over an ensemble. Furthermore, QSD helps one to
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understand the crucial role played by the physical time scaleShus, expectations valug#\),= Tr(pA) of an operatorA

that characterize the approach to the classical equilibriuncan be computed as the ensemble mean of the quantum ex-

positions in phase space and the jumps between these typectations valueéA) , of the pure statéy).

classically stable equilibrium positions due to quantum fluc-

tuations. In add.ItIOI’l,. thg qugstlon is addressed as to what can Ill. ANHARMONIC OSCILLATOR

be measured, in principle, in an experimé¢é} on such a

system and under what conditions such an experimental ob- We consider a driven anharmonic oscillator coupled to a

servation will yield bistability and hysteresis. Finally the thermal bath[3,17-19, the temperature of which is set to

Drummond-Walls and Bortman-Ron assertions are queszero (T=0) as the prototype model showing bistability in

tioned in the light of QSD. the classical domain. The damping of this oscillator with rate
The paper is organized as follows: In Sec. II, the QSDx is described by the Lindblad operatdr=+xa. The

model is briefly depicted. In Sec. lll the anharmonic oscilla-Hamiltonian in a frame rotating with the frequeneyof the

tor model is presented, and a brief review of the classical andriving field reads

guantum results related to bistability in the steady state is

provided. Section IV describes the anharmonic oscillator H=hAwa'a+%pB(a’'+a)+%y(a’a)? (5)

from the point of view of QSD. Finally, Sec. V presents a

discussion of the results and our conclusions. where a= (Mwy/24)Y2Q +i(1/2mfiwg) ¥2P and a' are the
annihilation and creation operators related to the posifon
Il. QUANTUM-STATE DIFFUSION and momentunmP of the oscillator (n is the mass of the
_ particle. Here the parametekw= wy— w measures the de-
Open quantum systems are represented by the density ogming between the eigenfrequency of the oscillator and the
eratorp, which evolves in time according to a master equa-griving force. The parameteys and y characterize the am-
tion. The most general master equation in the Markov appjitude of the driving force the strength of the anharmonicity.
proximation, which preserves trace and positivity of the|n the following only positive values of will be considered.
density operatop, can be written in the Lindblad forii.3] This Hamiltonian whose corresponding classical dynam-
ics is integrable is well known. It has been used to describe
. i P 1 various physical phenomena such as dispersive optical bista-
p== g[H’P]JF; LipLj— ELJ Lip— §PLJ L), (D bility [3,20], driven tunneling[21], and hysteresis in an
atomic systeni4,5] within the framework of the rotating-

. I . wave approximation. In the context of optical bistability, for
whereH is the Hamiltonian and.; are Lindblad operators, example, the QSD equation with Hamiltoniai) and

gr]’r!(:h represent the effects of the environment on the SYS[ = Jka describes the continuous monitoring of the electro-

The quantum-state diffusion model represents one of thmagnetic field of frequency, by individual photon detec-

. . . ion processes, which involve heterodyning with a classical
several possible unravellings of the master equation. Accord- P yning

ing to the QSD model9—12,14—16 open quantum systems intense photon source. Without the adiabatic approximation

: b e (i.e., for a time dependent driving) this physical system
are represented by pure stalg$, which describe individual . L
systems. Evolution of the stale) is given by a Langevin- has been discussed as a model that exhibits quantum chaos

It6 differential equation [12]. It has also been used to de_scrlb_e_mo_re fundamental
aspects such as the effect of nonlinearities in master equa-
i 1 tions [17], non-Markovian approximationgl8], and more
I . . .
dud=— —Hlhdt—= LTL. +(LTYL. _recently ina study of Iocah_zatlon proces$@g]. An appeal- .
|dv) h ) 2; (LiL (LKL ing feature of this system is that exact quantum results exist
for the correlation functiorf3], the spectrum, and even the
—2(LDL. dt+ L—(L. dé . (2 dynamics[19,23 in the absence of driving.
(LL1) ; (Li={L)lgdg;. 2 The classical equivalent for this system exhibits hysteresis
in the steady statgl,2] while the quantum system does not.

The d¢; are random differential variables representing inde-" the next two sections well-known results regarding the

pendent complex Wiener processes. They satisfy the followélassical and quantum systems are presented in order to
ing mean relationships: make this presentation self-consistent.

M(d&)=M(d¢dé)=0, M(ddég)=odt.  (3) A. The classical limit
The classical equation of motion can be obtaifigtby
M represents a mean over an ensemble andactorizing the quantum correlation functionga'a?)
(L;)=(#L;|4) the quantum expectation of the operatgr ~ —(a')(a)*
in the pure statéy). g L
The QSD trajectories are compatible with the master Yo . 2 %y -
equation in the sense that the ensemble average of the pro- dt HAT (Aot y)at2ya’a®) 2% ©
jector |)( | reproduces the density operajar
where « is the mean-field amplitudea=(a) in the
p=M(|)(¢]). (4)  (semiclassical limit.
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FIG. 1. Steady-state excitation
. number| a|? (classical result: dojs
60 | 4 and(a'a) (quantum result: ling
vs the detuningAw. The param-
eters are the damping=1.5, the
driving 8= — 7.0 (choosingg real
is equivalent to setting the origin
for the phase ofa), introducing a
complex B8 simply produces a ro-
tation in phase spageand the an-
harmonicity y =0.05.
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In the steady-state regime, the excitation nuribéf can ~ monostable behaviofsee Fig. 2 In short, the classical
be obtained by solving the following equation: model exhibits a bistable steady state when the parameters
5 satisfy the above conditions leading to hysteresis.
B

2
o= D7+ (Rt x+ 2x]al @

B. The quantum limit

Once the excitation numbé|? is known the real and com- Using the complexP representation, Drummond and
plex parts of the mean amplitude can be derived using Walls [3] have solved the master equation for the density
operator. They obtained an analytical expression for the mo-

Re(a) Awt+x+2xlal® Im(a)  « ® ments(a™a™, in the steady state. Notice that in this sec-
la|?2 B e 287 tion, ( ), represents the ensemble mean of the quantum-

_ _ _ _ mechanical expectation values. Their result reads
Expressiorn(7) shows that the classical anharmonic oscillator

can display one, two, or three solutions depending on the . z\|(n+tmr2
choice of parameter valudgsee Fig. L (a"a™),= 2
Provided the following conditions are fulfilled,

I'(c)I'(c*) F(c+m,c* +n,z)

X(Aw+x)<0, F(c+mTI(c*+n)  F(cc*,z)
Aw+ (10
x> 3, ©
Kl2
wherel" is the gamma function ané=4F, the generalized
27x B? 3kl2 \?]? kl2 \?]3 Gauss hypergeometric serig]:
(Aw+X)3+ Aw+y <|1-3 Aw+y '
: : . 2" T(o)l(d)
then Eq.(7) has three solutions. Outside of this range, only oFa(cdz)=2 — (11
one solution is expected. n=o n! I'(c+n)I'(d+n)

The first condition expresses the fact that the detuning has
to be oriented in the rlght direction in order to combine |tSThe coefficients andz depend on the physica| parameters
effect with that of the anharmonicity. The second shows thafy the following way: c=(Aw+x)/x—ix/(2y) and
detuning and anharmonicity must be large enough in order t9— 2 (3/)2.
compensate dissipation, and the third condition gives limit- - The mean excitation number is of particular interest here;
ing values for the driving strength. it is given by

Using the theory of linear stability,1], it can be verified
that when three solutions are present, one of them is always ) .
unstable. Thus the domain of parameters is divided into two (ata),= B F(c+1c*+12)
regions, one showing bistability and the other purely P (Aw+x)2+ (k22  F(c,c*,2)

(12
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FIG. 2. Representation of the
domain of hysteresis. The three
0.5+ conditions given by Eq(9) in the
text describe the border of this do-
main. Inside the bounded region
the system possesses three solu-
tions, two stable and one unstable,
this is the bistable domain. Out-
side, the system has only one so-
lution, always stable. Notice that
the bistable region is entirely de-
-0.57 fined by only two parameters
1 x=kl2/(Aw+x) andy=(«x/2)%
Bx.

WL

Using the properties of the hypergeometric seri&s one  simulation methodMQSD) [14]. The evolution is computed
can show that the quantum result is never bistable and thusver a period of time of the order ofd/the dissipative time

does not show any hysteregisg. 1). In this situation, the system evolves toward a different “sta-
tionary” state depending on the chosen initial state. The
IV. QSD FOR THE ANHARMONIC OSCILLATOR QSD evolution shows two different limit points where all the

In thi tion. th blem is tackled using th " trajectories tend to go after some transient dissipative time.
n this section, the problem IS tackied using the quantuM-ppqge 4y points are called equilibrium points.

state diffusion model. According to QSD, the equation of When the trajectory starts far away from the two equilib-

motion for the mean-field amplitud@, is rium points, it approaches one of them, depending in which
basin of attraction it starts in, rotating with a frequency given

K
d(a)=—i[(Aw+x){(a)+B+2x(a’a?)]dt— E(a}dt by the detuningAw. If the wave packet is initially spread
out, it tends to localiz¢15] to a coherent state during the
+ \/;(<a2)—(a>2)d§+ &((a*a}—(a*)(a))dg*. dissipative transient. Here the state is said to be localized if

its spread is much smaller than the distance between the two

13 equilibrium points. Thus the quantum fluctuations have less

In this equation, the expectation values are taken in the pur@nd less effect. . _
state|) describing the evolution along a quantum trajec- After transient damped motion towards one of the equi-
tory. If one wants to describe the evolution of the mean valudibrium points, the wave packet remains localized. This

(over an ensembleone can take the mean on both sides ofstrong localization property allows one to describe the quan-
Eq. (13) to obtain tum system in a quasiclassical way.

As a consequence of the anharmonicity, the system does
d(a), ) 2 K not, however, preserve the coherent states to which it is
gt~ Aetx)(a),+B+2x{a'a?),]- (@), driven by the dissipative terms. Hence, the quantum correla-
(14)  tions never vanish, and the quantum fluctuations act on the
wave packet whose center will fluctuate around its equilib-
One can check easily that factorizing the quantum COfre'arium point_ The dynamics are now dominated by quantum
tions in both of the two preceding equations leads to thg|yctuations.
classical equation of motio(6). Thus, neglecting the quan-  These fluctuations have a mean frequency and an ampli-
tum correlations corresponds to ignoring overlapping effectg,ge that depends on the position of the equilibrium point in
of the wave packet and quantum fluctuations. phase space. The fluctuations are bigger for the equilibrium
point situated further away from the origin. This is an effect
A. Simulation of the dissipative dynamics due to dissipation, represented bby: \/xa, which produces a
The parameters are chosen in the bistable domain. Thdynamical behavior such )= — «(a), clearly attracting
dynamical evolution of the QSD equatigh3) is computed the system towards the orig{@)=0 and not to some local
numerically using the moving basis or mixed representationminima.
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FIG. 3. Evolution of a quan-
tum trajectory in phase space. The

parameters ar&=1.5, =—7.0,
x=0.05, and the detuning
Aw=—5.0. The initial state is
chosen to be a coherent state cen-
tered at (Q)=7(P)=14). The
first stage of the evolution is the
decay towards a local minimum,
in a time of the order of ¥. Then
the system fluctuates around the
equilibrium point for an amount of
time given, in mean, by the transi-
tion time. Finally, a big enough
fluctuation occurs to project the
system into the other basin of at-
traction where the system remains
for a very long time.

12 |
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At this point the QSD trajectories can be roughly seen asng some time and then come back to the first point. The time
classical trajectories subjected to noise. There are two dispent around each equilibrium point is such that the quantum
tinct equilibrium points leading to bistable behavior similar expectation valuga),, is recovered. Due to quantum fluctua-
to the classical one. tions induced by the coupling to the reservoir the equilibrium
points become metastable.

This transition, which occurs in a time shorter than the
dissipative time, might be viewed as a tunneling process.
Savage and Cheri@1] have investigated whether bistability
can be associated with quantum superpositions of states in

We know that the mean over an ensemble of QSD trajeceither well. They have introduced a distinction between co-
tories reproduces the quantum result, but if individual QSDherent and diffusive mechanisms for quantum tunneling. In
trajectories show bistability, how can the quantum result beour simulations, the wave packet initially localized in one
recovered? The answer is that the evolution described aboweell becomes delocalized when it crosses the barrier, making
is stable over a very long time compared to the dissipativehe distinction between these two mechanisms of tunneling
time, but if one integrates over a longer time, one sees thatrtificial (see Fig. 4. Once the barrier is crossed, the wave
any trajectory goes from the neighborhood of one equilibpacket localizes again.
rium point to the other. This transition happens in a mean To confirm the previous description, a mean over an en-
time called thetransition timeor exit time which can be semble is considered. Figure 5 represents the time evolution
much longer than the dissipative time. of the mean position and mean momentum. The mean is

In order to observe the transition between the two equicomputed over 100 trajectories. The system is initially
librium points, the parameters are chosen such that the maxplaced in a coherent state centered at the classical equilib-
mal excitation number is set at an intermediate value berium point. This point is unstable with respect to the other
tween the classical and quantum limits. Also, the integratiorequilibrium point. The mean position and momentum evolve,
is now carried over a long time, typically 4@ 10* times  roughly as an exponential decay, to the quantum stationary
the dissipative time. The system is initially set in a coherentalues given by the exact quantum result. For this typical
state centered far away from the two fixed points andexample, the quantum result is very close to one of the equi-
evolved in time with QSD. Figure 3 represents a trajectory inlibrium points, because the transition time from the initial to
phase space that shows the dissipative part of the trajectorihe final point is much shorter than in the opposite direction.
followed by a long period of fluctuations around the attract- Hence, the mean result confirms that the initial equilib-
ing equilibrium point. This first part of the time evolution of rium point is unstable compared to the other one as a conse-
the trajectory, i.e., its approach to equilibrium, has been dequence of the quantum fluctuations. This relative instability
scribed in Sec. IV A. If the integration is continued, the tra- explains why the quantum description does not show bista-
jectory will suddenly jump to the neighborhood of the otherbility. According to QSD even in the quantum regime, the
equilibrium point.(The “jump” described here is a diffusive system is bistable, but the bistability is hidden by the fluc-
process that allows the quantum trajectory to go from theduations, which make the wave packet move from a fairly
basin of attraction of one equilibrium point to the oth@ihe localized state in one well to a localized state in the other
system will remain around the second equilibrium point dur-well.

B. Recovery of the quantum result
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V. DISCUSSION A. Transition time

We have used QSD to describe the driven damped anhar- The QSD model, by introducing quantum fluctuations in
monic oscillator in an intermediate regime between quantun®n explicit way, shows explicitly how classical bistability
and classical regimes. It has been shown that states localigésappears. Furthermore, it introduces a new time scale, the
along a quantum trajectory and a transition between the twansition time characteristic of the transition between the
equilibrium points of the system has been observed. The Iotwo (classical equilibrium points. More precisely there are
calization gives a quantitative justification for the classicaltwo transition times, the transition time from one equilibrium
analogy in which a localized particle moves in a double-wellpoint to the other and a different time associated with the
potential. This analogy has often been used on a purelyeverse transition. Because one of these transition times is in
gualitative level without any further justification. The transi- general much smaller than the other one, the transition con-
tion between the two equilibrium points allows one to re-sidered here starts from the less stable equilibrium point,
cover the quantum result and reconciles quantum and classivhich is located further away from the origin in phase space.
cal descriptions. It is worth emphasizing the following In a sequence of papers, Vogel and Risk2@] have cal-
aspects. culated the transition rates by solving the equations of mo-

12 T T T T

Position and its variance

FIG. 4. Representation in time
of (a) the position{Q) (full line)
and its variance\Q? (dotted ling
and (b) the momenturP) (full
line) and its variance\ P? (dotted
8 L : . L line) at the particular instant of the

592 594 596 ime 598 600 602 transition (approximatively at

t=596.3 in this example Same

parameters as Fig. 3. Notice the
delocalization in space of the
wave packet at the transition. Be-
fore and after the transition, the
variancesA Q2 andAP? are small
(compared to the distance between
equilibrium pointg showing local-
ized states.
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FIG. 5. Evolution in time of
the mean position(Q) (lower
curve and momentungP) (upper
curve. Parameters same as Fig. 3.
The mean is taken over 100 real-
izations. The time scale of the de-
cay is much larger than the dissi-
pative time of 1k=0.67.

Position and Momentum

0 500 1000 1500 2000 2500 3000

tion for quasidistribution functions using the matrix surement. Such a measurement can be performed, for ex-
continued-fraction method. They also obtained analytical reample, in an optically bistable system by monitoring the state
sults for the transition rate in the limit of large excitation of the field mode by heterodyning with an intense classical
numbers and low damping. photon source. Alternatively, this measurement can also be

The rate of decay shown in Fig. 5 is an approximation torealized by observing the relativistic motion of a resonantly
the mean transition rate between the two equilibrium pointsdriven electron in a Penning trap, as in the recenﬂy per-

The time needed for the decay is clearly much larger than thg,med experiment of Ref6].

dissipative time. According to QSD such a measurement should reproduce

| Thus QSD not $nly gives a qualita_tiVT' description fbuht Calthe curve depicted in Fig. 6 showing hysteresis. The experi-
also be used easily to obtain numerical estimates of the ref o e should obtain such a curve fluctuating around one of

evant transition times. We_will not addres_s_any_further thethe two classical steady-state values for a while and then
guestion of the determination of the transition time in this.

mping to the other value. The combination of the two
paper as one can use the accurate results of Vogel ad

; X ' o o mps occurring when the driving frequency is ramped from
R|sken, which confirm th? ppss!blllty of very large transition low to high frequencies and reversed allows one to define the
times compared to the dissipative time.

detuning widthA Q) as the size of the bistable region. Figure
6 represents such a result and shows the detuning width
AQ for this particular realization. The detuning width is dif-
Let us consider the following ideal experiménaee[6] for ~ ferent for each realization of this experiment, the transition
a practical realization In order to see hysteresis a single being a stochastic event.
guantum-mechanical anharmonic oscillator is measured con- An experiment carried out in the classical limit does not
tinuously under conditions in which its classical counterparishow any fluctuations and the two jumps occur always at the
would be bistable. Let us assume that the driving frequencgame detuning value. In this case the detuning witlth
w is varied step by step from low to high frequencies andcorresponds to the full size of the bistable region.
reversed, spanning twice the classically bistable domain. If one uses the density matrix to describe such an ideal
Once the frequency is modified, the experimenter waits &xperiment, the result will also show two distinct transitions.
time, calledthe measurement delay, t which is assumed to The mean detuning width depends not only on the character-
be much longer than the dissipative time, before doing anystic physical parameters of the driven damped anharmonic
further measurement. The excitation number of the oscillatopscillator but also on the measurement delgy If the mean
is measured before changing the frequency of the drivingransition timer is much larger than the dissipative time, i.e.,
force again. Thus this type of resonance experiment correr>1/«, one can distinguish between the two limiting cases:
sponds to an adiabatic sweeping of the frequency with re¢l) If the measurement delay is small relative to the transi-
spect to the “fast” dissipative dynamics. Furthermore, let ustion time, i.e.,7>t,,, then the mean detuning width() has
assume that this continuous measurement is ideal in the finite value, showing bistability(2) At the opposite ex-
sense that the excitation number of the harmonic oscillatotreme, i.e., fort,,> 7, the detuning width is equal to zero,
can be measured nondestructively and that it does not pertughowing no hysteresis at all, in agreement with the quantum
the system’s transition rates; i.e., it is a nondemolition measteady-state result.

B. Ideal experiment
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_ FIG. 6. Simulation of an ideal
g 60 (single experiment according to
2 the QSD model. Parameters are
5 the same as in Fig. 1. The detun-
% ing step is 0.1 and the measure-
& 40 ment time ist,,=50. The dotted
line represents the classical
steady-state excitation number.
20
a0 8 6 4 2 0 2
N\ detuning

C. Bistability and the classical limit shorter than the mean transition time. The thermal fluctuation

The classical limit is valid for high excitation number. In ¢&n be neglected only when the transitions take place in a
this limit the mean transition time is so large and the transi{ime much larger than the observational time.
tion between the two equilibrium points so infrequent that In all the previous situations the quantum theory applies.
they can be neglected. In this limit any finite observationalBecause the density matrix automatically includes the mean
time satisfies the conditions for the experimental observatio@ver an ensemble, there is no clear distinction between the
of hysteresis. dissipative dynamics and the dynamics induced by the fluc-
When the excitation number decreases sufficiently for théuations. QSD, by unraveling the different quantum trajecto-
mean transition time to take a very large but accessiblgies, helps one to understand the role played by the statistical
value, one has to distinguish between the cases where theean.
measurement delay is smaller or larger than the transition
time. The classical description is still valid in the former case VI. SUMMARY
but does not apply anymore in the latter. The fluctuations
have to be taken into account for a correct description of this We have shown that QSD leads to quantum trajectories
situation. that exhibit bistability for the driven damped anharmonic
If we continue lowering the excitation number, still keep- oscillator and that the quantum steady-state result is recov-
ing the mean transition time large compared to the dissipaered through random switching between the two equilibrium
tive relaxation time, then the classical theory no longer givegoints due to quantum fluctuations. The fluctuations also in-
a good description of the dynamics since even for a measuréroduce a characteristic time scale: the mean transition time.
ment delay much smaller than the transition time it predicts a We have also shown that it is still possible to observe
fixed detuning width. If one uses quantum theory, whichbistability dynamically in this quantum system by introduc-
includes the fluctuations, one will be able to obtain the coring a measurement deldy,. An experiment will show hys-
rect behavior. teresis only if the transition time between tlielassical
Finally when the excitation number is small, the classicalequilibrium points,r, is much larger than all other relaxation
theory is no longer valid. One has to use the quantum theoriimes involved(approximately 1#). If the transition time is
and specify the measurement delay in order to describe conot that large, it is not possible to observe any hysteresis
rectly the result of an experiment. The bistability is not de-effects and the guantum steady-state solution is expected.
stroyed in any of these cases but it is simply hidden by thd-urthermore, provided the transition time is much larger than
guantum fluctuations. the other times, hysteresis can be seen only if a measurement
This situation is very similar to that of a classical driven delay is such that,,< 7. Thus, within this interpretation the
anharmonic oscillator coupled with a thermal bath with non-classical result is valid only if the quantum fluctuations are
zero temperature. Introducing thermal fluctuations also hideso small that they induce a transition time very large com-
the bistability of the steady state and introduces a classicalared to the period of observation.
transition time(see[25]). In order to observe bistability, one Our results confirm the statistical description given by
has to introduce a measurement delay much larger than tHerummond and Walls. The results of Bortman and Ron have
relaxation time in the absence of thermal fluctuations, buto be examined more carefully. Strictly speaking, even for



55 QUANTUM-STATE DIFFUSION MODEL AND THE ... 1673
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