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Quantum-state diffusion model and the driven damped nonlinear oscillator
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~Received 24 July 1996!

We consider a driven damped anharmonic oscillator that classically leads to a bistable steady state and to
hysteresis. The quantum counterpart for this system has an exact analytical solution in the steady state that does
not display any bistability or hysteresis. We use quantum-state diffusion theory to describe this system and to
provide a new perspective on the lack of hysteresis in the quantum regime so as to study in detail the quantum
to classical transition. The analysis is also relevant to measurements of a single periodically driven electron in
a Penning trap where hysteresis has been observed.@S1050-2947~97!02203-8#

PACS number~s!: 03.65.Bz, 42.50.Lc, 05.30.Ch
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I. INTRODUCTION

The emergence of classical properties through interac
with the environment has been the subject of extensive s
ies. In this context, a study of simple open quantum syste
can provide a clue to understanding the mechanism of
quantum-classical transition. In this paper we wish to stu
one of the simplest nonlinear quantum systems — the an
monic oscillator. This system, when it is damped and driv
exhibits different behavior in the steady state when descri
either quantum mechanically or classically, with the lat
showing bistability@1,2#. In order to describe the emergen
of classicality, such differences have to be clarified and
two results reconciled.

The anharmonic oscillator is of particular interest for se
eral reasons. First, its simplicity allows any complexity r
lated to the model to be avoided. Second, it is the archet
cal model for dealing with nonlinearities in quantu
mechanics and has been widely used to describe a grea
riety of systems. In particular, it was introduced by Drum
mond and Walls@3# to describe dispersive optical bistabilit
and more recently has been used by Bortman and Ron@4,5#
to study the relativistic motion of a resonantly driven ele
tron in a Penning trap.

Drummond and Walls@3# derived the exact steady-sta
expectation values of the photon distribution function, hen
showing that in the quantum regime this model does
exhibit bistability or hysteresis. One would expect the cl
sical or quantum results to be recovered in the appropr
limit. For instance, the level of excitation,^a†a&, has been
used to define such a limit@5#. For low excitation number the
quantum result should apply while for high excitation nu
ber the classical result is expected to give the correct be
ior. This description is reasonable but it does not dem
strate how the transition from classical to quantum occ
when the excitation number takes an intermediate value
whether the system suddenly becomes bistable or whe
the bistability appears smoothly.

Drummond and Walls@3# state that the extent to whic
bistability is observed will depend on the quantum fluctu
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tions, which in turn determine the time for random switchi
between the two stable states. In this case the class
quantum transition is of a statistical nature and the class
result appears in the limit where the switching time can
considered very large compared to an observational time

Bortman and Ron@4,5# presented a quantum-mechanic
description of asingle atomic system, which is accessible to
experiment@6#. They also state that if one does not deal w
the effect of fluctuations upon the two stable states, tha
its influence upon the time scale of the stability, bistability
not destroyed by quantum fluctuations and should be
served even in the case of a low level of excitation. Acco
ing to this description the system is bistable in both regim
and the observation of bistability thus depends on the exp
mental setup, with no fundamental restriction on its obser
tion.

Motivated by the controversial points of view of Drum
mond and Walls@3# and Bortman and Ron@4,5#, we inves-
tigate in this paper the quantum-classical transition of
driven damped anharmonic oscillator with the help of t
quantum-state diffusion~QSD! method. In the context of
typical quantum optical problems, for example, the QS
method describes the continuous monitoring of the state
photon source by individual photoelectric detection p
cesses, which involve heterodyning with a classical inte
photon source@7,8#. However, the QSD method has als
been proposed as a phenomenological theoretical descrip
of arbitrary individual quantum measurement proces
@9–11#. It has already been demonstrated that the Q
method, considered as a dynamical theory forsingle quan-
tum systems, is a valuable tool in the understanding of th
emergence of classical chaos in open quantum systems@12#.
Thus it is expected that it will also be useful in obtainin
new insights into the connection between classical and qu
tal behavior of the driven damped anharmonic oscilla
coupled to a reservoir, a physical system whose class
dynamics does not exhibit chaos. This is of particular inter
here as this quantum system does not exhibit hyster
whereas the corresponding classical system does. It wil
shown that QSD provides a mechanics for bistable motion
phase space that is consistent with the quantum-mecha
steady-state result that bistability does not appear for m
values over an ensemble. Furthermore, QSD helps on
1665 © 1997 The American Physical Society



al
iu
t

uc
c

o
e
e

D
la
an

to
a

y o
a
ap
he

,
y

th
or
s

e
ow

an

te
p

ex-

a
o
in
te

-
the
-
ty.

m-
ibe
ista-

or

ro-

cal
tion

haos
ntal
qua-

xist
e

sis
t.
he
r to

1666 55RIGO, ALBER, MOTA-FURTADO, AND O’MAHONY
understand the crucial role played by the physical time sc
that characterize the approach to the classical equilibr
positions in phase space and the jumps between these
classically stable equilibrium positions due to quantum fl
tuations. In addition, the question is addressed as to what
be measured, in principle, in an experiment@6# on such a
system and under what conditions such an experimental
servation will yield bistability and hysteresis. Finally th
Drummond-Walls and Bortman-Ron assertions are qu
tioned in the light of QSD.

The paper is organized as follows: In Sec. II, the QS
model is briefly depicted. In Sec. III the anharmonic oscil
tor model is presented, and a brief review of the classical
quantum results related to bistability in the steady state
provided. Section IV describes the anharmonic oscilla
from the point of view of QSD. Finally, Sec. V presents
discussion of the results and our conclusions.

II. QUANTUM-STATE DIFFUSION

Open quantum systems are represented by the densit
eratorr, which evolves in time according to a master equ
tion. The most general master equation in the Markov
proximation, which preserves trace and positivity of t
density operatorr, can be written in the Lindblad form@13#

ṙ52
i

\
@H,r#1(

j
S L jrL j

†2
1

2
L j
†L jr2

1

2
rL j

†L j D , ~1!

whereH is the Hamiltonian andL j are Lindblad operators
which represent the effects of the environment on the s
tem.

The quantum-state diffusion model represents one of
several possible unravellings of the master equation. Acc
ing to the QSD model@9–12,14–16#, open quantum system
are represented by pure statesuc&, which describe individual
systems. Evolution of the stateuc& is given by a Langevin-
Itô differential equation

udc&52
i

\
Huc&dt2

1

2(j ~L j
†L j1^L j

†&^L j&

22^L j
†&L j !uc&dt1(

j
~L j2^L j&!uc&dj j . ~2!

Thedj j are random differential variables representing ind
pendent complex Wiener processes. They satisfy the foll
ing mean relationships:

M ~dj j !5M ~dj jdjk!50, M ~dj jdjk* !5d jkdt. ~3!

M represents a mean over an ensemble
^L j&5^cuL j uc& the quantum expectation of the operatorL j
in the pure stateuc&.

The QSD trajectories are compatible with the mas
equation in the sense that the ensemble average of the
jector uc&^cu reproduces the density operatorr:

r5M ~ uc&^cu!. ~4!
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Thus, expectations values^A&r5 Tr(rA) of an operatorA
can be computed as the ensemble mean of the quantum
pectations valueŝA&c of the pure stateuc&.

III. ANHARMONIC OSCILLATOR

We consider a driven anharmonic oscillator coupled to
thermal bath@3,17–19#, the temperature of which is set t
zero (T50) as the prototype model showing bistability
the classical domain. The damping of this oscillator with ra
k is described by the Lindblad operatorL5Aka. The
Hamiltonian in a frame rotating with the frequencyv of the
driving field reads

H5\Dva†a1\b~a†1a!1\x~a†a!2, ~5!

where a5(mv0/2\)1/2Q1 i (1/2m\v0)
1/2P and a† are the

annihilation and creation operators related to the positionQ
and momentumP of the oscillator (m is the mass of the
particle!. Here the parameterDv5v02v measures the de
tuning between the eigenfrequency of the oscillator and
driving force. The parametersb andx characterize the am
plitude of the driving force the strength of the anharmonici
In the following only positive values ofx will be considered.

This Hamiltonian whose corresponding classical dyna
ics is integrable is well known. It has been used to descr
various physical phenomena such as dispersive optical b
bility @3,20#, driven tunneling@21#, and hysteresis in an
atomic system@4,5# within the framework of the rotating-
wave approximation. In the context of optical bistability, f
example, the QSD equation with Hamiltonian~5! and
L5Aka describes the continuous monitoring of the elect
magnetic field of frequencyv0 by individual photon detec-
tion processes, which involve heterodyning with a classi
intense photon source. Without the adiabatic approxima
~i.e., for a time dependent drivingb) this physical system
has been discussed as a model that exhibits quantum c
@12#. It has also been used to describe more fundame
aspects such as the effect of nonlinearities in master e
tions @17#, non-Markovian approximations@18#, and more
recently in a study of localization processes@22#. An appeal-
ing feature of this system is that exact quantum results e
for the correlation function@3#, the spectrum, and even th
dynamics@19,23# in the absence of driving.

The classical equivalent for this system exhibits hystere
in the steady state@1,2# while the quantum system does no
In the next two sections well-known results regarding t
classical and quantum systems are presented in orde
make this presentation self-consistent.

A. The classical limit

The classical equation of motion can be obtained@3# by
factorizing the quantum correlation functionŝa†a2&
→^a†&^a&2:

da

dt
52 i $b1~Dv1x!a12xa2a* %2

1

2
ka, ~6!

where a is the mean-field amplitudea5^a& in the
~semi!classical limit.
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FIG. 1. Steady-state excitatio
numberuau2 ~classical result: dots!
and ^a†a& ~quantum result: line!
vs the detuningDv. The param-
eters are the dampingk51.5, the
driving b527.0 ~choosingb real
is equivalent to setting the origin
for the phase of̂a&, introducing a
complexb simply produces a ro-
tation in phase space!, and the an-
harmonicityx50.05.
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In the steady-state regime, the excitation numberuau2 can
be obtained by solving the following equation:

uau25
b2

~k/2!21~Dv1x12xuau2!2
. ~7!

Once the excitation numberuau2 is known the real and com
plex parts of the mean amplitudea can be derived using

Re~a!

uau2
5

Dv1x12xuau2

b
,

Im~a!

uau2
52

k

2b
. ~8!

Expression~7! shows that the classical anharmonic oscilla
can display one, two, or three solutions depending on
choice of parameter values~see Fig. 1!.

Provided the following conditions are fulfilled,

x~Dv1x!,0,

U Dv1x

k/2 U.A3, ~9!

F 27xb2

~Dv1x!3
111S 3k/2

Dv1x D 2G2,F123S k/2

Dv1x D 2G3,
then Eq.~7! has three solutions. Outside of this range, o
one solution is expected.

The first condition expresses the fact that the detuning
to be oriented in the right direction in order to combine
effect with that of the anharmonicity. The second shows t
detuning and anharmonicity must be large enough in orde
compensate dissipation, and the third condition gives lim
ing values for the driving strength.

Using the theory of linear stability@3,1#, it can be verified
that when three solutions are present, one of them is alw
unstable. Thus the domain of parameters is divided into
regions, one showing bistability and the other pure
r
e

as

t
to
t-

ys
o

monostable behavior~see Fig. 2!. In short, the classica
model exhibits a bistable steady state when the parame
satisfy the above conditions leading to hysteresis.

B. The quantum limit

Using the complexP representation, Drummond an
Walls @3# have solved the master equation for the dens
operator. They obtained an analytical expression for the m
ments^a†nam&r in the steady state. Notice that in this se
tion, ^ &r represents the ensemble mean of the quant
mechanical expectation values. Their result reads

^a†nam&r5S z2D ~n1m!/2

3
G~c!G~c* !

G~c1m!G~c*1n!

F~c1m,c*1n,z!

F~c,c* ,z!
,

~10!

whereG is the gamma function andF[0F2 the generalized
Gauss hypergeometric series@24#:

0F2~c,d,z!5 (
n50

`
zn

n!

G~c!G~d!

G~c1n!G~d1n!
. ~11!

The coefficientsc andz depend on the physical paramete
in the following way: c5(Dv1x)/x2 ik/(2x) and
z52(b/x)2.

The mean excitation number is of particular interest he
it is given by

^a†a&r5
b2

~Dv1x!21~k/2!2
F~c11,c*11,z!

F~c,c* ,z!
. ~12!
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FIG. 2. Representation of the
domain of hysteresis. The thre
conditions given by Eq.~9! in the
text describe the border of this do
main. Inside the bounded regio
the system possesses three so
tions, two stable and one unstabl
this is the bistable domain. Out
side, the system has only one s
lution, always stable. Notice tha
the bistable region is entirely de
fined by only two parameters
x5k/2/(Dv1x) and y5(k/2)3/
b2x.
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Using the properties of the hypergeometric series0F2 one
can show that the quantum result is never bistable and
does not show any hysteresis~Fig. 1!.

IV. QSD FOR THE ANHARMONIC OSCILLATOR

In this section, the problem is tackled using the quantu
state diffusion model. According to QSD, the equation
motion for the mean-field amplitudêa& is

d^a&52 i @~Dv1x!^a&1b12x^a†a2&#dt2
k

2
^a&dt

1Ak~^a2&2^a&2!dj1Ak~^a†a&2^a†&^a&!dj* .

~13!

In this equation, the expectation values are taken in the p
state uc& describing the evolution along a quantum traje
tory. If one wants to describe the evolution of the mean va
~over an ensemble!, one can take the mean on both sides
Eq. ~13! to obtain

d^a&r

dt
52 i @~Dv1x!^a&r1b12x^a†a2&r#2

k

2
^a&r .

~14!

One can check easily that factorizing the quantum corr
tions in both of the two preceding equations leads to
classical equation of motion~6!. Thus, neglecting the quan
tum correlations corresponds to ignoring overlapping effe
of the wave packet and quantum fluctuations.

A. Simulation of the dissipative dynamics

The parameters are chosen in the bistable domain.
dynamical evolution of the QSD equation~13! is computed
numerically using the moving basis or mixed representa
us
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e
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n

simulation method~MQSD! @14#. The evolution is computed
over a period of time of the order of 1/k, the dissipative time.
In this situation, the system evolves toward a different ‘‘s
tionary’’ state depending on the chosen initial state. T
QSD evolution shows two different limit points where all th
trajectories tend to go after some transient dissipative ti
These two points are called equilibrium points.

When the trajectory starts far away from the two equil
rium points, it approaches one of them, depending in wh
basin of attraction it starts in, rotating with a frequency giv
by the detuningDv. If the wave packet is initially spread
out, it tends to localize@15# to a coherent state during th
dissipative transient. Here the state is said to be localize
its spread is much smaller than the distance between the
equilibrium points. Thus the quantum fluctuations have l
and less effect.

After transient damped motion towards one of the eq
librium points, the wave packet remains localized. Th
strong localization property allows one to describe the qu
tum system in a quasiclassical way.

As a consequence of the anharmonicity, the system d
not, however, preserve the coherent states to which i
driven by the dissipative terms. Hence, the quantum corr
tions never vanish, and the quantum fluctuations act on
wave packet whose center will fluctuate around its equi
rium point. The dynamics are now dominated by quant
fluctuations.

These fluctuations have a mean frequency and an am
tude that depends on the position of the equilibrium point
phase space. The fluctuations are bigger for the equilibr
point situated further away from the origin. This is an effe
due to dissipation, represented byL5Aka, which produces a
dynamical behavior such as^ȧ&.2k^a&, clearly attracting
the system towards the origin̂a&50 and not to some loca
minima.
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FIG. 3. Evolution of a quan-
tum trajectory in phase space. Th
parameters arek51.5, b527.0,
x50.05, and the detuning
Dv525.0. The initial state is
chosen to be a coherent state ce
tered at (̂Q&57,̂ P&514). The
first stage of the evolution is the
decay towards a local minimum
in a time of the order of 1/k. Then
the system fluctuates around th
equilibrium point for an amount of
time given, in mean, by the transi
tion time. Finally, a big enough
fluctuation occurs to project the
system into the other basin of a
traction where the system remain
for a very long time.
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At this point the QSD trajectories can be roughly seen
classical trajectories subjected to noise. There are two
tinct equilibrium points leading to bistable behavior simil
to the classical one.

B. Recovery of the quantum result

We know that the mean over an ensemble of QSD tra
tories reproduces the quantum result, but if individual Q
trajectories show bistability, how can the quantum result
recovered? The answer is that the evolution described ab
is stable over a very long time compared to the dissipa
time, but if one integrates over a longer time, one sees
any trajectory goes from the neighborhood of one equi
rium point to the other. This transition happens in a me
time called thetransition timeor exit time, which can be
much longer than the dissipative time.

In order to observe the transition between the two eq
librium points, the parameters are chosen such that the m
mal excitation number is set at an intermediate value
tween the classical and quantum limits. Also, the integrat
is now carried over a long time, typically 102 to 104 times
the dissipative time. The system is initially set in a coher
state centered far away from the two fixed points a
evolved in time with QSD. Figure 3 represents a trajectory
phase space that shows the dissipative part of the trajec
followed by a long period of fluctuations around the attra
ing equilibrium point. This first part of the time evolution o
the trajectory, i.e., its approach to equilibrium, has been
scribed in Sec. IV A. If the integration is continued, the tr
jectory will suddenly jump to the neighborhood of the oth
equilibrium point.~The ‘‘jump’’ described here is a diffusive
process that allows the quantum trajectory to go from
basin of attraction of one equilibrium point to the other.! The
system will remain around the second equilibrium point d
s
is-
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ing some time and then come back to the first point. The ti
spent around each equilibrium point is such that the quan
expectation valuêa&r is recovered. Due to quantum fluctua
tions induced by the coupling to the reservoir the equilibriu
points become metastable.

This transition, which occurs in a time shorter than t
dissipative time, might be viewed as a tunneling proce
Savage and Cheng@21# have investigated whether bistabilit
can be associated with quantum superpositions of state
either well. They have introduced a distinction between
herent and diffusive mechanisms for quantum tunneling
our simulations, the wave packet initially localized in on
well becomes delocalized when it crosses the barrier, mak
the distinction between these two mechanisms of tunne
artificial ~see Fig. 4!. Once the barrier is crossed, the wa
packet localizes again.

To confirm the previous description, a mean over an
semble is considered. Figure 5 represents the time evolu
of the mean position and mean momentum. The mea
computed over 100 trajectories. The system is initia
placed in a coherent state centered at the classical equ
rium point. This point is unstable with respect to the oth
equilibrium point. The mean position and momentum evol
roughly as an exponential decay, to the quantum station
values given by the exact quantum result. For this typi
example, the quantum result is very close to one of the e
librium points, because the transition time from the initial
the final point is much shorter than in the opposite directi

Hence, the mean result confirms that the initial equil
rium point is unstable compared to the other one as a co
quence of the quantum fluctuations. This relative instabi
explains why the quantum description does not show bi
bility. According to QSD even in the quantum regime, t
system is bistable, but the bistability is hidden by the flu
tuations, which make the wave packet move from a fai
localized state in one well to a localized state in the ot
well.
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V. DISCUSSION

We have used QSD to describe the driven damped an
monic oscillator in an intermediate regime between quan
and classical regimes. It has been shown that states loc
along a quantum trajectory and a transition between the
equilibrium points of the system has been observed. The
calization gives a quantitative justification for the classi
analogy in which a localized particle moves in a double-w
potential. This analogy has often been used on a pu
qualitative level without any further justification. The trans
tion between the two equilibrium points allows one to r
cover the quantum result and reconciles quantum and cla
cal descriptions. It is worth emphasizing the followin
aspects.
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A. Transition time

The QSD model, by introducing quantum fluctuations
an explicit way, shows explicitly how classical bistabilit
disappears. Furthermore, it introduces a new time scale,
transition time characteristic of the transition between
two ~classical! equilibrium points. More precisely there ar
two transition times, the transition time from one equilibriu
point to the other and a different time associated with
reverse transition. Because one of these transition times
general much smaller than the other one, the transition c
sidered here starts from the less stable equilibrium po
which is located further away from the origin in phase spa

In a sequence of papers, Vogel and Risken@20# have cal-
culated the transition rates by solving the equations of m
e

-

n

FIG. 4. Representation in time
of ~a! the position^Q& ~full line!
and its varianceDQ2 ~dotted line!
and ~b! the momentum̂ P& ~full
line! and its varianceDP2 ~dotted
line! at the particular instant of the
transition ~approximatively at
t5596.3 in this example!. Same
parameters as Fig. 3. Notice th
delocalization in space of the
wave packet at the transition. Be
fore and after the transition, the
variancesDQ2 andDP2 are small
~compared to the distance betwee
equilibrium points! showing local-
ized states.
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FIG. 5. Evolution in time of
the mean position^Q& ~lower
curve! and momentum̂P& ~upper
curve!. Parameters same as Fig.
The mean is taken over 100 rea
izations. The time scale of the de
cay is much larger than the diss
pative time of 1/k50.67.
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tum
tion for quasidistribution functions using the matr
continued-fraction method. They also obtained analytical
sults for the transition rate in the limit of large excitatio
numbers and low damping.

The rate of decay shown in Fig. 5 is an approximation
the mean transition rate between the two equilibrium poin
The time needed for the decay is clearly much larger than
dissipative time.

Thus QSD not only gives a qualitative description but c
also be used easily to obtain numerical estimates of the
evant transition times. We will not address any further
question of the determination of the transition time in th
paper as one can use the accurate results of Vogel
Risken, which confirm the possibility of very large transitio
times compared to the dissipative time.

B. Ideal experiment

Let us consider the following ideal experiment~see@6# for
a practical realization!: In order to see hysteresis a sing
quantum-mechanical anharmonic oscillator is measured
tinuously under conditions in which its classical counterp
would be bistable. Let us assume that the driving freque
v is varied step by step from low to high frequencies a
reversed, spanning twice the classically bistable dom
Once the frequency is modified, the experimenter wait
time, calledthe measurement delay tm , which is assumed to
be much longer than the dissipative time, before doing
further measurement. The excitation number of the oscilla
is measured before changing the frequency of the driv
force again. Thus this type of resonance experiment co
sponds to an adiabatic sweeping of the frequency with
spect to the ‘‘fast’’ dissipative dynamics. Furthermore, let
assume that this continuous measurement is ideal in
sense that the excitation number of the harmonic oscilla
can be measured nondestructively and that it does not pe
the system’s transition rates; i.e., it is a nondemolition m
-
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surement. Such a measurement can be performed, for
ample, in an optically bistable system by monitoring the st
of the field mode by heterodyning with an intense classi
photon source. Alternatively, this measurement can also
realized by observing the relativistic motion of a resonan
driven electron in a Penning trap, as in the recently p
formed experiment of Ref.@6#.

According to QSD such a measurement should reprod
the curve depicted in Fig. 6 showing hysteresis. The exp
menter should obtain such a curve fluctuating around on
the two classical steady-state values for a while and t
jumping to the other value. The combination of the tw
jumps occurring when the driving frequency is ramped fro
low to high frequencies and reversed allows one to define
detuning widthDV as the size of the bistable region. Figu
6 represents such a result and shows the detuning w
DV for this particular realization. The detuning width is di
ferent for each realization of this experiment, the transit
being a stochastic event.

An experiment carried out in the classical limit does n
show any fluctuations and the two jumps occur always at
same detuning value. In this case the detuning widthDV
corresponds to the full size of the bistable region.

If one uses the density matrix to describe such an id
experiment, the result will also show two distinct transition
The mean detuning width depends not only on the charac
istic physical parameters of the driven damped anharmo
oscillator but also on the measurement delaytm . If the mean
transition timet is much larger than the dissipative time, i.e
t@1/k, one can distinguish between the two limiting cas
~1! If the measurement delay is small relative to the tran
tion time, i.e.,t@tm , then the mean detuning widthDV has
a finite value, showing bistability.~2! At the opposite ex-
treme, i.e., fortm@t, the detuning width is equal to zero
showing no hysteresis at all, in agreement with the quan
steady-state result.
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FIG. 6. Simulation of an ideal
~single! experiment according to
the QSD model. Parameters a
the same as in Fig. 1. The detun
ing step is 0.1 and the measure
ment time istm550. The dotted
line represents the classica
steady-state excitation number.
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C. Bistability and the classical limit

The classical limit is valid for high excitation number. I
this limit the mean transition time is so large and the tran
tion between the two equilibrium points so infrequent th
they can be neglected. In this limit any finite observatio
time satisfies the conditions for the experimental observa
of hysteresis.

When the excitation number decreases sufficiently for
mean transition time to take a very large but access
value, one has to distinguish between the cases where
measurement delay is smaller or larger than the transi
time. The classical description is still valid in the former ca
but does not apply anymore in the latter. The fluctuatio
have to be taken into account for a correct description of
situation.

If we continue lowering the excitation number, still kee
ing the mean transition time large compared to the diss
tive relaxation time, then the classical theory no longer gi
a good description of the dynamics since even for a meas
ment delay much smaller than the transition time it predic
fixed detuning width. If one uses quantum theory, wh
includes the fluctuations, one will be able to obtain the c
rect behavior.

Finally when the excitation number is small, the classi
theory is no longer valid. One has to use the quantum the
and specify the measurement delay in order to describe
rectly the result of an experiment. The bistability is not d
stroyed in any of these cases but it is simply hidden by
quantum fluctuations.

This situation is very similar to that of a classical drive
anharmonic oscillator coupled with a thermal bath with no
zero temperature. Introducing thermal fluctuations also hi
the bistability of the steady state and introduces a class
transition time~see@25#!. In order to observe bistability, on
has to introduce a measurement delay much larger than
relaxation time in the absence of thermal fluctuations,
i-
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shorter than the mean transition time. The thermal fluctua
can be neglected only when the transitions take place
time much larger than the observational time.

In all the previous situations the quantum theory appli
Because the density matrix automatically includes the m
over an ensemble, there is no clear distinction between
dissipative dynamics and the dynamics induced by the fl
tuations. QSD, by unraveling the different quantum trajec
ries, helps one to understand the role played by the statis
mean.

VI. SUMMARY

We have shown that QSD leads to quantum trajecto
that exhibit bistability for the driven damped anharmon
oscillator and that the quantum steady-state result is rec
ered through random switching between the two equilibri
points due to quantum fluctuations. The fluctuations also
troduce a characteristic time scale: the mean transition ti

We have also shown that it is still possible to obser
bistability dynamically in this quantum system by introdu
ing a measurement delaytm . An experiment will show hys-
teresis only if the transition time between the~classical!
equilibrium points,t, is much larger than all other relaxatio
times involved~approximately 1/k). If the transition time is
not that large, it is not possible to observe any hystere
effects and the quantum steady-state solution is expec
Furthermore, provided the transition time is much larger th
the other times, hysteresis can be seen only if a measure
delay is such thattm!t. Thus, within this interpretation the
classical result is valid only if the quantum fluctuations a
so small that they induce a transition time very large co
pared to the period of observation.

Our results confirm the statistical description given
Drummond and Walls. The results of Bortman and Ron ha
to be examined more carefully. Strictly speaking, even
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low excitation number, the bistability is not destroyed, it
just hidden by the quantum fluctuations. But one cannot
glect the effect of the fluctuations upon the two stable sta
since it is exactly these fluctuations that prevent an exp
mental observation of hysteresis in the steady state.

Finally, if QSD is used to describe the dynamical beha
ior of a single quantum system our investigations might be
particular relevance for experiments on optical bistability
for the recently performed experiments of Tseng and Ga
else@6# in which hysteresis was observed.
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