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Abstract

Given two integrally equivalent integral quadratic forms in at least three variables and
with cube-free determinant, we establish an upper bound on the smallest unimodular matrix
transforming one of the forms into the other. This bound is polynomial in the height of the
two forms involved, confirming a conjecture of Masser for the class of forms considered.

1. Introduction

Let Q1, Q2 ∈ Z[X1, . . . , Xs] be classically integral non-singular quadratic forms. By this
we mean that Q1 and Q2 are of the form

Q1(X1, . . . , Xs) =
∑

1�i, j�s

ai j Xi X j , Q2(X1, . . . , Xs) =
∑

1�i, j�s

bi j Xi X j (1)

for suitable integral symmetric s × s-matrices A = (ai j ) and B = (bi j ) with det A � 0,
det B � 0. We call Q1 and Q2 integrally equivalent, if there is a unimodular linear trans-
formation R : Zs → Zs with Q2(X1, . . . , Xs) = Q1(R(X1, . . . , Xs)). Here unimodular
means having determinant 1 or −1. Clearly this defines an equivalence relation on the set of
classically integral quadratic forms. Using the matrix notation from (1·1) and writing A[B]
for BT AB with BT denoting the transpose of B, this can also be expressed in the following
form: Q1 and Q2 are integrally equivalent if and only if there is a unimodular integral s × s-
matrix R with B = A[R]. So we can also speak of integrally equivalent symmetric matrices
A, B ∈ Zs×s , where Zs×s denotes the ring of integral s × s-matrices (and we use the same
notation when Z is replaced by another ring). Unfortunately, this definition of equivalence
at first sight is not effective: how can we decide if there is a unimodular R ∈ Zs×s with
B = A[R]? The theory of spinor genera ([1, chapter 11]) for indefinite forms in principle
gives an effective method for deciding if or not such R exists, whereas for definite forms it
is easy to give a bound on such R which reduces deciding equivalence to a finite number
of tests. Here we are concerned with such an explicit version of this problem: write ||A||
for the maximum norm of a s × s-matrix A, so ‖A‖ = max1�i, j�s |ai j | (and analogously
for vectors), and let H = max{‖A‖, ‖B‖}. Then Siegel [8] established a search bound for
equivalence of two symmetric A, B ∈ Zs×s of the following kind: if there is a unimodular
R ∈ Zs×s with B = A[R], then there is one with ‖R‖ � �s(H) for a function �s(H) (the
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search bound) depending only on s and H . Clearly this allows one to decide whether A and
B are integrally equivalent or not by testing a finite number of possible R’s. Furthermore, if
such R exists this algorithm also allows one to get hold of it (for another approach to decide
solvability of quadratic Diophantine equations see [3]). However, Siegel’s bound when made
explicit turns out to be very large: in [9, Hauptsatz 5·4] it was shown that Siegel’s method
gives

�s(H) = exp
(

C1(s)|det A| s3+s2

2

)
H

s3−s2

2

for a constant C1(s) depending only on s. So for fixed s this bound grows exponentially in
H since generally | det A| is of order of magnitude H s . For binary forms this is not too far
from the truth as shown by the following result.

THEOREM 1. There are positive constants C2 and C3 such that there are infinitely many
non-singular symmetric A, B ∈ Z2×2 with the following property: there is a unimodular
R ∈ Z2×2 with B = A[R], but there is no such R with

‖R‖ < C2 2C3(‖A‖+‖B‖)1/2
.

This result is closely connected to the exponential growth of fundamental solutions of Pell’s
equation and for this reason might not be too surprising. In the ternary case the situation
changes completely. In the author’s recent work on small solutions of quadratic Diophantine
equations ([2, theorem 4]) the following bound for ternary quadratic forms was established.

THEOREM 2. Let A, B ∈ Z3×3 be symmetric and non-singular, and suppose that there is
a unimodular R ∈ Z3×3 with B = A[R]. Then there is such R with

‖R‖ � ε| det A|162+ε(‖A‖ + ‖B‖)231+ε .

So in the ternary case a bound holds that is polynomial in H = max{‖A‖, ‖B‖}. Masser ([6,
conjecture on page 252]) conjectured that for all s � 3 a polynomial bound in H is possible.
Polynomial search bounds for quadratic Diophantine equations which have been established
by different means for s � 4 ([2, 5]) would then easily follow via reduction theory, so in
some sense the equivalence problem for quadratic forms seems to be the most fundamental
one in this context. Unfortunately, the method applied to prove Theorem 2 made use of some
specific properties of ternary quadratic forms and cannot readily be generalized to higher
dimensions. By appealing to a different method we can inductively extend Theorem 2 to
forms in more variables satisfying an extra condition on their determinant. So for a large
class of quadratic forms we are able to confirm Masser’s conjecture.

THEOREM 3. Let A, B ∈ Zs×s be symmetric and non-singular, where s � 4, and suppose
that det A is cube-free, not divisible by four and that not all coefficients on the diagonal of A
are even. Furthermore, suppose that there is a unimodular R ∈ Zs×s with B = A[R]. Then
there is such R with

‖R‖ �

⎧⎪⎨
⎪⎩

C4 H 9900| det A|27200 when s = 4

C5 H 500000| det A|1540000 when s = 5

C6(s)H (4(s+5))s | det A|(5(s+9))s
when s � 6.

The constants C4, C5, and C6 are effectively computable.
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2. A lower bound for binary forms

In this section we will give a short proof of Theorem 1. Let H be sufficiently large.
Then it follows from the proof of theorem 2 in [4] that there are non-zero integers a, b with
|a|, |b| � H such that every integer solution (x, y) of the binary quadratic equation

ax2 + by2 = −1 (2·1)

has |x | + |y| � 2H/5, and there is at least one solution. Now let (x0, y0) be any integer
solution of (2·1). Clearly x0 and y0 are coprime. Write

A =
(

a 0
0 b

)
.

By the arguments leading to [2, lemma 24] it is easily proved that there is a unimodular
R ∈ Z2×2 with first column (x0, y0)

T and ‖A[R]‖ � | det A| � H 2. Note that B : = A[R]
has b11 = −1 by construction of R. Now let R′ be any unimodular integral 2×2-matrix with
B = A[R′]. Then the first column (x, y)T of R′ gives a solution of (2·1). However, (2·1) has
no integer solution (x, y) with |x | + |y| < 2H/5. Therefore,

||R′|| � C2(|x | + |y|) � C2 2H/5 � C2 2C3(||A||+||B||)1/2
(2·2)

for suitable positive constants C2 and C3. Hence there are infinitely many A, B ∈ Z2×2

which are integrally equivalent, but every unimodular R′ ∈ Z2×2 with B = A[R′] satisfies
(2·2). This completes the proof of Theorem 1.

3. Preliminary lemmata

Before proving Theorem 3 we first have to collect some auxiliary results on quadratic
forms. Our first lemma yields a bound on the smallest integer solution of a quadratic Dio-
phantine equation, provided there is an integer solution at all.

LEMMA 1. Let A ∈ Zs×s be symmetric and non-singular, where s � 4. Furthermore, let
ξ ∈ Zs , and let κ ∈ Z\{0} and η ∈ N. Then if there is any solution x ∈ Zs to the equation

A[x] = κ; x ≡ ξ (mod η),

then there is one with

‖x‖ �

⎧⎪⎨
⎪⎩

|κ|1+εη11+ε‖A‖10+ε| det A|12+ε for s = 4

η(3s−2)/(s−4)+ε‖A‖(s2−3s+2)/(s−4)+ε | det A|(3s+1)/(s−4)+ε

× max{|κ|1/2, η} for s � 5.

Proof. This follows from [2, proposition 1] on using the estimate � � ηs−1.

Our next result gives an effective description of the method of ‘completing the square’ for
writing a quadratic form as the sum of a square and a quadratic form in one variable less.

LEMMA 2. Let A ∈ Zs×s be of the form

A =
(

n cT

c C

)

with n ∈ {−1, 1}, c ∈ Zs−1 and symmetric C ∈ Z(s−1)×(s−1), and let I ∈ Z(s−1)×(s−1) be the
identity matrix. Then

R =
(

1 −n−1c
0 I

)
(3·1)
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is unimodular such that A[R] is of the form

A[R] =
(

n 0T

0 D

)

for some symmetric D ∈ Z(s−1)×(s−1) with ‖D‖ � ‖C‖ + ‖c‖2.

Proof. We have

A[X] = n(X1 + n−1(c1 X2 + · · · + cs−1 Xs))
2 + D[X2, . . . , Xs]

for a suitable symmetric D ∈ Z(s−1)×(s−1) with ‖D‖ � ‖C‖ + ‖c‖2. Hence by using the
unimodular transformation Y = T X where

T =
(

1 n−1c
0 I

)

we conclude that A[T −1Y] = nY 2
1 + D[Y2, . . . , Ys]. Since T −1 = R with R given by (3·1),

we immediately obtain the conclusion of the lemma.

4. Local conditions

In this section we collect conditions on a quadratic form Q ∈ Z[X1, . . . , Xs] making sure
that Q represents 1 and −1 over Z. When p is a rational prime we write Zp for the ring of
p-adic integers. As is well known (see [1, theorem 1·5 in chapter 9]), a sufficient condition
for Q to represent an integer n over Z is that s � 4, that Q is non-singular and indefinite and
that Q represents n over Zp for all primes p. So our aim is to find conditions on Q forcing
Q to represent 1 and −1 over Zp. As usual in the quadratic forms business, the case p � 2
is much easier.

LEMMA 3. Let p be an odd prime, let s � 4, and let Q ∈ Z[X1, . . . , Xs] be a quadratic
form with p3 � | det Q. Then Q represents both 1 and −1 over Zp.

Proof. Quadratic forms over Zp can be diagonalized (see [1, theorem 3·1, chapter 8]),
so we may assume that Q is of the form Q(X1, . . . , Xs) = a1 X 2

1 + · · · + as X 2
s for suitable

a1, . . . , as ∈ Zp. Since the diagonalization of Q did not change the property p3 � | det Q we
may by s � 4 without loss of generality suppose that p � |a1a2. Now it is well known (see
for example [7, §92]) that in this case a1 X 2

1 + a2 X 2
2 represents over Zp all p-adic units, in

particular 1 and −1, and the conclusion of the lemma immediately follows by setting the
other variables x3, . . . , xs to zero.

In the case of p = 2 a more complicated condition on the quadratic form is needed. We
write 2 | Q when all the coefficients on the diagonal of a matrix representing Q are even.
This property clearly does not change under unimodular transformations and is equivalent
to Q only representing even numbers. Analogously, we write 2 � | Q if not all coefficients
on the diagonal of Q are even.

LEMMA 4. Let Q ∈ Z[X1, . . . , Xs] be a classically integral quadratic form where s � 4.
Furthermore, suppose that 2 � | Q and that 4 � | det Q. Then Q represents both 1 and −1
over Z2.

Proof. If Q satisfies the hypotheses of the lemma then −Q also does. Hence it suffices to
prove that Q represents 1 over Z2. Though it may be impossible to diagonalize Q over Z2,
there is an ‘almost diagonal’ form Z2-equivalent to Q. To be more precise, by [1, lemma 4·1,
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chapter 8] there is an T ∈ Zs×s
2 with odd determinant such that Q ′ := Q[T ] is a sum of forms

of the types 2a(X 2 + XY + Y 2), 2b XY , and cX 2. Here a and b are positive integers, and c is
of the form c = 2r t with r ∈ Z, r � 0 and t ∈ {1, 3, 5, 7}. Now det Q ′ ≡ det Q · (det T )2 ≡
det Q (mod 8), so 4 � | det Q ′. Moreover, 2 � | Q ′ since 2 � | Q. Hence Q ′ must belong to
one of the following types of forms:

Q1(X1, . . . , Xs) = aX 2
1 + bX 2

2 + cX 2
3 + d X 2

4 + Q ′
1(X5, . . . , Xs),

Q2(X1, . . . , Xs) = aX 2
1 + d X 2

2 + 2
(
X 2

3 + X3 X4 + X 2
4

) + Q ′
2(X5, . . . , Xs),

Q3(X1, . . . , Xs) = aX 2
1 + 2X2 X3 + Q ′

3(X4, . . . , Xs),

Q4(X1, . . . , Xs) = aX 2
1 + 2

(
X 2

2 + X2 X3 + X 2
3

) + 2
(
X 2

4 + X4 X5 + X 2
5

)
+ Q ′

4(X6, . . . , Xs),

where a, b, c ∈ {1, 3, 5, 7}, d ∈ {1, 2, 3, 5, 6, 7} and Q ′
1, Q ′

2, Q ′
3, and Q ′

4 are suitable
quadratic forms. Note that we can skip the possibilities d = 10 or d = 14 because in the
following we are working modulo 8. We will now show that in each possible case Qi and
therefore Q = Qi [T −1] represents 1 over Z2. To this end, by Hensel’s lemma it suffices to
show that the congruence

Qi(x1, . . . , xs) ≡ 1 (mod 8) (4·1)

has a solution with 4 � | ∇Qi (x1, . . . , xs).

Case I. Q ′ = Q1: First suppose that one of a, b, c, d is 1, say a = 1. Then x1 = 1,
x2 = · · · = xs = 0 does the job. Next suppose that one of a, b, c, d is 5, say a = 5. Then
a + 4b ≡ 1 (mod 8) since b is odd, so we may take x1 = 1, x2 = 2, and x3 = · · · = xs = 0.
So we may assume that a, b, c ∈ {3, 7} and that d ∈ {2, 3, 6, 7}. If three of the numbers
a, b, c, d are 3, say a = b = c = 3, then we set x1 = x2 = x3 = 1, x4 = · · · = xs = 0. If one
of the numbers a, b, c, d is 3 and two are 7, say a = 3 and b = c = 7, then again we may take
x1 = x2 = x3 = 1 and x4 = · · · = xs = 0. When two of the three numbers a, b, c are 3, one
is 7, say a = b = 3, c = 7, and d is 2, then (x1, . . . , xs) = (0, 0, 1, 1, 0, . . . , 0) is a solution
of (4·1) with 4 � | ∇Q4(x1, . . . , xs). If two of the three numbers a, b, c are 3, one is 7, say
a = b = 3, c = 7, and d is 6, then we may take (x1, . . . , xs) = (1, 0, 0, 1, 0, . . . , 0).
For a = b = c = 7 and d = 2 we set x1 = x4 = 1, x2 = x3 = x5 = · · · = xs = 0, and
for a = b = c = 7 and d = 6 we take x1 = x4 = 1, x2 = 2, x3 = x5 = · · · = xs = 0. Fi-
nally, if a = b = c = d = 7, which is the last remaining possibility, then we set x1 = 2,
x2 = x3 = x4 = 1 and x5 = · · · = xs = 0.

Case II. Q ′ = Q2: Since the forms aX 2
1 + 2(X 2

3 + X3 X4 + X 2
4) and a(3X 2

1 − X 2
3 − X 2

4) are
Z2-equivalent (see [1, page 118, formula (4·8)]), we are immediately reduced to Case I.

Case III. Q ′ = Q3: Here x1 = x2 = 1, x3 = 5 − (a + 1)/2, x4 = · · · = xs = 0 is a solu-
tion of (4·1).

Case IV. Q ′ = Q4: Since the forms 2(X 2
2 + X2 X3 + X 2

3) + 2(X 2
4 + X4 X5 + X 2

5) and
2X2 X3 + 2X4 X5 are Z2-equivalent (see [1, page 118, formula (4·9)]), this case immediately
reduces to Case III.
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The following lemma will prove useful when ‘completing the square’ in order to
obtain a form in one variable less still not having only even coefficients on the diagonal.

LEMMA 5. Let Q ∈ Z[X1, . . . , Xs] be a classically integral quadratic form with s � 5,
2 � | Q and 4 � | det Q. Let n ∈ {−1, 1}. Then there is an T ∈ Zs×s

2 with 2 � | det T such that
Q[T ] is of the form

Q[T ] =
(

n 0
0 R

)

where R ∈ Z(s−1)×(s−1)

2 has 2 � | R.

Proof. Our aim is to find a quadratic form Q ′ which is Z2-equivalent to Q and which is
of the form

Q ′(X1, . . . , Xs) = nX 2
1 + R(X2, . . . , Xs) (4·2)

where 2 � | R. We first show that such Q ′ (possibly with 2 | R) exists: Since Q represents n
over Z2 by Lemma 4, we may find a form Q ′ which is Z2-equivalent to Q and which is of
the form

Q ′(X1, . . . , Xs) = nX 2
1 + 2X1 L(X2, . . . , Xs) + M(X2, . . . , Xs)

where L is a linear and M is a quadratic form. By completing the square (compare Lemma 2)
we then arrive at the shape (4·2). Note that 4 � | det Q implies that 4 � | det Q ′. If 2 � | R,
then we are done so let us suppose that 2 | R. Then by using [1, lemma 4·1, chapter 8] and
replacing R by an Z2-equivalent form if necessary we may assume that R is a sum of forms
of the type 2X 2, 6X 2, 10X 2, 14X 2, 2a(X 2 + XY +Y 2), and 2b XY where a, b ∈ {1, 2, 3, . . .}.
Clearly all a and all b are 1 because of 4 � | det Q ′. Moreover, for the same reason at most
one form of type 2X 2, 6X 2, 10X 2, or 14X 2 is possible. Since s � 5 and by [1, page 118,
formula (4·9)], the forms

(2X 2 + 2XY + 2Y 2) + (2Z 2 + 2Z W + 2W 2)

and

2XY + 2Z W

are Z2-equivalent, we may assume that R is of the form

R(X2, . . . , Xs) = 2X2 X3 + R′(X4, . . . , Xs)

for a suitable quadratic form R′ ∈ Z2[X4, . . . , Xs]. Now by [1, p. 118, formula (4·7)], the
forms

nX 2
1 + 2X2 X3

and

nX 2
1 + X 2

2 − X 2
3

are Z2-equivalent. So finally we arrive at a form Q ′ being Z2-equivalent to Q and of the
shape (4·2) with 2 � | R.

By injecting Lemma 3 and Lemma 4 in [1, theorem 1·5, chapter 9] we obtain the
following result, which is crucial for our investigation.
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LEMMA 6. Let Q ∈ Z[X1, . . . , Xs] be an indefinite classically integral quadratic form
where s � 4, and let n ∈ {−1, 1}. Suppose further that det Q is cubefree, not divisible
by four, and that 2 � | Q. Then there is an x ∈ Zs with Q[x] = n. Moreover, the following
approximation property holds true: if y ∈ Zs

2 is any solution of Q[y] = n, then there is x ∈ Zs

with Q[x] = n and x ≡ y (mod 2).

5. Genera of indefinite quadratic forms

Let Q1, Q2 ∈ Z[X1, . . . , Xs] be two non-singular classically integral quadratic forms
given by (1·1). Then Q1 and Q2 are in the same genus if and only if they are real-equivalent
and Zp-equivalent for every rational prime p. Fortunately, this infinite collection of condi-
tions can be captured by one congruence condition as shown by the following lemma.

LEMMA 7. Let Q1, Q2 ∈ Z[X1, . . . , Xs] be two classically integral quadratic forms
given by (1·1). Suppose that Q1 and Q2 are real-equivalent, that Q1 and Q2 have the same
determinant �� 0, and that

A ≡ B (mod 4|�|).
Then Q1 and Q2 are in the same genus.

Proof. This is [1, lemma 4·3, chapter 9].

Unfortunately, there is generally no local-global principle for integral equivalence of
quadratic forms: two forms Q1, Q2 may be in the same genus, thus locally equivalent every-
where, but not integrally equivalent. However, under some extra conditions a local-global
principle holds.

LEMMA 8. Let Q1 ∈ Z[X1, . . . , Xs] be an indefinite classically integral quadratic form
where s � 3. Furthermore, suppose that det Q1 is cubefree and not divisible by four. Then
every classically integral quadratic form Q2 ∈ Z[X1, . . . , Xs] in the same genus than Q1 is
integrally equivalent to Q1.

Proof. This follows from [1, theorem 1·5, chapter 11].

Note that we again meet the restriction to cubefree determinant in a key lemma. The
other constraint to indefinite forms is unimportant for our application, because search
bounds in the definite case are easily established by elementary methods.

6. Local-global for unimodular matrices

As a further ‘local-global tool’ we need an approximation result for unimodular matrices.
We start with some preparation.

LEMMA 9. Let s � 2, let η ∈ N, and let x ∈ Zs be a vector such that p does not divide
all xi (1 � i � s) for all primes p dividing η. Then there is a primitive vector r ∈ Zs with
r ≡ x (mod η) and ‖r‖ � η2.

Proof. Clearly without loss of generality we may assume that ‖x‖�η. Let
ri = xi (2 � i � s). It is our aim to choose r1 in such a way that r1 ≡ x1 (mod η) and
r1 � η2. Let d be the greatest common divisor of r2, . . . , rs . Then d � max2�i�s |ri | � η.
It is possible to choose a ∈ N such that x1 + aη is coprime to d: let p be a prime divisor
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of d. If p | x1, then by hypothesis p � | η, so x1 + aη is not for all a ∈ N divisible by p. If
p � | x1, then again x1 + aη cannot always be divisible by p. So by the Chinese remainder
theorem, there is an a ∈ N such that x1 + aη is coprime to d, and clearly there is such a
with a � d � η. Then setting r1 = x1 + aη we conclude that r is primitive, r ≡ x (mod η),
and ‖r‖ � η2.

We are now ready to state and prove the main result of this section.

LEMMA 10. Let η be a positive integer, and let R ∈ Zs×s have

| det R| ≡ 1 (mod η). (6·1)

Moreover, let y1 be the first column of R and let r ∈ Zs be a primitive vector with

r ≡ y1 (mod η). (6·2)

Then there is a unimodular R′ ∈ Zs×s with R′ ≡ R (mod η), first column r and

||R′|| � ||r||η2(s−1). (6·3)

Proof. We will prove the lemma by induction on s. The base case s = 1 of the induction
is trivial, so let us assume that s � 2 and that the lemma has already been proved for s − 1.
By Lemma 1 in [5] there is an unimodular T ∈ Zs×s with first column r and

||T || � ||r||. (6·4)

However, T need not satisfy the imposed congruence condition T ≡ R (mod η), so we
use column operations on T to achieve this. Write T = (r x2 · · · xs) for column vectors xi ∈
Zs (2 � i � s). Since T is unimodular, there are integers ai j (2 � i � s, 1 � j � s) such
that

M :=
(

r, a21r +
s∑

i=2

a2i xi , . . . , as1r +
s∑

i=2

asi xi

)
≡ R (mod η). (6·5)

Clearly, we may suppose that

|ai j | � η (2 � i � s, 1 � j � s). (6·6)

Moreover,

det M = d det(r x2 . . . xs) = d det T (6·7)

where

d =

∣∣∣∣∣∣∣
a22 . . . a2s
...

...

as2 . . . ass

∣∣∣∣∣∣∣ .
Now | det T | = 1 because T is unimodular. Hence (6·1), (6·5) and (6·7) yield |d| ≡ 1
(mod η). In particular, the vector (a22 · · · as2)

T satisfies the hypothesis of Lemma 9. Thus
there is a primitive p ∈ Zs−1 with p ≡ (a22 · · · as2)

T (mod η) and ||p|| � η2. Using the
induction hypothesis for s − 1, we find an unimodular matrix U ∈ Z(s−1)×(s−1) with

U =
⎛
⎜⎝

u22 . . . u2s
...

...

us2 . . . uss

⎞
⎟⎠ ≡

⎛
⎜⎝

a22 . . . a2s
...

...

as2 . . . ass

⎞
⎟⎠ (mod η) (6·8)



Equivalence of quadratic forms 529

and

||U || � η2 η2(s−2) = η2(s−1). (6·9)

Let

R′ :=
(

r, a21r +
s∑

i=2

u2i xi , . . . , as1r +
s∑

i=2

usi xi

)
. (6·10)

Then like in (6·7), det R′ = det U det T , so R′ again is unimodular. Moreover, R′ ≡ R
(mod η) by (6·2), (6·5), (6·8) and (6·10). Finally, (6·4), (6·6), (6·9) and (6·10) give the
bound (6·3). This finishes the proof of the lemma.

7. Proof of Theorem 3

Our proof of Theorem 3 will be by induction on the number of variables s, Theorem 2
being the induction hypothesis at the beginning. So we shall now assume the theorem
to be proved for s − 1 � 3 in order to prove it for s in place of s − 1. Let R1 ∈ Zs×s

be unimodular with B = A[R1]. If A is definite, then [5, lemma 10] immediately gives
the bound |R1‖�‖A‖(s−1)/2||B||1/2, which is much better than the bound claimed in
Theorem 3, so we may assume that A (and hence B) is indefinite. Write (p, q) for the
signature of A, which is also the signature of B, p counting the number of positive
eigenvalues and q counting the number of negative ones. By assumption, p �1 and
q � 1. We define n to be 1 if p � q and −1 otherwise. Consequently, if one eigenvalue
having the same sign than n is removed, the remaining eigenvalues still belong to an indef-
inite quadratic form. This observation will be important later. We now distinguish two cases.

Case I. s = 4: In this case we note that by Lemma 6 the number n is represented by
A over Z. Thus by Lemma 1 there is a necessarily primitive x ∈ Zs with A[x] = n and

‖x‖ �

{
H 10+ε| det A|12+ε for s = 4

H (s2−3s+2)/(s−4)+ε | det A|(3s+1)/(s−4)+ε for s � 5
(7·1)

where we have put H = ‖A‖ + ‖B‖. We apply [5, lemma 1] to find a unimodular R′
2 ∈ Zs×s

with first row x and ‖R′
2‖ � ‖x‖. We finish our observations in Case I by setting R2 = R′T

2 .

Case II. s � 5: In this case we first note that by Lemma 5 there is a T ∈ Zs×s
2 such

that A[T ] is of the form

A[T ] =
(

n 0T

0 R

)
(7·2)

where 2 � | R. In particular, A[t] = n where t ∈ Zs
2 is the first column of T . Hence by

Lemma 1 and Lemma 6 there is a necessarily primitive x ∈ Zs with A[x] = n, x ≡ t (mod 2)

and satisfying the bound (7·1). Using Lemma 10 we obtain an unimodular R2 ∈ Zs×s with
first column x, bounded above by ||R2|| � ||x|| and satisfying

R2 ≡ T (mod 2). (7·3)

By (7·2) and (7·3) we have

A[R2] ≡
(

n 0T

0 R̃

)
(mod 2) (7·4)
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for a symmetric matrix R̃ ∈ Z(s−1)×(s−1) with 2 � | R̃. This finishes Case II. We resume the
general path of proof by noting that in both cases R2 has first column x and

‖R2‖ � ‖x‖. (7·5)

Let

A′ = A[R2], (7·6)

then

A′ = B
[
R−1

1 R2

]
(7·7)

and a′
11 = n, because A[x] = n and x is the first column of R. Writing y for the first column

of R−1
1 R2, we conclude that B[y] = n. Let

η = 4| det A|. (7·8)

We again apply Lemma 1 to obtain a z ∈ Zs with B[z] = n,

z ≡ y (mod η)

and

‖z‖ �

{
H 10+ε| det A|23+ε for s = 4

H (s2−3s+2)/(s−4)+ε | det A|(7s−5)/(s−4)+ε for s � 5
(7·9)

(note that det B = det A). Since n ∈ {−1, 1}, the vector z must be primitive. Using
Lemma 10 we get a unimodular R3 with first column z,

R3 ≡ R−1
1 R2 (mod η) (7·10)

and

‖R3‖ � ‖z‖η2(s−1). (7·11)

Let

B ′ = B[R3], (7·12)

then b′
11 = n, and by (7·7) and (7·10) we have

B ′ ≡ B
[
R−1

1 R2

] ≡ A′ (mod η). (7·13)

Clearly both A′ and B ′ satisfy the hypothesis of Lemma 2, so by applying this lemma we
find unimodular R4, R5 in Zs×s with

R4 ≡ R5 (mod η), (7·14)

‖R4‖ � ‖A′‖, ‖R5‖ � ‖B ′‖ (7·15)

and

A′′ := A′[R4] =
(

n 0T

0 C

)
, B ′′ := B ′[R5] =

(
n 0T

0 D

)
(7·16)

for some symmetric C, D ∈ Z(s−1)×(s−1) with

‖C‖ � ‖A′‖2, ‖D‖ � ‖B ′‖2. (7·17)

Now | det C | = | det A| and | det D| = | det B|, so both C and D have cubefree determinant
since the same is true for A and B. For the same reason both det C and det D are not divisible



Equivalence of quadratic forms 531

by 4. Moreover, by (3·1), (7·4) and (7·6) we know that 2 � | C for s � 5. Furthermore, by con-
struction of n the symmetric matrices C and D belong to indefinite quadratic forms which
are real-equivalent, and clearly det C = det D. In addition, by (7·13), (7·14) and (7·16) we
obtain A′′ ≡ B ′′ (mod η). In particular, C ≡ D (mod η). Using (7·8) and Lemma 7, we
conclude that C and D are in the same genus of quadratic forms. So all the assumptions
of Lemma 8 are satisfied, and consequently there is a unimodular R6 ∈ Z(s−1)×(s−1) with
C = D[R6]. By applying our induction hypothesis for s − 1 in place of s, we may assume
that R6 is bounded by

‖R6‖ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

| det A|162+ε(‖C‖ + ‖D‖)231+ε when s = 4

| det A|27200(‖C‖ + ‖D‖)9900 when s = 5

| det A|(5(s+8))s−1

×(‖C‖ + ‖D‖)(4(s+4))s−1
when s � 6.

(7·18)

Note that the bound for s = 6 corresponds to the case s = 5 of Theorem 3, which may be
bounded above by setting s = 5 in the case s � 6. Let

R7 =
(

1 0T

0 R6

)
. (7·19)

Then clearly R7 ∈ Zs×s is unimodular with ‖R7‖ = ‖R6‖ and
B ′′[R7] = A′′. (7·20)

Let R8 = R3 R5 R7 R−1
4 R−1

2 . Then by (7·6), (7·12), (7·16) and (7·20) we have B[R8] = A.
Moreover, R8 is unimodular with

‖R8‖ � ‖R3‖ ‖R5‖ ‖R7‖
∥∥R−1

4

∥∥ ∥∥R−1
2

∥∥. (7·21)

We now have to bound the terms on the right-hand side of (7·21). First, by (7·8), (7·9) and
(7·11) we have

‖R3‖ �

⎧⎨
⎩

H 10+ε| det A|29+ε when s = 4
H 12+ε| det A|38+ε when s = 5
H s+4+ε | det A|20+2(s−1) when s � 6.

(7·22)

Next, (7·12), (7·15) and (7·22) give

‖R5‖ � ‖B ′‖ � ‖B‖ ‖R3‖2 �

⎧⎨
⎩

H 21+ε| det A|58+ε when s = 4
H 25+ε| det A|76+ε when s = 5
H 2s+9+ε | det A|40+4(s−1) when s � 6.

(7·23)

Let us now bound ‖R7‖, which gives the main contribution. Using (7·5), (7·6) and (7·17) we
obtain

‖C‖ � ‖A′‖2 � ‖A‖2 ‖R2‖4 � H 2‖x‖4.

Similarly, by (7·11), (7·12) and (7·17) we have

‖D‖ � ‖B ′‖2 � ‖B‖2‖R3‖4 � H 2
(‖z‖η2(s−1)

)4
.

Hence

‖C‖ + ‖D‖ � H 2
(‖x‖ + ‖z‖η2(s−1)

)4

�

⎧⎨
⎩

H 42+ε| det A|116+ε when s = 4
H 50+ε| det A|152+ε when s = 5
H 4(s+5)| det A|8(s+9) when s � 6
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by (7·1), (7·8) and (7·9). Thus (7·18) and (7·19) give

‖R7‖ = ‖R6‖ �

⎧⎪⎪⎨
⎪⎪⎩

| det A|26958+ε H 9702+ε when s = 4
| det A|1532000+ε H 495000+ε when s = 5
H 4s (s+5)(s+4)s−1

×| det A|5s−1(s+8)s−1+2(s+9)4s (s+4)s−1
when s � 6.

(7·24)

Furthermore, by (7·1), (7·5), (7·6), (7·15) and Cramer’s rule∥∥R−1
4

∥∥ � ‖R4‖s−1 � ‖A′‖s−1 � ‖A‖s−1 ‖R2‖2(s−1) (7·25)

� H s−1‖x‖2(s−1)

�

⎧⎨
⎩

H 63+ε| det A|72+ε when s = 4
H 100+ε | det A|128+ε when s = 5
H 2(s−1)(s+5)| det A|20(s−1) when s � 6.

In the same way, Cramer’s rule and (7·5) give

||R−1
2 || � ||R2||s−1 (7·26)

�

⎧⎨
⎩

H 30+ε| det A|36+ε when s = 4
H 48+ε| det A|64+ε when s = 5
H (s−1)(s+4)+ε | det A|10(s−1) when s � 6.

Inserting (7·22)–(7·26) in (7·21), we obtain

‖R8‖ �

⎧⎨
⎩

H 9827| det A|27154 when s = 4
H 500000| det A|1540000 when s = 5
H 4s (s+5)s | det A|5s (s+9)s

when s � 6.

So R8 is unimodular, has B[R8] = A and satisfies the bound claimed in the theorem.
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