Some Aspects of Directed Graphs: Paths and Cycles in Digraphs

PROBLEM SESSION

Yacong Zhou¹
(PhD Student of Prof. Gregory Gutin)
Yacong.Zhou@rhul.ac.uk

¹Department of Computer Science, Royal Holloway University of London, London, UK

2nd School on Graph Theory, 06/10/2022

OUTLINE

1 Hamilton Cycles in Tournaments

- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- 3 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

OUTLINE

1 Hamilton Cycles in Tournaments

- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- 3 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

DEFINITIONS

Definition 1

In a digraph D, a vertex y is **reachable** from a vertex x if D has an (x, y)-path. In particular, a vertex is reachable from itself.

Definition 2

 ${\it D}$ is **strong** if every vertex of ${\it D}$ is reachable from every other vertex of ${\it D}$.

Definition 3

A **tournament** is a digraph where there is exactly one arc between every pair of the vertices.

Definition 4

A **Hamilton cycle** is a cycle that contains all vertices in *D*. A digraph is said to be **Hamiltonian** if it has a Hamilton cycle.

Clearly, Hamiltonian digraphs are neccessarily strong.

VERTEX-PANCYCLICITY OF TOURNAMENTS

Camion proved that, for tournaments, the sufficiency is also true.

THEOREM 5 ([P. CAMION., 1959])

Every strong tournament is hamiltonian.

VERTEX-PANCYCLICITY OF TOURNAMENTS

Camion proved that, for tournaments, the sufficiency is also true.

THEOREM 5 ([P. CAMION., 1959])

Every strong tournament is hamiltonian.

Moon showed the following stronger result is also true.

Definition 6

A digraph D is **vertex-pancyclic** if for every $x \in V(D)$ and every integer $k \in \{3, 4, ..., n\}$, there exists a k-cycle through x in D.

THEOREM 7 ([J.W. Moon, 1966])

Every strong tournament is vertex-pancyclic.

• By induction on the length of the cycle. For any vertex $x \in V(D)$, we first show that there is a triangle through \overline{x} in D.

• Suppose there is a k-1-cycle through x ($k \ge 4$). We show that there is a k cycle through x.

OUTLINE

- 1 Hamilton Cycles in Tournaments
- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- 3 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

Hamilton Cycles in Degree-Constrained Digraphs

The pair $\{x,y\}$ is dominated by a vertex z if $z \to x$ and $z \to y$; in this case we say that the pair $\{x,y\}$ is a **dominated pair**.

HAMILTON CYCLES IN DEGREE-CONSTRAINED DIGRAPHS

The pair $\{x,y\}$ is dominated by a vertex z if $z \to x$ and $z \to y$; in this case we say that the pair $\{x,y\}$ is a **dominated pair**.

Theorem 8 ([J. Bang-Jensen, G. Gutin and H. Li, 1996])

Let D be a strong digraph of order $n \ge 2$. Suppose that, for every dominated pair of non-adjacent vertices $\{x,y\}$, either $d(x) \ge n$ and $d(y) \ge n-1$ or $d(x) \ge n-1$ and $d(y) \ge n$. Then D is hamiltonian.

OUTLINE

• HAMILTON CYCLES IN TOURNAMENTS

- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- 3 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

Definition 9

Let $P=u_1u_2\ldots u_s$ be a path in a digraph D and let $Q=v_1v_2\ldots v_t$ be a path in D-V(P). The path P can be inserted into Q if there is a subscript $i\in [t-1]$ such that $v_i\to u_1$ and $u_s\to v_{i+1}$.

$$u_1 \xrightarrow{\mathbf{v}_{\mathbf{v}}} P$$

$$V_1 \longrightarrow V_t$$

FIGURE: Inserting *P* into *Q*

Definition 9

Let $P=u_1u_2\ldots u_s$ be a path in a digraph D and let $Q=v_1v_2\ldots v_t$ be a path in D-V(P). The path P can be inserted into Q if there is a subscript $i\in[t-1]$ such that $v_i\to u_1$ and $u_s\to v_{i+1}$.

FIGURE: Inserting *P* into *Q*

Definition 10

The path P can be multi-inserted into Q if there are integers $i_1 = 1 < i_2 < \cdots < i_m = s+1$ such that, for every $k = 2, 3, \ldots, m$, the subpath $P[u_{i_{k-1}}, u_{i_k-1}]$ can be inserted into Q. The sequence of subpaths $P[u_{i_{k-1}}, u_{i_k-1}]$, $k = 2, \ldots, m$, is a multi-insertion partition of P.

Definition 10

The path P can be multi-inserted into Q if there are integers $i_1 = 1 < i_2 < \cdots < i_m = s+1$ such that, for every $k = 2, 3, \ldots, m$, the subpath $P[u_{i_{k-1}}, u_{i_k-1}]$ can be inserted into Q. The sequence of subpaths $P[u_{i_{k-1}}, u_{i_k-1}]$, $k = 2, \ldots, m$, is a multi-insertion partition of P.

The following lemma is a simple extension of a lemma by Bang-Jensen, Gutin and Li [J. Bang-Jensen, G. Gutin and H. Li, 1996].

LEMMA 11

Let P be a path in D and let $Q = v_1 v_2 \dots v_t$ be a path in D - V(P). If P can be multi-inserted into Q, then there is a (v_1, v_t) -path R in D so that $V(R) = V(P) \cup V(Q)$. Given a multi-insertion partition of P, the path R can be found in time O(|V(P)||V(Q)|).

A PROOF FOR THE LEMMA

PROOF.

Let $P=u_1u_2\ldots u_s$. Suppose that integers $i_1=1< i_2< \cdots < i_m=s+1$ are such that the subpaths $P[u_{i_{k-1}},u_{i_k-1}],\ k=2,3,\ldots,m$, form a multi-insertion partition with **the minimum** m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.

A PROOF FOR THE LEMMA

PROOF.

Let $P=u_1u_2\ldots u_s$. Suppose that integers $i_1=1< i_2<\cdots< i_m=s+1$ are such that the subpaths $P[u_{i_{k-1}},u_{i_k-1}],\ k=2,3,\ldots,m$, form a multi-insertion partition with **the minimum** m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.

In the beginning, find for each subpath all arcs it can be inserted into taking at most 2(|V(Q)|-1) steps. There are at most |V(P)| subpaths. So this process takes 2|V(P)|(|V(Q)|-1) steps.

A PROOF FOR THE LEMMA

PROOF.

Let $P=u_1u_2\ldots u_s$. Suppose that integers $i_1=1< i_2< \cdots < i_m=s+1$ are such that the subpaths $P[u_{i_{k-1}},u_{i_k-1}],\ k=2,3,\ldots,m$, form a multi-insertion partition with **the minimum** m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.

In the beginning, find for each subpath all arcs it can be inserted into taking at most 2(|V(Q)|-1) steps. There are at most |V(P)| subpaths. So this process takes 2|V(P)|(|V(Q)|-1) steps. Changing the initial partition into a new partition with each subpath inserted into different arcs in Q takes at most 2|V(P)| steps. So, in total, it will take O(|V(P)||V(Q)|) time to construct this (v_1, v_t) path.

USEFUL LEMMA

Lemma 12

Let $Q = v_1 v_2 \dots v_t$ be a path in D, and let $w \in V(D) - V(Q)$. If w cannot be inserted into Q, then $d_Q(w) = |N^+(w) \cap Q| + |N^-(w) \cap Q| \le t + 1.$ If, in addition, v_t does not dominate w, then $d_Q(w) \le t$.

PROOF. a I(a) an indicator I(a) =
$$\begin{pmatrix} 1 & \alpha \in V(D) \\ 0 & \beta \in V(D) \end{pmatrix}$$

 $t-1+2 > \sum_{i=1}^{t-1} (I(v_iw)+I(wv_{i+1})) + I(v_tw) + I(wv_i)$
 $\frac{t+1}{t+1} = d_Q(w) + d_Q(w) = d_Q(w)$

From the proof, we can see that, if we further require $w \not\to v_1$, we have $d_Q(w) \le t - 1$. One can use the modified lemma to prove the fact that every tournament has a Hamilton path [L. Rédei, 1934].

OUTLINE

- 1 HAMILTON CYCLES IN TOURNAMENTS
- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- 3 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

Hamilton Cycles in Degree-Constrained Digraphs

The pair $\{x,y\}$ is dominated by a vertex z if $z \to x$ and $z \to y$; in this case we say that the pair $\{x,y\}$ is a **dominated pair**.

THEOREM 13

([J. Bang-Jensen, G. Gutin and H. Li, 1996])

Let D be a strong digraph of order $n \ge 2$. Suppose that, for every dominated pair of non-adjacent vertices $\{x,y\}$, either $d(x) \ge n$ and $d(y) \ge n-1$ or $d(x) \ge n-1$ and $d(y) \ge n$. Then D is hamiltonian.

• Assume that D is non-hamiltonian and $C = x_1 x_2 \dots x_m x_1$ is a longest cycle in D. We first show that D contains a C-bypass.

• Let $P = u_1 u_2 \dots u_s$ be a C-bypass ($s \ge 3$). Without loss of generality, let $u_1 = x_1$, $u_s = x_{\gamma+1}$, $0 < \gamma < m$. Suppose also that the gap γ of P is minimum among the gaps of all C-bypasses. Since C is a longest cycle of D, $\gamma \ge 2$. Let $P_1 = C[x_2, x_\gamma]$ and $P_2 = C[x_{\gamma+1}, x_1]$.

Let R = D - V(C). Let x_k be an arbitrary vertex in P_1 . We first prove that

$$| \frac{d(x_{k}) + d(u_{2})}{d(x_{k}) + d(u_{2})} | \leq d_{P_{2}}(x_{k}) + 2n - |V(P_{2})| - 3.$$

$$| \frac{d(x_{k}) + d(u_{2})}{d(x_{k}) + d(u_{2})} | \leq d_{P_{2}}(x_{k}) + d$$

Let R = D - V(C). Let x_k be an arbitrary vertex in P_1 . We first prove that

$$d(x_k) + d(u_2) \le d_{P_2}(x_k) + 2n - |V(P_2)| - 3. \tag{1}$$
for any $x_i \in P_1$ such that $x_i \to x_i$. By the assumption we

In particular, **for any** $x_j \in P_1$ **such that** $x_1 \to x_j$. By the assumption we have

$$2n-1 \leq d(x_j)+d(u_2) \leq d_{P_2}(x_j)+2n-|V(P_2)|-3$$

and therefore,

$$d_{P_2}(x_j) \ge |V(P_2)| + 2.$$
 (2)

=) by Domma 12

x; can be inserted in to Pz

• By (2) and Lemma 12, x_2 can be inserted into P_2 .

• By (2) and Lemma 12, x_2 can be inserted into P_2 . Since C is a longest cycle, it follows from Lemma 11 that there exists $\beta \in \{3,\ldots,\gamma\}$ so that the subpath $C[x_2,x_{\beta-1}]$ can be multi-inserted into P_2 , but $C[x_2,x_{\beta}]$ cannot. In particular, x_{β} cannot be inserted into P_2 . Now, We show that

$$d(x_{\beta}) \leq n-2. \qquad \qquad \begin{cases} x_{\beta} \leq x_{\beta} \end{cases} \tag{3}$$

By (1), we have

$$d(x_{\beta}) + d(u_2) \leq d_{P_2}(x_{\beta}) + 2n - |V(P_2)| - 3.$$

Because x_{β} cannot be inserted into P_2 and (2), we have x_{β} does not dominate x_{β} . By Lemma 12 we have $d_{P_2}(x_{\beta}) \leq |V(P_2)|$.

$$d(x_{\beta})+d(u_{\epsilon}) \leq 2n-3.$$

 $d(x_{\beta}) \leq n-2.$

- Let $C[x_{\alpha}, x_{\beta-1}]$ ($\alpha \in \{3, \ldots, \gamma\}$) be the last subpath in P_1 that can be inserted into P_2 . $x_i \to x_{\alpha}$ and $x_{\beta-1} \to x_{i+1}$. Observe that the pair $\{x_{\beta}, x_{i+1}\}$ is dominated by $x_{\beta-1}$. Thus, by (3) and the assumption of the theorem, either $x_{\beta} \to x_{i+1}$ or $x_{i+1} \to x_{\beta}$.
- $x_{i+1} \rightarrow x_{\beta}$.

• $x_1 \rightarrow x_\beta$.

SUFFICENT CONDITIONS FOR CONTAINING A HAMILTON PATH

Definition 14

A **Hamilton path** of *D* is a path in *D* that visits all vertices.

PROPOSITION

A digraph D has a Hamilton path if and only if the digraph D^* , obtained from D by adding a new vertex x^* such that x^* dominates every vertex of D and is dominated by every vertex of D, is hamiltonian.

SUFFICENT CONDITIONS FOR CONTAINING A HAMILTON PATH

Definition 14

A **Hamilton path** of *D* is a path in *D* that visits all vertices.

PROPOSITION

A digraph D has a Hamilton path if and only if the digraph D^* , obtained from D by adding a new vertex x^* such that x^* dominates every vertex of D and is dominated by every vertex of D, is hamiltonian.

Using this proposition and Theorem 13, one can prove the following sufficient condition for a digraph to have a Hamilton path.

THEOREM 15

Let D be a digraph of order n. Suppose that, for every dominated pair of non-adjacent vertices $\{x,y\}$, either $d(x) \ge n-1$ and $d(y) \ge n-2$ or $d(x) \ge n-2$ and $d(y) \ge n-1$. Then D has a Hamilton path.

OUTLINE

- 1 HAMILTON CYCLES IN TOURNAMENTS
- 2 Hamilton Cycles in Degree-Constrained Digraphs
 - The Multi-Insertion Technique
 - the proof of the theorem
- **3** 4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

THE DISTANCE AND R-KINGS

Definition 16

For a pair of vertices $u, v \in V(D)$, the distance from u to v, denoted by dist(u, v) is the length of a shortest path from u to v

Definition 17

A r-**king** is a vertex $u \in V(D)$ such that for every vertex v in D, $dist(u, v) \le r$.

A **source** is a vertex of in-degree zero.

REMARK

For any integer r, If a digraph D has at least two sources, then it has no r-king. Thus, we always consider digraphs with at most one source.

SEMICOMPLETE MULTIPARTITE DIGRAPHS

SEMICOMPLETE MULTIPARTITE DIGRAPHS

DEFINITION 18

A digraph is **semicomplete multipartite** if it is obtained from a complete multipartite graph by replacing every edge by an arc or a pair of exposite arcs.

Example 19 (A SEMICOMPLETE BIPARTITE DIGRAPH) a, b, c, d

SEMICOMPLETE MULTIPARTITE DIGRAPHS

Definition 18

A digraph is **semicomplete multipartite** if it is obtained from a complete multipartite graph by replacing every edge by an arc or a pair of opposite arcs.

Example 19 (A semicomplete bipartite digraph)

This source-free semicomplete bipartite digraph do not have 3-kings!

4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

THEOREM 20 ([G. GUTIN AND A. YEO, 2000])

Every semicomplete multipartite digraph with at most one source has a 4-king.

4-KINGS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS

THEOREM 20 ([G. GUTIN AND A. YEO, 2000])

Every semicomplete multipartite digraph with at most one source has a 4-king.

OBSERVATION

Let D be a semicomplete multipartite digraph. Then, for every adjacent pair $\{u,v\}$ and a vertex w different from them, there is at least one arc in $(\{u,v\},w)\cup(w,\{u,v\})$.

Some useful Lemmas

LEMMA 21

If $P = p_0 p_1 \dots p_l$ is a shortest path from p_0 to p_l in a semicomplete multipartite digraph D, and $l \ge 3$, then there is a (p_l, p_0) -path of length at most 4 in D[V(P)].

Some useful Lemmas

Let
$$N^{+i}(x) = \{y \in V(D) : dist(x,y) = i\}$$
 and $N^{+i}[x] = \bigcup_{j=0}^{i} N^{+j}(x)$

Lemma 22

Let D be a strong semicomplete multipartite digraph and let w be a vertex in D. For $i \geq 3$, if $N^{+i}(w) \neq \emptyset$, then $dist(N^{+i}(w), N^{+i}[w]) \leq 4$.

PROOF.

 Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q. Observe that every 4-king of Q is a 4-king of D.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q. Observe that every 4-king of Q is a 4-king of D.
- It remains to show Q has a 4-king.

Thank you for your attention!

Bang-Jensen, Gutin, and Li

Sufficient Condition for a digraph to be Hamiltonian.

J. Graph Theory, 22(2): 181-187, 1996.

L. Rédei

Ein kombinatorischer Satz.

Acta. Litt. Sci. Szeged 7, 39–43.

Camion

Chemins et circuits hamiltoniens des graphes complets.

C. R. Acad. Sci. Paris, 249:2151-2152, 1959.

Gutin and Yeo

Kings in semicomplete multipartite digraphs.

J. Graph Theory, 33:177-183, 2000.

Moon

Solution to problem 463.

Math. Mag., 35:189, 1962.

On subtournaments of a tournament.

Can. Math. Bull., 9:297-301, 1966.