Some Aspects of Directed Graphs: Paths and Cycles in Digraphs
 Problem Session

Yacong Zhou ${ }^{1}$
(PhD Student of Prof. Gregory Gutin)
Yacong. Zhou@rhul.ac.uk

${ }^{1}$ Department of Computer Science, Royal Holloway University of London, London, UK

2nd School on Graph Theory, 06/10/2022

Outline

(1) Hamilton Cycles in Tournaments
(2) Hamilton Cycles in Degree-Constrained Digraphs

- The Multi-Insertion Technique
- the proof of the theorem
(3) 4-kings in Semicomplete Multipartite Digraphs

Outline

(1) Hamilton Cycles in Tournaments
(2) Hamilton Cycles in Degree-Constrained Digraphs

- The Multi-Insertion Technique
- the proof of the theorem

3 4-kings in Semicomplete Multipartite Digraphs

Definitions

Definition 1

In a digraph D, a vertex y is reachable from a vertex x if D has an (x, y)-path. In particular, a vertex is reachable from itself.

Definition 2

D is strong if every vertex of D is reachable from every other vertex of D.

Definition 3

A tournament is a digraph where there is exactly one arc between every pair of the vertices.

DEFINITION 4

A Hamilton cycle is a cycle that contains all vertices in D. A digraph is said to be Hamiltonian if it has a Hamilton cycle.

Clearly, Hamiltonian digraphs are neccessarily strong.

VERTEX-PANCYCLICITY OF TOURNAMENTS

Camion proved that, for tournaments, the sufficiency is also true.

Theorem 5 ([P. Camion., 1959])

Every strong tournament is hamiltonian.

VERTEX-PANCYCLICITY OF TOURNAMENTS

Camion proved that, for tournaments, the sufficiency is also true.

Theorem 5 ([P. CAMION., 1959])

Every strong tournament is hamiltonian.
Moon showed the following stronger result is also true.

Definition 6

A digraph D is vertex-pancyclic if for every $x \in V(D)$ and every integer $k \in\{3,4, \ldots, n\}$, there exists a k-cycle through x in D.

Theorem 7 ([J.W. Moon, 1966])

Every strong tournament is vertex-pancyclic.

THE PROOF OF THEOREM 7

- By induction on the length of the cycle. For any vertex $x \in V(D)$, we first show that there_ is a triangle through $\bar{x} \operatorname{in} D$.

THE PROOF OF THEOREM 7

- Suppose there is a k - 1 -cycle through $x(k \geq 4)$. We show that there is a k cycle through x.

Outline

(1) Hamilton Cycles in Tournaments
(2) Hamilton Cycles in Degree-Constrained Digraphs

- The Multi-Insertion Technique
- the proof of the theorem
(3) 4-kings in Semicomplete Multipartite Digraphs

Hamilton Cycles in Degree-Constrained Digraphs

The pair $\{x, y\}$ is dominated by a vertex z if $z \rightarrow x$ and $z \rightarrow y$; in this case we say that the pair $\{x, y\}$ is a dominated pair.

Hamilton Cycles in Degree-Constrained Digraphs

The pair $\{x, y\}$ is dominated by a vertex z if $z \rightarrow x$ and $z \rightarrow y$; in this case we say that the pair $\{x, y\}$ is a dominated pair.

Theorem 8 ([J. Bang-Jensen, G. Gutin and H. Li, 1996])

Let D be a strong digraph of order $n \geq 2$. Suppose that, for every dominated pair of non-adjacent vertices $\{x, y\}$, either $d(x) \geq n$ and $d(y) \geq n-1$ or $d(x) \geq n-1$ and $d(y) \geq n$. Then D is hamiltonian.

Outline

(1) Hamilton Cycles in Tournaments

(2) Hamilton Cycles in Degree-Constrained Digraphs

- The Multi-Insertion Technique
- the proof of the theorem

3 4-kings in Semicomplete Multipartite Digraphs

The Multi-Insertion Technique

Definition 9

Let $P=u_{1} u_{2} \ldots u_{s}$ be a path in a digraph D and let $Q=v_{1} v_{2} \ldots v_{t}$ be a path in $D-V(P)$. The path P can be inserted into Q if there is a subscript $i \in[t-1]$ such that $v_{i} \rightarrow u_{1}$ and $u_{s} \rightarrow v_{i+1}$.

Figure: Inserting P into Q

The Multi-Insertion Technique

Definition 9

Let $P=u_{1} u_{2} \ldots u_{s}$ be a path in a digraph D and let $Q=v_{1} v_{2} \ldots v_{t}$ be a path in $D-V(P)$. The path P can be inserted into Q if there is a subscript $i \in[t-1]$ such that $v_{i} \rightarrow u_{1}$ and $u_{s} \rightarrow v_{i+1}$.

Figure: Inserting P into Q

The Multi-Insertion Technique

Definition 10

The path P can be multi-inserted into Q if there are integers $i_{1}=1<i_{2}<\cdots<i_{m}=s+1$ such that, for every $k=2,3, \ldots, m$, the subpath $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right]$ can be inserted into Q. The sequence of subpaths $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right], k=2, \ldots, m$, is a multi-insertion partition of P.

The Multi-Insertion Technique

Definition 10

The path P can be multi-inserted into Q if there are integers $i_{1}=1<i_{2}<\cdots<i_{m}=s+1$ such that, for every $k=2,3, \ldots, m$, the subpath $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right]$ can be inserted into Q. The sequence of subpaths $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right], k=2, \ldots, m$, is a multi-insertion partition of P.

The Multi-Insertion Technique

The following lemma is a simple extension of a lemma by Bang-Jensen, Gutin and Li [J. Bang-Jensen, G. Gutin and H. Li, 1996].

Lemma 11

Let P be a path in D and let $Q=v_{1} v_{2} \ldots v_{t}$ be a path in $D-V(P)$. If P can be multi-inserted into Q, then there is a $\left(v_{1}, v_{t}\right)$-path R in D so that $V(R)=V(P) \cup V(Q)$. Given a multi-insertion partition of P, the path R can be found in time $O(|V(P)||V(Q)|)$.

A PROOF FOR THE LEMMA

Proof.

Let $P=u_{1} u_{2} \ldots u_{s}$. Suppose that integers $i_{1}=1<i_{2}<\cdots<i_{m}=s+1$ are such that the subpaths $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right], k=2,3, \ldots, m$, form a multi-insertion partition with the minimum m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.

A PROOF FOR THE LEMMA

Proof.

Let $P=u_{1} u_{2} \ldots u_{s}$. Suppose that integers $i_{1}=1<i_{2}<\cdots<i_{m}=s+1$ are such that the subpaths $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right], k=2,3, \ldots, m$, form a multi-insertion partition with the minimum m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.
In the beginning, find for each subpath all arcs it can be inserted into taking at most $2(|V(Q)|-1)$ steps. There are at most $|V(P)|$ subpaths. So this process takes $2|V(P)|(|V(Q)|-1)$ steps.

A PROOF FOR THE LEMMA

Proof.

Let $P=u_{1} u_{2} \ldots u_{s}$. Suppose that integers $i_{1}=1<i_{2}<\cdots<i_{m}=s+1$ are such that the subpaths $P\left[u_{i_{k-1}}, u_{i_{k}-1}\right], k=2,3, \ldots, m$, form a multi-insertion partition with the minimum m of P. Then, every subpath can be inserted into a different arc in Q. This completes the proof of the first part.
In the beginning, find for each subpath all arcs it can be inserted into taking at most $2(|V(Q)|-1)$ steps. There are at most $|V(P)|$ subpaths. So this process takes $2|V(P)|(|V(Q)|-1)$ steps. Changing the initial partition into a new partition with each subpath inserted into different arcs in Q takes at most $2|V(P)|$ steps. So, in total, it will take $O(|V(P) \| V(Q)|)$ time to construct this $\left(v_{1}, v_{t}\right)$ path.
\qquad

Lemma 12

$$
t=d_{\infty}(\omega) \leqslant t-1
$$

Let $Q=v_{1} v_{2} \ldots v_{t}$ be a path in D, and let $w \in V(D)-V(Q)$. If w cannot be inserted into Q, then
$d_{Q}(w)=\left|N^{+}(w) \cap Q\right|+\left|N^{-}(w) \cap Q\right| \leq t+1$. If, in addition, v_{t} does not dominate $\widetilde{w, \text { then } d_{Q}(w) \leq t .}$

$$
\begin{aligned}
& \begin{array}{ccc}
\text { PROOF. } a & I(a) \text { an indicator } & I(a)=1 \\
t-1 & \leq 1 & 10
\end{array} \\
& \left.\begin{array}{c}
t-1+2 \geqslant \\
\sum_{i=1}^{t-1}\left(I\left(v_{i} w\right)+I\left(\omega v_{i+1}^{\prime \prime}\right)\right.
\end{array}\right)+\underbrace{\left(v_{t}^{\prime \prime} w^{\prime \prime}\right)}_{0}+\underbrace{I\left(w v_{1}\right)}_{0} \\
& \frac{t^{\prime \prime}+1}{t \geqslant}=d_{Q}^{-}(w)+d_{Q}^{+}(w)=d_{Q}(w) \text {. }
\end{aligned}
$$

From the proof, we can see that, if we further require $w \nrightarrow v_{1}$, we have $d_{Q}(w) \leq t-1$. One can use the modified lemma to prove the fact that every tournament has a Hamilton path [L. Rédei, 1934].

Outline

(1) Hamilton Cycles in Tournaments
(2) Hamilton Cycles in Degree-Constrained Digraphs

- The Multi-Insertion Technique
- the proof of the theorem
(3) 4-kings in Semicomplete Multipartite Digraphs

Hamilton Cycles in Degree-Constrained Digraphs

The pair $\{x, y\}$ is dominated by a vertex z if $z \rightarrow x$ and $z \rightarrow y$; in this case we say that the pair $\{x, y\}$ is a dominated pair.

Theorem 13

([J. Bang-Jensen, G. Gutin and H. Li, 1996])
Let D be a strong digraph of order $n \geq 2$. Suppose that, for every dominated pair of non-adjacent vertices $\{x, y\}$, either $d(x) \geq n$ and $d(y) \geq n-1$ or $d(x) \geq n-1$ and $d(y) \geq n$. Then D is hamiltonian.

- Assume that D is non-hamiltonian and $C=x_{1} x_{2} \ldots x_{m} x_{1}$ is a longest cycle in. We first show that D contains a C-bypass.

$$
\begin{aligned}
& R=D-V(P U C) \\
& \in R=2=n-|P|-|c| \\
& |R|=n+1 \\
& C^{+1}=
\end{aligned}
$$

$$
d(z)+d\left(x_{2}\right)
$$

$$
\frac{x_{1} \rightarrow\left\{z, x_{3}\right\}, z \downarrow x_{2}}{d(z)+d\left(x_{2}\right) \geqslant 2 n-1}
$$

z cannot have neighbours in $C-x_{1}$

$$
\begin{aligned}
\leq 2(|p|-1)+2(|c|-y)+ & 2 \cdot|R| \\
& \\
=2(n-1) & 2(n-1 p|-1| x \mid \\
& +1)
\end{aligned}
$$

THE PROOF OF THEOREM 13

- Let $P=u_{1} u_{2} \ldots u_{s}$ be a C-bypass $(s \geq 3)$. Without loss of generality, let $u_{1}=x_{1}, u_{s}=x_{\gamma+1}, 0<\gamma<m$. Suppose also that the gap γ of P is minimum among the gaps of all C-bypasses. Since C is a longest cycle of $D, \gamma \geq 2$. Let $P_{1}=C\left[x_{2}, x_{\gamma}\right]$ and $P_{2}=C\left[x_{\gamma+1}, x_{1}\right]$.

$P_{1} \quad P_{2}$.

THE PROOF OF THEOREM 13
Let $R=D-V(C)$. Let x_{k} be an arbitrary vertex in P_{1}. We first prove that

the Proof of theorem 13

Let $R=D-V(C)$. Let x_{k} be an arbitrary vertex in P_{1}. We first prove that

$$
\begin{equation*}
d\left(x_{k}\right)+d\left(u_{2}\right) \leq d_{P_{2}}\left(x_{k}\right)+2 n-\left|V\left(P_{2}\right)\right|-3 . x_{1} \cdot{ }^{z^{2} u_{2}} \tag{1}
\end{equation*}
$$

In particular, for any $x_{j} \in P_{1}$ such that $x_{1} \rightarrow x_{j}$. By the assumption we have

$$
2 n-1 \leq d\left(x_{j}\right)+d\left(u_{2}\right) \leq d_{P_{2}}\left(x_{j}\right)+2 n-\left|V\left(P_{2}\right)\right|-3
$$

and therefore,

$$
\begin{equation*}
\Rightarrow \quad \frac{d_{P_{2}}\left(x_{j}\right) \geq\left|V\left(P_{2}\right)\right|+2}{\text { by lemma } 12} \tag{2}
\end{equation*}
$$

the Proof of theorem 13

- By (2) and Lemma 12, x_{2} can be inserted into P_{2}.

the Proof of theorem 13

- By (2) and Lemma 12, x_{2} can be inserted into P_{2}. Since C is a longest cycle, it follows from Lemma 11 that there exists $\beta \in\{3, \ldots, \gamma\}$ so that the subpath $C\left[x_{2}, x_{\beta-1}\right]$ can be multi-inserted into P_{2}, but $C\left[x_{2}, x_{\beta}\right]$ cannot. In particular, x_{β} cannot be inserted into P_{2}. Now, We show that

By (1), we have

$$
\begin{equation*}
d\left(x_{\beta}\right)+d\left(u_{2}\right) \leq d_{P_{2}}\left(x_{\beta}\right)+2 n-\left|V\left(P_{2}\right)\right|-3 . \tag{4}
\end{equation*}
$$

Because x_{β} cannot be inserted into P_{2} and (2), we have x does not dominate x_{β}. By Lemma 12 we have $d_{P_{2}}\left(x_{\beta}\right)\left|\leqslant\left|V\left(P_{2}\right)\right|\right.$.

$$
\begin{aligned}
d\left(x_{\beta}\right)+d\left(u_{2}\right) & \leq 2 n-3 . \\
d\left(x_{\beta}\right) & \leq n-2 .
\end{aligned}
$$

THE PROOF OF THEOREM 13

- Let $C\left[x_{\alpha}, x_{\beta-1}\right](\alpha \in\{3, \ldots, \gamma\})$ be the last subpath in P_{1} that can be inserted into $P_{2} . x_{i} \rightarrow x_{\alpha}$ and $x_{\beta-1} \rightarrow x_{i+1}$. Observe that the pair $\left\{x_{\beta}, x_{i+1}\right\}$ is dominated by $x_{\beta-1}$. Thus, by (3) and the assumption of the theorem, either $x_{\beta} \rightarrow x_{i+1}$ or $x_{i+1} \rightarrow x_{\beta}$.
- $x_{i+1} \rightarrow x_{\beta}$.

$$
\begin{align*}
& x_{\beta-1} \rightarrow \underbrace{\left\{x_{\beta}, x_{i+1}\right\}}_{d\left(x_{\beta}\right) \leq n-2} \tag{3}\\
& x_{i+1} \rightarrow\left\{x_{i+2}, x_{\beta}\right)
\end{align*}
$$

- $x_{1} \rightarrow x_{\beta}$.

Sufficent conditions for containing a Hamilton path

Definition 14

A Hamilton path of D is a path in D that visits all vertices.

PROPOSITION

A digraph D has a Hamilton path if and only if the digraph D^{*}, obtppned from D by adding a new vertex x^{*} such that x^{*} dominates every vertex of D and is dominated by every vertex of D, is hamiltonia.

Sufficent conditions for containing a

 Hamilton path
Definition 14

A Hamilton path of D is a path in D that visits all vertices.

PROPOSITION

A digraph D has a Hamilton path if and only if the digraph D^{*}, obtained from D by adding a new vertex x^{*} such that x^{*} dominates every vertex of D and is dominated by every vertex of D, is hamiltonian.

Using this proposition and Theorem 13, one can prove the following sufficient condition for a digraph to have a Hamilton path.

Theorem 15

Let D be a digraph of order n. Suppose that, for every dominated pair of non-adjacent vertices $\{x, y\}$, either $d(x) \geq n-1$ and $d(y) \geq n-2$ or $d(x) \geq n-2$ and $d(y) \geq n-1$. Then D has a Hamilton path.

Outline

(1) Hamilton Cycles in Tournaments
(2) Hamilton Cycles in Degree-Constrained Digraphs - The Multi-Insertion Technique

- the proof of the theorem
(3) 4-Kings in Semicomplete Multipartite Digraphs

THE DISTANCE AND R-KINGS

DEFINITION 16

For a pair of vertices $u, v \in V(D)$, the distance from u to v, denoted by $\operatorname{dist}(u, v)$ is the length of a shortest path from u to v

Definition 17

A r-king is a vertex $u \in V(D)$ such that for every vertex v in D, $\operatorname{dist}(u, v) \leq r$.

A source is a vertex of in-degree zero.

REMARK

For any integer r, If a digraph D has at least two sources, then it has no r-king. Thus, we always consider digraphs with at most one source.

Semicomplete Multipartite Digraphs

Semicomplete Multipartite Digraphs

Definition 18

A digraph is semicomplete multipartite if it is obtained from a complete multipartite graph by replacing every edge by an arc or pair of opposite arcs.

EXAMPLE 19 (A SEMICOMPLELL BIPARTITE DIGRAPH)

$$
\begin{gathered}
a, b, c, d \\
\geqslant 2 .
\end{gathered}
$$

Semicomplete Multipartite Digraphs

Definition 18

A digraph is semicomplete multipartite if it is obtained from a complete multipartite graph by replacing every edge by an arc or a pair of opposite arcs.

EXAMPLE 19 (A SEMICOMPLETE BIPARTITE DIGRAPH)

This source-free semicomplete bipartite digraph do not have 3-kings!

4-Kings in Semicomplete Multipartite Digraphs

Theorem 20 ([G. Gutin and A. Yeo, 2000])

Every semicomplete multipartite digraph with at most one source has a 4-king.

4-Kings in Semicomplete Multipartite Digraphs

Theorem 20 ([G. Gutin and A. Yeo, 2000])

Every semicomplete multipartite digraph with at most one source has a 4-king.

ObSERVATION

Let D be a semicomplete multipartite digraph. Then, for every adjacent pair $\{u, v\}$ and a vertex w different from them, there is at least one arc in $(\{u, v\}, w) \cup(w,\{u, v\})$.

Some useful lemmas

LEmmA 21

If $P=p_{0} p_{1} \ldots p_{I}$ is a shortest path from p_{0} to p_{I} in a semicomplete multipartite digraph D, and $I \geq 3$, then there is a (p_{l}, p_{0})-path of length at most 4 in $D[V(P)]$.

Proof.

SOME USEFUL LEMMAS

Let $N^{+i}(x)=\{y \in V(D): \operatorname{dist}(x, y)=i\}$ and $N^{+i}[x]=\cup_{j=0}^{i} N^{+j}(x)$
Lemma 22
Let D be a strong semicomplete multipartite digraph and let w be a vertex in D. For $i \geq 3$, if $N^{+i}(w) \neq \emptyset$, then $\operatorname{dist} \frac{N^{+i}(w)}{x^{\epsilon}}, \frac{\left.N^{+i}[w]\right]}{} \leq 4$.
Proof.
$y ; \in N^{+j}$
(1) $1 \leq j \leq 3$
$w y_{1} y_{2} \cdot y_{j}$

THE PROOF OF THEOREM 20

Proof.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.

THE PROOF OF THEOREM 20

Proof.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q.

THE PROOF OF THEOREM 20

Proof.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q. Observe that every 4-king of Q is a 4-king of D.

THE PROOF OF THEOREM 20

Proof.

- Let D be a semicomplete multipartite digraph with at most one source. If D has a vertex x of in-degree zero, then clearly x is a 2-king in D. Thus, we assume that D has no source.
- Then, every initial strong component Q of D has at least two vertices. Therefore, D only has one initial strong component and we denote it by Q. Observe that every 4-king of Q is a 4-king of D.
- It remains to show Q has a 4 -king.
lemma 22.

Thank you for your attention!

Bang－Jensen，Gutin，and Li
Sufficient Condition for a digraph to be Hamiltonian．
J．Graph Theory，22（2）：181－187， 1996.
固 L．Rédei
Ein kombinatorischer Satz．
Acta．Litt．Sci．Szeged 7，39－43．
目 Camion
Chemins et circuits hamiltoniens des graphes complets．
C．R．Acad．Sci．Paris，249：2151－2152， 1959.
目 Gutin and Yeo
Kings in semicomplete multipartite digraphs．
J．Graph Theory，33：177－183， 2000.
Moon
Solution to problem 463.
Math．Mag．，35：189， 1962.
國 Moon

On subtournaments of a tournament.
Can. Math. Bull., 9:297-301, 1966.

