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Definitions

Definition 1
In a digraph D, a vertex y is reachable from a vertex x if D has an
(x , y)-path. In particular, a vertex is reachable from itself.

Definition 2
D is strong if every vertex of D is reachable from every other vertex of D.

Definition 3
A tournament is a digraph where there is exactly one arc between every
pair of the vertices.

Definition 4
A Hamilton cycle is a cycle that contains all vertices in D. A digraph is
said to be Hamiltonian if it has a Hamilton cycle.

Clearly, Hamiltonian digraphs are neccessarily strong.
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Vertex-Pancyclicity of tournaments

Camion proved that, for tournaments, the su�ciency is also true.

Theorem 5 ([ P. Camion., 1959])

Every strong tournament is hamiltonian.

Moon showed the following stronger result is also true.

Definition 6

A digraph D is vertex-pancyclic if for every x 2 V (D) and every integer
k 2 {3, 4, . . . , n}, there exists a k-cycle through x in D.

Theorem 7 ([ J.W. Moon, 1966])

Every strong tournament is vertex-pancyclic.
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the Proof of theorem 7

By induction on the length of the cycle. For any vertex x 2 V (D), we
first show that there is a triangle through x in D.
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the Proof of theorem 7

Suppose there is a k � 1-cycle through x (k � 4). We show that
there is a k cycle through x .
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Hamilton Cycles in Degree-Constrained
Digraphs

The pair {x , y} is dominated by a vertex z if z ! x and z ! y ; in this
case we say that the pair {x , y} is a dominated pair.

Theorem 8 ([J. Bang-Jensen, G. Gutin and H. Li, 1996])

Let D be a strong digraph of order n � 2. Suppose that, for every
dominated pair of non-adjacent vertices {x , y}, either d(x) � n and
d(y) � n � 1 or d(x) � n � 1 and d(y) � n. Then D is hamiltonian.
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The Multi-Insertion Technique

Definition 9
Let P = u1u2 . . . us be a path in a digraph D and let Q = v1v2 . . . vt be a
path in D � V (P). The path P can be inserted into Q if there is a
subscript i 2 [t � 1] such that vi ! u1 and us ! vi+1.

u1 us

v1 vt
Q

P

vi vi+1

Figure: Inserting P into Q
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The Multi-Insertion Technique

Definition 10
The path P can be multi-inserted into Q if there are integers
i1 = 1 < i2 < · · · < im = s + 1 such that, for every k = 2, 3, . . . ,m, the
subpath P[uik�1

, uik�1] can be inserted into Q. The sequence of subpaths
P[uik�1

, uik�1], k = 2, . . . ,m, is a multi-insertion partition of P .

u1 us

v1 vt
Q

P

ui2�1 uik�1
uik�1 uim�1

vj1 vj1+1 vj2 vj2+1
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The Multi-Insertion Technique

The following lemma is a simple extension of a lemma by Bang-Jensen,
Gutin and Li [J. Bang-Jensen, G. Gutin and H. Li, 1996].

Lemma 11

Let P be a path in D and let Q = v1v2 . . . vt be a path in D � V (P). If P
can be multi-inserted into Q, then there is a (v1, vt)-path R in D so that
V (R) = V (P) [ V (Q). Given a multi-insertion partition of P , the path R
can be found in time O(|V (P)||V (Q)|).
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A proof for the Lemma

Proof.
Let P = u1u2 . . . us . Suppose that integers i1 = 1 < i2 < · · · < im = s + 1
are such that the subpaths P[uik�1

, uik�1], k = 2, 3, . . . ,m, form a
multi-insertion partition with the minimum m of P . Then, every subpath
can be inserted into a di↵erent arc in Q. This completes the proof of the
first part.

In the beginning, find for each subpath all arcs it can be inserted into
taking at most 2(|V (Q)|� 1) steps. There are at most |V (P)| subpaths.
So this process takes 2|V (P)|(|V (Q)|� 1) steps. Changing the initial
partition into a new partition with each subpath inserted into di↵erent arcs
in Q takes at most 2|V (P)| steps. So, in total, it will take
O(|V (P)||V (Q)|) time to construct this (v1, vt) path.
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Useful lemma

Lemma 12

Let Q = v1v2 . . . vt be a path in D, and let w 2 V (D)� V (Q). If w
cannot be inserted into Q, then
dQ(w) = |N+(w) \Q|+ |N�(w) \Q|  t + 1. If, in addition, vt does not
dominate w , then dQ(w)  t.

Proof.

From the proof, we can see that, if we further require w 6! v1, we have
dQ(w)  t � 1. One can use the modified lemma to prove the fact that
every tournament has a Hamilton path [L. Rédei, 1934].
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Hamilton Cycles in Degree-Constrained
Digraphs

The pair {x , y} is dominated by a vertex z if z ! x and z ! y ; in this
case we say that the pair {x , y} is a dominated pair.

Theorem 13
([J. Bang-Jensen, G. Gutin and H. Li, 1996])

Let D be a strong digraph of order n � 2. Suppose that, for every
dominated pair of non-adjacent vertices {x , y}, either d(x) � n and
d(y) � n � 1 or d(x) � n � 1 and d(y) � n. Then D is hamiltonian.
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the Proof of theorem 13

Assume that D is non-hamiltonian and C = x1x2 . . . xmx1 is a longest
cycle in D. We first show that D contains a C -bypass.
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the Proof of theorem 13

Let P = u1u2 . . . us be a C -bypass (s � 3). Without loss of generality,
let u1 = x1, us = x�+1, 0 < � < m. Suppose also that the gap � of P
is minimum among the gaps of all C -bypasses. Since C is a longest
cycle of D, � � 2. Let P1 = C [x2, x� ] and P2 = C [x�+1, x1].
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the Proof of theorem 13

Let R = D � V (C ). Let xk be an arbitrary vertex in P1. We first prove
that

d(xk) + d(u2)  dP2
(xk) + 2n � |V (P2)|� 3. (1)

In particular, for any xj 2 P1 such that x1 ! xj . By the assumption we
have

2n � 1  d(xj) + d(u2)  dP2
(xj) + 2n � |V (P2)|� 3

and therefore,
dP2

(xj) � |V (P2)|+ 2. (2)
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the Proof of theorem 13
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the Proof of theorem 13

By (2) and Lemma 12, x2 can be inserted into P2.

Since C is a
longest cycle, it follows from Lemma 11 that there exists
� 2 {3, . . . , �} so that the subpath C [x2, x��1] can be multi-inserted
into P2, but C [x2, x�] cannot. In particular, x� cannot be inserted
into P2. Now, We show that

d(x�)  n � 2. (3)

By (1), we have

d(x�) + d(u2)  dP2
(x�) + 2n � |V (P2)|� 3. (4)

Because x� cannot be inserted into P2 and (2), we have x1 does not
dominate x� . By Lemma 12 we have dP2

(x�)  |V (P2)|.
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the Proof of theorem 13

Let C [x↵, x��1] (↵ 2 {3, . . . , �})be the last subpath in P1 that can be
inserted into P2. xi ! x↵ and x��1 ! xi+1. Observe that the pair
{x� , xi+1} is dominated by x��1. Thus, by (3) and the assumption of
the theorem, either x� ! xi+1 or xi+1 ! x� .
xi+1 ! x� .

x1 ! x� .
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Sufficent conditions for containing a
Hamilton path

Definition 14
A Hamilton path of D is a path in D that visits all vertices.

proposition
A digraph D has a Hamilton path if and only if the digraph D⇤, obtained
from D by adding a new vertex x⇤ such that x⇤ dominates every vertex of
D and is dominated by every vertex of D, is hamiltonian.

Using this proposition and Theorem 13, one can prove the following
su�cient condition for a digraph to have a Hamilton path.

Theorem 15
Let D be a digraph of order n. Suppose that, for every dominated pair of
non-adjacent vertices {x , y}, either d(x) � n � 1 and d(y) � n � 2 or
d(x) � n � 2 and d(y) � n � 1. Then D has a Hamilton path.
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the distance and r-kings

Definition 16

For a pair of vertices u, v 2 V (D), the distance from u to v , denoted by
dist(u, v) is the length of a shortest path from u to v

Definition 17

A r-king is a vertex u 2 V (D) such that for every vertex v in D,
dist(u, v)  r .

A source is a vertex of in-degree zero.

remark
For any integer r , If a digraph D has at least two sources, then it has no
r -king. Thus, we always consider digraphs with at most one source.

Yacong Zhou (RHUL) Some Aspects of Directed Graphs: Paths and Cycles in Digraphs2nd School on Graph Theory25 / 31



Semicomplete Multipartite Digraphs

Definition 18
A digraph is semicomplete multipartite if it is obtained from a complete
multipartite graph by replacing every edge by an arc or a pair of opposite
arcs.

Example 19 (A semicomplete bipartite digraph)

K̄a K̄b

K̄cK̄d

This source-free semicomplete bipartite digraph do not have 3-kings!
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4-kings in Semicomplete Multipartite Digraphs

Theorem 20 ([ G. Gutin and A. Yeo, 2000])

Every semicomplete multipartite digraph with at most one source has a
4-king.

Observation
Let D be a semicomplete multipartite digraph. Then, for every adjacent
pair {u, v} and a vertex w di↵erent from them, there is at least one arc in
({u, v},w) [ (w , {u, v}).
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Some useful lemmas

Lemma 21

If P = p0p1 . . . pl is a shortest path from p0 to pl in a semicomplete
multipartite digraph D, and l � 3, then there is a (pl , p0)-path of length at
most 4 in D[V (P)].

Proof.
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Some useful lemmas

Let N+i (x) = {y 2 V (D) : dist(x , y) = i} and N+i [x ] = [i
j=0

N+j(x)

Lemma 22
Let D be a strong semicomplete multipartite digraph and let w be a vertex
in D. For i � 3, if N+i (w) 6= ;, then dist(N+i (w),N+i [w ])  4.

Proof.

Yacong Zhou (RHUL) Some Aspects of Directed Graphs: Paths and Cycles in Digraphs2nd School on Graph Theory29 / 31

.io/U1Nt2N3oaX?-y--y-o!iy;ENtSwyiYiYj
② j ≥4.gs , 打) , X 。



the proof of theorem 20

Proof.
Let D be a semicomplete multipartite digraph with at most one
source. If D has a vertex x of in-degree zero, then clearly x is a
2-king in D. Thus, we assume that D has no source.

Then, every initial strong component Q of D has at least two
vertices. Therefore, D only has one initial strong component and we
denote it by Q. Observe that every 4-king of Q is a 4-king of D.

It remains to show Q has a 4-king.
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Thank you for your attention!
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