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DEFINITIONS

DEFINITION 1

In a digraph D, a vertex y is reachable from a vertex x if D has an
(x, y)-path. In particular, a vertex is reachable from itself.

DEFINITION 2 |
D is strong if every vertex of D is reachable from every other vertex of D.

DEFINITION 3 |

A tournament is a digraph where there is exactly one arc between every
pair of the vertices.

DEFINITION 4 |

A Hamilton cycle is a cycle that contains all vertices in D. A digraph is
said to be Hamiltonian if it has a Hamilton cycle.

Clearly, Hamiltonian digraphs are neccessarily strong.
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Camion proved that, for tournaments, the sufficiency is also true.
Every strong tournament is hamiltonian.
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VERTEX-PANCYCLICITY OF TOURNAMENTS

Camion proved that, for tournaments, the sufficiency is also true.

THEOREM 5 ([ P. CAMION., 1959])

Every strong tournament is hamiltonian.

Moon showed the following stronger result is also true.

DEFINITION 6 |

A digraph D is vertex-pancyclic if for every x € V(D) and every integer
k € {3,4,...,n}, there exists a k-cycle through x in D.

THEOREM 7 ([ J.W. MoON, 1966]) |

Every strong tournament is vertex-pancyclic.
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THE PROOF OF THEOREM 7

@ By induction on the length of the cycle. For any vertex x € V(D), we

first show that there is a triangte Through X imB— N
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there is a k cycle through X.

9'@

@ Suppose there is a k — 1-cycle through x (k > 4). We show that
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The pair {x,y} is dominated by a vertex z if z — x and z — y; in this
case we say that the pair {x, y} is a dominated pair.



HAMILTON CYCLES IN DEGREE-CONSTRAINED
DIGRAPHS

The pair {x,y} is dominated by a vertex z if z — x and z — y; in this
case we say that the pair {x,y} is a dominated pair.

THEOREM 8 ([J. BANG-JENSEN, G. GUTIN AND H. L1, 1996]) |

Let D be a strong digraph of order n > 2. Suppose that, for every

dominated pair of non-adjacent vertices {x,y}, either d(x) > n and

d(y) >n—1ord(x) >n—1andd(y) > n. Then D is hamiltonian.
—
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Let P = ujuy...us be a path in a digraph D and let @ = viv»...v; be a
path in D — V(P). The path P can be inserted into Q if there is a
subscript i € [t — 1] such that v; — 11 and us — vjy1.
U
U1 + > uS
p
151 >
Q

Vi
FIGURE: Inserting P into Q
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THE MULTI-INSERTION TECHNIQUE

DEFINITION 9

Let P = ujuy ... us be a path in a digraph D and let @ = viv»...v; be a
path in D — V(P). The path P can be inserted into Q if there is a
subscript i € [t — 1] such that v; — 11 and us — vjy1.

Vi 9 % > V¢
Vi Q Vi+1

FIGURE: Inserting P into @

YaconG ZHou (RHUL) SOME ASPECTS OF DIRECTED GRAPHS: PAT 2ND SCHOOL ON GRAPH THEORY 11 /31



THE MULTI-INSERTION TECHNIQUE

DEFINITION 10

The path P can be multi-inserted into Q if there are integers

h=1<ip<--+<in=s-+1such that, for every k =2,3,..., m, the
subpath P[uj,_,, uj,—1] can be inserted into Q. The sequence of subpaths
Plui_,, uj—1], k =2,..., m, is a multi-insertion partition of P.

U,‘27]_ uik—l U,'k,]_ uim—l

P,

uy
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THE MULTI-INSERTION TECHNIQUE

DEFINITION 10

The path P can be multi-inserted into Q if there are integers

h=1<ip<--+<in=s-+1such that, for every k =2,3,..., m, the
subpath P[uj,_,, uj,—1] can be inserted into Q. The sequence of subpaths
Plui,_,, uj—1], k =2,...,m, is a multi-insertion partition of P.
/
f

U,‘27]_ uik—l U,'k,]_ uim—l

Ul =

Vi

- > V¢
Vi Vii+1 Q Vi Vj+1
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THE MULTI-INSERTION TECHNIQUE

The following lemma is a simple extension of a lemma by Bang-Jensen,
Gutin and Li [J. Bang-Jensen, G. Gutin and H. Li, 1996].

LEMMA 11

|
Let P be a path in D and let Q = viva...v; be a path in D — V(P). If P
can be multi-inserted into Q, then there is a (v1, v¢)-path R in D so that
V(R) = V(P)U V(Q). Given a multi-insertion partition of P, the path R
can be found in time O(|V(P)||V(Q)|).
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A PROOF FOR THE LEMMA

PROOF.

Let P = ujuy...us. Suppose that integers i1 =1 <ih < - <ip=s+1
are such that the subpaths Pluj,_,, uj—1], k =2,3,..., m, form a
multi-insertion partition with the minimum m of P. Then, every subpath

can be inserted into a different arc in Q. This completes the proof of the
first part.
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A PROOF FOR THE LEMMA

PROOF. |
Let P = ujuy...us. Suppose that integers i1 =1 <ih < - <ip=s+1
are such that the subpaths Pluj,_,, uj—1], k =2,3,..., m, form a
multi-insertion partition with the minimum m of P. Then, every subpath
can be inserted into a different arc in Q. This completes the proof of the
first part.

In the beginning, find for each subpath all arcs it can be inserted into
taking at most 2(|V(Q)| — 1) steps. There are at most |V/(P)| subpaths.
So this process takes 2|V/(P)|(|V(Q)| — 1) steps.
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A PROOF FOR THE LEMMA

PROOF. |
Let P = ujuy...us. Suppose that integers i1 =1 <ih < - <ip=s+1
are such that the subpaths Pluj,_,, uj—1], k =2,3,..., m, form a
multi-insertion partition with the minimum m of P. Then, every subpath
can be inserted into a different arc in Q. This completes the proof of the
first part.

In the beginning, find for each subpath all arcs it can be inserted into
taking at most 2(|V(Q)| — 1) steps. There are at most |V/(P)| subpaths.
So this process takes 2|V/(P)|(|V(Q)| — 1) steps. Changing the initial
partition into a new partition with each subpath inserted into different arcs
in Q takes at most 2| V(P)| steps. So, in total, it will take
O(|V(P)||V(Q)|) time to construct this (v, v¢) path. O
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USEFUL LEMMA
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Let Q =viva...vs be a path in D, and let w € V(D) — V(Q). If w
cannot be inserted into Q, then

— e
do(w) = INT(w)N Q|+ |[N~(w)N Q| < t+ 1. If, in addition, vy does not
dominate w, themdg(w) T —

LEMMA 12

—
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From the proof, we can see that, if we further require w 4 vq, we have

do(w) <t — 1. One can use the modified lemma to prove the fact that
every tournament has a Hamilton path [L. Rédei, 1934},
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HAMILTON CYCLES IN DEGREE-CONSTRAINED
DIGRAPHS

The pair {x,y} is dominated by a vertex z if z — x and z — y; in this
case we say that the pair {x,y} is a dominated pair.

THEOREM 13
([J. BANG-JENSEN, G. GUTIN AND H. L1, 1996])

Let D be a strong digraph of order n > 2. Suppose that, for every
dominated pair of non-adjacent vertices {x, y}, either d(x) > n and
d(y)>n—1ord(x)>n—1andd(y) > n. Then D is hamiltonian.

= P

%.\y;ig
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THE PROOF OF THEOREM 13

@ Assume that D is non-hamiltonian and C = x1x2 . .. xmx1 is a longest

cycle g\ We first show that D contains a C-bypass.
e
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THE PROOF OF THEOREM 13
@ Let P=ujuy...us be a C-bypass (s > 3). Without loss of generality,
let iy = x1, us = Xy41, 0 < < m. Suppose also that the gap v of P

is minimum among the gaps of all C-bypasses. Since C is a longest
cycle of D, v > 2. Let P; = C[xp, x,] and P = C[xy41, x1].

Xex|

Py Pr -
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THE PROOF OF THEOREM 13

Let R =D — V(C). Let xx be an arbitrary vertex in P;. We first prove
that—— = - -

ey CRX,P 4 d(w) < dp,(a) + 20— [V(P)| =3 o« (1)
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THE PROOF OF THEOREM 13

Let R =D — V(C). Let xx be an arbitrary vertex in P;. We first prove

that Lo

X2
d(x¢) + d(u2) < dp,(xk) +2n — |[V(P2)| = 3. " (1)

In particular, for any x; € P; such that x; — x;. By the assumption we
have

2n —1 < d(x;) + d(u2) < dp,(x;) +2n— |V(P2)| — 3
and therefore,
dp, (%) = [V(P2)| + 2. (2)

o 1,2 Dovama 11

Ky Com ba nsertes inte Py
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@ By (2) and Lemma 12, x» can be inserted into Ps.
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THE PROOF OF THEOREM 13

@ By (2) and Lemma 12, x» can be inserted into P. Since C is a
longest cycle, it follows from Lemma 11 that there exists
B €{3,...,7} so that the subpath C[x, x3_1] can be multi-inserted
into Py, but C[xo, xg] cannot. In particular, xg cannot be inserted
into P>. Now, We show that

dixg)<n—2. LT (5

By (1), we have T~ ) X

d(xp) + d(u2) < dp,(x5) +2n — [V(P2)| — 3. P (4)

Because x3 cannot be inserted into P> and (2), we have x
dominate x3. By Lemma 12 we have dp,(x3) £ |V(P2)|.
—_ L
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THE PROOF OF THEOREM 13

o Let C[xa,xs-1] (a € {3,...,7})be the last subpath in P; that can be
inserted into P>. x;j — X and xg_1 — Xj4+1. Observe that the pair
{x3, xi+1} is dominated by xg_1. Thus, by (3) and the assumption of
the theorem, either xg — Xxj41 or xjy1 — x3.

® Xjit1 — X3.

30 X
iLxF,) sn2z (3)
X‘H 4 (XL-G'\_} ﬂf)

@ X1 — X3.
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SUFFICENT CONDITIONS FOR CONTAINING A
HAMILTON PATH

DEFINITION 14
A Hamilton path of D is a path in D that visits all vertices.

PROPOSITION
A digraph D has a Hamilton path if and only if the digraph D*, obtpntd

from D by adding a new vertex x* such that x* domin very vertex
D and is dominated by every vertex of D, is hamiltoniap. oY *

7

O
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SUFFICENT CONDITIONS FOR CONTAINING A
HAMILTON PATH

DEFINITION 14
A Hamilton path of D is a path in D that visits all vertices.

PROPOSITION

A digraph D has a Hamilton path if and only if the digraph D*, obtained
from D by adding a new vertex x* such that x* dominates every vertex of
D and is dominated by every vertex of D, is hamiltonian.

Using this proposition and Theorem 13, one can prove the following
sufficient condition for a digraph to have a Hamilton path.

THEOREM 15

Let D be a digraph of order n. Suppose that, for every dominated pair of
non-adjacent vertices {x,y}, either d(x) > n—1 and d(y) > n—2 or
d(x) > n—2andd(y) > n—1. Then D has a Hamilton path.

™ = = = vy
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THE DISTANCE AND R-KINGS

DEFINITION 16 |

For a pair of vertices u,v € V(D), the distance from u to v, denoted by
dist(u, v) is the length of a shortest path from u to v

DEFINITION 17
A r-king is a vertex u € V(D) such that for every vertex v in D,

dist(u,v) <r.
A source is a vertex of in-degree zero.

REMARK ‘

For any integer r, If a digraph D has at least two sources, then it has no
r-king. Thus, we always consider digraphs with at most one source.
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SEMICOMPLETE MULTIPARTITE DIGRAPHS

DEFINITION 18

A digraph is semicomplete multipartite if it is obtained from a complete
multipartite graph by replacing every edge by an arc or

air of osite

arcs. ([ —7{\ pa ;
Ve =~




SEMICOMPLETE MULTIPARTITE DIGRAPHS

DEFINITION 18

A digraph is semicomplete multipartite if it is obtained from a complete
multipartite graph by replacing every edge by an arc or a pair of opposite

arcs.

This source-free semicomplete bipartite digraph do not have 3-kings!
YaconG ZHou (RHUL)
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4-king.

Every semicomplete multipartite digraph with at most one source has a
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Every semicomplete multipartite digraph with at most one source has a
4-king.

g -
ﬂ
Let D be a semicomplete multipartite digraph. Then, for every adjacent

pair {u, v} and a vertex w different from them, there is at least one arc in
({u, v}, w) U (w,{u, v}).

«O> «F>r «=)r « =)
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most 4 in D[V (P)].

If P = pops ...p; is a shortest path from pg to p; in a semicomplete
multipartite digraph D, and | > 3, then there is a (p;, po)-path of length at
m——
Po ) Po F}
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SOME USEFUL LEMMAS

Let N™/(x) = {y € V(D) : dist(x,y) = i} and N*/[x] = U_oN*/(x)

LEMMA 22

Let D be a strong semicomplete multipartite digraph_and let w be a vertex
in D. Fori >3, if Nt/(w) # 0, then dist(N*(w),IN*/[w]) < 4.

xe N{-Z .
PROOF. M vtz A y
w
;e

W{jl‘d»"ﬂ) ©) 7 \IL/ wi‘}, }3“) / A O
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THE PROOF OF THEOREM 20

PROOF.

o Let D be a semicomplete multipartite digraph with at most one
source. If D has a vertex x of in-degree zero, then clearly x is a
2-king in D. Thus, we assume that D has no source.
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THE PROOF OF THEOREM 20

PROOF.

o Let D be a semicomplete multipartite digraph with at most one
source. If D has a vertex x of in-degree zero, then clearly x is a
2-king in D. Thus, we assume that D has no source.

@ Then, every initial strong component @ of D has at least two
vertices. Therefore, D only has one initial strong component and we
denote it by Q.
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THE PROOF OF THEOREM 20

PROOF.
o Let D be a semicomplete multipartite digraph with at most one
source. If D has a vertex x of in-degree zero, then clearly x is a
2-king in D. Thus, we assume that D has no source.

@ Then, every initial strong component @ of D has at least two
vertices. Therefore, D only has one initial strong component and we
denote it by Q. Observe that every 4-king of Q is a 4-king of D.
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THE PROOF OF THEOREM 20

PROOF.
o Let D be a semicomplete multipartite digraph with at most one
source. If D has a vertex x of in-degree zero, then clearly x is a
2-king in D. Thus, we assume that D has no source.

@ Then, every initial strong component @ of D has at least two
vertices. Therefore, D only has one initial strong component and we
denote it by Q. Observe that every 4-king of Q is a 4-king of D.

o(lt remains to show (J has a 4-king. )
N — J,ewmwﬂ 2l

D 4
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Thank you for your attention!
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