
Learning Approximately Optimal Contracts

Alon Cohen1, Argyrios Deligkas2, and Moran Koren3

1 Tel-Aviv University and Google Research alonco@tauex.tau.ac.il
2 Royal Holloway, University of London Argyrios.Deligkas@rhul.ac.uk

3 Tel Aviv University me@mkoren.org

Abstract. In principal-agent models, a principal offers a contract to an
agent to preform a certain task. The agent exerts a level of effort that
maximizes her utility. The principal is oblivious to the agent’s chosen
level of effort, and conditions her wage only on possible outcomes. In this
work, we consider a model in which the principal is unaware of the agent’s
utility and action space: she sequentially offers contracts to identical
agents, and observes the resulting outcomes. We present an algorithm
for learning the optimal contract under mild assumptions. We bound
the number of samples needed for the principal obtain a contract that is
within ε of her optimal net profit for every ε > 0. Our results are robust
even when considering risk averse agents. Furthermore, we show that
when there only two possible outcomes, or the agent is risk neutral, the
algorithm’s outcome approximates the optimal contract described in the
classical theory.

1 Introduction

Recent technological advances have changed the relationship between firms
and employees dramatically. The rapid change in employees’ required skill set
combined with the availability of off-shore, qualified, cheap hiring alternatives
drove employers to adopt employees on a short-term, task specific bases. This
hiring model, dubbed dynamic workforce or gig-economy, has been growing
exponentially over the decade. In [8] it was found that 20-30% of US workers are
employed independently, at least partly, and predicts this trend will continue
with popularity of the “Lean Startup” business model, and the appearance of
platforms such as “Amazon Mechanical Turk”.

The aforementioned labor market changes have a profound effect on the
information available to firms when it comes to making hiring decisions. In the
traditional workspace, hiring is often a long-term, expensive procedure. Nowadays
hiring is cheap and short-termed. As a result, an employer has less information
on the character and quality of her employees, thus lacking the knowledge on
how to best align their incentives with those of the firm. In this work we study a
model more suitable to the new “dynamic workforce”, and, using this model, we
try to learn the best wages an employer should offer to her employees.

Economists use the term agency problems to describe models like the above.
In such models one party, the principal, offers a contract to another party, the
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agent, to perform a task [25]. In his seminal paper, Ross [30] introduced the term
principal–agent to capture these models. In the basic model, the outcome of the
task is chosen randomly from a distribution determined by the level of effort
invested by the agent. A higher effort level induces a distribution in which the
probability of a better outcome is higher than in lower effort levels. On the other
hand, a higher level causes the agent greater disutility. Ross [30] assumes that
the principal is risk-neutral while the agent is risk-averse, therefore the incentives
of both parties are not fully aligned.* Hence, the effort level that is optimal from
the perspective of the principal, is not necessarily the optimal one for the agent.
To bridge this gap, the principal offers the agent a contract in which the agent is
rewarded for any additional effort. The lion’s share of previous work assume that
the principal, while oblivious to the agent’s choice, has full information about the
agent’s utility structure and the set of levels of effort she can choose from and
the probability distribution associated with every level of effort [30,18,21,17,22].
These assumptions seem confining, especially when considering the motivating
scenario of a dynamic workplace.

Holmstrom, in his Nobel Prize lecture [22], identified this gap in theory as one
of the main challenges in current research. A first attempt to bridge this gap was
[9]. Carroll [9] presented a model where a principal has only partial knowledge on
the agent’s action space. He assumed that the agent is risk neutral and thus, if
the principal have known the agent’s complete action space, the optimal contract
would have been linear. In this setting, the principal can guarantee the net profit
from best linear contract pertaining the actions she knows. That is her actual net
profit will never be lower. An early attempt to approach the agency problem from
the lens of theoretical computer science was made in [20]. In the model of [20],
there are several types of agents, each one with her own utility function, set of
effort levels and effort costs, and probability distributions over the outcomes;
all of which unknown to the principal. They considered a repeated setting with
T rounds, where in every round the type of the agent is chosen i.i.d. from an
unknown probability distribution. Their goal was to find, before round T , the
optimal contract from a predefined finite set S. They followed a multi-armed
bandit approach [29] and derived an algorithm that finds an approximately-
optimal contract. However, the contract they find is approximately-optimal only
with respect to the best contract in S. They provide no theoretical guarantees
on approximating the optimal contract overall, but only for the case of one effort
level for the agent, i.e. reject the contract or accept it, known as posted-price
auctions.* In [14], the authors study a similar scenario in which the principal

* When given the choice between participating in some lottery X or receiving E(X)
with probability one, a risk-averse agent will strictly prefer the latter while a risk-
neutral agent is indifferent. In the Von Neumann Morgenstern utility theory, if an
agent is risk-averse, then she has a concave utility function; if she is risk-neutral,
then her utility is linear.

* As they highlight, it is not generally clear whether the best contract from S can
provide a good theoretical guarantees for the general problem of dynamic contract
design.
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knows only the expected output generated by each contract, that is, the agent’s
action set is unknown to the principal. As in [9], they assume that the agent’s
utility is linear and that limited liability holds (i.e., no negative payments) and
show that the worst-case expected profit for the principal is guaranteed by a linear
contract. In addition, they provide tight approximation guarantees for linear
contracts. In this paper we follow a similar route to [20] and [14]. We assume the
principal has zero information about the agent; we assume unknown utility for
the agent, unknown set of effort levels and their associated costs, and unknown
probability distribution for any effort level. The only knowledge the principal has
is the set of outcomes and their corresponding profits. Our model extends the
setting of [20] as we assume that the contract set as continuous. We extend the
setting of [9] and [14] in two folds: (1) Our set of monotone-smooth contracts is
richer than the set of linear contracts. (2) We do not assume any functional form
of agent utilities, we only assume that agents are risk averse (concave utility).
In the next section we illustrate the importance of this generalization in this
context.

1.1 The challenge of learning contracts with risk averse agents.

In contract theory, we study the tension between a principal and an agent. This
tension is the result of misalignment between the incentives of both players. On
the one hand, the principal wishes to maximize her profit, and is indifferent
towards the cost the agent endures during effort; on the other hand, the agent is
assumed to be risk averse, and wishes to minimize the volatility of her expected
wage (ceteris paribus). In the classical PA model, the principal knows the full
structure of the agent’s decision problem, and can offer a contract that serves her
best yet minimizing the aforementioned misalignment with the agent. To illustrate
this, we show an example where the agent may choose between three levels of
effort and there are two possible outcomes. As we wish to illustrate a general
point, we will keep the exact utility function and cost structure implicit and
just mention that the utility is concave and higher costs induce “better" output
distributions. The following figure depicts the space of contracts from which the
principal may offer, and the resulting effort level the agent chooses, given each
possible contract. Note that unlike [20], the space of contracts is continuous. By
[27], the optimal contract can be found in any of the interaction points {A,B,C}.
To see why this is the case, note, for example, that when offered the contract in
point A, the agent is indifferent between accepting and rejecting the contract,
and between investing medium effort or high effort. Thus, based on the model
assumptions, she will choose to invest the high level of effort. Not only that, but
this is the contract where the highest level of effort is achieved for the lowest
possible expected pay. Similarly, the contract B, is the “cheapest” contract under
which the agent chooses the middle effort level. Note that contract B is both
cheaper, and yields lower expected output than contract A. When examining the
principal-optimal contract, it is unclear which of the effects dominates. Therefore,
in the general case, the optimal contract can be in any of A,B,C. When the
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Fig. 1. The agent’s optimal choice in a PA model with two possible outputs, three
levels of effort:eH , eM , eL, N is the rejection zone, and a concave utility.

principal is fully aware of the agent’s incentive structure (i.e., her utility and
effort-cost pairs), finding the optimal contract is straightforward.

If we consider an uninformed the principal, she can attempt to learn an
optimal contract using the following pesudo-algorithm: (1) create a discretized
version of the contract space (2) Find the contract on the grid which yields the
optimal profit. Naively, using this approach, we will find a contract that is at
most ε away either A,B or C. Note that this does not preclude the possibility
that the contract that we find is ε away from point A, but the absolute optimal
contract is actually contract B. In extreme cases, the difference in the principal’s
profit between the algorithms’ result and the theoretically optimal one can be
arbitrarily high (see for example u(w) = 1− 1

w ). Furthermore, using a finer grid
may lead to different contract which is arbitrarily away, thus convergence of
the process in not guaranteed. In this paper, we provide a set of contracts, and
algorithm, and an appropriate discretization for which the process converges to a
single maximal contract. In addition, we detail two cases, for which the resulting
contract is the absolute possible best.

Further related work. As we have already explained, the majority of works so
far has focused on the full information setting and its variants: [6] studies a model
with many agents; [5] studies a setting with externalities for the agent; [13,15]
study principal-agent models with combinatorial structures over the actions
of the agent, or the possible outcomes. Additionally, in [15], the authors also
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discuss a black-box model and present sample-complexity results. More recently,
a new line of work on Bayesian settings for the principal-agent model has
emerged [2,10,11,19] where the agent type comes from a known probability
distribution.

Our work lies in the intersection of principal-agent models and multi-armed
bandit theory; [20] provide an excellent overview of literature in the field. [32,31,33]
study a repeated setting where the principal interacts with the agent for multiple
periods. [12] empirically compare several learning algorithms in a setting similar
to [20].

The Lipschitz Bandit problem [1] is a generalization of the multi-armed
bandit problem in which the set of arms comes from some compact space, and the
expected reward of each arm is a Lipschitz function of the arm. It has received
much attention from the bandit theory community over the years [24,4,7,23,26].

Our contributions. In this work we make several contributions to both eco-
nomic and computer science theory.
– We contribute to the study of agency problems by extending the literature

to a setting where the principal is oblivious to the agent decision problem
structure.

– We study this setting in a the context of risk averse agents. An extension
which is the driving force of the canonical theoretical principal-agent model.
To the best of our knowledge, our paper is first in the introduction of agent
risk aversion into the theoretical study of data driven decision problems.

– We introduce a novel set of contracts we call monotone-smooth contracts; a
large subset of monotone contracts set studied in [20].

– We complement this definition with a suitable discretization of the contract
space. Unlike [20], we show that for any monotone-smooth contract there exists
a contract in the discretized space for which the principal’s expected net profit
is ε-approximated. As far as we are aware, this is the first work to do so.

– Moreover, our result does not assume any specific agent utility function, but
rather only mild assumptions. This allows to apply machineries from multi-
armed bandit theory to find a contract ε-optimal against any monotone-smooth
contract.

– Finally, we present two fundamental cases in which economic theory suggests
the learned contract of our algorithm is ε-optimal against any contract the
principal may offer. The first case in when there are only two possible outcomes.
The second case is when there are many outcomes and the agent is risk neutral.

2 Preliminaries

In what follows, [m?] := {0, 1, . . . ,m} and [m] := {1, . . . ,m} for every natural m.
We study principal-agent problems with k outcomes and n effort levels. Let

0 < π(1) < π(2) < · · · < π(k) denote the value the principal gets under outcome
i ∈ [k]. We assume that π(k) = H, hence the values are bounded.



6 A.Cohen et al.

A contract w = (w(1), . . . , w(k)) specifies a positive payment to the agent
for every outcome; namely, w(i) is the wage the principal pays the agent for
outcome i.

Upon receiving a contract, the agent chooses an effort level e ∈ [n?]. Every
effort level is associated with a probability distribution fe over the set of outcomes
and a cost c(e); fe(j) is the probability of realizing outcome j when the agent
chooses the effort level e. In effort level 0, the agent rejects the contract, her
utility is zero under any contract, and by convention the value for the principal
is zero. We assume that the effort levels are ordered, i.e., 1 ≺ . . . ≺ n (the
order will be formally defined in Assumption 1). We follow the literature and
assume that the agent has a von Neumann-Morgenstern utility. For a contract
w = (w(1), . . . , w(k)) the agent chooses effort level of ê(w) as to maximize her
utility, defined as

U(w, e) =

k∑
j=1

fe(j) · u(w(j))− c(e),

where u is a monotonically-increasing concave function. Hence, ê(w) =
argmaxe∈[n∗] U(w, e).

The principal is risk-neutral; when she offers contract w to the agent, her
expected net profit from the contract is,

V (w) =

k∑
j=1

fê(w)(j) ·
(
π(j)− w(j)

)
.

To ensure that higher effort levels yield higher expected profit for the princi-
pal, the literature commonly lays down some assumptions about the outcome
distributions.

Assumption 1 (First-order Stochastic Dominance (FOSD)) A probabil-
ity distribution associated with higher effort first order stochastically dominates
a probability distribution associated with lower effort. Formally, if e � e′ , then
for every j ∈ [k] it holds that

∑k
i=j fe(i) ≥

∑k
i=j fe′(i).

Note that the assumption is equivalent to the following. For every pair of effort
levels e � e′ and for every sequence of real numbers a(1) ≤ · · · ≤ a(k),

k∑
i=1

fe(i) · a(i) ≥
k∑
i=1

fe′(i) · a(i) . (1)

Additionally, to break ties between effort levels we assume the following.

Assumption 2 The agent will choose the higher effort when indifferent between
two or more levels of effort.

In this work, the principal is faced with a stream of agents. The agents are
all different but identical—they share a common utility function, effort levels,
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costs from effort, and outcome distributions associated with each effort level.
The principal proceeds in rounds t = 1, 2, . . .. On round t, the principal offers a
contract wt to the agent associated with this round. The agent privately chooses
effort level ê(wt) unknown to the principal. The principal observes only the
outcome it independently drawn from fê(wt), and consequently gets a net profit
of π(it)− wt(it).

In what follows, for ε > 0, the goal of the principal is to find an ε-optimal
contract in the minimum number of rounds. A contract w is ε-optimal if V (w) ≥
V (w′)− ε for every w′ ∈W , for a set of contracts W to be defined in the sequel.

2.1 Multi-armed Bandit

In the multi-armed bandit problem [29], a decision maker sequentially collects
rewards from a given set of arms. In each round, the decision maker chooses
a single arm, and observes an independent sample from a reward distribution
associated with that arm. In our case, the goal of the decision maker is, after
a predetermined number of rounds, to select an ε-optimal arm; that is, an arm
whose expected reward is at most ε less than the expected reward of any arm.

When the set of arms is finite, of size N , and the rewards are bounded in
[0, B], the seminal work of [16] presents an algorithm called MedianElimination
with the following guarantee.

Theorem 1 ([16]). The MedianElimination(ε, δ) returns an ε-optimal arm
with probability at least 1− δ after O((NB2/ε2) · log(1/δ)) rounds.

In our problem, each contract can be seen as an arm. The expected reward of
each arm is exactly the principal’s utility associated with this contract. It is then
expected that the principal would simply execute MedianElimination on the
space of contracts to obtain an ε-optimal one. However, the space of contracts
is not finite which is crucial for MedianElimination to run. In the sequel we
show how to overcome this difficulty by discretizing the space of contracts, and
running MedianElimination over the discretization.

3 Main Technical Result

In this section we present our algorithm and analyze its sample complexity, but
before doing so let us first define the space of contracts W that we can learn.
The algorithm is presented in Section 3.2.

3.1 Learnable Contracts

Let w0 > 0 be a minimum wage for any outcome.

Definition 1 (B-bounded contract). A contract w is B-bounded if w0 ≤
w(i) ≤ B for every i ∈ [k].
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For a bounded contract, together with the assumption that the principal’s
profits are bounded, ensures that the principal’s expected net profit V (w) can be
estimated statistically.

Definition 2 (Monotone-smooth contract). A contract w is monotone-
smooth if for every i ∈ [k − 1] it holds that 0 ≤ w(i+ 1)−w(i) ≤ π(i+ 1)− π(i).

For a monotone-smooth contract, Eq. (1) ensures that, keeping the contract
fixed, the principal’s utility cannot decrease if the agent increases her effort level.
In the sequel, this property allows us to bound the difference in the principal’s
utility between two similar contracts.

We define W as follows.

W = {w : w is monotone-smooth and H-bounded} .

We are aware that this set seems restrictive at first glance, yet we argue that in
some important special cases, the principal’s optimal net profit is achieved by a
contract from this set. For example, when there are only two outcomes or the
utility of the agent is linear (see Section 4).

3.2 Algorithm

Let w? ∈W be an optimal contract in W , that is V (w?) ≥ V (w) for all w ∈W .
The goal of our algorithm is to find an ε-optimal contract w, namely a contract
for which V (w?) ≤ V (w) + ε within a predetermined number of rounds. We
conjecture that it cannot be done in general therefore we make the following
simplifying assumption.

Assumption 3 (Bounded Risk-Aversion) The agent’s utility from wage u is
twice continuously-differentiable. Moreover, there exists a reference utility function
r that is a monotonically increasing, twice-differentiable, concave function such
that u′′(w)/u′(w) ≥ r′′(w)/r′(w) for all w > 0. This is equivalent to w 7→
u′(w)/r′(w) being monotone-nondecreasing in w.

Intuitively, this assumption ensures that making small changes to a contract does
not produce behavior by the agent that is drastically different than if the agent’s
utility would have been r instead of u.*

Our algorithm works as follows. The principal initially constructs a cover Wη

of W , and then run MedianElimination on Wη. Indeed, the main technical
difficulty in this paper is in defining Wη properly so that the following result
holds.
* An alternative, slightly less general, version of Assumption 3 is: Assume there exists
a finite η > 1 such that −xu′′(w)/u′(w) > η for all w > 0. Note that the element on
the left is the cannonical Arrow-Pratt relative risk aversion measure of the agent
[3,28], and the element of the right corresponds with the Arrow-Pratt relative risk
aversion measure of the Isoelastic utility function r(w) = wη−1−1

η−1
.
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Theorem 2. Suppose that Assumptions 1 to 3 hold. Let η < r′(2H) ·H/k. There
exists a contract space Wη such that for every contract w ∈W , there is a contract
w′ ∈Wη for which V (w) ≤ V (w′) + kη/r′(2H). Moreover, the size of Wη is at
most M = ((r(2H)− r(w0))/η)

k, and Wη can be constructed in time O(M).

The proof of the theorem is found in Section 3.3. Finally, we have our main
result.

Theorem 3. Suppose that Assumptions 1 to 3 hold. Let η = ε · r′(2H)/2k.
Executing MedianElimination(ε/2, δ) on the set Wη produces the following
guarantee. With probability at least 1 − δ, the algorithm outputs an ε-optimal
contract after

O

((
4kH(r(2H)− r(w0))

ε

)k+2

· log(1/δ)

)

rounds.

Proof. By Theorem 2 and by the choice of η, there is a w′ ∈ Wη for which
V (w′) ≤ V (w?)+ε/2. By Theorem 1, with probability 1−δ, MedianElimination
returns a contract ŵ ∈ Wη such that V (ŵ) ≤ V (w′) + ε/2. Combining both
results we get

V (ŵ) ≤ V (w′) + ε/2 ≤ V (w?) + ε/2 + ε/2 = V (w?) + ε ,

as required. Moreover, MedianElimination is done in the following number of
rounds:

O

(
|Wη|H2

(ε/2)2
log(1/δ)

)
= O

((
4kH(r(2H)− r(w0))

ε

)k+2

· log(1/δ)

)
.ut

3.3 Discretization of the Contract Space

In this section we prove Theorem 2. We start by defining the notion of a coarse
contract. To that end, we utilize the inverse function of r (that exists everywhere
since r is increasing) which we denote by r−1.

Definition 3 (η-coarse contract). A contract W is η-coarse if there exists
natural numbers l0, l1, . . . , lk−1 such that w(1) = r−1(r(w0) + η · l0), and for
i ∈ [k − 1], w(i+ 1) = r−1(r(w(i)) + η · li).

That is, in a coarse contract the ratios between wages of consecutive outcomes
come from a discrete set of options. We define:

Wη = {w : w is η-coarse and 2H-bounded} .

We prove the following.
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Lemma 1. The size of Wη is at most M = ((r(2H) − r(w0))/η)
k. Moreover,

Wη can be constructed in time O(kM).

Proof. The wage of outcome i has the form r−1(r(w0)+η · l) for a natural number
l, and satisfies w(i) ≤ 2H. Therefore, the number of choices for w(i) is at most
(r(2H)− r(w0))/η. Since there are k outcomes, there must be at most M such
contracts. To construct Wη we can go over all of its elements one-by-one, which
takes O(M) time. ut

Finally let w ∈W , we need to show that there is w′ ∈Wη such that V (w) ≤
V (w′)+2kHη. We construct w′ ∈Wη as follows. We let l0 = d(r(w(1)−r(w0))/ηe,
and for i ∈ [k−1], li = d(r(w(i+1))−r(w(i)))/ηe. Since r−1 is also monotonically-
increasing, we have that w′(1) ≥ w(1) as well as r(w′(i + 1)) − r(w′(i)) ≥
r(w(i+ 1))− r(w(i)) for i ∈ [k − 1] by construction. Clearly, w′ is η-coarse and
w′(i) ≥ w0, yet it remains to show that w′(i) ≤ 2H. For that, we have the
following lemma.

Lemma 2. We have for all i ∈ [k − 1], r(w′(i)) ≤ r(w(i)) + ηi.

Proof. By construction, for each i ∈ [k − 1] we have r(w′(i + 1)) − r(w′(i)) ≤
r(w(i+1))−r(w(i))+η. From this we entail that r(w′(i))−r(w′(1)) ≤ r(w(i))−
r(w(1)) + (i− 1) · η. Since also by construction r(w′(1)) ≤ r(w(1)) + η, we get
that r(w′(i)) ≤ r(w(i)) + i · η as required. ut

With the lemma at hand, and by assumption that η < r′(2H) ·H/k we obtain

w′(k) ≤ r−1(r(w(k)) + η · k) ≤ r−1(r(H) + r′(2H) ·H) ≤ 2H ,

using the concavity of r. Therefore we have w′ ∈Wη.
We now show that, compared to w, under w′ the agent’s effort cannot decrease.

Then, we use this fact to bound the difference in the principal’s utility between
w and w′.

In order to prove our first claim, we will make use of the following lemma.

Lemma 3 (Grossman and Hart [18]). Let w1 and w2 be contracts. Then,

k∑
i=1

(
fê(w1)(i)− fê(w2)(i)

)
·
(
u(w1(i))− u(w2(i))

)
≥ 0.

Lemma 4. The effort level the agent chooses can only increase from w to w′.

Proof. First, notice that since the wages only increase, had the agent accepted
the contract w, i.e., chose an effort level different than 0, she would also accept
contract w′. So, let e′ = ê(w′) and e = ê(w) be the effort levels the agent chooses
under contracts w′ and w respectively.

If we apply Lemma 3 with w and w′, we obtain

k∑
i=1

(
fe′(i)− fe(i)

)
· (u(w′(i))− u(w(i))) ≥ 0 .
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Assume for now that u(w′(i))− u(w(i)) is monotone nondecreasing in i. Given
this, we will show by contradiction that e′ � e. So, for the sake of contradiction
assume that e′ ≺ e. From the fact that fe dominates fe′ , Eq. (1) implies that

k∑
i=1

(
fe′(i)− fe(i)

)
·
(
u(w′(i))− u(w(i))

)
≤ 0 .

Thus,

k∑
i=1

(fe′(i)− fe(i)) · u(w(i)) =
k∑
i=1

(fe′(i)− fe(i)) · u(w′(i)). (2)

Therefore, by optimality of e and e′ under contracts w and w′ respectively, we
obtain

k∑
i=1

(
fe′(i)− fe(i)

)
· u(w(i)) ≤ c(e′)− c(e), and

k∑
i=1

(
fe′(i)− fe(i)

)
· u(w′(i)) ≥ c(e′)− c(e).

Combining Eq. (2) with the two inequalities above, we obtain that

U(w′, e′) =

k∑
i=1

fe′(i) · u(w′(i))− c(e′) =
k∑
i=1

fe(i) · u(w′(i))− c(e) = U(w′, e) .

This means that the agent is indifferent between effort levels e and e′ under
contract w′. Since, by Assumption 2, the agent chooses the highest effort in this
case, we must have e ≺ e′ — a contradiction.

Hence, in order to prove the lemma it suffices to prove that u(w′(i))−u(w(i))
is monotone nondecreasing in i. This is equivalent to showing that u(w′(i+1))−
u(w′(i)) ≥ u(w(i+1))− u(w(i)). Denote c = r(w′(i))− r(w(i)). By construction,
r(w′(i+ 1))− r(w(i+ 1)) ≥ c. Consequently, since u is monotone nondecreasing,
it suffices to show

u(r−1(r(w(i+ 1)) + c))− u(r−1(r(w(i)) + c)) ≥ u(w(i+ 1))− u(w(i)).

Thus, the proof boils down to showing c 7→ u(r−1(r(w(i + 1)) + c)) −
u(r−1(r(w(i)) + c)) is monotone nondecreasing in c. Taking the derivative with
respect to c, we need to show

u′
(
r−1(r(w(i+ 1)) + c)

)
r′
(
r−1(r(w(i+ 1)) + c)

) − u′
(
r−1(r(w(i)) + c)

)
r′
(
r−1(r(w(i)) + c)

) ≥ 0.

However, the above holds since the agent is BRA (Assumption 3), and as
r−1(r(w(i+ 1)) + c) ≥ r−1(r(w(i)) + c) due to both r and r−1 being monotone-
increasing. ut
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We can now bound the loss the principal suffers when she offers w′ instead of
w.

Lemma 5. It holds that V (w) ≤ V (w′) + kη/r′(2H).

Proof. Since we focus on scenarios where the optimal contract is monotone-
smooth, we get that the net profit of the principal at the optimal contract,
π(i)− w(i), is nondecreasing in i. Furthermore, from Eq. (1), keeping w fixed,
the principal only benefits from an increase of the agent’s effort level. Denote
e = ê(w) and e′ = ê(w′). From Lemma 4 we know that e′ � e. We have,

V (w) =

k∑
i=1

fe(i) ·
(
π(i)− w(i)

)
≤

k∑
i=1

fe′(i) ·
(
π(i)− w(i)

)
= V (w′) +

k∑
i=1

fe′(i) ·
(
w′(i)− w(i)

)
. (3)

Now by Lemma 2, w′(i) ≤ r−1(r(w(i)) + η · i) for all i ∈ [k]. Note that r−1 is
convex. Then, as η < r′(2H) ·H/k, we obtain

w′(i)− w(i) ≤ r−1(r(w(i)) + η · i)− w(i)

≤ η · i
r′(2H) ·H

(
r−1
(
r(w(i)) + r′(2H) ·H

)
− w(i)

)
≤ η · i
r′(2H) ·H

(
r−1
(
r(H) + r′(2H) ·H

)
−H

)
≤ η · i
r′(2H) ·H

(
2H −H

)
≤ η · k
r′(2H)

,

where the second and third inequalities are by the convexity of r−1, and the
fourth inequality is by the concavity of r. Combining the latter with Eq. (3), we
get V (w) ≤ V (w′) + η · k/r′(2H). ut

4 Applications

In this section we highlight two cases that received attention in the past. For
each of them, when Assumptions 1 to 3 hold, the optimal contract will be in the
set W , and thus by learning an ε−optimal contract in W , we approximate the
best contract the principle could have offered the agent had she known her utility
function, effort levels and costs, and the distributions they induce over outcomes.
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Two outcomes. Firstly, we focus on the case where there are only two outcomes
and show that the optimal contract is in W.

Lemma 6. When there are only two outcomes, the optimal contract is monotone-
smooth and 2H-bounded.

Proof. By [18], the optimal contract in the two outcome case is of the shape:
w(2) = w(1) + a(π(2) − π(1)) for some a ∈ [0, 1]. By plugging this expression
into the inequality in Definition 2, we get that the optimal contract is monotone-
smooth. To see that the optimal contract is 2H-bounded, let e denote her chosen
effort level. Since the principal’s utility at the optimal contract is nonnegative,
fe(1)w(1) + fe(2)w(2) ≤ fe(1)π(1) + fe(2)π(2) ≤ H, and in particular w(1) ≤ H.
Now, w(2) = w(1) + a(π(2)− π(1)) ≤ H + 1 ·H = 2H. ut

Thus, by Theorem 3, applied to our discretized contract space, MedianE-
limination finds an ε-optimal contract under Assumptions 1 to 3. Note, the
FOSD assumption (Assumption 1) is standard in the literature, hence our result
essentially requires only the bounded risk-averse assumption (Assumption 3).

Risk neutral agent. [9] studies a setting in the agent is risk-neutral, and the
principal has only partial knowledge of the agent’s action space. Had the principal
known the complete action space of the agent, the optimal contract would have
been linear. In this setting, the principal can derive the optimal linear contract
with respect to only the known actions of the agent. [9] show that her profit
from the actual action taken by the agent (which can be one that the principal
is unaware of) can only be higher than the principal’s expectations.

In the following lemma we show that when the agent is risk-neutral, the
optimal theoretical contract is in W , and thus our algorithm learns a contract
that approximates it.

Lemma 7. If the agent is risk-neutral then the optimal contract is H-bounded
and monotone-smooth.

Proof. When the agent is risk neutral, the optimal contract is of the shape
w(i) = π(i)− α for some constant α ∈ R+ (Proposition 14.B.2 on page 482 in
[27]). As π(i+ 1) > π(i), this contract is monotone-smooth. And as π(k) ≤ H it
is also H-bounded. ut

5 Conclusions

In this paper we studied the principal-agent problem when the principal has zero
information about the the agent. We introduced the class of monotone-smooth
contracts and showed that when the optimal contract is monotone-smooth and
the agent is bounded risk-averse, then we can learn an approximately optimal
contract. We complemented this result with a multi-armed bandit algorithm that
finds an approximately optimal contract and we provided bounds on the number
of samples it needs. Then, we applied our algorithm to two fundamental scenarios.
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The first one is when the output space of the task is binary and the second one
is when the agent is risk-neutral. Economic theory suggests that the optimal
contract is monotone-smooth. Thus the net profit of the principal generated by
the resulting contract approximates the optimal net profit she can achieve in
general. To the best of our knowledge these are the first positive results even
regarding approximately optimal contracts.

Several intriguing questions remain. It is interesting to understand whether
the assumption of bounded risk-aversion is needed to guarantee learning of
monotone-smooth contracts. The answer to this question is not obvious even
when there are only two outcomes. Furthermore, we wish to find other conditions
and assumptions that allow learning. In our model, we assume that the agents
are identical. Can we learn ε-optimal contracts if there are many different types
of agents? We conjecture that we can under the suitable assumptions, like the
setting of [20]. On the other hand, we furthermore conjecture that a there exist
cases in which learning is not possible at all. Lower bounds, or even partial
characterizations of such cases would be of great interest.
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