The smallest number of vertices in a 2-arc-strong digraph without pair of arc-disjoint in- and out-branchings *

Ran Gu^{1}, Gregory Gutin ${ }^{2}$, Shasha Li^{3}, Yongtang Shi ${ }^{4}$, and Zhenyu Taoqiu ${ }^{4}$
${ }^{1}$ College of Science, Hohai University, Nanjing, Jiangsu Province 210098, P.R. China rangu@hhu.edu.cn
${ }^{2}$ Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK g.gutin@rhul.ac.uk
${ }^{3}$ Department of Mathematics, Ningbo University, Ningbo 315211, Zhejiang, China yezi-pg@163.com
${ }^{4}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
shi@nankai.edu.cn, tochy@mail.nankai.edu.cn

Abstract

Branchings play an important role in digraph theory and algorithms. In particular, a chapter in the monograph of Bang-Jensen and Gutin, Digraphs: Theory, Algorithms and Application, Ed. 2, 2009 is wholly devoted to branchings. The well-known Edmonds Branching Theorem provides a characterization for the existence of k arc-disjoint out-branchings rooted at the same vertex. A short proof of the theorem by Lovász (1976) leads to a polynomial-time algorithm for finding such out-branchings. A natural related problem is to characterize digraphs having an out-branching and an in-branching which are arc-disjoint. Such a pair of branchings is called a good pair. Bang-Jensen, Bessy, Havet and Yeo (2020) pointed out that it is NPcomplete to decide if a given digraph has a good pair. They also showed that every digraph of independence number at most 2 and arc-connectivity at least 2 has a good pair, which settled a conjecture of Thomassen for digraphs of independence number 2 . Then they asked for the smallest number $n_{n g p}$ of vertices in a 2 -arc-strong digraph which has no good pair. They proved that $7 \leq n_{n g p} \leq 10$. In this paper, we prove that $n_{n g p}=10$, which solves the open problem.

Keywords: Arc-disjoint branchings • out-branching • in-branching • arcconnectivity.

[^0]
1 Introduction

Let $D=(V, A)$ be a digraph. For a non-empty subset $X \subset V$, the in-degree (resp. out-degree) of the set X, denoted by $d_{D}^{-}(X)$ (resp. $d_{D}^{+}(X)$), is the number of arcs with head (resp. tail) in X and tail (resp. head) in $V \backslash X$. The arc-connectivity of D, denoted by $\lambda(D)$, is the minimum out-degree of a proper subset of vertices. A digraph is k-arc-strongly connected (or, just k-arc-strong) if $\lambda(D) \geq k$. In particular, a digraph is strongly connected (or, just strong) if $\lambda(D) \geq 1$.

An out-branching (in-branching) of a digraph $D=(V, A)$ is a spanning tree in the underlying graph of D whose edges are oriented in D such that every vertex except one, called the root, has in-degree (out-degree) one. Branchings play an important role in digraph theory and algorithms. In particular, Chapter 9 in the monograph [5] is wholly devoted to branchings. The well-known Edmonds Branching Theorem (see e.g. [5]) provides a characterization for the existence of k arc-disjoint out-branchings rooted at the same vertex. A short proof of the theorem by Lovász [11] leads to a polynomial-time algorithm for finding such out-branchings. A natural related problem is to characterize digraphs having an out-branching and an in-branching which are arc-disjoint. Such a pair of branchings is called a good pair.

Thomassen [12] conjectured the following:
Conjecture 1. There is a constant c, such that every digraph with arc-connectivity at least c has a good pair.

He also proved that it is NP-complete to decide whether a given digraph D has an out-branching and an in-branching both rooted at the same vertex such that these are arc-disjoint. This implies that it is NP-complete to decide if a given digraph has a good pair [2]. Conjecture 1 has been verified for semicomplete digraphs [1] and their genearlizations: locally semicomplete digraphs [7] and semicomplete compositions [6] (it follows from the main result in [6]).

An out-branching and an in-branching of D are k-distinct if each of them has at least k arcs, which are absent in the other. Bang-Jensen et al. [8] proved that the problem of deciding whether a strongly connected digraph D has k-distinct out-branching and in-branching is fixed-parameter tractable when parameterized by k. Settling an open problem in [8], Gutin et al. [10] extended this result to arbitrary digraphs.

In [2], Bang-Jensen et al. showed that every digraph of independence number at most 2 and arc-connectivity at least 2 has a good pair, which settles the conjecture for digraphs of independence number 2 .

Theorem 1. If D is a digraph with $\alpha(D) \leq 2 \leq \lambda(D)$, then D has a good pair.
Moreover, they also proved that every digraph on at most 6 vertices and arcconnectivity at least 2 has a good pair and gave an example of a 2 -arc-strong digraph D on 10 vertices with independence number 4 that has no good pair. They posed the following open problem.

Problem 1 ([2]). What is the smallest number n of vertices in a 2-arc-strong digraph which has no good pair?

In this paper, we prove that every digraph on at most 9 vertices and arcconnectivity at least 2 has a good pair, which answers this problem. The main results of the paper are as follows.

Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.
Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.
Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.
This paper is organised as follows. In the rest of this section, we provide further terminology and notation on digraphs. Undefined terms can be found in $[4,5]$. In Section 2, we outline the proofs of Theorems 2, 3 and 4 and state some auxiliary lemmas which we use in their proofs. Section 3 contains a number of technical lemmas which will be used in proofs of our main results. Then we respectively devote one section for proofs of each theorem and its relevant auxiliary lemmas. The proofs not given in this paper due to the space limit can be found in [9].

Additional Terminology and Notation. For a positive integer n, $[n]$ denotes the set $\{1,2, \ldots, n\}$. Throughout this paper, we will only consider digraphs without loops and multiple arcs. Let $D=(V, A)$ be a digraph. We denote by $u v$ the arc whose tail is u and whose head is v. Two vertices u, v are adjacent if at least one of $u v$ and $v u$ belongs to A. If u and v are adjacent, then we also say that u is a neighbour of v and vice versa. If $u v \in A$, then v is called an out-neighbour of u and u is called an in-neighbour of v. Moreover, we say $u v$ is an out-arc of u and an in-arc of v and that u dominates v. The order $|D|$ of D is $|V|$.

In this paper, we will extensively use digraph duality, which is as follows. Let D be a digraph and let $D^{\text {rev }}$ be the reverse of D, i.e., the digraph obtained from D by reversing every arc $x y$ to $y x$. Clearly, D contains a subdigraph H if and only if $D^{\text {rev }}$ contains $H^{\text {rev }}$. In particular, D contains a good pair if and only if $D^{\text {rev }}$ contains a good pair.

Let $N_{D}^{-}(X)=\{y: y x \in A, x \in X\}$ and $N_{D}^{+}(X)=\{y: x y \in A, x \in X\}$. Note that X may be just a vertex. For two non-empty disjoint subsets $X, Y \subset V$, we use $N_{Y}^{-}(X)$ to denote $N_{D}^{-}(X) \cap Y$ and $d_{Y}^{-}(X)=\left|N_{Y}^{-}(X)\right|$. Analogously, we can define $N_{Y}^{+}(X)$ and $d_{Y}^{+}(X)$. For two non-empty subsets $X_{1}, X_{2} \subset V$, define $\left(X_{1}, X_{2}\right)_{D}=\left\{v_{1} v_{2} \in A: v_{1} \in X_{1}\right.$ and $\left.v_{2} \in X_{2}\right\}$ and $\left[X_{1}, X_{2}\right]_{D}=\left(X_{1}, X_{2}\right)_{D} \cup$ $\left(X_{2}, X_{1}\right)_{D}$. We will drop the subscript when the digraph is clear from the context.

We write $D[X]$ to denote the subdigraph of D induced by X. A clique in D is an induced subdigraph $D[X]$ such that any two vertices of X are adjacent. We say that D contains K_{p} if it has a clique on p vertices. A vertex set X of D is independent if no pair of vertices in X are adjacent. A dipath (dicycle) of D with t vertices is denoted by $P_{t}\left(C_{t}\right)$. We drop the subscript when the order is not specified. A dipath P from v_{1} to v_{2}, denoted by $P_{\left(v_{1}, v_{2}\right)}$, is often called
a $\left(v_{1}, v_{2}\right)$-dipath. A dipath P is a Hamilton dipath if $V(P)=V(D)$. We call C_{2} a digon. A digraph without digons is called an oriented graph. If two digons have and only have one common vertex, then we call this structure a bidigon. A semicomplete digraph is a digraph D that each pair of vertices has an arc between them. A tournament is a semicomplete oriented graph.

In- and out-branchings were defined above. An out-tree (in-tree) is an outbranching (in-branching) of a subdigraph of D. We use $B_{s}^{+}\left(B_{t}^{-}\right)$to denote an out-branching rooted at s (an in-branching rooted at t). The root $s(t)$ is called out-generator (in-generator) of D. We denote by $\operatorname{Out}(D)(\operatorname{In}(D))$ the set of out-generators (in-denerators) of D. If the root is not specified, then we drop the subscripts of B_{s}^{+}and B_{t}^{-}. We also use $O_{D}\left(I_{D}\right)$ to denote an out-branching (in-branching) of a digraph D. If O_{D} and I_{D} are arc-disjoint, then we write $\left(O_{D}, I_{D}\right)$ to denote a good pair in D.

2 Proofs Outline

In this section, we outline constructions we use to prove our main results. We prove each of them by contradiction. We give the statements of some auxiliary lemmas. Some of their proofs are too complicated and we will not give them in the paper due to the length restriction. For simplicity, when outlining the proof of our main results, we assume that $\left|D_{1}\right|=7,\left|D_{2}\right|=8$ and $\left|D_{3}\right|=9$.

2.1 Theorem 2

First we show that the largest clique in D_{1} is a tournament by Lemma 6, next we prove that D_{1} is an oriented graph in Claim 2.1 by Lemma 7. Lemmas 6 and 7 will be given in Section 3. Then we use Proposition 12 to show that D_{1} has a Hamilton dipath in Section 4. After that, we prove that D_{1} has a good pair by Propositon 10, which is shown in Section 3.

2.2 Theorem 3

Our proof will follow three steps.
Firstly, we prove that the largest clique R in D_{2} has 3 vertices by Lemma 6 . Then we show that R is a tournament through Claim 3.1, which is proved by Lemmas 6 and 7.

Our second step is to prove that D_{2} is an oriented graph in Claim 3.2 by Lemmas 8, 9 and 10, which are given in Section 3.

In the last step, we proceed as follows in Section 5. We use Proposition 15 to show that D_{2} has a Hamilton dipath. To prove it, we show Proposition 14 first. After that, we prove that D_{2} has a good pair by Propositon 10 .

2.3 Theorem 4

Our proof will follow four steps.
Firstly, we show that the largest clique R in D_{3} has 3 vertices by Claim 4.1, which is proved using Proposition 5 given in Section 3, and Lemmas 6 and 7.

Next we show that R has no digons by Claim 4.2, which is proved analogously to Claim 3.1 using Lemmas 7, 8, 9 and 10.

Our third step is to show that D_{3} is an oriented graph in Claim 4.3. To do this we need Lemmas 11 and 13 given in Section 6. For the first lemma, we give a generalization of Proposition 6 as Proposition 16, and for the second one, we prove Lemma 12 first.

Then we use Lemma 14 to show that D_{3} has a Hamilton dipath in Section 6. To prove it, we show Proposition 17 first. After that, we prove that D_{3} has a good pair by Proposition 10.

3 Preliminaries and useful lemmas

Proposition 5 Let D be a digraph with $\lambda(D) \geq 2$ and with a good pair $\left(B_{s}^{+}, B_{s}^{-}\right)$. If there exists a vertex t in D such that $D[\{s, t\}]$ is a digon, then D has a good pair $\left(B_{t}^{+}, B_{t}^{-}\right)$.

Proof. Let $B_{t}^{+}=t s+B_{s}^{+}-e_{1}$ and $B_{t}^{-}=B_{s}^{-}+s t-e_{2}$, where $e_{1}\left(e_{2}\right)$ is the only in-arc (out-arc) of t in $B_{s}^{+}\left(B_{s}^{-}\right)$. Observe that $B_{t}^{+}\left(B_{t}^{-}\right)$is an out-branching (inbranching) rooted at t in D. Since the root of any out-branching has in-degree zero, if $t s \in B_{s}^{+} \cup B_{s}^{-}$, then $t s$ must be in B_{s}^{-}and moreover $t s$ is the only out-arc e_{2} of t in B_{s}^{-}. Similarly, if $s t \in B_{s}^{+} \cup B_{s}^{-}$, then st must be in B_{s}^{+}and moreover $s t$ is the only in-arc e_{1} of t in B_{s}^{+}. Thus, B_{t}^{+}and B_{t}^{-}are arc-disjoint and so $\left(B_{t}^{+}, B_{t}^{-}\right)$is a good pair of D.

Proposition 6 Let D be a digraph with a subdigraph Q that has a good pair $\left(O_{Q}, I_{Q}\right)$. Let $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$ and $X \cup Y=$ $V-V(Q)$. Let $X_{i}\left(Y_{j}\right)$ be the initial (terminal) strong components in $D[X]$ $(D[Y]), i \in[a](j \in[b])$. If one of the following holds, then D has a good pair. Meanwhile, we can always get two arc-disjoint $\mathcal{P}_{X}, \mathcal{P}_{Y}$ and respectively an outand an in-forest T_{X} and T_{Y} in D.

1. $d_{Y}^{-}\left(X_{1}\right) \geq 1, d_{Y}^{-}\left(X_{i}\right) \geq 2, i \in\{2, \ldots, a\}$ and $d_{X}^{+}\left(Y_{j}\right) \geq 2, j \in[b]$.
2. $d_{X}^{+}\left(Y_{1}\right) \geq 1, d_{X}^{+}\left(Y_{j}\right) \geq 2, j \in\{2, \ldots, b\}$ and $d_{Y}^{-}\left(X_{i}\right) \geq 2, i \in[a]$.

Proof. Let B^{+}be an out-tree containing O_{Q} and an in-arc of any vertex in Y from Q. Let B^{-}be an in-tree containing I_{Q} and an out-arc of any vertex in X to Q. Set $\mathcal{X}=\left\{X_{i}, i \in[a]\right\}$ and $\mathcal{Y}=\left\{Y_{j}, j \in[b]\right\}$. By the digraph duality, it suffices to prove that condition 1 implies that D has a good pair.

Now assume that $d_{Y}^{-}\left(X_{1}\right) \geq 1, d_{Y}^{-}\left(X_{i}\right) \geq 2, i \in\{2, \ldots, a\}$, and $d_{X}^{+}\left(Y_{j}\right) \geq$ $2, j \in[b]$. Then there are at least two arcs from Y_{j} (for each $j \in[b]$) to X, at least two arcs from Y to X_{i} (for each $i \in\{2, \ldots, a\}$) and at least one arc
from Y to X_{1}. Set $X_{1}^{\prime}=X_{1}$. If there is an arc $y^{1} x_{1}$ from Y to X_{1}^{\prime} with y^{1} in some $Y_{j}, j \in[b]$, then we choose such an arc and let $Y_{1}^{\prime}=Y_{j}$, otherwise we choose an arbitrary arc $y^{1} x_{1}$ from Y to X_{1}^{\prime} and let Y_{1}^{\prime} be an arbitrary strong component in \mathcal{Y}. Let $\mathcal{P}_{X}=\left\{y^{1} x_{1}\right\}$. There now exists an arc, $y_{1} x^{1}$, out of Y_{1}^{\prime} $\left(x^{1} \in X\right)$ which is different from $y^{1} x_{1}$ (as Y_{1}^{\prime} has at least two arcs out of it). If there is such an $\operatorname{arc} y_{1} x^{1}$ with x^{1} in some $X_{i}, i \in\{2, \ldots, a\}$, then we choose one of these arcs and let $X_{2}^{\prime}=X_{i}$, otherwise we choose such an arbitrary arc $y_{1} x^{1}$ out of $Y_{1}^{\prime}\left(x^{1} \in X\right)$ and let X_{2}^{\prime} be an arbitrary strong component in $\mathcal{X}-X_{1}^{\prime}$. Let $\mathcal{P}_{Y}=\left\{y_{1} x^{1}\right\}$. Likewise, for $t \geq 2$, we get an arc $y^{t} x_{t}$ into $X_{t}^{\prime}\left(y^{t} \in Y\right)$ which is different from $y_{t-1} x^{t-1}$ in \mathcal{P}_{Y}. If there is such an arc $y^{t} x_{t}$ with y^{t} in some $Y_{j} \in \mathcal{Y}-\left\{Y_{1}^{\prime}, \ldots, Y_{t-1}^{\prime}\right\}$, then choose one of these arcs and let $Y_{t}^{\prime}=Y_{j}$, otherwise we choose such an arbitrary arc $y^{t} x_{t}$ and let Y_{t}^{\prime} be an arbitrary strong component in $\mathcal{Y}-\left\{Y_{1}^{\prime}, \ldots, Y_{t-1}^{\prime}\right\}$. Add $y^{t} x_{t}$ to \mathcal{P}_{X}. For $s \geq 2$, we get an arc $y_{s} x^{s}$ out of $Y_{s}^{\prime}\left(x^{s} \in X\right)$ which is different from $y^{s} x_{s}$ in \mathcal{P}_{X}. If there is such an arc $y_{s} x^{s}$ with x^{s} in some $X_{i} \in \mathcal{X}-\left\{X_{1}^{\prime}, \ldots, X_{s-1}^{\prime}\right\}$, then we choose one of these arcs and let $X_{s}^{\prime}=X_{i}$, otherwise we choose such an arbitrary arc $y_{s} x^{s}$ and let X_{s}^{\prime} be an arbitrary strong component in $\mathcal{X}-\left\{X_{1}^{\prime}, \ldots, X_{s-1}^{\prime}\right\}$. Add $y_{s} x^{s}$ to \mathcal{P}_{Y}. Hence we get two arc sets \mathcal{P}_{X} and \mathcal{P}_{Y} with $\mathcal{P}_{X} \cap \mathcal{P}_{Y}=\emptyset$.

We will now show that D has a good pair. Let D_{X} be the digraph obtained from $D[X]$ by adding one new vertex y^{*} and arcs from y^{*} to x_{i} for $i \in[a]$. Analogously let D_{Y} be the digraph obtained from $D[Y]$ by adding one new vertex x^{*} and arcs from y_{j} to x^{*} for $j \in[b]$. Since $\operatorname{Out}\left(D_{X}\right)=\left\{y^{*}\right\}$ and $\operatorname{In}\left(D_{Y}\right)=\left\{x^{*}\right\}$, there exists an out-branching $B_{y^{*}}^{+}$in D_{X} and an in-branching $B_{x^{*}}^{-}$in D_{Y}. Set $T_{X}=B_{y^{*}}^{+}-y^{*}$ and $T_{Y}=B_{x^{*}}^{-}-x^{*}$.

By construction, $\left(O_{D}, I_{D}\right)$ is a good pair of D with $O_{D}=B^{+}+\mathcal{P}_{X}+T_{X}$ and $I_{D}=B^{-}+\mathcal{P}_{Y}+T_{Y}$.

Corollary 1. Let D be a digraph with $\lambda(D) \geq 2$ that contains a subdigraph Q with a good pair. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$. If $X \cap Y=\emptyset$ and $X \cup Y=V-V(Q)$, then D has a good pair.

Proof. Let X_{i} be the initial strong components in $D[X]$ and Y_{j} be the terminal strong components in $D[Y], i \in[a]$ and $j \in[b]$. Since $\lambda(D) \geq 2, d_{Y}^{-}\left(X_{i}\right) \geq 2$ and $d_{X}^{+}\left(Y_{j}\right) \geq 2$, for any $i \in[a]$ and $j \in[b]$, which implies that D has a good pair by Proposition 6.

Lemma 1 ([2]). Let D be a digraph and $X \subset V(D)$ be a set such that every vertex of X has both an in-neighbour and an out-neighbour in $V-X$. If $D-X$ has a good pair, then D has a good pair.

By Lemma 1, in this paper we will often use the fact that if Q is a maximal subdigraph of D with a good pair and $X=N_{D}^{-}(Q), Y=N_{D}^{+}(Q)$, then $X \cap Y=\emptyset$.

Lemma 2. Let D be a 2-arc-strong digraph containing a subdigraph Q with a good pair, $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$. If $X \cap Y=\emptyset$ and $X \cup Y=$ $V-V(Q)-\{w\}$, where $w \in V-V(Q)$, then D has a good pair.

Proof. Assume that Q has a good pair $\left(O_{Q}, I_{Q}\right)$. Let B^{+}be an out-tree containing O_{Q} with an in-arc of any vertex in Y from Q, while B^{-}be an in-tree containing I_{Q} with an out-arc of any vertex in X to Q.

First assume that either $(Y, w)_{D} \neq \emptyset$ or $(w, X)_{D} \neq \emptyset$. By the digraph duality, we may assume that $(Y, w)_{D} \neq \emptyset$, i.e., there exists an $\operatorname{arc} e$ from Y to w in D. Let $D^{\prime}=D-e$. Set $X^{\prime}=N_{D^{\prime}}^{-}(Q)=X$ and $Y^{\prime}=N_{D^{\prime}}^{+}(Q) \cup\{w\}=Y \cup\{w\}$. Let X_{i}^{\prime} be the initial strong components in $D^{\prime}\left[X^{\prime}\right]$ and Y_{j}^{\prime} be the terminal strong components in $D^{\prime}\left[Y^{\prime}\right], i \in[a]$ and $j \in[b]$. If w has an in-neighbour v in Y with v in some $Y_{j}^{\prime}, j \in[b]$, then let $e=v w$ and $Y_{1}^{*}=Y_{j}^{\prime}$, otherwise we choose an arbitrary in-neighbour v of w in Y and let $e=v w$ and Y_{1}^{*} be an arbitrary terminal strong component of $D^{\prime}\left[Y^{\prime}\right]$. Since $\lambda(D) \geq 2, d_{X^{\prime}}^{+}\left(Y_{1}^{*}\right) \geq 1, d_{X^{\prime}}^{+}\left(Y_{j}^{\prime}\right) \geq 2$ and $d_{Y^{\prime}}^{-}\left(X_{i}^{\prime}\right) \geq 2$, for any $Y_{j}^{\prime} \neq Y_{1}^{*}, j \in[b]$ and $i \in[a]$, which implies that we get arc sets $\mathcal{P}_{X^{\prime}}$ and $\mathcal{P}_{Y^{\prime}}$ with $\mathcal{P}_{X^{\prime}} \cap \mathcal{P}_{Y^{\prime}}=\emptyset$, and digraphs $T_{X^{\prime}}$ and $T_{Y^{\prime}}$ by Proposition 6 . By construction, D has a good pair $\left(B^{+}+\mathcal{P}_{X^{\prime}}+T_{X^{\prime}}+e, B^{-}+\mathcal{P}_{Y^{\prime}}+T_{Y^{\prime}}\right)$.

Now assume that $(Y, w)_{D}=\emptyset$ and $(w, X)_{D}=\emptyset$, which implies that $d_{X}^{-}(w) \geq$ 2 and $d_{Y}^{+}(w) \geq 2$. Let X_{i} be the initial strong components in $D[X]$ and Y_{j} be the terminal strong components in $D[Y], i \in[a]$ and $j \in[b]$. Since $\lambda(D) \geq 2$ and $(w, X)_{D}=(Y, w)_{D}=\emptyset, d_{Y}^{-}\left(X_{i}\right) \geq 2$ and $d_{X}^{+}\left(Y_{j}\right) \geq 2$ for any $i \in[a]$ and $j \in[b]$. By Proposition 6 , we get \mathcal{P}_{X}, T_{X} and \mathcal{P}_{Y}, T_{Y} with $\mathcal{P}_{X} \cap \mathcal{P}_{Y}=\emptyset$. It follows that $\left(B^{+}+\mathcal{P}_{X}+T_{X}+w^{-} w, B^{-}+\mathcal{P}_{Y}+T_{Y}+w w^{+}\right)$is a good pair of D, where $w^{-} \in X$ and $w^{+} \in Y$.

Proposition 7 ([2]) Every digraph on 3 vertices has a good pair if and only if it has at least 4 arcs.

Following [4], we shall use $\delta_{0}(D)$ to denote the minimum semi-degree of D, which is the minimum over all in- and out-degrees of vertices of D.

Proposition 8 ([2]) Let D be a digraph on 4 vertices with at least 6 arcs except E_{4} (see Fig. 1). If $\delta^{0}(D) \geq 1$ or D is a semicomplete digraph, then D has a good pair.

Fig. 1. E_{4}.

Lemma 3 ([5], p.354). Let $D=(V, A)$ be a digraph. Then D is k-arc-strong if and only if it contains k arc-disjoint (s, t)-paths for every choice of distinct vertices $s, t \in V$.

Lemma 4 (Edmonds' branching theorem [4]). A directed multigraph $D=$ (V, A) with a special vertex z has k arc-disjoint out-branchings rooted at z if and only if $d^{-}(X) \geq k$ for all $\emptyset \neq X \subseteq V-z$.

Lemma 5 ([2]). If D is a 2-arc-strong digraph on n vertices that contains a subdigraph on $n-3$ vertices with a good pair, then D has a good pair.

Lemma 6. If D is a 2-arc-strong digraph on n vertices that contains a subdigraph Q on $n-4$ vertices with a good pair, then D has a good pair.

Lemma 7. Let D be a 2-arc-strong digraph on n vertices that contains a subdigraph Q on $n-5$ vertices with a good pair, $X=N_{D}^{-}(Q), Y=N_{D}^{+}(Q)$ and $X \cap Y=\emptyset$. If $|X| \geq 2$ or $|Y| \geq 2$, then D has a good pair.

Lemma 8. Let D be a 2-arc-strong digraph on n vertices that contains a subdigraph Q on $n-6$ vertices with a good pair. Let $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$. If $|X|=|Y|=2$ and at most one of X and Y is an independent set, then D has a good pair.

Lemma 9. Let $D=(V, A)$ be a 2-arc-strong digraph on n vertices that contains a subdigraph Q on $n-6$ vertices with a good pair. Set $X=N_{D}^{-}(Q)=\left\{x_{1}, x_{2}\right\}$ and $Y=N_{D}^{+}(Q)=\left\{y_{1}, y_{2}\right\}$ with $X \cap Y=\emptyset$, and $W=V-X-Y-V(Q)=\left\{w_{1}, w_{2}\right\}$. If X, Y are both independent sets, then D has a good pair except for the case below:
$(*)(Y, X)_{D}=\left\{y_{j} x_{i}, y_{3-j} x_{3-i}\right\}$ for some $i, j \in[2], D[W]=C_{2}$ and $N_{W}^{+}\left(y_{j}\right) \cap$
$N_{W}^{+}\left(y_{3-j}\right)=N_{W}^{-}\left(x_{i}\right) \cap N_{W}^{-}\left(x_{3-i}\right)=\emptyset$ while $N_{W}^{+}\left(y_{j}\right) \cap N_{W}^{-}\left(x_{i}\right) \neq \emptyset$ and $N_{W}^{+}\left(y_{3-j}\right) \cap$ $N_{W}^{-}\left(x_{3-i}\right) \neq \emptyset$.

We use $D \supseteq E_{3}\left(D \nsupseteq E_{3}\right)$ to denote that D contains an arbitrary orientation (no orientation) of E_{3} as a subdigraph. (E_{3} is a mixed graph and only the two edges are to be oriented.) E_{3} is shown in Fig. 2.

Fig. 2. E_{3}.

Lemma 10. Let $D=(V, A)$ be a 2-arc-strong digraph on n vertices that contains a subdigraph Q on $n-6$ vertices with a good pair. Set $X=N_{D}^{-}(Q)=$ $\left\{x_{1}, x_{2}\right\}$ and $Y=N_{D}^{+}(Q)=\left\{y_{1}, y_{2}\right\}$ with $X \cap Y=\emptyset$, and $W=V-X-Y-$ $V(Q)=\left\{w_{1}, w_{2}\right\}$. If $n=8$ or 9 and X, Y are both independent, then D has a good pair.
Proposition 9 ([3]) A digraph D has an out-branching (resp. in-branching) if and only if it has precisely one initial (resp. terminal) strong component. In that case every vertex of the initial (resp. terminal) strong component can be the root of an out-branching (resp. in-branching) in D.

We use T_{x}^{+}(resp. T_{x}^{-}) to denote an out-tree (resp. in-tree) rooted at x.
Proposition 10 Let D be an oriented graph on n vertices. Let $P_{D}=x_{1} x_{2} \ldots x_{n}$ be the Hamilton dipath of D and $D^{\prime}=D-A(P)$. Assume that there are exactly two non-adjacent strong components I_{1} and I_{2} in D^{\prime}. Set $q \in\{2,3, n-1, n\}$. If for some q, x_{q-1} and x_{q} are respectively in I_{1} and I_{2}, then D has a good pair.

Proof. W.l.o.g., assume that $x_{q-1} \in I_{1}$ and $x_{q} \in I_{2}$. Since I_{i} is strong, $\delta^{0}\left(I_{i}\right) \geq 1$, for any $i \in[2]$.

First assume $q \in\{n-1, n\}$. Let x be an in-neighbour of x_{q} in I_{2}. We get an out-branching of D as $B_{x_{1}}^{+}=P_{D}-x_{q-1} x_{q}+x x_{q}$. Then we will show that there is an in-branching B_{x}^{-}in $D-A\left(B_{x_{1}}^{+}\right)$. Since I_{2} is strong, $I_{2}-x x_{q}$ is connected and has only one terminal srong component which contains x. This implies that there is an in-branching T_{x}^{-}in $I_{2}-x x_{q}$. Note that there exists an in-branching $T_{x_{q-1}}^{-}$in I_{1}, as I_{1} is strong. Then $B_{x}^{-}=T_{x}^{-}+x_{q-1} x_{q}+T_{x_{q-1}}^{-}$, which implies that $\left(B_{x_{1}}^{+}, B_{x}^{-}\right)$is a good pair of D.

Now we assume $q \in\{2,3\}$. Let y be an out-neighbour of x_{q-1} in I_{1}. We get an in-branching of D as $B_{x_{n}}^{-}=P_{D}-x_{q-1} x_{q}+x_{q-1} y$. Then we will show that there is an out-branching B_{y}^{+}in $D-A\left(B_{x_{n}}^{-}\right)$. Since I_{1} is strong, $I_{1}-x_{q-1} y$ is connected and has only one initial srong component which contains y. This implies that there is an out-branching T_{y}^{+}in $I_{1}-x_{q-1} y$. Note that there exists an out-branching $T_{x_{q}}^{+}$in I_{2}, as I_{2} is strong. Then $B_{y}^{+}=T_{y}^{+}+x_{q-1} x_{q}+T_{x_{q}}^{+}$. So, $\left(B_{y}^{+}, B_{x_{n}}^{-}\right)$is a good pair of D.

Proposition 11 Let D be a 2-arc-strong oriented graph on at least seven vertices. Then D has a dipath P_{6}.

Proof. Suppose that there is no P_{6} in D. Assume that P_{t} is the longest dipath in D, then $t \geq 4$, as there is no digon in D and $\lambda(D) \geq 2$. Observe that there is no C_{t} in D, otherwise D has a longer dipath P_{t+1}.

First assume that $t=4$ and set $P_{4}=x_{1} x_{2} x_{3} x_{4}$. Since $d_{D}^{+}\left(x_{4}\right) \geq 2$ and D has no digon, the out-neighbourhood of x_{4} either contains x_{1} or contains a vertex in $V-V\left(P_{4}\right)$. This implies that there is a P_{5} in D, a contradiction.

Henceforth we may assume that $t=5$ and set $P_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}$. Since $\lambda(D) \geq 2, d_{D}^{+}\left(x_{5}\right) \geq 2$ and $d_{D}^{-}\left(x_{1}\right) \geq 2$. Then we get $N_{D}^{+}\left(x_{5}\right)=\left\{x_{2}, x_{3}\right\}$ and $N_{D}^{-}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$, as P_{5} is the longest dipath in D and D has no digon. Observe that there exsits a different 4-length dipath, $x_{4} x_{5} x_{3} x_{1} x_{2}$, in D. Likewise, $N_{D}^{+}\left(x_{2}\right)=\left\{x_{3}, x_{5}\right\}$, which implies that $D\left[\left\{x_{2}, x_{5}\right\}\right]$ is a digon, a contradiction.

4 Good pairs in digraphs of order 7

Proposition 12 A 2-arc-strong oriented graph D on n vertices has a P_{7}, where $7 \leq n \leq 9$.

Proof. Suppose to the contraty that P is the longest dipath in D, where $|P|=6$. Obviously D has no C_{6} by Proposition 11. Set $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$. Since $\lambda(D)=$ 2 , we have $d_{D}^{+}\left(x_{6}\right) \geq 2$ and $d_{D}^{-}\left(x_{1}\right) \geq 2$. Note that $N_{D}^{+}\left(x_{6}\right) \subseteq\left\{x_{2}, x_{3}, x_{4}\right\}$ and $N_{D}^{-}\left(x_{1}\right) \subseteq\left\{x_{3}, x_{4}, x_{5}\right\}$.

Assume first that $N_{D}^{+}\left(x_{6}\right) \cap N_{D}^{-}\left(x_{1}\right)=\emptyset$.
If $N_{D}^{+}\left(x_{6}\right)=\left\{x_{2}, x_{3}\right\}$ and $N_{D}^{-}\left(x_{1}\right)=\left\{x_{4}, x_{5}\right\}$, then we can get a new P_{6} in D as $x_{6} x_{2} x_{3} x_{4} x_{5} x_{1}$. Likewise, we have $x_{3} \in N_{D}^{+}\left(x_{1}\right)$ and $x_{4} \in N_{D}^{-}\left(x_{6}\right)$. Then there exists a good pair $\left(B_{x_{4}}^{+}, B_{x_{4}}^{-}\right)$in $D[P]$ with $B_{x_{4}}^{+}=x_{4} x_{1} x_{2}+x_{4} x_{5}+x_{4} x_{6} x_{3}$ and $B_{x_{4}}^{-}=x_{5} x_{6} x_{2} x_{3} x_{4}+x_{1} x_{3}$, which implies that D has a good pair by Lemma 5 and Lemma 1.

If $N_{D}^{+}\left(x_{6}\right)=\left\{x_{2}, x_{4}\right\}$ and $N_{D}^{-}\left(x_{1}\right)=\left\{x_{3}, x_{5}\right\}$, then we can get a new P_{6} in D as $x_{6} x_{4} x_{5} x_{1} x_{2} x_{3}$. Likewise, we have $x_{1} \in N_{D}^{-}\left(x_{6}\right)$, which implies that there is a C_{6} as $x_{6} x_{2} x_{3} x_{4} x_{5} x_{1} x_{6}$, a contradiction.

Henceforth, we may assume that there is at least one common vertex in $N_{D}^{+}\left(x_{6}\right)$ and $N_{D}^{-}\left(x_{1}\right)$. Without loss of generality, assume that x_{3} is one of the common vertices. The case when $x_{4} \in N_{D}^{+}\left(x_{6}\right) \cap N_{D}^{-}\left(x_{1}\right)$ can be proved analogously by reversing all arcs of D. Then we can get a new P_{6} in D as $x_{4} x_{5} x_{6} x_{3} x_{1} x_{2}$. Likewise, we have

$$
\begin{equation*}
N_{D-x_{3}}^{+}\left(x_{2}\right) \subseteq\left\{x_{5}, x_{6}\right\} \text { and } N_{D-x_{3}}^{-}\left(x_{4}\right) \subseteq\left\{x_{1}, x_{6}\right\} \tag{1}
\end{equation*}
$$

Note that $x_{4} \in N_{D}^{-}\left(x_{1}\right)$ and $x_{5} \in N_{D}^{+}\left(x_{2}\right)$ will not hold at the same time, or there will exist a C_{6} as $x_{1} x_{2} x_{5} x_{6} x_{3} x_{4} x_{1}$, a contradiction.

If $x_{2} \in N_{D}^{+}\left(x_{6}\right)$, then we have $x_{5} \in N_{D}^{+}\left(x_{2}\right)$ as D is an oriented graph. This implies that x_{5} is an in-neighbour of x_{1}. Observe a new P_{6} as $x_{4} x_{5} x_{6} x_{2} x_{3} x_{1}$, we can get that $x_{6} \in N_{D}^{+}\left(x_{1}\right)$. Thus there exists a C_{6} as $x_{6} x_{2} x_{3} x_{4} x_{5} x_{1} x_{6}$, a contradiction.

Thus we have $N_{D}^{+}\left(x_{6}\right)=\left\{x_{3}, x_{4}\right\}$. If $x_{4} \in N_{D}^{-}\left(x_{1}\right)$, then x_{6} is an outneighbour of x_{2}. Observe a new P_{6} as $x_{5} x_{6} x_{4} x_{1} x_{2} x_{3}$, we can get that $x_{1} \in$ $N_{D}^{-}\left(x_{5}\right)$. Thus there exists a good pair $\left(B_{x_{2}}^{+}, B_{x_{6}}^{-}\right)$in $D[P]$ with $B_{x_{2}}^{+}=x_{2} x_{6} x_{4}+$ $x_{6} x_{3} x_{1} x_{5}$ and $B_{x_{6}}^{-}=P_{D}$, which implies that D has a good pair by Lemma 5 and Lemma 1. If $x_{5} \in N_{D}^{-}\left(x_{1}\right)$, then we can get a new P_{6} as $x_{6} x_{3} x_{4} x_{5} x_{1} x_{2}$. Likewise, we have $N_{D-x_{3}}^{+}\left(x_{2}\right) \subseteq\left\{x_{4}, x_{5}\right\}$ and $N_{D-x_{5}}^{-}\left(x_{6}\right) \subseteq \cup\left\{x_{1}, x_{4}\right\}$. By (1) and $x_{4} \in N_{D}^{+}\left(x_{6}\right)$, we can get that $x_{5} \in N_{D}^{+}\left(x_{2}\right)$ and $x_{1} \in N_{D}^{-}\left(x_{6}\right)$. Then there exists a good pair $\left(B_{x_{2}}^{+}, B_{x_{6}}^{-}\right)$in $D[P]$ with $B_{x_{2}}^{+}=x_{2} x_{5} x_{1} x_{6} x_{3}+x_{6} x_{4}$ and $B_{x_{6}}^{-}=P_{D}$, which implies that D has a good pair as $\lambda(D)=2$, a contradiction.

Now we are ready to prove Theorem 2. For convenience, we restate it here.
Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.
Proof. Suppose that D has no good pair. Let R be a largest clique in D. By Lemma 5 and Proposition $8,|R|=3$. Moreover, R is a tournament by Lemma 6 and Proposition 7.

Claim 2.1 D is an oriented graph.
Proof. Proof. Suppose that there is a digon Q in D with $V(Q)=\{s, t\}$. Observe that Q has a good pair. Since R is a tournament with three vertices, both inand out-neibourhoods of Q in D have at least two vertices. This implies that D has a good pair by Lemma 7, a contradiction.

Assume that $P_{D}=x_{1} x_{2} \ldots x_{7}$ is a Hamilton dipath of D by Proposition 12. Set $D^{\prime}=D-A\left(P_{D}\right)$. Let I_{i} and T_{j} respectively be the initial and terminal strong component in D^{\prime}, where $i \in[a]$ and $j \in[b]$. Note that $a, b \geq 2$ by Proposition 9 . Since D is an oriented graph and $\lambda(D) \geq 2,\left|I_{i}\right|,\left|T_{j}\right| \geq 3$, for any $i \in[a], j \in[b]$. Thus there are only two non-adjacent strong components in D^{\prime}, say I_{1} and I_{2}, with $\left|I_{1}\right|=3$ and $\left|I_{2}\right|=4$. Note that $\left|N_{D^{\prime}}^{-}\left(x_{1}\right)\right| \geq 2$ and $\left|N_{D^{\prime}}^{+}\left(x_{7}\right)\right| \geq 2$ as $\lambda(D) \geq 2$, which implies that $x_{1}, x_{7} \in I_{2}$. Moreover, $x_{2}, x_{6} \in I_{1}$ by Claim 2.1. Then D has a good pair by Proposition 10 .

5 Good pairs in digraphs of order 8

The digraph E_{3} used in the next proposition is shown in Fig. 2.
Proposition 13 ([2]) Let D be a 2-arc-strong digraph without any subdigraph on order 4 that has a good pair. If D contains an orientation Q of E_{3} as a subdigraph, then $N_{D}^{+}(Q) \cap N_{D}^{-}(Q)=\emptyset,\left|N_{D}^{+}(Q)\right| \geq 2$ and $\left|N_{D}^{-}(Q)\right| \geq 2$.

Proposition 14 Let D be a 2-arc-strong oriented graph on n vertices without K_{4} as a subdigraph, where $8 \leq n \leq 9$. If D has two disjoint cycles C^{1} and C^{2} which cover exactly 7 vertices, then D contains a P_{8}.

Proof. Suppose that P_{7} is the longest dipath of D by Proposition 12. In fact there exist arcs between C^{1} and C^{2} from both directions, otherwise D has a P_{8} as $\lambda(D) \geq 2$. W.l.o.g., assume $\left|C^{1}\right| \geq\left|C^{2}\right|$. Then $\left|C^{1}\right|=4$ and $\left|C^{2}\right|=3$. Let $C^{1}=x_{1} x_{2} x_{3} x_{4} x_{1}, C^{2}=x_{5} x_{6} x_{7} x_{5}, P_{7}=x_{1} x_{2} \ldots x_{7}$ and y_{j} be the vertex in $V-V\left(C^{1} \cup C^{2}\right)$, where $j=1$ when $n=8$ and $j \in[2]$ when $n=9$. From the maximality of P_{7} in D, we have the following facts.

Fact 14.1. For any j, at least one of $\left(C^{i}, y_{j}\right)_{D}$ and $\left(y_{j}, C^{3-i}\right)_{D}$ is empty for any $i \in[2]$.
Fact 14.2. For any j, at least one of $\operatorname{arcs} x_{i} y_{j}$ and $y_{j} x_{i+1}$ is not in A for any $i \in[6]$.
Fact 14.3. For $n=9$, let $y_{j} y_{3-j} \in A$. If $x_{i} y_{j} \in A$, then $y_{3-j} x_{i+1}, y_{3-j} x_{i+2} \notin A$, where $j \in[2]$ and $i \in[5]$.

Since D is oriented, there are at least three arcs between y_{j} and C^{i}, for some i, by Fact 14.1. W.l.o.g., assume $i=1$. Note that $d_{C^{1}}^{+}\left(y_{j}\right) \geq 1$ and $d_{C^{1}}^{-}\left(y_{j}\right) \geq 1$. Then $N\left(y_{j}\right) \subset\left\{y_{3-j}\right\} \cup C^{1}$ when $n=9$ and $N\left(y_{j}\right) \subset C^{1}$ when $n=8$.

If y_{j} is not adjacent to y_{3-j} or $n=8$, then $N^{+}\left(y_{j}\right)=\left\{x_{1}, x_{2}\right\}$ and $N^{-}\left(y_{3-j}\right)=$ $\left\{x_{3}, x_{4}\right\}$ by Fact 14.2 , which implies that D has a P_{8} as $y_{j} x_{1} \in A$, a contradiction.

Hence $n=9$ and y_{1} is adjacent to y_{2}. W.l.o.g., assume that $y_{1} y_{2} \in A$. If $x_{1} y_{1} \in A$, then $N^{+}\left(y_{2}\right)=\left\{x_{1}, x_{4}\right\}$ by Fact 14.3 and $\lambda(D) \geq 2$, which implies that D has a Hamilton dipath as $y_{2} x_{1} \in A$, a contradiciton. Hence x_{1} is not adjacent to y_{1}. By Fact $14.2, N^{+}\left(y_{1}\right)=\left\{x_{2}, y_{2}\right\}$ and $N^{-}\left(y_{1}\right)=\left\{x_{3}, x_{4}\right\}$. By Fact 14.3 and the longestness of $P_{7}, N^{+}\left(y_{2}\right)=\left\{x_{2}, x_{3}\right\}$. It implies that $D\left[\left\{x_{2}, x_{3}, y_{1}, y_{2}\right\}\right]$ is a K_{4}, a contradiction.
Proposition 15 Let $D=(V, A)$ be a 2-arc-strong digraph on n vertices without good pair, where $8 \leq n \leq 9$. If D is an oriented graph without K_{4} as a subdigraph, then D has a P_{8}.

Now we are ready to show Theorem 3. For convenience, we restate it here.
Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.
Proof. Suppose that D has no good pair. Let R be a largest clique in D. By Lemma 6 and Proposition $8,|R|=3$.

Claim 3.1 No subdigraph of D of order at least 3 has a good pair.
Proof. By Lemma 6, it suffices to show that there is no $Q \subset D$ on 3 vertices with a good pair. Suppose that Q has a good pair. If Q is an orientation of E_{3}, then we use Lemma 7 to find a good pair of D by Proposition 13, a contradiction. Now assume that Q is a bidigon. Set $V(Q)=\{x, y, z\}$ with $Q[\{x, y\}]=C_{2}$ and $Q[\{y, z\}]=C_{2}$. If there exists a vertex w in $N_{D}^{+}(Q) \cap N_{D}^{-}(Q)$, then $D[Q \cup\{w\}]$ has a good pair by Lemma 1 . Thus $N_{D}^{+}(Q) \cap N_{D}^{-}(Q)=\emptyset$. If $N_{D}^{-}(Q)=\{w\}$, then $D[Q \cup\{w\}]$ has a good pair as $B_{w}^{+}=w z y x$ and $B_{z}^{-}=w x y z$. By symmetry, this implies that $\left|N_{D}^{+}(Q)\right| \geq 2$ and $\left|N_{D}^{-}(Q)\right| \geq 2$. Thus by Lemma $7, D$ has a good pair, a contradiction.

By the claim above, R is a tournament.
Claim 3.2 D is an oriented graph.
Proof. Suppose that there is a digon Q in D with $V(Q)=\{s, t\}$. Observe that Q has a good pair. Since R is a tournament with 3 vertices, both in- and outneibourhoods of Q in D have at least two vertices with $N_{D}^{+}(Q) \cap N_{D}^{-}(Q)=\emptyset$. This implies that D has a good pair by Lemmas 2, 8, 9 and 10, and Corollary 1, a contradiction.

By Proposition 15 , assume that $P_{D}=x_{1} x_{2} \ldots x_{8}$ is a Hamilton dipath of D. Set $D^{\prime}=D-A\left(P_{D}\right)$. Let I_{i} and T_{j} respectively be the initial and terminal strong component in D^{\prime}, where $i \in[a]$ and $j \in[b]$. Note that $a, b \geq 2$ by Proposition 9 . Since D is an oriented graph and $\lambda(D) \geq 2,\left|I_{i}\right|,\left|T_{j}\right| \geq 3$ for any $i \in[a], j \in[b]$. Thus there are only two non-adjacent strong components in D^{\prime}, say I_{1} and I_{2}, as $n=8$. Since $\lambda(D) \geq 2, x_{1}$ has at least two in-neighbours and one out-neighbour in D^{\prime}, while x_{8} has at least two out-neighbours and one in-neighbour in D^{\prime}. If $\left|I_{1}\right|=3$ and $\left|I_{2}\right|=5$, then $x_{1}, x_{8} \in I_{2}$ and $\left|A\left(I_{2}\right)\right| \geq 6$. Note that at least one of x_{2} and x_{7} is in I_{1} as $|R|=3$. Then we use Proposition 10 to get a good pair of D. Now assume $\left|I_{1}\right|=\left|I_{2}\right|=4$. If $x_{8} \in I_{1}$ then $x_{7} \in I_{2}$ by Claim 3.2. By Proposition 10, D has a good pair.

6 Good pairs in digraphs of order 9

We have several generalizations of Proposition 6 here, which are easy to check as they satisfy the conditions in Proposition 6.

Proposition 16 Let $D=(V, A)$ be a digraph and Q be a subdigraph of D with good pair $\left(O_{Q}, I_{Q}\right)$. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$ and $X \cup Y=V-V(Q)-W$, where $W=\left\{w_{1}, w_{2}\right\}$. Let e_{1} be an arc from w_{1} to X and e_{2} be an arc from Y to w_{2}. Set $X^{\prime}=X \cup w_{1}, Y^{\prime}=Y \cup w_{2}$ and $D^{\prime}=\left(V, A^{\prime}\right)$ with $A^{\prime}=A-\left\{e_{1}, e_{2}\right\}$. Let \mathcal{X} be the set of initial strong components in $D^{\prime}\left[X^{\prime}\right]$ and \mathcal{Y} be the set of terminal strong components in $D^{\prime}\left[Y^{\prime}\right]$. Assume that there exists X_{0} and Y_{0} in \mathcal{X} and \mathcal{Y} respectively such that $d_{Y}^{-}\left(X_{0}\right)=1$ and $d_{X}^{+}\left(Y_{0}\right)=1$. Let e_{x} and e_{y} be arcs from Y to X_{0} and from Y_{0} to X respectively. If one of the following holds, then D has a good pair.

1. $e_{x} \neq e_{y}$, but at least one of \mathcal{X} or \mathcal{Y} has only one element.
2. $e_{x}\left(\right.$ or $\left.e_{y}\right)$ is adjacent to some $Y_{x}\left(\right.$ or $\left.X_{y}\right)$ in \mathcal{Y} (or $\left.\mathcal{X}\right)$, such that $d_{X}^{+}\left(Y_{x}\right) \geq 3$ (or $d_{Y}^{-}\left(X_{y}\right) \geq 3$).
3. $e_{x}\left(\right.$ or $\left.e_{y}\right)$ is adjacent to $Y^{\prime}-V(\mathcal{Y})\left(\right.$ or $\left.X^{\prime}-V(\mathcal{X})\right)$.
4. $e_{x}\left(\right.$ or $\left.e_{y}\right)$ is adjacent to some $Y_{x} \neq Y_{0}\left(\right.$ or $\left.X_{y} \neq X_{0}\right)$ in \mathcal{Y} (or \mathcal{X}), such that there exists an arc from $Y_{x}\left(\right.$ or $\left.X_{y}\right)$ to $X^{\prime}-V(\mathcal{X})\left(\right.$ or $\left.Y^{\prime}-V(\mathcal{Y})\right)$.

Lemma 11. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$. If $|X|=3$ and $|Y|=2$, then D has a good pair.

Lemma 12. Let $D=(V, A)$ be a 2-arc-strong digraph on 9 vertices that contains a digon Q. Assume that D has no subdigraph with a good pair on at least 3 vertices. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$ and $W=V-$ $V(Q)-X-Y$. Assume that $|X|=|Y|=2$ and there is an arc $e=s t \in A$ such that $s \in Y$ and $t \in W$ (resp. $s \in W$ and $t \in X$). If there are at least three arcs in $D[Y \cup\{t\}]$ (resp. $D[X \cup\{s\}]$), then D has a good pair.

Lemma 13. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$ with $X \cap Y=\emptyset$. If $|X|=2$ and $|Y|=2$, then D has a good pair.

Proposition 17 Let $D=(V, A)$ be a 2-arc-strong oriented graph on 9 vertices without K_{4} as a subdigraph. If D have two cycles C^{1} and C^{2} with $C^{1} \cap C^{2}=\emptyset$ which cover 8 vertices, then D contains a Hamilton dipath.

Lemma 14. Let $D=(V, A)$ be a 2-arc-strong digraph on 9 vertices without good pair. If D is an oriented graph without K_{4} as a subdigraph, then D has a Hamilton dipath.

Now we are ready to show Theorem 4. For convenience, we restate it here.

Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.
Proof. By contradiction, suppose that D has no good pair.
Claim 4.1 No subdigraph of D of order at least 4 has a good pair.
Let R be a largest clique in D. Then R has three vertices by Claim 4.1 and Proposition 8.

Claim 4.2 No subdigraph of D of order at least 3 has a good pair.
Proof. By Lemma 7, it suffices to show that there is no $Q \subset D$ on 3 vertices with good pair. Suppose to the contrary that Q has a good pair. Analogous to Claim 3.1, $\left|N_{D}^{+}(Q)\right| \geq 2$ and $\left|N_{D}^{-}(Q)\right| \geq 2$ with $N_{D}^{+}(Q) \cap N_{D}^{-}(Q)=\emptyset$. Thus by Lemma $8, D$ has a good pair, a contradiction.

By the claim above, R is a tournament.
Claim 4.3 D is an oriented graph.
Proof. Suppose that D has a digon Q. Set $X=N_{D}^{-}(Q)$ and $Y=N_{D}^{+}(Q)$. By Claim 4.2, $X \cap Y=\emptyset$. Since $\lambda(D) \geq 2$, both X and Y have at least two vertices. If $|X|+|Y|=4$, then D has a good pair by Lemma 13, a contradiction. If $|X|+|Y|=$ 5 , then D has a good pair by Lemma 11 and the digraph duality, a contradiction. If $|X|+|Y|=6$, then D has a good pair by Lemma 2, a contradiction. If $|X|+|Y|=7$, then D has a good pair by Corollary 1, a contradiction.

Now we are ready to finish the proof of Theorem 3. By Lemma 14, assume that $P_{D}=x_{1} x_{2} \ldots x_{9}$ is a Hamilton dipath of D. Set $D^{\prime}=D-A\left(P_{D}\right)$. Let $I_{i}, i \in[a]$, be the initial strong components in D^{\prime} and let $T_{j}, j \in[b]$, be the terminal strong components in D^{\prime}. Note that $a, b \geq 2$ by Proposition 9 . Since D is an oriented graph and $\lambda(D) \geq 2,\left|I_{i}\right|,\left|T_{j}\right| \geq 3$, for any $i \in[a], j \in[b]$. Since $\lambda(D) \geq 2, x_{1}$ has at least two in-neighbours and one out-neighbour in D^{\prime} and x_{9} has at least two out-neighbours and one in-neighbour in D^{\prime}. Thus there are only two non-adjacent strong components in D^{\prime}, say I_{1} and I_{2}, as $n=9$ and D is an oriented graph. We distinguish two cases below.

Case 1: $\left|I_{1}\right|=4$ and $\left|I_{2}\right|=5$.
If $x_{9} \in I_{1}$, then $x_{8} \in I_{2}$ as $|R|=3$. Analogously, if $x_{1} \in I_{1}$, then $x_{2} \in I_{2}$. By Proposition 10, D has a good pair for each cases. Henceforth, both x_{1} and x_{9} are in I_{2}. Note that at least one of x_{2} and x_{8} is in I_{1} as $|R|=3$. By Proposition 10, D has a good pair, a contradiction.

Case 2: $\left|I_{1}\right|=3$ and $\left|I_{2}\right|=6$.
In this case, $x_{1}, x_{9} \in I_{2}$ and $\left|A\left(I_{2}\right)\right| \geq 7$. If one of x_{2} and x_{8} is in I_{1}, then D has a good pair by Proposition 10. Thus both x_{2} and x_{8} are in I_{2}. Then $V\left(I_{1}\right)=\left\{x_{3}, x_{5}, x_{7}\right\}$, which implies that D has a good pair by Proposition 10, a contradiction.

This completes the proof of Theorem 4.

References

1. Bang-Jensen J. Edge-disjoint in- and out-branchings in tournaments and related path problems. J. Combin. Theory Ser. B 51(1): 1-23 (1991)
2. Bang-Jensen J., Bessy S., Havet F., Yeo, A. Arc-disjoint in- and out-branchings in digraphs of independence number at most 2. arXiv:2003.02107 (2020)
3. Bang-Jensen J., Bessy, S. Yeo, A. Non-separating spanning trees and outbranchings in digraphs of independence number 2. arXiv:2007.02834v1 (2020)
4. Bang-Jensen J., Gutin G. (eds.) Classes of Directed Graphs. Springer Verlag, London (2018)
5. Bang-Jensen J., Gutin G. Digraphs: Theory, Algorithms and Applications. 2nd edn., Springer Verlag, London (2009)
6. Bang-Jensen J., Gutin G., Yeo A. Arc-disjoint strong spanning subdigraphs of semicomplete compositions. J. Graph Theory 95(2): 267-289 (2020)
7. Bang-Jensen J., Huang J. Decomposing locally semicomplete digraphs into strong spanning subdigraphs. J. Combin. Theory Ser. B 102(3): 701-714 (2010)
8. Bang-Jensen J., Saurabh S., Simonsen S. Parameterized algorithms for nonseparating trees and branchings in digraphs. Algorithmica 76(1): 279-296 (2016).
9. Gu R., Gutin G., Li S., Shi Y., Taoqiu Z. The smallest number of vertices in a 2-arc-strong digraph which has no good pair. arXiv:2012.03742 (2020).
10. Gutin G., Reidl F., Wahlström M. k-distinct in- and out-branchings in digraphs. J. Comput. Syst. Sci. 95: 86-97 (2018).
11. Lovász L. On two min-max theorems in graph theory. J. Combin. Theory Ser. B 21: 96-103 (1976)
12. Thomassen C. Configurations in graphs of large minimum degree, connectivity, or chromatic number. Annals of the New York Academy of Sciences 555: 402-412 (1989)

[^0]: * Gu was supported by Natural Science Foundation of Jiangsu Province (No. BK20170860), National Natural Science Foundation of China (No. 11701143), and Fundamental Research Funds for the Central Universities. Li was supported by National Natural Science Foundation of China (No. 11301480), Zhejiang Provincial Natural Science Foundation of China (No. LY18A010002), and the Natural Science Foundation of Ningbo, China. Shi and Taoqiu are supported by the National Natural Science Foundation of China (No. 11922112), the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00090 and 20JCZDJC00840) and the Fundamental Research Funds for the Central Universities, Nankai University.

