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Abstract. Branchings play an important role in digraph theory and
algorithms. In particular, a chapter in the monograph of Bang-Jensen
and Gutin, Digraphs: Theory, Algorithms and Application, Ed. 2, 2009
is wholly devoted to branchings. The well-known Edmonds Branching
Theorem provides a characterization for the existence of k arc-disjoint
out-branchings rooted at the same vertex. A short proof of the theorem
by Lovász (1976) leads to a polynomial-time algorithm for finding such
out-branchings. A natural related problem is to characterize digraphs
having an out-branching and an in-branching which are arc-disjoint. Such
a pair of branchings is called a good pair.

Bang-Jensen, Bessy, Havet and Yeo (2020) pointed out that it is NP-
complete to decide if a given digraph has a good pair. They also showed
that every digraph of independence number at most 2 and arc-connectivity
at least 2 has a good pair, which settled a conjecture of Thomassen for
digraphs of independence number 2. Then they asked for the smallest
number nngp of vertices in a 2-arc-strong digraph which has no good
pair. They proved that 7 ≤ nngp ≤ 10. In this paper, we prove that
nngp = 10, which solves the open problem.
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1 Introduction

Let D = (V,A) be a digraph. For a non-empty subset X ⊂ V , the in-degree (resp.
out-degree) of the set X, denoted by d−D(X) (resp. d+D(X)), is the number of arcs
with head (resp. tail) in X and tail (resp. head) in V \X. The arc-connectivity of
D, denoted by λ(D), is the minimum out-degree of a proper subset of vertices.
A digraph is k-arc-strongly connected (or, just k-arc-strong) if λ(D) ≥ k. In
particular, a digraph is strongly connected (or, just strong) if λ(D) ≥ 1.

An out-branching (in-branching) of a digraph D = (V,A) is a spanning tree in
the underlying graph of D whose edges are oriented in D such that every vertex
except one, called the root, has in-degree (out-degree) one. Branchings play an
important role in digraph theory and algorithms. In particular, Chapter 9 in
the monograph [5] is wholly devoted to branchings. The well-known Edmonds
Branching Theorem (see e.g. [5]) provides a characterization for the existence
of k arc-disjoint out-branchings rooted at the same vertex. A short proof of the
theorem by Lovász [11] leads to a polynomial-time algorithm for finding such
out-branchings. A natural related problem is to characterize digraphs having
an out-branching and an in-branching which are arc-disjoint. Such a pair of
branchings is called a good pair.

Thomassen [12] conjectured the following:

Conjecture 1. There is a constant c, such that every digraph with arc-connectivity
at least c has a good pair.

He also proved that it is NP-complete to decide whether a given digraphD has
an out-branching and an in-branching both rooted at the same vertex such that
these are arc-disjoint. This implies that it is NP-complete to decide if a given
digraph has a good pair [2]. Conjecture 1 has been verified for semicomplete
digraphs [1] and their genearlizations: locally semicomplete digraphs [7] and
semicomplete compositions [6] (it follows from the main result in [6]).

An out-branching and an in-branching of D are k-distinct if each of them has
at least k arcs, which are absent in the other. Bang-Jensen et al. [8] proved that
the problem of deciding whether a strongly connected digraph D has k-distinct
out-branching and in-branching is fixed-parameter tractable when parameterized
by k. Settling an open problem in [8], Gutin et al. [10] extended this result to
arbitrary digraphs.

In [2], Bang-Jensen et al. showed that every digraph of independence number
at most 2 and arc-connectivity at least 2 has a good pair, which settles the
conjecture for digraphs of independence number 2.

Theorem 1. If D is a digraph with α(D) ≤ 2 ≤ λ(D), then D has a good pair.

Moreover, they also proved that every digraph on at most 6 vertices and arc-
connectivity at least 2 has a good pair and gave an example of a 2-arc-strong
digraph D on 10 vertices with independence number 4 that has no good pair.
They posed the following open problem.
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Problem 1 ([2]). What is the smallest number n of vertices in a 2-arc-strong
digraph which has no good pair?

In this paper, we prove that every digraph on at most 9 vertices and arc-
connectivity at least 2 has a good pair, which answers this problem. The main
results of the paper are as follows.

Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.

Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.

Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.

This paper is organised as follows. In the rest of this section, we provide
further terminology and notation on digraphs. Undefined terms can be found in
[4, 5]. In Section 2, we outline the proofs of Theorems 2, 3 and 4 and state some
auxiliary lemmas which we use in their proofs. Section 3 contains a number
of technical lemmas which will be used in proofs of our main results. Then
we respectively devote one section for proofs of each theorem and its relevant
auxiliary lemmas. The proofs not given in this paper due to the space limit can
be found in [9].

Additional Terminology and Notation. For a positive integer n, [n] denotes
the set {1, 2, . . . , n}. Throughout this paper, we will only consider digraphs with-
out loops and multiple arcs. Let D = (V,A) be a digraph. We denote by uv the
arc whose tail is u and whose head is v. Two vertices u, v are adjacent if at least
one of uv and vu belongs to A. If u and v are adjacent, then we also say that u
is a neighbour of v and vice versa. If uv ∈ A, then v is called an out-neighbour
of u and u is called an in-neighbour of v. Moreover, we say uv is an out-arc of u
and an in-arc of v and that u dominates v. The order |D| of D is |V |.

In this paper, we will extensively use digraph duality, which is as follows. Let
D be a digraph and let Drev be the reverse of D, i.e., the digraph obtained from
D by reversing every arc xy to yx. Clearly, D contains a subdigraph H if and
only if Drev contains Hrev. In particular, D contains a good pair if and only if
Drev contains a good pair.

Let N−D (X) = {y : yx ∈ A, x ∈ X} and N+
D (X) = {y : xy ∈ A, x ∈ X}. Note

that X may be just a vertex. For two non-empty disjoint subsets X,Y ⊂ V ,
we use N−Y (X) to denote N−D (X) ∩ Y and d−Y (X) = |N−Y (X)|. Analogously, we
can define N+

Y (X) and d+Y (X). For two non-empty subsets X1, X2 ⊂ V , define
(X1, X2)D = {v1v2 ∈ A : v1 ∈ X1 and v2 ∈ X2} and [X1, X2]D = (X1, X2)D ∪
(X2, X1)D. We will drop the subscript when the digraph is clear from the context.

We write D[X] to denote the subdigraph of D induced by X. A clique in D
is an induced subdigraph D[X] such that any two vertices of X are adjacent.
We say that D contains Kp if it has a clique on p vertices. A vertex set X of
D is independent if no pair of vertices in X are adjacent. A dipath (dicycle) of
D with t vertices is denoted by Pt (Ct). We drop the subscript when the order
is not specified. A dipath P from v1 to v2, denoted by P(v1,v2), is often called
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a (v1, v2)-dipath. A dipath P is a Hamilton dipath if V (P ) = V (D). We call
C2 a digon. A digraph without digons is called an oriented graph. If two digons
have and only have one common vertex, then we call this structure a bidigon.
A semicomplete digraph is a digraph D that each pair of vertices has an arc
between them. A tournament is a semicomplete oriented graph.

In- and out-branchings were defined above. An out-tree (in-tree) is an out-
branching (in-branching) of a subdigraph of D. We use B+

s (B−t ) to denote an
out-branching rooted at s (an in-branching rooted at t). The root s (t) is called
out-generator (in-generator) of D. We denote by Out(D) (In(D)) the set of
out-generators (in-denerators) of D. If the root is not specified, then we drop
the subscripts of B+

s and B−t . We also use OD (ID) to denote an out-branching
(in-branching) of a digraph D. If OD and ID are arc-disjoint, then we write
(OD, ID) to denote a good pair in D.

2 Proofs Outline

In this section, we outline constructions we use to prove our main results. We
prove each of them by contradiction. We give the statements of some auxiliary
lemmas. Some of their proofs are too complicated and we will not give them in
the paper due to the length restriction. For simplicity, when outlining the proof
of our main results, we assume that |D1| = 7, |D2| = 8 and |D3| = 9.

2.1 Theorem 2

First we show that the largest clique in D1 is a tournament by Lemma 6, next
we prove that D1 is an oriented graph in Claim 2.1 by Lemma 7. Lemmas 6 and
7 will be given in Section 3. Then we use Proposition 12 to show that D1 has a
Hamilton dipath in Section 4. After that, we prove that D1 has a good pair by
Propositon 10, which is shown in Section 3.

2.2 Theorem 3

Our proof will follow three steps.

Firstly, we prove that the largest clique R in D2 has 3 vertices by Lemma 6.
Then we show that R is a tournament through Claim 3.1, which is proved by
Lemmas 6 and 7.

Our second step is to prove that D2 is an oriented graph in Claim 3.2 by
Lemmas 8, 9 and 10, which are given in Section 3.

In the last step, we proceed as follows in Section 5. We use Proposition 15 to
show that D2 has a Hamilton dipath. To prove it, we show Proposition 14 first.
After that, we prove that D2 has a good pair by Propositon 10.
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2.3 Theorem 4

Our proof will follow four steps.
Firstly, we show that the largest clique R in D3 has 3 vertices by Claim 4.1,

which is proved using Proposition 5 given in Section 3, and Lemmas 6 and 7.
Next we show that R has no digons by Claim 4.2, which is proved analogously

to Claim 3.1 using Lemmas 7, 8, 9 and 10.
Our third step is to show that D3 is an oriented graph in Claim 4.3. To do

this we need Lemmas 11 and 13 given in Section 6. For the first lemma, we give
a generalization of Proposition 6 as Proposition 16, and for the second one, we
prove Lemma 12 first.

Then we use Lemma 14 to show that D3 has a Hamilton dipath in Section 6.
To prove it, we show Proposition 17 first. After that, we prove that D3 has a
good pair by Proposition 10.

3 Preliminaries and useful lemmas

Proposition 5 Let D be a digraph with λ(D) ≥ 2 and with a good pair (B+
s , B

−
s ).

If there exists a vertex t in D such that D[{s, t}] is a digon, then D has a good
pair (B+

t , B
−
t ).

Proof. Let B+
t = ts+B+

s − e1 and B−t = B−s + st− e2, where e1 (e2) is the only
in-arc (out-arc) of t in B+

s (B−s ). Observe that B+
t (B−t ) is an out-branching (in-

branching) rooted at t in D. Since the root of any out-branching has in-degree
zero, if ts ∈ B+

s ∪B−s , then ts must be in B−s and moreover ts is the only out-arc
e2 of t in B−s . Similarly, if st ∈ B+

s ∪B−s , then st must be in B+
s and moreover

st is the only in-arc e1 of t in B+
s . Thus, B+

t and B−t are arc-disjoint and so
(B+

t , B
−
t ) is a good pair of D.

Proposition 6 Let D be a digraph with a subdigraph Q that has a good pair
(OQ, IQ). Let X = N−D (Q) and Y = N+

D (Q) with X ∩ Y = ∅ and X ∪ Y =
V − V (Q). Let Xi (Yj) be the initial (terminal) strong components in D[X]
(D[Y ]), i ∈ [a] (j ∈ [b]). If one of the following holds, then D has a good pair.
Meanwhile, we can always get two arc-disjoint PX ,PY and respectively an out-
and an in-forest TX and TY in D.

1. d−Y (X1) ≥ 1, d−Y (Xi) ≥ 2, i ∈ {2, . . . , a} and d+X(Yj) ≥ 2, j ∈ [b].
2. d+X(Y1) ≥ 1, d+X(Yj) ≥ 2, j ∈ {2, . . . , b} and d−Y (Xi) ≥ 2, i ∈ [a].

Proof. Let B+ be an out-tree containing OQ and an in-arc of any vertex in Y
from Q. Let B− be an in-tree containing IQ and an out-arc of any vertex in X
to Q. Set X = {Xi, i ∈ [a]} and Y = {Yj , j ∈ [b]}. By the digraph duality, it
suffices to prove that condition 1 implies that D has a good pair.

Now assume that d−Y (X1) ≥ 1, d−Y (Xi) ≥ 2, i ∈ {2, . . . , a}, and d+X(Yj) ≥
2, j ∈ [b]. Then there are at least two arcs from Yj (for each j ∈ [b]) to X,
at least two arcs from Y to Xi (for each i ∈ {2, . . . , a}) and at least one arc
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from Y to X1. Set X ′1 = X1. If there is an arc y1x1 from Y to X ′1 with y1 in
some Yj , j ∈ [b], then we choose such an arc and let Y ′1 = Yj , otherwise we
choose an arbitrary arc y1x1 from Y to X ′1 and let Y ′1 be an arbitrary strong
component in Y. Let PX = {y1x1}. There now exists an arc, y1x

1, out of Y ′1
(x1 ∈ X) which is different from y1x1 (as Y ′1 has at least two arcs out of it). If
there is such an arc y1x

1 with x1 in some Xi, i ∈ {2, . . . , a}, then we choose one
of these arcs and let X ′2 = Xi, otherwise we choose such an arbitrary arc y1x

1

out of Y ′1 (x1 ∈ X) and let X ′2 be an arbitrary strong component in X − X ′1.
Let PY = {y1x1}. Likewise, for t ≥ 2, we get an arc ytxt into X ′t (yt ∈ Y )
which is different from yt−1x

t−1 in PY . If there is such an arc ytxt with yt in
some Yj ∈ Y − {Y ′1 , . . . , Y ′t−1}, then choose one of these arcs and let Y ′t = Yj ,
otherwise we choose such an arbitrary arc ytxt and let Y ′t be an arbitrary strong
component in Y − {Y ′1 , . . . , Y ′t−1}. Add ytxt to PX . For s ≥ 2, we get an arc
ysx

s out of Y ′s (xs ∈ X) which is different from ysxs in PX . If there is such an
arc ysx

s with xs in some Xi ∈ X −{X ′1, . . . , X ′s−1}, then we choose one of these
arcs and let X ′s = Xi, otherwise we choose such an arbitrary arc ysx

s and let
X ′s be an arbitrary strong component in X − {X ′1, . . . , X ′s−1}. Add ysx

s to PY .
Hence we get two arc sets PX and PY with PX ∩ PY = ∅.

We will now show that D has a good pair. Let DX be the digraph obtained
from D[X] by adding one new vertex y∗ and arcs from y∗ to xi for i ∈ [a].
Analogously let DY be the digraph obtained from D[Y ] by adding one new vertex
x∗ and arcs from yj to x∗ for j ∈ [b]. Since Out(DX)= {y∗} and In(DY )= {x∗},
there exists an out-branching B+

y∗ in DX and an in-branching B−x∗ in DY . Set

TX = B+
y∗ − y∗ and TY = B−x∗ − x∗.

By construction, (OD, ID) is a good pair of D with OD = B+ + PX + TX
and ID = B− + PY + TY .

Corollary 1. Let D be a digraph with λ(D) ≥ 2 that contains a subdigraph
Q with a good pair. Set X = N−D (Q) and Y = N+

D (Q). If X ∩ Y = ∅ and
X ∪ Y = V − V (Q), then D has a good pair.

Proof. Let Xi be the initial strong components in D[X] and Yj be the terminal
strong components in D[Y ], i ∈ [a] and j ∈ [b]. Since λ(D) ≥ 2, d−Y (Xi) ≥ 2 and
d+X(Yj) ≥ 2, for any i ∈ [a] and j ∈ [b], which implies that D has a good pair by
Proposition 6.

Lemma 1 ([2]). Let D be a digraph and X ⊂ V (D) be a set such that every
vertex of X has both an in-neighbour and an out-neighbour in V −X. If D−X
has a good pair, then D has a good pair.

By Lemma 1, in this paper we will often use the fact that if Q is a maximal
subdigraph of D with a good pair and X = N−D (Q), Y = N+

D (Q), then X∩Y = ∅.

Lemma 2. Let D be a 2-arc-strong digraph containing a subdigraph Q with
a good pair, X = N−D (Q) and Y = N+

D (Q). If X ∩ Y = ∅ and X ∪ Y =
V − V (Q)− {w}, where w ∈ V − V (Q), then D has a good pair.
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Proof. Assume that Q has a good pair (OQ, IQ). Let B+ be an out-tree con-
taining OQ with an in-arc of any vertex in Y from Q, while B− be an in-tree
containing IQ with an out-arc of any vertex in X to Q.

First assume that either (Y,w)D 6= ∅ or (w,X)D 6= ∅. By the digraph duality,
we may assume that (Y,w)D 6= ∅, i.e., there exists an arc e from Y to w in D.
Let D′ = D − e. Set X ′ = N−D′(Q) = X and Y ′ = N+

D′(Q) ∪ {w} = Y ∪ {w}.
Let X ′i be the initial strong components in D′[X ′] and Y ′j be the terminal strong
components inD′[Y ′], i ∈ [a] and j ∈ [b]. If w has an in-neighbour v in Y with v in
some Y ′j , j ∈ [b], then let e = vw and Y ∗1 = Y ′j , otherwise we choose an arbitrary
in-neighbour v of w in Y and let e = vw and Y ∗1 be an arbitrary terminal
strong component of D′[Y ′]. Since λ(D) ≥ 2, d+X′(Y

∗
1 ) ≥ 1, d+X′(Y

′
j ) ≥ 2 and

d−Y ′(X
′
i) ≥ 2, for any Y ′j 6= Y ∗1 , j ∈ [b] and i ∈ [a], which implies that we get arc

sets PX′ and PY ′ with PX′∩PY ′ = ∅, and digraphs TX′ and TY ′ by Proposition 6.
By construction, D has a good pair (B+ + PX′ + TX′ + e,B− + PY ′ + TY ′).

Now assume that (Y,w)D = ∅ and (w,X)D = ∅, which implies that d−X(w) ≥
2 and d+Y (w) ≥ 2. Let Xi be the initial strong components in D[X] and Yj be
the terminal strong components in D[Y ], i ∈ [a] and j ∈ [b]. Since λ(D) ≥ 2
and (w,X)D = (Y,w)D = ∅, d−Y (Xi) ≥ 2 and d+X(Yj) ≥ 2 for any i ∈ [a] and
j ∈ [b]. By Proposition 6, we get PX , TX and PY , TY with PX ∩ PY = ∅. It
follows that (B+ + PX + TX + w−w,B− + PY + TY + ww+) is a good pair of
D, where w− ∈ X and w+ ∈ Y .

Proposition 7 ([2]) Every digraph on 3 vertices has a good pair if and only if
it has at least 4 arcs .

Following [4], we shall use δ0(D) to denote the minimum semi-degree of D,
which is the minimum over all in- and out-degrees of vertices of D.

Proposition 8 ([2]) Let D be a digraph on 4 vertices with at least 6 arcs except
E4 (see Fig. 1). If δ0(D) ≥ 1 or D is a semicomplete digraph, then D has a good
pair.

Fig. 1. E4.
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Lemma 3 ([5], p.354). Let D = (V,A) be a digraph. Then D is k-arc-strong
if and only if it contains k arc-disjoint (s, t)-paths for every choice of distinct
vertices s, t ∈ V .

Lemma 4 (Edmonds’ branching theorem [4]). A directed multigraph D =
(V,A) with a special vertex z has k arc-disjoint out-branchings rooted at z if and
only if d−(X) ≥ k for all ∅ 6= X ⊆ V − z.

Lemma 5 ([2]). If D is a 2-arc-strong digraph on n vertices that contains a
subdigraph on n− 3 vertices with a good pair, then D has a good pair.

Lemma 6. If D is a 2-arc-strong digraph on n vertices that contains a subdi-
graph Q on n− 4 vertices with a good pair, then D has a good pair.

Lemma 7. Let D be a 2-arc-strong digraph on n vertices that contains a sub-
digraph Q on n − 5 vertices with a good pair, X = N−D (Q), Y = N+

D (Q) and
X ∩ Y = ∅. If |X| ≥ 2 or |Y | ≥ 2, then D has a good pair.

Lemma 8. Let D be a 2-arc-strong digraph on n vertices that contains a sub-
digraph Q on n− 6 vertices with a good pair. Let X = N−D (Q) and Y = N+

D (Q)
with X∩Y = ∅. If |X| = |Y | = 2 and at most one of X and Y is an independent
set, then D has a good pair.

Lemma 9. Let D = (V,A) be a 2-arc-strong digraph on n vertices that contains
a subdigraph Q on n−6 vertices with a good pair. Set X = N−D (Q) = {x1, x2} and
Y = N+

D (Q) = {y1, y2} with X∩Y = ∅, and W = V −X−Y −V (Q) = {w1, w2}.
If X,Y are both independent sets, then D has a good pair except for the case
below:

(∗) (Y,X)D = {yjxi, y3−jx3−i} for some i, j ∈ [2], D[W ] = C2 and N+
W (yj)∩

N+
W (y3−j) = N−W (xi)∩N−W (x3−i) = ∅ while N+

W (yj)∩N−W (xi) 6= ∅ and N+
W (y3−j)∩

N−W (x3−i) 6= ∅.

We use D ⊇ E3 (D + E3) to denote that D contains an arbitrary orientation
(no orientation) of E3 as a subdigraph. (E3 is a mixed graph and only the two
edges are to be oriented.) E3 is shown in Fig. 2.

Fig. 2. E3.
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Lemma 10. Let D = (V,A) be a 2-arc-strong digraph on n vertices that con-
tains a subdigraph Q on n − 6 vertices with a good pair. Set X = N−D (Q) =
{x1, x2} and Y = N+

D (Q) = {y1, y2} with X ∩ Y = ∅, and W = V −X − Y −
V (Q) = {w1, w2}. If n = 8 or 9 and X,Y are both independent, then D has a
good pair.

Proposition 9 ([3]) A digraph D has an out-branching (resp. in-branching) if
and only if it has precisely one initial (resp. terminal) strong component. In that
case every vertex of the initial (resp. terminal) strong component can be the root
of an out-branching (resp. in-branching) in D.

We use T+
x (resp. T−x ) to denote an out-tree (resp. in-tree) rooted at x.

Proposition 10 Let D be an oriented graph on n vertices. Let PD = x1x2 . . . xn
be the Hamilton dipath of D and D′ = D−A(P ). Assume that there are exactly
two non-adjacent strong components I1 and I2 in D′. Set q ∈ {2, 3, n− 1, n}. If
for some q, xq−1 and xq are respectively in I1 and I2, then D has a good pair.

Proof. W.l.o.g., assume that xq−1 ∈ I1 and xq ∈ I2. Since Ii is strong, δ0(Ii) ≥ 1,
for any i ∈ [2].

First assume q ∈ {n− 1, n}. Let x be an in-neighbour of xq in I2. We get an
out-branching of D as B+

x1
= PD − xq−1xq + xxq. Then we will show that there

is an in-branching B−x in D − A(B+
x1

). Since I2 is strong, I2 − xxq is connected
and has only one terminal srong component which contains x. This implies that
there is an in-branching T−x in I2 − xxq. Note that there exists an in-branching
T−xq−1

in I1, as I1 is strong. Then B−x = T−x +xq−1xq +T−xq−1
, which implies that

(B+
x1
, B−x ) is a good pair of D.

Now we assume q ∈ {2, 3}. Let y be an out-neighbour of xq−1 in I1. We get
an in-branching of D as B−xn

= PD − xq−1xq + xq−1y. Then we will show that
there is an out-branching B+

y in D − A(B−xn
). Since I1 is strong, I1 − xq−1y

is connected and has only one initial srong component which contains y. This
implies that there is an out-branching T+

y in I1 − xq−1y. Note that there exists
an out-branching T+

xq
in I2, as I2 is strong. Then B+

y = T+
y + xq−1xq + T+

xq
. So,

(B+
y , B

−
xn

) is a good pair of D.

Proposition 11 Let D be a 2-arc-strong oriented graph on at least seven ver-
tices. Then D has a dipath P6.

Proof. Suppose that there is no P6 in D. Assume that Pt is the longest dipath
in D, then t ≥ 4, as there is no digon in D and λ(D) ≥ 2. Observe that there is
no Ct in D, otherwise D has a longer dipath Pt+1.

First assume that t = 4 and set P4 = x1x2x3x4. Since d+D(x4) ≥ 2 and D has
no digon, the out-neighbourhood of x4 either contains x1 or contains a vertex in
V − V (P4). This implies that there is a P5 in D, a contradiction.

Henceforth we may assume that t = 5 and set P5 = x1x2x3x4x5. Since
λ(D) ≥ 2, d+D(x5) ≥ 2 and d−D(x1) ≥ 2. Then we get N+

D (x5) = {x2, x3} and
N−D (x1) = {x3, x4}, as P5 is the longest dipath in D and D has no digon.
Observe that there exsits a different 4-length dipath, x4x5x3x1x2, in D. Likewise,
N+

D (x2) = {x3, x5}, which implies that D[{x2, x5}] is a digon, a contradiction.
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4 Good pairs in digraphs of order 7

Proposition 12 A 2-arc-strong oriented graph D on n vertices has a P7, where
7 ≤ n ≤ 9.

Proof. Suppose to the contraty that P is the longest dipath in D, where |P | = 6.
Obviously D has no C6 by Proposition 11. Set P = x1x2x3x4x5x6. Since λ(D) =
2, we have d+D(x6) ≥ 2 and d−D(x1) ≥ 2. Note that N+

D (x6) ⊆ {x2, x3, x4} and
N−D (x1) ⊆ {x3, x4, x5}.

Assume first that N+
D (x6) ∩N−D (x1) = ∅.

If N+
D (x6) = {x2, x3} and N−D (x1) = {x4, x5}, then we can get a new P6 in D

as x6x2x3x4x5x1. Likewise, we have x3 ∈ N+
D (x1) and x4 ∈ N−D (x6). Then there

exists a good pair (B+
x4
, B−x4

) in D[P ] with B+
x4

= x4x1x2 + x4x5 + x4x6x3 and
B−x4

= x5x6x2x3x4 + x1x3, which implies that D has a good pair by Lemma 5
and Lemma 1.

If N+
D (x6) = {x2, x4} and N−D (x1) = {x3, x5}, then we can get a new P6 in

D as x6x4x5x1x2x3. Likewise, we have x1 ∈ N−D (x6), which implies that there
is a C6 as x6x2x3x4x5x1x6, a contradiction.

Henceforth, we may assume that there is at least one common vertex in
N+

D (x6) and N−D (x1). Without loss of generality, assume that x3 is one of the
common vertices. The case when x4 ∈ N+

D (x6) ∩ N−D (x1) can be proved analo-
gously by reversing all arcs ofD. Then we can get a new P6 inD as x4x5x6x3x1x2.
Likewise, we have

N+
D−x3

(x2) ⊆ {x5, x6} and N−D−x3
(x4) ⊆ {x1, x6}. (1)

Note that x4 ∈ N−D (x1) and x5 ∈ N+
D (x2) will not hold at the same time, or

there will exist a C6 as x1x2x5x6x3x4x1, a contradiction.
If x2 ∈ N+

D (x6), then we have x5 ∈ N+
D (x2) as D is an oriented graph. This

implies that x5 is an in-neighbour of x1. Observe a new P6 as x4x5x6x2x3x1,
we can get that x6 ∈ N+

D (x1). Thus there exists a C6 as x6x2x3x4x5x1x6, a
contradiction.

Thus we have N+
D (x6) = {x3, x4}. If x4 ∈ N−D (x1), then x6 is an out-

neighbour of x2. Observe a new P6 as x5x6x4x1x2x3, we can get that x1 ∈
N−D (x5). Thus there exists a good pair (B+

x2
, B−x6

) in D[P ] with B+
x2

= x2x6x4 +
x6x3x1x5 and B−x6

= PD, which implies that D has a good pair by Lemma 5 and

Lemma 1. If x5 ∈ N−D (x1), then we can get a new P6 as x6x3x4x5x1x2. Like-
wise, we have N+

D−x3
(x2) ⊆ {x4, x5} and N−D−x5

(x6) ⊆ ∪{x1, x4}. By (1) and

x4 ∈ N+
D (x6), we can get that x5 ∈ N+

D (x2) and x1 ∈ N−D (x6). Then there exists
a good pair (B+

x2
, B−x6

) in D[P ] with B+
x2

= x2x5x1x6x3 + x6x4 and B−x6
= PD,

which implies that D has a good pair as λ(D) = 2, a contradiction.

Now we are ready to prove Theorem 2. For convenience, we restate it here.

Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.

Proof. Suppose that D has no good pair. Let R be a largest clique in D. By
Lemma 5 and Proposition 8, |R| = 3. Moreover, R is a tournament by Lemma 6
and Proposition 7.
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Claim 2.1 D is an oriented graph.

Proof. Proof. Suppose that there is a digon Q in D with V (Q) = {s, t}. Observe
that Q has a good pair. Since R is a tournament with three vertices, both in-
and out-neibourhoods of Q in D have at least two vertices. This implies that D
has a good pair by Lemma 7, a contradiction.

Assume that PD = x1x2 . . . x7 is a Hamilton dipath of D by Proposition 12.
Set D′ = D−A(PD). Let Ii and Tj respectively be the initial and terminal strong
component in D′, where i ∈ [a] and j ∈ [b]. Note that a, b ≥ 2 by Proposition 9.
Since D is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3, for any i ∈ [a], j ∈ [b].
Thus there are only two non-adjacent strong components in D′, say I1 and I2,
with |I1| = 3 and |I2| = 4. Note that |N−D′(x1)| ≥ 2 and |N+

D′(x7)| ≥ 2 as
λ(D) ≥ 2, which implies that x1, x7 ∈ I2. Moreover, x2, x6 ∈ I1 by Claim 2.1.
Then D has a good pair by Proposition 10.

5 Good pairs in digraphs of order 8

The digraph E3 used in the next proposition is shown in Fig. 2.

Proposition 13 ([2]) Let D be a 2-arc-strong digraph without any subdigraph
on order 4 that has a good pair. If D contains an orientation Q of E3 as a
subdigraph, then N+

D (Q) ∩N−D (Q) = ∅, |N+
D (Q)| ≥ 2 and |N−D (Q)| ≥ 2.

Proposition 14 Let D be a 2-arc-strong oriented graph on n vertices without
K4 as a subdigraph, where 8 ≤ n ≤ 9. If D has two disjoint cycles C1 and C2

which cover exactly 7 vertices, then D contains a P8.

Proof. Suppose that P7 is the longest dipath of D by Proposition 12. In fact
there exist arcs between C1 and C2 from both directions, otherwise D has a P8

as λ(D) ≥ 2. W.l.o.g., assume |C1| ≥ |C2|. Then |C1| = 4 and |C2| = 3. Let
C1 = x1x2x3x4x1, C2 = x5x6x7x5, P7 = x1x2 . . . x7 and yj be the vertex in
V − V (C1 ∪ C2), where j = 1 when n = 8 and j ∈ [2] when n = 9. From the
maximality of P7 in D, we have the following facts.

Fact 14.1. For any j, at least one of (Ci, yj)D and (yj , C
3−i)D is empty for any

i ∈ [2].
Fact 14.2. For any j, at least one of arcs xiyj and yjxi+1 is not in A for any

i ∈ [6].
Fact 14.3. For n = 9, let yjy3−j ∈ A. If xiyj ∈ A, then y3−jxi+1, y3−jxi+2 /∈ A,

where j ∈ [2] and i ∈ [5].

Since D is oriented, there are at least three arcs between yj and Ci, for some i,
by Fact 14.1. W.l.o.g., assume i = 1. Note that d+C1(yj) ≥ 1 and d−C1(yj) ≥ 1.
Then N(yj) ⊂ {y3−j} ∪ C1 when n = 9 and N(yj) ⊂ C1 when n = 8.

If yj is not adjacent to y3−j or n = 8, thenN+(yj) = {x1, x2} andN−(y3−j) =
{x3, x4} by Fact 14.2, which implies that D has a P8 as yjx1 ∈ A, a contradiction.



12 R. Gu, G. Gutin, S. Li, Y. Shi, Z. Taoqiu

Hence n = 9 and y1 is adjacent to y2. W.l.o.g., assume that y1y2 ∈ A. If
x1y1 ∈ A, then N+(y2) = {x1, x4} by Fact 14.3 and λ(D) ≥ 2, which implies that
D has a Hamilton dipath as y2x1 ∈ A, a contradiciton. Hence x1 is not adjacent
to y1. By Fact 14.2, N+(y1) = {x2, y2} and N−(y1) = {x3, x4}. By Fact 14.3
and the longestness of P7, N+(y2) = {x2, x3}. It implies that D[{x2, x3, y1, y2}]
is a K4, a contradiction.

Proposition 15 Let D = (V,A) be a 2-arc-strong digraph on n vertices without
good pair, where 8 ≤ n ≤ 9. If D is an oriented graph without K4 as a subdigraph,
then D has a P8.

Now we are ready to show Theorem 3. For convenience, we restate it here.

Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.

Proof. Suppose that D has no good pair. Let R be a largest clique in D. By
Lemma 6 and Proposition 8, |R| = 3.

Claim 3.1 No subdigraph of D of order at least 3 has a good pair.

Proof. By Lemma 6, it suffices to show that there is no Q ⊂ D on 3 vertices with
a good pair. Suppose that Q has a good pair. If Q is an orientation of E3, then
we use Lemma 7 to find a good pair of D by Proposition 13, a contradiction.
Now assume that Q is a bidigon. Set V (Q) = {x, y, z} with Q[{x, y}] = C2 and
Q[{y, z}] = C2. If there exists a vertex w in N+

D (Q) ∩N−D (Q), then D[Q ∪ {w}]
has a good pair by Lemma 1. Thus N+

D (Q)∩N−D (Q) = ∅. If N−D (Q) = {w}, then
D[Q∪ {w}] has a good pair as B+

w = wzyx and B−z = wxyz. By symmetry, this
implies that |N+

D (Q)| ≥ 2 and |N−D (Q)| ≥ 2. Thus by Lemma 7, D has a good
pair, a contradiction. ♦

By the claim above, R is a tournament.

Claim 3.2 D is an oriented graph.

Proof. Suppose that there is a digon Q in D with V (Q) = {s, t}. Observe that
Q has a good pair. Since R is a tournament with 3 vertices, both in- and out-
neibourhoods of Q in D have at least two vertices with N+

D (Q) ∩ N−D (Q) = ∅.
This implies that D has a good pair by Lemmas 2, 8, 9 and 10, and Corollary 1,
a contradiction. ♦

By Proposition 15, assume that PD = x1x2 . . . x8 is a Hamilton dipath of D.
Set D′ = D−A(PD). Let Ii and Tj respectively be the initial and terminal strong
component in D′, where i ∈ [a] and j ∈ [b]. Note that a, b ≥ 2 by Proposition 9.
Since D is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3 for any i ∈ [a], j ∈ [b].
Thus there are only two non-adjacent strong components in D′, say I1 and I2, as
n = 8. Since λ(D) ≥ 2, x1 has at least two in-neighbours and one out-neighbour
in D′, while x8 has at least two out-neighbours and one in-neighbour in D′. If
|I1| = 3 and |I2| = 5, then x1, x8 ∈ I2 and |A(I2)| ≥ 6. Note that at least one
of x2 and x7 is in I1 as |R| = 3. Then we use Proposition 10 to get a good pair
of D. Now assume |I1| = |I2| = 4. If x8 ∈ I1 then x7 ∈ I2 by Claim 3.2. By
Proposition 10, D has a good pair.
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6 Good pairs in digraphs of order 9

We have several generalizations of Proposition 6 here, which are easy to check
as they satisfy the conditions in Proposition 6.

Proposition 16 Let D = (V,A) be a digraph and Q be a subdigraph of D with
good pair (OQ, IQ). Set X = N−D (Q) and Y = N+

D (Q) with X ∩ Y = ∅ and
X ∪ Y = V − V (Q)−W , where W = {w1, w2}. Let e1 be an arc from w1 to X
and e2 be an arc from Y to w2. Set X

′ = X ∪w1, Y
′ = Y ∪w2 and D′ = (V,A′)

with A′ = A− {e1, e2}. Let X be the set of initial strong components in D′[X ′]
and Y be the set of terminal strong components in D′[Y ′]. Assume that there
exists X0 and Y0 in X and Y respectively such that d−Y (X0) = 1 and d+X(Y0) = 1.
Let ex and ey be arcs from Y to X0 and from Y0 to X respectively. If one of the
following holds, then D has a good pair.

1. ex 6= ey, but at least one of X or Y has only one element.
2. ex (or ey) is adjacent to some Yx (or Xy) in Y (or X ), such that d+X(Yx) ≥ 3

(or d−Y (Xy) ≥ 3).
3. ex (or ey) is adjacent to Y ′ − V (Y) (or X ′ − V (X )).
4. ex (or ey) is adjacent to some Yx 6= Y0 (or Xy 6= X0) in Y (or X ), such that

there exists an arc from Yx (or Xy) to X ′ − V (X ) (or Y ′ − V (Y)).

Lemma 11. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon
Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set
X = N−D (Q) and Y = N+

D (Q) with X ∩ Y = ∅. If |X| = 3 and |Y | = 2, then D
has a good pair.

Lemma 12. Let D = (V,A) be a 2-arc-strong digraph on 9 vertices that contains
a digon Q. Assume that D has no subdigraph with a good pair on at least 3
vertices. Set X = N−D (Q) and Y = N+

D (Q) with X ∩ Y = ∅ and W = V −
V (Q)−X − Y . Assume that |X| = |Y | = 2 and there is an arc e = st ∈ A such
that s ∈ Y and t ∈ W (resp. s ∈ W and t ∈ X). If there are at least three arcs
in D[Y ∪ {t}] (resp. D[X ∪ {s}]), then D has a good pair.

Lemma 13. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon
Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set
X = N−D (Q) and Y = N+

D (Q) with X ∩ Y = ∅. If |X| = 2 and |Y | = 2, then D
has a good pair.

Proposition 17 Let D = (V,A) be a 2-arc-strong oriented graph on 9 vertices
without K4 as a subdigraph. If D have two cycles C1 and C2 with C1 ∩ C2 = ∅
which cover 8 vertices, then D contains a Hamilton dipath.

Lemma 14. Let D = (V,A) be a 2-arc-strong digraph on 9 vertices without
good pair. If D is an oriented graph without K4 as a subdigraph, then D has a
Hamilton dipath.

Now we are ready to show Theorem 4. For convenience, we restate it here.
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Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.

Proof. By contradiction, suppose that D has no good pair.

Claim 4.1 No subdigraph of D of order at least 4 has a good pair.

Let R be a largest clique in D. Then R has three vertices by Claim 4.1 and
Proposition 8.

Claim 4.2 No subdigraph of D of order at least 3 has a good pair.

Proof. By Lemma 7, it suffices to show that there is no Q ⊂ D on 3 vertices
with good pair. Suppose to the contrary that Q has a good pair. Analogous to
Claim 3.1, |N+

D (Q)| ≥ 2 and |N−D (Q)| ≥ 2 with N+
D (Q) ∩N−D (Q) = ∅. Thus by

Lemma 8, D has a good pair, a contradiction. ♦

By the claim above, R is a tournament.

Claim 4.3 D is an oriented graph.

Proof. Suppose that D has a digon Q. Set X = N−D (Q) and Y = N+
D (Q). By

Claim 4.2, X∩Y = ∅. Since λ(D) ≥ 2, both X and Y have at least two vertices. If
|X|+|Y | = 4, thenD has a good pair by Lemma 13, a contradiction. If |X|+|Y | =
5, then D has a good pair by Lemma 11 and the digraph duality, a contradiction.
If |X| + |Y | = 6, then D has a good pair by Lemma 2, a contradiction. If
|X|+ |Y | = 7, then D has a good pair by Corollary 1, a contradiction. ♦

Now we are ready to finish the proof of Theorem 3. By Lemma 14, assume
that PD = x1x2 . . . x9 is a Hamilton dipath of D. Set D′ = D − A(PD). Let
Ii, i ∈ [a], be the initial strong components in D′ and let Tj , j ∈ [b], be the
terminal strong components in D′. Note that a, b ≥ 2 by Proposition 9. Since D
is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3, for any i ∈ [a], j ∈ [b]. Since
λ(D) ≥ 2, x1 has at least two in-neighbours and one out-neighbour in D′ and
x9 has at least two out-neighbours and one in-neighbour in D′. Thus there are
only two non-adjacent strong components in D′, say I1 and I2, as n = 9 and D
is an oriented graph. We distinguish two cases below.

Case 1: |I1| = 4 and |I2| = 5.
If x9 ∈ I1, then x8 ∈ I2 as |R| = 3. Analogously, if x1 ∈ I1, then x2 ∈ I2. By

Proposition 10, D has a good pair for each cases. Henceforth, both x1 and x9 are
in I2. Note that at least one of x2 and x8 is in I1 as |R| = 3. By Proposition 10,
D has a good pair, a contradiction.

Case 2: |I1| = 3 and |I2| = 6.
In this case, x1, x9 ∈ I2 and |A(I2)| ≥ 7. If one of x2 and x8 is in I1, then

D has a good pair by Proposition 10. Thus both x2 and x8 are in I2. Then
V (I1) = {x3, x5, x7}, which implies that D has a good pair by Proposition 10, a
contradiction.

This completes the proof of Theorem 4.



Smallest number of vertices in a 2-arc-strong digraph without good pair 15

References

1. Bang-Jensen J. Edge-disjoint in- and out-branchings in tournaments and related
path problems. J. Combin. Theory Ser. B 51(1): 1–23 (1991)

2. Bang-Jensen J., Bessy S., Havet F., Yeo, A. Arc-disjoint in- and out-branchings
in digraphs of independence number at most 2. arXiv:2003.02107 (2020)

3. Bang-Jensen J., Bessy, S. Yeo, A. Non-separating spanning trees and out-
branchings in digraphs of independence number 2. arXiv:2007.02834v1 (2020)

4. Bang-Jensen J., Gutin G. (eds.) Classes of Directed Graphs. Springer Verlag,
London (2018)

5. Bang-Jensen J., Gutin G. Digraphs: Theory, Algorithms and Applications. 2nd
edn., Springer Verlag, London (2009)

6. Bang-Jensen J., Gutin G., Yeo A. Arc-disjoint strong spanning subdigraphs of
semicomplete compositions. J. Graph Theory 95(2): 267–289 (2020)

7. Bang-Jensen J., Huang J. Decomposing locally semicomplete digraphs into strong
spanning subdigraphs. J. Combin. Theory Ser. B 102(3): 701–714 (2010)

8. Bang-Jensen J., Saurabh S., Simonsen S. Parameterized algorithms for non-
separating trees and branchings in digraphs. Algorithmica 76(1): 279–296 (2016).

9. Gu R., Gutin G., Li S., Shi Y., Taoqiu Z. The smallest number of vertices in a
2-arc-strong digraph which has no good pair. arXiv:2012.03742 (2020).

10. Gutin G., Reidl F., Wahlström M. k-distinct in- and out-branchings in digraphs.
J. Comput. Syst. Sci. 95: 86–97 (2018).

11. Lovász L. On two min-max theorems in graph theory. J. Combin. Theory Ser. B
21: 96–103 (1976)

12. Thomassen C. Configurations in graphs of large minimum degree, connectivity,
or chromatic number. Annals of the New York Academy of Sciences 555: 402–412
(1989)


