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Abstract. In this paper we formalise public-key Updatable Encryption
(PKUE), a primitive so far studied formally only in the symmetric set-
ting. Defining UE in the public-key setting enables us to establish a new
notion of security we call epoch confidentiality (EC) which considers the
ability of an adversary to distinguish the public keys used in periods
known as epochs and in turn reflects the leakage of the time in which
a ciphertext was created. We propose a public-key UE construction and
prove that it satisfies our new notion of security alongside a notion of
ciphertext confidentiality such that efficiency is not affected by moving
to the public-key setting.

1 Introduction

In recent years there has been an increase in the outsourcing of encrypted data
to a potentially untrusted host. To protect the underlying data and mitigate the
security risks of key compromise over a long time, several cryptographic schemes
have been proposed that employ a technique called key-rotation which enables
an entity to move existing ciphertexts from the old to the new key [13]. Triv-
ially, a scheme can update a ciphertext by decrypting and then re-encrypting
the underlying plaintext with the updated key. However, when the encrypted
data has been outsourced, this is an impractical method. Either the owner must
download, re-encrypt and update all ciphertexts themselves, which is computa-
tionally inefficient, or they outsource the update by sending the encryption keys
to the untrusted host to perform re-encryption, which no longer ensures security
[4].

The authors of [4] introduced the updatable encryption (UE) primitive to pro-
vide a more elegant, non-trivial solution to the above. Instead of re-encrypting
a ciphertext from an old to a new key, the data owner instead generates a token
that enables the host to convert the ciphertext to encryption under the new
key (provided it is trusted to delete old tokens and ciphertexts after an update)
without the need to decrypt.Traditionally, UE schemes have been designed in
the symmetric-key setting [4, 9, 5, 6, 14, 10] to convert ciphertexts in a periodic
manner marked by set time-intervals known as epochs and using encryption keys
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valid only for their associated epoch. The advantage of equipping an encryption
scheme with an update functionality is met with the challenge of modelling se-
curity, due to the corruption capabilities of an adversary. As a consequence, the
main focus of UE research has been on defining new notions of security and
strengthening past notions. The complexities in ensuring security could poten-
tially dominate important factors such as the efficiency, practicality and cost of
implementation. For several reasons and with careful consideration, we will for-
malise a public-key ciphertext-independent UE scheme with probabilistic updates.
As a consequence, we formalise and prove replayable chosen-ciphertext security
of our construction, which has previously been shown to be the gold-standard
level of security for probabilistic UE schemes [11]. We defer the reader to the
extended version of this paper for an in-depth overview of the current literature,
which comprehensively discusses the trade-offs between such factors and their
consequences.

Contributions and Motivation Our first major contribution in this paper is
to explicitly define updatable encryption as a public-key primitive (PKUE) in
Section 2. Notably, several symmetric UE works [9, 13, 11] have adopted public-
key techniques, however, lifting UE to the public-key setting enables us to extend
the already rigorously defined security of symmetric UE to capture notions of
security only relevant in the context of public-key primitives and building blocks.
We note that one can view UE as a special case of the public-key primitive known
as proxy re-encryption (PRE) [2, 12, 7] and we are motivated to explore UE in the
public-key setting for the same applications in which PRE schemes are utilised.
However, we emphasise that UE and PRE are fundamentally different primitives
in the sense of security guarantees.

Moreover, we identify a gap in previously proposed security modelling which
sees us introduce a new notion of security called epoch confidentiality in Section
3. Epoch confidentiality can only be modelled in the public-key setting which fur-
ther illustrates our motivation for formalising public-key UE: guaranteeing secu-
rity notions specific to public-key building blocks. In more words, we simultane-
ously achieve confidentiality of both epochs and ciphertexts (UP-IND-EC-RCCA
security) by asking an adversary to distinguish the underlying message and pub-
lic key used in encryption that results in the given challenge ciphertext. Our
definition of epoch confidentiality is inspired by and can be viewed as achiev-
ing key privacy [1] in public-key updatable encryption. Key privacy is especially
important in UE schemes as the epoch keys have more function than keys in
standard PKE schemes. Specifically, epoch keys are required in update token
generation and they directly relate to the corresponding epoch in which they are
used.

We argue that the notion of epoch confidentiality must be satisfied in any UE
scheme in which the data owner cares about the leakage of the age of their en-
crypted information – e.g., from dating app profiles to individual medical records
outsourced for storage. Whilst the leakage of ciphertext age has previously been
discussed in [8, 5], not only are their proposed schemes designed for different
types of UE schemes, the ciphertext-dependent and deterministic ciphertext-



Epoch Confidentiality in Updatable Encryption 3

independent update setting respectively, one critical oversight in both works is
to consider the direct relationship the epoch keys have to ciphertext updates.
For instance, epoch keys are used to derive the update token, and the inferable
information from these is not captured in the ciphertext confidentiality model
of both [3, 5]. By contrast, our security model not only asks the adversary to
distinguish the underlying message in a UE scheme but also requires the adver-
sary to distinguish the epoch public key used to encrypt the ciphertext. Thus,
the notion of epoch confidentiality fully captures the leakage of an epoch in a
probabilistic ciphertext-independent update setting by modelling both epoch key
indistinguishability and ciphertext confidentiality.

In the full version of the paper we present a concrete public-key UE scheme
and prove it satisfies epoch confidentiality. Our PKUE scheme is an adaptation of
an existing symmetric UE construction [11] explicitly using updatable public-key
building blocks. In doing so, we can lift the security of the scheme from CPA-
security to RCCA-security, thus demonstrating the existence of a public-key UE
primitive satisfying (UP-IND-EC-RCCA) security. We conclude our work in the
extended version by detailing the security analysis and discussing the efficiency
of our construction.

2 Public-Key Updatable Encryption

Notation An updatable encryption scheme is defined by epochs of time ei from
the range of time i = {0, . . . ,max}. We denote the current epoch e or use sub-
script notation ei for i ∈ N if we define multiple epochs at once and in security
games the challenge epoch is represented by ẽ. To signify epoch keys the nota-
tion ke, ke+1 and kold, knew is used interchangeably in this work, depending on
whether we require explicit epoch notation or we only need to define consecutive
epoch keys (similarly for update tokens ∆).

Traditional symmetric UE is for an owner outsourcing encrypted data over a
long period. Time in a UE scheme is formally divided into equal periods known
as epochs in which epochs are associated with distinct keys. A ciphertext is
updated (re-encrypted) by a potentially untrusted host to the next epoch to
provide stronger security by rotating the key used for encryption. Crucially, this
update is performed by the host using an update token derived by the date owner,
which is formed from the current and preceding epoch keys, such that the host is
incapable of learning anything about the encrypted information. Following the
discussion in the Introduction, we are motivated to formalise a public-key UE
scheme which will be provided below. The key idea is to lift the definition of
UE to the public-key setting by generating an epoch key consisting of a public
key and a secret key component, and the update token is derived from the past
epoch secret key and the current (full) epoch key.

Definition 1 (Updatable Encryption). A public-key updatable encryption
(UE) scheme for message spaceMSP consists of a set of polynomial-time algo-
rithms (UE.Setup, UE.KG, UE.TG, UE.Enc, UE.Dec, UE.Upd), defined as follows:
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- UE.Setup(1λ)
$→ pp : The owner runs the probabilistic algorithm UE.setup

on input security parameter λ, outputting public parameters pp. Whilst not
made explicit, assume throughout that the security parameter (1λ) is input
into the algorithms of the scheme.

- UE.KG(pp, e)
$→ ke : The owner runs the probabilistic key-generation algo-

rithm UE.KG for epoch e on input the public parameters. The output is an
epoch key ke := (pke, ske) composed of public key (pke) and secret-key (ske)
elements.

- UE.TG(ske, ke+1) → ∆e+1 : The owner generates the update token by run-
ning the deterministic algorithm UE.TG on input the secret key ske of epoch
key ke and epoch key ke+1 for the proceeding epoch.

- UE.Enc(pke,m)
$→ Ce : The owner runs the probabilistic algorithm UE.Enc

on input a message m ∈ MSP and public key pke of some epoch e, out-
putting a ciphertext Ce.

- UE.Dec(ske, C) → {m′,⊥} : The owner runs the deterministic algorithm
UE.Dec on input a ciphertext C and secret key ske for some epoch e, return-
ing either the message m or abort ⊥.

- UE.Upd(∆e+1, Ce)
$→ Ce+1 : The host runs the probabilistic algorithm

UE.Upd. This is run on input ciphertext Ce for epoch e, and update to-
ken ∆e+1 for the next epoch (e + 1), and returns as output the updated
ciphertext Ce+1.

Informally, the correctness property ensures that fresh encryptions and updated
ciphertexts should decrypt to the underlying plaintext, given the appropriate
epoch key [13, 11, 5].

Correctness Given security parameter λ, an updatable encryption scheme (UE)
formalised in Definition 1 is correct if, for any message m ∈ MSP and for any
j ∈ {1, . . . , e}, i ∈ {0, . . . , e} with e > i, there exists a negligible function negl
such that the following holds,

Pr


pp

$← UE.Setup(1λ); kej
$← UE.KG(pp, ej);

∆ej ← UE.TG(skej−1
, kej );Cei

$← UE.Enc(pkei ,m);

{Cej ← UE.Upd(∆ej , Cej−1
) : j ∈ {i+ 1, · · · ,max}} :

UE.Dec(ske, Ce) = m

 ≥ 1− negl(λ).

Before defining a novel security notion for PKUE, we highlight that the extended
version of the paper contains the comprehensive details of lists and oracles re-
quired for security modelling in an experiment capturing post-compromise se-
curity and ciphertext unlinkability. To be exact, the latter notion of ciphertext
unlinkability formalises replayable chosen-ciphertext security (UP-IND-RCCA)
which assumes an adversary queries updates of arbitrary ciphertexts, however,
they are incapable of distinguishing updated ciphertexts from the original cipher-
text, despite access to prior ciphertexts and update tokens. Notably, modelling
RCCA-security is viewed as the benchmark notion of ciphertext-independent UE
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security given update attacks in an untrusted environment, in line with the re-
cent work of [11].

3 Epoch Confidentiality

In this section, we introduce the notion of an epoch confidential public-key
UE primitive. We capture both epoch and ciphertext confidentiality in the
UP-IND-EC-RCCA security notion, (Definition 2). We are motivated by the fact
that ciphertext-independent UE literature has not yet captured epoch confiden-
tiality, which we argue next is an important security property a UE scheme must
satisfy. Namely, in the UE literature the number of key updates on a file indicates
the age of the encrypted file (ciphertext). The authors of [3, 5] independently
highlighted ciphertext-age leakage to be problematic in real-world scenarios. For
instance, [3] considers the setting of dating apps where the number of updates
in a UE scheme would reveal how long the person has been a customer which
is sensitive information. Indeed, numerous schemes proposed in the literature,
such as [9], create a ciphertext expansion as time progresses which results in ci-
phertext length variance. The authors of [3] demonstrated how ciphertext length
can be used to trivially infer ciphertext-age in a UE scheme.

A tentative solution given by [3] is to require the length of fresh and updated
ciphertexts to be equal, a notion known as compactness. However, not only is
compactness a strong property to ensure, it does not guarantee there will be
no leakage of ciphertext age. Despite the satisfaction of traditional notions of
security for UE schemes and ciphertext compactness, ciphertext patterns can
indicate if the ciphertext is generated by fresh encryption or ciphertext update.
Indeed, in [3] a simple example is given in which the last bit of the respective
ciphertexts differ, and an adversary can determine whether the ciphertext was
derived from an update of a pre-existing ciphertext or fresh encryption simply by
comparing the last bits of the ciphertexts, thus leaking age information. In [3, 5]
the above issues are handled by modelling the computational indistinguishability
between fresh ciphertexts and re-encrypted ones to prevent leakage of ciphertext-
age. However, without further security modelling an adversary can still infer an
epoch and consequently the age of a ciphertext by distinguishing the public
component of the epoch key used in encryption, token generation and ciphertext
updates.

In more words, our contribution in defining epoch confidentiality not only
captures age leakage as in [5, 3] but goes one step further by modelling the
indistinguishability of epoch public keys. By definition, the epoch key is designed
such that the update token can be derived from the current and proceeding
epoch keys. Without specific conditions in security modelling, the corruption of
epoch keys and update tokens in challenge-equal epochs enables an adversary
to infer information about a version of the challenge ciphertext. In addition to
requiring the computational indistinguishability of ciphertexts from encryption
and update, we necessitate the computational indistinguishability of the epoch
public keys to provide epoch confidentiality in a given UE scheme.
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Security Modelling To achieve epoch confidentiality for a public-key updat-
able encryption scheme as in Definition 1, an adversary should be unable to
distinguish the public-key component of the epoch key under which a ciphertext
has been generated. Thus, possession of distinct public keys and a challenge ci-
phertext should not give an adversary an advantage in determining which public
key and therefore which epoch the ciphertext was encrypted under. This ap-
proach to modelling security is inspired by and similar in manner to key privacy
[1], which is used to define anonymity in public-key encryption schemes (see the
Appendices in the extended version of the paper).

To formalise Definition 2, we use the the security experiment given in Figure
1 (ExpUP-IND-EC-CCA,b

UE,A (λ)). The intuition is to model an indistinguishability game
between the challenger and an adversary A. Initially, the adversary is given two
challenge public keys (pke0 , pke1) and A proceeds to query the oracles detailed
in the full version of this paper.

The extended version of the paper contains the details of the lists maintained
by the challenger and oracles. We highlight an important list to epoch confiden-
tiality, K̃ which captures the epochs in which adversary A receives challenge
public keys and this list must be checked before responding to all oracle queries,
to prevent trivial wins.
In more words, the game in Figure 1 starts by initialising the global state GS.
Next, the key-generation algorithm is run twice in order to generate epoch keys
ke0 = (pke0 , ske0) and ke1 = (pke1 , ske1) for distinct epochs of time e0, e1. The
public keys (pke0 , pke1) are then given to the adversary. The adversary can query
oracles O = {ODec,OUpd,ONext,OCorrupt-Token,OCorrupt-Key} to output valid chal-
lenge messages (m0,m1) ∈ MSP required to be of the same length, alongside
some state information s. Subsequently, the challenger encrypts mb using public
key pkeb , for a pre-determined bit b ∈ {0, 1}, sending the challenge ciphertext
C to the adversary. Using this challenge ciphertext alongside the state informa-
tion s and further access to previously detailed oracles, A guesses the bit b′ and
succeeds in the game if their guess corresponds to the bit b chosen before the
experiment began. More formally,

Definition 2 (UP-IND-EC-RCCA-Security).

A public-key updatable encryption scheme (UE), formalised in Definition 1, sat-
isfies UP-IND-EC-RCCA security if for any PPT adversary A there exists a neg-
ligible function negl such that

Pr[ExpUP-IND-EC-RCCA
UE,A (λ) = 1] ≤ 1/2 + negl(λ).

Preventing Trivial Wins and Ciphertext Updates The winning condition
states that the intersection of lists K and C∗ must be empty which is crucial
in preventing the adversary from trivially winning in the security game and if
these conditions are not met, then A’s guess is discarded and the output is ⊥.
In more words, the challenge epoch of the experiment cannot belong to the set
of epochs in which an update token has been learned or inferred, nor can there
exist a single epoch where the adversary knows both the epoch key (public and
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ExpUP-IND-EC-RCCA,b
UE,A (λ)

Initialise global state

GS
$← Init(1λ); GS = (pp, k0,∆0,S, 0)

ke0
$← UE.KG(pp, e0), ke1

$← UE.KG(pp, e1) such that ke0 ̸= ke1, (e0, e1) ̸∈ K
ke0 := (pke0 , ske0), ke1 := (pke1 , ske1)
Challenger sends (pke0 , pke1) to A;
K̃ ← {(e0, e1)} ∩ K̃
(m0,m1, s)

$← AO(pp, pke0 , pke1)
Some state information s
if |m0| ̸= |m1| ∨ {m0,m1} ̸∈ MSP ∨ (m0 = m1) then

return ⊥
else

C
$← UE.Enc(pkeb ,mb)

M∗ ←M∗ ∪ (m0,m1); C ← C ∪ {e};ẽ← {e}
b′

$← AO(pp, C, s)
if (b′ = b) ∧ (K ∩ C∗ = ∅) then

return 1
else

return ⊥

Fig. 1. The security game for a UE scheme satisfying UP-IND-EC-RCCA-security, where
set S = {L̃,M∗, T ,K, K̃, C, C∗} is initially empty, s defines some state information
output by the adversary and O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key} is the set
of oracles an adversary A calls.

secret key components) and the (updated) challenge-ciphertext [13]. To see this,
if the adversary A corrupts token ∆e+1 in an epoch after which A has obtained
the challenge ciphertext C̃ during epoch e, either by inference or via an update,
then the adversary is capable of updating the ciphertext into the next epoch
(e+ 1) [11].

Conclusions Our first contribution in this work was re-imagining updatable
encryption as a public-key primitive and modelling a public-key equivalent of a
prior security notion, which we deem as a necessary security requirement of all
probabilistic UE schemes. Our second major contribution was to introduce a new
concept of security called epoch confidentiality. In the full version of this work
we modified an existing, symmetric UE construction to the public-key setting
with no impact on the cost/efficiency of the public-key version of the UE scheme
and we use this concrete scheme to show the feasibility of a UE construction
satisfying epoch confidentiality.
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