Microbial Amendments in Peat-Free Potted Herbs

H. G. Featherstone

2021

Royal Holloway University London

Microbial Amendments in Peat-Free Potted Herbs

Thesis Proposal for Doctor of Philosophy(PhD) Degree

Royal Holloway University London

Harold Geroge Featherstone, EnviSci

Lead Supervisor Prof. Alan Gange

Supervisors and Advisors

Dr. Tony Stead Dr. Paul Devlin Dr. Paul Alexander Dr. Louisa Robinson-Boyer

Declaration of Authorship

The title page should be followed by a signed declaration that the work presented in the thesis is the candidate's own. Please note that there is no set wording for this but an example is provided below:

Declaration of Authorship
I. Autor T

Microbial Amendments in Peat-Free Potted Herbs

Abstract

This study aims to promote the potential of Peat-Free growing media (or substrate) to replace traditionally used Peat based growing media in commercial potted herb production. The basis of this study employs the use of Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria as amendments for the improvement of growing media. Increased crop growth and quality are observed from the inoculation of mycorrhiza on Peat-Free and Peat growing media, in both Commercial and research environments. Plant Growth Promoting Rhizobacteria had a less significant impact on crop quality. Crop homogeneity, Gas emissions and Phosphate buffers were also assessed in this study. Overall, Peat-Free growing media, amended with Mycorrhizal fungi demonstrate significant potential to surpass traditional, Peat based growing media.

Contents

1 Acknowledgements

2	Lite	erature Review	1
	2.1	Introduction	1
	2.2	Herbs	11
	2.3	Microbial Amendments	15
	2.4	Horticulture and the Future	20
3	Ger	neral Methods and Materials	22
	3.1	Introduction	22
	3.2	Experimental Program	22

	3.3	Data Collection	23
	3.4	Growing Environment	24
	3.5	Trial set-up and preparation	27
	3.6	Trial assessment	32
	3.7	Assessing mycorrhizal root colonization	34
	3.8	DNA isolation and Amplification	36
	3.9	GCMS	40
	3.10	Micro-controllers and Sensors	41
	3.11	Analysis and software	44
4	Myo	corrhizal Inoculated Peat and Peat-Free Substrates in Potted Herbs	45
	4.1	Introduction	45
	4.2	Materials and Methods	46
	4.3	Results	48
5	Plar	t Growth Promoting Rhizobacteria Inoculated Peat and Peat-Free	
		_	
	Sub	strates in Potted Herbs	64
	Sub 5.1	strates in Potted Herbs	64 64
	Suba 5.1 5.2	strates in Potted Herbs Introduction	64 64 65
	Sub: 5.1 5.2 5.3	strates in Potted Herbs Introduction	64646567
	Sub: 5.1 5.2 5.3 5.4	strates in Potted Herbs Introduction	 64 65 67 84
6	 Subs 5.1 5.2 5.3 5.4 Peat 	strates in Potted Herbs Introduction	6464656784
6	Sub: 5.1 5.2 5.3 5.4 Peat cycl	strates in Potted Herbs Introduction	 64 64 65 67 84 86
6	Sub: 5.1 5.2 5.3 5.4 Peat cycle 6.1	strates in Potted Herbs Introduction	 64 64 65 67 84 86
6	Sub: 5.1 5.2 5.3 5.4 Peat cycl: 6.1 6.2	strates in Potted Herbs Introduction	 64 64 65 67 84 86 86 87
6	Sub: 5.1 5.2 5.3 5.4 Peat cycl 6.1 6.2 6.3	strates in Potted Herbs Introduction	 64 64 65 67 84 86 86 87 90

	6.4	Shelf-Life
	6.5	Mycorrhizal Colonisation
	6.6	Discussion
7	Pho	osphate Buffering Aluminum Oxide Treatment in Peat and Peat-Free
	Pot	ted Herbs, Amended with Mycorrhiza 102
	7.1	Introduction
	7.2	Compalox®
	7.3	Methods Materials
	7.4	Results
	7.5	Discussion
8	Har	nd-Mixed Substrate; Homogeneity of Crop Emergence in Peat-Free Sub-
	stra	te 115
	8.1	Introduction
	8.2	Substrate characterization: Water retention and irrigation requirements \ldots 117
	8.3	Methods and Design
	8.4	Substrate Mixing and Quantities
	8.5	Results
	8.6	Crop Emergence
	8.7	Crop homogeneity
	8.8	Discussion
9	Mic	ro-controllers and Sensors for Novel Crop Quality Assessments:
	Vol	atiles and CO_2 134
	9.1	Introduction
	9.2	Potential of Sensor Technology in Crop Production

11 Bib	liography 153
10 Sun	nmary 151
9.9	Discussion
9.8	Results
9.7	Code
9.6	Set-Up
9.5	Interfacing
9.4	Design
9.3	Method and Materials

List of Tables

1	Experimental Schedule	23
2	Peat-Free substrate component and quantity table	28
3	Bacterial and Fungal Primer sequences	38
4	Reaction Mixture	39
5	One way Anova between AMF and Control treatments for each Crop and Sub-	
	strate over the growing period.	48
6	Crop height for both Coriander and Basil over the growing period (up to ca.	
	32days)	50
7	Mean Leaf Diameter Coriander and Basil and ANOVA results compared be-	
	tween substrate types	57
8	Coriander $RLC\%$	62
9	Basil RLC	62
10	Mean height and standard deviation $(*)$ for Basil in Peat and Peat-Free growing	
	media with Bacterial amendments	70
11	Mean height and standard deviation (*) for Coriander $\ldots \ldots \ldots \ldots$	72
12	Mean Yield, Basil	75
13	Mean Yield, Coriander, standard deviation (*) $\ldots \ldots \ldots \ldots \ldots \ldots$	77
14	Mean Leaf Diameter Basil, standard deviation (*) $\ldots \ldots \ldots \ldots \ldots$	79
15	Mean Leaf Diameter Coriander	80
16	Root Length for Coriander	82
17	The meadian values combined RGB values throughout the trial period for each	
	bacterial species (A, B, K, O) and AMF. \ldots	83
18	Treatments for Commercial Trial $(n = 5)$	87
19	Lux readings taken at crop height for potted herbs in various supermarkets.	90

20	Height mean and standard deviation over the growing period
21	Dry Yield. Mean at <i>ca.</i> 30 days growth (after drying)
22	Fresh yield. Mean and SD at <i>ca.</i> 30 days growth
23	Mean height for different Compalox rates
24	Mean dry yield and standard deviation (*) for each substrate, crop and treat- ment at assessment intervals
25	Mean fresh yield and standard deviation (*) for each substrate, crop and treat- ment at assessment intervals
26	Leaf Diameter Means for Comaplox rates, substrate and croppings
27	A table adapted from Schmilewski 2008 demonstrating important factors for Growing media selection
28	Component table for quantities of product used to create Peat-Free growing
	** diluted at 1:3 with DW
29	Summerised water loss over 24hours
30	Small Batch Emergence count
31	Large Batch Emergence
32	Small batch Gini inequality results
33	Large Batch Gini inequality results
34	Combined mean gini values for each batch sorted by Trial and treatment 132
35	Mean adsorbtion values for Compounds. * name shortened (+'*canal*') 144
36	Volatile Production
37	24 hour mean gas results
38	40day gas results

List of Figures

1	Peat	6
2	Coir	7
3	Bark	9
4	Wood	10
5	Randomised trial layout on matting, with stake drippers coloured coded for different water rates at the glasshouse facility (RHUL). Supplementary HPS lighting is evident in this picture	24
6	Prespaced and post-spaced pots in-situ at commercial glass house facility	26
7	Shelf life test under low-level light conditions at ambeint temperatures	27
8	Use of cementmixer and volumetric measurements for mixing of growing media components	28
9	Diagram demonstrating the simple method of measuring plant height. The ruler (yellow) is set against the substrate and plant base, with the crop height being measured against the highest point	33
10	Simplified Illustration of root staining process. Tissue cassettes are rinsed under tap water to remove excess debris (A), followed by heating at 75 for 10 minutes in KOH (B) and left to cool for 24hrs. Followed by staining (C)	35
11	A simple illustration for the process of root mounting. A) floating root samples in an aqueous solution for easy picking by tweazers. B) tweazers allow place- ment of root onto slide. C) PVLG mountant solution added to slide. D) Slide	
	cover put in place and sealed with nail varnish	36
12	Simply circut diagram for the Arduino Nano microcontroller and generic sensor	42
13	An example of the sensors used throughout the latter phase of this reasearch.	42
14	A prototyped board for Lux (luminisotity sensor)	43
15	Example of roots cut and stained in an aqeous solution prior to mounting, and	
	a potentially colonised root	47

16	Height graph for Basil and Coriander with peat and peat-free substrates,	
	treated with Mycorrhiza. Both Basil and Coriander in each Peat and Peat-	
	Free substrates demonstrate increased crop height at harvest (28/32 days). A	
	reduction in height occurs for none-amf treated croppings for Coriander at	
	harvest (28days).	49
17	Growth of Coriander, close to harvestable height (16cm)	50
18	Dry yield from both crop types in Peat and Peat-Free growing media. The	
	addition of AMF in Basil crops had no significant effect on dry yield. Coriander	
	experienced increased dry yield when under the influence of AMF, but only in	
	Peat-Free growing media. Large error bar occuring on Peat-Free, Basil AMF	
	treatment indicates the variability of data, suggesting reduced homogenity. $\ . \ .$	52
19	Fresh Yield for Basil and Coriander in Peat and Peat-Free growing media. The	
	influence of AMF incolum on yeild only significantly effected one cropping;	
	Peat-Free Coriander, which experienced an increase in yeild, replicating the	
	pattern established in dry yield. Large error bar on Peat-Free, Basil AMF	
	treatment appears similar to previous Dry Yield reporting and may suggest	
	increased variability in recorded data.	53
20	Linear model of Fresh Vs Dry Yield. A slightly increased correlation between	
	yields can be observed in AMF treated pots. This relationship is however small,	
	and not significant	54
21	Leaf Diameter (LD) for both Basil and Coriander in Peat and Peat-Free growing	
	media. The addition of AMF had a significant impact on LD for Peat-Free	
	growing media in Coriander only.	56
22	Early growth of Coriander (a) and Basil (b). First true leaves are apparent	
	on Coriander croppings. Typically after first true leaf emergence in Coriander,	
	emergence assessments stopped. This period was to ensure both germinating	
	pods per seed were allowed time for emergence	57
23	Emergence rate (crop count) correlated against days grown. The addition of	
	Mycorrhiza had little to no significant effect on crop emergence	58

24	Arbuscles apparent in the root structure (a), some unknown stained objects	
	(b); possibly liquid retention. These pictures demonstrate the difficulty in dis-	
	seminating mycorrhizal structures from possible contaminants. \ldots	59
25	Root length colonisation in Basil croppings at 7, 14 and 28 days. Peat-Free	
	crops treated with AMF demonstrated significantly higher levels of colonisation	
	across each of the sample periods.	60
26	Root length colonisation for Coriander over 7, 14 and 28 days. Peat-Free grow-	
	ing media demonstrated significantly higher levels of colonisation in Coriander	
	roots for AMF treated pots for each sampling period. Peat based croppings	
	demonstrated no significant change in colonisation between control and AMF	
	treated pots.	61
27	RGB sensor in breadboard prototype (a) and finalised, portable configuration	
	with battery (b). Increased portability allowed for easy use around potted herb	
	trials.	66
28	Basil seedlings at $ca.$ 7 days growth. Initial crop emergence period, pots were	
	covered with plastic sheeting to stimulate germination	68
29	Scatter plot for height on Basil growth for each treatment with Linear regression	
	against time (day). Although the control had strong growth (mean height), the	
	linear modelling suggests the weakest correlation of height to time out of all	
	the treatments. Overall, Peat substrates performed better in regards to crop	
	height with the exception of species K and B, wherein mean height was closely	
	matched to that of peat grown herbs. Use of the mixed species treatment (All	
	species) performed, alongside the Control and species O, worse than species A,	
	B and K	69
30	Coriander seedlings at <i>ca.</i> 5-7 days growth in Peat and Peat-Free growing media.	70

31	Linear model plot for height on Coriander growth for each treatment. Weaker
	correlative relationship between crop height and day are demonstrated here
	when compared to Basil. The All species treatment was the most effective
	treatment at improving mean height levels and also showed the strongest cor-
	relation between height and time(day)

91

- 32Basil croppings at a late stage of growth. As in any potted herb, crop quality can be determined by many factors, including green leaf area or leaf diameter. The leaf diameter can be an indicator of water stress, nutrient depletion or disease pressure. Basil leaves shown here dipict the range of leaf diameter 73
- 33 Mean yield for Basil (Fresh) (A) and Basil (Dry) (B) for peat and peatfree substrates.Peat-free substrates demonstrated significantly lower yields comapred against the peat substrates. This is more apparent in Coriander than Basil. The addition of PGPR's appears to be detrimental to dry yield in Coriander, with the majority of yields significantly diminished against the Control values for both peat and peat-free substrates. However, improvments in yields for Peat based substrates from all species, 25 increase 0.44g 74
- Coriander growth at close to harvest. In figure (b), lower leaves can be seen 34suffering from necrosis. This is a symptom of light deprivation from increasing 75
- 35Mean fresh yield for Coriander (Fresh) (\mathbf{A}) and Coriander (dry) (\mathbf{B}) for peat and peat-free substrates. Fresh yield demonstrates significantly improved results regarding treatment All species, however only evident in peat-based sub-76strates.....
- 36 Random selection of Basil and Coriander leaf with cm ruler for scale. 77. . . .

37	Leaf Diameter for Basil croppings in Peat and Peat-Free substrates shown in
	a violin graph. The distribution of the data is visible either side of the box-
	plots. The peat substrates show significant differences for species A, All species,
	B and K compared to the control with a more consitent, although decreased
	leaf diameter. Peat-free substrates are less evenly distrubuted regarding leaf
	diameter compared to peat, which may be a reflection of decreased substrate
	homogenity rather than treatment effect

38 Leaf Diameter for Coriander in both Peat and Peat-Free substrates. Peat substrates out-performed peat-free in regards to increased leaf diameter, most notably with species A with a mean leaf diameter of 2.62cm vs the control of 2.33cm. Peat-free substrate achieved a lower mean than the control for peat with a mean control value of 1.8cm for peat-free control and no treatment surpassing a mean leaf diameter of 2cm. Less data was available for Peat-Free, therefore a reduction in the violins distribution is evident.

78

- Root growth for Coriander. (a) demonstrating root length at GS11 (First true leaf emerging). (b) shows roots in situ at a much later growth stage.
 Both pictures show the difficulty in extracting whole roots from the substrate.
 Retaining intact specimens proved challenging and may not be a true relection of actual root length.
 80

- 42 Pots on trays, wrapped in plastic for transportation. Concerns regarding changes in substrate structure through movement proved unfounded due to the homogenous treatment of all pots due to a single trip to the growing facility. 88

- 44 Scatter plot of Emergence crop count over time with linear regession line (R). The addition of mychorrizal elements increases the relationship between emergence and time. A plateau for further crop emergence is demonstrated in the Control (R=0.83) and Fertilizer (R=0.82) treatments. This is contrasting to AMF and AMF+Fertilizer treatments wherin crop counts countinue to rise as indicated by increased crop counts per pot. A commercial Peat based control was not available due to initial assessment of incorrect variety for Coriander. 91

- 47 Scatterplot and linear regression of crop height over time. Unlike crop emergence, non-amf treatments demonstrate a higher correlation to growth over time. A: Peat-Free substrates, B: Peat based substrate (commercial control) . 94
- 48 Comparison of commercial control pots (peat / gray pot, right hand side) and peat-free (+AMF / black pot) at *ca.* 14 days growth with an mean increase of 1.91cm for peat based substrates against peat-free + AMF. Also seen here is the clear differences in growing media, in both colouration and texture. 95

49	Pot moisture at + 5 days after removal from growing environment. The AMF	
	treatment had the widest range of substrate moisture measurements whereas	
	both the commercial control (peat) and the Fertilizer+AMF treatment demon-	
	strate increased substrate moisture levels. This may suggest AMF+Fertilizer	
	may have a role in maintaining substrate moisture, however this could also be	
	an effect of placement/edge effects from trial setup	96
50	Shelf life conditions of a randomised selection of treatments (a) including the	
	commercial control (grey pot), also pictured the transportation method used	
	to move pots (b) and the trial layout (c). $\ldots \ldots \ldots$	97
51	Dry yield bar plot with one-way ANOVA between control and other treat-	
	ments (ns = not significant). The highest yeilding treatment was the peat based	
	commerical control, producing almost $x2$ the weight in dry matter yield than	
	that of the Peat-Free control. The best performing peat-free treatment was	
	that of the AMF+Fertilizer treatment. This treatment also had a higher data	
	range/variability as indicated by the error bar, unlike the Fertilizer only treat-	
	ment. This may suggest AMF in tandem with Fertilizer potentially decreases	
	homogenity in dry matter yield	98
52	Fresh Yield with between treatment significance levels and global significance	
	(ns = not significant, *=significant). Fresh yield demonstrated very little cor-	
	relation to dry yield results. This is unlike other examples in this study. This	
	may be due to transport conditions or last irrigation timing. The wide variabil-	
	ity demonstrated by the commercial control error bar, and a comparitively low	
	fresh weight compared to high dry weight suggests this treatment was affected	
	by drought or stress	99
53	Root Length Colonisation (RLC) between treatments. Highest rates of	
	colonisation demonstrated in AMF treated pots. (ns = not significant, *,	
	**=significant). The peat-free control demonstrated some level of colonisation	
	which may have occured due to contamination whislt potting	100
54	Coteyldon growth stage of Basil <i>in situ</i>	105

55	Height over the trial period for each treatment. Reduced growth in height can
	be observed with increasing Compalox concentrations, most notably in Peat-
	Free pots. The progressive, upwards trend in growth for each treatment is
	similar in pattern, however the increased height of Peat treatments suggests
	Compalox amendments do not effect growth in this substrate
56	Dry Yield for Basil with means comparison ($ns = not$ significant). Increasing
	concentrations of Compalox in the Peat-Free pots yields lower biomass. Peat
	pots were unaffected
57	Fresh Yield for Basil with means comparison ($ns = not$ significant, *, ** =
	significant) . Increasing concentrations of Compalox in the Peat-Free pots
	yeilds lower biomass. Peat treatments were unaffected by increased rates of
	Compalox
58	Growth stage at <i>ca.</i> GS32. Demonstration of differences in growth between
	substrate type and treatments. Significant discrepancies in crop quality are
	apparent between treatments
59	Dry yield distribution across each Substrate as a linear model. A horizontal
	performance of yield against compalox rates for Peat supports the data of crop
	height over time, wherein Peat substrate is unaffected by the introduction of
	Compalox, whereas Peat-Free substrates produce a decrease in crop quality
	with increasing concentrations of Compalox
60	Leaf Diameter of potted Basil in Peat and Peat-Free substrates under various
	treatements. Means comparison ($ns = not significant$, *, **, *** = significant).
	Although the distribution of results is clearly different for each treatment, the
	pattern demonstrated in previous data is not replicated here
61	Both substrates demonstrated a perfect correlation between the various physi-
	cal charecter sitics assessed. The regression value of $1/\text{-}1$ of both Peat and Peat-
	Free substrates plotted against the same parameters shows the strong potential
	of Peat-Free substrates to act as a suffcient substrate choice

- 62 Waterloss over 24hours from saturated (container capacity) substrates. Measurements taken every hour for 12 hours, and a final measurement at 24hours.
 Peat Control was used as a control (non-saturated) for both substrate types. 122

- 66 Small Batch trial Lorenz Curves. Control = purple, Fertilizer = yellow, AMF = Green. The initial emergence date (E0) has a low crop count, with some pots measuring 0 counts. This accounts for the broad data range as indicated by the high levels of inequality, clearly demonstrated in Batch C E0 for each treatment type. Following E0, E+1d to E+5d demonstrate increasing levels of equality within the crop count distribution as shown by the treatment curves getting increasingly closer to the 45 degree dashed line (representative of perfect equality in the distribution). However, Batch C remains relatively highly inequal regarding crop counts. This supports the data shown in Figure 64. . . . 128

67	Large Batch trial differences, Control = purple, Fertilizer = yellow, $AMF =$
	Green. Similar to Figure 66, E0 (first crop emergence) is shown as unequal in
	its distrubution for each batch. However, homogenity (read: equality) in the
	data increases after the following two assessments (E+2d and E+5d) across
	each of the batches, unlike Batch C in Figure ??. These results may suggest
	an error during substrate mixing for the small batch trial, which effected crop
	emergence negatively
68	Linear model of Gini results. Diminishing R values can be interpreted as
	falling inequality (i.e. becoming more homogenous). The small batch and
	large batch trials demonstrate significant differences. Decreasing inequality in
	the Large batch trial data suggests increasing crop count homogenitiy between
	pots, whereas the Small batch trial data demonstrates a significantly lower
	decrease of inequality over time
69	SPME probe absorbing gas emissions from inert plastic bag with harvested
	Coriander
70	None randomised layout for Gas sensor trials. Pots of the same treatment
	are oreintated around each gas sensor in blocks. Gas sensor can be seen at
	approximate crop height on upturned pot
71	A simple circut diagram for the system orginally used in this experiment. Four
	SGP30 sensors are attached to various GPIO ports on the multiplexer, each
	one with a split I ² C channel. In the final model, a 5th sensor was added as
	a control. The multiplexer then relays information back the Arduino Nano,
	which processes the raw data from the sensors using the uploaded code into
	quantified data about the volatile compisition. This data is then communicated
	to the Raspberry Pi which time stamps and records it in an .CSV file 139 $$
72	Example of prototype bread-board configuration and Raspberry Pi 4, and PCB

73	An example of the python script used to record data from the Adruino Nano.	
	The import of the serial line allows for direct communication of data over the	
	USB ports (COM4), and the recording of said data into a .CSV file with time	
	stamping.	141
74	GC:MS readout.	142
75	Quantified volatile compounds extrapolated from GC:MS. A significant increase	
	in the abundance of Dodecanal can be seen in the Peat-Free substrates treated	
	with AMF. This effect is not apparent in the Peat based substrates, even with	
	AMF treatment. Peat-Free substrates appear to be subject to more significant	
	change under AMF innoculation using plant volatile emissions as a proxy for	
	treatment effect.	143
76	Randomly selected 24hour period of Total Volatile Compounds (TVOC) and	
	estimated CO 2 $$ (eCO 2 $$) emissions detected by sensors. A clear cycle of	
	emission concentrations in both gases can be seen over the 24hour period, with	
	higher emissions occuring when light levels are at a peak (midday onwards)	145
77	40day gas emissions from Peat and Peat-Free pots, amended with AMF. The	
	pattern of increasing and decreasing emissions is similar in both gases across all	
	treatments. However the Peat AMF treatment appears significantly higher in	
	emissions for TVOC throughout the entire time period, potentially suggesting	
	these croppings were stressed	147

Abbreviation	Meaning
AMF	Arbuscular Mychorrizal Fungi
PGPR	Plant Growth Promoting Rhizobacteria
HMS	Horticultural Management System
NMS	Nursery Management System
MLF	Micro Lead Frame
DFN	Dual Flat No Lead
SDA	Serial Data Line
SLC	Serial Clock Line
SPME	Solid Phase Microextraction
IDE	Integrated Development Environment
SSH	Secure Shell
TVOC	Total volatile organic comound
RH	Relative Humidity
UAV	Unmanned Aerial Vehicle
LIDAR	Light Detection and Ranging
GIS	Geographical Information Systems
GCMS	Gas chromatography–mass spectrometry
NMR	Nuclear magnetic resonance
HPS	High Pressure Sodium
LED	Light Emitting Diode
RGB	Red-Blue-Green
RLC	Root Length Colonisation
GHG	Green House Gas
NGO	Non-governmental Orginsation

1 Acknowledgements

First and foremost, I would like to thank my partner Leonie. For 7 years it was quite peaceful, and then I decided to do a PhD. Without you helping counting seeds, allowing me to cook Coriander and Basil in the oven and dealing with lead-based solder wafting around the house, this wouldn't have been possible.

Alan, being one of the most patient and enthusiastic people I've ever encountered, I cannot thank you enough for the frank and surgically specific advice over the years. I still feel incredibly special for being one of your students.

Thanks Tony, your constructive advice and relaxed manner benefited my presentations, work and approach to tasks, however I still don't understand the iron collection.

Paul, D., your ability to listen to my lack of understanding regarding genomics and primers, and still provide me with answers is something that will astonish me to this day. Thank you.

Louisa Robinson-Boyer, as well as imparting your wisdom, by demonstrating and teaching

me some of the basics, my confidence grew for the rest of my work because of you. Thank you.

Paul, A., You made me feel incredibly comfortable in an otherwise overwhelming field. Your advice and knowledge laid the foundations for many of my studies.

Neil, B., You are by any way the most paradoxically sympathetic and gigantic personalities I've encountered. Your advice and focus for work regarding growing media is unparalleled.

My sponsors RHS, Bulrush and Plantworks: Your sponsorship and resources over the past 4 years has enabled me to pursue an important topic, of which I hope the results will benefit you in perpetuity.

Chongboi, you've been a great ear for the past few years, as well as a good friend. I quite simply owe you dinner.

Simon and Vitacress, allowing me to steal substrate, crops and space allowed me to continue my work uninterrupted. I hope this work benefits you.

I'd also like to thank the security and maintenance staff of RHUL, especially Gary at access control. Giving me access to tools and buildings at weird hours, all for the sake of improving irrigation, sensor calibration or gaining assessment data allowed me to build this PhD.

There are so many other people to thank, Paul at stores; you kept me down to earth and sane. Pauline; you let me use your lab resources and gave me great recommendations for Podcast. Elaine; I think I gave you many headaches with my approach to health and safety, but you had patience and were able to put me on the right path, thank you.

I'd also like to thank the administrative staff for Biological Sciences, especially Tracey and Michelle. You were always there to talk to, and most importantly help with the larger problems well outside my scope.

I would also like to thank the Opensource community, specifically the advice and resources found on Git-Hub and Reddit. I would also like to thank Sci-Hub, for enabling the freedom of information in the name of science.