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Abstract. Personalized Tag Recommendation(PTR) aims to automat-
ically generate a list of tags for users to annotate web resources, the so-
called items, according to users’ tagging preferences. The main challenge
of PTR is to learn representations of involved entities (i.e., users, items,
and tags) from interaction data without loss of structural properties in
original data. To this end, various PTR models have been developed to
conduct representation learning by embedding historical tagging infor-
mation into low-dimensional Euclidean space. Although such methods
are effective to some extent, their ability to model hierarchy, which lies
in the core of tagging information structures, is restricted by Euclidean
space’s polynomial expansion property. Since hyperbolic space has re-
cently shown its competitive capability to learn hierarchical data with
lower distortion than Euclidean space, we propose a novel PTR mod-
el that operates on hyperbolic space, namely HPTR. HPTR learns the
representations of entities by modeling their interactive relationships in
hyperbolic space and utilizes hyperbolic distance to measure semantic
relevance between entities. Specially, we adopt tangent space optimiza-
tion to update model parameters. Extensive experiments on real-world
datasets have shown the superiority of HPTR over state-of-the-art base-
lines.

Keywords: Hyperbolic spaces · Personalized · Tag recommendation ·
Embedding.
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1 INTRODUCTION

Tagging systems have become essential in many web applications, such as Last.FM,
Flickr, and YouTube. In the process of tagging, users are allowed to freely add
metadata to the songs, videos, products, and other web resources(called items)
in the form of keywords, the so-called tags. Besides annotating items, tags are
beneficial to the systems and users for efficiently organizing, searching, and shar-
ing the related items. With the increasing availability of tags in various domains,
tag recommendation has become a popular service to help users acquire their
desired tags more conveniently.

As a subtask of top-N ranking recommendation, the tag recommendation
aims to assist users’ tagging process by automatically suggesting a ranked list
of tags. According to whether users’ personalized preferences are considered,
the tag recommendation tasks can be divided into the non-personalized and the
personalized. The non-personalized tag recommendation (NPTR) [20, 40, 38, 47]
aims to generate a list of candidate tags ranked merely by their semantic rele-
vance to the target item, this kind of recommendation will suggest the same tag
list to all involved users. On the other hand, the personalized tag recommen-
dation (PTR) [14, 15, 37, 39] takes user’s tagging preferences into account, its
ultimate goal is to suggest tags that are relevant to both target item and target
user, such goal make PTR more complex than NPTR, and as a result, PTR will
recommend different tag lists to different users for the same target item. Due to
users’ diverse intentions and interests, PTR is more meaningful and practical in
real scenarios of tag recommendation. Moreover, as indicated in [35], the PTR
could outperform the theoretical upper bound of any NPTR.

Serving as the source data for PTR tasks, the users’ historical tagging in-
formation implies a complex structure that involves three kinds of entities (i.e.,
users, items, and tags) and multiple interactive relationships, so it is a challenge
for PTR to accurately learn latent representations of entities with preserva-
tion of their real semantic relevance in such data. To this end, various learning
methods have been proposed to boost the performance of the PTR model. The
core of tagging information is the ternary interaction, i.e., user-item-tag, which
can be naturally represented by a three-order tensor. Thus tensor factorization
techniques are widely adopted [3, 9, 35, 37, 39, 49] to boost the performances of
PTR models. Although tensor factorization-based PTR models are effective to
a certain extent, all of them are conducted in Euclidean spaces. That is, they
learn latent representations of entities in a low-dimensional embedding space and
adopt matching functions that only cover the scope of Euclidean space, such as
inner product, Euclidean distance, and neural networks, to compute the semantic
relevance between embeddings [42, 43] because Euclidean spaces are the natural
generalization of our intuition.

On the other hand, recent research [8, 11, 25, 29, 30] has shown that Euclidean
embedding have distortion for many real-world data, which follows power-law
distribution or exhibits scale-free. It means that the actual logical patterns and
semantic relevance can not be well preserved when embedding such data in Eu-
clidean spaces. As mentioned in [29, 30], the data with power-law distribution
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tend to have tree-like structures. For a tree, the number of its nodes grows
exponentially with the tree depth, but the volume of Euclidean spaces grows
polynomially with distance from the origin point. In terms of tagging informa-
tion, the interactive relationships it contains have been found to follow power-law
distribution [12, 23, 31, 34], e.g., a small portion of tags (hot tags) are frequently
used to annotate a certain kind of items while massive tags are seldom adopted.
As power-law distributions and tree-like structures can be explained by assum-
ing an underlying hierarchy in the data [29, 30], it is therefore crucial for PTR
to leverage this insight to develop an optimal learning model with lower embed-
ding distortions [8]. Moreover, through our observation, this phenomenon does
exist: For real users, some prefer to use tags with general semantics, while others
prefer tags with descriptive semantics. Such personal preference divides users
into different hierarchies with respect to the semantics. As shown in Fig. 1(a), in
Last.FM, a popular track like Led Zeppelin’s "Stairway to Heaven" has dozens
of unique tags applied hundreds of times. According to our knowledge, some
latent semantic hierarchies (Fig.1(b)) may exist among these annotated tags.

(a) (b)

Fig. 1. Hierarchies implied in tags

Notably, hyperbolic space has shown promise in modeling hierarchical data [5,
8, 29, 30] in recent years. Hyperbolic space is a kind of non-Euclidean space with
constant negative curvature. If we embed a disk into a two-dimensional hyper-
bolic space with curvature K = −1, its corresponding circumference (2π sinh r)
and area (2π(cosh r− 1)) both grow exponentially with the radius r, as opposed
to the two-dimensional Euclidean space where the corresponding circumference
(2πr) and area

(
πr2

)
grows linearly and quadratically respectively. Thus hyper-

bolic space can be viewed as the continuous version of a tree, and it is well-suited
for embedding hierarchical data with lower dimensions than the Euclidean space.

Motivated by the above merits of hyperbolic space, we develop a novel PTR
model with hyperbolic embedding, namely, HPTR. Our idea is to learn represen-
tations of entities by embedding historical tagging information into the Poincaré
ball, which is an isometric hyperbolic space model and feasible to perform a
gradient-descent step. As the PTR is an implicit feedback recommendation task,
we build an objective function based on Bayesian Personalized Ranking (BPR)
optimization criterion. Besides, there exist multiple relations between entities,



4 W. Zhao et al.

which more or less affect the performance of PTR, so the main difficulty of
HPTR is how to discover users’ tagging preferences by dealing with these rela-
tions in hyperbolic space. Unlike the traditional item recommendation, in PTR
scenarios, the users’ preferences for items make no sense for learning and pre-
dicting. Thus we take two relations into consideration: user−tag and item−tag,
which have been proven effective in many PTR models [9, 37, 44, 49]. Finally, we
can utilize the hyperbolic distance between involved entities to reflect one user’s
tagging preference for a target item.

The main contributions of our work are summarized as follows:

– We bridge the gap between PTR and hyperbolic geometry by discovering
common structural properties between tagging information and hyperbolic
space. With the expectation for achieving better performance in the PTR
task, we propose a novel PTR model conducted in hyperbolic space, namely
HPTR, which learns the representations of entities on Poincaré ball and
measures users’ tagging preferences by hyperbolic distance. To the best of
our knowledge, this is the first work to integrate PTR with hyperbolic space.

– We conduct extensive experiments on three real-world datasets to verify
the efficiency of the proposed model, and experimental results show that our
HPTR can outperform the state-of-the-art PTR model, especially with lower
embedding dimensions.

2 RELATED WORK

Our work is related to the following research directions.

2.1 Personalized Tag Recommendation Methods

With the popularization of tagging systems in various web applications, person-
alized tag recommendation (PTR) is becoming more attractive in the field of
recommender systems. Considering the core of users’ historical tagging informa-
tion is the ternary interaction between entities, i.e., user, item, and tag, which
can be represented by a three-order tensor naturally, so most early studies uti-
lized tensor factorization techniques, especially the tucker decomposition (TD)
to learn representations of involved entities in PTR tasks [3, 35, 39].

Due to the model equation of TD resulting in a cubic runtime in the factor-
ization dimension, the computation cost of TD makes it infeasible for large-scale
PTR tasks. Rendle et al. [37] proposed the pairwise interaction tensor factoriza-
tion (PITF) model to tackle this problem, which explicitly models the pairwise
interactions between entities and results in linear runtime. PITF has been exten-
sively studied for its outperformance, and more learning methods derived from it
[9, 16] have been proposed to fit new problem scenarios. Moreover, to take advan-
tage of the end-to-end learning ability of deep neural networks(DNN), several
learning frameworks based on DNN [27, 28, 49] are developed to improve the
performance of traditional PTR models further.
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Note that all the above models are conducted in Euclidean spaces. As we
mentioned before, their capabilities of learning the representations of hierarchical
data are restricted by the polynomial expansion property of Euclidean space.

2.2 Hyperbolic Embedding

In the field of representation learning, hyperbolic spaces have started to get at-
tention from the studies on how to discover suitable embedding spaces to model
complex networks [21]. As scale-free and strong clustering are typical proper-
ties of complex networks, and such properties can be traced back to hierarchical
structure within them, hyperbolic spaces have become a better choice for their
capability of modeling hierarchical structures. Since then, there has been an in-
creasing interest in utilizing hyperbolic embedding to learn representations of da-
ta with explicit or implicit hierarchies, representative research or applications of
hyperbolic embedding include but are not limited to: Natural Language Process-
ing [8, 25, 29], Knowledge Graph embedding [1, 5, 19], Heterogeneous Information
Network embedding [46], Neural Networks based representation learning [6, 11,
24] and Computer Vision tasks [17, 32]. In the domain of recommender systems,
the original work exploring the use of hyperbolic space for the recommender
systems is [42]. Subsequently, a number of models enhanced by hyperbolic em-
bedding [4, 10, 22, 26, 43] have been proposed in order to get better performance
in traditional recommendation tasks or cope with new tasks, via a series of corre-
sponding experiments, these models have demonstrated the superiority over their
Euclidean counterparts and state-of-the-art baselines. Nevertheless, the existing
studies of hyperbolic recommender systems have not covered the scope of PTR.

3 PRELIMINARIES

3.1 Problem Description

Unlike the item recommendation systems containing two types of entities, i.e.,
users and items, PTR consists of three types of entities: the set of users U ,
the set of items I, and the set of tags T . The historical tagging information
between users, items, and tags is represented as S ⊆ U × I × T . A ternary
(u, i, t) ∈ S indicates that the user u has annotated the item i with the tag
t. From the ternary relation set S, personalized tag recommendation methods
usually deduce a three-order tensor Y ∈ R|U |×|I|×|T |, whose element yu,i,t is
defined as follows:

yu,i,t =

{
1, (u, i, t) ∈ S

0, otherwise,
(1)

where yu,i,t = 1 indicates a positive instance, and the remaining data are the
mixture of negative instances and missing values. In addition, the tagging infor-
mation for the user-item pair (u, i) is defined as yu,i = {yu,i,t|yu,i,t, t ∈ T}.

PTR aims to recommend a ranked list of tags to a certain user for annotating
a certain item. Usually, a score function Ŷ : U × I × T −→ R is employed to



6 W. Zhao et al.

measure users’ preferences on tags for their target items. The entry ŷu,i,t of Ŷ
indicates the degree to which a user u prefers to annotate the item i with the tag
t. After predicting the score ŷu,i,t for all candidate tag t given a user− item pair
(u, i), the personalized tag recommender system returns a ranked list of Top-N
tags in terms of the obtained scores. Formally, the ranked list of Top-N tags
given to the user − item pair (u, i) is defined as follows:

Top(u, i,N) =
N

argmax
t∈T

ŷu,i,t, (2)

where N denotes the number of recommended tags.

3.2 Hyperbolic Embedding

Hyperbolic space is a smooth Riemannian manifold with constant negative cur-
vature, and five isometric models can describe it [33], which are the Lorentz
(hyperboloid) model, the Poincaré ball model, the Poincaré half space model,
the Klein model, and the hemishpere model. Our work chooses the Poincaré ball
to describe the embedding space, for it is relatively suitable for modeling a tree.

Let Bd =
{
x ∈ Rd | ∥x∥ < 1

}
be the an open d-dimensional unit ball, where

∥ · ∥ denotes the Euclidean norm. The Poincaré ball can be defined by the Rie-
mannian manifold

(
Bd, gBx

)
, in which gBx is the Riemannian metric tensor given

as:

gBx =

(
2

1− ∥x∥2

)2

gE (3)

where x ∈ Bd and gE = I denotes the Euclidean metric tensor. Furthermore,
the distance between points x,y ∈ Bd is given as:

dB(x,y) = arcosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2) (1− ∥y∥2)

)
(4)

It is worth noting that the Poincaré ball model is conformal: the angles of
embedded vectors are equal to their angles in the Euclidean space, thus making
Poincaré ball suitable for the gradient-based learning method.

4 HPTR MODEL

Due to the core of tagging information is the ternary interaction among enti-
ties, i.e., user − item− tag, our HPTR is committed to learn three embedding
matrices: U ∈ R|U |×d, I ∈ R|I|×d,T ∈ R|T |×d ( d is the embedding dimension).
In addition, there exist multiple relations between entities, which more or less
affect the performance of PTR, so the main difficulty of HPTR is how to discover
users’ tagging preferences by dealing with these relations in hyperbolic space.
Inspired by the work [35], which claims that the relation between user and item
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is meaningless for modeling users’ tagging preference. So we take two factors
into consideration: user − tag relation and item− tag relation.

Furthermore, as indicated in section 3, the final output of PTR is a list of
Top-N tags, which ranked by the predicting score ŷu,i,t for all candidate tag t
with respect to a certain pair (u, i), so we merely need to calculate the semantic
relevance between (u, i) and t in embedding space, instead of u and t, i and t,
respectively. Hence we add embedding of user and item together, i.e, u + i to
represent each (u, i) pair. Meanwhile, in the embedding space, if a user u prefers
to annotate the item i with the tag t, the distance dB between point u+ i and
point t on Bd should be relatively shorter, and vice versa. Consequently, our
HPTR can measure users’ tagging preferences by using the score function ŷu,i,t
defined as:

ŷu,i,t = p (dB ((Uu + Ii) , Tt)) (5)

where Uu = U.onehot(u), Ii = I.onehot(i), Tt = T.onehot(t) are em-
beddings of a given triple (u, i, t); .onehot() indicates the operation of lookup
in embedding table according to one-hot id encoding; p(·) is the transformation
function for converting hyperbolic distances dB to users’ tagging preference, here
we take it as p(x) = βx+ c with β ∈ R and c ∈ R similar to [42].

4.1 Objective Function

In this work, we agree with the assumption in [37]: When we observe a certain
pair (u, i) in tagging information S, we believe that the user u should prefer
tag t over tag t′ iff the triple (u, i, t) can be observed from historical tagging
information and (u, i, t′) can not be observed. Based on this assumption, the
training set DS (i.e., the set of quadruple (u, i, t, t′)) with the pairwise constraint
is defined as:

DS = {(u, i, t, t′) | (u, i, t) ∈ S ∧ (u, i, t′) /∈ S} (6)

The objective of model training is to maximize the margin between the scores
ŷu,i,t of the positive triple (u, i, t) and negative triple (u, i, t′), so we adopt the
Bayesian Personalized Ranking (BPR) optimization criterion [36] to learn model
parameters Θ = {U, I,T, β, c}, and build the objective function of HPTR as:

LHPTR = min
Θ

∑
(u,i,t,t′)∈DS

− lnσ (ŷu,i,t,t′) + λΘ∥Θ∥2F (7)

4.2 Optimization

As the Poincaré ball is a Riemannian manifold with constant negative curvature,
the parameters lies in the ball should be updated by Riemannian gradient, so the
Riemannian stochastic gradient descent(RSGD) [2] has been applied to optimize
most of Poincaré embedding based models [10, 29, 42, 46]. In terms of HPTR,
the model parameters consist of embedded parameters(i.e., {U, I,T} ∈ Bd ) and
non-embedded parameters(i.e., {β, c} /∈ Bd

)
, therefore, we update the two types
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of parameters together via tangent space optimization [5, 6] to avoid using two
corresponding optimizers.

θt+1 = proj

θt − η

(
1− ∥θt∥2

)2

4
∇E

 (8)

We recall that a d-dimensional hyperbolic space is a Riemannian manifold
M with a constant negative curvature −c(c > 0), the tangent space TxM at
point x on M is a d-dimensional flat space that best approximates M around x,
and the elements v of TxM are referred to as tangent vectors. In our work, We
define all of parameters in the tangent space of the Poincaré ball so that we can
learn them via powerful Euclidean optimizers(e.g., Adam). In particular, for the
calculation of Uu + Ii in Equation 5, we also do it in tangent space beforehand.

When it comes to calculate the hyperbolic distance dB , we use the exponential
map expcx(v) to recover the corresponding parameters (map v of tangent space
back to Bd ) as following:

expcx(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
(9)

Where ⊕c denotes the Möbius addition operator [11] that provides an ana-
logue to Euclidean addition for hyperbolic space.

5 EXPERIMENTS AND ANALYSIS

In this section, we conduct several groups of experiments on two real-world
datasets to compare the performance of HPTR with other state-of-the-art PTR
models.

5.1 Datasets and Evaluation Metrics

In our experiments, we choose two public available datasets 6, i.e., LastFM and
ML10M, to evaluate the performance of all compared methods. Similar to [35,
37], we preprocess each dataset to obtain their corresponding p-core, which is
the largest subset where each user, item, and tag has to occur at least p times.
In our experiments, every datasets is 5-core or 10-core. The general statistics of
datasets are summarized in Table 1.

To evaluate the recommendation performance of all compared methods, we
adopt the leave− one− out evaluation protocol, which has been widely used in
related studies. Specifically, for each pair (u, i), we select the last triple (u, i, t)
according to the tagging time and remove it from S to Stest. The remaining
observed user− item− tag triples are the training set Strain = S−Stest. Similar
to the item recommendation problem, the PTR provides a top- N highest ranked
6 https://grouplens.org/datasets/hetrec-2011/
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Table 1. Description of datasets.

Dataset Users Items Tags Tag assignments Density
LastFM-core5 1348 6927 2132 162047 8.13989E-06
LastFM-core10 966 3870 1024 133945 3.49896E-05
ML10M-core5 990 3247 2566 61688 7.47871E-06
ML10M-core10 469 1524 1017 37414 5.14701E-05

list of tags for a pair (u, i). We employ two typical ranking metrics to measure
the performance of all compared methods, i.e., Precision@N and Recall@N . For
both metrics, we set N = 3, 5, 10.

5.2 Experiment Settings

We choose the following traditional tag recommendation algorithms as baselines:

– PITF: PITF [37] explicitly models the pairwise interactions among users,
items and tags by inner product, it is a strong competitor in the field of
personalized tag recommendation.

– NLTF [9] is a non-linear tensor factorization model, which enhances PITF
by exploiting the Gaussian radial basis function to capture the nonlinear
interaction relations among users, items and tags.

– ABNT: ABNT [49] utilizes the multi-layer perception to model the nonlin-
earities of the interactions among users, items and tags.

We empirically set the parameters of compared models according to their
corresponding literature in order to recover their optimal performance: the di-
mension of embedding d is set to 64. In addition, for the ABNT model, the
number of hidden layers is set to 2. For HPTR, we set curvature −c = −1, and
map tangent space TxM at origin point x = 0 on the Poincaré ball, the dimen-
sion of embedding d is tuned amongst {8, 16, 32, 64}. We choose Adam [18] as
the optimizer for all involved models.

5.3 Performance Comparison

Tables 2-5 present the tag recommendation quality of all compared method on
the selected four datasets.

From the inspection of Tables 2-5, we have observed the following experi-
mental results:

– PITF is superior to NTLF and ABNT with respect to all evaluation metrics,
which indicates that, for the adoption of Euclidean matching functions, the
traditional inner product might be a better choice for the PTR model to
measure the semantic relevance between entities.
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Table 2. Recommendation Quality Comparisons on LastFM-core5.

Model PITF NLTF ABNT HPTR-8 HPTR-16 HPTR-32 HPTR-64
Precision@3 0.2127 0.1949 0.1563 0.1944 0.2425 0.2634 0.2813
Precision@5 0.1789 0.1678 0.1353 0.1590 0.1925 0.2112 0.2229
Precision@10 0.1274 0.1191 0.1018 0.1095 0.1275 0.1413 0.1424
Recall@3 0.2571 0.2275 0.1569 0.2477 0.3127 0.3432 0.3600
Recall@5 0.3479 0.3239 0.2194 0.3201 0.3857 0.4061 0.4382
Recall@10 0.4814 0.4523 0.3298 0.4065 0.4722 0.5129 0.5191

Table 3. Recommendation Quality Comparisons on LastFM-core10.

Model PITF NLTF ABNT HPTR-8 HPTR-16 HPTR-32 HPTR-64
Precision@3 0.2513 0.2443 0.1641 0.2343 0.2797 0.3094 0.3162
Precision@5 0.2088 0.2062 0.1367 0.1875 0.2153 0.2431 0.2555
Precision@10 0.1458 0.1249 0.0941 0.1261 0.1486 0.1631 0.1675
Recall@3 0.3204 0.2845 0.1579 0.2961 0.3552 0.3894 0.4001
Recall@5 0.4158 0.4017 0.2190 0.3740 0.4346 0.4762 0.4914
Recall@10 0.5654 0.5541 0.3034 0.4704 0.5262 0.5607 0.5696

Table 4. Recommendation Quality Comparisons on ML10M-core5.

Model PITF NLTF ABNT HPTR-8 HPTR-16 HPTR-32 HPTR-64
Precision@3 0.1398 0.1323 0.0822 0.0693 0.1218 0.1610 0.1711
Precision@5 0.1021 0.0972 0.0628 0.0523 0.0881 0.1116 0.1206
Precision@10 0.0641 0.0596 0.0400 0.0359 0.0547 0.0661 0.0707
Recall@3 0.3208 0.2974 0.2089 0.1574 0.2723 0.3480 0.3717
Recall@5 0.3910 0.3560 0.2538 0.1949 0.3206 0.3938 0.4200
Recall@10 0.4623 0.4270 0.3039 0.2622 0.3840 0.4507 0.4766

Table 5. Recommendation Quality Comparisons on ML10M-core10.

Model PITF NLTF ABNT HPTR-8 HPTR-16 HPTR-32 HPTR-64
Precision@3 0.1699 0.1436 0.0896 0.1259 0.1761 0.2075 0.2189
Precision@5 0.1173 0.1143 0.0759 0.0928 0.1251 0.1454 0.1484
Precision@10 0.0744 0.0714 0.0501 0.0590 0.0730 0.0806 0.0825
Recall@3 0.3770 0.3388 0.2210 0.3051 0.4078 0.4742 0.4970
Recall@5 0.4523 0.4334 0.3015 0.3605 0.4743 0.5395 0.5486
Recall@10 0.5205 0.5341 0.3858 0.4406 0.5358 0.5877 0.5960
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– Compared against the most competitive PITF with respect to the same em-
bedding dimension d = 64, HPTR improves the Precision@3 of PITF by
32.2%, 25.8%, 22.3%, and 28.9% on Lastfm-core5, Lastfm-core10, ML10M-
core5, and ML10M-core10, respectively. For Recall@3, the improvements of
HPTR over PITF are 40.0%, 24.9%, 15.9%, and 31.8% on the above four
datasets, respectively. It implies that Hyperbolic space can provide a more
suitable inductive-bias for modeling interactive relationships in tagging in-
formation.

– For each compared method, its recommendation performance is better on
the 10-core datasets than that on the corresponding 5-core datasets. This
observation indicates that HPTR may result in better recommendation per-
formance on datasets with higher density.

– The HPTR has achieved the best recommendation performance over al1
evaluation metrics. Notably, its performance with the lower hyperbolic em-
bedding dimension: on LastFM-core5, LastFM-core10, and ML10M-core10
with d = 16, and on ML10M-core5 with d = 32, HPTR has met or exceeded
the performance of other models with higher Euclidean embedding dimen-
sion (d = 64), which confirms the prominent advantage of hyperbolic space
in the representation capacity.

5.4 Parameters sensitivity analysis

In our proposed HPTR, the dimension of embeddings d is the most important
parameter since it controls the capacity of the whole model, so we conduct
additional experiments to study the sensitivity of d to the performance of PTR
by tuning it within {8, 16, 32, 64, 128, 256, 512, 1024}. We also take Precision@N
and Recall@N , and set N = 3, 5, 10, to give an insight of impact on performance
with respect to parameter d.
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Fig. 2. Impact of d on Precision@N

From Fig 2 and Fig 3, we can observe that the curves of Precision@N and
Recall@N show similar changing trends on four datasets. In the beginning, the
values of Precision@N and Recall@N both increase stably with the growth of
d, when d exceeds 64, most of Precision@Nand Recall@N are no longer in an
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Fig. 3. Impact of d on Recall@N

uptrend, which indicates that merely increasing the dimension is not conducive
to sustained improvement of recommendation. One possible reason is that HPTR
will obtain sufficient learning ability when d reaches a certain threshold, and after
that, the higher dimension of embeddings will lead to the over-fitting problem.

6 CONCLUSION

In this paper, we take the initiative to conduct PTR task in hyperbolic space.
Being aware of the common structural properties of hyperbolic space and tag-
ging information, we propose the HPTR model to pursue better recommendation
performances. HPTR is committed to learning optimal representation of user-
s, items, and tags in the hyperbolic space. By embedding training data into
Poincaré ball and adopting hyperbolic distance as the matching function, our
HPTR is expected to exhibit better performance in the recommendation for
its capability of capturing the hierarchical relationship within the training da-
ta. We conduct extensive experiments to verify the validity of HPTR, and the
experimental results have shown its superiority over state-of-the-art baselines.
Furthermore, HPTR with a lower hyperbolic embedding dimension can outper-
form baselines with higher Euclidean embeddings in the experiments.

It should be noted that, in our work, we have not made the most of side infor-
mation within the tagging information and have overlooked the graph structure
among entities. Recently, there appears some work [45, 50, 48, 7, 41, 13] that has
been made to improve the performance of recommendation models by inducing
side information and graph learning methods. This will motivate us to consid-
er whether we can utilize such information and methods to further boost the
performance of PTR. Furthermore, since hyperbolic space can be described by
more than one isometric model, our future work will mainly focus on exploring
the performance of the other isometric models in PTR tasks.
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