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“Prophesy is a good line of business, but it is full of risks.”

Mark Twain in “Following the Equator.”
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Abstract

Prediction is the key objective of many machine learning applications. Accurate, reli-

able and robust predictions are essential for optimal and fair decisions by downstream

components of artificial intelligence systems, especially in high-stakes applications, such

as personalised health, self-driving cars, finance, new drug development, forecasting of

election outcomes and pandemics.

Many modern machine learning algorithms output overconfident predictions, result-

ing in incorrect decisions and technology acceptance issues. Classical calibrationmethods

rely on artificial assumptions and often result in overfitting, whilst modern calibration

methods attempt to solve calibration issues by modifying components of black-box deep-

learning systems. While this provides a partial solution, such modifications do not pro-

vide mathematical guarantees of predictions validity, are intrusive, complex, and costly

to implement.

This thesis introduces novel methods for producing well-calibrated probabilistic pre-

dictions for machine learning classification and regression problems. A new method

for multi-class classification problems is developed and compared to traditional calibra-

tion approaches. In the regression setting, the thesis develops novel methods for proba-

bilistic regression to derive predictive distribution functions that are valid under a non-

parametric IID assumption in terms of guaranteed coverage and containmore information

when compared to classical conformal prediction methods whilst improving computa-

tional efficiency. Experimental studies of the methods introduced in this thesis demon-

strate advantages with regard to state-of-the-art. The main advantage of split conformal

predictive systems is their guaranteed validity, whilst cross-conformal predictive systems

enjoy higher predictive efficiency and empirical validity in the absence of excess randomi-

sation.
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Chapter 1

Introduction

1.1 Machine learning

Machine learning is concerned with the development of data-driven algorithms that are

able to make predictions about something in the world. Tom M. Mitchell defined a ma-

chine learning algorithm as follows: “A computer program is said to learn from experi-

ence Ewith respect to some class of tasksT and performancemeasure P if its performance

at tasks in T, as measured by P, improves with experience E” [92].

Machine learning applications range from identifying handwritten digits in postal

codes for efficient sorting of mail [78] to filtering of spam and predicting property prices.

Recent progress in deep learning (a branch of machine learning based on artifical neu-

ral networks) resulted in human or near-human performance in computer vision, speech

recognition and machine translation. This progress is the result of application of new al-

gorithms for training advanced deep neural network architectures using abundant data

and high-performance Graphics Processing Units (GPUs) that are able to run parallel

computations at high speed. In computer vision, although convolutional neural networks

(CNNs) have been around for decades, faster GPU-based implementations of backprop-

agation algorithm popularised by Hinton et al. [114] for training of deep neural networks

allowed to achieve near-human performance in visual pattern recognition contests such

as ImageNet competition [63].
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1.1.1 Terminology of machine learning

Machine learning consists of several branches that include supervised learning, unsuper-

vised learning and reinforcement learning. In supervised learning, an intelligent system is

presented with examples of inputs (objects) and outputs (labels), and the goal is to learn

a function that maps inputs to outputs. In unsupervised learning no labels are available

— the goal of an unsupervised learning algorithm is to learn the structure of the data.

The output of an unsupervised learning algorithm is either the assignment of objects into

clusters, the density estimation or the projection of data into a lower dimensional space.

Reinforcement learning is concerned with the behaviour of intelligent agents maximising

their reward function by taking actions in an environment. This thesis is concerned with

probabilistic prediction for supervised machine learning problems only.

In supervised machine learning problems, an algorithm is presented with a number

of examples z from the training set of examples Z. The examples contain objects x from

the set X and labels y from the set Y. The Cartesian product Z := X × Y represents the

set of all possible examples. Supervised machine learning consists of two main classes

of problems: classification and regression. In a classification problem, the labels consti-

tute a discrete set that can be as small as the set of numbers from 0 to 1 in a standard

binary classification problem, several classes in a multi-class classification problem (as in

MNIST dataset [78] containing examples of objects 0 to 9 representing hadwritten digits)

or as large as tens of thousands classes (as in ImageNet [63] competition that contains

over twenty thousand categories of images). In a machine learning regression problem,

the labels are continuous — the objective of the machine learning regression algorithm is

to learn the function that maps objects to continuous labels. Examples of machine learn-

ing regression tasks include making predictions about product demand, property prices,

drug efficacy or toxicity and the lengths of taxi journeys.

1.1.2 History of supervised learning

Even though artificial intelligence and machine learning have seen significant develop-

ments since their start in the 1950s and 1960s, these fields use mathematical tools such as

Bayes’ theorem and Least Squares that date back to the 18th and 19th century. In 1950,



1.2. Probabilistic prediction 21

Alan Turing proposed a learning machine [130] that could become artificially intelligent

via the learning process. In 1951, Marvin Minsky and Dean Edmonds built the first neu-

ral network machine, known as SNARC [115]. In 1957, Frank Rosenblatt caused a lot of

excitement in the artificial intelligence community by building the perceptron [113]. It

quickly turned out, however, that the perceptron was not able to recognise many patterns

including a rather simple XOR function as demonstrated in 1969 by Minsky and Papert

[91]. In 1967, Cover published a paper describing the Nearest neighbour algorithm [23].

The Nearest neighbour algorithm provided computers with the ability to perform basic

pattern recognition tasks. In 1986, David Rumelhart, GeoffHinton and Ronald J.Williams

popularised the method of backpropagation for training of neural networks [114] (con-

tinuous backpropagation was initially derived by Henry J. Kelley [59] in the context of

control theory). A number of more powerful supervised machine learning algorithms

including random forest [9] and support vector machines (SVMs) [22] were published

in the 1990s (the original linear support vector machines were invented and published

by Vladimir Vapnik and Alexey Chervonenkis in the early 1960s [133]. In 1997, Sepp

Hochreiter and Jürgen Schmidhuber published long short-termmemory (LSTM, [52])—

an artificial recurrent neural network architecture that used feedback connections to solve

the problem of vanishing gradient— the issue that impeded the effective use of the LSTM

predecessor — traditional recurrent neural networks (RNNs).

1.2 Probabilistic prediction

Prediction is about forming forecasts about the future, whilst probabilistic prediction is

about quantifying the uncertainty in prediction [40]. Forecast uncertainty quantification

goes back to year 1906 when Australian meteorologist W.E. Cooke attempted to formu-

late weather forecasts in terms of probabilities, however the concept of odds was used in

weather forecasts for more than 200 years [96]. In 1793, the British forecaster J. Dalton

issued forecasts that included statements such as “the probability of a fair day to that of a

wet one is as 10:1” and in France J.B. Lamarck produced forecasts using the term probable

that implied a probability of an event greater than 0.5 [96].
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Probabilistic forecasts are an important component of an optimal decision-making

process [40] and are used to quantify uncertainty in such diverse domains as forecasting

weather and election results, demographic projections and financial risk management.

Central banks worldwide adopted probabilistic forecasting following the Bank of Eng-

land’s use of probabilistic models for interest rates for almost three decades [40].

More recently, estimating predictive uncertainty has become vitally important inmany

applications, such as healthcare, drug development and self-driving cars (see, e.g., [4],

[105], [129], [60]).

More recently Stanford statisticians and Washington Post data scientists built more

honest election predictionmodels using conformal prediction. According to StanfordUni-

versity Prof. Emmanuel Candes: “Predictive models are used to make decisions that can

have enormous consequences for people’s lives. It’s extremely important to understand

the uncertainty about these predictions, so people don’t make decisions based on false

beliefs” [131].

The Stanford-Washington Post model is the “first real-world application of an exist-

ing statistical technique developed at Stanford by Candès, former postdoctoral scholar

Yaniv Romano and former graduate student Evan Patterson. The technique is applicable

to a variety of problems and, as in the Post’s predication model, could help elevate the

importance of honest uncertainty in forecasting. While the Post continues to fine-tune

their model for future elections, Candès is applying the underlying technique elsewhere,

including to data about COVID-19” (see [131], [112]).

Probabilistic prediction is rapidly gaining momentum in both academic research and

practical applications — the recent M4 [82] and M5 forecasting competitions [83] required

estimating prediction intervals (in addition to producing point forecasts) for a large num-

ber of time-series. Large tech companies such as Amazon [39] and Uber [71] are actively

involved in probabilistic forecasting research and have incorporated probabilistic fore-

casting into the core of their machine learning systems. Probabilistic forecasting is used

in production systems to provide large-scale retail demand predictions at Amazon and

capacity forecasting at Amazon Web Services (AWS), whilst Uber uses probabilistic fore-

casting for marketplace forecasting of demand and resource allocation. Companies like
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Walmart have embraced machine learning and predictive uncertainty estimation and co-

organised the most recent M5 forecasting competition [83] that included two tracks to

estimate both accuracy and uncertainty in the forecasts of future Walmart product sales.

The estimation of predictive uncertainty becomes particularly important when it is

necessary to determine a case for manual intervention, especially in safety-critical appli-

cations such as healthcare [105] and self-driving cars [34] .

1.2.1 Terminology of probabilistic prediction

We will define the terminology of probabilistic prediction following Gneiting and Katz-

fuss [40]. The etymology of words “predict” and “forecast” is different. Whilst the word

“prediction” comes from the Latin word “praedicatus” (relating to foretelling or proph-

esy), the meaning of the word “forecast” comes from the Middle English word for “fore-

thought” or “prudence”. When compared to prediction, forecast, therefore, implies more

control over the planning for the future. However, we will use the terms “probabilistic

prediction” and “probabilistic forecasting” interchangeably.

The general objective of probabilistic forecasting is to “maximise the sharpness of a

predictive distribution subject to calibration” of the probabilistic forecast [40]. The sharp-

ness is defined by the concentration of the probabilistic forecast, whilst calibration de-

scribes the relationship between forecast probabilities and the relative frequency of ob-

served events. An example of a probabilistic prediction is a statement that “rainwill occur

with a probability of 70%” and if the relative frequency of rain that actually occurs during

the days when rain is predicted to occur turns out to be 70%, we say that the probabilistic

forecast is well calibrated (see, e.g., [26]). We introduce a number of formal definitions

(for more details about proper scoring rules and terminology of probabilistic forecasting

in general see Gneiting and Katzfuss [40]). The definitions below follow [40].

Definition 1.2.1 (Probability integral transform). Given the observation Y , the probabil-

ity integral transform (PIT) is the random variableZF = F (Y ), where F is the cumulative

distribution function (CDF) for Y .

Definition 1.2.2 (Forecast calibration). Let F and G be CDF-valued random quantities

with PITs ZF and ZG:
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• The forecast F is marginally calibrated if E(F (y)) = P(Y ≤ y) for all y ∈ R.

• The forecast F is probabilistically calibrated if its PIT ZF has a standard uniform

distribution.

From the properties of standard uniform distribution, it follows that if F is probabilis-

tically calibrated then var(ZF ) = 1
12 and F is well dispersed [40]. The most commonly

used proper scoring loss is the logarithmic loss:

Definition 1.2.3 (Logarithmic loss).

LL(f, y) = − log f(y)

In addition to the logarithmic loss, for machine learning classification problem, we

will also use Brier loss (see [10], [6]).

Definition 1.2.4 (Brier loss).

BL(f, y) =
∑
y′∈Y

(
1{y′=y} − P

({
y′
}))2

Both the logarithmic loss and the Brier loss are examples of proper loss functions for

classification problems. The continuous ranked probability score (CRPS) [40] is an ex-

ample of proper loss function for the regression problems.

Definition 1.2.5 (Continuous ranked probability score).

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1{y ≤ x})2dx

The CRPS generalizes the absolute error and in the case of point forecast is the same

as the absolute error. The CRPS can be used to compare probabilistic forecasts [40].

1.2.2 Conformal prediction

In a supervisedmachine learning problem, the objective is to predict the label based on the

features of an object. However, given a point prediction ŷ, how can one evaluate predic-

tion quality (i.e., how likely is it that ŷ = y)? In practice, such evaluation can be done on
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the basis of how such predictions performed in comparison with the actual results based

on past experience. The central idea of conformal prediction is to use such past experience

to determine precise levels of confidence in the individual predictions [120]. Conformal

prediction is the statistical learning framework that is able to provide measures of confi-

dence for each individual prediction, thus effectively “hedging” the predictions [137].

The prediction region Γε is constructed using the significance level ϵ ∈ (0, 1) with a

specified degree of confidence. To construct prediction region, the conformal predictor

estimates degree of similarity of a new example to the examples in the training set using

specified conformitymeasure, this conformitymeasure is then used to produce prediction

region Γε for each significance level ε [120].

The ideas of conformal prediction go back to the 1960s asKolmogorov’s thinking about

themeaning of randomness [2] and later to the 1970s and the 1980s as on-line compression

models [120] thatwere studied using the ideas from the statisticalmechanics [72]. In both

fields of study the models use summary statistics that contain all the useful information

to predict future examples [120]. When a new example is observed, summary statistics

is updated and “the probabilistic content of the structure is expressed by Markov kernels

that give probabilities for summarized examples conditional on the summaries” [120].

Specifically, given a set of n examples x1, y1, . . . xn−1, yn−1, xn and a significance level

ϵ, the conformal predictor outputs the prediction set

Γϵ (x1, y1, . . . xn−1, yn−1, xn) .

The prediction set Γϵ must satisfy the property Γϵ1 (x1, y1, . . . xn−1, yn−1, xn) ⊆

Γϵ2 (x1, y1, . . . xn−1, yn−1, xn) whenever ϵ1 ⩾ ϵ2, i.e., the larger subset of possible labels

results in a more confident prediction.

1.3 Main contributions

The goal of the research described in this thesis is to developnewmethods for probabilistic

prediction for machine learning classification and regression tasks.
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• Chapter 2 describes calibration methods, including recently developed compu-

tationally efficient algorithms IVAP (inductive Venn-Abers predictor) and CVAP

(cross Venn-Abers predictor). The remainder of this chapter will outline newmeth-

ods for probabilistic classification and regression. These new methods further de-

velop current state-of-the art in probabilistic prediction.

• Chapter 3 describes a novel method of application of IVAPs and CVAPs (probabilis-

tic algorithms for binary classification) to multi-class classification and studies its

performance empirically in comparison with traditional calibration methods such

as Platt’s scaling and isotonic regression. This work was presented at “The 6th Sym-

posium on Conformal and Probabilistic Prediction with Applications” (COPA 2017,

Stockholm). The conference paper “Multi-class probabilistic classification using in-

ductive and cross Venn–Abers predictors” by Manokhin [85] introducing a novel

method of application of IVAPs and CVAPs to the problem of multi-class classifica-

tion and studying the performance of the new algorithm in comparison with tradi-

tional calibration methods such as Platt’s scaling and isotonic regression has been

published in the “Proceedings of Machine Learning Research.” The code has been

released as open source [86].

• Chapter 4 focuses on the study of probabilistic regression and derives predictive

distribution functions that are valid under a non-parametric assumption. A new

prediction algorithm, called the Least Squared Prediction Machine (LSPM), is in-

troduced to generalize the classical Dempster-Hill predictive distribution to regres-

sion problems. This work was presented at “The 6th Symposium on Conformal and

Probabilistic Prediction with Applications” (COPA 2017, Stockholm). A conference

version of the paper [145] has beenpublished in the “Proceedings ofMachine Learn-

ing Research.”. The journal paper “Nonparametric predictive distributions based

on conformal prediction” by Vovk, Shen, Manokhin, Xie [146] describing a novel

method of deriving predictive distributions that are valid under a nonparametric

assumption has been published by “Machine Learning” (Springer).

• Chapter 5 studies theoretically and empirically conformal predictive distributions
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with kernel methods. Kernel Ridge Regression Prediction Machine (KRRPM) is in-

troduced and its properties are studied. The main advantage of the KRRPM is its

flexibility: for a suitable kernel, it gets the location and shape of the predictive dis-

tribution right in the case of homoscedasticity. This work resulted in publication

as a chapter “Conformal predictive distributions with kernels” in the book “Braver-

man Readings in Machine Learning. Key Ideas from Inception to Current State”

(Springer) by Vovk, Nouretdinov, Manokhin and Gammerman [139] with preprint

version published on arXiv [139].

• Chapter 6 introduces two novel computationally efficient versions of conformal pre-

dictive distributions: split and cross conformal predictive distributions, and dis-

cusses their advantages and limitations. This work has been presented at “The 7th

Symposium on Conformal and Probabilistic Prediction with Applications” (COPA

2018,Maastricht). The conference paper “Cross-conformal predictive distributions”

[140] has been published in the “Proceedings of Machine Learning Research.” The

journal version “Computationally efficient versions of conformal predictive distri-

butions” by Vovk, Petej, Nouretdinov, Manokhin and Gammerman has been pub-

lished in “Neurocomputing” [143] (pre-print version published on arXiv [142]).

This journal version of the conference paper [140] contains more detailed compari-

son of SCPS and CCPS, a detailed discussion of Venn-Abers predictive systems, and

the analysis of universality of various predictive systems. An important finding in

the paper is that SCPS and CCPS are universal, whereas Venn–Abers predictive sys-

tems are not (Venn-Abers predictive systems introduced in Nouretdinov et al.[101]

are not classical Venn predictors in a classification setting, but are rather the appli-

cation of Venn Predictors to any regression method to obtain calibrated predictive

distributions).

• Created “Awesome Conformal Prediction” [84] – the most comprehensive profes-

sionally curated resource on conformal prediction. “Awesome Conformal Predic-

tion” has been cited in one of themost prominent books onMachine Learning “Prob-

abilistic Machine Learning: An Introduction” [97] by the leading research scientist

at Google Kevin Murphy (over 80K Google Scholar citations). The resource has
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proven very popular with both the academic and the tech community and accu-

mulated hundreeds of stars on Github in just a fewmonths raising awareness about

conformal prediction globally. “Awesome Conformal Prediction” is the official con-

formal prediction for the ICML2022 “Workshop on Distribution-Free Uncertainty

Quantification” and has been featured in the most popular tutorial on conformal

prediction “A Gentle Introduction to Conformal Prediction and Distribution-Free

Uncertainty Quantification” [1].
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Chapter 2

Literature review

This chapter introduces probabilistic machine learning and describes some of the calibration meth-

ods, both classical and modern, including recently developed computationally efficient algorithms

IVAP (inductive Venn-Abers predictor) and CVAP (cross Venn-Abers predictor). The aim is to

summarise the existing approaches, both parametric and non-parametric, which will serve as the

basis of comparison for the methods developed in Chapter 3.

2.1 Introduction

The objective of a supervised machine learning classification task is to predict labels for

new and unseen objects from the test set. A desirable property of a machine learning

algorithm is its ability not only to classify a new object into the correct class, but also to

generate accurate, reliable and robust class probabilities. By assigning class probabili-

ties to the new object, the machine learning algorithm is able to effectively “hedge” its

predictions by complementing class prediction with measures of prediction uncertainty /

prediction quality. This becomes especially critical in many real-world applications such

as healthcare [105] and self-driving cars [94], where obtaining accurate class probabili-

ties significantly affects critical elements of a decision-making process, such as whether to

stop a self-driving car when the algorithm is unsure about its prediction of whether there

is a pedestrian or obstacle on the road or not [94].

Predictive classificationmodels are most commonly evaluated by looking at their abil-

ity to separate objects into correct classes, this is often evaluated using receiver operating
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characteristic (ROC-AUC) that are able to provide more comprehensive measure of per-

formance when compared to accuracy and error rate [36]. Calibration is another impor-

tant criteria of performance that has received less attention in both academic literature

and practice, but is becoming increasingly important due to the need to provide predic-

tions in an accurate, fair and transparent manner. A model is said to be well calibrated

if its output reflects true probabilities of the events — for every 100 objects assigned a

probability score of s, close to s will belong to class with label 1 [14].

It is often assumed, that traditional neural networks are well-calibrated (see, e.g.,

Caruana andMizil [17], however, there is a growing body of research demonstrating that

not only modern deep neural networks are not well-calibrated (see, e.g., [44], [89], [94],

[105]), but also that traditional neural networks are often mis-calibrated as well [57]. As

shown in [44], whilst very large and deep computer vision models such as ResNet [45]

are much more accurate than previous classical architectures such as LeNet [77], modern

deep neural networks become significantly miscalibrated even as classification accuracy

improves. Guo et al. [44] attribute this behaviour to recent advances in deep learning

such as model capacity, batch normalization, weight decay that all have strong negative

effects on network calibration.

Messoudi et al. [89] considered Bayesian approach to estimation of confidence of the

predictions of machine learning models, however concluded that such methods have ma-

jor limitations. In order to accurately estimate posterior distributions, Bayesian methods

need correct prior distributions, however in practice such prior distributions are often cho-

sen arbitrarily or simply not available. If an incorrect prior is chosen, posterior probability

will not result in a valid forecast (see, e.g, [88]) and predictive interval will not contain ac-

tual labels (“ground truth”) with specified probability (e.g., 95% predictive interval will

not contain 95% of the actual labels), resulting in predictive intervals being too wide or,

most likely, too narrow (overconfident predictions) — as has been demonstrated in mul-

tiple forecasting competitions (see, e.g, [43]). In addition, in novel situations such as new

drug development it is not possible even for an expert to arrive at correct priors — a situ-

ation well-known to regulators who discourage using subjective opinions not backed by

actual data, especially in regulated industries such as pharmaceuticals, financial services
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and healthcare.

Melluish et al. [88] demonstrated that Bayesian methods give misleading predictions

and incorrect prediction intervals when the assumptions of the Bayesian model are incor-

rect. The authors concluded that “when correct priors are known, Bayesian algorithms

give optimal decisions, and accurate confidence values for predictions can be obtained.

However, if the prior is incorrect, these confidence values have no theoretical base— even

though the algorithm’s predictive performance may be good. Bayesian frameworks are

often applied to these algorithms in order to obtain such values, however they can rely

on unjustified priors.”

Mukhoti et al. [94] analysed miscalibration of deep neural networks and concluded

that many current multi-class classification networks are poorly calibrated, resulting in

the mismtach between the model’s confidence and accuracy. The authors concluded that

the high capacity of these networks leaves them vulnerable to overfitting on the negative

log-likelihood (NLL) loss they conventionally use during the training and replaced the

cross-entropy with focal-loss to prevent the model from becoming overconfident.

Outside of the deep learning domain — in forecasting — the recent “M4” forecasting

competition [82] is a typical example of the majority of submitted models outputting un-

calibrated predictions. According to [43] “prediction intervals became overconfident and

increasingly so over the long horizons.” The author concluded [43] that “many of the

models submitted performed poorly (except, notably, for the top two or three submis-

sions), in that they often performed worse than the benchmarks provided by the com-

petition organisers. A possible explanation for this poor performance might be a mix of

overconfidence and overfitting.”

Messoudi et al. [89] used conformal prediction to develop more reliabe and cautious

deep learning models and concluded that “the conformal model not only adds reliability

and robustness to the deep model by detecting ambiguous examples, but also keeps or

even improves the performance of the basic deep model when it predicts only one class.

We also illustrated the ability of conformal prediction to handle noisy and outlier exam-

ples for all three types of data. These experiments show that the conformal method can

givemore robustness and reliability to predictions on several types of data and basic deep
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architectures.”

The application of conformal prediction to neural networks is not a new idea, Pa-

padopoulos et al. [103] usedVenn-Abers predictors to producewell-calibrated probabilis-

tic predictions using neural networks in multiclass setting, by combining Venn predictors

[137] combined with neural networks applied to binary classifications problems [104].

Perreira et al. [105] evaluated various uncertainty quantification methods (described

in more detail in 2.2) to produce individual probabilistic predictions for clinical decisions

for patients with Alzheimer decease. Both Platt’s scaling 2.2.2 and isotonic regression

2.2.3 were evaluated and compared to Conformal Prediction and Venn-Abers prediction.

The study concluded that Platt’s scaling is only adequate to calibrate the output from the

SVM, the finding confirmed in several other papers covered in more detail in 2.2 . Whilst

isotonic regression performed better than Platt’s scaling, combining isotonic regression

with decision trees produced poor results. Both Conformal Prediction and Venn-Abers

prediction produced superior results by reducing both false negative and false positives.

The study concluded that “Conformal Prediciton and Venn-Abers were the preferable

methods to complement predictions with measures of uncertainty and conformal pre-

diction based methods produced predictions with a low error rate for high credibility

thresholds.”

To summarise, many machine learning algorithms do not produce class membership

probabilities and the ones that do often generate classification scores that do not corre-

spond to class probabilities. In such cases the scores need to be transformed into well-

calibrated probabilities that can be combined with utility scores for effective decision-

making.

2.2 Calibration methods

To transform class scores into class probabilities, several methods have been invented.

Suchmethods include both parametric and non-parametricmethods and are summarised

below.
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In a binary classification problem, the objective of the calibration process is to convert

class scores from an underlying machine learning classifier s = f(x) into calibrated prob-

abilities using the calibration map µ. A perfectly calibrated classifier s = f(x) is defined

as follows (see, e.g., [44]):

Definition 2.2.1 (Perfectly calibrated classifier). A scoring classifier is perfectly calibrated

if: P(Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1], where Ŷ is class prediction and P̂ is confidence

associated with class prediction [44].

Intuitively this means that we would like for model output to represent true probabil-

ity of classes.

2.2.1 Histogram binning

Histogram binning is an approach proposed by Zadrozny and Elkan in [152]. In this

approach, the scores are sorted by value and the set of scores is divided into a number of

bins. The value of each bin is then selected by solving an optimisation problem in which

squared error (e.g., the Brier loss) is minimized by replacing each object’s score with with

the value of the bin assigned to that object. The disadvantages of the histogram binning

method include arbitrary choice of the number of bins and the fixed size of the bins [99].

In addition, the mapping function is not a continuous function and there is no guarantee

that the mapping function is non-decreasing function of the object scores.

2.2.2 Platt’s method

Platt’smethod, also known as “Platt’s scaling” or “Platt calibration”was designed to learn

the function mapping classification scores produces by the SVM classifier to probability

distribution over classes. The method (described by Platt in [109]) was invented to ad-

dress specific disadvantage of a very popular classification algorithm — support vector

machines [22]— that produced accurate assignment of the objects to classes, but required

further calibration of the class scores to align them with true class probabilities. Support

vector machines (SVM) do not produce class probabilities direct, but instead output un-

calibrated classification scores that reflect distance to the maximum-margin hyperplane.
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Platt observed that the relationship between classification scores produced by the SVM

and empirical probabilities tended to be of the sigmoid nature that can be desribed by the

parametrized sigmoid function:

P (y = 1|x) = 1

1 + exp(Ax+B)
. (2.1)

This is equivalent to the assumption that classification scores from the SVM are propor-

tional to the log-odds based on the probability of an object belonging to the positive class

[109]:

g(x) = log
P (y = 1 | x)
P (y = 0|x)

. (2.2)

The probability of the positive class can then be expressed as:

P (y = 1|x) = 1

1 + e−g(x)
. (2.3)

Platt’s suggestion was to estimate parameters A and B by fitting maximum likelihood

estimator on a new training set (xi, ti) [109] constructed as follows:

ti =
yi + 1

2
.

The parameters A and B can then be estimated by minimizing negative log-likelihood

(LL) on the new training set:

LL = −
∑
i

ti log (pi) + (1− ti) log (1− pi)

Where pi is probability of positive class described by (2.3). As a regularized alternative

method designed to address potential overfitring by the sigmoid function, Platt [109] sug-

gested to modify ti as follows:

t+ =
N+ + 1

N+ + 2

t− =
1

N− + 2
.
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Platt [109] demonstrated that that this method produces estimates of probabilities that

are as accurate as in the earlier method suggested by Vapnik [134] that has mapped the

output of the SVM to class probabilities on the basis of feature space decomposition.

Zhang [154] proposed piecewise logistic regression as an alternative to Platt’s [109]

method. The method extends logistic regression by replacing linear function in Platt’s

sigmoid (2.1) with a piecewise linear function. Such an approach results in the log-odds

(2.2) also becoming piecewise linear, thus providing additional flexibility in comparison

with the original linear function Ax + b used by Platt. The use of piecewise linear func-

tion allows for better separation of objects into the three classes— two classes where class

ownership is clear and the borderline cluster of objects where there is less certainty as to

which class an object might belong. The authors showed [154] that the piecewise logis-

tic regression performed significantly better than Platt’s method across a number of text

categorization datasets using logistic loss as an error metric.

Whilst Platt’s method is often used in practice, its mapping function is tailored to the

very specific case of SVM as underlyingmachine learning classifier and as shown in [105]

is unsuitable to calibrate output from classifiers other than SVM. As shown inmore recent

research [65] (whilst not explicitely stated in Platt’s original paper [109]), Platt’s scaler’s

assumptions are very restrictive and are not reasonable for many probabilistic classifiers

that output scores in the range [0,1]. In such situations the use of Platt’s scaler results in

model mismatch and can result in classifiers becoming less calibrated even in comparison

with class scores produced by an underlying machine learning classifier [65] (this in turn

is due to the fact that Platt’s mapping does not contain the identity function).

2.2.3 Isotonic regression

To address some of the above mentioned issues with Platt’s scaler, Zadrozny and Elkan

[153] proposed to use a non-parametric calibration method based on the isotonic regres-

sion [7] and applied it to a range of datasets using Naïve Bayes and support vector ma-

chines as underlying classifiers. Zadrozny and Elkan [153] demonstrate that for theNaïve

Bayes the sigmoid assumption used by Platt does not generally fit the shape of class scores

produced by classifiers other than SVM.
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To correct this issue, Zadrozny and Elkan proposed a method that is an intermediate

approach between Platt’s sigmoid and histogram binning. Assuming that the underlying

classifier ranks objects correctly (as will be shown in this section, this is a rather limiting

assumptionwhich results in themajor drawback of the isotonic regression as a calibration

method), the function mapping class scores to probabilities should be non-decreasing.

In statistics such an approach is known as isotonic regression [7]. For fitting isotonic

regression, Zadrozny andElkanuse pair-adjacent-violators (PAV) algorithm [5], this non-

parametric algorithm solves fitting problem in linear time O(N) by computing stepwise-

constant isotonic function using general mean-squared error as an error metric [153].

Isotonic regression allocates class scores into bins using the convex hull of the ROC

curve [65]. The slope of each segment is related to the empirical likelihood ratio. Cali-

brated posterior probabilities can thus be derived by using computed slopes of each seg-

ment. The monotonic mapping of isotonic regression relies on the underlying classifi-

cation algorithm (whether machine learning or statistical) producing correct ranking of

classification scores — this in turn is equivalent to having ROC AUC score of 1 which is

almost never possible to obtain on a test set using any underlying classifier unless one

uses a toy dataset.

2.2.4 Smooth isotonic regression

The mapping function obtained by applying isotonic regression is non-continuous, sim-

ilar to the case of histogram binning. Jiang et al. [56] developed a smoother compu-

tationally effective method by interpolating isotonic regression between representative

values using monotonic splines called “Piecewise Cubic Hermite Interpolating Polyno-

mial” (PCHIP). In a range of experiments involving both synthetic and real datasets, the

calibration results from using smooth isotonic regression were compared with results ob-

tained using Platt’s scaler and isotonic regression when applied to the output from the

Logistic Regression. According to the experiments, the smoothing method significantly

improved calibration of the Logistics Regression classification scores compared to the iso-

tonic regression [56].
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2.2.5 Nested Dichotomies

Nested Dichotomies (NDs) [76] are a method of transforming a multiclass classification

problem into a series of binary classification problems. In this method the set of classes

is recursively split into subsets using a tree structure, at each node a binary classification

model is used to separate objects into two subsets. Leathart et al. [76] show that nested

dichotomies exhibit poor calibration, even when the underlying classifiers are well cali-

brated. The problem of poor calibration is exarcebated in cases when the underlying bi-

nary classifiers are not well calibrated. The authors demonstrate [76] that both accuracy

and calibration (as measured by the Log Loss) can be improved by calibrating both the

underlying binary classification models and the full ND structure. By performing exper-

iments on a range of datasets using Naïve Bayes and boosted trees as base classifiers, the

authors demonstrate that predictive performance of NDs can be substantially improved

by applying calibration techniques [76].

2.2.6 Beta calibration

Beta calibration is a method developed in Kull et al. [65]. The authors demonstrate that

parametric assumptions in Platt’s scaler are equivalent to assuming that the scores out-

putted by the underlying classifier are normally distributed and have the same variance

(σ2) for each class. In addition, experiments in [65] show that using Platt’s scaling to cal-

ibrate output of many classifiers including AdaBoost and Naïve Bayes can result in prob-

ability estimates that are worse than original scores when score distributions have heavy

tails. Using Platt’s scaling (also known as logistic calibration) as a mapping function for

well calibrated cases can result in distortion as logistic function does not include the iden-

tity function. Whist Platt’s scaling is a parametric method that requires less data than

isotonic regression (as non-parametric method isotonic regression can overfit on small

datasets), logistic calibration can produce bad results when the data model is misspeci-

fied. The authors demonstrate [65] that “model mismatch is a real danger for a range of

widely used machine learning models and can make classifiers less calibrated.”

The normality and homoscedasticity assumptions in Platt’s scaler are not reasonable
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for many probabilistic classifiers that output scores in the range [0,1] (whilst normal dis-

tributions have infinite support). To address this, the authors propose to use beta distri-

bution that allows for modeling of rich class of mapping functions.

In the experiments Kull et al. [65] apply logistic (Platt’s) scaler, isotonic regression and

beta calibration to the class scores produced by a range of underlying classifiers, includ-

ing Naïve Bayes, Adaboost, logistic regression, support vector machines, random forest

and multi-layer perceptron on 41 datasets from the UCI data repository [33]. The results

showed that Beta-calibration performed well on a range of dataset sizes and a variety

of classifiers with different characteristics. In terms of both the Log loss and the Brier

loss, beta calibration was often the best calibrator when compared to uncalibrated scores,

calibrated scores produced by Platt’s scaler and isotonic regresison. It was also never the

worst calibrator, making it a good choicewhen compared to isotonic regression on smaller

datasets and in general often outperforming Platt’s scaler.

2.2.7 Scaling-binning

Scaling-binning calibrator [66] is a combination approach that uses both histogram bin-

ning andparametricmethods. As traditional neural networks [57] andmostmodern deep

learning architectures do not output calibrated probabilities out of the box and are mis-

calibrated (see, e.g„ [44], [64], [94]), researchers and machine learning practitioners use

easy scaling approaches such as Platt’s scaling [109], isotonic regression [152] or temper-

ature scaling [44]. As shown in [66] such approaches are in practice less calibrated than

reported in the literature, in addition such approaches “have fundamental limitation as

their true calibration error can not be measured using a finite number of bins” [66].

In the scaling-binning approach a simple function g is first fit to the scores s outputted

by the underlying machine learning classifier. The input space is then binned with equal

number of inputs ending up in the same bin. As a final step, the values of g are averaged

across each bin. The resulting function can be computed more efficiently than in binning

methods and as shown in [66] has lower variance than labels y.

In multiclass calibration experiments run on CIFAR-10 [62] and Image-Net [63] com-

puter vision datasets, scaling-binning calibrator achieved a lower calibration error (35%
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lower on CIFAR-10 and 5x lower on Image-Net) than histogram binning [66].

2.2.8 Probability Calibration Trees

Probability calibration trees (PCT) [75] is a local probability calibration approach that

identifies regions in the input space to learn local calibration models in order to improve

performance.

The most commonly usedmethods such as Platt’s scaling and isotonic regression cali-

brate classification scores globally across the object space. Leathart et al. [75] hypothesise

that this approach can be improved using a more fine-grained calibration model and pro-

pose a novel approach based on logistic model trees [69]. The PCT approach follows

[69] by combining decision trees with logistic regression. Such an approach results in an

adaptivemodelwhere for simple datasets a linearmodelmight give the best performance,

whilst for more complicated datasets require a complex tree to be built [75].

In the experiments run on 32 UCI datasets [33] probability calibration trees either

performed in line with or outpeformed both Platt’s scaling and isotonic regressions when

Naïve-Bayes was used as the base classifier. For other base classifiers such as boosted

stumps, boosted decision trees and SVM, probability calibrations trees performed better

than Platt’s scaling and better than isonotic regression for all but 3 datasets.

2.2.9 Bayesian Binning into Quantiles

Naeni et al. [100] developed a non-parametric calibrationmethod called Bayesian Binning

into Quantiles (BBQ) using an ensemble of near isotonic regressions with Bayesian infor-

mation criterion (BIC). BBQ extends histogrambinning by combining outputs ofmultiple

binning models. The models differ in the number of bins, the objects are allocated into

bins based on equal frequency. Using Expected Calibration Error andMaximum Calibra-

tion Error defined below, the authors evaluate performace of the BBQ in comparison with

histogram binning, Platt’s scaling and isotonic regression using support vector machines

as the base classifier.
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Definition 2.2.2 (Expected Calibration Error). Expected Calibration Error is computed

as:

ECE =

K∑
i=1

P (i) · |oi − ei| ,

where oi is the fraction of positive labels in bin i, ei is the mean of probabilities (either

before or after calibration) in the same bin i, and P (i) is the empirical frequency of all

objects assigned to bin i.

Definition 2.2.3 (MaximumCalibration Error). MaximumCalibration Error is computed

as:

MCE =
K

max
i=1

(|oi − ei|) .

In the experiments on synthetic and 30 real datasets from [33], BBQ performed com-

petitively in terms of allocating objects to the correct class and often performed better

than Platt’s scaling and isotonic regression in terms of calibration using a range of base

classifiers including logistic regression, support vector machines and Naïve-Bayes [100].

2.2.10 Ensemble of Near Isotonic Regression (ENIR)

Naeni and Cooper [98] extended the approach in Bayesian Binning into Quantiles (BBQ)

by addressing the monotonicity assumption of the isotonic regresssion. Whilst isotonic

regression assumes that ranking of classification scores produced by the underlying clas-

sifier is correct, in practice this is equivalent to assuming that the area under the ROC

curve (AUC) is equal to 1, which rarely happens in practice [99]. In comparison BBQ

does not make such assumption, whilst the further key idea in ENIR is to balance the ap-

proache taken in isotonic regression to that one in Bayesian Binning into Quantiles [98].

The assumption in ENIR is that the mapping function converting uncalibrated scores into

calibrated probablities is nearly isotonic by allowing score rank violations by the under-

lying algorithm and later penalizing them via the use or regularization term [98].

In an extensive set of experiments this assumption proved to be realistic and unlike

the assumption in the isotonic regression not biased [98]. In two sets of experiments on

40 randomly selected datasets from the UCI [33] using logistic regression, support vec-

tor machines and Naïve Bayes as base classifiers significant calibration improvement was
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observed using RMSE, ECE and MCE as calibration metrics. In addition ENIR outper-

formed both the isotonic regression and the BBQ method (Platt’s scaling was not used

due to its simplicity and also due to the fact that the BBQ method was already shown to

outperform Platt’s scaling [100].

2.2.11 Temperature Scaling

Guo et al. [44] demonstrated that deep convolutional neural networks (CNNs) are mis-

calibrated, with the probabilistic error and miscalibration becoming worse even as clas-

sification error is reduced during the model training. Guo et al. [44] proposed that

modern advances in deep neural network architectures such as model complexity, batch-

normalization and early-stopping strongly contributed to miscalibration— the deep neu-

ral networks become increasingly overconfident even as calibration worsens. To address

this issue, Guo et al. [44] propose temperature scaling — a simple extension of Platt’s

scaling. Temperature scaling was originally used in statistical physics [54] and was later

popularized by Hinton et al. [51] in the domain of knowledge distillation in deep neural

networks.

Given the logit vector si, the new calibrated prediction is q̂i = maxk σ (si/T )
(k), where

k is the class index and i is the index of an object xi. The parameter T is called the tempera-

ture as it “raises the output entropy” [44]. As T → ∞, the probability q̂i → 1/K resulting

in maximum uncertainty. At T = 1 the original scores si are recovered and at T → 0 the

probability becomes that of a point mass [44].

Despite its simplicity and popularity, the temperature scaling method has a number

of drawbacks, including dampening of overconfidence in both correct and incorrect pre-

dictions — as well as making calibration worse under covariance shift [102].

2.2.12 Entropy penalty

Pereyra et al. [106] systematically explore regularisation of neural networks. Compared

to earlier techniques that have been used to reduce overfitting by acting on the activations

or weights of a neural network (e.g., early stopping, dropout [124], batch normalization

[53]) the proposed method follows entropy penalty approach by penalizing low entropy
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output distributions — the same approach that has been successfully used in reinforce-

ment learning to encourage exploration [151].

Overconfident predictions in deep neural networks are associated with output dis-

tributions that have low entropy, as shown by Szegedy et al. [127]. By penalizing low

entropy via regularisation term overconfident (peaked) distributions can be mitigated

leading to better generalization [106]. Pereyra et al. [106] illustrate the effects of various

techniques such as dropout and confidence penalty on the softmax probabilities on the

MNIST validation set. Whilst dropout leads to overconfident predictions that are either 0

or 1 (the effects also noted in Guo et al. [44]), both label smoothing and the confidence

penalty via entropy regularizer lead to smoother output distributions and better regular-

ization [106].

Definition 2.2.4 (Entropy).

H (pθ(y | x)) = −
∑
i

pθ (yi | x) log (pθ (yi | x))

To construct the loss function Pereyra et al. [106] penalize overconfident distributions

by adding negative entropy to the negative log-likelihood (NLL) as follows:

L(θ) = −βH (pθ(y | x))−
∑

log pθ(y | x)

In experimental evaluations of the proposed confidence penalty on common benchmark

datasets the authors find that confidence penalty improves the performancewithoutmod-

ifying hyperparameters [106].

2.2.13 MaximumMean Calibration Error (MMCE)

Methods like temperature scaling [44] and entropy penalty [106] improve calibration by

clamping confidence [67], but in the process also penalize correct confident predictions.

Kumar et al. [67] propose a principled approach to minimize calibration error usingMax-

imum Mean Calibration Error (MMCE) — a kernel based measure that is trained in par-

allel with minimizing the NLL (negative likelihood loss). The MMCE is minimized at

perfect calibration and enjoys the properties of consistent and fast convergence [67].
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In experiments on datasets spanning images, NLP and time-series data and several

network architectures Kumar et al. find that MMCE minimised calibration metrics whist

preserving high confidence predictions [67].

2.2.14 Label smoothing

To address the issue of overconfidence in deep neural networks, Mueller et al. [95] pro-

pose label smoothing approach. Neural network training is sensitive to the loss func-

tion that is being minimized [95], whilst initially Rumelhart [114] derived backpropa-

gation calculations using quadratic loss function, later on it was discovered that using

cross entropy results in better performance and faster convergence (see, e.g, [8]). More

recently Szegedy et al. [127] introduced label smoothing — an approach that computes

cross entropy by using a weighted combination of target labels with the uniform distri-

bution. Whilst label smoothing has long been used as a practical trick to improve perfor-

mance of neural networks in image classification and neural language processing (NLP)

tasks, it was generally not known when and why label smoothing works [95]. Mueller

et al. demonstrate that in addition to improving deep neural network performance label

smoothing implicitly calibrates predictions, making prediction confidence better aligned

with accuracy maximisation [95].

In a neural network trained with label smoothing, instead of using hard labels yi, the

smoothed version of the labels (1 − α)yi + α/K is used to minimise cross entropy [95].

Using label-smoothing approach, the actual label y is weighted-averaged with one of the

K class labels drawn randomly from uniform distribution.

Pereyra et al. have shown [106] that label smoothing is equivalent to confidence

penalty if the uniform distribution and model outputs in the KL divergence is reversed.

In a range of experiments using computer vision and NLP datasets, label smoothing im-

proved performance and resulted in better generalization and improved calibration of

deep neural networks [95]. Moreover, in on NLP tasks label smoothing improved trans-

lation quality (as measured by BLEU score) despite resulting in worse NLL [95].
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2.2.15 Focal loss

Focal loss is a method that was originally developed to address the class imbalance prob-

lem encountered in dense object detectors by adding a modulating factor (1− pi)
γ to the

cross entropy loss [80].

Definition 2.2.5 (Cross Entropy (CE) loss). Cross entropy loss is defined as:

CE(p, y) = CE (pt) = − log (pt)

pt =


p if y = 1

1− p if y = 0.

Definition 2.2.6 (Focal loss). Focal loss is then defined as:

FL = − (1− pt)
γ log pt.

When an object is misclassified and pi is small, the modulating factor is close to 1 and

does not affect cross entropy. As themodel becomesmore confident and pi → 1, the factor

tends to zero and the entropy is down-weighted by dampening the effect of overconfident

predictions. The parameter γ controls the effect of dampening overconfidence with γ = 0

corresponding to unmodulated cross entropy and by increasing γ the effect ofmodulation

is increased.

Mukhoti et al. [94] extended the idea of using focal loss to improving model calibra-

tion. Whilst temperature scaling described in Guo et al. [44] is a popular modern variant

of Platt’s scaling (see 2.2.11 for more details) that can improve calibration of a deep neu-

ral network without affecting its accuracy, it has certain drawbacks, including reducing

confidence in correct predictions at the same time as dampening overconfidence in incor-

rect predictions. Mukhoti et al. [94] proposed replacing cross-entropy with focal loss and

have found that this is equivalent to minimising a regularised KL divergence between the

predicted softmax distribution and the target label distribution. The focal loss is direct-

ing neural network’s attention to correctly classified objects for which it is predicting low

probabilities. At the same time, when compared to using cross-entropy loss, focal loss
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indirectly regularises network weights during training by reducing gradient norms for

confident samples [94]. Mukhoti et al. [94] outline a number of interesing findings:

• curse of misslassified samples — the increase in test NLL during training (indicat-

ing overfitting) is only caused by incorrrectly classifed samples, the miscalibration

observed during training is linked to overfitting on textNLL in line with findings in

[44].

• peak at the wrong place— the entropies for all objects (including both correctly and

incorrectly classified) decline during the training, “this indicates that the network

is becoming more and more confident about its incorrect predictions.” This finding

is similar to that observed in Pereyra et al. [106] described in more detail in 2.2.12.

• weight magnification — the overconfidence by neural network increasing the norm

of its weights, cross-entropy induces such weight magnification during network

training.

Another interesting finding is that whilst minimising cross entropy results in minimi-

sation of the KL divergence between the softmax and the target distribution, the use of

focal loss results in the minimisation of regularised KL divergence [94]:

FL ≥ KL(q‖p̂)− γH[p̂].

Where q is the target distribution and p̂ is the predicted distribution over the labels. Re-

placing cross-entropy with the focal loss therefore has the effect similar to that of adding

entropy regulariser in [106] (described in 2.2.12), with the effect of both minimising KL

divergence whilst simultaneuosly trying to increase the entropy of the prediction distri-

bution p̂. By dampening overconfident distributions, the focal loss improves calibration.

In experiments on a range of computer vision and document classification datasets,

the focal loss approach was compared to the following baselines using the Brier loss (see

1.2.4, [10]) — the MMCE 2.2.13 and label smoothing 2.2.14. As shown in [29], the Brier

loss can be decomposed into calibration and refinement terms and also imposes penalty

on incorrect class probabilities [94]. In almost all experiments, using focal loss resulted

in deep neural networks that were better calibrated than networks trained with baselines.
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2.2.16 Venn predictors

As described in Chapter 1, Venn predictors (introduced in [144]) and described in [137,

Chapter 5], it is not possible to estimate the true conditional probabilities of the class

labels. Venn predictors (VP), while not as perfect as the true probabilities, are well-

calibrated probabilistic predictors that, given a class label, outputmulti-probability distri-

bution for each class label of the test object. As shown in [137, Chapter 6] Venn predictors

achieve the calibration objective in a very strong non-asymptotic case. In general, one

could expect Venn predictors to be well calibrated as long as one accepts the assumption

of randomness [137].

Venn predictors are constructed by dividing the training set into categories. A test

object is then assigned into one of the categories. Since at the time of such assignment

the test object’s label is unknown, one can try each label that an object might have and

then compute the frequency of the labels in each category that an object has been as-

signed to depending on the chosen label. Obtained set of frequencies for the test object’s

unknown label can then be interpreted as a probability distribution over the test object’s

labels ([137]. The procedure obtains several probabilities even in a binary classification

case, in practice if the number of examples in each category is large enough, such binary

probabilities will be almost identical. Venn predictors output probability distributions

that are guaranteed to contain well-calibrated probabilities under the assumption of ran-

domness (see, e.g., [137], Theorem 6.6).

The main desiderata for Venn predictors are validity, predictive and computational

efficiency. Venn predictors have been successfully combined with several underlying

machine learning algorithms such as support vector machines [155], artificial neural net-

works [103] and K-nearest neighbours algorithm [25].

2.2.17 Venn-Abers predictors

A natural extension of Venn predictors are Venn-Abers predictors (VAP) — with the

Abers part of the name formed by combining the surnames of the authors in Ayer et al.

[5] that has described the underlying algorithm. Venn-Abers predictors can be built on
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top of a wide range of machine learning classification algorithms that produce classifi-

cation scores, such scores can then be converted into probabilities using the Venn-Abers

method. As shown in [68], the method of isotonic regression for probabilistic calibration

introduced by Zadrozny and Elkan [153] can often lead to mis-calibrated predictions (a

similar conclusion was reached in [56]) and overfit on small datasets [76]. Another limi-

tation of the isotonic regression is its reliance on the assumption that classification scores

produced by the underlying classifier are ranked correctly— in practice this is equivalent

to assuming that the AUC score is equal to 1 on the test set which is unrealistic to expect

in practice [98].

Venn-Abers predictors are a modification of the isotonic regression [153], and as they

are a variant of Venn predictors (that have an automatic property of validity) they are also

perfectly calibrated. The property of automatic calibration comes with a cost, however, as

Venn-Abers predictors are multi-probability predictors.
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Chapter 3

Probabilistic classification

This chapter introduces a new method of probabilistic prediction in multi-class classification set-

ting. The method coverts two computationally efficient calibration algorithms IVAP and CVAP

into multi-class probabilistic predictors. The proposed multi-class predictors improve calibration

for most classifiers and depending on the data set are often more experimentally accurate than clas-

sical calibration methods such as Platt’s scaler and isotonic regression.

3.1 Introduction

Multi-class classification is the problem of classifying objects into one of the more than

two classes. The goal of classification is to construct a classifier which, given a new test

object, predicts the class label from the set of possible k classes. In an “ordinary” classifi-

cation problem, the objective is to minimize the loss function by predicting correct labels

on the test set. In contrast, a probabilistic classifier outputs, for a given test object, the

probability distribution over the set of k classes. Probabilistic classifiers allow to express

a degree of confidence about the classification of the test object. This is useful in a range

of applications and industries where uncertainty around predictions needs to be quanti-

fied, including in life sciences, pharmaceutical R&D, self-driving cars, finance, robotics,

election forecasting [131] and forecasting of pandemics such as COVID-19.

A number of techniques are available to solve binary classification problems. In logis-

tic regression, the dependent variable is a categorical variable indicating one of the two

possible classes. Logistic regression model is used to estimate the probability of a binary

response based on a number of independent variables (features). In a large empirical
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comparison of supervised learning algorithms by Caruana and Mizil [16], the logistic

regression, whilst not competitive with the best methods, was the best model for some

performance metrics for specific problems. Another technique that can be used for both

binary and multi-class classification problem is the artificial neural network (ANN). Ar-

tificial neural network is a computational model based on a large collection of connected

units called artificial neurons. Depending on the problem setting, an ANN could be used

either to predict one of the k classes directly (by having k neurons in the final layer of

the neural network) or indirectly by building separate networks for each of the k classes.

ANNs are also able to estimatemulti-class probabilities directly by using softmax function

in the final layer of a neural-based classifier.

In a probabilistic classification setting where the loss function uses exact class prob-

abilities, calibrating classification scores produced by the underlying classifier (whether

machine learning or statistical) improves overall model performance. As shown in Caru-

ana and Mizil [17], maximum margin methods such as support vector machines and

boosted trees result in sigmoid-shaped distortion of the predicted probabilities. Accord-

ing to Caruana andMizil [17], othermethods such as neural networks and logistic regres-

sion do not suffer from these biases and result in better-calibrated probabilities, however

more recent studies (see, e.g., [57]) have shown that traditional neural networks are often

miscalibrated.

Platt’s scaling [109] (also knownas logistic scaling or logistic calibration anddescribed

inmore detail in Section 2.2.2 of Chapter 2 [109]) is effectivewhen the underlyingmachine

learning algorithm produces sigmoid-shaped distortions in the predicted class scores —

as this method was originally developed to address distortions in classification scores

produced by support vector machines (SVM).

Platt’s scaling, however, has several disadvantages. As shown in Pereira et al. [105] it is

adequate for calibration of SVM’ output that produces characteristic sigmoid-shaped dis-

tortion in classificaiton scores. Further, Kull et al. [65] show that parametric assumptions

in Platt’s scaler are equivalent to assuming that classifier scores are normally distributed

with the same variance (σ2) for each class. Experiments have shown (see, e.g., [65], [105])

that using Platt’s scaling to calibrate output of many classifiers including AdaBoost and
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Naïve Bayes can result in probability estimates that are in fact worse than scores produced

by the underlying classifier in cases where score distributions have heavy tails.

Using Platt’s scaling as a mapping function for well calibrated cases can result in

model distortion as it does not include the identity function [65] (hence for well cali-

brated scores where no transformation is needed the well-calibrated scores produced by

the underlying classifier will instead be distorted into poorly calibrated scores). Whist

Platt’s scaling is a parametric method and requires less data than isotonic regression (be-

ing a non-parametric method, isotonic regression can overfit on small datasets), it can

result in miscalibration in cases where the score distribution model is misspecified. Kull

et al. [65] demonstrate that “model mismatch is a real danger for a range of widely used

machine learning models and can make classifiers less calibrated.” In addition, Platt’s

scaling, being a variant of temperature scaling approach, suffers from the same draw-

backs as temperature scaling, including dampening of confidence for both correct and

incorrect predictions and making calibration worse under the covariat shift [102].

Another algorithm for probability calibration is isotonic regression (described inmore

detail in Section 2.2.3 of Chapter 2, [152]). The disadvantages of the isotonic regression

include the assumption that the underlying classifier correctly ranks classification scores

(this in turn is equivalent to assuming the ROC AUC score of 1 on the test dataset — the

unrealistic assumption for most real life datasets. In addition, the isotonic regression is

prone to overfitting, especially when the data is scarce. In the study of individual patients

by Pereira et al. [105] isotonic regression performed better than Platt’s scaling for classi-

fiers other than SVM, however produced poor results when using decision trees as the

underlying classifier .

Both classical and modern deep neural networks are miscalibrated (see, e.g., [57],

[44], [89], [94], [105]). Despite increasing classification accuracy of modern deep learn-

ing neural architectures such as ResNet [45], their performance—asmeasured by classifi-

cation accuracy—does not translate into improvements in terms of quality of probabilistic

predictions. As shown in Guo et al. [44], modern neural networks become significantly

miscalibrated even as their classification accuracy improves. The authors suggest that

the effects of miscalibration appear to be linked to recent advancements in deep learning
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designed to improve training and accuracy of neural networks — with both batch nor-

malization and regularization having strong impact on network miscalibration [44] (see

Chapter 2 for detailed overview of state-of-the-art in calibrationmethods for both classical

machine learning models and deep learning networks).

More recently, Vovk et al. [141] introduced two new computationally efficient proba-

bilistic predictors: IVAP (inductive Venn-Abers predictors) and CVAP (cross Venn-Abers

predictors). IVAP can be considered a regularized form of calibration based on the iso-

tonic regression. Whilst IVAP is constructed using two isotonic regression using different

labels for the test object, themultiprobability prediction output (p0,p1) computed by IVAP

is a form of regularisation and the interval width indicates confidence in prediction. Due

to its regularized nature, IVAP are less prone to overfitting than isotonic regression (iso-

tonic regression is described in more detail in Section 2.2.3 of Chapter 2). As IVAP are

a special case of Venn-Abers predictors that have automatic guarantees of validity [141],

IVAP are also automaticallywell-calibrated. CVAP are an extension of IVAPusing the idea

of cross-validation [141]. In empirical studies of pairwise classification problem Vovk et

al. [141] demonstrated consistent accuracy of CVAP compared to the existing methods

such as isotonic regression and Platt’s scaling. In a recent biomedical informatics study by

Pereira et al. [105], Venn-Abers predictors were shown to reduce both false positives and

false negatives by pushing uncertainty estimates for incorrectly classified cases to the cen-

ter of probability prediction intervals. Given that conformal predictors are automatically

valid and validity of Venn-Abers predictors and IVAPs is also theoretically guaranteed,

the study concluded [105] that conformal predictors and Venn-Abers predictors are the

preferable methods to uncertainty estimation for individual patient predictions.

All probability calibration methods described so far were designed for binary classi-

fication problems. For a multi-class classification problem there are several techniques

of assigning test objects to one of the k classes. If the conditional probabilities for each

of the k classes are known or can be estimated, the multi-class classification problem is

reduced to a trivial task of finding the number i of the class maximizing the conditional

probability pi(x) computed for each of the k classes. In practice, estimating conditional

class probabilities is a hard task, especially in high-dimensional setting with limited data
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(the curse of dimensionality). In a binary classification task, finding a good separating

function instead of conditional probabilities often gives better prediction results.

Binary probabilistic classifiers output class probabilities or decision scores. We use

Platt’s scaling, IVAP and CVAP to convert output of binary classifiers into calibrated bi-

nary class probabilities. We then use the PKPDmethod described in Section 3.2 to convert

calibrated binary class probabilities into the multi-class probability distribution over the

k classes.

The classical approach to multi-class classification is to consider a collection of binary

classification problems and then combine their solutions (when solutions include pair-

wise class probabilities) to obtain multi-class probabilities. A number of methods for

converting output of binary classifiers into multi-class probabilities are available. In a

simple one-versus-all approach, k classifiers are built with the kth classifier separating all

objects in the ith class from the objects in all other k − 1 classes. The multi-class classi-

fier f(x) is then a function attaining argmaxi fi(x), where fi(x) is a classifier in binary

classification problem of separating ith class from all the other classes. In another one-

versus-one method (also called all-pairs classification) k(k−1)
2 binary classifiers are built to

classify test objects between each pair of the ith and jth classes. If such classifiers are

denoted as fij , the multi-class classification problem is reduced to finding fi(x) such that

fi(x) = argmaxj
∑

fij(x). Both one-versus-all and one-versus-one approaches generally

perform well and the suitability of a method to the specific problem or application de-

pends on the time needed to build a particular classifier in comparisonwith time required

to repeat the classification task. For one-versus-one (OVO) algorithm, the number of rep-

etitions is O
(
N2
)
, whilst for one-versus-all (OVA) the number of repetitions is O (N).

However, if the time required to build a classifier is super-linear in terms of the number

of objects, one-versus-one (OVO) is a more efficient choice.

As an alternative to solving multi-class classification by combining solutions to bi-

nary classification problems, approaches such as single machine and the error correcting

code can be used. In the single machine approach in Weston and Watkins [150], a sin-

gle optimization problem is solved by training a multi-class support vector machines to

solve generalised binary support vector machines problem with the decision function
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f(x) = argmax
i

(wix + bi). This approach can be used for simultaneous multi-class sepa-

ration in situations where binary classification by one-versus-all and one-versus-one fails.

As an additional benefit, the single machine approach results in reducing the number of

support vectors and more efficient kernel computations. The benefits of the single ma-

chine are, however, limited to the situations where it is hard to separate the data whilst

at the same time meaningful subsets exist that allow for assigning a higher value to the

decision function for the correct class as compared to other classes.

Other methods for solving multi-class classification problem include voting [111] and

various methods based on combining binary probabilities to obtain multi-class probabil-

ities. Such methods rely on obtaining estimates rij of pairwise probabilities µij = P (y =

i | y ∈ {i, j} , x). Estimates rij are obtained by building binary classifiers for each of the

pairwise unions of the ith and jth classes and using rij as an approximation for µij . In

the next section, we describe a method of converting estimates rij of pairwise class prob-

abilities into estimates pi of multi-class probabilities for k classes.

3.2 Obtaining multi-class probabilities from pairwise classifica-

tion

In order to obtain estimates of multi-class probabilities we convert binary class probabil-

ities using the method in Price et al.[111]:

pPKPD
i =

1∑
j:j ̸=i

1
rij

− (k − 2)
. (3.1)

Class probabilities pPKPD
i computed using 3.1 need to be normalized to ensure that they

sum to one. We will refer to this method as the “PKPD” method. We use this method to

obtainmulti-class probabilities frompairwise class probabilities produced by the underly-

ing algorithms (we use logistics regression, support vectormachines and neural network)

and calibrated using Platt’s scaling, IVAP and CVAP.We then usemulti-class probabilities

computed using the “PKPD”method 3.1 to assign test object to one of the k classes which
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allows us to compute loss metrics on the test dataset and compare them across different

underlying machine learning methods and calibration algorithms.

3.3 Inductive and cross Venn-Abers predictors

As described in Chapter 1, Venn predictors (introduced in [144]) and described in [137,

Chapter 5], it is not possible to estimate the true conditional probabilities of the class la-

bels. Vennpredictors (VP) (see 2.2.16 formore details), while not as ideal as the true prob-

abilities, are well-calibrated probabilistic predictors that, given a class label, output multi-

probability distribution for each class label of the test object. As shown in [137, Chapter 6]

Venn predictors achieve the calibration objective in a very strong non-asymptotic case. In

general, one could expect Venn predictors to be well calibrated as long as we accept the

assumption of randomness [137].

A natural extension of Venn predictors is Venn-Abers predictors described in [141].

Venn-Abers predictors are built on top of a wide range of machine learning classification

algorithms that produce classification scores, the calibration scores produced by the un-

derlying machine learning algorithms can then be converted into probabilities using the

Venn-Abers method. Venn-Abers predictors are a modification of the isotonic regression

[153] and unlike the classification scores produced using Platt’s scaling method or the

method of the isotonic regression, the classification scores produced Venn-Abers predic-

tors have theoretical guarantees or validity and are perfectly calibrated.

Calibration algorithms IVAP (inductive Venn-Abers predictor) and CVAP (cross

Venn-Abers predictor) are computationally efficient versions of Venn-Abers predictors

studied in [141]. Whilst IVAP and CVAP are based on the calibration method used by

the isotonic regression [152], IVAP and CVAP avoid problems associated with isotonic

regression such as lack of calibration guarantees or overfitting when the data is scarce.

This is achieved by assigning each of the test objects with two potential labels of 0 and

1 to fit two isotonic regressions instead of one. As Venn-Abers predictors are a special

case of Venn predictors, they inherit the property of perfect calibration from Venn pre-

dictors [141]. As shown by Vovk et al. [141], IVAP are automatically perfectly calibrated

and the experimental results reported in the paper suggest that this property is inherited
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by CVAP [141]. The property of automatic calibration comes with a cost, however, as

Venn-Abers predictors are multi-probability predictors. IVAP and CVAP are computa-

tionally efficient algorithms with predictive efficiency depending on the efficiency of the

underlying algorithms [141].

3.3.1 Computational details of IVAP and CVAP

In binary classification problems, machine learning classifiers output prediction score s

for each test object, class predictions are then obtained by comparing the score for each

test objects to a specified threshold. To obtain calibrated scores, function g(s(x)) is then

applied to convert uncalibrated scores s to calibrated probabilities. Assuming that the

underlying classifier ranks test objects correctly (with objects that are more likely to end

up in class 1 being assigned higher classification scores), such function g(s) should be

isotonic (non-decreasing) function in order to preserve original ranking produced by the

classifier. Figure 3.1 shows a general illustration of an isotonic regression fit to an data set.

Isotonic function g(s(x)) can be constructed by fitting isotonic regression to the set of

points (s (xi) , yi), where s (xi) is the classification score for the ith object in the calibra-

tion data set and yi is the actual label of this object. This is achieved by maximizing the

likelihood on the calibration set, where K is the size of the calibration set

∏
i=1,2,...,K

pi (3.2)

and pi is defined as follows:

pi =


g (s (xi)) if yi = 1

1− g (s (xi)) if yi = 0

(3.3)

The most widely used algorithm for learning isotonic function g(s) is the pool-

adjacent-violators algorithm (PAVA, [7]). PAVA has linear time and memory complex-

ity and works by scanning uncalibrated scores si starting with the first object in the test

data set and each time comparing si−1 with si to find violations of monotonicity. Every

time such monotonicity violation is found, both si−1 with si are replaced with their mean
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FIGURE 3.1: Isotonic regression, Wikipedia

(si−1 + si)/2. If such replacement results in violations for test objects scanned earlier, the

algorithm needs to go back to fix such earliermonotonicity violations via averaging before

proceeding to next object. Figure 3.2 is an example of static snapshot of PAVA algorithm

replacing monotonicity violations with values of their mean (si−1 + si)/2.

FIGURE 3.2: PAVA algorithm for isotonic regression

Venn-Abers predictors are based on the idea of isotonic regression [141]. Venn-Abers

predictors are essentially a regularized version of isotonic regression [141], but instead of

fitting isotonic regression to the calibration set once, it is fitted twice to the calibration set

augmented with test object, each time assuming that the label of a test object is known it

can be either 0 and 1 or accordingly. The first isotonic regression g0(s) is therefore fitted
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to the set of points

((s0 (x1) , y1) , (s0 (x2) , y2) , . . . , (s0 (xK) , yK) , (s0(x), 0)) (3.4)

whilst the second isotonic regression g1(s) is fitted to the set of points

((s1 (x1) , y1) , (s1 (x2) , y2) , . . . , (s1 (xK) , yK) , (s1(x), 1)) (3.5)

Inductive Venn–Abers predictors (IVAP) uses classification scores s1, . . . , sK computed

by the underlyingmachine learning or statistical classification algorithmon the calibration

set of size K (calibration set can be obtained by reserving a part of the training set, the

other remaining part of the original training set that we will refer to as the proper training

set is used for training the underlying machine learning or statistical model) and also the

score s computed for each new test object. The isotonic regression is then fitted twice

to the set of computed scores s1, . . . , sK , s (used as the independent variables), and two

sets of dependent variables formed by combining the labels of the calibration objects with

the two (either 0 or 1) potential labels for the test object. By fitting isotonic regression

twice, IVAP computes multi-probability prediction (p0,p1) for the test object that can be

interpreted as the lower and the upper probability respectively of the object belonging

to the class labelled as 1. IVAP computes (p0,p1) efficiently for each of the potential test

objects by pre-computing two vectors F 0 and F 1 which store f0(s) and f1(s), respectively,

for all possible values of s. As shown byVovk et al. [141], given the scores s1, . . . , sK of the

calibration objects computed by the underlying algorithm, the IVAP prediction rule can

be computed in time O(K logK) and space O(K), where K is the size of the calibration

set.

A cross Venn-Abers predictor (CVAP) is just a combination of K IVAP, where K is

the number of folds in the training set. To obtain class probabilities using CVAP, Vovk et

al. [141] propose to use minimax method to merge K multiprobability predictions com-

puted byK IVAP. For the Log-loss, themultiprobability prediction forCVAP is an interval

(1−GM(1− p0), GM(p1)) obtained by computing geometric means of multiprobability
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predictions arising out of repeated application of IVAP toK folds (GM(p1) is the geomet-

ric mean of p11, . . . , pK1 andGM(1−p0) is the geometric mean of 1−p10, . . . , 1−pK0 ). For the

Brier loss, themerged probability is given by formula p = 1
K

∑K
k=1

(
pk1 +

1
2(p

k
0)

2 − 1
2(p

k
1)

2
)
.

The minimax method can also be applied to IVAP to obtain single probability predic-

tion by combining multi-probability prediction as follows: p := p1/(1−p0+p1) (see Vovk

et al. [141] for more details).

3.4 Experiments on multi-class data sets

We present the experimental results using several multi-class data sets: waveform,

iris and abalone from the UCI Machine Learning Repository [33], satimage and

vehicle silhouettes from the Statlog collection [90], balance-scale, pasture and eye

movements from [132]. To measure the quality of probabilistic predictions and calibrators

we follow Gneiting et al. [40] and use the proper scoring rules - the Log loss 1.2.3 and the

Brier loss 1.2.4 (see Section 1.2.1 of Chapter 1 for more details).

In both cases p is the vector of class probabilities and y is the vector of true labels

one-hot encoded across the K classes. Both the Log loss and the Brier loss are computed

by taking arithmetic mean of the respective losses on the individual objects from the test

dataset. One advantage of the Brier loss is that it is still possible to compare quality of pre-

dictions in cases where a prediction algorithm produces infinite Log loss. In this section

we compare the performance of IVAP and CVAP with that of Platt’s scaling [109] and the

isotonic regression [153].

For all experiments, we use the same underlying algorithms: Naïve Bayes, KNN,

Support-vector machine (SVM), the logistic regression, simple neural network, Random

Forest, LightGBM, XGBoost, CatBoost and Ada Boost. With the exception of LightGBM

[58], XGBoost [20], CatBoost [32], all the other algorithms are available in Scikit-learn

[11]. All the underlying classifiers have been used with the default parameters. The

underlying algorithms output binary classification scores which are then calibrated by

applying Platt’s scaling, isotonic regression, IVAP and CVAP. We have used implementa-

tions of Platt’s scaling and the isotonic regression from Scikit-learn [11].
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To obtain pairwise classification scores, we run the ten underlying machine learning

algorithms: Naïve Bayes, KNN, Support-vector machine (SVM), the logistic regression,

simple neural network, Random Forest, LightGBM, XGBoost, CatBoost and Ada Boost.

We then apply the PKPD (method described in 3.1) to convert pairwise classification

scores into calibrated multi-class probabilities.

We use OpenML [132] to access all the datasets to ensure consistency and re-

producibility of the experiments: waveform (ID:60), satimage (ID:182), vehicle

silhouettes (ID:54), iris(ID:61), abalone (ID:1557, balance-scale (ID:11), eye

movements (ID:1044) and pasture (ID:462).

From each dataset, three datasets were created. We use scikit-learn functionality to

create test set using 20% of all data, and use the remaining training set to create calibration

set equal in length to the test set. The remaining data is used for proper training set used

to train underlying classifiers. To ensure reproducibility we use random seed of 42 and

default values in scikit-learn across all experiments.

The data sets and the results of the experiments are described below.

3.4.1 Waveform data set

Waveform is an artificial data set [33] containing three different classes of waves with a

total of 5,000 instances and 40 attributes. Each class is generated by combining two or

three base waves and adding noise to each attribute. The waveform dataset is balanced

with about one third of objects in each of the three classes.

We split the waveform dataset as described in section 3.4 into the training set of 4,000

observations) and the test set (1000 observations). We further split the training set into the

proper training set and the calibration set equal in length to the test set. This split results

in 3,000 objects allocated to the proper training set and 1,000 objects in both calibration

and test set each. Tables 3.1 and 3.2 refer to the results of experiments.

Based on the Log loss, using CVAP to calibrate pairwise classification scores, results in

performance improvements for seven out of the ten classifiers. Whilst isotonic regression

improves calibration for KNN and neural network and Platt’s scaler improves calibration

for Random Forest, CVAP delivers the best overall improvement in calibration for four out
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TABLE 3.1: The Log loss for the waverfont data set

no calibration sigmoid isotonic ivap cvap
Naïve Bayes 0.5096 0.2756 0.3189 0.2279 0.2267
KNN 0.4759 0.2686 0.2655 0.3644 0.3506
Support Vector Machine 0.1881 0.1927 0.2536 0.1985 0.1914
logistic regression 0.1963 0.1987 0.2576 0.2052 0.2037
neural network 0.4172 0.3601 0.3333 0.4036 0.3925
Random Forest 0.2491 0.2002 0.2192 0.2066 0.2054
LightGBM 0.2377 0.2534 0.2331 0.2199 0.2080
XGBoost 0.2657 0.2510 0.2319 0.2189 0.2103
CatBoost 0.1948 0.2308 0.2246 0.2158 0.2013
Ada Boost 0.5808 0.2447 0.3360 0.2498 0.2278

TABLE 3.2: The Brier loss for the waveform data set

no calibration sigmoid isotonic ivap cvap
Naïve Bayes 0.1114 0.0847 0.0689 0.0698 0.0694
KNN 0.0826 0.0843 0.0849 0.1080 0.1024
Support Vector Machine 0.0586 0.0595 0.0605 0.0603 0.0577
logistic regression 0.0605 0.0610 0.0616 0.0617 0.0611
neural network 0.1063 0.1136 0.1075 0.1280 0.1247
Random Forest 0.0741 0.0631 0.0626 0.0639 0.0621
LightGBM 0.0719 0.0751 0.0683 0.0683 0.0639
XGBoost 0.0752 0.0738 0.0681 0.0679 0.0645
CatBoost 0.0626 0.0695 0.0660 0.0665 0.0610
Ada Boost 0.1975 0.0766 0.0764 0.0771 0.0692
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TABLE 3.3: The Log loss for the satimage data set

sigmoid isotonic ivap cvap
Naïve Bayes 1.0158 0.1651 0.1627 0.1555 0.1529
KNN 0.1849 0.0802 0.1140 0.2691 0.2717
Support Vector Machine 0.0740 0.0794 0.1403 0.0891 0.0907
logistic regression 0.0941 0.0990 0.1409 0.1064 0.1050
neural network 0.1035 0.0923 0.1139 0.1801 0.1766
Random Forest 0.0748 0.0768 0.1331 0.0947 0.0948
LightGBM 0.0732 0.0806 0.1153 0.0787 0.0775
XGBoost 0.0709 0.0845 0.1180 0.0832 0.0800
CatBoost 0.0639 0.0785 0.1373 0.0824 0.0812
Ada Boost 0.3098 0.0914 0.1494 0.0933 0.0915

ten classifers: Naïve Bayes, LightGBM, XGBoost and Ada Boost. Based on the Brier loss,

using CVAP to calibrate pairwise classification scores results in performance improve-

ments for seven out of the ten classifiers. Whilst isotonic regression improves calibration

for Naïve Bayes, CVAP delivers the best overall improvement in calibration for five out

ten classifers: Support Vector Machine, LightGBM, XGBoost, CatBoost and Ada Boost.

3.4.2 Satimage data set

The satimage data set [33] contains images representing seven different classes of soil,

ranging from red or gray soil to soil containing crops such as cotton or vegetation stubble.

The data set was collected to predict the soil type from the new satellite images, given the

multi-spectral values. The number of attributes is 36 and the number of instances is 6 435.

Tables 3.3 and 3.4 refer to the results of experiments.

Based on the Log loss, using CVAP to calibrate pairwise classification scores, results in

significant performance improvement for Naïve Bayes and also Ada Boost. Platt’s scaler

provides significant improvement for KNN and neural network, whilst for other under-

lying classifiers no significant improvement in calibration occurs by using any of the four

considered calibration methods. The situation is similar when using Brier loss — most

underlying algorithms do not see improvement from additional calibration.

Based on the Brier loss, using CVAP to calibrate pairwise classification scores results in

performance improvements for for Naïve Bayes, Support-Vector Machine and also neural
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TABLE 3.4: The Brier loss for the satimage data set

sigmoid isotonic ivap cvap
Naïve Bayes 0.0617 0.0478 0.0434 0.0445 0.0431
KNN 0.0211 0.0227 0.0223 0.0785 0.0784
Support Vector Machine 0.0215 0.0226 0.0231 0.0240 0.0237
logistic regression 0.0291 0.0300 0.0299 0.0303 0.0297
neural network 0.0233 0.0244 0.0232 0.0464 0.0446
Random Forest 0.0213 0.0218 0.0226 0.0238 0.0228
LightGBM 0.0195 0.0214 0.0199 0.0210 0.0198
XGBoost 0.0186 0.0226 0.0219 0.0224 0.0205
CatBoost 0.0190 0.0217 0.0211 0.0220 0.0209
Ada Boost 0.0933 0.0268 0.0253 0.0256 0.0245

network.

3.4.3 Vehicle silhouettes data set

Vehicle silhouettes data set from the Statlog collection [33] was designed to find a

method of distinguishing between 3D objects within a 2D image by application of an en-

semble of shape feature extractors to the 2D silhouettes of the objects. Four Corgie model

vehicles were used: Chevrolet van, SAAB 9000, double-decker bus and Opel Manta 400.

This particular combination of vehicles was chosen with the expectation that buses, vans

and either one of the car types would be readily distinguishable, but it would be more

difficult to distinguish between the two car classes. The data set contains 946 instances

and 18 attributes. We run the same underlying algorithms and calibration methods as for

all the previous data sets. Tables 3.5 and 3.6 refer to the results of experiments.

Based on the Log loss, using CVAP to calibrate pairwise classification scores, results

in significant performance improvement for Naïve Bayes and also neural network. Platt’s

scaler provides significant improvement for KNN and isotonic regression for Ada Boost.

CVAP provides significant improvement for Naïve Bayes, KNN, neural network, XGBoost

and Ada Boost.
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TABLE 3.5: The Log loss for the vehicle data set

sigmoid isotonic ivap cvap
Naïve Bayes 1.1130 0.4949 0.7742 0.4738 0.4465
KNN 0.7008 0.3695 0.8102 0.4382 0.4051
Support Vector Machine 0.4350 0.4707 0.8722 0.4552 0.4370
logistic regression 0.1835 0.2224 0.6953 0.2328 0.2316
neural network 0.5645 0.5790 0.5791 0.5693 0.5634
Random Forest 0.2293 0.2249 0.6256 0.2530 0.2474
LightGBM 0.2142 0.2319 0.5319 0.2451 0.2455
XGBoost 0.2672 0.2367 0.4394 0.2528 0.2490
CatBoost 0.2505 0.2316 0.5384 0.2550 0.2517
Ada Boost 0.4547 0.2438 0.2034 0.2579 0.2483

TABLE 3.6: The Brier loss for the vehicle data set

sigmoid isotonic ivap cvap
Naïve Bayes 0.2137 0.1629 0.1628 0.1566 0.1457
KNN 0.1135 0.1162 0.1160 0.1414 0.1280
Support Vector Machine 0.1437 0.1566 0.1552 0.1511 0.1434
logistic regression 0.0590 0.0674 0.0616 0.0683 0.0678
neural network 0.1883 0.1937 0.1937 0.1901 0.1879
Random Forest 0.0737 0.0705 0.0703 0.0755 0.0739
LightGBM 0.0727 0.0729 0.0712 0.0738 0.0740
XGBoost 0.0856 0.0753 0.0719 0.0762 0.0753
CatBoost 0.0746 0.0723 0.0727 0.0770 0.0752
Ada Boost 0.1465 0.0759 0.0668 0.0769 0.0730
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TABLE 3.7: The Log loss for the balance scale data set

sigmoid isotonic ivap cvap
Naïve Bayes 0.2964 0.2573 0.5345 0.2896 0.2291
KNN 0.9938 0.2953 0.3743 0.3998 0.3657
Support Vector Machine 0.1539 0.2190 2.3633 0.2373 0.2106
logistic regression 0.1761 0.2025 0.3493 0.2416 0.2118
neural network 0.2173 0.2047 0.5427 0.2657 0.2765
Random Forest 0.2763 0.3157 1.3064 0.3216 0.2910
LightGBM 0.2092 0.2986 2.4583 0.3091 0.2554
XGBoost 0.1808 0.2902 1.0373 0.2699 0.2250
CatBoost 0.2717 0.2636 2.0713 0.2850 0.2399
Ada Boost 0.5842 0.1352 1.1294 0.1388 0.1512

TABLE 3.8: The Brier loss for the balance scale data set

sigmoid isotonic ivap cvap
Naïve Bayes 0.0823 0.0771 0.0967 0.0876 0.0618
KNN 0.0756 0.0867 0.0868 0.1196 0.1030
Support Vector Machine 0.0468 0.0708 0.0862 0.0707 0.0578
logistic regression 0.0529 0.0611 0.0570 0.0689 0.0569
neural network 0.0547 0.0575 0.0616 0.0712 0.0720
Random Forest 0.0822 0.0961 0.1017 0.0967 0.0815
LightGBM 0.0615 0.0900 0.1185 0.0944 0.0699
XGBoost 0.0587 0.0830 0.0931 0.0817 0.0614
CatBoost 0.0722 0.0809 0.1008 0.0851 0.0654
Ada Boost 0.1988 0.0397 0.0405 0.0351 0.0347

3.4.4 Balance scale data set

Balance scale is a synthetic data set generated to model psychological experimental re-

sults. Each object is classified as having the balance scale tip to the right, tip to the left,

or be balanced. The attributes are the left weight, the left distance, the right weight, and

the right distance [33]. The data set contains 625 distinct values, 4 features and 3 classes.

Tables 3.7 and 3.8 refer to the results of the experiments.

Based on the Log loss, using CVAP to calibrate pairwise classification scores results

in significant performance improvement for Naïve Bayes and also CatBoost. Platt’s scaler

provides improvement for KNN, neural network and Ada Boost. CVAP provides signifi-

cant improvement for Naïve Bayes, KNN, neural netrowk, XGBoost and Ada Boost.
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TABLE 3.9: The Log loss for the eye movement data set

sigmoid isotonic ivap cvap
Naïve Bayes 1.2293 0.6141 0.6360 0.6025 0.6015
KNN 1.5009 0.5810 0.5796 0.5853 0.5832
Support Vector Machine 0.6004 0.6031 0.6027 0.5912 0.5900
logistic regression 0.5788 0.5799 0.6046 0.5758 0.5728
neural network 0.6316 0.6316 0.6446 0.6306 0.6311
Random Forest 0.4705 0.4490 0.5055 0.4506 0.4393
LightGBM 0.3996 0.4164 0.4364 0.4162 0.3965
XGBoost 0.3823 0.4197 0.4390 0.4181 0.3850
CatBoost 0.4031 0.4208 0.4675 0.4220 0.4078
Ada Boost 0.6279 0.5208 0.5362 0.5151 0.5063

TABLE 3.10: The Brier loss for the eye movement data set

sigmoid isotonic ivap cvap
Naïve Bayes 0.2560 0.2127 0.2083 0.2081 0.2077
KNN 0.2136 0.1996 0.1991 0.2008 0.2000
Support Vector Machine 0.2067 0.2072 0.2040 0.2037 0.2033
logistic regression 0.1973 0.1978 0.1972 0.1971 0.1959
neural network 0.2196 0.2195 0.2195 0.2196 0.2199
Random Forest 0.1518 0.1468 0.1470 0.1472 0.1431
LightGBM 0.1294 0.1358 0.1359 0.1362 0.1287
XGBoost 0.1237 0.1359 0.1363 0.1364 0.1236
CatBoost 0.1304 0.1373 0.1384 0.1384 0.1329
Ada Boost 0.2184 0.1757 0.1744 0.1746 0.1709

Based on the Brier loss, using CVAP improves to calibrate pairwise classification

scores, results in calibration improvements for Naïve Bayes, Random Forest, CatBoost

and Ada Boost.

3.4.5 Eye movement data set

The Eye movement data set is from the “Inferring relevance from eye movements” chal-

lenge [116]. The objective of the challenge was to predict, based on eye movement data,

whether a reader finds a text relevant. The data set contains 10/, 936 distinct values and

22 features.Tables 3.9 and 3.10 refer to the results of the experiments.
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TABLE 3.11: The Log loss for the pasture data set

sigmoid isotonic ivap cvap
Naive Bayes 4.1875 0.4446 6.5789 0.4898 0.5215
KNN 0.4272 0.5852 3.7178 0.5654 0.5684
Support Vector Machine 0.4830 0.9266 6.5789 0.5188 0.5621
logistic regression 6.6237 0.7512 10.0278 0.5879 0.5813
neural network 0.6583 0.6981 0.7352 0.6635 0.6438
Random Forest 0.4217 0.3991 0.2978 0.5301 0.4955
LightGBM 0.6583 0.6981 0.7352 0.6635 0.6438
XGBoost 0.3724 0.4631 3.3375 0.6231 0.6214
CatBoost 0.4200 0.4638 3.3498 0.5006 0.4900
Ada Boost 1.1328 0.4297 3.2894 0.6230 0.6312

Based on the Log loss, using CVAP to calibrate pairwise classification scores, results

in performance improvements for eight out of the ten classifiers. Whilst isotonic regres-

sion delivers the best calibration result for KNN, IVAP is the best calibration approach

for neural network and CVAP delivers the best overall improvement in calibration for the

remaining eight out of ten classifiers.

Based on the Brier loss, using CVAP to calibrate pairwise classification scores, results

in the best performance improvements for seven out of the ten classifiers. Whilst isotonic

regression delivers the best calibration result for KNN and neural network, CVAP delivers

the best overall improvement in calibration for the seven out of ten classifiers.

3.4.6 Pasture data set

The objective of the datasetwas to predict pasture production fromavariety of biophysical

factors [132]. The dataset contains vegetation and soil variables from areas of grazed

North Island hill countrywith different variables selected as potentially useful biophysical

indicators. Tables 3.11 and 3.12 refer to the results of the experiments.

Based on the Log loss, whilst isotonic regression delivers the best calibration result

for Random Forest, CVAP is the best calibration approach for neural network and CVAP

delivers the best overall improvement in calibration for logistic regression, neural network

and LightGBM.
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TABLE 3.12: The Brier loss for the pasture data set

sigmoid isotonic ivap cvap
Naive Bayes 0.1905 0.1435 0.1905 0.1594 0.1704
KNN 0.1500 0.2112 0.2573 0.1931 0.1923
Support Vector Machine 0.1633 0.1955 0.1905 0.1706 0.1891
logistic regression 0.3786 0.2588 0.3452 0.2062 0.1999
neural network 0.2320 0.2466 0.2585 0.2336 0.2255
Random Forest 0.1273 0.1241 0.1080 0.1761 0.1595
LightGBM 0.2320 0.2466 0.2585 0.2336 0.2255
XGBoost 0.1018 0.1478 0.1036 0.2156 0.2151
CatBoost 0.1286 0.1488 0.1108 0.1626 0.1569
Ada Boost 0.0952 0.1325 0.0952 0.2164 0.2197

TABLE 3.13: The Log loss for the abalone data set

sigmoid isotonic ivap cvap
Naive Bayes 1.0651 0.5350 0.5877 0.5053 0.5026
KNN 1.4360 0.4756 0.4707 0.5008 0.4929
Support Vector Machine 0.4631 0.4728 0.5503 0.4669 0.4604
regression 0.4774 0.4777 0.5625 0.4798 0.4773
neural network 0.4524 0.4601 0.4999 0.4546 0.4525
Random Forest 0.4454 0.4527 0.5316 0.4514 0.4450
LightGBM 0.4726 0.4715 0.5701 0.4653 0.4499
XGBoost 0.5015 0.4712 0.5110 0.4641 0.4458
CatBoost 0.4423 0.4520 0.5845 0.4480 0.4433
Ada Boost 0.6075 0.4977 0.5625 0.4787 0.4598

Based on the Brier loss, using CVAP to calibrate pairwise classification scores, results

in the best performance improvements for seven out of the ten classifiers. Whilst isotonic

regression delivers the best calibration result for KNN and neural network, CVAP delivers

the best overall improvement in calibration for the seven out of ten classifiers.

3.4.7 Abalone data set

Abalone data set was created to facilitate predicting the age of abalone from physical mea-

surements [34]. Tables 3.13 and 3.14 refer to the results of the experiments.
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TABLE 3.14: The Brier loss for the abalone data set

sigmoid isotonic ivap cvap
Naive Bayes 0.2187 0.1792 0.1701 0.1704 0.1696
KNN 0.1656 0.1570 0.1553 0.1647 0.1614
Support Vector Machine 0.1528 0.1565 0.1560 0.1560 0.1530
logistic regression 0.1590 0.1596 0.1603 0.1602 0.1594
neural network 0.1500 0.1515 0.1505 0.1508 0.1505
Random Forest 0.1481 0.1487 0.1481 0.1488 0.1467
LightGBM 0.1556 0.1555 0.1541 0.1544 0.1490
XGBoost 0.1630 0.1551 0.1538 0.1538 0.1471
CatBoost 0.1469 0.1485 0.1488 0.1482 0.1465
Ada Boost 0.2093 0.1626 0.1598 0.1595 0.1526

Based on the Log loss, usingCVAP results in the best results for seven out of ten under-

lying classifiers, including Naïve Bayes, SVMs, logistic regression, Random Forest, Light-

GBM, XGBoost and Ada Boost.

Similar performance improvements are observed using the Brier loss, using CVAP to

calibrate pairwise classification scores results in performance improvements for six out of

the ten classifiers.

3.5 Conclusion

Machine learning has made a remarkable progress. A number of classical machine learn-

ing methods such as boosted trees, random forest and support vector machines demon-

strate excellent performance exceeding the performance of earlier classical machine learn-

ing algorithms such as K-means or the logistic regression. Calibration of classification

scores using traditional calibration methods such as Platt’s scaling or the isotonic regres-

sion can improve the performance of the underlying algorithms.

More recently, a growing body of research demonstrated that modern deep neural

networks are no longer well calibrated (see, e.g., [44], [89], [94], [105]). Whilst very

large deep computer vision models such as ResNet [45] are much more accurate than

previous classical architectures such as LeNet [77], such modern deep neural networks

architectures become significantly miscalibrated even as classification accuracy continues
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to improve. As demonstrated in Guo et al. [44] recent advances in deep learning such as

model capacity, batch normalization, weight decay have strong negative effects on net-

work calibration.

Whilst the earlier publications considered traditional neural networks well-calibrated

[17], recent research has demonstrated [57] that both single neural network and ensem-

bles of traditional neural networks are often poorly calibrated [57].

The calibration of both classical machine learning algorithms, neural and deep neural

networks is becoming increasing important, especially in many real-world application

such as healthcare [105] and self-driving cars [94]. In such critical applications obtaining

accurate class probabilities significantly affects decision-making, such as whether to stop

a self-driving car when the algorithm is unsure about its prediction about whether there

is a pedestrian on the road [94].

The main contribution of this chapter is the empirical study of the performance of two

computationally efficient calibration algorithms IVAP and CVAP in the multi-class clas-

sification setting. Multi-class probabilistic predictors based on IVAP and CVAP perform

well, improving calibration in general and often resulting in performance improvements

in comparison with the results obtained from using Platt’s scaling and isotonic regres-

sion. The improvements in performance in comparison with the results produced by the

underlying algorithms in multi-class classification problems are comparable to improve-

ments reported for binary classification problems (see, e.g., Vovk et al. [141] and Pereira

et al. [105]). The proposed multi-class predictors improve calibration for most classifiers

and depending on the data set are often more experimentally accurate than classical cali-

bration methods such as Platt’s scaler and isotonic regression.
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Chapter 4

Probabilistic regression

This chapter focuses on the study of probabilistic regression and applies conformal prediction to

derive predictive distribution functions that are valid under a non-parametric assumption.

4.1 Introduction

Chapter 3 introduced a new method of probabilistic prediction in the multi-class classi-

fication setting. In this and further chapters (Chapters 4–6), the focus is on probabilistic

prediction for machine learning regression problems. We introduce and develop non-

parametric approach to predictive distribution functions using conformal prediction. This

approach results in predictive distribution functions that are always valid for general ma-

chine learning assumption (IID observations) in terms of guaranteed coverage. We de-

fine predictive distribution functions in line with definitions and terminology in Shen et

al. [121] and Schweder et al. [117].

In statistics, the theory of predictive distributions (see, e.g., [117], [121]) is based on

the assumption that samples are generated from a parametric model. Our novel contri-

bution extends statistical “predictive confidence distributions” in terms of their ability

to generate probabilistic predictions using only limited assumptions customary of ma-

chine learning— namely that the observations are generated using the IIDmodel. Unlike

in the parametric approach of statistical predictive distributions, our novel approach is

completely data-driven non-parametric approach that does not require specification of

the data model.



72 Chapter 4. Probabilistic regression

Our approach generalizes the classical Dempster-Hill procedure (further formally de-

fined in Section 4.8). Predictive distributions are briefly reviewed in 4.2, for a more de-

tailed review of predictive distributions, we refer the reader to [73].

4.2 Predictive distributions

Lawless and Fredette [73] consider the general parametric prediction framework based

on the family of models:

F (y | x; θ) = P(Y ⩽ y | X = x; θ) (4.1)

Where following our terminology Y and X represent sets of objects and labels accord-

ingly. In this parametric approach, the distribution function F is specified by the pa-

rameter vector θ. Given the rather general model specification, X can specify both cross-

sectional and time-series data. If θ is known, it fully quantifies cumulative predictive dis-

tribution of Y allowing to make probabilistic statements about Y given X. If θ is unknown,

it must be estimated from the data.

Definition 4.2.1 (Coverage Probability). Coverage probability is defined as:

CP (θ) = P({L1(X) ⩽ Y ⩽ L2(X); θ})

Prediction intervals have well defined frequentist probability interpretation [73]. In

this and further chapters (Chapters 4–6), the focus is on probabilistic prediction for ma-

chine learning regression tasks using frequentist methods.

Lawless and Fredette [73] provided a unified treatment for both frequentist prediction

intervals and predictive distributions by developing a definition of a predictive distribu-

tion as a confidence distribution, as well as outlining the method of obtaining predic-

tive distributions using pivotal quantiles, the method they have referred to as the pivotal

method. The benefits of such an approach include obtaining prediction intervals and pre-

dictive distributions that are both well-calibrated and have clear frequentist probability

interpretations. Such predictive distributions can be generated efficiently and “possess
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good properties when considered as estimators of the true distributions of Y given X”

[73].

Shen et al. [121] further develop the approach in Lawless and Fredette [73] by defining

a general approach for constructing predictive distribution of Y using a confidence distri-

bution of the unknown parameter θ as follows (whereH (θ;y) is a confidence distribution

for θ derived from the training set):

Q(z1, . . . , zn, (xn+1, y)) =

∫
θ∈Θ

Fθ (y) dH (θ;y)

4.3 Predictive distribution functions

Many probabilistic regression applications require prediction of the label yn+1 (we use y

and yn+1 interchangeably to describe the label of the (n+1)st observation) given a training

sequence of observations zi = (xi, yi), i = 1, . . . , n and a new test object xn+1 ∈ Rp. Given

the rather general model specification, X covers both regression problems with objects x

from the set X containing explanatory variables for labels y from the set Y, as well as time-

series problems with objects x containing previous history and time-series based features

of the label y.

We consider the regression problem with p attributes. Objects x, where x ∈ Rp, and

labels y, where y ∈ R, are IID observations zi = (zi, yi) from the observation space Z (Z ∈

Rp+1 = Rp × R). The regression task is to predict yn+1, given a training sequence of

observations zi = (zi, yi) and a new test object xn+1 ∈ R.

4.4 Randomized and conformal predictive distributions

The statistical predictive distributions in [73] and [121] rely on parametric models. In this

chapterwe use conformal prediction framework to develop novelmethods of constructing

predictive distributions for the general non-parametric case. We initially define distribu-

tion functions following Shen et al. [121, Definition 1], but allowing for randomization.
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Randomization is an inherent feature of conformal predictive distributions (CPDs), how-

ever in practice they are affected little by it. Let U be the uniform probability measure on

the interval [0, 1].

Definition 4.4.1 (Randomized Predictive System). A function Q : (Rp+1)n+1 × [0, 1] →

[0, 1] is called a randomized predictive system (RPS) if it satisfies the following three require-

ments:

R1a For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ Rp, the

function Q(z1, . . . , zn, (xn+1, y), τ) is monotonically increasing both in y ∈ R and

in τ ∈ [0, 1] (where “monotonically increasing” is understood in the wide sense

allowing for intervals of constancy). In other words, for each τ ∈ [0, 1], the function

y ∈ R 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing, and for each y ∈ R, the function

τ ∈ [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing.

R1b For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ Rp,

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0 (4.2)

and

lim
y→∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 As the function of random training observations z1 ∼ P ,…, zn ∼ P , a random test

observation zn+1 ∼ P , and a random number τ ∼ U , all assumed independent, the

distribution of Q is uniform:

∀α ∈ [0, 1] : P {Q(z1, . . . , zn, zn+1, τ) ≤ α} = α.
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The output of the randomized predictive system Q on a training sequence z1, . . . , zn

and a test object xn+1 is the function

Qn : (y, τ) ∈ R× [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ), (4.3)

which will be called the randomized predictive distribution (function) (RPD). The thickness

of an RPD Qn is the infimum of the numbers ϵ ≥ 0 such that the diameter

Qn(y, 1)−Qn(y, 0) (4.4)

of the set

{Qn(y, τ) | τ ∈ [0, 1]} (4.5)

is at most ϵ for all y ∈ R except for finitely many values. The exception size of Qn is the

cardinality of the set of y for which the diameter (4.4) exceeds the thickness ofQn. Notice

that a priori the exception size can be infinite [146]. Of primary interest are RPDs of thick-

ness 1
n+1 everywhere but at most n points on axis y, where n is the size of the training set

with Q(z1, . . . , zn, zn+1, τ) being a continuous function of τ . The set (4.5) will therefore

be a closed interval in [0, 1].

Four examples of predictive distributions are shown in Figure 4.1 below as shaded

areas. The length of the training sequence for these plots is n = 10 (see Section 4.9 for

details). The plots are examples of instance of Q10, such instance has the width 1/11

everywhere but 10 points on axis y. The width is given by the width of the interval

[Q(y, 0), Q(y, 1)], where Q := Q10.

In conformal prediction, the starting point is the definition and choice of the confor-

mity measure, we start by defining the conformity measure.

Definition 4.4.2 (Conformity measure). The conformity measure is a measurable func-

tion A : (Rp+1)n+1 → R that is invariant with respect to permutations of the first n obser-

vations: for any sequence (z1, . . . , zn) ∈ (Rp+1)n, any zn+1 ∈ Rp+1, and any permutation

π of {1, . . . , n},

A(z1, . . . , zn, zn+1) = A
(
zπ(1), . . . , zπ(n), zn+1

)
.
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FIGURE 4.1: Examples of true predictive distribution functions (black), their
conformal estimates (represented by the shaded areas), and the distribu-
tion functions output by simplified Oracle I (red) and Oracle II (blue) for a
tiny training sequence (of length 10 with two attributes, the first one being
the dummy all-1 attribute); in black andwhite, the true predictive distribu-
tion functions are the thick lines, and Oracle I is always farther from them

in the uniform metric than Oracle II is

Function A measures how large the label yn+1 in zn+1 is, based on seeing the obser-

vations z1, . . . , zn and the object xn+1 of zn+1. A simple example of conformity measure

is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (4.6)

Where ŷn+1 is the prediction for yn+1 computed from xn+1 and z1, . . . , zn as training se-

quence.
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Definition 4.4.3 (Conformity score). The conformity score αy
i is defined by

αy
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,

αy
n+1 := A(z1, . . . , zn, (xn+1, y)). (4.7)

Having given the definitions of conformity measure 4.4.2 and conformity score 4.4.3

we can proceed to define the conformal transducer as follows:

Definition 4.4.4 (Conformal transducer). The conformal transducer determined by a con-

formity measure A is

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n+ 1

∣∣{i = 1, . . . , n+ 1 | αy
i < αy

n+1

}∣∣
+

τ

n+ 1

∣∣{i = 1, . . . , n+ 1 | αy
i = αy

n+1

}∣∣ , (4.8)

A function is a conformal transducer if it is the conformal transducer determined by

some conformity measure [143].

Definition 4.4.5 (Conformal predictive system). Conformal predictive system (CPS) is a

function which is both a conformal transducer and a randomized predictive system.

Definition 4.4.6 (Conformal predictive distribution). Conformal predictive distribution

(CPD) is a function Qn defined by (4.3) for a conformal predictive system Q.

Definition 4.4.7 (Conformal predictor). Any conformal transducer Q and Borel set A ⊆

[0, 1] defines the Conformal predictor:

ΓA(z1, . . . , zn, xn+1, τ) := {y ∈ R | Q(z1, . . . , zn, (xn+1, y), τ) ∈ A} .

Conformal transducers possess the standard property of validity - the values Q are

distributed uniformly on [0, 1] under the assumption that z1, . . . , zn+1 are IID and τ is

generated from the uniform probability distribution U on [0, 1] and independently of

z1, . . . , zn+1 from the uniform probability distribution U on [0, 1] (see [137, Proposi-

tion 2.8]). This property of conformal transducers is equivalent to the requirement R2

in the definition 4.4.1 of a randomized predictive system (RPS) and ensures validity.
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In conformal prediction, the customary interpretation of (4.8) is that it is a random-

ized p-value for testing the null hypothesis of the observations being IID. In the case of

conformal predictive distributions the situation is slightly different — the informal al-

ternative H1 hypothesis is that yn+1 = y is smaller than expected under the IID model.

Under such alternative hypothesis the (4.8) can be interpreted as a degree of conformity

of the observation (xn+1, yn+1) to the remaining observations. One should note, that with

the one-sided nature of this notion of conformity a label y can only be non-conforming

if it is too small. A large label is never non-conforming (“strange”). Whilst such notion

of conformity using a label can only be strange (non-conforming) if it is too small, large

value of label is never strange. This notion of conformity specified by conformitymeasure

(4.10) is somewhat counterintuitive, and will only be used as a technical tool.

4.5 Monotonic conformity measures

To understand properties of conformal predictive distributions, we first exploremonotonic

conformity measures that are defined as follows:

Definition 4.5.1 (Monotonic conformitymeasures). A conformitymeasureA ismonotonic

if A(z1, . . . , zn+1) if it is either monotonically increasing in yn+1,

yn+1 ≤ y′n+1 =⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≤ A(z1, . . . , zn, (xn+1, y
′
n+1));

or monotonically decreasing in y1,

yn+1 ≤ y′n+1 =⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≥ A(z1, . . . , zn, (xn+1, y
′
n+1)); (4.9)

Conformal predictive distributions definedusingmonotonic conformitymeasures sat-

isfy condition R1a of the definition 4.4.1 by Lemma 1 below. An simple example of a

monotonic conformity measure is:

A(z1, . . . , zm, (x, y)) := y − ŷ (4.10)
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Where ŷn+1 is produced by the K-nearest neighbours regression algorithm with value of

ŷn+1 calculated as the average value of labels of the K nearest neighbours of xn+1 (here

y(1), . . . , y(n) is the sequence y1, . . . , yn sorted in the order of increasing distances between

xi and xn+1):

ŷn+1 :=
1

K

K∑
k=1

y(k) (4.11)

In the case of ŷn+1 defined by 4.11, the conformity measure is not only monotonically

increasing but satisfies additionally the following condition:

lim
y→±∞

A(z1, . . . , zn, (xn, y)) = ±∞

The conformal transducer defined using conformitymeasure (4.10)where ŷn+1 is defined

using 4.11 therefore also satisfies conditionR1b of the definition and so is both a random-

ized predictive system (RPS) and a conformal predictive system (CPS).

Criterion of being a CPS

Unfortunately, many important conformity measures are not monotonic, and the next

lemma introduces a weaker sufficient condition for a conformal transducer to be an RPS.

Lemma 1. The conformal transducer determined by a conformity measure A satisfies condition

R1a if, for each i ∈ {1, . . . , n}, each training sequence (z1, . . . , zn) ∈ (Rp+1)n, and each test

object xn+1 ∈ Rp, αy
n+1 − αy

i is a monotonically increasing function of y ∈ R (in the notation

of (4.7)).

We can strengthen the conclusion of the lemma to the conformal transducer deter-

mined by A being an RPS (and, therefore, a CPS) if, e.g.,

lim
y→±∞

(
αy
n+1 − αy

i

)
= ±∞.
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4.6 Least Squares Prediction Machine

In this section the Least Squares Prediction Machine (LSPM) is introduced. The LSPM

is similiar to the Ridge Regression Confidence Machine (RRCM) described in [137, Sec-

tion 2.3], with the key distinction that it produces predictive distribution functions rather

than prediction intervals.

Definition 4.6.1 (Ordinary LSPM). We define the ordinary LSPM as the conformal trans-

ducer with the conformity measure

A(z1, . . . , zn+1) := yn+1 − Êyn+1 (4.12)

Where yn+1 and Êyn+1 are the label and the prediction for yn+1 accordingly. The predic-

tion Êyn+1 is computed from the training sequence z1, . . . , zn+1 using the linear regression.

The important distinction of the LSPM from the ordinary linear regression is that in the

ordinary LSPM the training sequence z1, . . . , zn+1 includes zn+1.

The residual (4.12) in the definition 4.6.1 of the ordinary LSPM is the ordinary regres-

sion residual, however similar to how residuals are considered in statistics we consider

three kinds of LSPM — ordinary LSPM, deleted LSPM and studentized LSPM.

Definition 4.6.2 (Deleted LSPM). The deleted LSPM is defined using the conformitymea-

sure:

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (4.13)

The deleted LSPM differs from the ordinary LSPM in that Êyn+1 is replaced by the

prediction ŷn+1 for yn+1 computed using the ordinary linear regression (OLS) from xn+1

and z1, . . . , zn as training sequence.

Unlike the definition 4.6.1 of ordinary LSPM in the definition 4.6.2 of deleted LSPM

the training sequence does not include zn+1. The studentized LSPM is somewhat mid-

way between ordinary and deleted LSPM and is defined in 4.6.4. Both the ordinary and

deleted LSPM are not RPS, as their outputQn (see (4.3)) is not necessarily monotonically

increasing in y as required in R1a of the definition 4.4.1. Whilst this is unfortunate, below

we will show that this can happen only in the presence of high-leverage points.
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4.6.1 High leverage points

We denote by X̄ the data matrix that has dimensions of (n+1)×p, each row of the matrix

X̄ represents the ith object (note that the data matrix X̄ includes both the training set and

the test object as it has n+ 1 rows.

Definition 4.6.3 (The hat matrix). The hat matrix for the n + 1 observations z1, . . . , zn+1

is defined as:

H̄ = X̄(X̄ ′X̄)−1X̄ ′. (4.14)

We use h̄i,j to denote the elements of this hat matrix where i refers to the ith row

and j refers to the jth column. For the diagonal elements of the hat matrix we use the

shorthand expression h̄i. The following proposition can be derived from Lemma 1 in the

explicit form (analogous to Algorithm 1 below but using (4.23)) of the ordinary LSPM.

Proposition 1. The functionQn that is output by the ordinary LSPM(see (4.3)) is monotonically

increasing in y provided that h̄n+1 < 0.5.

The necessary condition for the Qn to be monotonically increasing, h̄n+1 < 0.5 de-

fines test object xn+1 as not a very influential point following the terminology in Chatterjee

and Hadi[18, Section 4.2.3.1]. The assumption of the test object xn+1 being not a very

influential point (h̄n+1 < 0.5) in Proposition 1 turns out to be essential:

Proposition 2. Proposition 1 ceases to be true if the constant 0.5 in it is replaced by a larger

constant.

The next two propositions demonstrate that for the case of deleted LSPM, defined by

(4.6.2), even stricter condition is required than for the ordinary LSPM: h̄i < 0.5 for all

i = 1, . . . , n.

Proposition 3. The function Qn that is output by the deleted LSPM according to (4.3) is mono-

tonically increasing in y provided thatmaxi=1,...,n h̄i < 0.5.

For the deleted LSPM the following analogue of Proposition 2 is as follows.

Proposition 4. Proposition 3 ceases to be true if the constant 0.5 in it is replaced by a larger

constant.
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Studentized LSPM

From the point of view of predictive distributions, the best choice is therefore studentized

LSPM.

Definition 4.6.4 (Studentized LSPM). The studentized LSPM is defined using the con-

formity measure:

A(z1, . . . , zn+1) =
yn+1 − Êyn+1√

1− h̄n+1

As deleted residuals yi − ŷi can be represented as (yi − Êyi)/(1 − h̄i), where ŷi is the

prediction for yi computed using z1, . . . , zi−1, zi+1, . . . , zn+1 as training sequence, the stu-

dentized LSPM is in a way a form of an intermediate residual between those residuals

in the definitions of the ordinary and deleted LSPM. An important advantage of studen-

tized LSPM is that no additional assumptions of low leverage are required to satisfy the

requirements of them being predictive distributions. Accordingly, the following proposi-

tion holds:

Proposition 5. The studentized LSPM is an RPS and, therefore, a CPS.

The studentized LSPM in an explicit form

Algorithms 1 and 2 derive two explicit forms for the studentized LSPM (Algorithms 1

and 2). The versions for the ordinary and deleted LSPM are similar, the explicit form is

given only for the ordinary version of the LSPM and is particularly intuitive. Predictive

distributions (4.3) are represented in the form:

Qn(y) := [Qn(y, 0), Qn(y, 1)]

The functionQn maps each potential label y ∈ R to a closed interval of R. In the ordinary

Least Squares regression, the vector (Êy1, . . . , Êyn+1)
′ of predictions can be represented as

the product of the hat matrix H̄ and the vector (y1, . . . , yn+1)
′ of labels. Therefore, we can

represent the studentized residuals as:

αy
n+1 − αy

i = Biy −Ai, i = 1, . . . , n, (4.15)
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Algorithm 1 Least Squares Prediction Machine
Require: A training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n.
Require: A test object xn+1 ∈ Rp.
1: Set X̄ to the data matrix for the given n+ 1 objects.
2: Define the hat matrix H̄ by (4.14).
3: for i ∈ {1, 2, . . . , n} do
4: Define Ai and Bi by (4.17) and (4.16), respectively.
5: Set Ci := Ai/Bi.
6: end for
7: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
8: Return the predictive distribution (4.18) for yn+1.

Where, following the notation of (4.7), y is the label of the (n+ 1)st object xn+1 and

Bi :=
»
1− h̄n+1 +

h̄i,n+1√
1− h̄i

, (4.16)

Ai =

∑n
j=1 h̄j,n+1yj√
1− h̄n+1

+
yi −

∑n
j=1 h̄i,jyj√
1− h̄i

(4.17)

All the Bi are assumed to be defined and positive. We further set Ci := Ai/Bi for all

i = 1, . . . , n and then sort all Ci in the increasing order to obtain the sequence be C(1) ≤

· · · ≤ C(n). Let C(0) := −∞ and C(n+1) := ∞. The predictive distribution is computed as:

Qn(y) :=


[ i
n+1 ,

i+1
n+1 ] if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

[ i
′−1
n+1 ,

i′′+1
n+1 ] if y = C(i) for i ∈ {1, . . . , n},

(4.18)

where i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}. From 4.18 it is clear that

the thickness of this CPD is 1
n+1 with the exception size equal to the number of distinct

Ci, at most n. The overall computation for the Least Square Prediction Machine (LSPM)

is described in the Algorithm 1, where the data matrix X̄ has x′i, i = 1, . . . , n+1, as its ith

row, the data matrix dimensions are (n+ 1)× p.

The assumed condition that all Bi are defined and positive, i = 1, . . . , n is satisfied

by using the result from [18, Property 2.6(b)]: h̄n+1 = 1 implies that h̄i,n+1 = 0 for

i = 1, . . . , n. Henceforth this condition is equivalent to h̄i < 1 for all i = 1, . . . , n + 1. By

[93, Lemma 2.1(iii)], this means that the rank of the extended data matrix X̄ is p and it

remains p after removal of any one of its n + 1 rows. If this condition is not satisfied, we
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define Qn(y) := [0, 1] for all y. This ensures that the studentized LSPM is a CPS.

The batch version of the studentized LSPM

When test set consists of a sequence of objects xn+1, . . . , xn+m (instead of just one test

object xn+1), a much more efficient implementation of the LSPM can be designed by pre-

computing the hat matrix for the training objects x1, . . . , xn, and then updating compu-

tations for each test object xn+j based on the results from Sherman-Morrison-Woodbury

theorem: see, e.g., Chatterjee and Hadi [18, p. 23, (2.18)–(2.18c)].

The computational update proceeds as follows. Let’s set

gi := x′i(X
′X)−1xn+1, i = 1, . . . , n+ 1. (4.19)

Where X is the data matrix for the the first n observations (matrix dimension is n × p,

denote its ith row as x′i, i = 1, . . . , n. Finally, letH be the corresponding hat matrix (n×n)

for the first n objects:

H := X(X ′X)−1X ′ (4.20)

With elements denoted hi,j and hi,i sometimes abbreviated to hi. The full hat matrix H̄ is

therefore larger than H , with the extra entries computed as follows:

h̄i,n+1 = h̄n+1,i =
gi

1 + gn+1
, i = 1, . . . , n+ 1. (4.21)

The remaining entries of H̄ are

h̄i,j = hi,j −
gigj

1 + gn+1
, i, j = 1, . . . , n. (4.22)

The overall algorithm for the Least Squares Prediction Machine (batch version) is sum-

marized as Algorithm 2.
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Algorithm 2 Least Squares Prediction Machine (batch version)
Require: A training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n.
Require: A test sequence xn+j ∈ Rp, j = 1, . . . ,m.
1: Set X to the data matrix for the n training objects.
2: Set H = (hi,j) to the hat matrix (4.20).
3: for j ∈ {1, 2, . . . ,m} do
4: Set xn+1 := xn+j .
5: Define an (n+ 1)× (n+ 1) matrix H̄ = (h̄i,j) by (4.21) and (4.22).
6: for i ∈ {1, 2, . . . , n} do
7: Define Ai and Bi by (4.17) and (4.16), respectively.
8: Set Ci := Ai/Bi.
9: end for

10: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
11: Return the predictive distribution (4.18) for the label of xn+j .
12: end for

The ordinary LSPM

A similar calculation demonstrates that the ordinary LSPM has an intuitive and efficient

representation (see, e.g., [12, Appendix A]):

Ci =
Ai

Bi
= ŷn+1 + (yi − ŷi)

1 + gn+1

1 + gi
, (4.23)

The Least Squares predictions for yn+1 and yi are ŷn+1 and ŷi, that are both computed from

the test objects xn+1 and xi, respectively and the observations z1, . . . , zn as the training

sequence.

The predictive distribution is defined by formula (4.18). the fraction 1+gn+1

1+gi
in (4.23)

is typically and asymptotically (at least under the assumptions A1–A4 stated in the next

section) close to 1, and can usually be ignored. The two other versions of the LSPM also

typically have

Ci ≈ ŷn+1 + (yi − ŷi). (4.24)

4.7 Validity of the LSPM in the online mode

Algorithm 1) outlined a procedure to compute “fuzzy” distribution function Qn based

on a training sequence zi = (xi, yi), i = 1, . . . , n, and a test object xn+1. We use notation
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Qn(y) to denote an interval andQn(y, τ) to denote a point inside that interval, as explained

previously.

In the online prediction mode, the computations proceed as follows:

Protocol 4.7.1. ONLINE MODE OF PREDICTION

Nature generates an observation z1 = (x1, y1) from a probability distribution P ;

for n = 1, 2, . . . do

Nature independently generates a new observation zn+1 = (xn+1, yn+1) from P ;

Forecaster announces Qn, a predictive distribution based on (z1, . . . , zn) and xn+1;

set pn := Qn(yn+1, τn), where τn ∼ U

end for

The “ground truth” distribution P and yn+1 are not available to the Forecaster when com-

puting Qn. We adapt condition R2 for the online mode by strengthening it as follows:

Theorem 1 ([137], Theorem 8.1). In the online mode of prediction (in which (zi, τi) ∼ P × U

are IID), the sequence (p1, p2, . . .) is IID and (p1, p2, . . .) ∼ U∞, provided that Forecaster uses

the studentized LSPM (or any other conformal transducer).

The property of validity asserted in Theorem 1 ismarginal, in thatwe do not assert that

the distribution of pn is uniform conditionally on xn+1. Conditional validity is attained

by the LSPM only asymptotically and under additional assumptions, as is demonstrated

in the the next section.

4.8 Asymptotic efficiency

In this section we outline some basic results about the LSPM’s efficiency. When standard

IID assumtpion holds, the nonparametric LSPM has a property of validity. It is natural

to pose the question about the cost of validity (in terms of potential loss in efficiency) in

situation when data distribution is parametric or even in ideal situation when Bayesian

assumptions also hold [146]. Such questionwas asked independently by Evgeny Burnaev

[13] and Larry Wasserman [79].

For our study of efficiency we will use the assumptions that are not in line with the

general IID model by assuming that strong parametric data generation process for the
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labels yi given the corresponding objects xi. In addition, we will also remove the assump-

tion of randomness for the objects x1, x2, . . . by instead allowing them to be fixed vector.

As it turns out, the twomain results of this section— Theorems 2 and 3— do not depend

on the assumptions of randomness and IID.

Given fixed objects, x1, x2, . . ., we assume that the labels y1, y2, . . . are generated using

the linear parametric model, with w being a vector parameter (w ∈ Rp) and ξi being IID

normally distributed (N(0, σ2))random variables:

yi = w′xi + ξi, (4.25)

This linear parametric model contains two parameters: vector w and positive number

σ. We form the training set from the first n elements of an otherwise infinite sequence of

observations (x1, y1), (x2, y2), . . .. To study efficiency asymptotically, we then let n → ∞.

To summarise all the assumptions required for the efficiency results:

A1 The sequence x1, x2, . . . is bounded: supi ‖xi‖ < ∞.

A2 The first component of each vector xi is 1.

A3 The empirical second-moment matrix has its smallest eigenvalue eventually bounded

away from 0:

lim inf
n→∞

λmin

(
1

n

n∑
i=1

xix
′
i

)
> 0,

where λmin stands for the smallest eigenvalue.

A4 The labels y1, y2, . . . are generated according to the linear model (4.25): yi = w′xi+ξi,

where ξi are independent Gaussian noise random variables distributed as N(0, σ2).

In our study of efficiency, we consider the three versions of the LSPM and also three

“oracles”. All of the three oracles know the data generation model (4.25). In addition

Oracle III has complete information about both parameters of the data generation model

(4.25) (both w and σ), Oracle II knows σ, but does not know w and finally Oracle I knows

neither w nor σ. Oracles that don’t know certain parameters have to estimate them from

the data.
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ProperOracle I does not knowboth parameters and hence computes bothw and σ using

Ordinary Least Squares procedures to obtain the standard predictive distribution for the

label yn+1 of the test object xn+1 based on the training sequence of the first n observations

and xn+1:

ŷn+1 +
√

1 + gn+1σ̂ntn−p, (4.26)

where gn+1 is defined in (4.19),

ŷn+1 := x′n+1(X
′X)−1X ′Y,

σ̂n :=

Ã
1

n− p

n∑
i=1

(yi − ŷi)2, ŷi := x′i(X
′X)−1X ′Y,

X is the data matrix for the training sequence (the n × p matrix whose ith row is x′i,

i = 1, . . . , n), Y is the vector (y1, . . . , yn)′ of the training labels, and tn−p is Student’s t-

distribution with n − p degrees of freedom; see, e.g., [118, Section 5.3.1] or [148, Exam-

ple 3.3].

The standard prediction distribution obtained byOracle I 4.26 is slightly different from

its simplified version that is more popular in the literature on empirical processes for

residuals where simplified Oracle I outputs:

N
(
ŷn+1, σ̂

2
n

)
. (4.27)

The difference between the two versions is, however, asymptotically negligible [108], and

the results stated below will be applicable to both versions.

Proper Oracle II that has access to information about σ, but notw outputs the predictive

distribution:

N
(
ŷn+1, (1 + gn+1)σ

2
)
, (4.28)

a simplified version of which (simplified Oracle II) is:

N
(
ŷn+1, σ

2
)
. (4.29)
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Similar to the case of Proper Oracle II, the difference between the two versions of Oracle II

computations (full and simplified) is again asymptotically negligible under our assump-

tions 4.8.

Finally, Oracle III outputs the predictive distribution:

N
(
w′xn+1, σ

2
)
.

We use our notation for the conformal predictive distribution Qn (4.3), as before, QI
n

denotes simplified or proper Oracle I’s predictive distribution, (4.27) or (4.26) (Theo-

rem 2 will hold for both), and QII
n to denote simplified or proper Oracle II’s predictive

distribution, (4.29) or (4.28) (Theorem 3 will hold for both). Theorems 2 and 3 are ac-

cordingly applicable to all three versions of the LSPM.

Theorem 2. The random functions Gn : R → R defined by

Gn(t) :=
√
n
Ä
Qn(ŷn+1 + σ̂nt, τ)−QI

n(ŷn+1 + σ̂nt)
ä

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− ϕ(s)ϕ(t)− 1

2
stϕ(s)ϕ(t), s ≤ t.

Theorem 3. The random functions Gn : R → R defined by

Gn(t) :=
√
n
Ä
Qn(ŷn+1 + σt, τ)−QII

n (ŷn+1 + σt)
ä

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− ϕ(s)ϕ(t), s ≤ t.

In Theorems 2 and 3, we have τ ∼ U ; alternatively, they will remain true if we fix τ to

any value in [0, 1]. For simplified oracles,we haveQI
n(ŷn+1+ σ̂nt) = Φ(t)in Theorem 2 and

QII
n (ŷn+1 + σt) = Φ(t) in Theorem 3. For proofs of Theorem 2 and Theorem 3, see [146].

Applying Theorems 2 and 3 to a fixed argument t, we obtain (dropping τ altogether):
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FIGURE 4.2: The asymptotic variances for the Dempster-Hill (DH) proce-
dure as compared with the truth (Oracle III, red) and for the LSPM and
DHprocedure as comparedwith the oracular procedures for known σ (Or-
acle II, blue) and unknown σ (Oracle I, black); in black and white, red is

highest, blue is intermediate, and black is lowest

Corollary 1. For a fixed t ∈ R,

√
n
Ä
Qn(ŷn+1 + σ̂nt)−QI

n(ŷn+1 + σ̂nt)
ä

⇒ N

Å
0,Φ(t)(1− Φ(t))− ϕ(t)2 − 1

2
t2ϕ(t)2

ã
and

√
n
Ä
Qn(ŷn+1 + σt)−QII

n (ŷn+1 + σt)
ä
⇒ N

(
0,Φ(t)(1− Φ(t))− ϕ(t)2

)
.

Figure 4.2 presents plots for the asymptotic variances, given in Corollary 1, for the two

oracular predictive distributions: black for Oracle I (Φ(t)(1 − Φ(t)) − ϕ(t)2 − 1
2 t

2ϕ(t)2 vs

t) and blue for Oracle II (Φ(t)(1 − Φ(t)) − ϕ(t)2 vs t); the red plot will be discussed later

in this section. The two asymptotic variances coincide at t = 0, where they attain their

maximum of between 0.0908 and 0.0909.

We can conclude that for data generated using the Gaussian model (4.25) under natu-

ral assumptions,the LSPM is asymptotically close to the predictive distributions generated

by Oracles I and II. The LSPM is therefore approximately conditionally valid and efficient

(i.e., valid and efficient given x1, x2, . . .). On the other hand, Theorem 1 guarantees the
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marginal validity of the LSPM under the general IID model, regardless of whether (4.25)

holds.

Comparison with the Dempster-Hill procedure

This subsection outlines a classical procedure which we refer to as theDempster-Hill proce-

dure as it was most clearly articulated in [30, p. 110] and [50, 49]. Both Dempster and Hill

trace their ideas to nonparametric version of Fisher’s fiducial method ([38]; [37]). Fisher,

however, was mostly interested in confidence distributions for quantiles, rather than full

predictive distributions. Hill [49] referred to his procedure as Bayesian nonparametric

predictive inference, which was later abbreviated to nonparametric predictive inference

(NPI) by Frank Coolen [3]. An important predecessor of Dempster and Hill was Jeffreys

[55], who postulated what was later denoted by Hill as A(2) ([70] and [119] contain dis-

cussions of Jeffreys’s paper and Fisher’s reaction).

Definition 4.8.1. The Dempster-Hill procedure is the conformal predictive system deter-

mined by the conformity measure

A(z1, . . . , zn+1) = A(y1, . . . , yn+1) = yn+1; (4.30)

Such procedure is used when the objects xi are absent and it can be regarded as the

special case of the LSPM when there are no objects (p = 0) — alternatively one can con-

sider the situation when p = 1 but assume that all objects are xi = 0. In this case, the

predictions ŷ will always be 0 and the hat matrices are H̄ = 0 and H = 0, this means that

(4.12), (4.13), and (4.15) all reduce to (4.30).

In the absence of ties, such predictive distribution becomes:

Qn(y) :=


[ i
n+1 ,

i+1
n+1 ] if y ∈ (y(i), y(i+1)) for i ∈ {0, 1, . . . , n}

[ i−1
n+1 ,

i+1
n+1 ] if y = y(i) for i ∈ {1, . . . , n}

(4.31)

(cf. (4.18)), where y(1) ≤ · · · ≤ y(n) are the yi sorted in the increasing order, y(0) := −∞,

and y(n+1) := ∞.
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This is essentially Hill’s assumption A(n) (which he also denoted An); in his words:

“An asserts that conditional upon the observationsX1, . . . , Xn, the next observationXn+1

is equally likely to fall in any of the open intervals between successive order statistics

of the given sample” [50, Section 1]. The set of all continuous distribution functions F

compatible with Hill’s A(n) coincides with the set of all continuous distribution functions

F satisfying F (y) ∈ Qn(y) for all y ∈ R, where Qn is defined by (4.31).

The LSPM, as presented in (4.24), is thus a very natural adaptation of Hill’s A(n) to

the Least Squares regression. The Dempster-Hill predictive system (4.31) is a conformal

transducer under the condition that a point from an interval in (4.31) is chosen random-

lyfrom the uniform distribution on that interval), resulting in the same guarantees of va-

lidity as those given above: the distribution of (4.31) is uniform over the interval [0, 1].

In terms of efficiency, given the most standard case of IID Gaussian observations,

our predictive distributions for linear regression are as precise as the Dempster-Hill ones

asymptotically when compared with Oracles I and II.

Let us consider the Dempster-Hill procedure for the location/scale model yi = w+ ξi,

i = 1, 2, . . ., where ξi ∼ N(0, σ2) are independent. Similar to the case of the LSPM, the

comparision if between the Dempster-Hill procedure and the three oracles:

In our study of efficiency, we consider the three versions of the LSPM and also three

“oracles”. All of the three oracles know the data generation model (4.25). In addition

Oracle III has complete information about both parameters of the data generation model

(4.25) (both w and σ), Oracle II knows σ, but does not know w and finally Oracle I knows

neither w nor σ. Oracles that don’t know certain parameters have to estimate them from

the data. Proper Oracle I does not know both parameters, Oracle II knows σ, and Oracle

III has complete information as it knows both w and σ.

It is interesting to note that Theorems 2 and 3 (and therefore the blue and black plots

in Figure 4.2) are applicable to both the LSPM and Dempster-Hill predictive distributions

(see, e.g., [107].) The situation with Oracle III is, however, different.

Donsker’s ([31]) classical result allows to simplify Theorems 2 and 3 (QIII denotes

Oracle III’s predictive distribution (independent of n).
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Theorem 4. In the case of the Dempster-Hill procedure, the random functionGn : R → R defined

by

Gn(t) :=
√
n
Ä
Qn(w + σt, τ)−QIII(w + σt)

ä
=

√
n (Qn(w + σt, τ)− Φ(t)) (4.32)

weakly converges to a Brownian bridge, i.e., a Gaussian process Z with mean zero and covariance

function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t)) , s ≤ t.

The variance Φ(t)(1 − Φ(t)) of the Brownian bridge is shown as the red line in Fig-

ure 4.2. However, under assumptions of this section including assumption of fixed ob-

jects, the analogue of the process (4.32) does not converge in general for the LSPM.

4.9 Experimental results

In this section we explore experimentally the validity and efficiency of the studentized

LSPM.

Online validity

First, we verify experimental validity of our methods in the online mode of prediction.

Such validity is guaranteed at the theoretical level, checking validity via experiments is

a useful opportunity to test the correctness of our code implementation. We provide full

details in order to enable reproducibility of the results.

We generate IID observations zn = (xn, yn), n = 1, . . . , 1001, the corresponding p-

values pn := Qn(yn+1, τn), n = 1, . . . , N , N := 1000, in the online mode. In our experi-

ments, we generate objects xn from standard normal distribution xn ∼ N(0, 1) and labels

yn from linear model under Gaussian assumption as yn ∼ 2xn + N(0, 1). As usual, we

consider τn to be uniformly distributedτn ∼ U and all independent.

Figure 4.3 plots cumulative p-values Sn :=
∑n

i=1 pi vs n = 1, . . . , N . As expected,

it is an approximately straight line with slope 0.5. Figure 4.4 additionally presents three

plots: the cumulative sums Sα
n :=

∑n
i=1 1{pi≤α}, where 1 is the indicator function, vs
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FIGURE 4.3: The cumulative sums Sn of the p-values vs n = 1, . . . , 1000

n = 1, . . . , N , for three values of α, α ∈ {0.25, 0.5, 0.75}. For each of the three αs the

result is an approximately straight line with slope α. Finally, Figure 4.5 plots Aα
N against

α ∈ [0, 1], where Aα
N := 1

N

∑N
i=1 1{pi≤α}. The result is, approximately, the main diagonal

of the square [0, 1]2, as it should be.

Further, we explore empirically the efficiency of the studentized LSPM. Figure 4.1

compares the conformal predictive distribution with the true (Oracle III’s) distribution

for four randomly generated test objects and a randomly generated training sequence of

length 10 with 2 attributes. The first attribute is a dummy all-1 attribute (Theorems 2

and 3 depend on the assumption that one of the attributes is an identical 1 as without it,

the plots become qualitatively different: cf. [19, Corollary 2.4.1]).

The second attribute is generated from the standard Gaussian distribution, and the

labels are generated as yn ∼ 2xn,2 +N(0, 1), xn,2 being the second attribute. Additionally

We show (with thinner lines) the output of Oracle I and Oracle II (only for the simplified

versions, in order not to clutter the plots). Instead, in the left-hand plot of Figure 4.6 we

show the first plot of Figure 4.1 that is normalized by subtracting the true distribution

function; this time, we show the output of both simplified and proper Oracles I and II; the

difference is not large but noticeable. The right-hand plot of Figure 4.6 is similar except

that the training sequence is of length 100 and there are 20 attributes generated inde-

pendently from the standard Gaussian distribution except for the first one, which is the



4.10. Conclusion 95

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0

n

cu
m

ul
at

iv
e 

su
m

s

0.75
0.5
0.25

FIGURE 4.4: The cumulative sums Sα
n vs n = 1, . . . , 1000 for α ∈

{0.25, 0.5.0.75}

dummy all-1 attribute; the labels are generated as before, yn ∼ 2xn,2 +N(0, 1).

Since Oracle III is more powerful than Oracles I and II as it knows the true data-

generating distribution) it is more difficult to compete with. The black line is farther from

the shaded area than the blue and red lines for all four plots in Figure 4.1. The estimated

distribution functions being to the left of the true distribution functions is a coincidence:

the four plots correspond to the values 0–3 of the seed for the R pseudorandom number

generator, and for other seeds the estimated distribution functions are sometimes to the

right and sometimes to the left.

4.10 Conclusion

The main contribution of this chapter is the introduction and development of non-

parametric approach to predictive distribution functions using conformal prediction. In

statistics, the theory of predictive distributions (see, e.g., [117], [121]) is based on the as-

sumption that samples are generated from a parametric model. Our novel contribution

(published paper [146]) extends statistical “prediction confidence distributions” in terms

of ability to derive predictive distribution functions for machine learning regression tasks
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FIGURE 4.5: The calibration curve: Aα
N vs α ∈ [0, 1] for N = 1000

using only limited assumptions customary of machine learning, namely that the observa-

tions are generated using the IID model. Unlike in the parametric approach of statistical

predictive distributions, our novel approach is non-parametric approach that does not

require for the data model to be specified.

This approach results in predictive distribution functions that have requisite property

of validity for IID observations in terms of guaranteed coverage. The advantage of predic-

tive distribution functions over the usual conformal prediction intervals is that conformal

predictive distributions contains more information— a conformal predictive distribution

Qn can produce a plethora of prediction intervals corresponding to each confidence level

1− ϵ.
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FIGURE 4.6: The left-hand plot is the first (upper left) plot of Figure 4.1 nor-
malized by subtracting the true distribution function (the thick black line
in Figure 4.1, which now coincides with the x-axis) and with the outputs
of the proper oracles added; the right-hand plot is an analogous plot for
a larger training sequence (of length 100 with 20 attributes, the first one

being the dummy attribute)
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Chapter 5

Kernel probabilistic regression

This chapter extends the study of probabilistic regression and combines conformal predictive dis-

tributions (CPDs) with kernel methods to derive kernelized versions of the algorithms described

in Chapter 4. Kernelized versions of conformal predicitive distributions are studied theoretically to

determine their computational efficiency. Experimental study of the predictive efficiency demon-

strates important advantages of the kernelized versions of CPDs and shows that universal (Lapla-

cian) kernel works remarkably well in terms of outputting accurate probabilistic predictions for the

test objects.

5.1 Introduction

In this chapter, we continue to study probabilistic regression problem that began in Chap-

ter 4 . As in Chapter 4, we require predictions to satisfy a reasonable property of validity

(under natural assumptions standard for general machine learning problems). The natu-

ral probabilistic prediction for the label y is that of a complete probability measure on R,

such probability measure can be represented by its distribution function (see, e.g., [27, 28,

40]). Similar to definitions used in Chapter 4, this will be referred to as predictive distribu-

tion (PD). The necessary property of predictive distributions (same as for any probabilis-

tic predictors) is that they are well-calibrated. We followGneiting et al. [40, Section 1.2] to

formally define calibration as the“statistical compatibility between the probabilistic fore-

casts and the realizations.” The less formal definition of validity is that predictive dis-

tributions should “tell the truth” (see Section 1.2.1 for more details on terminology in

probabilistic prediction).



100 Chapter 5. Kernel probabilistic regression

It can happen that the “truth” can be non-informative (as it should be in highly un-

certain situations where predictive distribution should be flat rather than have the peak

in the wrong place, as would happen with Bayesian prediction with an incorrect prior

(see, e.g., [88]). The further requirement is that of efficiency, often referred to as sharp-

ness [40, Section 2.3]. Our objective is to optimize the efficiency subject to the necessary

assumption of validity [40, Section 1.2].

This chapter provides a very selective review of predictive distributions with validity

guarantees. After outlining the prediction problem in Section 5.2, in Section 5.3 we turn to

the oldest approach to predictive distributions— namely the Bayesian approach. Under a

very restrictive assumption of full knowledge of the stochastic data generatingmechanism

such an approach gives rise to a perfect solution. Section 5.4 proceeds to Fisher’s fiducial

predictive distributions.

The first recent development, as described in Chapter 4, was to carry over predic-

tive distributions to the framework of statistical machine learning as developed by two

groups at the Institute of Automation and Remote Control (Aizerman’s laboratory in-

cluding Braverman and Rozonoer and Lerner’s laboratory including Vapnik and Cher-

vonenkis). For a brief history of the Institute and research on statistical learning there,

including the role of Emmanuel Markovich Braverman see [21], especially Chapter 5.

The first development, described in Chapter 4, consisted in adapting predictive distri-

butions to the IID model for the simplest linear case (see [145] and Chapter 4) for more

details). The second development (published in [139]), is the combination of conformal

predictive distributions with kernel methods that were invented by the members of Aiz-

erman’s laboratory, first of all Braverman and Rozonoer [21, p. 48]. This development is

outlined in Section 5.6 where kernelized versions of the main algorithms of Chapter 5 are

described. The experimental section of this chapter (Section 5.8) demonstrates important

advantages of kernelized versions. The computational efficiency of kernelized predic-

tive distributions is studied theoretically in Section 5.6 and predictive efficiency is studied

empirically in Section 5.8. As demonstrated in Section 5.8, a universal (Laplacian) kernel

works remarkably well.
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5.2 The problem

Probabilistic regression requires predicting the label yn+1 (we use y and yn+1 interchange-

ably to describe the label of the (n+ 1) st observation) based on the training sequence of

observations zi = (xi, yi), i = 1, . . . , n and a new test object xn+1 ∈ Rp. This rather

general model specification can cover both regression problems with objects x contain-

ing explanatory variables for labels y from the set Y, as well as time-series problems with

objects x containing previous history and other time-series based features of the object z.

Each observation zi = (xi, yi), i = 1, . . . , n + 1, consists of two components, the object xi

from a measurable space X that we call the object space and the label yi that belongs to a

measurable space Y that we call the label space. In the probabilistic regression setting the

object space is the real line,Y = R. In the probabilistic forecasting setting, our prediction

is the probability measure on the label space Y = R, this measure will be represented by

its cumulative distribution function (CDF).

The various approaches to the probabilistic prediction problem include that of

Bayesian methods (see Section 5.3 below), statistical parametric approach (discussed in

Section 5.4), and more recently nonparametric approach based on standard assumptions

in machine learning (namely the IID model) that is discussed in this chapter. Using the

terminology in [138], in conformal prediction it is convenient to differentiate between the

two kinds of assumptions: hard and soft. The hard assumption is the standard assump-

tion of machine learning — namely that the observations are generated independently

from the same probability distribution (the IID assumption). The validity of our proba-

bilistic forecasts will depend only on the model with hard assumption. The soft assump-

tion is the assumption that the label y of an object x depends on x in an approximately

linear manner — this soft assumption will be used to optimize efficiency.

Similar to standardmachine learning notation, wewill use a fixedparameter a > 0 that

determines the degree of regularization applied to the solution, regularization becomes

indispensable when kernel methods are used.
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5.3 Bayesian solution

Bayesian approach provides a very satisfactory solution to our probabilistic prediction

problem. This approach has dominated statistical inference for more than 150 years (cov-

ering period of time roughly from 1770 to 1930)— it has startedwith theworks of Thomas

Bayes and Pierre-Simon Laplace and was continued by Karl Pearson. Bayesian approach,

however, has limitations as it is based on very strong and restrictive assumptions.

We assume linear statistical model in a feature space and that the noise follows Gaus-

sian distribution. Our model is linear in terms of feature mapping of a deterministic se-

quence of objects x1, . . . , xn+1:

yi = w · F (xi) + ξi, i = 1, . . . , n+ 1, (5.1)

where F : X → H is a mapping from the object space to a Hilbert space H , “·” is the

dot product in Hilbert space H and w is a random vector distributed as N(0, (σ2/a)I) (I

being the identity operator onH), and ξi are randomvariables distributed asN(0, σ2) and

independent ofw and between themselves. We have introduced a at the end of Section 5.2

as the regularization constant, whilst σ > 0 is another parameter, the standard deviation

of the noise variables ξi.

By applying expectation operator E to the model (5.1), it is easy to check that

E yi = 0, i = 1, . . . , n,

cov(yi, yj) =
σ2

a
K(xi, xj) + σ21{i=j}, i, j = 1, . . . , n,

(5.2)

whereK(x, x′) := F (x) ·F (x′). By the theorem on normal correlation (see, e.g., [122, The-

orem II.13.2]), the Bayesian predictive distribution for yn+1 given xn+1 and the training

sequence is

N

Å
k′(K + aI)−1Y,

σ2

a
κ+ σ2 − σ2

a
k′(K + aI)−1k

ã
, (5.3)

where k is the n-vector ki := K(xi, xn+1), i = 1, . . . , n; K is the kernel matrix for the

first n observations (the training observations only); Ki,j := K(xi, xj), i, j = 1, . . . , n;

I = In is the n×n unit matrix; Y := (y1, . . . , yn)
′ is the vector of the n training labels; and
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κ := K(xn+1, xn+1).

Theweakness of themodel (5.1) (used, e.g., in [137, Section 10.3]) is that the Gaussian

measure N(0, (σ2/a)I) exists only when H is finite-dimensional, but we can circumvent

this difficulty by using (5.2) directly as our Bayesianmodel, for a given symmetric positive

semidefinite K. The mapping F in not part of the picture any longer. This is the standard

approach in Gaussian process regression in machine learning.

In the Bayesian solution, there is no difference between the hard and soft model; in

particular, (5.2) is required for the validity of the predictive distribution (5.3).

5.4 Fiducial predictive distributions

After its sesquicentennial rule, Bayesian statistics was challenged by Fisher and Neyman,

who had little sympathy with each other’s views apart from their common disdain for

Bayesianmethods [139]. Fisher’s approachwasmore ambitious, and his goal was to com-

pute a full probability distribution for a future value (test label in our context) or for the

value of a parameter. Neyman and his followers were content with computing intervals

for future values (prediction intervals) and values of a parameter (confidence intervals).

Fisher and Neyman relaxed the assumptions of Bayesian statistics by allowing uncer-

tainty, in Knight’s [61] terminology. In Bayesian statistics overall probability measure is

known, i.e., there is a situation of risk without any uncertainty. Fisher and Neyman used

the framework of parametric statistics, in this framework the value of the parameter is a

number or an element of a Euclidean space (there is no stochastic model for the value of

the parameter. In the next section 5.5we allow for even greater amount of uncertainty: our

statistical model will be the nonparametric IID model (as standard in machine learning).

The available properties of validity naturally become weaker as we relax our assump-

tions. For predicting future values, conformal prediction ensures calibration in probabil-

ity, in the terminology of [40, Definition 1]. As to Bayesian prediction, it can be shown

that it satisfies a stronger conditional version of this property: Bayesian predictive distri-

butions are calibrated in probability conditionally on the training sequence and test object

(more generally, on the past).
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Theproperty of being calibrated in probability for conformal prediction is, on the other

hand, unconditional; or, in other words, it is conditional on the trivial σ-algebra. Fisher’s

fiducial predictive distributions satisfy an intermediate property of validity: they are cal-

ibrated in probability conditionally on what was called the σ-algebra of invariant events

in [87], which is greater than the trivial σ-algebra but smaller than the σ-algebra repre-

senting the full knowledge of the past.

Fisher did not formalize his fiducial inference (this is often regarded as his “biggest

blunder” [35]). By replacing probability distributions by intervals, Neyman’s simplifica-

tion allowed for him to state suitable notions of validity more easily, as a result of which

his approach to statistics became mainstream until the Bayesian approach started to re-

assert itself towards the end of the 20th century [139]. However, there has been a recent

revival of interest in fiducial inference: cf. the BFF (Bayesian, frequentist, and fiducial) se-

ries of conferences that began in 2014. Fiducial inference is a key topic of the series, both

in the form of confidence distributions (the term introduced by David Cox [24] for distri-

butions for parameters) and predictive distributions (which by definition [121, Definition

1] must be calibrated in probability).

Since fiducial inference was developed in the framework of parametric statistics, it

has two versions, one targeting computing confidence distributions and the other predic-

tive distributions. Under nonparametric assumptions, such as our IID model, we are not

interested in confidence distributions as the set of all probability measures on the obser-

vation space X × R is just too big), we therefore concentrate on predictive distributions.

The standard notion of validity for predictive distributions, introduced independently

by Schweder and Hjort [117, Chapter 12] and Shen, Liu, and Xie [121], is calibration in

probability going back to Philip Dawid’s work (see, e.g., [27, Section 5.3] and [28]).

5.5 Conformal predictive distributions

Valid predictive distributions under the IIDmodel can be obtained by slightly relaxing the

notion of a predictive distribution as given in [121]. We follow [145] and [136] to define

predictive distributions (see 4.4 for definition of conformal predictive distribution (CPD)

and related definitions).
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5.6 Kernel Ridge Regression Prediction Machine

In this section the Kernel Ridge Regression Prediction Machine (KRRPM) is introduced;

it will be the conformal transducer determined by a conformity measure of the form 4.6.1,

where ŷn+1 is computed using kernel ridge regression.

We use three natural versions of the definition, all three versions are based on (4.6) as

soft model (with the IID model being the hard model).

Given a training sequence (z1, . . . , zn) ∈ Zn and a test object xn+1 ∈ X, the kernel ridge

regression predicts

ŷn+1 := k′(K + aI)−1Y

for the label yn+1 of xn+1. This is just the mean in (5.3), and the variance is ignored. Plug-

ging this definition into 4.6, we obtain the deleted KRRPM. Alternatively, we can replace

the conformity measure (4.6) by

A(z1, . . . , zn+1) := yn+1 − Êyn+1, (5.4)

where Êyn+1 := k̄′(K̄ + aI)−1Ȳ (5.5)

is the prediction for the label yn+1 of xn+1 computed using z1, . . . , zn+1 as the training

sequence. The notation used in (5.5) is:

• k̄ is the (n+ 1)-vector ki := K(xi, xn+1), i = 1, . . . , n+ 1

• K̄ is the kernel matrix for all n+ 1 observations

• K̄i,j := K(xi, xj), i, j = 1, . . . , n+ 1

• I = In+1 is the (n+ 1)× (n+ 1) unit matrix

• Ȳ := (y1, . . . , yn+1)
′ is the vector of all n+ 1 labels
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In this context, K is any given kernel, i.e., symmetric positive semidefinite function

K : X2 → R. The corresponding conformal transducer is the ordinary KRRPM. The dis-

advantage of the deleted and ordinary KRRPM is that they are not RPSs (they can fail to

produce a function increasing in y in the presence of extremely high-leverage objects).

Let us set

H̄ := (K̄ + aI)−1K̄ = K̄(K̄ + aI)−1. (5.6)

This hat matrix “puts hats on the ys”: according to (5.5), H̄Ȳ is the vector (Êy1, . . . , Êyn+1)
′,

where Êyi, i = 1, . . . , n+1, is the prediction for the label yi of xi computed using z1, . . . , zn+1

as the training sequence. We will refer to the entries of the matrix H̄ as h̄i,j (where i is the

row and j is the column of the entry), abbreviating h̄i,i to h̄i. The usual relation between

the residuals in (4.6) and (5.4) is

yn+1 − ŷn+1 =
yn+1 − Êyn+1

1− h̄n+1
.

The diagonal elements h̄i of the hat matrix are always in the semi-open interval [0, 1) and

so the numerator is non-zero). Similar to Chapter 4, we will be using studentized residuals

(yn+1 − Êyn+1)(1 − h̄n+1)
−1/2, which are half-way between the deleted residuals in 4.6.2

and the ordinary residuals in 4.6.1.

The conformal transducer with the corresponding conformitymeasure is the (studen-

tized) KRRPM [139].

A(z1, . . . , zn+1) :=
yn+1 − Êyn+1√

1− h̄n+1

(5.7)

Later in this section we will see that the KRRPM is an RPS. This version of the confor-

mal transducer will be the primary version considered in this chapter, with “studentized”

usually omitted.

An explicit form of the KRRPM

According to (4.8), in order to compute the studentized version of predictive distributions

produced by the KRRPM, the following equation need to be solved:

αy
i = αy

n+1
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Algorithm 3 Kernel Ridge Regression Prediction Machine
Require: A training sequence (xi, yi) ∈ X× R, i = 1, . . . , n.
Require: A test object xn+1 ∈ X.
1: Define the hat matrix H̄ by (5.6), K̄ being the (n+ 1)× (n+ 1) kernel matrix.
2: for i ∈ {1, 2, . . . , n} do
3: Define Ai and Bi by (5.8) and (5.9), respectively.
4: Set Ci := Ai/Bi.
5: end for
6: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
7: Return the following predictive distribution for yn+1:

Qn(y, τ) :=

®
i+τ
n+1 if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}
i′−1+τ(i′′−i′+2)

n+1 if y = C(i) for i ∈ {1, . . . , n}.
(5.10)

(together with the corresponding inequality αy
i < αy

n+1) for i = 1, . . . , n+ 1.

Combining the definition (4.7) of the conformity scores αy
i with the definition (5.7) of

the studentized version of the conformitymeasure, and the fact that the predictions Êyi can
be obtained from Ȳ by applying the hat matrix H̄ (cf. (5.6)), we can rewrite αy

i = αy
n+1 as

yi −
∑n

j=1 h̄ijyj − h̄i,n+1y√
1− h̄i

=
y −

∑n
j=1 h̄n+1,jyj − h̄n+1y√

1− h̄n+1

.

This is a linear equation, Ai = Biy, and by solving it we obtain y = Ci := Ai/Bi, where

Ai :=

∑n
j=1 h̄n+1,jyj√
1− h̄n+1

+
yi −

∑n
j=1 h̄ijyj√
1− h̄i

, (5.8)

Bi :=
»

1− h̄n+1 +
h̄i,n+1√
1− h̄i

. (5.9)

The following Algorithm 3 for computing the conformal predictive distribution (4.3), al-

lows us to compute (4.8) easily.

The notation i′ and i′′ used in line 7 of theAlgorithm 3 is defined as i′ := min{j | C(j) =

C(i)} and i′′ := max{j | C(j) = C(i)}, to ensure that Qn(y, 0) = Qn(y−, 0) and Qn(y, 1) =

Qn(y+, 1) at y = C(i); C(0) and C(n+1) are understood to be −∞ and ∞, respectively.

Algorithm 3 is not computationally efficient for a large test set, since the hat matrix

H̄ (cf. (5.6)) needs to be computed from scratch for each test object. To obtain a more

efficient version, we use a standard formula for inverting partitioned matrices (see, e.g.,
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[46, (8)] or [137, (2.44)]) to obtain

H̄ = (K̄ + aI)−1K̄ =

Ö
K + aI k

k′ κ+ a

è−1Ö
K k

k′ κ

è
=

Ö
(K + aI)−1 + d(K + aI)−1kk′(K + aI)−1 −d(K + aI)−1k

−dk′(K + aI)−1 d

èÖ
K k

k′ κ

è
=

Ö
H + d(K + aI)−1kk′H − d(K + aI)−1kk′

−dk′H + dk′
(5.11)

(K + aI)−1k + d(K + aI)−1kk′(K + aI)−1k − dκ(K + aI)−1k

−dk′(K + aI)−1k + dκ

è
(5.12)

=

Ö
H + d(K + aI)−1kk′(H − I) d(I −H)k

dk′(I −H) −dk′(K + aI)−1k + dκ

è
(5.13)

=

Ö
H − ad(K + aI)−1kk′(K + aI)−1 ad(K + aI)−1k

adk′(K + aI)−1 dκ− dk′(K + aI)−1k

è
, (5.14)

where

d :=
1

κ+ a− k′(K + aI)−1k
(5.15)

(the denominator is positive by the theorem on normal correlation, already used in Sec-

tion 5.3), the equality in line (5.13) follows from H̄ being symmetric (which allows us to

ignore the upper right block of the matrix (5.11)–(5.12)), and the equality in line (5.14)

follows from

I −H = (K + aI)−1(K + aI)− (K + aI)−1K = a(K + aI)−1.

We have been using the notation H for the training hat matrix

H = (K + aI)−1K = K(K + aI)−1. (5.16)
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Notice that the constant ad occurring in several places in (5.14) is between 0 and 1:

ad =
a

a+ κ− k′(K + aI)−1k
∈ (0, 1] (5.17)

(the fact that κ− k′(K + aI)−1k is nonnegative follows from the lower right entry h̄n+1 of

the hat matrix (5.14) being nonnegative.

The important components in the expressions for Ai and Bi (cf. (5.8) and (5.9)) are,

according to (5.14),

1− h̄n+1 = 1 + dk′(K + aI)−1k − dκ = 1 +
k′(K + aI)−1k − κ

κ+ a− k′(K + aI)−1k

=
a

κ+ a− k′(K + aI)−1k
= ad, (5.18)

1− h̄i = 1− hi + ade′i(K + aI)−1kk′(K + aI)ei

= 1− hi + ad(e′i(K + aI)−1k)2, (5.19)

where hi = hi,i is the ith diagonal entry of the hat matrix (5.16) for the n training objects

and ei is the ith vector in the standard basis ofRn (so that the jth component of ei is 1{i=j}

for j = 1, . . . , n). Let ŷi := e′iHY be the prediction for yi computed from the training

sequence z1, . . . , zn and the test object xi. Using (5.18) (but not using (5.19) for now), we

can transform (5.8) and (5.9) as

Ai :=

∑n
j=1 h̄n+1,jyj√
1− h̄n+1

+
yi −

∑n
j=1 h̄ijyj√
1− h̄i

= (ad)−1/2
n∑

j=1

adyjk
′(K + aI)−1ej

+
yi −

∑n
j=1 hijyj +

∑n
j=1 adyje

′
i(K + aI)−1kk′(K + aI)−1ej√

1− h̄i

= (ad)1/2k′(K + aI)−1Y +
yi − ŷi + ade′i(K + aI)−1kk′(K + aI)−1Y√

1− h̄i
,

=
√
adŷn+1 +

yi − ŷi + adŷn+1e
′
i(K + aI)−1k√

1− h̄i
, (5.20)
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where ŷn+1 is the Bayesian prediction for yn+1 (cf. the expected value in (5.3)), and

Bi :=
»
1− h̄n+1 +

h̄i,n+1√
1− h̄i

=
√
ad+

adk′(K + aI)−1ei√
1− h̄i

. (5.21)

Therefore, we can implement Algorithm 3 as follows. Preprocessing the training se-

quence takes time O(n3) (or faster if using, say, the Coppersmith–Winograd algorithm

and its versions; we assume that the kernel K can be computed in time O(1)):

1. The n× n kernel matrix K can be computed in time O(n2).

2. The matrix (K + aI)−1 can be computed in time O(n3).

3. The diagonal of the training hat matrixH := (K+aI)−1K can be computed in time

O(n2).

4. All ŷi, i = 1, . . . , n, can be computed by ŷ := HY = (K + aI)−1(KY ) in time O(n2)

(even without knowing H).

Processing each test object xn+1 takes time O(n2):

1. Vector k and number κ (as defined after (5.3)) can be computed in time O(n) and

O(1), respectively.

2. Vector (K + aI)−1k can be computed in time O(n2).

3. Number k′(K + aI)−1k can now be computed in time O(n).

4. Number d defined by (5.15) can be computed in time O(1).

5. For all i = 1, . . . , n, compute 1− h̄i as (5.19), in time O(n) overall (given the vector

computed in 2).

6. Compute the number ŷn+1 := k′(K + aI)−1Y in time O(n) (given the vector com-

puted in 2).

7. Finally, compute Ai and Bi for all i = 1, . . . , n as per (5.20) and (5.21), set Ci :=

Ai/Bi, and output the predictive distribution (5.10). This takes time O(n) except

for sorting the Ci, which takes time O(n log n).
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5.7 Limitation of the KRRPM

The KRRPM makes a significant step forward as compared to the LSPM described in

Chapter 4: our soft model (5.1) is no longer linear in xi. In fact, by using a universal kernel

(such as Laplacian kernel in Section 5.8) allows the function x ∈ X 7→ w ·F (x) to approx-

imate any continuous function arbitrarily well within any compact set in X. However,

since we are interested in predictive distributions rather than point predictions, using the

soft model (5.1) still results in the KRRPM being restricted. In this section we discuss the

nature of the restriction, using the ordinary KRRPM as a technical tool.

The Bayesian predictive distribution (5.3) is Gaussian and (as clear from (5.1) and

from the bottom right entry of (5.14) being nonnegative) its variance is at least σ2. Wewill

see that the situation with the conformal distribution is not as bad, despite the remaining

restriction. To understand the nature of the restriction it will be convenient to ignore the

denominator in (5.7), i.e., to consider the ordinary KRRPM; the difference between the

(studentized) KRRPM and ordinary KRRPMwill be small in the absence of high-leverage

objects (an example will be given in the next section). For the ordinary KRRPM we have,

in place of (5.8) and (5.9),

Ai :=
n∑

j=1

h̄n+1,jyj + yi −
n∑

j=1

h̄i,jyj ,

Bi := 1− h̄n+1 + h̄i,n+1.

Therefore, (5.20) and (5.21) become

Ai = adŷn+1 + yi − ŷi + adŷn+1e
′
i(K + aI)−1k

and

Bi = ad+ ade′i(K + aI)−1k,
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respectively. For Ci := Ai/Bi we now obtain

Ci = ŷn+1 +
yi − ŷi

ad+ ade′i(K + aI)−1k

= ŷn+1 +
σ2
Bayes/σ

2

1 + e′i(K + aI)−1k
(yi − ŷi), (5.22)

where ŷn+1 is, as before, the Bayesian prediction for yn+1, and σ2
Bayes is the variance of the

Bayesian predictive distribution (5.3) (cf. (5.17)).

The second addend e′i(K + aI)−1k in the denominator of (5.22) is the prediction for

the label of the test object xn+1 in the situation where all training labels are 0 apart from

the ith, which is 1. For a long training sequence we can expect it to be close to 0 (unless

xi or xn+1 are highly influential); therefore, we can expect the shape of the predictive

distribution output by the ordinary KRRPM to be similar to the shape of the empirical

distribution function of the residuals yi − ŷi. In particular, this shape does not depend

(or depends weakly) on the test object xn+1. This lack of sensitivity of the predictive dis-

tribution on the test object prevents the conformal predictive distributions output by the

KRRPM from being universally consistent in the sense of [136]. The predictive distribu-

tion is not necessarily Gaussian (as in (5.3)), and the distribution is fitted to all training

residuals (and not just the residuals for objects similar to the test object). One possible

way to get universally consistent conformal predictive distributions would be to replace

the right-hand side of (4.10) by F̂n+1(yn+1), where F̂n+1 is the Bayesian predictive dis-

tribution for yn+1 computed from xn+1 and z1, . . . , zn+1 as training sequence for a suffi-

ciently flexible Bayesian model (in any case, more flexible than our homoscedastic model

(5.1)). This idea was referred to as de-Bayesing in [137, Section 4.2] and frequentizing in

[149, Section 3]. However, modelling input-dependent (heteroscedastic) noise efficiently

is a well-known difficult problem in Bayesian regression, including Gaussian process re-

gression (see, e.g., [42, 74, 123]).
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5.8 Experimental results

In the first part of this section we illustrate the main advantage of the KRRPM over the

LSPM introduced in Chapter 4, namely its flexibility — for a suitable kernel, it gets the

location of the predictive distribution right. The second part of this section illustrates the

limitation of the KRRPM discussed in the previous section: while the KRRPM adapts to

the shape of the distribution of labels, the adaptation is not conditional on the test object.

Both points will be demonstrated using artificial data sets.

In the experiment we generate a training sequence of length 1000 from the model

yi = w1 cosxi,1 + w2 cosxi,2 + w3 sinxi,1 + w4 sinxi,2 + ξi, (5.23)

where (w1, w2, w3, w4) ∼ N(0, I4) (I4 being the unit 4 × 4 matrix), (xi,1, xi,2) ∼ U [−1, 1]2

(U [−1, 1] being the uniform probability distribution on [−1, 1]), and ξi ∼ N(0, 1), all in-

dependent. This corresponds to the Bayesian ridge regressionmodel with a = σ = 1. The

true kernel is

K((x1, x2), (x
′
1, x

′
2))

= (cosx1, cosx2, sinx1, sinx2) · (cosx′1, cosx′2, sinx′1, sinx′2)

= cos(x1 − x′1) + cos(x2 − x′2). (5.24)

By definition (see, e.g., [125]) a kernel is universal if any continuous function can be

uniformly approximated (over each compact set) by functions in the corresponding re-

producing kernel Hilbert space. An example of a universal kernel is the Laplacian kernel

K(x, x′) := exp
(
−
∥∥x− x′

∥∥) .
Laplacian kernels were introduced and studied in [128]; the corresponding reproducing

kernel Hilbert space has the Sobolev norm

‖u‖2 = 2

∫ ∞

−∞
u(t)2dt+ 2

∫ ∞

−∞
u′(t)2dt
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FIGURE 5.1: The predictive distribution for the label of the test object (1, 1)
based on a training sequence of length 1000 (all generated from the model
(5.23)). The red line in each panel is the Bayesian predictive distribution
based on the true kernel (5.24), and the blue line is the conformal predic-
tive distribution based on: the true kernel (5.24) in the left-most panel; the
Laplacian kernel in the middle panel; the linear kernel in the right-most

panel.

FIGURE 5.2: The analogue of Figure 5.1 for a training sequence of length 100.

(see [128, Corollary 1]). This expression shows that Laplacian kernels are indeed uni-

versal. On the other hand, the linear kernel K(x, x′) := x · x′ is far from being universal;

remember that the LSPM [145] corresponds to this kernel and a = 0.

Figure 5.1 illustrates that for this data set, universal kernels lead to better results. The

parameter a in Figure 5.1 is the true one, a = 1. In the case of the Bayesian predictive

distribution, the parameter σ = 1 is also the true one — unlike for Bayesian predictive

distributions predictive distributions do not require σ. The right-most panel shows that,

the conformal predictive distribution based on the linear kernel can get the predictive dis-

tribution wrong. The other two panels show that the true kernel and, more importantly,

the Laplacian kernel (chosen independently of themodel (5.23)) aremuchmore accurate.

Figure 5.1 shows predictive distributions for a specific test object, (1, 1), but this behaviour

is typical. The effect of using a universal kernel becomes much less pronounced (or even

disappears completely) for smaller lengths of the training sequence: see Figure 5.2 using

100 training observations (whereas Figure 5.1 uses 1000).
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FIGURE 5.3: Left panel: predictions of the KRRPM for a training sequence of
length 1000 and x1001 = 0. Right panel: predictions for x1001 = 1. The data

are described in the text.

We now illustrate the limitation of the KRRPM that we discussed in the previous sec-

tion. An artificial data set is generated as follows: xi ∈ [0, 1], i = 1, . . . , n, are chosen in-

dependently from the uniform distribution U on [0, 1], and yi ∈ [−xi, xi] are then chosen

independently, again from the uniform distributions U [−xi, xi] on their intervals. Fig-

ure 5.3 shows the prediction for xn+1 = 0 on the left and for xn+1 = 1 on the right for

n = 1000; there is no discernible difference between the studentized and ordinary ver-

sions of the KRRPM. The difference between the predictions for xn+1 = 0 and xn+1 = 1

is slight, whereas ideally we would like the former prediction to be concentrated at 0

whereas the latter should be close to the uniform distribution on [−1, 1] [139].

Fine details can be seen in Figure 5.4, which is analogous to Figure 5.3 but uses a train-

ing sequence of length n = 10. It shows the plots of the functionsQn(y, 0) andQn(y, 1) of

y, in the notation of (4.3). These functions carry all information aboutQn(y, τ) as function

of y and τ sinceQn(y, τ) can be computed as the convexmixture (1−τ)Qn(y, 0)+τQn(y, 1)

of Qn(y, 0) and Qn(y, 1) [139].

In our future experiments we can use three kinds of kernels:

• the polynomial kernel

K(x, x′) := (1 + x · x′)k

parameterized by k = 1, 2, . . . and sometimes abbreviated to “poly k”;

• the Gaussian kernel

K(x, x′) := exp
Ä
−c
∥∥x− x′

∥∥2ä
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FIGURE 5.4: Upper left panel: predictions of the (studentized) KRRPM for a
training sequence of length 10 and x11 = 0. Upper right panel: analogous
predictions for x11 = 1. Lower left panel: predictions of the ordinary KR-
RPM for a training sequence of length 10 and x11 = 0. Lower right panel:

analogous predictions for x11 = 1.

parameterized by c > 0 and sometimes abbreviated to “Gauss c”;

• the Laplacian kernel

K(x, x′) := exp
(
−c
∥∥x− x′

∥∥)
parameterized by c > 0 and sometimes abbreviated to “Laplace c”.

According to [110] (see also [47, Example 2.22]), polynomial kernels are not universal

and the corresponding reproducing kernelHilbert space consists of degree k polynomials.

On the other hand, according to [126], Gaussian kernels are universal (and [126] gives an

explicit description of the corresponding reproducing kernel Hilbert spaces). Laplacian

kernels are also universal, as mentioned earlier.

Further experiments with artificial data

We follow the experiments in Section 10.3 of [137] but in the kernelized setting. In this

chapter we use pictures of two kinds. First, those for the correct kernel (such as (5.24)):
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1. The validity pictures like those in Section 10.3 of [137], Figures 10.1–10.4. The cal-

ibration curve would be a plot of the empirical frequency of Qn ≤ ϵ vs ϵ. The ef-

ficiency would be measured by one number (no need to show it on the plot): the

cumulative loss function (see below) over the test set.

2. Efficiency figures similar to those in the next subsection. Now we have the shaded

areas for the CPDs and the lines for Oracles II and III.

Those for the standard kernels (different from the true one (5.24)), such as polynomial,

Gaussian, and Laplacian: the only kind of pictures and figures would be those described

in item 1.

Experiments with a benchmark data set

In our experiments we can use continuous ranked probability score, which is the most

standard proper loss function for regression [48, 41]. To make it applicable to our confor-

mal predictive distributions, we modify them slightly by replacing (5.10) by

Qn(y, τ) :=


i
n if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

i
n if y = C(i) for i ∈ {1, . . . , n}.

Since Q is now a bona fide distribution function, we can use the usual expression

CRPS(Q, y) :=

∫ y

−∞
Q(u, 0)2du+

∫ ∞

y
(1−Q(u, 1))2du

(as in [41, (20)]). This loss function can be used for comparing conformal predictive

distributions among themselves and with other predictive distributions.

First we use the standard Boston Housing data set available from the UCI repository

[33]. It consists of 506 observations each with 14 attributes. We split it into a training

set of size 406 and test set of size 100 (using the original order of the observations). All

attributes were standardized making the mean of each attribute zero and its standard

deviation 1 (based only on the training set).
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Kernel a = 0.001 a = 0.01 a = 0.1 a = 1 a = 10

poly 1 3.45 3.45 3.45 3.44 3.42
poly 2 2.71 2.63 2.58 2.56 2.70
poly 3 59.90 20.40 8.62 4.43 6.86

Gauss 0.01 2.30 2.29 2.38 3.23 5.04
Gauss 0.05 2.42 2.24 2.40 2.99 5.33
Gauss 0.1 2.74 2.41 2.60 3.50 6.29

TABLE 5.1: The cumulative losses for polynomial kernels and Gaussian ker-
nels

FIGURE 5.5: The predictive distribution for the label of the 100th observation
(based on the previous 99 observations) and for the label of the 500th ob-
servation (based on the previous 499 observations) for the Boston Housing

data set

Our results are given in Table 5.1. For polynomial kernels, the best result is for degree

2 and a = 1: the cumulative loss is 2.56. The best RBF result is slightly better: its parameter

c = 0.05 and a = 0.01, the loss is 2.24, but this was more sensitive to parameter tuning.

We do not give validity results like those in [145] (they are useless since validity is

guaranteed by our theoretical results). Two sample predictive distribution functions are

shown in Figure 5.5. The kernel is Gaussian, and the parameters are a = 0.01 and c = 0.05

(giving the best values in Table 5.1).

5.9 Conclusion

The main contribution of this chapter is extension the study of probabilistic regression

by combining conformal predictive distributions with kernel methods (published paper

version [139]). Experimental study of the predictive efficiency demonstrates important
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advantages of the kernelized versions of CPDs and shows that universal (Laplacian) ker-

nel performs remarkably well in terms of outputting accurate probabilistic predictions for

the test objects.
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Chapter 6

Computationally efficient

probabilistic regression

Conformal predictive distributions (CPD) output probability distributions of the label value in

machine learning regression problems. This chapter extends the study of probabilistic regression

to address the relative computational inefficiency of classical conformal predictors. Two novel com-

putationally efficient conformal predictive systems are introduced — split conformal predictive

systems (SPC) and cross-conformal predictive system (CCPS). Split conformal predictive sys-

tems provide guaranteed validity, whilst the main advantage of cross-conformal predictive systems

is greater predictive efficiency. For cross-conformal predictive systems validity only holds empiri-

cally and in the absence of excessive randomization. The main aim of this chapter is to define and

study computationally efficient versions of CPS without any restrictions related to the underlying

algorithm.

6.1 Introduction

In this chapter, we continue the study of probabilistic regression problem introduced in

Chapter 4 and continued in Chapter 5 with the study of kernel probabilistic regression.

Chapter 4 described extension of parametric statistical “prediction confidence distribu-

tions” to machine learning regression tasks using only limited assumptions customary of

machine learning, namely that the observations are generated using the IID model. Un-

like the parametric approach of statistical predictive distributions, conformal predictive
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distributions do not require specification of the data model and thus can be applied to a

wide range of prediction and decision-making problems.

The disadvantage of CPS is that formanyunderlying algorithmsCPS are computation-

ally inefficient as they require re-training the underlying machine learning or statistical

algorithm for each test object and each potential label for this object. In practice this can

be done efficiently only for a narrow class of underlying algorithms, including for Least

Squares and Kernel Ridge Regression as described in Chapter 4 and Chapter 4 accord-

ingly.

A very recent development in Venn prediction has been the introduction of split Venn-

Abers predictive systems in [101]. Venn-Abers predictive systems are another way to

produce predictive distributions. In this chapter we explore several versions of Venn-

Abers predictive systems and compare them with conformal predictive systems.

We follow the definition of randomized predictive systems (RPS) introduced in Chap-

ter 4 and in section 6.2 define a special case of RPS — split conformal predictive systems

(SCPS). Split conformal predictive systems (SCPS) are computationally efficient, butmay

suffer loss in predictive efficiency when compared with CPS, as CPS uses data more ef-

ficiently. A very important advantage of SCPS is their validity (similar to CPS) — we

demonstrate validity of SCPS in Section 6.2.

Section 6.3 introduces cross-conformal predictive systems (CCPS), whilst CCPS use

data more efficiently, they can lose their validity in principle as they are formally are no

longerRPS— inpracticeCCPSusually satisfy the requirement of validity as demonstrated

in Section 6.5.

Section 6.5 compares the predictive efficiency of SCPS and CCPS and explores their

empirical validity. The predictive efficiency of predictive distributions is measured using

a loss function called continuous ranked probability score (CRPS, see 1.2.5).

6.2 Split conformal predictive systems

In this section we will modify the definition 4.4.6 of conformal predictive systems intro-

duced in Chapter 4 along the lines of [6, Section 2.3] by removing an unnecessary as-

sumption in [137, Section 4.1]. The definitions below follow [139].
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Definition 6.2.1 (Split Conformity Measure). A split conformity measure is a family of

measurable functions Am : Zm+1 → R ∪ {−∞,∞}, m = 1, 2, . . . . The intention is that

Am(z1, . . . , zm+1) measures how large the label ym+1 in zm+1 is, as compared with the

labels in z1, . . . , zm.

Consider the training sequence z1, . . . , zn that is split into two parts: the proper train-

ing sequence z1, . . . , zm and the calibration sequence zm+1, . . . , zn. Based on the object x

from the test set, the task of probabilistic regression is to predict probability distribution

for y (similar notation use in Chapter 4 wewill use y and yn+1 interchangeably to describe

the label of the test object that requires prediction.

Definition 6.2.2 (Split Conformal Transducer). The output of the split conformal trans-

ducer determined by the split conformity measure A is defined as

Q(z1, . . . , zn, (x, y), τ) :=
1

n−m+ 1
|{i = m+ 1, . . . , n | αi < αy}|

+
τ

n−m+ 1
|{i = m+ 1, . . . , n | αi = αy}|+ τ

n−m+ 1
, (6.1)

Definition 6.2.3 (Conformity Scores). The conformity scores αi, i = m+1, . . . , n, and αy,

y ∈ R, are defined by

αi := A(z1, . . . , zm, (xi, yi)), i = m+ 1, . . . , n,

αy := A(z1, . . . , zm, (x, y)).

Definition 6.2.4 (Split Conformal Transducer). A function is a split conformal transducer

if it is the split conformal transducer determined by some split conformity measure.

Definition 6.2.5 (Split Conformal Predictive System). A split conformal predictive sys-

tem (SCPS) is a function which is both a split conformal transducer and a randomized

predictive system.

The standard property of validity for split conformal transducers (that is satisfied

automatically) is that the values Q(z1, . . . , zn, z, τ) have uniform distribution on [0, 1] if

z1, . . . , zn, z are IID and τ is generated independently of z1, . . . , zn, z from the uniform

probability distribution U on [0, 1] (see, e.g., [137, Proposition 4.1]).
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It is much easier to get an RPS using split conformal transducers than using conformal

transducers.

Definition 6.2.6 (Isotonic Split Conformity Measure). A split conformity measure A is

isotonic if, for all m, z1, . . . , zm, and x, A(z1, . . . , zm, (x, y)) is isotonic in y, i.e.,

y ≤ y′ =⇒ A(z1, . . . , zm, (x, y)) ≤ A(z1, . . . , zm, (x, y′)) (6.2)

Definition 6.2.7 (Balanced Split ConformityMeasure ). An isotonic split conformitymea-

sure A is balanced if, for any m and z1, . . . , zm, the set

convA(z1, . . . , zm, (x,R)) := conv {A(z1, . . . , zm, (x, y)) | y ∈ R} (6.3)

does not depend on x, where conv stands for the convex closure in R.

The set (6.3) then coincides with convA(z1, . . . , zm,Z) and has one of four forms:

(a, b), [a, b), (a, b], or [a, b], where a < b are elements of the extended real lineR∪{−∞,∞};

we will be mainly interested in the case convA(z1, . . . , zm,Z) = (−∞,∞).

Proposition 6. The split conformal transducer (6.1) based on a balanced isotonic split conformity

measure is an RPS.

Proof. Since property R2 in the definition of RPS 4.4.1 is automatic, we only need to check

R1. It is clear that (6.1) is increasing in τ (and linear).

To show that it is increasing in y, split, in the context of (6.1), all i ∈ {m + 1, . . . , n}

into three groups: the i in group 1 satisfy αi < αy, the i in group 2 satisfy αi = αy, and

the i in group 3 satisfy αi > αy. Then (6.1) is the total weight of all i where the weights

are 1, τ ∈ [0, 1], and 0 for i in groups 1, 2, and 3, respectively. As y increases, αy increases

as well, and therefore, each i can only move to a lower-numbered group thus increasing

(6.1).

Out of the remaining two conditions, let us check, e.g., (4.2). It suffices to notice that,

since A is balanced, we have αy ≥ maxi∈{m+1,...,n} αi from some y on, for any z1, . . . , zn

and x.
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The next proposition shows that a split conformity measure being isotonic and bal-

anced is not only a sufficient but also a necessary condition for the corresponding split

conformal transducer to be an RPS.

Proposition 7. If the split conformal transducer based on a split conformity measureA is an RPS,

A is isotonic and balanced.

Proof. SupposeA is not isotonic. Fixm, z1, . . . , zm, x, y, and y′ such that y < y′ but the con-

sequent of (6.2) is violated. Then the predictive distribution Q(z1, . . . , zm, (x, y), (x, ·), 1),

corresponding to the training sequence proper z1, . . . , zm, calibration sequence (x, y), test

object x, and τ = 1, will not be increasing: its value at y (which is 1) will be greater than

its value at y′ (which is 0.5).

Now suppose A is not balanced. Fix m, z1, . . . , zm, and x, x′ ∈ X such that

convA(z1, . . . , zm, (x,R)) 6= convA(z1, . . . , zm, (x′,R))

(cf. (6.3)). Suppose, for concreteness, that there is y ∈ R such that

convA(z1, . . . , zm, (x,R)) 3 y < convA(z1, . . . , zm, (x′,R)),

where y < S means ∀s ∈ S : y < s when S ⊆ R. (The other three possible cases can be

analyzed in the same way.) Let the training sequence proper be z1, . . . , zm, the calibration

sequence be (x, y), the test object be x′, and the random number be τ = 0. Then we will

have

lim
y′→−∞

Q(z1, . . . , zm, (x, y), (x′, y′), 0) > 0,

which contradicts R1 (cf. (4.2)).

Let us say that a split conformity measure A is strictly isotonic if (6.2) holds with both

“≤” replaced by “<”. A possible implementation of the SCPS based on a balanced strictly
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Algorithm 4 Split Conformal Predictive System
Require: A training sequence (xi, yi) ∈ Z, i = 1, . . . , n.
Require: A test object x ∈ X.
for i ∈ {1, . . . , n−m} do

Define Ci by the condition A(z1, . . . , zm, zm+i) = A(z1, . . . , zm, (x,Ci)).
end for
Sort C1, . . . , Cn−m in the increasing order obtaining C(1) ≤ · · · ≤ C(n−m).
Set C(0) := −∞ and C(n−m+1) := ∞.
Return the predictive distribution (6.4) for the label y of x.

isotonic split conformity measure is shown as Algorithm 4, where the predictive distribu-

tion is defined by

Q(z1, . . . , zn, (x, y), τ) :=
i+τ

n−m+1 if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n−m}

i′−1+(i′′−i′+2)τ
n−m+1 if y = C(i) for i ∈ {1, . . . , n−m},

(6.4)

where i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}. To use the terminology

of Chapter 4, the thickness of this predictive distribution is 1
n−m+1 with the exception size

at most n−m.

Computational complexity of the Algorithm 4 depends on how difficult it is to solve

the equation defining Ci. For a standard choice of split conformity measure:

A(z1, . . . , zm, (x, y)) :=
y − ŷ

σ̂
, (6.5)

with ŷ being prediction for the label y that is computed based on the training sequence

z1, . . . , zm and test object x,and σ̂ is an estimate of the quality of ŷ computed from the

same data. In this case the equation defining Ci

A(z1, . . . , zm, zm+i) = A(z1, . . . , zm, (x,Ci)) (6.6)

becomes
ym+i − ŷm+i

σ̂m+i
=

Ci − ŷ

σ̂
,
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where ŷm+i (resp. ŷ) is the prediction for ym+i (resp. y) computed from xm+i (resp. x) as

test object and z1, . . . , zm as training sequence, and σ̂m+i (resp. σ̂) is the estimate of the

quality of ŷm+i (resp. ŷ) computed from the same data. The last equation can be rewritten

to define expression for Ci as:

Ci := ŷ +
σ̂

σ̂m+i
(ym+i − ŷm+i) .

For more complicated split conformity measures A, it might be more efficient to use the

expression (6.1) directly for a grid of values of y.

6.3 Cross-conformal predictive distributions

Remember that a multiset (or bag) is different from a set in that it can contain several

copies of the same element. A split conformity measure A is a cross-conformity measure if

A(z1, . . . , zm, z) does not depend on the order of its first m arguments; in other words, if

A(z1, . . . , zm, z) only depends on the multiset *z1, . . . , zm+ and z (where * · · · + is used as

the analogue of {· · · } for multisets).

For a balanced isotonic cross-conformitymeasureA, the corresponding cross-conformal

predictive system (CCPS) is defined as follows.

Definition 6.3.1 (Cross-Conformal Predictive System (CCPS)).

py = Q(z1, . . . , zn, (x, y), τ) :=
1

n+ 1

K∑
k=1

∣∣{i ∈ Sk | αi,k < αy
k

}∣∣
+

τ

n+ 1

K∑
k=1

∣∣{i ∈ Sk | αi,k = αy
k

}∣∣+ τ

n+ 1
. (6.7)

Where (S1, . . . , SK) is a partition of the index set {1, . . . , n}, and zSk
consists of all zi,

i ∈ Sk for random split of the training sequence z1, . . . , zn into K non-empty multisets

(folds) zSk
, k = 1, . . . ,K , of equal (or as equal as possible) sizes (where K ∈ {2, 3, . . .} is

a parameter of the algorithm).
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Algorithm 5 Cross-Conformal Predictive System
Require: A training sequence (xi, yi) ∈ Z, i = 1, . . . , n.
Require: A test object x ∈ X.

Split z1, . . . , zn into K folds zSk
as described in text.

Set C := ∅, where C is a multiset.
for k ∈ {1, . . . ,K} do

for i ∈ Sk do
Define Ci,k by the condition A(zS−k

, zi) = A(zS−k
, (x,Ci,k)).

Put Ci,k in C.
end for

end for
Sort C in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
Set C(0) := −∞ and C(n+1) := ∞.
Return the predictive distribution (6.8) for the label y of x.

For each k ∈ {1, . . . ,K} and each potential label y ∈ R of the test object x, find the

conformity scores of the observations in zSk
and of (x, y) by

αi,k := A(zS−k
, zi), i ∈ Sk, αy

k := A(zS−k
, (x, y)),

where S−k := ∪j ̸=kSj = {1, . . . , n} \ Sk. The corresponding p-values and CCPS are de-

fined by equation 6.7.

The intuition behind (6.7) is that it becomes an SCPS when the training multisets zS−k

are replaced by a single hold-out training sequence (one disjoint from and independent

of z1, . . . , zn).

Algorithm 5 describes an implementation of the CCPS based on a balanced strictly

isotonic cross-conformity measure, where the predictive distribution is now defined by

Q(z1, . . . , zn, (x, y), τ) :=
i+τ
n+1 if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

i′−1+(i′′−i′+2)τ
n+1 if y = C(i) for i ∈ {1, . . . , n},

(6.8)

where, as before, i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}; the only

difference from (6.4) is that we use n in place of n − m (now all training observations

are used for calibration). The thickness of this predictive distribution is 1
n+1 with the
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exception size at most n. The size of the multiset C in Algorithm 5 grows from 0 to n as

the algorithm runs. As in the case of SCPS, it might be easier to use (6.7) directly if the

equations defining Ci,k are difficult to solve. (Alternatively, one could use (6.10) below

instead of (6.7).)

Definition 6.3.2 (Fold p-value). Define a fold p-value as separate p-value for each fold

pyk :=
1

|Sk|+ 1

∣∣{i ∈ Sk | αi,k < αy
k

}∣∣+ τ

|Sk|+ 1

∣∣{i ∈ Sk | αi,k = αy
k

}∣∣+ τ

|Sk|+ 1
(6.9)

for each fold (cf. (6.1)); let us check that py is close to being an average of pyk. Com-

paring (6.7) and (6.9), we can see that

(n+ 1)py − τ =

K∑
k=1

(|Sk|+ 1) pyk −Kτ,

which implies

py =
K∑
k=1

|Sk|+ 1

n+ 1
pyk −

K − 1

n+ 1
τ. (6.10)

The sum
∑K

k=1 . . . is not quite a weighted average of pyk since the sum of the weights is

slightly above 1 (“slightly” assumes K � n), but this is partially compensated by the

subtrahend in (6.10); overall, the right-hand side of (6.10) is a weighted average of pyk and

τ , with the weight in front of τ being negative.

According to the intuition behind cross-conformal predictive distributions described

earlier, we will get perfect validity for CCPS if we replace the K training multisets (the

complements to the K folds) by one hold-out training sequence. But whereas SCPS are

provably valid, in the sense of being RPS, real CCPS are not RPS: see the example in [135,

Appendix A]. This has been demonstrated in experimental studies, e.g., Linusson et al.

[81] has shown the danger of randomized and extremely unstable underlying algorithms.

(Perhaps such unstable algorithmsmight be stabilized, to some degree, by using the same

seed of the random numbers generator for each fold, or by averaging conformity scores

over several seeds, or both.)

A useful intuition in [81] is that “the random fold p-value and then essentially aver-

aged by cross-conformal predictors are to some degree independent. The distribution of
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cross-conformal p-values is intermediate between the uniformand the Bates distributions,

cross-conformal p-values are therefore conservative (for small significance levels) when

not exact.” According to the result in [147] (see, e.g., Table 1 for r := 1), one can obtain

provably valid (but perhaps conservative) p-values, when p-values output by a cross-

conformal transducer are multipled by 2. Linusson et al. [81] observed empirically that

“for randomized and unstable underlying algorithms even unadjusted p-values output

by a cross-conformal transducer are valid but perhaps overly conservative for interesting

(not exceeding 0.5) significance levels”.

A more general procedure than the cross-conformal predictor was proposed in [15]

under the name of “aggregated conformal predictor”. Similar methods might be applica-

ble for producing conformal predictive distributions.

6.4 Continuous ranked probability score

The continuous ranked probability score was previously defined in Chapter 1 (see 1.2.5)

as

CRPS(F, yi) :=

∫ ∞

−∞

(
F (y)− 1{y≥yi}

)2
dy, (6.11)

CRPS attains the lowest possible value of 0 when distribution function F is concen-

trated at yi, and in all other cases CRPS(F, yi) will be positive. (See, e.g., [40] for further

details and references.)

Equation (6.11) is not directly applicable to split and cross-conformal predictive distri-

butions, however in practice the fuzziness can usually be ignored, even for relatively small

datasets: see, e.g., Figure 6.1 and [136]. However, conceptually we do need to change the

definitions of split and cross-conformal predictive distributions slightly to remove their

fuzziness [140].

Instead of (6.4) and (6.8) we use their crisp modifications

Q(z1, . . . , zn, (x, y)) :=


i

n−m if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n−m}

i
n−m if y = C(i) and y 6= C(i+1) for i ∈ {1, . . . , n−m}

(6.12)
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FIGURE 6.1: The split conformal predictive distribution for a random test
object in the Boston Housing dataset (described in Section 6.5), the Least
Squares underlying algorithm, and a random 50% : 50% split of the training
sequence into proper training and calibration sequences. The blue solid line

corresponds to τ = 0 and the red dashed line to τ = 1.

and

Q(z1, . . . , zn, (x, y)) :=


i
n if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

i
n if y = C(i) and y 6= C(i+1) for i ∈ {1, . . . , n},

(6.13)

respectively; these modifications no longer depend on τ , and the convention for y = C(i)

does not affect the value of CRPS. In cases where the equation (6.6) or its analogue for the

CCPS are difficult to solve, we can instead use the following crisp modifications of (6.1)

and (6.7), respectively:

Q(z1, . . . , zn, (x, y)) :=
1

n−m
|{i = m+ 1, . . . , n | αi ≤ αy}| ,

Q(z1, . . . , zn, (x, y)) :=
1

n

K∑
k=1

∣∣{i ∈ Sk | αi,k ≤ αy
k

}∣∣ .
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The last equation, defining a crisp CCPS, can be rewritten as

Q(z1, . . . , zn, (x, y)) =
K∑
k=1

|Sk|
n

pyk

(cf. (6.10)), where the separate “p-values” for each fold are now defined as

pyk :=
1

|Sk|
∣∣{i ∈ Sk | αi,k ≤ αy

k

}∣∣
(they, however, do not satisfy any validity properties).

6.5 Experiments

The purpose of this section is to compare the predictive performance of SCPS and CCPS

and to recommend the choice of the parameter K for CCPS.

In our experiments we use five well-known benchmark datasets, namely Boston

Housing, Diabetes, Yacht Hydrodynamics, Wine Quality, and Condition Based

Maintenance of Naval Propulsion Plants (abbreviated to Naval Propulsion) avail-

able at http://scikit-learn.org/stable/datasets/ (the first two) and the UCI Machine

Learning repository [33] (the other ones). The first three datasets are small: Boston

Housing consists of 506 observations, Diabetes of 442 observations, and Yacht

Hydrodynamics of 308 observations; for them we use test sequences of length l := 100.

The Wine Quality dataset consists of 6497 observations, and we use test sequences of

length l := 1000. Finally, the Naval Propulsion dataset consists of 11,934 observations,

and we use test sequences of length l := 4000.

Given a training sequence (z1, . . . , zn) (where n ∈ {406, 342, 208, 5497, 7934}) and a

test sequence (zn+1, . . . , zn+l), the quality of prediction is represented by the distribution

of CRPS(Fi, yi), i = n+1, . . . , n+ l, where Fi is the predictive distribution for the label yi

of the test object xi. As already mentioned, the length l of the test sequence is 100, 1000,

or 4000 in our experiments.

In order to obtain boxplots less affected by the split of each dataset into a training and

test sequence and by the random split of each training sequence into a training sequence

http://scikit-learn.org/stable/datasets/
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proper and a calibration sequence (in the case of SCPS) orK folds (in the case of CCPS),

we use the procedure describe below (see experiments section in [143] for more details):

• Each dataset is randomly permuted 10 times.

• The last l observations of each permutation are used for testing and the rest for

training.

• The first m observations in the training sequence are used as training sequence

proper in the case of SCPS and consecutive blocks of the training sequence are used

as the K folds in the case of CCPS (using the scikit-learn KFold procedure with

no randomization).

• The boxplots in all figures given below are indexed by the fractionsm/n of the train-

ing sequence used as the training sequence proper (in the case of SCPS) or by the

numbers K of folds (in the case of CCPS).

• For each split and each boxplot we find the l valuesCRPS(Fi, yi) for all test observa-

tions (the same test sequence is used for each split); the resulting boxplot is based

on all 10 l numbers.

In all cases the SCPS and CCPS use the cross-conformity measure (a special case of

(6.5))

A(z1, . . . , zm, (x, y)) := y − ŷ, (6.14)

where ŷ is the prediction computed using the underlying algorithm U for the label of x

based on z1, . . . , zm as training sequence. (Remember that each cross-conformitymeasure

is also a split conformity measure.) Similarly to the CPS based on Least Squares and Ker-

nel Ridge Regression (as discussed in previous chapters — Chapters 5, 4), this procedure

is far from universal and can be expected to be efficient only for data that is not too far

from being homoscedastic.

Notice that, the SCPS is no longer provably calibrate because parameter tuning de-

pends on the full training sequence), we therefore also check its validity in our experi-

ments. To check the validity of both SCPS and CCPS, we run Algorithm 6.5 replacing
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FIGURE 6.2: The performance of the SCPS (left panel) and CCPS (right
panel) on the Boston Housing dataset using Least Squares (LS), Random
Forest (RF), and Neural Networks (NN) as the underlying algorithms, as
indicated on the left. The vertical axis uses the log scale and gives the CRPS.
Left panel: the numbers on the horizontal axis are the fractions m/n of the
training sequence used as the training sequence proper. Right panel: the

numbers on the horizontal axis are the numbers K of folds.

CRPS(Fi, yi) with Fi(yi) and replacing boxplots with plots, such as those in Figure 6.7

(described in detail at the end of this section).

The Boston Housing dataset consists of 506 observations each with 14 attributes (de-

scribing an area of Boston) and a real-valued label (median house price in that area).

Figure 6.2 shows the performance of the SCPS and CCPS.

The horizontal axis in the left panel is labelled by α ≈ m/n; the values of α used in our

experiments are between 0.1 and 0.9, plus a fewmore extreme values. For a given value of

α we set m := bαnc. We follow the approach in [141]. The CRPS loss is computed for the

(crisp) SCPS based on (6.14) and the three underlying algorithms on each observation in

the test sequence; as described above, we then represent the resulting 1000 CRPS losses

as a boxplot. We can see a characteristic U-shape (especially pronounced on the left);
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FIGURE 6.3: The analogue of Figure 6.2 for the Diabetes dataset.

small m/n lead to a significant increase in the CRPS loss, and large m/n lead to a slight

increase in the CRPS loss but a significant increase in its variability (the rightmost box

and its whiskers tend to be longer).

The right panel of Figure 6.2 is similar to the left panel, but now we use the CCPS and

label the horizontal axis by the number K of folds. The usual advice in cross validation

is to useK ∈ {5, 10}, and these two values produce reasonable results. In fact, the results

are remarkably stable and barely depend on K [140].

The Diabetes dataset consists of 10 physiological measures on 442 patients, and the

label indicates disease progression after one year. Figure 6.3 is the analogue of Figure 6.2

for this dataset. We can see the same tendencies, with K ∈ {5, 10} still being reasonable

numbers of folds for CCPS [140].

The Yacht Hydrodynamics is the smallest of our datasets. It consists of 7 attributes

including the basic hull dimensions and the boat velocity for 308 experiments, and the

task is to predict the residuary resistance of sailing yachts. Figure 6.4 suggests that the
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FIGURE 6.4: The analogue of Figure 6.2 for the Yacht Hydrodynamics
dataset.

behavior shown in Figures 6.2 and 6.3 is in fact typical of small datasets.

The Wine Quality dataset has information about 1599 red wines and 4898 white

wines. We merge these two groups creating another attribute taking two values, 0 for

white and 1 for red. The label is the quality of wine expressed as a score between 0 and

10. (The most common labels are 5 and 6, labels 3 and 9 are very uncommon, and labels

0 and 1 are absent [140]).

Figure 6.5 is qualitatively similar to Figures 6.2 and 6.3. The shape of the plots for SCPS

suggests that we need a reasonable length n−m of the calibration sequence, such as 100

or 200, since it determines the granularity of the predictive distributions (see, e.g., [140]):

as we have already mentioned in connection with (6.4), the thickness of the predictive

distribution is 1
n−m+1 . Increasing the length of the calibration sequence further does not

improve the predictive performance significantly, and starts hurting it when the training

sequence proper becomes too short.
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FIGURE 6.5: The analogue of Figure 6.2 for the Wine Quality dataset.

Figure 6.6 reports the results for the largest dataset that we use, Naval Propulsion. It

contains information about 11,934 simulated experiments, each described by 16 attributes,

and the task is to predict the Gas Turbine Compressor decay state coefficient for a propul-

sion plant. Here we observe the same general behavior.

The best results presented in Figures 6.2–6.6 are summarized in Table 6.1. Namely, the

table reports themedian CRPS losses shown in Figures 6.2–6.5 obtained by optimizing the

parameters m/n in the case of SCPS and K in the case of CCPS. In the majority of cases

CCPS perform better than SCPS. But what is even more important, CCPS are much less

sensitive to choosing their parameter K, and so the best results given in Table 6.1 are in

fact typical for them. In all our experiments, it is safe to choose any of the standard values

for the number K of folds in the range from 5 to 10.

A natural question is whether the CCPS satisfy the property of validity 4.4.1 at least

approximately; remember that there are no theoretical validity results for cross-conformal
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FIGURE 6.6: The analogue of Figure 6.2 for the Naval Propulsion dataset.

predictors, and it has been demonstrated theoretically [135, Appendix A] and experimen-

tally [81] that a loss of validity is possible. Figure 6.7 (right panel) shows the distribu-

tion of the values (6.13) for Boston Housing and K = 5, where z1, . . . , zn is the train-

ing sequence, and (x, y) range over the elements of the test sequence. Figure 6.7 (right

panel) provides the calibration curves, which are the sets of points (α, F (α)), α ∈ (0, 1)

ranging over the possible significance levels and F (α) being the percentage of the val-

ues Q(z1, . . . , zn, (x, y)) for (x, y) in the test sequence that do not exceed α [140]. The

right panels of Figures 6.8, 6.9, 6.10, and 6.11 are the analogues for the Diabetes, Yacht

Hydrodynamics, Wine Quality, and Naval Propulsion datasets, respectively. Under

perfect validity R2 in 4.4.1 and an infinitely long test sequence, the calibration curves

should be the diagonals shown as dashed lines on both panels of Figures 6.7–6.11; the

actual calibration curves are fairly close. The calibration curves for other K are roughly

similar. As mentioned earlier, we also give calibration results for SCPS (in the left panels

and with m/n ≈ 0.5).
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TABLE 6.1: Best results for the median CRPS loss for SCPS and CCPS for the
five datasets and three underlying algorithms.

Dataset underlying algorithm SCPS CCPS
Boston Housing Least Squares 1.726 1.533
Boston Housing Random Forest 0.972 0.906
Boston Housing Neural Network 1.240 1.211
Diabetes Least Squares 23.74 23.18
Diabetes Random Forest 24.23 24.33
Diabetes Neural Network 22.76 22.10
Yacht Hydrodynamics Least Squares 3.840 3.910
Yacht Hydrodynamics Random Forest 0.1615 0.1322
Yacht Hydrodynamics Neural Network 0.1944 0.1725
Wine Quality Least Squares 0.2810 0.2771
Wine Quality Random Forest 0.1681 0.1618
Wine Quality Neural Network 0.2711 0.2693
Naval Propulsion Least Squares 0.0007812 0.0007866
Naval Propulsion Random Forest 0.0001259 0.0001242
Naval Propulsion Neural Network 0.003051 0.003360

Not only is the efficiency of the CCPS with respect to the CRPS loss better than that

of the SCPS, it can also be argued that the CCPS may be safer from the point of view

of validity. Suppose that, for some reason, we would like to avoid randomization and

use (6.12) (in the case of SCPS) or (6.13) (in the case of CCPS) instead of (6.4) or (6.8),

respectively. The CCPS is still empirically valid in our experiments, even in the extreme

case of K = 100. On the other hand, when using (6.12) in place of (6.4), the SCPS lose

not only theoretical but also empirical validity. For example, for Boston Housing and

m/n = 0.99 (the right end of the horizontal axis in the left panel of Figure 6.2), the length

of the calibration sequence is 4, and so the empirical predictive distribution (6.12) only

takes values in {0, 0.25, 0.5, 0.75, 1}; the distribution of its values at the true labels is clearly

very different from being uniform.
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FIGURE 6.7: The calibration curves (i.e., the distributions of
Q(z1, . . . , zn, (x, y)) over the test sequence) for the SCPS and CCPS

on the Boston Housing dataset.

6.6 Conclusion

The main contribution of this chapter is extension of the study of probabilistic regression

to address the relative computational inefficiency of classical conformal predictors (pub-

lished paper [140]). Two novel computationally efficient versions of conformal predictive

systems are introduced — split conformal predictive systems (SPC) and cross-conformal

predictive system (CCPS). The main advantage of split conformal predictive systems is

their guaranteed validity. The main advantage of cross-conformal predictive systems is

greater predictive efficiency, for such predictive systems validity only holds empirically

and in the absence of excessive randomization. The main aim of this chapter is to define

and study computationally efficient versions of CPS without any restrictions related to

the underlying algorithm.
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FIGURE 6.8: The analogue of Figure 6.7 for the Diabetes dataset.
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FIGURE 6.9: The analogue of Figure 6.7 for the Yacht Hydrodynamics
dataset.
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FIGURE 6.10: The analogue of Figure 6.7 for the Wine Quality dataset.
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FIGURE 6.11: The analogue of Figure 6.7 for the Naval Propulsion dataset.
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Chapter 7

Conclusion

This thesis expands and advances machine learning research in probabilistic prediction

and introduces novel methods of producing well-calibrated probabilistic predictions for

both machine learning classification and regression problems.

Chapter 1 outlines standard machine learning techniques, introduces the main con-

cepts in probabilistic prediction and describes probabilistic prediction methods such as

conformal prediction and Venn prediction. Chapter 2 introduces probabilistic machine

learning and describes some of the calibration methods, both classical and modern, in-

cluding recently developed computationally efficient algorithms IVAP (inductive Venn–

Abers predictor) and CVAP (cross Venn–Abers predictor). The classical methods such

as Platt’s scaling and isotonic regression have disadvantages and do not produce theoret-

ical guarantees of validity of predictions. In addition, modern deep learning computer

visionmodels rely on convolution-based architectures that result in overconfident predic-

tions. Whilst innovations in deep learning continue to maximise predictive accuracy this

is often at the expense of predictive quality —whilst accuracy is being maximised, the in-

correct predictions are often accompanied by overconfidence resulting in significant risk

of wrong decisions, especially in critical applications such as healthcare and self-driving

cars. There is therefore a clear need for non-parametricmachine learningmethods that are

able to produce well-calibrated class probabilities for classification and valid prediction

intervals for regression.

Chapter 3 introduces a novel method of probabilistic prediction in multi-class classi-

fication setting. The multi-class probabilistic prediction problem is solved via dividing it
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into pairwise classification problems, calibrating binary class probabilities and then con-

verting binary class probabilities into mutli-class probabilities in order to assign each test

object to one of the k classes. Such approach allows to compute probabilistic loss metrics

such as the Log loss and the Brier loss and compare them both across various underlying

machine learning classification methods, as well across results obtained from applying

various calibration methods. By using IVAP and CVAP to calibrate binary classifiers and

then combining calibrated binary classification scores to obtainwell-calibratedmulti-class

probabilities, the resulting multi-class probabilistic classification method results in more

accurate probabilistic predictions that those obtained from both the underlying machine

learning classifiers as well as existing calibration methods such as Platt’s scaling and iso-

tonic regression applied in multi-class classification setting.

Chapter 4 introduces non-parametric approach to predictive distribution functions

using conformal prediction. In statistics, the theory of predictive distributions is based

on the assumption that samples are generated from a parametric model. This chapter’s

novel contribution is the non-parametric extension of statistical “prediction confidence

distributions” using only limited assumptions customary of machine learning, namely

that the observations are generated using the IID model. Unlike in the parametric ap-

proach of statistical predictive distributions, this non-parametric approach to predictive

distributions does not require for the data model to be specified. This approach results

in predictive distribution functions that are always valid for IID observations in terms of

guaranteed coverage. The advantage of predictive distribution functions over the usual

conformal prediction intervals is that conformal predictive distributions contain more in-

formation - a conformal predictive distribution Qn can produce a plethora of prediction

intervals corresponding to each confidence level 1− ϵ.

Chapter 5 extends the study of probabilistic regression and combines conformal pre-

dictive distributions (CPDs) with kernel methods to derive kernelized versions of the

algorithms described in Chapter 4. Kernelized versions of conformal predicitive distribu-

tions are studied theoretically to determine their computational efficiency. Experimental

study of the predictive efficiency demonstrates important advantages of the kernelized

versions of CPDs and shows that universal (Laplacian) kernel works remarkably well.
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Chapter 6 extends the study of probabilistic regression to address the relative compu-

tational inefficiency of classical conformal predictors. Two novel computationally efficient

conformal predictive systems are introduced— split conformal predictive systems (SPC)

and cross-conformal predictive system (CCPS). Split conformal predictive systems pro-

vide guaranteed validity, whilst the main advantage of cross-conformal predictive sys-

tems is greater predictive efficiency. For cross-conformal predictive systems validity only

holds empirically and in the absence of excessive randomization. The main aim of this

chapter is to define and study computationally efficient versions of CPS without any re-

strictions related to the underlying algorithm.
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