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Animals collecting patchily distributed resources
are faced with complex multi-location routing pro-
blems. Rather than comparing all possible routes,
they often find reasonably short solutions by
simply moving to the nearest unvisited resources
when foraging. Here, we report the travel optimiz-
ation performance of bumble-bees (Bombus
terrestris) foraging in a flight cage containing six
artificial flowers arranged such that movements
between nearest-neighbour locations would lead
to a long suboptimal route. After extensive training
(80 foraging bouts and at least 640 flower visits),
bees reduced their flight distances and prioritized
shortest possible routes, while almost never follow-
ing nearest-neighbour solutions. We discuss
possible strategies used during the establishment
of stable multi-location routes (or traplines), and
how these could allow bees and other animals
to solve complex routing problems through experi-
ence, without necessarily requiring a sophisticated
cognitive representation of space.
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1. INTRODUCTION
Complex problem solving is often seen as an indicator of
advanced intelligence requiring causal reasoning and a
brain with large processing power [1]. However, animals
sometimes perform remarkably well using simple
decision rules [2]. This is perhaps best demonstrated
by considering the case of routing decisions animals
face when exploiting patchily distributed resources.
These optimization problems are analogous to the
well-known travelling salesman problem, in which the
task is to find the shortest route that passes through a
set of locations (visiting each only once) before returning
to the start [3]. The only way to find the shortest route is
to measure and compare the lengths of all possible
routes, which becomes increasingly difficult for large
sets of locations since the number of possible routes
Electronic supplementary material is available at http://dx.doi.org/
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increases factorially with the number of locations to
visit. However, approximations of the optimal solution
can be obtained within a reasonable time using heuristic
procedures and computer simulations [4]. Therefore,
rather than comparing all routes, animals are assumed
to rely on simple heuristics coupled with spatial
memory [5]. For instance, humans navigating between
multiple locations tend to move to the nearest available
unvisited location (or clusters of locations) until all
have been visited [6]. This observation is congruent
with findings from non-human primates [7,8], rats [9]
and bees [10,11], suggesting that foraging animals
find functional routes by linking nearest-neighbour
resources. Such a movement rule may facilitate the
establishment of stable and repeatable multi-location
routes or ‘traplines’ [12], a taxonomically widespread
behaviour known to increase foraging efficiency [13].
While animals are able to modify their traplines in
response to changes in both the distribution [14] and
quality [15] of resources, the underlying optimization
process remains unknown.

To test whether bees rely on nearest-neighbour
movements, we investigated the travel optimization
performance of traplining bumble-bees faced with a
multi-location routing problem in a flight cage. Bees
were observed foraging on six artificial flowers arranged
such that movements between nearest-neighbour
flowers would lead to a long suboptimal route.
2. MATERIAL AND METHODS
(a) Subjects

Workers from a commercially obtained Bombus terrestris colony
(Syngenta Bioline Bees, Weert, The Netherlands) were marked
with individually numbered tags within 1 day of emergence. The
colony was provided with ad libitum pollen. Workers collected
sucrose solution (40% w/w) from artificial flowers.

(b) Artificial flowers

Experiments were performed in an indoor flight room (870 � 730 �
200 cm) with controlled illumination (for details see Lihoreau et al.
[14]). The nest-box and six artificial flowers were placed in different
locations (electronic supplementary material, figure S1a). Each
flower consisted of a blue landing platform sitting on a sucrose reser-
voir, from which a feeding cup was accessible to the bees (electronic
supplementary material, figure S1b). Flowers were refilled using a
remote control box. Spatial arrangement of the flowers maximized
the discrepancy between the distance a bee would fly when following
a ‘nearest-neighbour’ strategy (starting and ending at the nest, the
bee flies to the nearest unvisited flower until all flowers are visited) or
an ‘optimal’ strategy (starting and ending at the nest, the bee visits all
the flowers once using the shortest possible route: electronic sup-
plementary material, figure S1a). The array provided one unique
nearest-neighbour route and two optimal routes (clockwise or anti-
clockwise). Posters on the walls acted as unique landmarks to help
bees navigate (electronic supplementary material, figures S1a and S2).

(c) Procedure

Prior to tests, bees were allowed to forage ad libitum on the six flow-
ers (feeding cup capacity: 5 ml sucrose solution per flower) placed in
a linear patch 1 m in front of the nest entrance and refilled after each
visit. After 2 h, each forager was observed for three additional fora-
ging bouts and the volume of sucrose ingested during each of these
bouts was used to estimate its crop capacity (range: 120–180 ml).
Using this information, we set the rewards provided by each flower
to one-sixth of each individual’s crop capacity during experiments,
so that a worker feeding from all six flowers would fill its crop
within a foraging bout. Test bees were selected to minimize variations
in age and body size (n ¼ 8; age: mean+ s.e. ¼ 9.25+2.18 days;
thorax width: mean+ s.e. ¼ 5.23+0.10 mm). They were observed
individually for 80 foraging bouts on the same day in the six-flower
arrangement (electronic supplementary material, figure S1a). Flow-
ers were refilled after each foraging bout. For each bout, we recorded
the order in which the bee landed on each flower and the time of each
visit. The distance flown was calculated as the minimum distance
This journal is q 2011 The Royal Society
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Figure 1. Travel optimization performance. Box plots indicate (a) average flight distances, (b) number of revisits to flowers, and
(c) flight durations per bin of 10 foraging bouts (n ¼ 8 bees). In each box, the thick horizontal bar is the median, while the lower

and upper edges represent the 25% and 75% quartiles, respectively. Whiskers indicate the maximum and minimum values that
are not outliers.
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flown in a straight line between flowers. Between testing bees, flowers
were washed (70% ethanol) to remove scent marks.

(d) Data analysis

We analysed the travel optimization performance of bees (flight dis-
tances, flight durations and number of flower visits) using complete
flower visitation sequences, including all revisits to the same flower.
To analyse the geometry of routes, we focused on the first visit to
each flower only [14,15]. Excluding revisits does not influence the over-
all geometry, as the clear majority (69.75% of revisits, n ¼ 3696) were
immediate returns to the flower just visited (not different locations) and
revisit frequency drops sharply with experience (see §3). Furthermore,
a bee moving between nearest-neighbour flowers and making ad libi-
tum revisits would never follow the shortest possible (convex-hull)
route. Assuming that there are 720 (6!) possible routes to visit all flow-
ers once, we explored the frequency of route usage using multinomial
tests with a random probability of 1/720. We assessed the directionality
of bees (tendency to move in a constant direction between flowers) by
comparing the number of clockwise and anti-clockwise sequences with
binomial tests. We excluded from analyses bouts in which bees did not
visit all six flowers. Most of these bouts occurred in inexperienced bees
(greater than 50% in the first 10 bouts, electronic supplementary
material, table S1) and were equally distributed among bees
(x2

7 ¼ 8:88; p ¼ 0.26, mean+ s.e. ¼ 10.31+1.54). Means are given
with standard errors.
3. RESULTS
(a) Travel optimization performance

Bees significantly reduced their flight distances as they
gained experience with the flower array (generalized
linear mixed model (GLMM), t576 ¼ 8.81, p , 0.01),
Biol. Lett. (2012)
from a mean distance of 6541 (+1354) cm in the
first 10 bouts (165.68+55.02% longer than optimal
route length) to 3840 (+512) cm in the last 10 bouts
(55.96+20.78% longer than optimal route length;
figure 1a). This twofold reduction in flight distance
was accompanied by a decrease in the number of
revisits to empty flowers (GLMM, t576 ¼ 10.29, p ,

0.01; figure 1b), and the flight duration (GLMM,
t576 ¼ 11.20, p , 0.01; figure 1c).
(b) Spatial geometry of routes

Each bee used an average of 10.75 (+0.99) different
routes, significantly more than expected by chance
(electronic supplementary material, table S1). Six of
the bees selected an optimal route as their primary
(most frequently used) route and the other two
selected an optimal route as their secondary route
(figure 2). On average, they started using the shortest
possible route after completing 26.63 (+4.88) fora-
ging bouts and used it in 21.41 per cent (+2.96) of
all bouts (figure 2). In contrast, they flew the nearest-
neighbour route in only 0.31 per cent (+0.20) of
their bouts and none of them used it more often than
expected by chance. Analysis of choice sequences, irre-
spective of which flower was visited first, confirmed
that bees showed no tendency to move between
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Figure 2. Spatial geometry of routes. Scale diagrams represent (a) the primary and (b) the secondary route for each bee (n ¼ 8).

Filled circles are flowers, N is the nest-box and arrows indicate the direction in which the bee moved. The number above each
panel is the frequency with which the route was used during 80 trials. Asterisks (*) indicate an optimal route, greater than sym-
bols (.) indicate clockwise routes and less than symbols (,) indicate anti-clockwise routes. Axis labels are given in centimetres.

Table 1. Average percentage of foraging bouts (mean+ s.e., n ¼ 8 bees) in which bees followed the optimal travel distance or

linked flower visits by making nearest-neighbour movements in relation to the first visited flower. Numbers in parentheses
indicate the travel distance for each sequence. Bees did not follow an optimal route if their first visit was not to either flower 1
or 6. Wilcoxon tests (p-values) were used to compare the percentage of bouts starting at each flower in which bees followed
an optimal route or the nearest-neighbour route.

first visited flower

optimizing overall travel distance linking nearest-neighbour flowers

sequence % of bouts sequence % of bouts p-value

1 123 456 (2462 cm) 11.41+1.41 124 563 (3380 cm) 0.31+0.06 0.02
2 213 456 (2692 cm) 1.41+0.25 214 563 (3518 cm) 0 0.17

3 345 621 (2889 cm) 0.16+0.05 345 126 (2984 cm) 1.56+0.34 0.27
4 453 216 (2855 cm) 0.16+0.05 451 263 (3771 cm) 0.47+0.07 0.42
5 543 216 (2633 cm) 1.56+0.29 543 216 (2633 cm) 1.56+0.29 1
6 654 321 (2462 cm) 10+0.90 612 453 (2985 cm) 0.16+0.05 0.01
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nearest-neighbour flowers (only 4.06+1.13% of all
bouts; table 1). Bees also did not optimize the geome-
try of routes when the first flower they visited was
neither flower 1 nor 6 (3.29+1.46% of all bouts;
table 1). However, each bee exhibited a biased direc-
tionality of movements (binomial test, p , 0.05 for
7 bees; figure 2), with a consistent tendency to visit
the flowers either in a clockwise or anti-clockwise
sequence. The fact that bees showed no tendency to
visit flowers close to the flight cage perimeter more
often than flowers nearer the centre (electronic sup-
plementary material, figure S3), suggests it is unlikely
that bees engaged in wall-following behaviour.
4. DISCUSSION
Most bees minimized their overall travel distances by
selecting the shortest possible path as a trapline.
Although previous studies suggested that bees use a
nearest-neighbour rule to develop multi-location
routes, flower arrangements were not specifically
designed to test this hypothesis [10,11]. Our results
clearly demonstrate that they do not rely on such a rule
when it produces a profoundly suboptimal outcome.

So how do bees optimize their routes between flow-
ers? The fact that bees gradually reduced their travel
Biol. Lett. (2012)
distances with experience indicates that the optimiz-
ation process relies on learning and spatial memory
of flower locations. Flower visitation sequences also
suggest that the acquisition of short traplines could
be facilitated by a consistent directionality of move-
ments. Stable flight direction when leaving a flower
may initially generate straight route segments and a
tendency to choose the next flower visited by its proxi-
mity to the current angular bearing of travel. In this
experiment, such a strategy would favour the establish-
ment of circular routes around the edge of the array in
combination with path integration and spatial memory
of flower locations [16,17]. Gradual optimization of
route length may then occur with experience (by
trial-and-error) by comparing the length of the current
route to those previously explored, possibly using
differences in the rates of optic flow [18]. Such an
optimization process is very similar to those
implemented in ‘convex-hull’ heuristics (which calcu-
late the minimum polygon containing the entire set
of points in an array [4]). These heuristics from com-
puter sciences have been proposed to explain human
optimization performance when connecting dots on a
computer screen in visual versions of the travelling
salesman problem [19]. Whether animals use this
movement rule when navigating between distant
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locations remains to be tested. Convex-hull heuristics
could provide a parsimonious explanation to com-
plex routing problem solving by traplining animals,
without necessarily requiring a sophisticated cognitive
representation of space.

This work was supported by a combined grant from the
Wellcome Trust, BBSRC and EPSRC (BB/F52765X/1).
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