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Kernels and Quasi-Kernels

Definition
A kernel is an independent set K ⊆ V(D) such that any vertex
v ∈ V(D) \K has an arc from v to a vertex u ∈ K.

Definition
A quasi-kernel is an independent set Q ⊆ V(D) such that any vertex
v ∈ V(D) \Q, there exists a directed path with at most two arcs from v to
a vertex u ∈ Q.
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Every digraph has a quasi-kernel

Not every digraph has a kernel.

But Chvátal and Lovász proved that every
digraph has a quasi-kernel.

Theorem ([V. Chvátal and L. Lovász, 1974])
Every digraph has a quasi-kernel.

Proof.
1 Take any vertex v and remove its closed in-neighbourhood N−[v].
2 Form inductively a quasi-kernel Q in the remaining digraph D−N−[v].
3 If v has no out-neighbour in Q, then we add v to Q. Otherwise, Q is a

quasi-kernel of D.
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Conjecture and a equalvalent conjecture

Conjecture 1([P. L. Erdős and L. A. Sźekely, 1976])
Every sink-free digraph D=(V(D),A(D)) has a quasi-kernel of size at most
|V(D)|/2.

A sink is a vertex which has no out-neighour in D.

Why sink-free?
Sinks are necessarily contained in any quasi-kernel of D.

Conjecture
2([A. Kostochka, R. Luo, and S. Shan, 2020])
Let S be the set of sinks of D. Then D has a quasi-kernel Q such that
|Q| ≤ |V(D)|+|S|−|N−(S)|

2 .
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Our Result I (Anti-Claw-Free Digraphs)

Theorem
Every sink-free digraph with no induced anti-claw has a quasi-kernel of size
at most |V(D)|/2.

Figure: Anti-Claw(K⃗3,1)
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Our Result I (Anti-Claw-Free Digraphs)

Theorem
Every sink-free digraph with no induced K⃗4,1 and no induced K⃗+

4,1 has a
quasi-kernel of size at most |V(D)|/2.

Figure: K⃗4,1 Figure: K⃗+
4,1
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Quasi-kernel Q and its second neighbourhood

N−−(Q) N−(Q) Q
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The Maximal Matching From N−(Q) to Q

N−−(Q) N−(Q) Q
M
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The Maximal Matching From N−(Q) to Q

M1

A = Q\M1B = N−(Q)\M2

M2

N−−(Q) N−(Q) Q
M
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The Maximal Matching From N−(Q) to Q

M1

A = Q\M1B = N−(Q)\M2

M2

N−−(Q) N−(Q) Q
M

Obervation 1
M1 is a quasi-kernel of D[V(D) \ A].
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The Maximal Matching From N−(Q) to Q
For a minimal quasi-kernel Q in D

M1

A = Q\M1B = N−(Q)\M2

M2

N−−(Q) N−(Q) Q
M

Observation 2
If Q is minimal quasi-kernel then there is no arc from A to N−(Q).
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The Maximal Matching From N−(Q) to Q
For a minimal quasi-kernel Q in D

M1

A = Q\M1B = N−(Q)\M2

M2

N−−(Q) N−(Q) Q
M

Observation 3
If Q is minimal quasi-kernel then for all v ∈ A, |N+(v) ∩ N−−(Q)| ≥ 1.
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Sketch of the Proof

M1

A = Q\M1B = N−(Q)\M2

M2

N−−(Q) N−(Q) Q
M

1 Let’s assume that Q is not small or equalvalently
|N−−(Q)|+ |N−(Q)| < |Q| = |M1|+ |A|. In particular, |N−−(Q)| < |A|.

2 By Observation 3, there must exist a vertex v ∈ N−−(Q) that has (at least)
two in-neighbours in A.

3 v also must have an in-nerghbour in M1 which togather with two
in-neighbours in A forms an induced anti-claw, a contradiction.
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The One-way Split Digraphs

Definition
A digraph D is called a one-way split digraph, if its vertex set can be
partitioned into X and Y, such that X induces an independent set and Y
induces a semicomplete digraph (a digraph in which there is at least one
arc between every pair of vertices) and any arcs between X and Y go from
X to Y .

X (Independent) Y (Semicomplete)
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Our Result II (One-way Split Digraphs)

Theorem
Let D be a one-way split digraph of order n with no sinks. Then D has a
quasi-kernel of size at most n+3

2 −
√

n. Furthermore, for infinitely many
values of n there exists a one-way split digraph of order n, with no sink,
such that the minimum size of quasi-kernels of D is n+3

2 −
√

n.
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Sketch of the Proof (for the conjecture)

1 For any vertex in v ∈ V(X), we choose an arbitary vertex in N+(v)
and denote it by R(v). Construct an auxiliary digraph H whose vertex
set V(H) = V(X), and vw ∈ A(H) if and only if R(v)R(w) ∈ A(Y) or
R(v) = R(w).

Example
X (Independent)

x y

z
Y (Semicomplete)
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set V(H) = V(X), and vw ∈ A(H) if and only if R(v)R(w) ∈ A(Y) or
R(v) = R(w).

Example
X (Independent)

x y

z
Y (Semicomplete)
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Sketch of the Proof (for the conjecture)

1 For any vertex in v ∈ V(X), we choose an arbitary vertex in N+(v)
and denote it by R(v). Construct a auxiliary digraph H whose vertex
set V(H) = V(X), and vw ∈ A(H) if and only if R(v)R(w) ∈ A(Y) or
R(v) = R(w).

2 Observe that there is at least one arc between any pair of vertices in
H.

3 Thus, there must be one vertex v whose in-neighbours are at least
|X|−1

2 .
4 How to choose the quasi-kernel? We choose all vertex in X but the

closed in-neighbourhood of v and an vertex in Y. The size of this set
is |X|−1

2 + 1 ≤ |V|/2 (if we assume V(Y) is not an empty set).
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How to Choose the vertex and Why it is a
quasi-kernel?

demonstration

v

N−
H(v)

X \ (N−
H(v) ∪ {v})

R(v)

WE SHOULD CHOOSE THIS VERTEX!
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A Extremal Example

Example
We let k ≥ 1 be any integer and construct the digraph Dk of order
(2k + 1)2 as follows. Let T be a k-regular tournament of order 2k + 1 and
for each vertex, v, of T add 2k new vertices, Vv, with arcs into v. The
resulting digraph, Dk, has order (2k + 1)2 and is a one-way split digraph
with partition V(T) (the tournament) and V(Dk) \ V(T) (the independent
set).

The size of quasi-kernels in |Q|:

|Q| ≥ 2k2 + 1 =
4k2 + 4k + 1

2 − 4k + 2
2 +

3
2 =

n
2 −

√
n +

3
2
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Thank you for your attention!
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