RESULTS ON THE SMALL QUASI-KERNEL FOR ANTI-CLAW-FREE AND ONE-WAY SPLIT DIGRAPHS

Jiangdong Ai¹ Stefanie Gerke² Gregory Gutin¹ Anders Yeo³ Yacong Zhou¹ (Yacong.Zhou.2021@live.rhul.ac.uk)

¹Department of Computer Science, Royal Holloway University of London, London, UK ²Department of Mathematics, Royal Holloway University of London, London, UK ³Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

29th British Combinatorial Conference, 2022

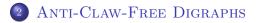
YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

BCC 2022 1/22

(日本) (日本) (日本)

1 Small Quasi-kernel Conjecture



YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

BCC 2022

2/22

DEFINITION

A kernel is an independent set $K \subseteq V(D)$ such that any vertex $v \in V(D) \setminus K$ has an arc from v to a vertex $u \in K$.

DEFINITION

A quasi-kernel is an independent set $Q \subseteq V(D)$ such that any vertex $v \in V(D) \setminus Q$, there exists a directed path with at most two arcs from v to a vertex $u \in Q$.

▲御▶ ▲ 臣▶ ▲ 臣▶ 二 臣

EVERY DIGRAPH HAS A QUASI-KERNEL

Not every digraph has a kernel.

THEOREM ([V. CHVÁTAL AND L. LOVÁSZ, 1974])

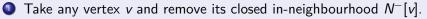
Every digraph has a quasi-kernel.

ヨト・イヨト

THEOREM ([V. CHVÁTAL AND L. LOVÁSZ, 1974])

Every digraph has a quasi-kernel.

Proof.



Results on the Small Quasi-Kernel

BCC 2022 4/22

(4) E (4) E (4)

THEOREM ([V. CHVÁTAL AND L. LOVÁSZ, 1974])

Every digraph has a quasi-kernel.

Proof.

- **1** Take any vertex v and remove its closed in-neighbourhood $N^{-}[v]$.
- **②** Form inductively a quasi-kernel Q in the remaining digraph $D N^{-}[v]$.

<日本

<b

THEOREM ([V. CHVÁTAL AND L. LOVÁSZ, 1974])

Every digraph has a quasi-kernel.

Proof.

- **1** Take any vertex v and remove its closed in-neighbourhood $N^{-}[v]$.
- **②** Form inductively a quasi-kernel Q in the remaining digraph $D N^{-}[v]$.
- If v has no out-neighbour in Q, then we add v to Q. Otherwise, Q is a quasi-kernel of D.

• A sink is a vertex which has no out-neighour in D.

• A sink is a vertex which has no out-neighour in D. Why sink-free?

- A sink is a vertex which has no out-neighour in D. Why sink-free?
- Sinks are necessarily contained in any quasi-kernel of D.

- A sink is a vertex which has no out-neighour in D. Why sink-free?
- Sinks are necessarily contained in any quasi-kernel of D.

CONJECTURE 2([A. KOSTOCHKA, R. LUO, AND S. SHAN, 2020]) Let S be the set of sinks of D. Then D has a quasi-kernel Q such that $|Q| \leq \frac{|V(D)|+|S|-|N^-(S)|}{2}$.

イロト イヨト イヨト イヨト 三日

Our Result I (Anti-Claw-Free Digraphs)

THEOREM

Every sink-free digraph with no induced anti-claw has a quasi-kernel of size at most |V(D)|/2.

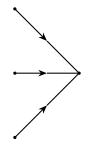


FIGURE: Anti-Claw($\vec{K}_{3,1}$)

YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

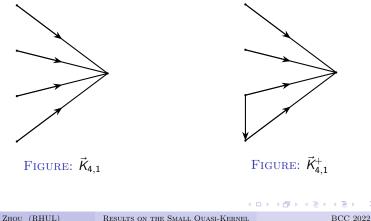
BCC 2022 6/22

ヨト・イヨト

OUR RESULT I (ANTI-CLAW-FREE DIGRAPHS)

THEOREM

Every sink-free digraph with no induced $\vec{K}_{4,1}$ and no induced $\vec{K}_{4,1}^+$ has a quasi-kernel of size at most |V(D)|/2.

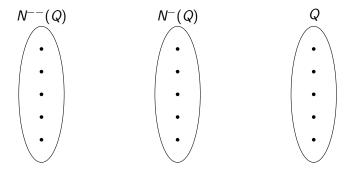


7/22

YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

QUASI-KERNEL Q and its second neighbourhood

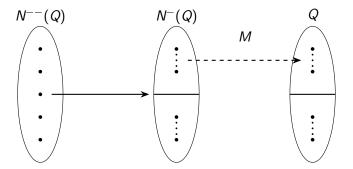


RESULTS ON THE SMALL QUASI-KERNEL

크 BCC 2022 8/22

∃ >

The Maximal Matching From $N^{-}(Q)$ to Q

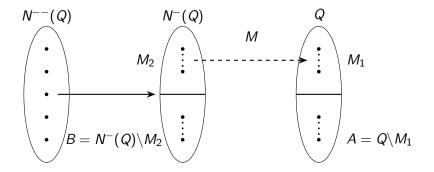


Results on the Small Quasi-Kernel

æ BCC 2022 9/22

< E

The Maximal Matching From $N^-(Q)$ to Q

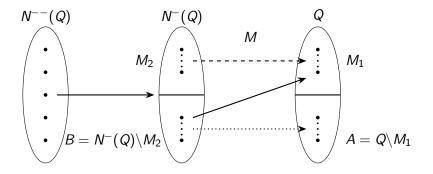


Results on the Small Quasi-Kernel

BCC 2022 10 / 22

크

The Maximal Matching From $N^-(Q)$ to Q



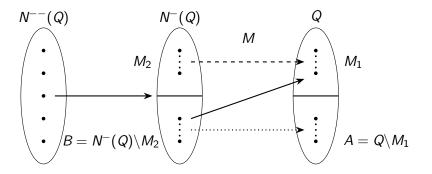
YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

BCC 2022 11/22

표 문 표

THE MAXIMAL MATCHING FROM $N^{-}(Q)$ to Q



OBERVATION 1

```
M_1 is a quasi-kernel of D[V(D) \setminus A].
```

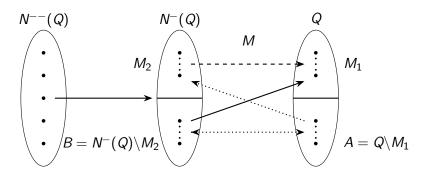
YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

크 BCC 2022 11/22

★ E ► < E ►</p>

THE MAXIMAL MATCHING FROM $N^{-}(Q)$ to QFor a minimal quasi-kernel Q in D



Observation 2

If Q is minimal quasi-kernel then there is no arc from A to $N^{-}(Q)$.

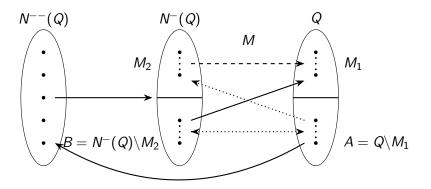
YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

BCC 2022 12/22

글 에 에 글 어

THE MAXIMAL MATCHING FROM $N^{-}(Q)$ to QFor a minimal quasi-kernel Q in D



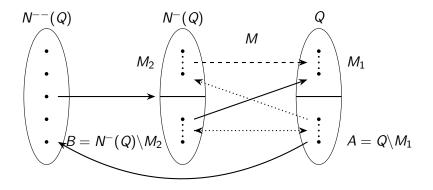
If Q is minimal quasi-kernel then for all $v \in A$, $|N^+(v) \cap N^{--}(Q)| \ge 1$.

YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

▶ < ≣ ▶ ≣ ∽ Q () BCC 2022 13/22

・ロト ・回ト ・ヨト ・ヨト



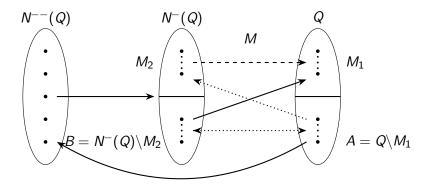
YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

BCC 2022 14/22

æ

回 とう キャン・キャン



• Let's assume that Q is not small or equalvalently $|N^{--}(Q)| + |N^{-}(Q)| < |Q|$

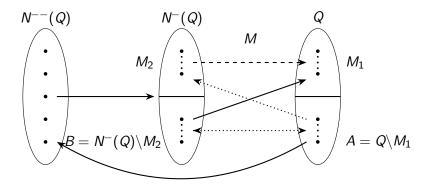
YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

BCC 2022 14/22

크

E ► < E ►



• Let's assume that Q is not small or equalvalently $|N^{--}(Q)| + |N^{-}(Q)| < |Q| = |M_1| + |A|.$

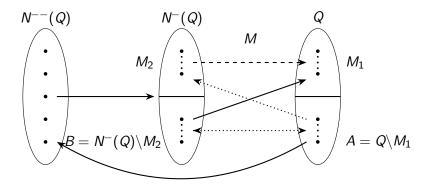
YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

BCC 2022 14/22

크

★ E ► < E ►</p>



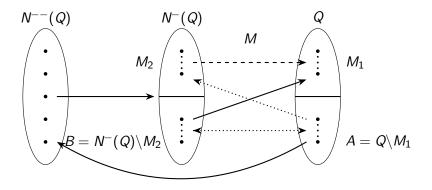
Let's assume that Q is not small or equalvalently $|N^{--}(Q)| + |N^{-}(Q)| < |Q| = |M_1| + |A|$. In particular, $|N^{--}(Q)| < |A|$.

YACONG ZHOU (RHUL)

Results on the Small Quasi-Kernel

æ BCC 2022 14/22

> < E > < E >

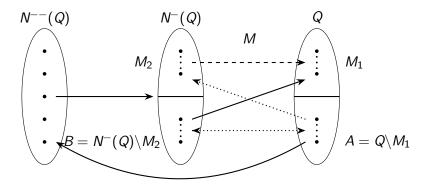


Let's assume that Q is not small or equalvalently
 |N⁻⁻(Q)| + |N⁻(Q)| < |Q| = |M₁| + |A|. In particular, |N⁻⁻(Q)| < |A|.
 By Observation 3, there must exist a vertex v ∈ N⁻⁻(Q) that has (at least)

By Observation 3, there must exist a vertex $v \in N$ (Q) that has (at least) two in-neighbours in A.

YACONG ZHOU (RHUL)

★ E ► < E ►</p>



Let's assume that Q is not small or equalvalently $|N^{--}(Q)| + |N^{-}(Q)| < |Q| = |M_1| + |A|.$ In particular, $|N^{--}(Q)| < |A|.$

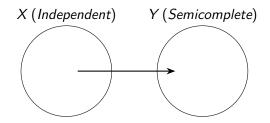
- By Observation 3, there must exist a vertex v ∈ N⁻⁻(Q) that has (at least) two in-neighbours in A.
- v also must have an in-nerghbour in M₁ which togather with two in-neighbours in A forms an induced anti-claw, a contradiction.

YACONG ZHOU (RHUL)

The One-way Split Digraphs

DEFINITION

A digraph D is called a one-way split digraph, if its vertex set can be partitioned into X and Y, such that X induces an independent set and Y induces a semicomplete digraph (a digraph in which there is at least one arc between every pair of vertices) and any arcs between X and Y go from X to Y.



Results on the Small Quasi-Kernel

• • = •

THEOREM

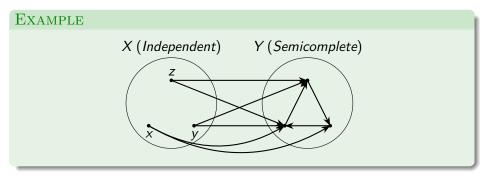
Let D be a one-way split digraph of order n with no sinks. Then D has a quasi-kernel of size at most $\frac{n+3}{2} - \sqrt{n}$. Furthermore, for infinitely many values of n there exists a one-way split digraph of order n, with no sink, such that the minimum size of quasi-kernels of D is $\frac{n+3}{2} - \sqrt{n}$.

★ E ► ★ E ► E

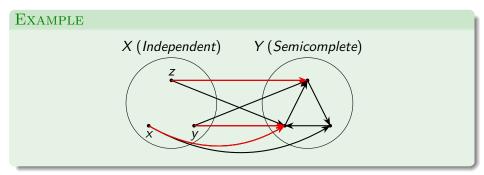
• For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct an auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

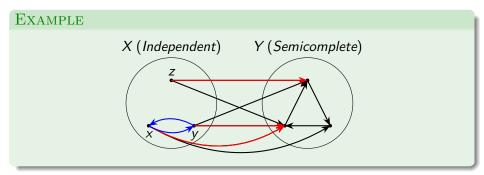
• For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct an auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).



• For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct an auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).

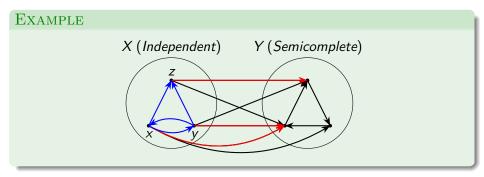


• For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct an auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).



Sketch of the Proof (for the conjecture)

• For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct an auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).



Results on the Small Quasi-Kernel

イロト イヨト イヨト イヨト 三日

Sketch of the Proof (for the conjecture)

- For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct a auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).
- Observe that there is at least one arc between any pair of vertices in H.

Sketch of the Proof (for the conjecture)

- For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct a auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).
- Observe that there is at least one arc between any pair of vertices in H.
- Thus, there must be one vertex v whose in-neighbours are at least $\frac{|X|-1}{2}$.

Sketch of the Proof (for the conjecture)

- For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct a auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).
- Observe that there is at least one arc between any pair of vertices in H.
- Thus, there must be one vertex v whose in-neighbours are at least $\frac{|X|-1}{2}$.
- How to choose the quasi-kernel?

★ E ► ★ E ► E

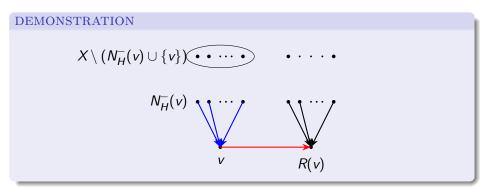
- For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct a auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).
- Observe that there is at least one arc between any pair of vertices in H.
- Thus, there must be one vertex v whose in-neighbours are at least $\frac{|X|-1}{2}$.
- How to choose the quasi-kernel? We choose all vertex in X but the closed in-neighbourhood of v and an vertex in Y. The size of this set is |X|-12 + 1

(日)

- For any vertex in $v \in V(X)$, we choose an arbitary vertex in $N^+(v)$ and denote it by R(v). Construct a auxiliary digraph H whose vertex set V(H) = V(X), and $vw \in A(H)$ if and only if $R(v)R(w) \in A(Y)$ or R(v) = R(w).
- Observe that there is at least one arc between any pair of vertices in H.
- Thus, there must be one vertex v whose in-neighbours are at least $\frac{|X|-1}{2}$.
- How to choose the quasi-kernel? We choose all vertex in X but the closed in-neighbourhood of v and an vertex in Y. The size of this set is $\frac{|X|-1}{2} + 1 \le |V|/2$ (if we assume V(Y) is not an empty set).

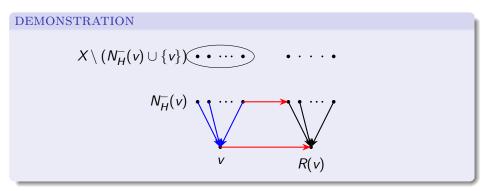
イロト イヨト イヨト イヨト 三日

How to Choose the vertex and Why it is a QUASI-KERNEL?



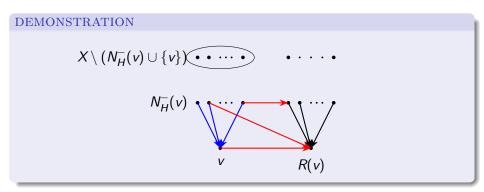
▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

How to Choose the vertex and Why it is a QUASI-KERNEL?



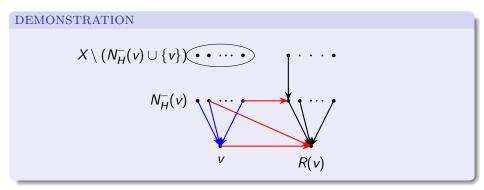
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How to Choose the vertex and Why it is a QUASI-KERNEL?



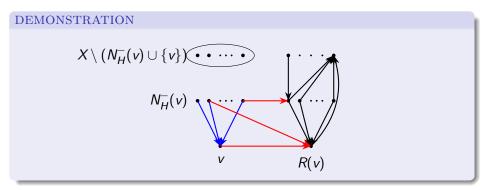
▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

How to Choose the vertex and Why it is a quasi-kernel?



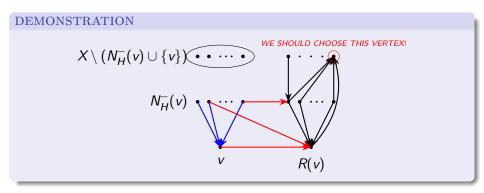
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How to Choose the vertex and Why it is a quasi-kernel?



◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

How to Choose the vertex and Why it is a quasi-kernel?



Results on the Small Quasi-Kernel

BCC 2022 19/22

イロト イヨト イヨト イヨト 二日

YACONG ZHOU (RHUL)

A EXTREMAL EXAMPLE

EXAMPLE

We let $k \ge 1$ be any integer and construct the digraph D_k of order $(2k+1)^2$ as follows. Let T be a k-regular tournament of order 2k+1 and for each vertex, v, of T add 2k new vertices, V_v , with arcs into v. The resulting digraph, D_k , has order $(2k+1)^2$ and is a one-way split digraph with partition V(T) (the tournament) and $V(D_k) \setminus V(T)$ (the independent set).

EXAMPLE

We let $k \ge 1$ be any integer and construct the digraph D_k of order $(2k+1)^2$ as follows. Let T be a k-regular tournament of order 2k+1 and for each vertex, v, of T add 2k new vertices, V_v , with arcs into v. The resulting digraph, D_k , has order $(2k+1)^2$ and is a one-way split digraph with partition V(T) (the tournament) and $V(D_k) \setminus V(T)$ (the independent set).

The size of quasi-kernels in |Q|:

$$|Q| \ge 2k^2 + 1 = \frac{4k^2 + 4k + 1}{2} - \frac{4k + 2}{2} + \frac{3}{2} = \frac{n}{2} - \sqrt{n} + \frac{3}{2}$$

Thank you for your attention!

YACONG ZHOU (RHUL)

RESULTS ON THE SMALL QUASI-KERNEL

BCC 2022 21 / 22

æ

E > 4 E >

▲ ▲

V. Chvátal and L. Lovász

Every digraph has a semi-kernel.

In Lecture Notes in Mathematics, 411 (1974), 175-175.

Erdős and Sźekely

Small quasi-kernels in directed graphs.

http://lemon.cs.elte.hu/ egres/open/Small quasi-kernels in directed graphs.

A. Kostochka, R. Luo, and S. Shan Towards the Small Quasi-Kernel Conjecture. arXiv:2001.04003, 2020.

A. van Hulst

Kernels and Small Quasi-Kernels in Digraphs.

arXiv:2110.00789, 2021.

• E • • E •