
Categorical specification and implementation
of Replicated Data Types

Fabio Gadducci

Dipartimento di Informatica, Università di Pisa

Hernán Melgratti

ICC – Universidad de Buenos Aires – CONICET, Argentina

Christian Roldán

IMDEA Software Institute

Matteo Sammartino

Royal Holloway University of London, University College London

Abstract

Replicated Data Types (rdts) have been introduced as an abstraction for deal-
ing with weakly consistent data stores, which may (temporarily) expose multi-
ple, inconsistent views of their state. In the literature, rdts are usually pre-
sented in set-theoretical terms, and only recently different specification flavours
have been proposed. This paper offers a categorical presentation for the spec-
ification and implementation of rdts. This paves the way for a method that
allows distilling an operational semantics from a specification, which is then
exploited to define a notion of implementation correctness via simulation.

Keywords: Replicated data types, Specification, Operational semantics,
Functorial characterisation, Implementation correctness

1. Introduction

Modern distributed applications rely on data replication to achieve low la-
tency and high availability even in the presence of failures at the expense of con-
sistency, i.e., applications should tolerate and deal with temporarily inconsistent

?Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”, by the
EU H2020 RISE programme under the Marie Sk lodowska-Curie grant agreement 778233, by
the UBACyT projects 20020170100544BA and 20020170100086BA.

Preprint submitted to Elsevier July 18, 2022

(partial) views of the state. One of the prominent abstractions for program-
ming and reasoning about replicated states are Replicated Data Types (rdts).
Roughly, an rdt is an abstract data type whose behaviour embodies replica-
tion, i.e., its states describe partial views of the global state and the behaviour
of operations is described in terms of the partial views of the state.

Different specification approaches for rdts have been proposed in the litera-
ture [5, 6, 7, 8, 9, 11, 13, 15, 20, 22]. Despite stylistic differences, they abstractly
represent the state of a system in terms of two relations defined on executed op-
erations: visibility, which explains the partial view of the state over which each
operation is executed, and arbitration, which totally orders operations and is
used for resolving conflicting effects of concurrent operations. Leveraging this
abstract view, in this paper we move from a set-theoretic presentation of rdts
to a categorical one, which offers a unifying perspective on the specification and
implementation of rdts. This allows distilling an operational semantics from a
specification via a standard categorical construction and, ultimately, leads to a
notion of implementation correctness defined as a standard simulation relation.

We start off with an illustrative example of rdts, and then proceed to outline
the contributions of this paper.

1.1. Illustrative example

Consider an rdt Register that represents a memory cell whose contents
can be updated and read. Following the approach in [11], the rdt Register is
specified by a function that maps visibility relations into sets of arbitrations:
Here we call such function SlwwR. Figure 1a illustrates the definition of SlwwR

for the case in which the visibility relation involves two concurrent writes and
a read. Events are depicted by their labels 〈operation, result〉 where wr(k)
stands for an operation that writes the value k and rd stands for a read. The
two writes are unrelated (i.e., they are not visible to each other), while the read
operation sees both writes. The return value of the read operation is 2, which
coincides with one of the visible written values.

According to fig. 1a, SlwwR maps the visibility graph into a set containing
those arbitrations (i.e., total orders over the three events in the visibility re-
lation) in which wr(1) precedes wr(2). Arbitrations may not reflect the causal
ordering of events; in fact, the last two arbitrations in the right-hand-side of
the equation in Fig. 1a place the operation that read the value 2 before the
operation that writes that same value.

We remark that arbitrations do not necessarily account for real-time order-
ings of events: They are instead possible ways in which events can be logically
ordered to explain a given visibility. For instance, the excluded arbitrations in
the image of SlwwR are the total orders in which wr(2) precedes wr(1), i.e., the
specification bans the behaviour in which a read operation returns a value that
is different from the last written one. An extreme situation is the case in which
the specification maps a visibility relation into an empty set of arbitrations,
which means that events cannot be logically ordered to explain such visibility.
For instance, the equation in Fig. 1b assigns an empty set of arbitrations to a
visibility relation in which the read operation returns a value that is different

2

SlwwR

Ü
〈wr(1), ok〉

��

〈wr(2), ok〉

��
〈rd, 2〉

ê
=

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉

(a) Visibility relation with admissible arbitrations

SlwwR

Ö
〈wr(1), ok〉

��
〈rd, 0〉

è
= ∅

(b) Non admissible arbitrations

Figure 1: A register specification

from the unique visible written value (i.e., it returns 0 instead of 1). In this way,
the specification bans the behaviour in which a read operation returns a value
that does not match a previously written value. As shown in [11], this style of
specification can be considered equivalent to (and it is actually more general
than) the model for the operational description of rdts proposed in [7]. We
refer the reader to [9] for a formal comparison of the two different approaches.

1.2. Outline of the paper

We now outline the structure of the paper and its main contributions.

Section 2. We start by recalling functional specifications of rdts, and we pro-
vide several examples. We then restrict our attention to coherent specifications,
which satisfy a suitable condition on arbitrations. We recall two set-theoretic op-
erational models for coherent specifications: the one-replica Labelled Transition
System (LTS), modelling the behaviour of a single replica, and the multi-replica
LTS, modelling the behaviour of multiple replica evolving concurrently.

Section 3. In this section we present our categorical model of coherent speci-
fications. Given a set of labels L for rdt operations, we model visibilities as
L-labelled direct acyclic graphs, and we define a suitable category PIDag(L)
for these graphs. Similarly, we form a category SPath(L), where objects are
sets of L-labelled paths (i.e., total orders) modelling arbitrations. As we shall
see, particular care is required in defining morphisms for these categories. Our
formulation ensures that certain limits and colimits exist, and that they capture
important operations on arbitrations and visibilities. Once the basic categories
are in place, we are able to generalise coherent specifications to a class of func-
tors PIDag(L) → SPath(L), dubbed coherent functors. The main result of
this section is a sound (Theorem 3.32) and complete (Theorem 3.33) functorial
characterisation of coherent specifications, which implies a one-to-one corre-
spondence (Theorem 3.40) between coherent functors and specifications. Fur-
thermore, we show that these results seamlessly extend to specific classes of
specifications, namely saturated and topological ones.

3

Section 4. rdts are usually implemented by several replicas that keep their own
local state and propagate changes asynchronously. In this section we show that
several well-known implementation of common rdts can be defined in terms of
monoidal LTSs, that is, LTSs whose states form a monoid and whose transition
relation is compositional with respect to the state combination. The advantage
of our formulation is a notion of bisimulation for rdt implementations that is
closer to a standard high-order bisimulation (see, e.g., [16]).

Section 5. In this section we exploit the structure of coherent functors to pro-
vide a systematic way of recovering an operational semantics from a specifi-
cation. This is achieved via a standard categorical construction, the so-called
category of elements of the functor associated with a specification. In partic-
ular, we recover both the one-replica (Proposition 5.3) and the multi-replica
LTSs (Proposition 5.6). Furthermore, we recover a contextual LTS, where la-
bels provide the contextual information that explains how a local computation is
embedded into a global context. Implementation correctness is thus straightfor-
wardly stated in terms of a simulation between such LTSs and the one distilled
from the specification itself. This characterisation allows for reframing previous
ad-hoc formulations of implementation correctness by applying well-known no-
tions from concurrency theory, thus paving the way for the application of more
standard techniques in the analysis of rdts.

Section 6. Finally, in this section we obtain a functorial characterisation of im-
plementations. Implementation functors are defined as functors from a category
IR(R), where arrows represent sequences of actions of a set R of replica, to a
category P(Mon) representing non-deterministic computations of those replica.
The set of states is modelled in the latter category as a monoid, which provides
us with a one-to-one representation of the monoidal LTSs for implementations
(Theorem 6.6). The category of elements construction again allows us to derive
a suitable implementation LTS from implementation functors.

Differences from conference paper. This paper is an extended and revised ver-
sion of the conference papers [12, 10]. Besides providing clarifications, proofs,
and additional examples, in this presentation we give an alternative presenta-
tion for implementations, and consequently of their functorial characterisation.
Technically, this is achieved by handling operations that mutate the state of an
rdt from those that query it differently. Such mutators usually preserve the
monoidal structure of states, hence the behaviour of a replica (as far as such
mutators are concerned) can be described in terms of an LTS that preserves
the monoidal structure of the states. This observation allows us to opt for a
simpler functorial characterisation of computations in terms of power-monoids
instead of the analogous power-domain construction over pre-ordered monoids
introduced in [10]. The behaviour of queries is captured instead as barbs, i.e., as
predicates accounting for the possible observations of states. Implementation
equivalence translates to a barbed (higher-order) bisimulation [16], and thus
also implementation correctness now relies on barbs.

4

2. Preliminaries on rdts

In this section we briefly recall the functional model for rdts specification
and implementation introduced in [11, 9].

2.1. Notation

Let L be a finite set of labels. A labelled graph is a triple 〈E ,≺, λ〉, where
E is the set of vertices (they actually stand for “events”, hence the notation),
≺ ⊆ E × E is the (directed) connectivity relation, i.e., e ≺ e′ means that there
is an edge from e to e′, and λ : E → L is a labelling function, assigning a label
to each vertex. A graph is acyclic if the transitive closure of ≺ is a strict
partial order. We write EG, ≺G and λG for the corresponding component of a
specific graph G. Given two labelled graphs G and G′, an isomorphism ϕ : G ∼= G′

between them is a bijective function ϕ : EG → EG′ that preserves graph structure
and labels, i.e., such that e ≺G e

′ implies ϕ(e) ≺G′ ϕ(e′), and λG′(ϕ(e)) = λG(e),
for all e, e′ ∈ EG. A path 〈E ,≤, λ〉 is a graph where ≤ is a total order.

Given a graph G = 〈E ,≺, λ〉 and a subset E ′ ⊆ E , we denote by G|E′ the
obvious restriction (and the same applies to a path P), noting that G|∅ = ε,
with ε the empty graph. Given ` ∈ L and a fresh event >, we denote by
G`E′ = 〈E>,≺ ∪(E ′ × {>}), λ[> → `]〉 the extension of G over E ′ with `, writing
G` when E ′ = E .

We denote with G(L) and P(L) the collections of (finite) graphs and (finite)
paths, respectively, labelled by L. Also, when the set of labels L is chosen,
we let G(E , λ) and P(E , λ) be the collections of graphs and paths, respectively,
whose set of vertices is E and which are labelled by λ : E → L.

2.2. Functional specification of replicated data types

We first recall the notion of (functional) specification. Hereafter we fix a set
of labels L.

Definition 2.1 (Specifications). A specification S is an isomorphism-preserving
function S : G(L)→ 2P(L) such that S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).

A specification S maps a graph (interpreted as the visibility relation of a
rdt) to a set of paths (that is, the admissible arbitrations of the events). Indeed,
each P ∈ S(G) is a path over EG, hence a total order of the events in G. In
specifications we only care about the relative order of events and their labels,
hence we require that isomorphic graphs are mapped to sets of paths that are
element-wise isomorphic. More precisely, any isomorphism ϕ : G ∼= G′ of labelled
graphs lifts to the corresponding sets of paths, meaning that P′ ∈ S(G′) if and
only if there exists P ∈ S(G) such that ϕ : P ∼= P′, for all P′ ∈ S(G′).

We illustrate the approach by specifying a few well-known examples of rdts.

5

2.2.1. Counters

A data type Counter maintains an integer value and provides operations for
retrieving and modifying it. We consider the following two variants: increment-
only counters (GCounter) and positive/negative counters (PNCounter). The
former account for non-negative counters, which provide the operation inc for
increments, and the query operation rd for retrieving the current value of the
counter. The latter may instead contain negative values and provide also the
operation dec for decrementing. Hereafter, we assume that every counter is
initialised in 0. Their specification is given below.

Example 2.2 (GCounter). The specification of the rdt GCounter relies on
the following set of labels

LSGC
= {〈inc, ok〉} ∪ ({rd} × N)

Essentially, a label stands for an executed operation (identified by the first com-
ponent of the pair) and its observed result (given as the second component of the
pair). By the definition of LSGC

above, the execution of operation inc always
returns ok (i.e., it succeeds), while rd returns a natural number. The specifi-
cation of GCounter is given by the function SGC defined as follows: given a
visibility graph G and P ∈ P(EG, λG)

P ∈ SGC (G) iff ∀e ∈ EG. λ(e) = 〈rd, k〉 ⇒ k = #P

where P = {e′ | e′ ≺G e∧ λ(e′) = 〈inc, ok〉}. Hereafter, when defining specifica-
tions, we will keep the assumption P ∈ P(EG, λG) implicit.

A visibility graph G has admissible arbitrations (i.e., SGC (G) 6= ∅) only if
every event e in G whose label corresponds to a read operation with return value
k (i.e., 〈rd, k〉) observes (according to G) exactly k increment operations.

We illustrate two cases for the definition of SGC in Fig. 2. While the con-
figuration in Fig. 2a has admissible arbitrations, the one in Fig. 2b has not,
because the unique event labelled by rd returns 0 even if it is preceded by an
observed increment. In other words, an execution is not allowed to generate
such a visibility graph.

We remark that SGC does not impose any constraint on the ordering <P.
In fact, a path P ∈ SGC (G) does not need to reflect the ordering of G as, for
instance, the rightmost path in the set of Fig. 2a.

Example 2.3 (PNCounter). A PNCounter extends the definition of a GCounter
by allowing decrement operations and negative values, which is reflected by the
considered set of labels

LSPNC
= {〈inc, ok〉, 〈dec, ok〉} ∪ ({rd} × Z)

The corresponding specification SPNC (G) is defined such that the following holds

P ∈ SPNC (G) iff

∀e ∈ EG. λ(e) = 〈rd, k〉 ⇒ k = P −N where

P = #{e′ | e′ ≺G e ∧ λ(e′) = 〈inc, ok〉}
N = #{e′ | e′ ≺G e ∧ λ(e′) = 〈dec, ok〉}

6

SGC

Ö
〈inc, ok〉
��

〈rd, 1〉

è
=

〈inc, ok〉

〈rd, 1〉

〈rd, 1〉

〈inc, ok〉

(a)

SGC

Ö
〈inc, ok〉
��

〈rd, 0〉

è
= ∅

(b)

Figure 2: Counter specification.

A graph G has admissible arbitrations when each read returns a value k that
corresponds to the difference between the number of increments and decrements
observed by that read.

2.2.2. Registers

A data type Register maintains a value and provides two operations, one
for updating it and another one for retrieving the current value. We provide
specification for two alternative semantics, namely, a Multi-value register and a
Last-write wins register.

Example 2.4 (Multi-value register). A common abstraction of a memory cell
in a replicated system is given by a Multi-value register. Differently from a
traditional register, a multi-value one may contain several values when it is
updated concurrently. Hence, we can fix the following set of labels

LmvR = {〈wr(k), ok〉 | k ∈ V} ∪ ({rd} × 2V)

where 〈wr(k), ok〉 stands for an operation that writes the integer k and 〈rd, S〉
for a read that retrieves the (possibly empty) set of values S stored in the register.
The return value of every write operation is ok since they always succeed.

The specification is given by SmvR : G(LmvR)→ 2P(LmvR) defined as follows

P ∈ SmvR(G) iff

 ∀e ∈ EG.λ(e) = 〈rd, S〉 ⇒ S = {k | ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧
(∀e′′ ≺G e, k

′. e′ ≺G e
′′ ⇒ λ(e′′) 6= 〈wr(k′), ok〉)}

The condition on the right requires that any event e in G associated with a read
(i.e., labelled by 〈rd, S〉) returns a set S that contains all values written by
maximal (according to ≺G) concurrent updates seen by it. If this is the case, all
arbitrations are admissible, i.e., P ∈ SmvR(G) for all P, otherwise SmvR(G) = ∅.

An instance of SmvR is shown in Fig. 3, where G consists of three writes:
wr(2) overwrites wr(1) and both are concurrent with wr(3). Additionally, there

7

SmvR

〈wr(1), ok〉

��

 ##

〈wr(3), ok〉

��

〈wr(2), ok〉

�� ((
〈rd, {2}〉 // 〈rd, {2, 3}〉

 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈wr(3), ok〉

〈rd, {2, 3}〉

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈rd, {2, 3}〉

〈wr(3), ok〉

〈rd, {2, 3}〉 · · ·

〈wr(3), ok〉 · · ·

〈wr(1), ok〉 · · ·

〈wr(2), ok〉 · · ·

〈rd, {2}〉 · · ·

Figure 3: Specification of a Multi-value register

are two reads: One observes all writes (right-most at the bottom), the other
does not see wr(3) (left-most one). Both reads return the set of values written
by the maximal observed events: None of them returns 1 because it has been
overwritten by 2. A graph is mapped by SmvR to ∅ if it describes an inconsistent
configuration, e.g., if the return value of one read in Fig. 3 were changed to {1}.

According to SmvR, events can be arbitrated in any order, allowing read
events to happen before observed writes (as in the second and third path in
Fig. 3). This is a common approach in the specification of rdts [7] because it
allows permissive strategies for implementation (we refer to [9] for details). If
needed, a specification can exclude arbitrations (as illustrated in Ex. 2.5).

Example 2.5 (Last-write wins Register). An alternative to the Multi-value
Register is the Last-write wins Register, in which every read returns the last
written value according to arbitration. We take the following set of labels

LSlwwR
= {〈wr(k), ok〉, 〈rd, k〉 | k ∈ V} ∪ {〈rd,⊥〉}

where ⊥ is the initial value of a register. Its specification SlwwR is given by

P ∈ SlwwR(G) iff

∀e ∈ EG.
λ(e) = 〈rd,⊥〉 ⇒ ∀e′ ≺G e, k

′. λ(e′) 6= 〈wr(k′), ok〉∧
λ(e) = 〈rd, k〉 ⇒ ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧

(∀e′′ ≺G e, k
′. e′ <P e

′′ ⇒ λ(e′′) 6= 〈wr(k′), ok〉)

According to SlwwR, a read returns ⊥ when it does not observe any write. On
the contrary, a read e returns a natural number k when it observes some event
e′ that writes k. In such case, the arbitration P must order e′ as the maximal
event (accordingly to <P) among all write operations seen by e. In this way, the
specification constrains the allowed arbitrations of a graph.

2.3. Sets

A data type for sets provides the operations for adding, removing and ex-
amining the elements within the set. Different alternatives have been proposed
in the literature for resolving conflicts in the presence of concurrent additions
and removals; we illustrate two possible alternatives below.

8

Example 2.6 (Observed-remove set). An Observed-remove set (Or-Set) is an
abstraction for sets in which conflicting concurrent additions and removals are
resolved by making the former to win over the latter. Since it is an abstraction
for sets, it provides the operations to add and remove elements, and also to
lookup its content. Hence, we take the following set of labels

LOr-Set = {〈add(k), ok〉, 〈rem(k), ok〉 | k ∈ V} ∪ ({lookup} × 2V)

The specification of the Or-Set is as follows

P ∈ SOr−Set(G) iff

∀e ∈ EG.
λ(e) = 〈lookup, S〉 ⇒

S = {k | ∃e′ ≺G e. λ(e′) = 〈add(k), ok〉 ∧
(∀e′′ ≺G e. e

′ ≺G e
′′ ⇒ λ(e′′) 6= 〈rem(k), ok〉)}

The value S returned by a read event e contains all those elements that have
been added but not subsequently removed according to the visibility of e.

Example 2.7 (2P-Set). A Two-Phase set (2P-Set) is an abstraction in which
elements can be added and removed; however, after being removed, an element
cannot be re-added to the set. For its specification, we fix a set of labels identical
to the OR-Set, namely

L2P-Set = {〈add(k), ok〉, 〈rem(k), ok〉 | k ∈ V} ∪ ({lookup} × 2V)

Its specification of then defined as follows

P ∈ S2P−Set(G) iff

∀e ∈ EG.
λ(e) = 〈lookup, S〉 ⇒

S = {k | ∃e′ ≺G e. λ(e′) = 〈add(k), ok〉 ∧
∀e′′ ≺G e.λ(e′′) 6= 〈rem(k), ok〉)}

The value S returned by a read event e contains all those elements that have
been added but not removed according to the visibility of e (regardless of whether
the addition took place before or after the removal).

2.4. Coherent Specifications

We now restrict our attention to coherent specifications, which suffice for the
standard specification of rdts [9] and are amenable to a categorical character-
isation, as illustrated in the next section. Coherence expresses that admissible
arbitrations of a visibility graph are obtained by composing the admissible ar-
bitrations corresponding to smaller visibilities. Its formal definition relies on an
auxiliary operation for composing sets of paths. We say that the paths of a set
X = {Pi}i∈I are compatible if we have λj(e) = λk(e) for all e ∈ Ej ∩ Ek.

Definition 2.8 (Product). The product of a finite set X of compatible paths is⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei ∈ X }

9

The product of paths is analogous to the synchronous product of transition
systems: Common elements are identified and the remaining ones can be freely
interleaved, as long as the original orders are respected. Clearly, the result is ∅
if so is X , while if the set contains only the empty path ε the result is {ε}.

A set of sets of paths X1,X2, . . . is compatible if
⋃
i Xi is so, and we can

define
⊗

i Xi as
⊗⋃

i Xi. But first, for an element e of a graph G, we denote by
[e] the set of elements of G that precede e, namely, {e′ | e′ ≺∗G e}.

Definition 2.9 ((Past-)Coherent Specification). Let S be a specification. We
say that S is past-coherent (briefly, coherent) if ∀G 6= ε. S(G) =

⊗
e∈EG S(G|[e]).

In a coherent specification S the arbitrations of a configuration G (i.e., the
set of paths S(G)) are the composition of the arbitrations of its sub-graphs G|[e].
It can be shown that the specifications in Section 2.2 are coherent.

Coherent specifications can be given an operational interpretation repre-
senting admissible computations. We start by defining a one-replica Labelled
Transition System (LTS), modelling the behaviour of a single replica.

Definition 2.10 (One-replica LTS). Given a specification S, its one-replica
LTS is defined as follows

• states are pairs 〈G, P〉 such that P ∈ S(G);

• transitions are of the form 〈G, P〉 `−→ 〈G`, P′〉, where P′|EG = P.

The behaviour of a single replica that implements a specification S can be
defined in terms of the evolution of the relations G and P, which respectively
account for the visibility and arbitration of the events known by that particular
replica. Only pairs 〈G, P〉 in which P is an admissible arbitration of G, i.e., such

that P ∈ S(G), are considered. Each transition 〈G, P〉 `−→ 〈G`, P′〉 represents the
execution of an operation ` over the state 〈G, P〉. Such execution extends the
visibility relation G with a top event labelled by ` (i.e., G`), which accounts for
the fact that the operation observes all the events known by the replica. Since
〈G`, P′〉 should be a state of the LTS, P′ is a total order of the events in G`.
The condition P′|EG = P ensures that P′ preserves the arbitration P, i.e., P′ is
obtained by inserting the fresh event labelled by ` in any position within P.

Example 2.11. Consider the rdt GCounter specified in 2.2.1. Suppose we
have a replica that is aware of the execution of three increment operations, two
of which have been performed locally, and another one has been (concurrently)
executed over a different replica. An abstract representation of the state of that
replica is given by the visibility relation G depicted below and a total order P

over those events (any total order would work in this case because arbitration is
uninfluential for GCounter).

10

〈inc, ok〉

��

〈inc, ok〉

G

〈inc, ok〉

Note that G abstracts away from the identity of the replicas over which the oper-
ations have been executed and only keeps track of their (visibility) dependencies:
Each pair of unrelated events corresponds to operations concurrently executed
over different replicas. A state of a single replica is associated with a visibil-
ity graph accounting for operations executed over different replicas; in this way,
we abstractly represent the propagation of events that occurs in concrete im-
plementations. In this scenario, the pair 〈G, P〉 can be regarded as the state of
a replica that has locally performed two increments and then has received an
increment propagated from other replica. Interestingly, 〈G, P〉 also describes sev-
eral other possibilities; e.g., a replica that has performed one increment and
then has received information about two (sequential) increments from a differ-
ent replica; or a third replica that has received the updates propagated by other
two replicas. In any case, the behaviour of the replica is just determined by

〈G, P〉. The transitions from 〈G, P〉 have the following shape 〈G, P〉 `−→ 〈G`, P′〉
where ` ∈ LSGC

= {〈inc, ok〉} ∪ ({rd} × N) and G` is defined as follows

〈inc, ok〉

��

〈inc, ok〉

��

G`

〈inc, ok〉

'' `

If ` = 〈inc, ok〉, then it suffices to take P′ as one of the possible extensions of P
(where the new event can be added in any position in P). If ` = 〈rd,k〉, then we
have two cases. If k = 3, then the situation is analogous to previous case. On
the contrary, if k 6= 3, we first note that SGC (G〈rd,k〉) = ∅ because SGC imposes
the return value of every read operation to coincide with the number of observed
reads. Hence, no transition from 〈G, P〉 can be labelled by 〈rd,k〉 if k 6= 3 (i.e.,
no read operation can return a value different from 3 when the replica knows
three increments).

A multi-replica LTS models multiple replica evolving concurrently. Suppose
we have two replica, and the current state for each is 〈Gi, Pi〉. We assume that G1

and G2 are compatible, i.e., shared events have the same labels and predecessors
in the two graphs (that is, λG1(e) = λG2(e) and {e′ | e′ ≺∗G1 e} = {e′′ | e′′ ≺∗G2 e}
for all e ∈ EG1 ∩ EG2). We denote by G1 t G2 the union of compatible graphs. A

11

replicated state is of the form 〈G1 t G2, P〉, where P ∈ P1 ⊗ P2, i.e., P is obtained
by “synchronising” the individual arbitrations.

Definition 2.12 (Multi-replica LTS). Given a specification S, its multi-replica
LTS is derived from the one-replica LTS by adding the following inference rule

(Comp)
〈G1, P|EG1 〉

`−→ 〈G′1, P′1〉 P′ ∈ P⊗ P′1 (EG′1 \ EG1) ∩ EG2 = ∅

〈G1 t G2, P〉
`−→ 〈G′1 t G2, P′〉

The rule says that transitions from a replicated state 〈G1 t G2, P〉 are ob-
tained from those of a single component 〈G1, P|EG1 〉 (note that the projection

recovers the local arbitration). After the transition, the replicated state evolves
to the composition of the part that has not changed (namely G2) and the new
local state 〈G′1, P′1〉. In short, global computations arise from computations of
single replicas. The last condition in the premise of (Comp) ensures that events
generated during computation are globally unique, i.e., new events in G′1 should
not be already present in G2.

Example 2.13. Consider again the rdt GCounter and a scenario similar to
the one in Example 2.11, in which a replica r1 has performed two sequential
increments and r2 one, but none of them has propagated its local information
yet. Then, the state of the system can be represented as the composition of the
states of the two replicas. Since P is uninteresting for GCounter, we will just
focus on the visibility graph G, which is depicted as follows

〈inc, ok〉

��

G1

〈inc, ok〉

G = G1 t G2

G2

〈inc, ok〉

Note that G combines the visibility relations corresponding to each of the replicas
(which are depicted by dotted boxes).

As discussed in Example 2.11, the one-replica LTS describes the behaviour
of each operation by considering all events in the state, i.e., each fresh event
dominates all other events in the visibility relation. In our scenario, this means
that a read operation over G can only return 3 (according to the one-replica LTS).
However, a read operation executed over r1, which is aware of two increments,
should return 2; and analogously, a read over r2 should return 1.

The multi-replica LTS accounts for the execution of operations that have a
partial view of the state of the system. This is achieved via the rule (Comp),
which accounts for decompositions of the global state. For instance, (Comp)
allows us to derive a transition describing the evolution of the system when a
read operation is performed over the replica r1. In fact, by the one-replica LTS,

12

we can derive a transition from 〈G1, P1〉 to 〈G′1, P′1〉, which extends G1 with a new
event labelled by 〈rd, 2〉. Then, (Comp) establishes that G = G1 t G2 can evolve
to G′ below

〈inc, ok〉

��

��

G′1

G′ = G′1 t G2

〈inc, ok〉
G′2

〈inc, ok〉

&&
〈rd, 2〉

Similarly, a read operation over r2 would extend the visibility with a new
event labelled by 〈rd, 1〉 that dominates the events in G2 (i.e., a read returns 1

if performed over r2).

〈inc, ok〉

��

G1

〈inc, ok〉 //

G′ = G1 t G′2

〈rd, 1〉

G′2

〈inc, ok〉

As highlighted in Example 2.11, we do not explicitly represent replicas. Con-
sequently, rule (Comp) accounts for the behaviour of operations performed over
any partial view of G.

For instance, consider the decomposition G = ∅ t G. The rule (Comp) can
be applied to such decomposition to account for the behaviour of an operation
performed over the empty state ∅. Intuitively, this is the state of a replica that
has not performed any operation and has not received any information from the
other replicas, so a read operation will return 0. Analogously, if we consider
G = G t G, (Comp) will account for operations executed over a replica that has
complete view of the replicated state. Considering all possible decompositions
will yield transitions in the multi-replica LTS accounting for the fact that a read
operation over G may return any of the values in {0, 1, 2, 3}.

3. Categorical model of specifications

In this section we first introduce the key ingredients of our categorical ap-
proach, and then we present our categorical model of coherent specifications.
We assume familiarity with basic concepts of category theory, such as functors,
natural transformations, limits and colimits.

13

3.1. Categories of relations

We first introduce a category of binary relations that will serve as the basic
category for modelling both visibilities and arbitrations.

Definition 3.1 (Binary Relations). Given a finite set E, a (binary) relation ρ
over E, written 〈E, ρ〉, is a subset ρ ⊆ E×E. A subset E′ ⊆ E is downward closed
with respect to ρ if (e, e′) ∈ ρ implies e ∈ E′, for all e′ ∈ E′.

We write ∅ for the empty relation and e ρ e′ to mean (e, e′) ∈ ρ. And we
write [e]ρ for the smallest downward closed set with respect to ρ including e ∈ E,
omitting the subscript ρ if clear from the context: It coincides with {e′ | e′ ρ∗ e}.

We now look at morphisms between relations. Besides ordinary relation-
preserving morphisms, we need a special type of morphism, called past-reflecting
(pr-)morphism, which intuitively adds no dependencies in the past of an event.
As we shall see, pr-morphisms play a key role in defining the category of visi-
bilities.

Definition 3.2 ((Binary Relation) Morphisms). A (binary relation) morphism
f : 〈E, ρ〉 → 〈T, γ〉 is a function f : E → T such that e ρ e′ implies f(e) γ f(e′)
for all e, e′ ∈ E. A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting (shortly, pr-
morphism) if t γ f(e) implies that there is e′ ∈ E such that e′ ρ e and t = f(e′)
for all e ∈ E and t ∈ T.

Past-reflecting morphisms are known under various names in different con-
texts, e.g. as bounded morphisms in modal logic (see, e.g., [3, Pag. 60]). We
now give a useful characterisation result.

Lemma 3.3 (Characterising pr-morphisms). Let f : 〈E, ρ〉 → 〈T, γ〉 be a mor-
phism. If

1. f(e) γ f(e′) implies e ρ e′, and

2.
⋃

e∈E f(e) is downward closed,

then it is a pr-morphism. If f is injective, then the converse holds.

Proof. For ⇒), let us take e ∈ E and t ∈ T. If t γ f(e), then there exists e′ ∈ E

such that t = f(e′) because of (2). By (1), f(e′) γ f(e) implies e′ ρ e.
For⇐), by the definition of pr-morphism f(e) γ f(e′) implies ∃e ∈ E. e ρ e′ ∧

f(e) = f(e). Since f is injective, e = e and hence e ρ e′. So, let T =
⋃

e∈E f(e).
We want to show that

∀t ∈ T, t′ ∈ T . tγ t′ implies t ∈ T

The proof follows by contradiction. Assume that ∃t ∈ T, t′ ∈ T . t γ t′ ∧ t 6∈ T .
By definition of T ,∃e ∈ E such that f(e) = t′. Since f is a pr-morphism, then

t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Therefore t = f(e′) ∈ T , which contradicts the assumption t /∈ T .

14

Both classes of morphisms are closed under composition: Bin denotes the
category of relations and their morphisms and PBin the sub-category of pr-
morphisms. The category Bin has finite limits and finite colimits, which are
computed point-wise as in Set. The structure is lifted by and large to PBin:
Finite colimits and binary pullbacks in PBin are computed as in Bin. Yet
there is no terminal object, as clearly not all relations admit a past-reflecting
morphism into the singleton.

Monos in Bin are just morphisms whose underlying function is injective, and
similarly in PBin, so that the inclusion functor preserves (and reflects) them.
Thus, we can lift the following lemma from the category of sets and functions.

Lemma 3.4 (Monos under pushouts). Pushouts in Bin (and thus in PBin)
preserve monos.

Given a set of labels L, the category of labelled relations is Bin(L).

Definition 3.5 (Category of labelled relations). The category Bin(L) is defined
as the comma category Ur ↓ L, where Ur : Bin → Set is the forgetful functor,
mapping a binary relation to its underlying set of elements. Explicitly, an object
in Bin(L) is a triple (E, ρ, λ) for a labeling function λ : E → L. A label-
preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a morphism f : (E, ρ) → (E′, ρ′)
such that λ(s) = λ′(f(s)) for all s ∈ E.

The category PBin(L) is defined analogously, with the requirement that
the morphisms are past-reflecting. In both categories, finite colimits and binary
pullbacks always exist and are essentially computed as in Bin.

3.2. Categories of Graphs and Paths

We now move to introduce specific sub-categories that are going to be used
for both the syntax and the semantics of specifications.

Definition 3.6 (PDag). PDag is the full sub-category of PBin whose objects
are acyclic graphs (relations whose transitive closures is a strict partial order).

The full sub-category of Bin whose objects are acyclic graphs is not suited for
our purposes, since it does not admit pushouts, not even along monos. Pushouts
are important for our work, as they will allow us to generalise composition of
visibilities. The sub-category of Bin with pr-morphisms is much more well-
behaved, still remaining computationally simple. In fact, it enjoys the following
property. Recall that a functor reflects (co)limits if every diagram mapped to a
(co)limit by the functor is a (co)limit itself.

Proposition 3.7 (Properties of PDag). The inclusion functor PDag→ PBin
reflects finite colimits and binary pullbacks.

In other terms, finite colimits and binary pullbacks in PDag are computed
as in PBin, hence as in Bin.

We now move to consider the category of paths.

15

〈wr(1), ok〉

��
〈wr(2), ok〉

��
〈rd, {2}〉

(a) G1

〈wr(1), ok〉

��

##

〈wr(2), ok〉

��
〈rd, {2}〉

(b) P1

〈wr(1), ok〉

��

##

〈wr(3), ok〉

〈wr(2), ok〉

��
〈rd, {2}〉

(c) G2

〈wr(1), ok〉

��

��##

〈wr(3), ok〉

��

〈wr(2), ok〉

�� ''
〈rd, {2}〉 // 〈rd, {2, 3}〉

(d) G3

Figure 4: Some labelled graphs

Definition 3.8 (Path). Path is the full sub-category of Bin whose objects are
paths (i.e., total orders).

Note that defining Path as only containing pr-morphisms would be too
restrictive, since there exists a pr-morphism between two paths if and only if
one path is a prefix of the other. Nevertheless, as for PDag, finite colimits in
Path are computed as in Bin.

Proposition 3.9 (Properties of Path). The inclusion functor Path → Bin
reflects finite colimits.

As for relations, we consider suitable comma categories in order to cap-
ture labelled paths and graphs. In particular, we use the forgetful functors
Urp : Path → Set and Upd : PDag → Set: For a set of labels L we denote
PDag(L) = Urp ↓ L and Path(L) = Upd ↓ L. Once more, finite colimits and
binary pullbacks always exist and are essentially computed as in Bin.

Example 3.10. We illustrate some labelled graphs in Fig. 4 and remark that
P1 is the only path in the figure. Note that G1 is not a path because the relation
is not transitive. There is an obvious label-preserving morphism f1 : G1 → P1,
but this is not a pr-morphism because the edge from 〈wr(1), ok〉 to 〈rd, {2}〉 in
P1 is not matched in G1. On the contrary, there is no morphism from P1 to G1.
Note that the label-preserving morphisms f2 : P1 → G2 and f3 : G2 → G3 are
pr-morphisms (and consequently, f2; f3 : P1 → G3 is so).

3.3. Category of visibilities

We now study the category of visibility relations. We first introduce an
operation that will be handy for our categorical characterisation. We say that
a graph G is rooted if there exists a (necessarily unique) event e ∈ EG such that
G = G|[e].

Definition 3.11 (Extension). Let f : G1 → G2 be a mono pr-morphism. It is an
extension along ` (shortly, `-extension) if, for a fresh event >, EG2 = EG1 ∪{>},
f : EG1 → EG1 ∪ {>} is the associated injection, and λG2(>) = `.

Intuitively, G2 is obtained by adding to the visibility relation G1 a new event
“seeing” some events in G1. We say that an extension f : G1 → G2 is a root
extension if G2 is rooted.

16

Example 3.12. Noting that f2 and f3 in Ex. 3.10 are mono, the former is
an extension along 〈wr(3), ok〉 and the latter is an extension along 〈rd, {2, 3}〉.
Since G3 is rooted, f3 is a rooted extension; however, f2 is not rooted because
G2 is not. Note that f2; f3 is a pr-morphism but not an extension because the
target G3 adds two new events to the source P1.

Proposition 3.13. Rooted graphs form a family of separators of PDag(L).

Proof. We need to show that for any pair of pr-morphisms f1, f2 : G1 → G2 such
that f1 6= f2 there is a rooted graph G and a morphism f : G → G1 such that
f; f1 6= f; f2. Given e ∈ EG1 such that f1(e) 6= f2(e), it suffices to consider the
pr-morphism f : G1|[e] → G1.

We now further curb the arrows in PDag(L) to monic ones. Intuitively,
we are only interested in what happens if we add further events to visibility
relations. We thus consider the sub-category PIDag(L) of acyclic graphs and
monic pr-morphisms. Note that the chosen morphism f in the proof of Propo-
sition 3.13 is monic, since a morphism in PDag(L) is monic if and only if the
underlying function is injective.

We can then show that rooted graphs are also a family of generators for the
sub-category PIDag(L). Before giving the result, we observe that, as is the
case for the category of sets and injective functions, PIDag(L) lacks pushouts.
However, the following simple technical result, analogous to Lemma 3.4, allows
us to compute those pushouts in the larger category PDag(L)

Lemma 3.14 (Monos under pushouts, 2). Pushouts in PDag(L) preserve
monos.

We can now state the announced important characterisation of PIDag(L).

Proposition 3.15. PIDag(L) is the smallest sub-category of PDag(L) con-
taining all root extension morphisms and closed under finite colimits.

Proof. First, note that, since pushouts in PDag(L) preserve monos, the smallest
sub-category of PDag(L) containing all root extensions and closed under finite
colimits is surely a sub-category of PIDag(L). So, given a monic pr-morphism
f : G1 → G2, we need to prove that it can be generated from root extension
morphisms via colimits. We proceed by induction on the cardinality of EG2 .

If the cardinality is 0, then f must be the identity of the empty graph.
Otherwise, consider G2 and assume that it is rooted with root e. Now, if e ∈
img(f), since the image of a pr-morphism is downward closed, it turns out that
f is the identity of G2. If it is not in the image, then f can be decomposed as
G1 → (G2 \ e)→ G2: the left-most is given by induction, while the right-most is
a root extension morphism.

Without loss of generality, let us assume now that G2 has two distinct roots,
namely e1 and e2, and that the image of f is contained in G2|[e1]. Now, f can be

decomposed as G1 → G2|[e1] → G2: the left-most is given by induction, while the

right-most is obtained via the pushout of the span G2|[e1] ∩ G2|[e2] → G2|[ei].

17

3.4. Category of arbitrations

We know from Section 2.4 that the objects of our category of arbitrations
must be compatible sets of paths. We now turn our attention to morphisms.
We first look at two constructions, called saturation and retraction, which act
on arbitrations by extending or restricting them, respectively, in a maximal
way, according to a function between sets of events. These constructions will
be used to define a notion of morphisms of arbitrations, and to describe limits
and colimits in the ensuing category.

Definition 3.16 (Path saturation). Let P be a path and f : (EP, λP)→ (E , λ) a
label-preserving function. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P→ Q in Path(L)}

Saturation is generalised to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).

Note that, should f not be injective, it could be that sat(P, f) = ∅.

Example 3.17. Consider the injective, label-preserving function f from set
{〈wr(1), ok〉, 〈wr(2), ok〉} to set {〈wr(1), ok〉, 〈wr(2), ok〉, 〈rd, 2〉}. Then, we have

sat

Ö
〈wr(1), ok〉

〈wr(2), ok〉
, f

è
=

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉

Intuitively, saturation adds 〈rd, 2〉 – and in general those events that are not in
the image of f – to the original path in all possible ways, preserving the order
of the original events.

Definition 3.18 (Path retraction). Let Q be a path and f : E → EQ a function.
The retraction of Q along f is defined as

ret(Q, f) = {P | P ∈ P(E , λ) and f induces a morphism f : P→ Q in Path(L)}

The notion of retraction is extended to sets of paths X ⊆ P(E , λ) as
⋃

Q∈X ret(Q, f).

Note that λ is fully characterised as the restriction of λQ along the mapping.
Should f be injective, ret(Q, f) would be a singleton, and if f is an inclusion,
then ret(Q, f) = Q|E .

We may now start considering the relationship between the two notions.

Lemma 3.19. Let X1 ⊆ P(E1, λ1) be a set of paths and f : (E1, λ1)→ (E2, λ2) a
label-preserving function. Then X1 ⊆ ret(sat(X1, f), f). If f is injective, then
the equality holds.

18

Lemma 3.20. Let X2 ⊆ P(E2, λ2) be a set of paths and f : E1 → E2 a function.
Then X2 ⊆ sat(ret(X2, f), f).

Here, injectiveness does not ensure that the equality holds. We say that an
injective function f is saturated with respect to X2 if the equality does hold.

Example 3.21. Consider the set of paths X1 and X2 and the pr-morphism f

below

X1 =

〈wr(1), ok〉

〈wr(2), ok〉

 X2 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 f :
〈wr(1), ok〉

〈wr(2), ok〉
→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

the underlying function f (defined in Example 3.17) is not saturated with respect
to X2 because

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 6= sat(ret(

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

, f), f) = sat(

〈wr(1), ok〉

〈wr(2), ok〉

, f)

We can now exploit saturation to get a simple definition of our category of
arbitrations.

Definition 3.22 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be
sets of paths. A path-set morphism (shortly, ps-morphism) f : X1 → X2 is a
label-preserving function f : (E1, λ1)→ (E2, λ2) such that X2 ⊆ sat(X1, f).

Intuitively, there is a ps-morphism from the set of paths X1 to the set of
paths X2 if any path in X2 can be obtained by adding events to some path
in X1. This notion captures the idea that arbitrations of larger visibilities are
obtained as extensions of smaller visibilities. We say that mono ps-morphism
f : X1 → X2 is a ps-extension (along `) if its underlying function between events
is of the form f : EX1

→ EX1
∪ {>}, with ` labelling the fresh event >.

Example 3.23. Consider the following three sets and the function f from Ex-
ample 3.17

X1 =

〈wr(1), ok〉

〈wr(2), ok〉

 X2 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(1), ok〉

〈rd, 2〉

〈wr(2), ok〉

 X3 =

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(2), ok〉

〈rd, 2〉

〈wr(1), ok〉

Now, f induces a ps-morphism f : X1 → X2 because X2 ⊆ sat(X1, f) (the latter
is shown in Example 3.17). On the contrary, there is no ps-morphism from X1

to X3: the rightmost path of X3 cannot be obtained by extending a path of X1

with an event labelled by 〈rd, 2〉. Note that the ps-morphism induced by f is a
ps-extension along 〈rd, 2〉.

19

Definition 3.24 (Sets of Paths Category). We define SPath(L) as the category
whose objects are sets of paths labelled over L and arrows are ps-morphisms.

Proposition 3.25 (Properties of SPath). The category SPath(L) has finite
colimits along monos and binary pullbacks.

Proof. (Strict) initial object. The (unique) initial object is 〈∅, {ε}, ∅〉, with ε ∈
P(∅, ∅) the empty path. Let X ⊆ P(E , λ) and ! : ∅ → E the unique function from
the empty set to E . We have the (unique) function ! : (∅, ∅) → (E , λ) such that
X ⊆ sat({ε}, !) = P(E , λ).

Binary Pushouts. Let X ,X1, and X2 be sets of paths and fi : X → Xi
ps-morphisms. Consider the underlying functions fi : E → Ei and their pushout
f′i : Ei → E1 +E E2 in the category of sets and functions: it induces a pushout
f′i : Xi → sat(X1, f

′
1) ∩ sat(X2, f

′
2) in SPath(L).

Binary Pullbacks. Let X ,X1, and X2 be sets of paths and fi : Xi → X ps-
morphisms. Consider the underlying functions fi : Ei → E and their pullback
f′i : E1×E E2 → E in the category of sets: It induces a pullback f′i : ret(X1, f

′
1)∪

ret(X2, f
′
2)→ Xi in SPath(L).

The above characterisation of pushouts is enabled by the fact that we con-
sidered injective functions. To help intuition, we now instantiate that character-
isation to suitable inclusions. We obtain that pushouts of inclusions precisely
amount to products of sets of paths, as defined in Definition 2.8, which is a
crucial step towards characterising coherent specifications.

Lemma 3.26. Let fi : X → Xi be ps-morphisms such that the underlying
functions fi : E → Ei are inclusions and E = E1 ∩ E2. Then their pushout is
given by f′i : Xi → X1 ⊗X2.

Proof. By definition X1⊗X2 = {P | P is a path over
⋃
i Ei and P|Ei ∈ Xi}. Note

also that sat(Xi, f′i) =
⋃

Q∈Xi
{P | P ∈ P(

⋃
i Ei,

⋃
i λi) and f′1 induces a path

morphism f′i : P → Q}. Since f′i is an inclusion, the latter condition equals to
P|Ei = Q, thus the property holds.

Example 3.27. Consider the following ps-morphisms
〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

←

〈wr(1), ok〉

〈wr(2), ok〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

then, the pushout is given by the following ps-morphisms

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

〈rd, 2〉

,

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

〈rd, 1〉

←

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

20

An analogous property holds for pullbacks. Let fi : Xi → X be ps-morphisms
such that the underlying functions are inclusions: The pullback is given as
f′i :

⋃
i Xi|E1∩E2 → Xi. In particular, the square below is both a pullback and a

pushout ⋃
i Xi|E1∩E2 X1

X2 X1 ⊗X2

3.5. Coherent Functors

It is now time for moving towards our categorical characterisation of coherent
specifications. We first provide a simple technical result.

Lemma 3.28. Let S be a coherent specification and E ⊆ EG. If E is downward
closed, then S(G)|E ⊆ S(G|E).

Proof. Let E be downward closed, and note that this amounts to requiring
E =

⋃
e∈E [e], hence for all e ∈ E we have that (G|E)|[e] = G|[e]. By the latter and

by coherence we have S(G)|E = (
⊗

e∈EG S(G|[e]))
∣∣∣
E

and S(G|E) =
⊗

e∈E S(G|[e]).

Note that (
⊗

e∈EG S(G|[e]))
∣∣∣
E
⊆
⊗

e∈E S(G|[e]) because a path in the former can

always be restricted to a suitable path with fewer events on the latter (the
converse in general does not hold).

We now introduce our functorial models of specifications, consisting of func-
tors preserving relevant categorical structure. In the following we say that a
functor F : PIDag(L)→ SPath(L) weakly preserves finite colimits if any com-
muting diagram in PIDag(L) that is a colimit (via the inclusion functor) in
PDag(L) is mapped by F to a colimit in SPath(L).

Definition 3.29. A functor F : PIDag(L)→ SPath(L) is coherent if it maps
root `-extensions to `-extensions and weakly preserves finite colimits.

The rest of this section is dedicated to proving that coherent functors are
a sound and complete characterisation of coherent specifications. More specifi-
cally, we shall prove that coherent specifications induce coherent functors (sound-
ness) and vice versa (completeness). To this purpose, we need the following two
technical lemmas. The first one spells out two important properties of coherent
functors: They preserve monos and map graphs to sets of paths of the correct
type. The second one says that, for each graph G, a coherent functor gives a
set of paths which is the product of paths for sub-graphs of G, as required by
coherence (Definition 2.9).

Lemma 3.30. Let F be a coherent functor. Then

(i) F preserves monos;

21

(ii) F(G) is a set of paths over (EG, λG), for all G in PIDag(L).

Proof. Recall that morphisms of PIDag(L) are generated from root `-extensions
via finite colimits (Proposition 3.15). One can show that F maps f : G1 ↪→ G2

to a monic ps-morphism by induction on the number of vertices of G2, using
the fact that F maps root `-extensions to `-extensions, which are monic, and
weakly preserves finite colimits, hence it maps pushouts of monos to pushouts
of monos. Point (ii) can be shown via an analogous argument, noting that F
preserves the label of the additional event when mapping root `-extensions to
`-extensions.

Lemma 3.31. Let F be a coherent functor and fi : G ↪→ Gi (i = 1, 2) mono pr-
morphisms such that EG = EG1 ∩ EG2 . Then there exists a pushout in SPath(L)

F(G) F(G1)

F(G2) F(G1)⊗ F(G2)

F(f1)

F(f2)

Proof. F preserves monos, by Lemma 3.30, so F(fi) : F(G) ↪→ F(Gi) are monos
and by Lemma 3.26 their pushout is the diagram above.

We now state our soundness result.

Theorem 3.32 (Soundness). A coherent specification S induces a coherent
functor M(S) : PIDag(L)→ SPath(L).

Proof. For G we define M(S)(G) as S(G) and for f : G → G′ we define M(S)(f)
as the ps-morphism with underlying injective function f : (EG, λG) ↪→ (EG′ , λG′).

We first show that f is a valid ps-morphism from S(G) into S(G′), i.e.,
S(G′) ⊆ sat(S(G), f) and, since we are considering specifications preserving
isomorphisms, we can restrict our attention to the case where f is an in-
clusion. Since f is a pr-morphism,

⋃
e∈EG f(e) is downward-closed in G′ and

thus by Lemma 3.28 we have S(G′)|EG ⊆ S(G′|EG) = S(G), the latter equal-
ity given by coherence. Now, consider a path P ∈ S(G′). Since P|EG ∈ S(G),
we have P ∈ sat(S(G), f), because saturation adds missing events – namely
those in EG′ \ EG – to P|EG in all possible ways. Therefore we can conclude
S(G′) ⊆ sat(S(G), f). Note that, if f′ is a root `-extension, M(S)(f) must be an
`-extension, as it has the same underlying function between events.

Finally, we need to show that M(S) weekly preserves colimits. Preservation
of the initial object is easy, since S(ε) = {ε} by definition (see Definition 2.1)
and the right hand side is the initial object in SPath(L). As for pushouts:
Since S is coherent, preservation boils down to Lemma 3.26.

We now give our completeness result.

Theorem 3.33. Any coherent functor F : PIDag(L) → SPath(L) induces a
coherent specification S(F).

Proof. The claim follows from Lemma 3.31 by setting S(F)(G) = F(G).

22

3.6. More completeness

We can sharpen the completeness result by requiring functors to preserve
specific properties for suitable arrows of PIDag(L). The candidates are root
extension morphisms, given the properties shown in Section 3.3. In order to
define the functors, we also need to consider a subset of the arrows of SPath(L).

Definition 3.34 (Saturated specifications). Let S be a specification. It is sat-
urated if for all graphs G, the function f : EG → EG`E is saturated with respect to

S(G`E) (see Lemma 3.20), that is

∀G, E , `. S(G`E) = sat(ret(S(G`E), f), f)

A saturation ps-morphism (along `) is a ps-extension f : X1 → X2 along `
whose underlying function f : E → E ∪ {>} is saturated. We can now prove an
instance of Theorem 3.33 concerning saturated specifications.

Proposition 3.35. Let F : PIDag(L) → SPath(L) be a coherent functor. If
it maps root extension morphisms to saturation ps-morphisms (along the same
labels), then the induced specification S(F) is saturated and coherent.

Proof. We know by Theorem 3.33 that S(F) is coherent. It remains to be shown
that S(F) is saturated, that is F(G`E) = sat(ret(F(G`E), f), f). If G`E is rooted, this
follows from F mapping root extensions to saturation ps-morphisms. Otherwise,
by coherence, F(G`E) can be decomposed into the product

⊗
e∈(EG)> F(G`E

∣∣
[e]

). For

each component of the product we have a root extension G`E
∣∣
[e]
\e→ G`E

∣∣
[e]

, which

is mapped by F to a saturation ps-morphism, therefore we have F(G`E
∣∣
[e]

) =

sat(ret(F(G`E
∣∣
[e]

), fe), fe), where fe is the underlying function between events

of the root extension. Saturation of F(G`E) follows by computing the product of
these sets of paths.

The need of finding a suitable image for root extension morphisms allows for
alternative choices. To this end, we introduce a different subset of the arrows
of SPath(L).

Definition 3.36 (Path extension/prefixing). Let P be a path and f : (EP, λP)→
(E , λ) a function preserving labels. The extension of P along f is defined as

ext(P, f) = {Q | Q ∈ P(E , λ) and f induces a pr-morphism f : P→ Q in Path(L)}

Similarly, let Q be a path and f : E → EQ a function preserving labels. The
prefixing of Q along f is defined as

pre(Q, f) = {P | P ∈ P(E , λ) and f induces a pr-morphism f : P→ Q in Path(L)}

Both definitions immediately extend to sets of paths. Should f be injective,
pre(Q, f) would be a singleton, and if f is an inclusion, then pre(Q, f) = Q|E ,
for the latter a prefix of Q. Also, note that similarly P has to be a prefix for all
the paths in ext(P, f).

23

Example 3.37. A topological specification StopR for a Register can be defined
as SlwwR in example 2.2 with the additional requirement that paths are topological
orderings of visibilities

P ∈ StopR(G) iff P ∈ SlwwR(G) and ≺G ⊆ ≤P

In this way, StopR(G) excludes e.g. the two right-most arbitrations of the equa-
tion in Figure 1a.

Definition 3.38 (Topological specifications). Let S be a specification. It is
topological if

∀G, E , `. S(G`E) = ext(pre(S(G`E), f), f)

A topological ps-morphism (along `) is a ps-extension f : X1 → X2 with under-
lying function f : E → E ∪ {>} such that X2 = ext(pre(S(X2), f), f).

The name is directly reminiscent of what are called topological rdts in [14,
8], and in fact it similarly guarantees that arbitrations preserve the visibility
order. We can thus prove another instance of Theorem 3.33, now concerning
topological specifications.

Proposition 3.39. Let F : PIDag(L)→ SPath(L) be a coherent functor. If it
maps root extension morphisms into topological ps-morphisms (along the same
labels), then the induced specification S(F) is coherent and topological.

3.7. Interchangeability of Functors and Coherent Specifications

The connection between the constructions of Theorem 3.32 and Theorem 3.33
is quite tight, and in fact induces a one-to-one correspondence between functors
and coherent specifications.

Theorem 3.40. Let S be a coherent specification. Then S(M(S)) = S. Con-
versely, let F : PIDag(L)→ SPath(L) be a coherent functor. Then M(S(F)) '
F.

Proof. We first show that M(S(F)) ' F. For notational convenience, we denote
M(S(F)) by M′. We will show the existence of a natural isomorphism ϕ : M′ ⇒
F. By definition, we have M′(G) = S(F)(G) = F(G), therefore we can define
ϕG = IdF(G). We need to prove that it is natural, which in this case amounts to
showing M′(f) = F(f) for f : G→ G′ in PIDag(L). This follows from M′(f) and
F(f) having the same underlying function between events, namely the inclusion
(EG, λG)→ (EG′ , λG′).

Now we show that S(M(S)) = S for any coherent specification S. This fol-
lows directly from the definition of M and S. In fact, S(M(S))(G) = M(S)(G) =
S(G).

The one-to-one correspondence can be lifted to the specific classes of sat-
urated and topological coherent specifications and to the functors of Proposi-
tion 3.35 and Proposition 3.39, respectively. However, what is most relevant is
the fact the interchangeability allows one to leverage the categorical machinery
of the functor category for providing operators on specifications.

24

r2

r1
〈wr(1), ok〉

1

〈wr(2), ok〉
3

〈rd, {2}〉
5

rcv
6

〈rd, {2, 3}〉
7

〈wr(3), ok〉
2

snd
4

Figure 5: Execution

Remark 3.41. Besides coherence, one of the keys of the previous correspon-
dence is the (quite reasonable) choice of specifications that preserve isomor-
phisms. In general terms, whenever one needs to consider the relationship be-
tween different specifications, it is necessary to take into account how the under-
lying sets of events are related. This is quite easy to accomplish if we move to
the functorial presentation. For example, we can say that a specification S1 re-
fines a specification S2 if S1(G) ⊆ S2(G) for all graphs G. However, this is a very
concrete characterisation: It would be more general to check for the existence
of a ps-morphism S2(G2) → S1(G1) whose underlying function f : EG2 → EG1
is a bijection, in order to abstract from the identities of the events. In this
case, a further constraint would be that f is preserved along the image of the
morphisms in PIDag(L). These requirements boil down to the existence of a
natural transformation M(S2)→M(S1).

4. On the implementations of Replicated Data Types

An rdt is implemented on top of a set of replicas, which serve requests from
clients according to their local state and communicate asynchronously their
local changes. Fig. 5 illustrates a scenario involving two replicas, namely r1
and r2, that implement a multi-value Register (as specified in Example 2.4). A
horizontal line corresponds to a replica and shows the relative order (from left
to right) in which events occur in that replica. The depicted scenario shows a
concrete execution that generates the visibility graph in Fig. 3. The two writes
on r1 are totally ordered (events 1 and 3), and consequently, 2 overwrites 1.
The remaining write takes place on r2 (event 2) and is unknown to r1 until r2
propagates its changes. Hence, the first read on r1 (event 5) returns 2, which
is the last written value in r1. Replicas communicate their local changes by
using primitives snd and rcv. Event 6 in r1 denotes the synchronisation of its
local state with the state of r2, i.e., r1 becomes aware of the written value 3
(depicted by the dashed line between events 4 and 6). Since writes in r1 and
r2 are concurrent, the last read on r1 returns the set of maximal concurrent
updates, i.e., {2, 3}.

A crucial aspect in the implementation of rdts concerns the information
exchanged through snd and rcv. Under the state-based approach, replicas com-
municate their own local states [7] while they only communicate operations (or
their effects) under the operation-based approach [20]. Hereafter, we will focus
on state-based implementations.

25

4.1. Implementations as RLTSs

Following the approach in [7], we describe an implementation of a data type
in terms of the behaviour of a replica and we assume that all the replicas of an
implementation behave the same.

We define the behaviour of a replica implementing a specification as a la-
belled transition system, which we call Replica LTS (RLTS). We write Σ for
the set of the possible states σ, σ0, . . . of a replica. We assume that Σ forms
a commutative monoid, namely that it can be equipped with an operation ⊕
describing how one replica updates its state upon reception of the local state of
another replica. We deviate from previous proposals, such as [7, 9], and treat
operations that may change the state of a replica (i.e., mutators) differently from
those that can only retrieve information from the state (i.e., queries). The fore-
most reason of this distinction is behavioural: The mutators are total, meaning
that they can originate from any state; furthermore, they respect the monoidal
structure of states. By defining RLTSs over mutators, we will be able to capture
the compositional core of rdt implementations. Queries are recovered in our
notion of bisimulation for RLTSs; this will be akin to higher-order bisimulation
(see, e.g., [16]), where queries are modelled as barbs, i.e., predicates on states.
Hereafter, we use M and B to respectively denote the sets of labels associated
with mutators and queries.

Definition 4.1 (Replica LTS). A replica LTS (RLTS in short) on a set of ac-
tions M is a quadruple Q = 〈Σ,⊕, 1, 〉 such that 〈Σ,⊕, 1〉 is a (commutative)
monoid and ⊆ Σ× (M∪ Σ)× Σ is a transition relation satisfying

(rcv)

σ
σ′

σ ⊕ σ′

It is action-deterministic if the relation M= ∩(Σ ×M× Σ) is a function
(Σ×M) Σ, and it is state-deterministic if the relation Σ= ∩(Σ×Σ×Σ)
is a function (Σ× Σ) Σ.

According to the rule (rcv), when receiving a state σ′ from other replica,
the local state σ is updated by combining the information in σ and σ′. Thus,
the concrete LTS defining the behaviour of a replica that implements an rdt is
obtained by instantiating the definitions of state and state combination.

Remark 4.2. Note that for state-deterministic RLTs the relation coincides
with the closure of M with respect to the (rcv) rule.

Indeed, all of our examples will be state-deterministic, albeit not action-
deterministic. Notably, they will preserve the monoidal operator, i.e., the tran-
sition relation will be compositional with respect to state combination.

Definition 4.3 (monoidal RLTS). A monoidal RLTS Q = 〈Σ,⊕, 1, 〉 is a
state-deterministic RLTS such that the transition relation satisfies

1 if σ1
m

σ′1 and σ2
m

σ′2 then σ1 ⊕ σ2
m

σ′1 ⊕ σ′2

26

2 if σ1 ⊕ σ2
m

σ then ∃σ′1, σ′2. σ1
m

σ′1, σ2
m

σ′2, and σ = σ′1 ⊕ σ′2
Remark 4.4. In other terms, in our RLTS we say for a given state how it
may a) evolve towards a different state and b) be combined with other states.
This is thus more general than the lattice of states (thus with union as state
composition) proposed in [20]. First of all, we implicitly consider a pre-order

on states instead of a partial order, and furthermore we do not require the
state composition operator ⊗ to be induced by the order relation on states. This
weakening results in an algebraic structure that allows for modelling a large
family of rdts, as shown in Section 4.3.

We can now move to denote the category of our RLTSs.

Definition 4.5 (category of RLTSs). The category RLTS has RLTSs as objects
and transition- and monoid-preserving functions as arrows, that is, f : Q1 → Q2

is a monoid homomorphism f : 〈Σ1,⊕1〉 → 〈Σ2,⊕2〉 such that f(1) ⊆ 2.

Remark 4.6. Note that if Q2 is state-deterministic, then any transition-preserving
function f : Σ1 → Σ2 is bound to be a monoid homomorphism.

We finally define an implementation over a family R of replicas.

Definition 4.7 (RLTS implementation). An RLTS implementation over R is
an R-indexed family of isomorphic RLTSs.

4.2. Bisimulation for RLTSs

We now move to provide a notion of bisimulation for RLTSs, which is akin
to the one for higher-order calculi: beside the symmetric simulation game, it
exploits the notion of barbs, that is, predicates on states. Introduced in [19]
and widely used for the definition of equivalences in process calculus, barbs
intuitively express the satisfiability of a observable property by a state. More
specifically, we will write σ ↓ b to say that a state σ verifies a property b.

Definition 4.8 (Action and implementation bisimulation). Let Q be an RLTS
over a set of actions M, B a set of barbs, and ↓ ⊆ Σ× B a relation. Then
an action bisimulation is a symmetric relation R ⊆ Q×Q between states in Q
such that if (σ1, σ2) ∈ R then

1 if σ1 ↓ b then σ2 ↓ b

2 if σ1
m

σ′1 then ∃σ′2 σ2
m

σ′2

It is an implementation bisimulation if additionally

3 if σ1

σ′
1
σ′′1 then ∃σ′2, σ′′2 such that σ2

σ′
2
σ′′2 and {(σ′1, σ′2), (σ′′1 , σ

′′
2)} ⊆

R.

We write ∼BQ for the largest action bisimulation, and ≈BQ for the largest imple-
mentation bisimulation.

27

Clearly, ≈BQ⊆∼BQ, that is, if σ1 ≈BQ σ2 then σ1 ∼BQ σ2 for any two states σ1,
σ2. However, under certain conditions the two notions coincide.

Proposition 4.9 (Actions as implementations). Let Q be a state-deterministic
RLTS and B a set of barbs. Then ∼BQ and ≈BQ coincide if and only if

∀σ1, σ2. 〈σ1, σ2〉 ∈ ∼BQ =⇒ ∀σ′1. ∃σ′2. {〈σ′1, σ′2〉, 〈σ1 ⊗ σ′1, σ2 ⊗ σ′2〉} ⊆ ∼BQ

Proof. For the left-to-right part, assume ∼BQ=≈BQ and consider 〈σ1, σ2〉 ∈ ∼BQ.
By state-determinism, for all σ′1 there is a transition

σ1

σ′
1
σ1 ⊗ σ′1.

By ∼BQ=≈BQ and the definition of implementation bisimulation, this transition

can be simulated by σ2

σ′
2
σ1 ⊗ σ′2, for some σ′2, with

{〈σ′1, σ′2〉, 〈σ1 ⊗ σ′1, σ2 ⊗ σ′2〉} ⊆ ∼BQ

as required.
Vice versa, suppose the implication holds; we need to prove ∼BQ⊆≈BQ. Con-

sider 〈σ1, σ2〉 ∈ ∼BQ, and suppose σ1

σ′
1
σ1 ⊗ σ′1. Then by the implication we

get the implementation bisimulation condition.

Note that the property required in Proposition 4.9 for the correspondence
between the two equivalences is weaker than the closure with respect to the
monoidal operator, which can be stated as

∀σ1, σ2. 〈σ1, σ2〉 ∈ ∼BQ =⇒ ∀σ. 〈σ1 ⊗ σ, σ2 ⊗ σ〉 ∈ ∼BQ

4.3. Some key examples

We now present instantiations corresponding to well-known implementa-
tions of the rdts specified in Section 2.2. All the associated RLTSs are state-
deterministic, hence we will drop the adjectives. All the RLTSs will be proved
to be monoidal, which validates the generality of our model.

Example 4.10 (Implementation of the GCounter). The RLTS corresponding
to a replica r that implements the rdt GCounter specified in Example 2.2 is
defined as Qr = 〈Σ,⊕, 1, r〉 where

• Σ = NR, i.e., states are mappings v where v(r) is the number of increments
performed over r.

• The operator ⊕ is defined as the point-wise maximum of v and v′, v⊕v′ =
max{v, v′} where max{v, v′}(s) = max{v(s), v′(s)} for all s ∈ R.

• 1 is the constant map to 0.

28

• The set of mutators is the singletonM = {〈inc, ok〉}. Then, r is defined
as the least relation satisfying rule (rcv) and the following one

v
〈inc,ok〉

rv[r 7→ v(r) + 1]

(inc)

which describes the effects of performing an increment over the replica r:
The entry associated with the replica r in the map v is incremented.

It straightforwardly follows from the definitions above that 〈Σ,⊕, 1〉 is a com-
mutative monoid. We now inspect the conditions in Definition 4.3

1 if vi
〈inc,ok〉

rv′i then v′i = vi[r 7→ vi(r) + 1] for i = 1, 2. Then,

v′1 ⊕ v′2 = (v1 ⊕ v2)[r 7→ max {v1(r) + 1, v2(r) + 1}]
= (v1 ⊕ v2)[r 7→ max {v1(r), v2(r)}+ 1]
= (v1 ⊕ v2)[r 7→ (v1 ⊕ v2)(r) + 1]

Hence, v1 ⊕ v2

〈inc,ok〉
rv′1 ⊕ v′2.

2 if v1 ⊕ v2

〈inc,ok〉
rv then v = (v1 ⊕ v2)[r 7→ (v1 ⊕ v2)(r) + 1]. Moreover,

vi
〈inc,ok〉

r[r 7→ vi(r) + 1] for i = 1, 2. Hence, the condition follows by
taking v′i = vi[r 7→ vi(r) + 1].

Consequently, Qr = 〈Σ,⊕, 1, r〉 is a monoidal RLTS.
The set of barbs is B = {〈rd, k〉 | k ∈ N}, and ↓ is given by

v ↓ 〈rd, k〉 ⇐⇒ k = Σs∈Rv(s)

Note that v ↓ 〈rd, k〉 holds only if the return value k in the barb corresponds
to the value stored in v (i.e., k = Σs∈Rv(s)).

Example 4.11 (GCounter bisimulation). Consider a GCounter implementa-
tion with two replicas, so that states can be simply modelled as pairs of natural
numbers 〈n,m〉. Also, let us consider the RLTS for the first replica, so that

〈n,m〉
〈inc,ok〉

1〈n+ 1,m〉.
Clearly we have that 〈n,m〉 ∼BQ 〈x, y〉 if and only if n + m = x + y, since

〈n,m〉 ↓ 〈rd, k〉 ⇐⇒ n + m = k. However, this is not an implementation
bisimulation. In fact, let us consider the states 〈9, 2〉 and 〈6, 5〉: If the former
receives the state 〈0, 3〉, there is no state that can be suitably received from 〈6, 5〉.

Example 4.12 (Implementation of the PN-Counter). The RLTS for the imple-
mentation of the replica r of the rdt PNCounter specified in Example 2.3 can
be defined as Qr = 〈Σ,⊕, 1, r〉 where

29

• Σ = NR × NR, i.e., states are pairs (p, n), where the mappings p and
n respectively record the number of increments and decrements performed
over each replica.

• The combinator ⊕ is defined as (p, n)⊕(p′, n′) = (max{p, p′},max{n, n′}).

• The identity 1 is the pair of constant mappings to 0.

• The set of mutators is M = {〈inc, ok〉, 〈dec, ok〉}. Then, r is defined
as the least relation satisfying rule (rcv) and the following ones

(p, n)
〈inc,ok〉

r(p[r 7→ p(r) + 1], n)

(inc)

(p, n)
〈dec,ok〉

r(p, n[r 7→ p(r) + 1])

(dec)

As for the GCounter, we can conclude that 〈Σ,⊕, 1〉 is a monoidal RLTS. Also,
the set of barbs is defined as B = {〈rd, k〉 | k ∈ N}, and ↓ is given by

(p, n) ↓ 〈rd, k〉 ⇐⇒ k = Σs∈R p(s)− n(s).

Example 4.13 (Implementation of the Multi-value Register). We present an
implementation for the Multi-value Register specified in Example 2.4 based on
the optimised implementation proposed in [24]. The implementation associates a
single scalar (logical) clock and a vector clock to each written value to determine
if two writes are concurrent or causally ordered. A scalar clock is a natural
number and a version vector is just a mapping from replicas to natural numbers.
The state of a replica consists of a pair (S, v) where S ∈ 2R×N×V is a set of
tagged values and v ∈ NR a version vector. An element (r, c, k) ∈ S indicates
that the value k has been written over r at the logical time c. It is assumed that
(V,≤) is a partial order. Then, the order among tagged elements is given by

(r, c, k) ≤ (r′, c′, k′) ⇐⇒ (r = r′ ∧ (c, k) ≤lex (c′, k′)) ∨ (r 6= r′ ∧ k ≤ k′)

where ≤lex stands for lexicographical order. Consequently, the maximal concur-
rent written values in a set S ∈ 2R×N×V are the maximal elements ‖S‖ defined
as {u ∈ S |6 ∃v ∈ S, u ≤ v}.

Then, for definition of Qr = 〈Σ,⊕, 1, r〉 we take

• Σ = {(‖S‖, v) | S ∈ 2R×N×V , v ∈ NR,∀(r, c, k) ∈ S.1 ≤ c ≤ v(r)}, i.e.,
each state consists of the set of maximal concurrent written values tagged
with a logical clock consistent with the version vector v.

• The state combinator ⊕ is defined as follows

(S, v)⊕ (S′, v′) = (‖(S ∩ S′) ∪ S|v′ ∪ S′|v‖,max{v, v′})

where S|v = {(r, c, k) | (r, c, k) ∈ S ∧ c > v(r)}

30

• the identity 1 is the pair (∅,⊥) where ⊥ is the constant mapping to 0.

• The set of mutators is M = {〈wr(k), ok〉 | k ∈ V}. Then, r is defined
as the least relation satisfying rule (rcv) and the following one

(S, v)
〈wr(k),ok〉

r({(r, v(r) + 1, k)}, v[r 7→ v(r) + 1])

(wr)

It is immediate from its definition that ⊕ is commutative. We show that
1 = (∅,⊥) is the identity as follows.

(S, v)⊕ (∅,⊥) = (‖(S ∩ ∅) ∪ S|⊥ ∪ ∅|v‖,max{v,⊥}) by the def. of ⊕
= (‖S|⊥ ∪ ∅|v‖,max{v,⊥}) by the def. of ∪ and ∩
= (‖S|⊥‖,max{v,⊥}) because ∅|v = ∅
= (‖S|⊥‖, v) because ⊥ is the identity

It remains to show that ‖S|⊥‖ = S. Since (S, v) ∈ Σ, for all ∀(r, c, k) ∈
S.1 ≤ c ≤ v(r). Therefore, ∀(r, c, k) ∈ S, c > 0 = ⊥(r) holds. Hence,
S|⊥ = S. Moreover, (S, v) ∈ Σ implies that there exists S′ such that S = ‖S′‖.
Therefore, ‖S‖ = S because ‖ ‖ is idempotent. Hence, we can conclude that
Qr = 〈Σ,⊕, 1, r〉 is a commutative monoid. We now inspect the conditions in
Definition 4.3

1 if (Si, vi)
〈wr(k),ok〉

r(S′i, v
′
i) then we have S′i = {(k, r, v(r) + 1)} and v′i =

vi[r 7→ v(r) + 1] for i = 1, 2. Then

(S′1, v
′
1)⊕ (S′2, v

′
2) = (‖(S′1 ∩ S′2) ∪ S′1|v′2 ∪ S

′
2|v′1
‖,max{v′1, v′2})

Firstly, we note that max{v′1, v′2} = max{v1, v2}[r 7→ max{v1, v2}(r) + 1].
For ‖(S′1 ∩ S′2) ∪ S′1|v′2 ∪ S

′
2|v′1
‖, we have three cases

• v1(r) = v2(r). Then S′1 = S′2 = {(r, v1(r)+1, k)} = S′1∩S′2. Moreover
S′1|v′2

= S′2|v′1
= ∅ because S′i = (r, v1(r) + 1, k) and clearly v1(r) + 1 6>

v′i(r) = vi(r) + 1. Hence

(S1, v
′
1)⊕ (S′2, v

′
2) = ({(r, v1(r) + 1, k)},max{v′1, v′2})

Therefore (S1, v1)⊕ (S2, v2)
〈wr(k),ok〉

r(S′1, v
′
1)⊕ (S′2, v

′
2).

• v1(r) > v2(r). Then S′i = {(r, vi(r)+1, k)} and S′1∩S′2 = ∅. Moreover
S′1|v′2

= {(r, vi(r) + 1, k)} and S′2|v′1
= ∅. Hence

(S1, v
′
1)⊕ (S′2, v

′
2) = ({(r, v1(r) + 1, k)},max{v′1, v′2})

Therefore (S1, v1)⊕ (S2, v2)
〈wr(k),ok〉

r(S′1, v
′
1)⊕ (S′2, v

′
2).

• v2(r) > v1(r). Follows as in the previous case.

31

2 Follows along the lines of the previous case.

The set of barbs is defined as B = {〈rd, S〉r | S ∈ 2V}, and ↓ is given by

(S, v) ↓ 〈rd, S′〉r ⇐⇒ S′ = {k | (s, c, k) ∈ S}

Example 4.14 (Implementation of the Last-write wins Register). We now
describe the implementation based on timestamps proposed in [21] for the Last-
write wins Register introduced in Example 2.5. Let (T, <) be the totally-ordered
set of timestamps with minimum t0. Then, the corresponding RLTS for a replica
r is defined as Qr = 〈Σ,⊕, 1, r〉 where

• Σ = T × (V ∪ {⊥}), i.e., the state (t, k) of a replica contains the current
value k of the register and its associated timestamp. We assume (V,≤)
to be a total order and establish that ⊥ ≤ k for all k ∈ V; moreover, we
consider T× (V ∪{⊥}) lexicographically ordered, i.e., (t, k) ≤ (t′, k′) when
either t < t′ or t = t′ and k ≤ k′.

• The state combinator ⊕ is defined as follows

(t, k)⊕ (t′, k′) = max{(t, k), (t′, k′)}

• the identity 1 is the pair (t0,⊥).

• The set of mutators is M = {〈wr(k), ok〉 | k ∈ N}. Then, r is defined
as the least relation satisfying rule (rcv) and the following one

t′ ∈ T

(t, k)
〈wr(k′),ok〉

rmax{(t, k), (t′, k′)}
(wr)

Note that the transition system is non-deterministic, because the target of
the arrow depends on the chosen t′.

It immediately follows from the definitions that Qr = 〈Σ,⊕, 1, r〉 is a commu-
tative monoid. We now inspect the conditions in Definition 4.3

1 if (ti, ki)
〈wr(k),ok〉

r(t′i, k
′
i) then either (t′i, k

′
i) = (ti, ki) or (ti, ki) < (t′i, k

′
i)

and k′i = k. Then, define (t′, k′) = (t′1, k
′
1) ⊕ (t2, k

′
2) = max{(t′1, k′1) ⊕

(t′2, k
′
2)}. Since (ti, ki) ≤ (t′, k′) for i = 1, 2, we conclude that (t1, k1) ⊕

(t1, k1) ≤ (t′, k′) and therefore (t1, k1)⊕ (t1, k1)
〈wr(k),ok〉

r(t′, k′).

2 Follows along the lines of the previous case.

The set of barbs is defined as B = {〈rd, k〉 | k ∈ N}, and ↓ is given by

(t, k) ↓ 〈rd, k′〉 ⇐⇒ k′ = k

32

Example 4.15 (Implementation of the OR-Set). The behaviour of a single
replica according to the implementation proposed in [2] is given by the RLTS
Qr = 〈Σ,⊕, 1, r〉 defined as follows

• Σ = {(v, w) | v ∈ NR, w ∈ NV×R, w(k, r) ≤ v(r)}, i.e., states are pairs
(v, w), where v is a version vector, and w maps each pair (k, r) to the most
recent version of r in which k has been added to r. If w(k, r) = 0 then k
does not belong to the set according to r.

• The combination of (v, w) and (v′, w′) handles conflicting information in
the mappings w and w′ for the same element. There is a conflict between
w and w′ for (k, s) when one mapping indicates that k is present in the
replica s and the other does not, i.e., w(k, s) > 0 and w′(k, s) = 0 or vice
versa. Such conflicts are resolved by using the version vectors v and v′, as
formalised by the operation + : (NR × NV×R) × (NR × NV×R) → NV×R.
defined such that

(v, w) + (v′, w′)(k, s) =

w(k, s) v(s) > v′(s)

w′(k, s) v(s) < v′(s)

min{w(k, s), w′(k, s)} otherwise

Then, the state combinator ⊕ is defined as

(v, w)⊕ (v′, w′) = (max{v, v′}, (v, w) + (v′, w′))

• The identity 1 is the pair (⊥,⊥) where ⊥ are suitable constant maps to 0.

• The set of mutators is

M = {〈add(k), ok〉 | k ∈ V} ∪ {〈rem(k), ok〉 | k ∈ V}

Then, r is defined as the least relation satisfying rule (rcv) and the fol-
lowing ones

(v, w)
〈add(k),ok〉

r(v[r 7→ v(r) + 1], w[(k, r) 7→ v(r) + 1])

(add)

(v, w)
〈rem(k),ok〉

r(v, w[∀s ∈ R. (k, s) 7→ 0])

(rem)

By rule (add), if k is added to r, then r changes its local state by (i)
creating a new version, i.e, the entry v(r) is updated to v(r) + 1, and (ii)
recording that k has been added in the newest version of r, i.e. w(k, r) is
updated to v(r) + 1. By rule (rem), if k is removed from the set, then all
entries in the second mapping associated with k are set to 0 to record the
elimination.

33

First, note that + is a commutative operator. Hence, Qr = 〈Σ,⊕, 1, r〉 is a
commutative monoid. We now inspect the conditions in Definition 4.3

1 if (vi, wi)
〈add(k),ok〉

r(v′i, w
′
i) then we have v′i = vi[r 7→ vi(r) + 1] and w′i =

wi[(k, r) 7→ vi(r) + 1] for i = 1, 2.

Then, define (v′, w′) = (v′1, w
′
1) ⊕ (v′2, w

′
2) = (max{v′1, v′2}, (v′1, w′1) +

(v′2, w
′
2)). Note that max{v′1, v′2} = max{v1, v2}[r 7→ max{v1, v2}(r) + 1].

Also, for all s ∈ R and k′ ∈ N, if s 6= r and k′ 6= k we have

((v′1, w
′
1) + (v′2, w

′
2))(k′, s) = ((v1, w1) + (v2, w2))(k′, s)

Additionally

((v′1, w
′
1) + (v′2, w

′
2))(k, r) = max{v1(r), v2(r)}+ 1

Hence

(v′1, w
′
1) + (v′2, w

′
2) = ((v1, w1) + (v2, w2))[(k, r) 7→ max{v1(r), v2(r)}+ 1]

Consequently, (v1, w1)⊕ (v2, w2)
〈add(k),ok〉

r (v′, w′).

The case for the mutator 〈rem(k), ok〉 follows analogously.

2 Follows along the lines of the previous case.

The set of barbs is B = {〈lookup, S〉 | S ∈ 2V}, and ↓ is given by

(v, w) ↓ 〈lookup, S〉 ⇐⇒ S = {k | ∃s ∈ R. w(k, s) > 0}

When performing a lookup, the replica r returns the set S of all k that,
according to w, have been added to some replica s (i.e., w(k, s) > 0 holds)

Example 4.16 (Implementation of the 2P-Set). The behaviour of a single
replica according to the implementation proposed in [21] is given by the RLTS
Qr = 〈Σ,⊕, 1, r〉 defined as follows

• Σ = 2V × 2V , i.e., states are pairs (A,R), where A and R are respectively
the sets of added and removed elements.

• The combination of (A,R) and (A′, R′) simply consists in the point-wise
union of sets, i.e., (A,R)⊕ (A′, R′) = (A ∪A′, R ∪R′).

• The identity 1 is the pair (∅, ∅).

• The set of mutators is

M = {〈add(k), ok〉 | k ∈ V} ∪ {〈rem(k), ok〉 | k ∈ V}

34

Then, r is defined as the least relation satisfying rule (rcv) and the fol-
lowing ones

(A,R)
〈add(k),ok〉

r(A ∪ {k}, E)

(add)

(A,R)
〈rem(k),ok〉

r(A,E ∪ {k})
(rem)

According to (add), an addition simply extends the set of added elements
with k; analogously, a removal extends the set of removed events (add).

The implementation is analogous to the PNCounter; consequently, we can show
that Q is a monoidal RLTS.

The set of barbs is defined as B = {〈lookup, S〉 | S ∈ 2V}, and ↓ is given by

(A,R) ↓ 〈lookup, S〉 ⇐⇒ S = A \R

When performing a lookup, the replica r returns the elements that have been
added but not removed.

5. From specifications to LTS

We can exploit the structure of coherent functors to recover an operational
interpretation of specifications. In the following, we consider a coherent functor
F : PIDag(L) → SPath(L). We we will recover the corresponding LTS via
a standard categorical construction, namely its category of elements E(F) (see
e.g. [18, Pag. 41]) as follows. Given a pr-morphism f : G → G1 and P ∈ F(G),
we denote by F(f)(P) the set of paths in F(G1) that are in the “image” of P via
F(f), formally specified as F(G1) ∩ sat(P, f).

Definition 5.1 (Category of elements). The category of elements E(F) of F is
obtained as follows

• objects are pairs 〈G, P〉, such that G ∈ PIDag(L) and P ∈ F(G);

• arrows f : 〈G, P〉 → 〈G1, P1〉 are pr-morphisms f : G → G1 such that P1 ∈
F(f)(P).

Intuitively, arrows in E(F) stand for the possible ways a path in F(G) can
evolve according to F(f). The category E(F) is clearly an LTS, since each
category is so. We note that our way of distilling an LTS is similar to how one
obtains an LTS from a relation presheaf [23, Definition 4.1].

Example 5.2. Consider the functor M(SmvR) induced by the coherent spec-
ification SmvR in Example 2.4. An object 〈G, P〉 of the category of elements
E(M(SmvR)) represents a state of the rdt where the events in the visibility
graph G are arbitrated according to P ∈ SmvR(G). An arrow f : 〈G, P〉 → 〈G1, P1〉
in E(M(SmvR)) describes a computation where the visibility G is extended to G1

and the arbitration P to P1. For instance, take the graphs G2 and G3 in Fig. 4c

35

and Fig. 4d, and the unique pr-morphism f : G2 → G3. If P2 is a total order of
the events in G2, then there is a ps-morphism f : {P2} → sat(P2, f). Moreover,
SmvR(G3) ∩ sat(P2, f) = sat(P2, f) because SmvR imposes no constraint on the
admissible arbitrations of a consistent visibility. Therefore, there is a morphism
f : 〈G2, P2〉 → 〈G3, P3〉 for any P3 ∈ sat(f, P2) in E(M(SmvR)).

A pr-morphism may not induce an arrow in the category of elements, as
f : G2 → G4 with G2 from Fig. 4c and G4 its root extension along 〈rd, {1}〉.
Indeed, SmvR(G4) = ∅, and hence M(SmvR)(f)(P) = ∅ for any P ∈ SmvR(G2).

An analogous situation occurs when the specification restricts the allowed
arbitrations, as SlwwR in Example 2.5. Consider the root extension f : G → G1

along 〈rd, {2}〉, with G1 as in Fig. 4a and G is G1 without the event 〈rd, {2}〉.
Then we have SlwwR(G1) = {P1}, and SlwwR(G) contains two paths: P, which
keeps the order of writes as in P1, and P′, which inverts it. The latter cannot
be extended to any path in SlwwR(G1), as writes are in the wrong order. In fact,
there is no f : 〈G, P′〉 → 〈G1, P1〉 in E(M(SlwwR)). Contrastingly, we have that
f : 〈G, P′〉 → 〈G1, P

′′〉 is an arrow of E(M(SmvR)) for any P′′ ∈ sat(f, P′), as the
order of writes is irrelevant for SmvR.

5.1. One- and Multi-replica LTSs
We now recover one-replica LTSs in our setting (see Definition 2.10), by ob-

serving that the way visibility is augmented along a transition can be formalised
as a root `-extension. In fact, the one-replica LTS precisely corresponds to a
sub-category of E(F) consisting only of such extensions.

Proposition 5.3. Let Eo(F) be E(F) restricted to root `-extensions, for all
` ∈ L. Then the one-replica LTS coincides with the LTS for Eo(F).

This is easily seen: Each root `-extension corresponds uniquely to a `-labelled
one-replica transition, and between any two graphs there is at most one root
extension, so that also the label is implicitly recovered.

We now go a step further, and recover the multi-replica LTS of Definition 2.12
by exploiting the structure of coherent functors. Recall that, given replica states
〈Gi, Pi〉, i = 1, 2, we assume that G1 and G2 are compatible when forming the
composite state. In our categorical setting, compatibility is formalised as the
existence of a span fi : G→ Gi of mono pr-morphisms such that EG = EG1 ∩ EG2
(thus, shared nodes have the same labels and predecessors). Notably, the union
G1 t G2 and the obvious morphisms are the pushout for this span.

Before our main characterisation result, we need two technical lemmas. The
first says that certain pushouts in SPath(L) can be decomposed as pushouts
over singleton path sets. The second says that every extension is determined by
a root extension along the same label.

Lemma 5.4 (Decomposition). Consider the following diagrams in SPath(L)

X X2

X1 X1 ⊗X2

f2

f1 f3

f4

{P} {P2}

{P1} P1 ⊗ P2

f2

f1 f3

f4

36

If the diagram on the left is a pushout, then for all P1 ∈ X1 and P2 ∈ X2 there
are pushouts as shown on the right such that fi and fi have the same underlying
function on events.

Lemma 5.5. Let f : G → G1 be a pr-morphism in PIDag(L). Then it is an
`-extension if and only if there exists a pushout in PDag(L)

G G1

G G1

f

f

such that f is a root `-extension.

We now show that transitions of the multi-replica LTS are those correspond-
ing to `-extensions. Intuitively, an `-extension describes a “local” augmentation
of a graph, corresponding to a step of computation of a single replica.

Proposition 5.6. Let Em(F) be E(F) restricted to `-extensions, for all ` ∈ L.
Then the multi-replica LTS coincides with the LTS for Em(F).

Proof. We first show that states in E(F) – and thus in Em(F), as they have
the same objects – are of the required form. If G1 and G2 are compatible, by
Lemma 3.31 we obtain F(G1 t G2) ∼= F(G1)⊗F(G2), from which we have that for
any 〈G1 t G2, P〉, as in Definition 5.1, it holds P ∈ F(G1)⊗ F(G2), as required.

In order to show that multi-replica transitions correspond to morphisms of
Em(F), we will show that these morphisms are generated according to the rule
(Comp), i.e., every `-extension in Em(F) is generated from a suitable rooted
`-extension, and vice versa. We show one direction, the other one is analogous.
Let f : 〈G1, P1〉 → 〈G′1, P′1〉 be a rooted `-extension. For any graph G2 compatible
with G1 we have the following pushout in PDag(L)

G1 G′1

G1 t G2 G′1 t G2

f

f

(note that G′1 t G1 t G2
∼= G′1 t G2, as G1 is a sub-graph of G′1), which implies by

Lemma 5.5 that f is a `-extension. We now have to show that for all P′ ∈ P⊗P′1
there exist morphisms f : 〈G1tG2, P〉 → 〈G′1tG2, P

′〉 in Em(F). By coherence of F
and Lemma 3.31, we have that the pushout above is mapped by F to a pushout
in SPath(L) of the form

F(G1) F(G′1)

F(G1 t G2) F(G1 t G2)⊗ F(G′1)

F(f)

F(f)

37

By Lemma 5.4, this implies the existence of a pushout for the span {P} ←↩
{P1} ↪→ {P′1}, where the bottom leg is a ps-morphism {P} ↪→ P ⊗ P′1 with
the same underlying function on events as F(f). Therefore, by definition of
ps-morphism and P ∈ F(G1 t G2), and by P′1 ∈ F(G′1), we obtain

P⊗ P′1 ⊆ sat(P,F(f)) ∩ F(G1 t G2)⊗ F(G′1)

Noting that the formula on the right coincides with F(f)(P), we obtain the
existence of the desired morphisms in Em(F), by Definition 5.1.

Example 5.7. Consider once more the category E(M(SmvR)) discussed in Ex-
ample 5.2. By Proposition 5.3, the behaviour of a single replica is characterised
by morphisms associated with root extensions. The morphism f : 〈G2, P2〉 →
〈G3, P3〉 described in Example refex:catelem corresponds to a one-replica tran-
sition with label 〈rd, {2, 3}〉. In fact, its underlying pr-morphism f : G2 → G3

is a root extension, accounting for the occurrence of the event 〈rd, {2, 3}〉 that
sees any other event in the configuration; this may happen locally if all events
in other replicas have been already propagated. Contrastingly, the extension
f′ : P1 → G2 accounts for a new event 〈wr(3), ok〉 that is unaware of any other
event, and hence, executed in a completely different replica. This corresponds to
multi-replica transitions f′ : 〈P1, P〉 → 〈G2, P

′〉, where P′ arbitrates the additional
event 〈wr(3), ok〉 anywhere in P. The local one-replica execution originating this
transition is obtained via Lemma 5.5: It is f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉
(here we write 〈wr(3), ok〉 for the one-node graph/path), with the underlying
pr-morphism ∅ → 〈wr(3), ok〉 a root morphism.

5.2. Context LTS

So far, the category of elements allowed to recast the set-theoretical presen-
tation of one- and multi-replica LTSs. However, its strength is in allowing to
obtain a new LTS that is reminiscent of the category of contexts à la Leifer-
Milner [17], where arrows represent contexts enabling a transition from the
source to the target of the arrow. Here, observations are pairs of an event plus
an embedding that records how the resulting local visibility embeds into the
global one. These additional observations will be needed for defining a correct
notion of simulation.

Definition 5.8. The context LTS is obtained by taking elements 〈G, P〉 of E(F)
as states, and by labelled transitions triples

〈G, P〉 〈f,f〉−−−→ 〈G1, P1〉

such that f : 〈G, P〉 → 〈G1, P1〉 and f : 〈G1, P1〉 → 〈G1, P1〉 are arrows of E(F) and
there exists a pushout in PDag(L)

G G1

G G1

f

f

38

Note that each arrow f : 〈G, P〉 → 〈G1, P1〉 of E(F) induces at least one
labelled transition (it suffices to consider for f the identity of G1), but they
could actually be more. In fact, all labels can be obtained constructively, since
in PDag(L) pushouts along monos are also pullbacks, and the arrow [f, f] : G+
G1 → G1 uniquely induced by the coproduct must be epi.

Also note that if we restrict to consider only injections, the pair 〈f, f〉 is
uniquely characterized by 〈G1, P1〉. In order to simplify some definitions, in the
following we abuse notation and denote as 〈G1, P1〉 such a label 〈f, f〉.

Finally, it is noteworthy that the context LTS includes also the one- and
multi-replica, as stated by the result below.

Lemma 5.9. The LTS for Eo(F) (Em(F)) coincides with the restriction of the
context LTS to transitions whose labels are pairs 〈f, id〉, where f is a root ex-
tension (an extension, respectively).

For the former, note that if f is a root extension, then a mono pr-morphism
forming a pushout square has to be an isomorphism. Instead, should f be an
extension, a few alternatives for the second component of the label are available,
such as taking for G1 the smallest graph such that G t G1 = G1. However, the
choice is immaterial for our later results on simulation, and further abusing
notation we simply denote as ` a label 〈f, id〉 such that f is an `-extension.

Example 5.10. Consider the multi-replica transition arrow f′ : 〈P1, P〉 → 〈G2, P
′〉

of Example 5.7. Since we have the arrow f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉
in the category of elements, f′ yields the following context LTS transition

〈P1, P〉
〈f′,f′〉−−−−→ 〈G2, P

′〉

where f
′

is the embedding of the one-node graph 〈wr(3), ok〉 into G2. As men-
tioned, we can just use 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 as label, since this is uniquely
determined. This label conveys the information about the resulting visibility and
arbitration pair for the acting replica.

5.3. Implementation correctness via simulation

We are now ready to characterise implementation correctness as a simulation
relation between the context LTS and a RLTS implementation.

Definition 5.11 (Implementation correctness). Let S be a specification, CS the
context LTS, and IS = {Ir}r∈R the RLTS implementation. An implementation
relation RS = {Rr}r∈R is a R-family of relations such that Rr relates states in
Ir and CS and if (σ, 〈G, P〉) ∈ Rr then

1. if σ ↓ b then ∃G′, P′ such that 〈G, P〉 b−→ 〈G′, P′〉 and (σ, 〈G′, P′〉) ∈ Rr;

2. if σ
m r σ′ then ∃G′, P′ such that 〈G, P〉 m−→ 〈G′, P′〉 and (σ′, 〈G′, P′〉) ∈ Rr;

3. if σ
σ′

r σ′′ then ∃G′, G′′, P′, P′′ such that 〈G, P〉 〈G
′,P′〉−−−−→ 〈G′′, P′′〉, (σ′, 〈G′, P′〉) ∈

RS , and (σ′′, 〈G′′, P′′〉) ∈ Rr.

39

We write ∼S for the largest implementation relation.

The notion of implementation correctness coincides with the one given in [9,
Definition 21]. We may introduce one-replica implementation relations, and the
associated notion of correctness, just by suitably restricting the context LTS,
that is, by requiring b and m in items 1 and 2 above to arise from a root extension
instead of an extension.

Example 5.12. We now look at the GCounter rdt and we exhibit a one-replica
implementation relation for it.

Restricting the context LTS for SGC to its one-replica labels, we find the
following three types of transitions

T1: 〈G, P〉 〈rd,k〉−−−−→ 〈G〈rd,k〉, P′〉, arising from a rooted 〈rd, k〉-extension G →
G〈rd,k〉.

T2: 〈G, P〉 〈inc,ok〉−−−−−→ 〈G〈inc,ok〉, P′〉, arising from a rooted 〈inc, ok〉-extension G→
G〈inc,ok〉.

T3: 〈G, P〉 〈G
′,P′〉−−−−→ 〈G′′, P′′〉, arising from a suitable pushout in PDag(L).

Given a RTLS implementation ISGC
, defined according to Example 4.10, let vr

denote the state v in Ir. We have that the following family of relations

Rr =

®
(vr, 〈G, P〉)

∣∣∣∣∣ ∃f : EG → R s.t.

∀s ∈ R.vr(s) =]{e | f(e) = s ∧ λG = 〈inc, ok〉}

´
is a one-replica implementation relation. The proof is a straightforward adap-
tation of [9, Example 16] and is carried out by case analysis, noting that the
transition types T1-T3 above correspond to the tree cases of Definition 5.11.

6. Implementation model

In this section we present our model for implementations. Similarly to what
we did for specifications, the aim is to characterise RLTSs by means of suitable
functors. Our models are based on a power-domain construction, modelling
non-determinism.

6.1. Implementations as functors over power-monoids

Our model for implementations is inspired by [23], where LTSs are given
as functors from the free monoid over labels, represented as a one-object cat-
egory, to a category of non-deterministic computations. This allows modelling
sequences of transitions as compositions of computations. In our setting, we use
a one-replica category representing the free monoid of actions of a replica.

Definition 6.1 (One-replica category). The one-replica category IR is the
category with one object and whose arrows are words over M.

40

Example 6.2. The one-replica category IR for the Multi-value Register in
Ex. 4.14, has a unique object r and the arrows w : r→ r with w ∈ {〈wr(k), ok〉 | k ∈
V}∗ with ιr = ε : r→ r.

In order to capture the behaviour of a set of replicas R, we need to account
for the fact that single replicas must show the “same” behaviour. For instance,
in the Multi-value Register implementation LTS (see Ex. 4.13), the (Write)
operation on two replicas r and s have to return exactly the same set of version
vectors NR, up to a swapping of r and s in their domain.

We formalise this constraint by introducing the category IR(R), containing
#R isomorphic copies of IR. That is, that category comes equipped with
isomorphisms ιr,s : r → s for each r, s ∈ R such that ιr,r = idr = ιr,s; ιs,r.
Furthermore, we require a naturality condition, namely, for all words w overM
we have ιr,s;w = w; ιr,s. This constraint precisely enforces the requirement on
the behaviour of the single replicas, which are now naturally isomorphic. For
the sake of clarity, we usually suffix arrows associated to elements of M with
the replica they belong to, e.g. m : r→ r is denoted as mr.

Example 6.3. Consider again the Multi-value Register and two replicas, i.e.,
R = {r, s}. Then, IR(R) has two objects r and s and the arrows w : r1 →
r2 with r1, r2 ∈ R and w ∈ {〈wr(k), ok〉 | k ∈ V}∗. We identify ιr1,r2 with
ε : r1 → r2 for r1, r2 ∈ R. We write 〈wr(k), ok〉r for the arrow 〈wr(k), ok〉 :
r → r, i.e., the execution of the mutator 〈wr(k), ok〉 over the replica r. Hence,
〈wr(k1), ok〉r; 〈wr(k2), ok〉s stands for a computation that consists of two writes:
Firstly, k1 is written over r, then, k2 is written over s.

We now move to define a category where the arrows of IR(R) are interpreted
as non-deterministic computations. The key idea is to generalise the develop-
ment of Section 4.1 and represent the state-space as a monoid, and transitions
as monoid endomorphisms. The first step is to consider the category Mon
of monoids and monoid homomorphisms. This is not enough, since here the
arrows of IR(R) would be interpreted as functions mapping each state to a
single state, i.e., as deterministic computations. To represent nondeterminis-
tic computations, we consider the powerset functor P : Set → Set, mapping
a set to its subsets. It is well-known that this functor forms a monad (here
we omit unit and multiplication), and that it lifts to monoids, i.e., to a func-
tor P : Mon → Mon. We can then consider the associated Kleisli category
P(Mon), where objects are those of Mon and arrows M1 →M2 are monoid
homorphisms M1 → P(M2), representing relations that respect the monoid
structure. In our setting, these will be used to represent transition relations of
monoidal RLTSs.

Definition 6.4 (Functorial implementation). A functorial implementation of
R is a functor I : IR(R)→ P(Mon).

An implementation functor thus maps each replica into isomorphic monoids
of possible states, and the arrows of a replica are mapped to relations over
such sets of states, with the additional property of being compositional with

41

respect to state composition. More precisely, I(mr)(σ) is the set of states of the
replica r that are reachable from σ after observing mr. The naturality of the
isomorphisms ιr,s ensures that the replicas exhibit the “same” behaviour, yet up
to isomorphism, which takes care of the possible permutations among replicas.

Example 6.5. An implementation functor for the Multi-value Register over a
set of replicas R can be defined as follows

• We assume that all replicas are implemented in the same way (i.e., they
only differ in their identifier). For this reason, their states exhibit the same
structure, i.e., the implementation monoid 〈Σ,⊕, 1〉 defined in Exam-
ple 4.13. Hence, the implementation functor maps each replica is mapped
to same implementation monoid, i.e., ∀r.I(r) = 〈Σ,⊕, 1〉.

• Each arrow 〈wr(k), ok〉 : r → r corresponding to the execution of the mu-
tator 〈wr(k), ok〉 over the replica r is mapped to a transition relation cor-
responding to that replica, i.e.,

I(〈wr(k), ok〉r)(S, v) = {(S′, v′) | (S, v)
〈wr(k),ok〉

r(S′, v′),
S′ = (r, v(r) + 1, k), v′ = v[r 7→ v(r) + 1]}

• I(ιr,s) = ϕr,s are RLTS isomorphisms.

We are now ready to give the main correspondence theorem of this section.

Theorem 6.6. There is a one-to-one correspondence between monoidal, state-
deterministic RLTS implementations and functorial implementations.

Proof. We first show that a monoidal, state-deterministic RLTS implementa-
tion I over R induces a functor I(I) : IR(R) → P(Mon). Suppose I =
{〈Σr,⊕r, 1r, r〉}r∈R, and let ϕr,s be the isomorphism between Ir and Is. Then
we define

I(I)(r) = 〈Σr,⊕r, 1r〉

I(I)(mr)(σ) = {σ′ | σ m r
M σ′}

I(I)(ιr,s) = ϕr,s

with the obvious identity mappings. This functor is well-defined, in fact: I(I)(mr)
is a monoid homomorphism by monoidality of I; I(I)(mr;m

′
r) = I(I)(mr); I(I)(m′r),

as both sides amount to making a m transition followed by a m′ transition in Ir;
and finally, the equations ιr,s;w = w; ιr,s in IR(R) are preserved, because they
amount to I(I)(ιr,s) = ϕr,s being a RLTS homomorphism, hence commuting
with the transition structures of Ir and Is.

Although I(I) does not explicitly represent transitions labelled by states
(these do not occur as arrows of IR(R)), they are implicitly represented in the
target category P(Mon) as the monoidal structure. In fact, since the Ir are

42

all state-deterministic, is the closure of M with respect to the monoidal
operation.

We conclude by observing that the correspondence given above is actually
bijective: two distinct RLTSs will yield two distinct functors, and every functor
IR(R)→ P(Mon) can be turned into a RLTS using the equations above.

6.2. From functorial implementations to LTSs

We can distill an LTS from a functorial implementation similarly to how
we obtained context LTSs from functorial specifications. Given a functorial
implementation I, we can define its category of elements E(I) as in Definition 5.1.
It is rewritten here for the sake of clarity.

Definition 6.7 (Category of elements, II). The category of elements E(I) of I
is obtained as

• states are pairs 〈r, σ〉, such that r ∈ R and σ ∈ I(r);

• arrows g : 〈r, σ〉 → 〈s, σ′〉 are arrows g : r→ s such that σ′ ∈ I(g)(σ).

It suffices to apply a simpler machinery than the one used for context LTSs.

Definition 6.8 (Implementation LTS). The implementation LTS is obtained
by taking elements 〈r, σ〉 of E(I) as states, and by labelled transitions triples

〈r, σ〉 mr−−→ 〈r, σ′〉

such that mr : 〈r, σ〉 → 〈r, σ′〉 is an arrow of E(I).

We restricted to transitions over the same replica, but of course this is just
for convenience, since all our examples fit into this pattern.

We note that an implementation LTS is in general smaller than the corre-
sponding RLTS, as it lacks explicit state-labelled transitions; these instead are
captured by the monoidal structure of the state-space.

7. Conclusions and further works

In our paper we considered rdts, and we laid out the basis for an algebraic
characterisation of their operational semantics as well as of their implementation
correctness in terms of (higher-order) simulation. The core of our contribution
lies precisely in the formalism behind such characterisations. Our proposal
builds on [12, 10] and improves [11, 9] and similar set-theoretical characterisa-
tions, which are now made precise and recast into standard notions from the
literature on algebraic specifications, thus allowing for the use of a large body
of methods and techniques in the analysis of rdts. We offered a few examples
for showing the adequateness of our proposal, even if its strength need to be
further checked by a larger number of case studies.

In order to stress the methodological points, we adopted some simplifications.
The most notable is the removal of the snd label from our transition systems.

43

Indeed, in our examples, and, in in fact, in most case studies we are aware of,
a replica always spawns a full copy of itself, thus from the point of view of
simulation it is irrelevant, and it would be in any case captured by the identity
arrow on the category of replicas. The modelling of replica communication [9],
where the action of sending plays a larger role, is the subject of ongoing work.

Our construction of transition systems out of a category of elements fol-
lows an already established pattern for presheaves and simulation, most notably
in [23]. The distilling of labels is clearly reminiscent of the contexts as labels
paradigm advanced by Leifer and Milner [17], and it would fit in its less con-
strained version proposed in [4]. Since this was not the main methodological
issue of the paper, we adopted a presentation requiring some ingenuity.

Our set-theoretical definition of the operational semantics of an implemen-
tation focuses on the algebraic structure of replica states. In this respect, it
shares aims with the approach presented in [1] for implementation of Commu-
tative Replicated Data Types (CRDTs). There, the chosen structure for states
are join-semilattices, instead of monoids. As a consequence, mutators in [1] are
required to be inflations on the applied states while mutators in our setting must
preserve the monoidal structure of the states. As far as we know, the approach
presented in this paper is the first one that exploits a monoidal structure for
LTSs to obtain a functorial characterisation of implementations.

References

[1] Baquero, C., Almeida, P.S., Cunha, A., Ferreira, C.: Composition in state-
based replicated data types. Bullettion of the EATCS 123 (2017)

[2] Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M., Baquero, C.,
Balegas, V., Duarte, S.: An optimized conflict-free replicated set. CoRR
abs/1210.3368 (2012)

[3] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts
in Theoretical Computer Science, vol. 53. Cambridge University Press
(2001)

[4] Bonchi, F., Gadducci, F., Monreale, G.V.: A general theory of barbs, con-
texts, and labels. ACM Transactions on Computational Logic 15(4), 35:1–
35:27 (2014)

[5] Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of op-
timistic replication systems. In: Jagannathan, S., Sewell, P. (eds.) POPL
2014. pp. 285–296. ACM (2014)

[6] Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consis-
tency. Tech. Rep. MSR-TR-2013-39, Microsoft Research (2013)

[7] Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data
types: specification, verification, optimality. In: Jagannathan, S., Sewell,
P. (eds.) POPL 2014. pp. 271–284. ACM (2014)

44

[8] Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional
consistency models with atomic visibility. In: Aceto, L., de Frutos-Escrig,
D. (eds.) CONCUR 2015. LIPIcs, vol. 42, pp. 58–71. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2015)

[9] Gadducci, F., Melgratti, H., Roldán, C.: On the semantics and implemen-
tation of replicated data types. Science of Computer Programming 167,
91–113 (2018)

[10] Gadducci, F., Melgratti, H., Roldán, C., Sammartino, M.: Implementation
correctness for replicated data types, categorically. In: Pun, V.K.I., Stolz,
V., Simão, A. (eds.) ICTAC 2020. pp. 283–303. Springer (2020)

[11] Gadducci, F., Melgratti, H.C., Roldán, C.: A denotational view of repli-
cated data types. In: Jacquet, J., Massink, M. (eds.) COORDINATION
2017. LNCS, vol. 10319, pp. 138–156. Springer (2017)

[12] Gadducci, F., Melgratti, H.C., Roldán, C., Sammartino, M.: A categorical
account of replicated data types. In: Chattopadhyay, A., Gastin, P. (eds.)
FSTTCS 2019. LIPIcs, vol. 150, pp. 42:1–42:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

[13] Gotsman, A., Burckhardt, S.: Consistency models with global operation se-
quencing and their composition. In: Richa, A.W. (ed.) DISC 2017. LIPIcs,
vol. 91, pp. 23:1–23:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

[14] Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J.
(ed.) ESOP 2015. LNCS, vol. 9032, pp. 585–609. Springer (2015)

[15] Kaki, G., Earanky, K., Sivaramakrishnan, K.C., Jagannathan, S.: Safe
replication through bounded concurrency verification. In: OOPSLA 2018.
PACMPL, vol. 2, pp. 164:1–164:27. ACM (2018)

[16] Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness
and decidability of higher-order process calculi. Information and Compu-
tation 209(2), 198–226 (2011)

[17] Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive sys-
tems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–
258. Springer (2000)

[18] MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: A first intro-
duction to topos theory. Springer (1992)

[19] Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 685–695. Springer (1992)

[20] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free repli-
cated data types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 386–400. Springer (2011)

45

[21] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive
study of convergent and commutative replicated data types. Tech. Rep.
RR-7506, Inria–Centre Paris-Rocquencourt (2011)

[22] Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative program-
ming over eventually consistent data stores. In: Grove, D., Blackburn, S.
(eds.) PLDI 2015. pp. 413–424. ACM (2015)

[23] Sobociński, P.: Relational presheaves, change of base and weak simulation.
Computer and System Sciences 81(5), 901–910 (2015)

[24] Zawirski, M., Baquero, C., Bieniusa, A., Preguiça, N.M., Shapiro, M.:
Eventually consistent register revisited. In: Alvaro, P., Bessani, A. (eds.)
PaPoC@EuroSys 2016. pp. 9:1–9:3. ACM (2016)

46

