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The Breadth / Depth Question

When choosing among multiple unknown alternatives, is it
better to learn a little about all of them or a lot about only
one of them?

m Breadth Strategy: A little about all options.
m Depth Strategy: A lot about a single option.



A risk-neutral agent faces the following choice problem:

m There are N objects and N attributes.

m Each object has a value drawn i.i.d from a mean-zero
distribution F for each attribute.

m The payoff from choosing an object is the sum of its values.

m The agent knows F, but not the realizations.

Al | A
O.| F|F
O, | F|F




Search Strategies

Al | A
0| F|F
O, | F| F

m "“Breadth” is learning all of the values for a single attribute
m "Depth” is learning all of the values for a single good

m If | want to learn about a particular phone, | can go to the
store, borrow a friend’s, ask questions, etc...

m If | want to learn about an attribute (photo quality), | can
learn about megapixels, focus lengths, shutter speed, etc...
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Depth Example - Wirecutter
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Primary Examples -
m Phones
> Resolution, Reception Quality, Battery Life, Camera Quality
m Restaurants
> Yelp Rating, Spiciness, Distance
m Politicians
> Domestic and Foreign Policy Issues



Investments

Alternate (and Mathematically Equivalent) Example -
m |nvestments

> There are N possible states of the world which may be realized
tomorrow

Each state is equally likely
©; = positive jobs report, @, = negative jobs report

Payoffs = expected value

v VvV VvV V

A search reveals state-dependent payoffs

©; =1 | © =]
| F F
L F F

> Event-driven trading strategies



2x2 Example

Al | Az
O1 | xu1 | x12
02 | x1 | x22

2
Xij| = 0
Jj=1

m Ex-ante: U;=E




2x2 Example

Al | A
O1 | xi1 | x12
Oz | x01 | x22

2
xj| =0
Jj=1

Ur = x11 + E[xi2] = x11 Uz = x01 + E[x02] = x21

m Ex-ante: U; =FE

m Breadth search:



2x2 Example

Al | Az
O1 | xi1 | x12

O | xo1 | x22

2
xj| =0
j=1

Ur = x11 + E[xi2] = x11 Uz = x01 + E[x02] = x21

m Ex-ante: U;=E

m Breadth search:

m Choose the maximizer:

Payoff = E [max(x11, x21)]



2x2 Example

A | A
O1 | x11 | x12
0> | x01 | X22

2
m Ex-ante: U;=E X,'j] =0
j=1




2x2 Example

Al | A
O1 | x11 | x12
0> | x01 | X22

2
m Ex-ante: U;=E X,'j] =0
j=1

m Depth search:
U =x11+x12, U2=0



2x2 Example

Al | A
O1 | x11 | x12
0> | x01 | X22

2
xj| =0
Jj=1

Ui =x11+x12, Ux=0

m Ex-ante: U;=E

m Depth search:

m Choose 1 if above-average. Otherwise, choose 2.

Payoff = E [max(x11 + x12,0)]



The 2x2 Case - Bernoulli

F Coin Flip, Prob(1) = Prob(—1) =1/2

Al | A
O.| F|F
O, | F|F




Search an Object

Al | A AL | A ALl A Al | A
O |11 O |11 Oo]1][1 o1
O, | F|F O, |F|F O|F|F O|F|F

Depth Payoff = (1/4)x2=1/2




Search an Attribute

Ay | A Ay | A Ar | A Ar | A

O,| 1| F O |1|F O |-1|F 0O,]-1]|F

O,| 1| F O |1|F O,|1|F 0,]-1]F
I

Breadth Payoff = (3/4) « 1+ (1/4)x -1 =1/2



Search an Attribute

At | A A1 | A A1 | A A1 | A

O0|1]|F O |1|F O |-1|F O|-1]F

0| 1[|F O|-1|F O|1|F O|-1]|F
+ +

Breadth Payoff = (3/4) « 1+ (1/4)x -1 =1/2
= Depth Payoff



Related Literature

Weitzman (1979) - Pandora’s box search

m Bordalo, Gennaioli, Shleifer (2013) - agents pay weighted
attention to attributes

m Speigler (2006) - an IO framework where agents sample one
price attribute of each object

m Klabjan, Olszewski, Wolinsky (2014) - optimal attribute
search selection for a single good

m Gabaix, Laibson, Moloche, Weinberg (2006) - experiment on
searching through an unknown matrix with F normal

m Sanjuro (2017) - simulations and establishes some rules for
searching from above



N =

3<N<L6

N Large, Thin Tails
N Large, Fat Tails
Political Competition

[@ Strategic Settings



N=2 N=3 N=6

N=7 N=20 .. N large



N=2, Uniform

-2 -1 1 2

> Expectation of Max of 2 Uniforms = 1/3
> Expectation of Sum of 2 Uniforms = 1/3



N=2, Normal

(xA

> Expectation of Max of 2 Normals = 1//7
> Expectation of Sum of 2 Normals = 1/y/7



Symmetric Distributions

For the Bernoulli, Uniform, and Normal Distributions, Breadth =
Depth.



Symmetric Distributions

For the Bernoulli, Uniform, and Normal Distributions, Breadth =
Depth.

Theorem
For N = 2 and F symmetric, breadth=depth.

That is, the payoffs of searching an object or searching an attribute
are the same.



Fix x >y > 0s.t. x,y € supp(F).

The realizations (x, y), (x, —y), (—x,y), (—x, —y) are equally
likely by symmetry.

This partitions the possible realizations.

m It suffices to demonstrate that Breadth = Depth for each cell
of the partition.



Object Search

A | A Ay | A A1 | A Ay | A
O1| x| vy O1| x | —y O1| —x| vy O, | —x| —y
O, | F | F O, | F | F O, | F | F O, | F F
I l
X4y X—y 0

Conditional Depth Payoff

= (1/4) % (x+y) + (1/4) % (x = y) = x/2



Attribute Search

A2 A1 A2 A1 A2 Al A2
O | x | F 01| x F O, | —x| F O1| —x| F
02 y F 02 -y F 02 y F 02 -y F
I I {
X X y -y

Conditional Breadth Search Payoff

= (2/4) x x4 (1/4) x y + (1/4) * (=)
= x/2 = Conditional Depth Search Payoff



Breadth with an Outside Option

With an outside option of 0, Breadth is strictly better.

A | A A | A A | A Al | A
01 X F 01 X F Ol —X F 01 —X F
02 y F 02 -y F 02 y F Oz -y F
{ { {
X X y

Conditional Breadth Search Payoff
= (2/4) xx+(1/4) xy
= x/2+ y/4 > Conditional Depth Search Payoff



Breadth
=Depth

N=7

N=3

N

20

N=6

N large




F = £1 with 50% probability.
m Depth Payoff = 3/4
m Breadth Payoff = 3/4




F = £1 with 50% probability.
m Depth Payoff = 3/4
m Breadth Payoff = 3/4

F ~ N(0,1)

m Depth Payoff = V3 0.

m Breadth Payoff =




Fix x1 > x» > x3 > 0 s.t. x1, x2,x3 € supp(F).

The realizations (£x1, +x2, £x3) are equally likely.

With probability 1/2, (xi,...) — X1
With probability 1/4, (—x1,x2,...) — X
With probability 1/8, (—x1, —x2,x3)  — X3
With probability 1/8, (—x1, —x2, —x3) — —x3

Therefore, Breadth Search Payoff = 1/2x; 4+ 1/4x;

Depth Search Payoff is more complicated.

m |t depends upon how x; relates to x» + x3



Small N

Breadth Payoff = 1/2x; + 1/4x;

Depth Payoff is either 1/2x; or 1/4x; + 1/4x2 + 1/4x3

Either way Breadth > Depth

In general, for N = 3,...,6, there could be many cases

> But, an inductive argument suffices
> Until N=7



Small N Theorem

Theorem

For F symmetric, N = 3,4,5,6, Breadth > Depth.

The above is generally strict. Only equalities are N = 2 or
N = 3,5 and F Bernoulli.



Breadth Breadth Breadth Breadth
=Depth

N=2 N=3 N=6

N=7 N=20 . N large



Small N Theorem: Tight

For F symmetric, N = 3,4,5,6, Breadth > Depth.

Tightness

For any N > 7, dFy, Gy symmetric s.t.

Breadth(Fp) > Depth(Fy)
Breadth(Gy) < Depth(Gy).

Zero-Inflated Distributions, Fy = p* 0+ (1 — p) * Binom(—1,1)



Breadth Breadth Breadth Breadth
=Depth

N=2 N=3 N=6

N=7 N=20 . N large



m In a N x N problem, breadth and depth both reveal N out of
N? squares

m Interpretation: Searching a Np x Nj matrix where
No,Na > N.

m Results on N x N have implications for other sized matrices



Large N

For any given F with finite variance, for all large enough N,
Depth > Breadth.




Bounded Intuition

F ~ £1 coin flip
Breadth Payoff <1

— Normal(0, 1)

N
L _ X;
m Central Limit Theorem: ng T

N
Xij ~ V'N % Normal(0,1)
=1

|

j
Ab | draws: [ xS gy — 2
| Ve-aver norm raws: X X = —F/—
ove-average norma aws J o2 N

a
Depth Payoff ~ ﬁm



Normal Intuition

m F ~ Normal(0, o)
m Breadth Payoff = E [max(Xi, ..., Xn)] < ov2log N

ag
m Depth Payoff ~ ﬁ\/ﬁ



General Intuition

N
m Central Limit Theorem Z ” — Normal(0, o)

m Depth Payoff ~ ﬁm

m Gumbel (1954), shows for any. F with mean p and std. dev o,

that]E{maIC( X] <u+a\/%~u+a\/ﬁ

m Not good enough



General Intuition Continued

Depth Payoff ~ \/%m

m Truncating Xle = max(c, X), increases (i, decreases o

. | PR o
[ E[rlngaﬁ X,} S]E[r%al\)f X; ] <p+6VN < \/%\W

m The Gumbel bound for X!¢ is sufficient. [ |



[llustration

Breadth
=Depth

Breadth

N=2 N=3 N=6
N=7 N=20 . N large
Breadth

Depth

Depth




Observability with Noise

Corollary

All previous results hold if a signal s; ; = x;; + €;; is observed
where € j ~ G for a symmetric G.




IO Model

m N firms selling K attribute goods
m Each firm chooses F; s.t. p; =1 and Fi(x) =0, Vx < 0.

Agents choose to search by object or attribute and which
object or attribute to search.

They then select an object and receive its expected payoff
according to their own search.

Firms' payoffs are the probability of being selected.

m We restrict attention to symmetric equilibria.



Object Equilibrium

m Firm i's payoff = Pr(i chosen)

= 1/N - Pr(i chosen | i searched)

+(N —1)/N - Pr(i chosen | i not searched)
m Firm / only controls the first term.

If F Bernoulli between € and 1 + ¢, then
lime_o Pr(i chosen | i searched)=L1.

Therefore, in equilibrium Pr(i chosen | i searched) =1 =
F; is a unit mass at 1.

Agents randomize searching between all objects

If the realized object is weakly above average, they choose it,
otherwise, they randomly choose an unsearched object.



Breadth Equilibrium

Firm i's Payoff: Prg, (i chosen | breadth search) =

PF(X,' = man;g,'Xk)
#{Xk|Xk = maXy/ Xk/}

Pr(x; > Ti?(Xk) +

Theorem

In the unique attribute equilibrium, each firm employs the same
distribution F(x) = (x/N)YN=1 on [0, N].



Attribute Equilibrium

Claim
In a symmetric equilibrium, there can be no positive masses.

m If there were at x > 0, then the firm can shift 1 — ¢ this
. 2 .
weight to x + ;= weight above x and € of the mass to x — €
via a mean preserving spread.

m The firm’'s probability of winning is only affected when his
value was x and the maximum value of all other firms is x.

m In those situations, the firm’s probability of winning increases
goes from at most 1/2 to 1 — €.

m A mass at 0 can similarly be profitably shifted.



Attribute Equilibrium

m Because there are no mass points, the firm's objective

function is: Pr(x; > mixxk).
1

m Holding other firm's strategies fixed as F, a firm solves:

max/ FN=1(x)g(x)dx s.t.
x=0

/oo xg(x)dx =1 (1)

x=0
/ : g(x)dx = 1 (2)
g(x) =0 (3)

m Calculus of variations = F(x) = (x/N)YN=1 on [0, N]



Comparative Statics

m For every N, there is both a breadth-search and depth-search
equilibrium

m Both are observed in everyday life

m The breadth-search equilibrium is payoff-dominant

m U~ N/2 and U% =0

m Social planner:

m Choose search method and F on [0, N] to maximize agents’
utility

Optimal Dist. is Pr(0) = (N —1)/N and Pr(N) =1/N.
Optimal search method is breadth search.

This yields utility — (1 —1/e)N ~ 0.63N.

Breadth search is 79.1% of social optimum



Comparative Statics

m For games against nature, the marginal benefit from either
depth or breadth search was at most O(v/N).

m But, here an agent's benefit is much larger.

m Two benefits from competition
As N increases, an agent gets more draws
The firms’ equilibrium distributions change in a fashion which
benefits agents.



Conclusion

m Exogenous Distributions

> Small N — Breadth
> Large N — Depth

m “If you can search only a little, search different objects.”

m “If you can search a lot, search the same object”



Conclusion

m Endogenous Distributions — Breadth
m Fat Tails — Breadth

m Correlation — Breadth

m Future Work:
> Cell-by-cell Attention Allocation
> Sequential firm/agent choice
> Tournament Incentives



Political Competition (context suggested by Bhattarchaya)

In political competition, voters tend to learn exclusively about
their favorite candidate

Behavioral Justification: | can't stand to hear about my
dispreferred candidate

Two Candidates - A, B

Two Attributes - 1, //

F = +1 with 50% probability.

A voter has a small bias b for Candidate A.
UA =A+A+b

U(B) = B+ By



Political Competition

In the 2x2x2 model with a bias b,
Breadth = Depth, = Depthg.




Political Competition

Expected Utility with
m U(A) = u(A;+ Ay + b) where
x ifx>0
s =9
Ax ifx<0
m where A > 1



Political Competition

Proposition

If A <9, then searching A, the preferred candidate is optimal.
If A > 9, then searching B, the dispreferred candidate is optimal.
Searching an attribute is not optimal.



Loss Aversion - Empirical

If A <9, then searching A, the preferred candidate is optimal.

Abdellaoi, Bleichrodt, Paraschiv (2007) present the following:

Study Definition Domain | Estimates

Fishbum and Kochenberger (1979) UT}(;—:)I Money 4.8
Tversky and Kahneman (1992) "86)1 Money 225
Bleichrodt et al. (2001) ’8 (;;‘ Health :]"'[I]g
Schmidt and Traub (2002) UU'E:) Money 1.43
Pennings and Smidts (2003) U_U(E_xx)l Money 1.81

U; (0)
Booij and van de Kuilen (2006) —f— Money 179

U‘ (0) 1.74

u'(=2)

Consequence: If u concave and

w2Th) < 9, then searching
preferred candidate is optimal.



m The case of infinite variance is more complicated.

m For large N, such cases can be studied via

N
m Generalized Central Limit Theorem > X"kbi;,a"’ — Stable Laws
k=1

max(Xl,...,XN)faN
b

m Extreme Value Theory — Extreme Value

distributions.

m In the case of finite variances, generally the sum grows at a
higher rate than the maxima

m For infinite variances, the rates of growth are generally the
same, so the constants drive the relationships



m For a mean zero distribution, infinite variance
— [ x?f(x)dx = o0

= An intuitive candidate for f(x) is k * ——, for which
/x2f(x)dx = k/xl_adx =o0 for a <2

m These natural laws, with distribution F(x) =1 — (g)a are
known as Pareto (or Power) laws

m Pareto laws have been widely studied in economics (see
Mandelbrot (1963), Gabaix (2009)).



Breadth Benefit / Depth Benefit
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N = 100000, trials=100, Total Draws = 210 million



Your NYU High Performance Computing Account mdr321 Has Expired — Google (All Mail)
7] | = =]

ES Inbox - Google  3:51AM o

idm.services.noreply@nyu.edu
Your NYU High Performance Computing Account mdr321 Has Expired
To: mrichter@nyu.edu Ce: hpe-notify@nyu.edu

Dear Michael Dan Richter,

Your NYU High Performance Computing account for mdr321 has now expired.
The files in your /nome and /archive directories will be retained for a period of 80 days.
The files in your /scratch directory will be erased according to the automatic file deletion policy.

For information about regaining access to your HPC account or your files, please send email to (NYU) hpc@nyu.edu or (NYU Abu Dhabi)
dalma.admins@nyu.edu.

- NYU Information Technology Services




N
% Z ’:/_TZ“ — S(a, 1) (a stable distribution)

- maX(Xla—W — &, where ®,(x) = e (Frechet).

m To compare the search methods requires calculating
E[®,], E[max(5(a,1),0] and C,



10 F

Breadth: always decreasing in «
Depth: growing when v — 2 as convergence constant blows up



Fat Tails Takeaway

m There is a tail-index threshold & s.t.
m For distributions with thicker Pareto tails, breadth is better
m For distributions with thinner Pareto tails, depth is better
m In a fatter-tailed world, not only do the alternatives become
riskier, but there is a second heretofore hidden effect:

m Agents optimal search procedure leads to the choice of mostly
unknown alternatives.



	Applications

