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Basic Question

The Breadth / Depth Question

When choosing among multiple unknown alternatives, is it
better to learn a little about all of them or a lot about only
one of them?

Breadth Strategy: A little about all options.

Depth Strategy: A lot about a single option.



Model

A risk-neutral agent faces the following choice problem:

There are N objects and N attributes.

Each object has a value drawn i.i.d from a mean-zero
distribution F for each attribute.

The payoff from choosing an object is the sum of its values.

The agent knows F , but not the realizations.

A1 A2

O1 F F

O2 F F



Search Strategies

A1 A2

O1 F F

O2 F F

“Breadth” is learning all of the values for a single attribute

“Depth” is learning all of the values for a single good

If I want to learn about a particular phone, I can go to the
store, borrow a friend’s, ask questions, etc...

If I want to learn about an attribute (photo quality), I can
learn about megapixels, focus lengths, shutter speed, etc...



Depth Example - Wirecutter



Depth Example - Wirecutter



Examples

Primary Examples -

Phones

B Resolution, Reception Quality, Battery Life, Camera Quality

Restaurants

B Yelp Rating, Spiciness, Distance

Politicians

B Domestic and Foreign Policy Issues



Investments

Alternate (and Mathematically Equivalent) Example -

Investments

B There are N possible states of the world which may be realized
tomorrow

B Each state is equally likely

B Θ1 = positive jobs report, Θ2 = negative jobs report

B Payoffs = expected value

B A search reveals state-dependent payoffs

Θ1 =↑ Θ2 =↓
I1 F F
I2 F F

B Event-driven trading strategies



2x2 Example

A1 A2

O1 x11 x12
O2 x21 x22

Ex-ante: Ui = E

[
2∑

j=1
xij

]
= 0

Breadth search:

U1 = x11 + E[x12] = x11 U2 = x21 + E[x22] = x21

Choose the maximizer:

Payoff = E [max(x11, x21)]
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A1 A2

O1 x11 x12
O2 x21 x22

Ex-ante: Ui = E
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2x2 Example

A1 A2

O1 x11 x12
O2 x21 x22

Ex-ante: Ui = E

[
2∑

j=1
xij

]
= 0

Depth search:

U1 = x11 + x12, U2 = 0

Choose 1 if above-average. Otherwise, choose 2.

Payoff = E [max(x11 + x12, 0)]
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The 2x2 Case - Bernoulli

F Coin Flip, Prob(1) = Prob(−1) = 1/2

A1 A2

O1 F F

O2 F F



Search an Object

A1 A2

O1 1 1

O2 F F

A1 A2

O1 1 -1

O2 F F

A1 A2

O1 -1 1

O2 F F

A1 A2

O1 -1 -1

O2 F F

↓ ↓ ↓ ↓

2 0 0 0

Depth Payoff = (1/4) ∗ 2 = 1/2



Search an Attribute

A1 A2

O1 1 F

O2 1 F

A1 A2

O1 1 F

O2 -1 F

A1 A2

O1 -1 F

O2 1 F

A1 A2

O1 -1 F

O2 -1 F

↓ ↓ ↓ ↓

1 1 1 −1

Breadth Payoff = (3/4) ∗ 1 + (1/4) ∗ −1 = 1/2

= Depth Payoff



Search an Attribute

A1 A2

O1 1 F

O2 1 F

A1 A2

O1 1 F

O2 -1 F

A1 A2

O1 -1 F

O2 1 F

A1 A2

O1 -1 F

O2 -1 F

↓ ↓ ↓ ↓

1 1 1 −1

Breadth Payoff = (3/4) ∗ 1 + (1/4) ∗ −1 = 1/2
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Related Literature

Weitzman (1979) - Pandora’s box search

Bordalo, Gennaioli, Shleifer (2013) - agents pay weighted
attention to attributes

Speigler (2006) - an IO framework where agents sample one
price attribute of each object

Klabjan, Olszewski, Wolinsky (2014) - optimal attribute
search selection for a single good

Gabaix, Laibson, Moloche, Weinberg (2006) - experiment on
searching through an unknown matrix with F normal

Sanjuro (2017) - simulations and establishes some rules for
searching from above



Outline

1 N = 2

2 3 ≤ N ≤ 6

3 N Large, Thin Tails

4 N Large, Fat Tails

5 Political Competition

6 Strategic Settings
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N=2, Uniform

Sum

Max

B Expectation of Max of 2 Uniforms = 1/3

B Expectation of Sum of 2 Uniforms = 1/3



N=2, Normal

Max

Sum

B Expectation of Max of 2 Normals = 1/
√
π

B Expectation of Sum of 2 Normals = 1/
√
π



Symmetric Distributions

For the Bernoulli, Uniform, and Normal Distributions, Breadth =
Depth.

Theorem

For N = 2 and F symmetric, breadth=depth.

That is, the payoffs of searching an object or searching an attribute
are the same.



Symmetric Distributions

For the Bernoulli, Uniform, and Normal Distributions, Breadth =
Depth.

Theorem

For N = 2 and F symmetric, breadth=depth.

That is, the payoffs of searching an object or searching an attribute
are the same.



Partition

Fix x ≥ y ≥ 0 s.t. x , y ∈ supp(F ).

The realizations (x , y), (x ,−y), (−x , y), (−x ,−y) are equally
likely by symmetry.

This partitions the possible realizations.

It suffices to demonstrate that Breadth = Depth for each cell
of the partition.



Object Search

A1 A2

O1 x y

O2 F F

A1 A2

O1 x −y
O2 F F

A1 A2

O1 −x y

O2 F F

A1 A2

O1 −x −y
O2 F F

↓ ↓ ↓ ↓

x + y x − y 0 0

Conditional Depth Payoff
= (1/4) ∗ (x + y) + (1/4) ∗ (x − y) = x/2



Attribute Search

A1 A2

O1 x F

O2 y F

A1 A2

O1 x F

O2 −y F

A1 A2

O1 −x F

O2 y F

A1 A2

O1 −x F

O2 −y F

↓ ↓ ↓ ↓

x x y −y

Conditional Breadth Search Payoff
= (2/4) ∗ x + (1/4) ∗ y + (1/4) ∗ (−y)
= x/2 = Conditional Depth Search Payoff



Breadth with an Outside Option

With an outside option of 0, Breadth is strictly better.

A1 A2

O1 x F

O2 y F

A1 A2

O1 x F

O2 −y F

A1 A2

O1 −x F

O2 y F

A1 A2

O1 −x F

O2 −y F

↓ ↓ ↓ ↓

x x y 0

Conditional Breadth Search Payoff
= (2/4) ∗ x + (1/4) ∗ y
= x/2 + y/4 ≥ Conditional Depth Search Payoff



N=2

Breadth	
=Depth	
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N = 3

F = ±1 with 50% probability.

Depth Payoff = 3/4

Breadth Payoff = 3/4

F ∼ N(0, 1)

Depth Payoff =
√
3√
2π
≈ 0.69

Breadth Payoff = 3
2
√
π
≈ 0.85
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Breadth Payoff = 3/4
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Depth Payoff =
√
3√
2π
≈ 0.69

Breadth Payoff = 3
2
√
π
≈ 0.85



Partition

Fix x1 ≥ x2 ≥ x3 ≥ 0 s.t. x1, x2, x3 ∈ supp(F ).

The realizations (±x1,±x2,±x3) are equally likely.

With probability 1/2, (x1, . . .) → x1
With probability 1/4, (−x1, x2, . . .) → x2
With probability 1/8, (−x1,−x2, x3) → x3
With probability 1/8, (−x1,−x2,−x3) → −x3

Therefore, Breadth Search Payoff = 1/2x1 + 1/4x2

Depth Search Payoff is more complicated.

It depends upon how x1 relates to x2 + x3



Small N

Breadth Payoff = 1/2x1 + 1/4x2

Depth Payoff is either 1/2x1 or 1/4x1 + 1/4x2 + 1/4x3

Either way Breadth ≥ Depth

In general, for N = 3, . . . , 6, there could be many cases

B But, an inductive argument suffices
B Until N = 7



Small N Theorem

Theorem

For F symmetric, N = 3, 4, 5, 6, Breadth ≥ Depth.

The above is generally strict. Only equalities are N = 2 or
N = 3, 5 and F Bernoulli.



N≤6

Breadth	
=Depth	

Breadth	 		Breadth	
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Small N Theorem: Tight

Theorem

For F symmetric, N = 3, 4, 5, 6, Breadth ≥ Depth.

Tightness

For any N ≥ 7, ∃FN ,GN symmetric s.t.

Breadth(FN) > Depth(FN)
Breadth(GN) < Depth(GN).

Zero-Inflated Distributions, FN = p ∗ 0 + (1− p) ∗ Binom(−1, 1)



N≤6

Breadth	
=Depth	

Breadth	 		Breadth	
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								?	

	
							?	

N=2																																							N=3																														……																																							N=6			

	Breadth	
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Why N × N?

In a N × N problem, breadth and depth both reveal N out of
N2 squares

Interpretation: Searching a NO × NA matrix where
NO ,NA ≥ N.

Results on N × N have implications for other sized matrices



Large N

Theorem

For any given F with finite variance, for all large enough N ,
Depth > Breadth.



Bounded Intuition

F ∼ ±1 coin flip

Breadth Payoff ≤ 1

Central Limit Theorem:
N∑
j=1

Xij√
N
→ Normal(0, 1)

N∑
j=1

Xij ∼
√
N ∗ Normal(0, 1)

Above-average normal draws:
∞∫
0

x e−x2/2σ2

σ
√
2π

dx = σ√
2π

Depth Payoff ∼ σ√
2π

√
N



Normal Intuition

F ∼ Normal(0, σ)

Breadth Payoff = E [max(X1, . . . ,XN)] ≤ σ
√

2 logN

Depth Payoff ∼ σ√
2π

√
N



General Intuition

Central Limit Theorem:
N∑
j=1

Xij√
N
→ Normal(0, σ)

Depth Payoff ∼ σ√
2π

√
N

Gumbel (1954), shows for any. F with mean µ and std. dev σ,

that E
[

max
i≤N

Xi

]
≤ µ+ σ N−1√

2N−1 ∼ µ+ σ
√
N

Not good enough



General Intuition Continued

Depth Payoff ∼ σ√
2π

√
N

Truncating X |c = max(c ,X ), increases µ, decreases σ

E
[

max
i≤N

Xi

]
≤ E

[
max
i≤N

X
|c
i

]
≤ µ̂+ σ̂

√
N < σ√

2π

√
N

The Gumbel bound for X |c is sufficient. �



Illustration

Breadth	
=Depth	

Breadth	 		Breadth	

Breadth	 Breadth	

N=2																																							N=3																														……																																							N=6			

	Breadth	

N=7																																							N=20																														……																																			N		large	

Depth	

Depth	 Depth	



Observability with Noise

Corollary

All previous results hold if a signal si ,j = xi ,j + εi ,j is observed
where εi ,j ∼ G for a symmetric G .



IO Model

N firms selling K attribute goods

Each firm chooses Fi s.t. µi = 1 and Fi (x) = 0, ∀x < 0.

Agents choose to search by object or attribute and which
object or attribute to search.

They then select an object and receive its expected payoff
according to their own search.

Firms’ payoffs are the probability of being selected.

We restrict attention to symmetric equilibria.



Object Equilibrium

Firm i ’s payoff = Pr(i chosen)
= 1/N · Pr(i chosen | i searched)
+(N − 1)/N · Pr(i chosen | i not searched)

Firm i only controls the first term.

If F Bernoulli between ε and 1 + ε, then
limε→0 Pr(i chosen | i searched)=1.

Therefore, in equilibrium Pr(i chosen | i searched) = 1 ⇒
Fi is a unit mass at 1.

Agents randomize searching between all objects

If the realized object is weakly above average, they choose it,
otherwise, they randomly choose an unsearched object.



Breadth Equilibrium

Firm i’s Payoff: PrFi
(i chosen | breadth search) =

Pr(xi > max
k 6=i

xk) +
Pr(xi = maxk 6=i xk)

#{xk |xk = maxk ′ xk ′}

Theorem

In the unique attribute equilibrium, each firm employs the same
distribution F (x) = (x/N)1/N−1 on [0,N].



Attribute Equilibrium

Claim
In a symmetric equilibrium, there can be no positive masses.

If there were at x > 0, then the firm can shift 1− ε this
weight to x + ε2

1−ε weight above x and ε of the mass to x − ε
via a mean preserving spread.

The firm’s probability of winning is only affected when his
value was x and the maximum value of all other firms is x .

In those situations, the firm’s probability of winning increases
goes from at most 1/2 to 1− ε.

A mass at 0 can similarly be profitably shifted.



Attribute Equilibrium

Because there are no mass points, the firm’s objective
function is: Pr(xi ≥ max

k 6=i
xk).

Holding other firm’s strategies fixed as F , a firm solves:

max
g

∫ ∞
x=0

FN−1(x)g(x)dx s.t.∫ ∞
x=0

xg(x)dx = 1 (1)∫ ∞
x=0

g(x)dx = 1 (2)

g(x) ≥ 0 (3)

Calculus of variations ⇒ F (x) = (x/N)1/N−1 on [0,N]



Comparative Statics

For every N, there is both a breadth-search and depth-search
equilibrium

Both are observed in everyday life

The breadth-search equilibrium is payoff-dominant

Uatt ≈ N/2 and Uobj = 0

Social planner:

Choose search method and F on [0,N] to maximize agents’
utility
Optimal Dist. is Pr(0) = (N − 1)/N and Pr(N) = 1/N.
Optimal search method is breadth search.
This yields utility → (1− 1/e)N ≈ 0.63N.
Breadth search is 79.1% of social optimum



Comparative Statics

For games against nature, the marginal benefit from either
depth or breadth search was at most O(

√
N).

But, here an agent’s benefit is much larger.

Two benefits from competition

1 As N increases, an agent gets more draws
2 The firms’ equilibrium distributions change in a fashion which

benefits agents.



Conclusion

Exogenous Distributions

B Small N → Breadth
B Large N → Depth

“If you can search only a little, search different objects.”

“If you can search a lot, search the same object”



Conclusion

Endogenous Distributions → Breadth

Fat Tails → Breadth

Correlation → Breadth

Future Work:

B Cell-by-cell Attention Allocation
B Sequential firm/agent choice
B Tournament Incentives



Political Competition (context suggested by Bhattarchaya)

In political competition, voters tend to learn exclusively about
their favorite candidate

Behavioral Justification: I can’t stand to hear about my
dispreferred candidate

Two Candidates - A,B

Two Attributes - I , II

F = ±1 with 50% probability.

A voter has a small bias b for Candidate A.

U(A) = AI + AII + b

U(B) = BI + BII



Political Competition

Proposition

In the 2x2x2 model with a bias b,
Breadth = DepthA = DepthB .



Political Competition

Expected Utility with

U(A) = u(AI + AII + b) where

u(x) =

{
x if x ≥ 0

λx if x < 0

where λ > 1



Political Competition

Proposition

If λ < 9, then searching A, the preferred candidate is optimal.
If λ > 9, then searching B, the dispreferred candidate is optimal.
Searching an attribute is not optimal.



Loss Aversion - Empirical

Proposition

If λ < 9, then searching A, the preferred candidate is optimal.

Abdellaoi, Bleichrodt, Paraschiv (2007) present the following:

Consequence: If u concave and u′(−2)
u′(2+b) < 9, then searching

preferred candidate is optimal.



Fat Tails

The case of infinite variance is more complicated.

For large N, such cases can be studied via

Generalized Central Limit Theorem
N∑

k=1

Xik−aN
bN

→ Stable Laws

Extreme Value Theory max(X1,...,XN)−aN
bN

→ Extreme Value
distributions.

In the case of finite variances, generally the sum grows at a
higher rate than the maxima

For infinite variances, the rates of growth are generally the
same, so the constants drive the relationships



Fat Tails

For a mean zero distribution, infinite variance
→
∫
x2f (x)dx =∞

An intuitive candidate for f(x) is k ∗ 1
xα−1 , for which∫

x2f (x)dx = k

∫
x1−αdx =∞ for α ≤ 2

These natural laws, with distribution F (x) = 1−
(
k
x

)α
are

known as Pareto (or Power) laws

Pareto laws have been widely studied in economics (see
Mandelbrot (1963), Gabaix (2009)).



Simulation

Breadth Benefit / Depth Benefit

N = 100000, trials=100, Total Draws = 210 million



NYU HPC



Fat Tails

1
Cα

N∑
n=1

Xin−nµ
α√nk → S(α, 1) (a stable distribution)

max(X1,...,XN)−nµ
α√nk → Φα where Φα(x) = e−x

−α
(Frechet).

To compare the search methods requires calculating
E[Φα], E[max(S(α, 1), 0] and Cα



Fat Tails

Breadth: always decreasing in α

Depth: growing when α→ 2 as convergence constant blows up



Fat Tails Takeaway

There is a tail-index threshold α̂ s.t.

For distributions with thicker Pareto tails, breadth is better
For distributions with thinner Pareto tails, depth is better

In a fatter-tailed world, not only do the alternatives become
riskier, but there is a second heretofore hidden effect:

Agents optimal search procedure leads to the choice of mostly
unknown alternatives.


	Applications

