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1. Introduction

For a non-zero integer n, let d(n) denote the number of positive divisors of n. Let

a, b and c be integers with a" 0, and set ∆¯ b#®4ac. If the quadratic polynomial

ax#­bx­c is irreducible over the rational numbers Q (that is, if ∆ is not the square

of an integer), then one has

3
n%X

d(an#­bn­c)CλX logX, (1)

as XU¢, for some λ depending on a, b and c (see [7]). In this paper we discuss the

way in which λ depends on a, b and c, giving a precise, compact expression in terms

of class numbers. This extends previous work for the case a¯ 1, ∆! 0 (see [4]).

For the case a¯ 1, b¯ 0, a much better description of the error is given in [2], with

the following expression for λ :

λ¯ (8}π#) 3
¢

α=!

ρ(2α)}2α 3
d
# rc

dodd

1}d 3
¢

l="
lodd

0®c}d#

l 15 l. (2)

Here ρ is a multiplicative function, defined below, and (p
q
) is the Legendre}Jacobi

symbol.

As well as looking for improvements to the error term, one can also seek a nice

expression for λ (clearly a subjective matter). Comparison of (2) with Dirichlet’s

analytic class number formula (section 10±3 of [6]) indicates a close connection with

class numbers. Indeed a connection with class numbers was pointed out by Hooley

in [1] and [3]. For the case a¯ 1, b#®4 c! 0, a more compact expression for λ is

given in [4], namely

λ¯ 12H*(∆)}πor∆r.

Here H*(∆) is the Kronecker}Hurwitz class number, which counts all classes of

binary quadratic forms with discriminant ∆ (both primitive and imprimitive),

counting the class of Ax#­Bxy­Cy# with weight inversely proportional to the size

of its automorphism group.

Kronecker’s class number, H*(∆), makes sense only for ∆! 0, since for ∆" 0 all

the relevant automorphism groups are infinite. In this paper we give an extension of

H*(∆) to ∆" 0, giving each class a weighting which is, with the benefit of hindsight,

a natural extension of Kronecker’s. We then prove:
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T. Let b and c be integers with ∆¯ b#®4c not a square. Then

3
n%X

d(n#­bn­c)¯λX logX­O(X),

where the implied constant in the O(\) depends on b and c, and λ is defined by

λ¯
1

2
3

4

12H*(∆)}πor∆r if∆! 0,

12H*(∆) log δ(∆)}π#o∆ if∆" 0,
(3)

where H*(∆) is a weighted class number, and ( for ∆"0) δ(∆) is a fundamental unit. For

∆! 0, H*(∆) is defined below by (6) ; for ∆" 0, H*(∆) and δ(∆) are defined below by (9)

and (10).

To complete the picture, we may ask what happens to λ in (1) if a is greater than

1. A method for tackling this case is sketched in the introduction to [5]. The slightly

tedious details are omitted. If a" 1, then the expression for λ in (3) should be

multiplied by

0
pra

(1­ρ(p)}p­ρ(p#)}p#­I)}(1­ρh (p)}p­ρh (p#)}p#­I), (4)

where the product is over prime divisors of a, ρ(d) is the number of solutions to the

quadratic congruence

an#­bn­c3 0 (mod d ), 0%n! d, (5)

and ρh (d) is the number of solutions to the quadratic congruence

n#­bn­ac3 0 (mod d), 0%n! d.

Note that if gcd(a, b)¯ 1, then (4) simplifies to

0
pra

p}(p­1).

The case ∆! 0 in the Theorem is proved in [4]. Here we prove the case ∆" 0,

having defined a suitable extension of the Kronecker}Hurwitz class number to cover

positive discriminants. It is tempting just to define H*(∆) for ∆" 0 such that (3)

holds (with the classical definition of δ(∆)), but this would be unedifying. Instead we

show how to assign a weighting to classes of forms such that if H*(∆) counts classes

with these prescribed weights then (3) holds.

For ∆" 0, binary quadratic forms with discriminant ∆ have infinite automorphism

groups. To define H*(∆) for ∆" 0, we consider the index of a possibly smaller

subgroup within the automorphism group, and count with weight inversely

proportional to this index. This is seen to agree with Kronecker’s definition for ∆! 0

(with a small caveat), and gives just the right weighting for (3) to hold. Primitive

classes are counted with weight 1. Imprimitive classes are counted with weight at

most 1, but sometimes strictly less. For a given ∆, distinct classes may or may not

be given different weights.

The next section of this paper is devoted to defining H*(∆). Then we prove the

Theorem. The classical attack is to estimate the sum 3
n%x

ρ(n)}n, which leads
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directly to an expression for λ, much as in (2). As in [4], however, we proceed

indirectly, via an estimate of 3
n%x

ρ(n), in order to reveal the precise connection

with the weighted class number.

2. A weighted class number

For integers A, B and C with B#®4AC not a square, let (A, B, C) denote the binary

quadratic form Ax#­Bxy­Cy#. The group SL
#
(Z) acts on the set of all such forms

via

(A,B,C) 0pr
q

s1¯ (A«,B«,C«),

where

0 A«
B«}2

B«}2

C« 1¯ 0pq
r

s1 0
A

B}2

B}2

C 1 0pr
q

s1 .
Forms in the same orbit under this action are called equivalent. The discriminant of

(A,B,C) is B#®4AC, and this is invariant under equivalence. The number of

equivalence classes of forms with discriminant ∆ is finite, and is denoted H(∆). Note

that there is no requirement that gcd(A, B, C)¯ 1.

The stabilizer of (A, B, C) under the action of SL
#
(Z) is called the automorphism

group of (A, B, C), denoted Aut(A, B, C). Equivalent forms have isomorphic

automorphism groups.

Let S(∆) be a set of representatives of the equivalence classes of forms with

discriminant ∆. For ∆! 0, the Kronecker}Hurwitz weighted class number, H*(∆), is

defined by counting each class of forms with weight twice the reciprocal of the size

of the automorphism group of forms in that class. Thus

H*(∆)¯ 3
(A,B,C)`S(∆)

2} rAut(A,B,C)r, (6)

where r\r denotes the cardinality of a set.

This is the appropriate class number for our purpose when ∆! 0 (see [4]), but the

definition makes sense only for ∆! 0, since Aut(A, B, C) is infinite when ∆" 0.

Indeed if ∆" 0 then Aut(A, B, C) is isomorphic to Z¬Z
#
, and can be described

concretely. Let f¯ gcd(A, B, C), and let v, w be positive integers giving the

fundamental solution to

v#®∆w#} f #¯ 4. (7)

Then the automorphisms of (A, B, C) are precisely ³Tn (n `Z), where

T¯
E

F

v}2®Bw}2f

Aw}f

®Cw}f

v}2­Bw}2f

G

H

. (8)

The map

³Tnj³(v}2­wo∆}2f )n

embeds Aut(A, B, C) as a subgroup of the group of units of the ring of integers of the

quadratic field Q(o∆). So far this is all standard: see, for example [6] (this treats

only the case f¯ 1, but the extension to any f is straightforward).
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Let P∆ be the principal form with discriminant ∆ (that is, either P∆ ¯ (1, 0,®∆}4)

or P∆ ¯ (1, 1, (1®∆)}4), according as ∆3 0 (mod4) or ∆3 1 (mod4)). Then if (A, B, C)

has discriminant ∆" 0, Aut(P∆) embeds in Aut(A, B, C) via the identity map:

x}2­yo∆}2j x}2­fyo∆}2f.

For ∆" 0, define H*(∆) by

H*(∆)¯ 3
(A,B,C)`S(∆)

1}[Aut(A,B,C) : Aut(P∆)]. (9)

In other words, we count the class containing (A, B, C) with weight given by the

reciprocal of the index of Aut(P∆) in Aut(A, B, C). Note that this definition makes

sense for ∆! 0 also, and agrees with the former definition of H*(∆) unless ∆¯®3 or

∆¯®4. In particular, if ∆¯®3n# or ∆¯®4n# (the only non-trivial cases), then our

definition agrees with Kronecker’s unless n¯ 1. When n¯ 1 it is the principal form

itself which has unusually many automorphisms, so it is not surprising that this

index formula for the weight breaks down.

Another formula for H*(∆) will be used in the proof of the Theorem. For D" 0, D

not a square, define

δ(D)¯ (v­woD)}2, (10)

where v and w give the fundamental solution to the Pellian equation

v#®Dw#¯ 4.

Then, from (7) and (8),

δ(∆)¯ δ(∆}f #)[Aut(A,B,C):Aut(P∆)],

hence (9) gives

H*(∆)¯ 3
(A,B,C)`S(∆)

log δ(∆}f #)}log δ(∆), (11)

where, as before, f¯ f(A,B,C)¯ gcd(A,B,C).

These definitions of H* and δ are used in the statement of the Theorem. Note that

if ∆ is fundamental, then this weighted class number is none other than the classical

class number. If ∆ is not fundamental, then the weighted class number may be

different, and note also that different classes may be given different weights.

Examples. If ∆¯ 5, we can take S(∆)¯²(1, 1,®1)´, and H(5)¯H*(5)¯ 1. Also

note that δ(5)¯ (3­o5)}2.

If ∆¯ 20, we can take S(∆)¯²(1, 0,®5), (2, 2,®2)´, and H(20)¯ 2. To compute

H*, note that δ(20)¯ (18­4o20)}2¯ δ(5)$, so we count (2, 2,®2) with weight 1}3,

and H*(20)¯ 4}3. Here we see a simple example where different classes are counted

with different weights.

3. Proof of Theorem

As remarked in the introduction, the case ∆! 0 is proved in [4], so we may suppose

that ∆" 0.

As before, S(∆) denotes a set of representatives of the equivalence classes of forms

(A, B, C) with discriminant ∆ (allowing gcd(A, B, C)" 1), but now we choose

representatives such that A" 0 whenever (A, B, C) `S(∆).
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Suppose that d is a positive integer, and for some (A, B, C) `S(∆) we have

Ap#­Bpq­Cq#¯ d, gcd(p, q)¯ 1. (12)

Such a representation of d is called a proper representation. Then there exist r
!
,

s
!
`Z with ps

!
®qr

!
¯ 1, and the general solution to ps®qr¯ 1 is s¯ s

!
­tq, r¯

r
!
­tp (t `Z). If

(A,B,C)
E

F

p

r
!

q

s
!

G

H

¯ (d,m
!
, l

!
),

then

(A,B,C)
E

F

p

r

q

s

G

H

¯ (d,m, l)

with m¯m
!
­2td. Hence, for any given integer k, our proper representation of d,

(12), leads to a unique m¯m
!
­2td with k%m! k­2d. We choose k¯ b, with b as

in the statement of the Theorem. Moreover, m#3∆ (mod4d), since (d,m, l) has

discriminant ∆, so (12) leads to a unique m satisfying

m#3∆ (mod4d), b%m! b­2d. (13)

Conversely, a solution to (13), m#®4dl¯∆, implies that (d, m, l) is a form with

discriminant ∆, which properly represents d. Now (d, m, l) must be equivalent to a

unique element of S(∆), say (A, B, C). Then

(A,B,C)¯ (d,m, l)
E

F

p

r

q

s

G

H

for some (p
r

q
s
) `SL

#
(Z), and (A, B, C) properly represents d, with the representation

determined by (d, m, l) and (p
r

q
s
). Now (p

r
q
s
) is unique up to an automorphism of (A,

B, C), and all such are given by (plus or minus) powers of the fundamental

automorphism (8). The fundamental automorphism transforms the line y¯ 0 in the

(x, y)-plane into the line
(v®Bw}f ) y¯ 2(Aw}f )x,

and we conclude that a solution to (13) leads to a unique proper representation of d

by some (A, B, C) `S(∆), Ax#­Bxy­Cy#¯ d, with x, y& 0, gcd(x, y)¯ 1 and

0% y}x! 2Aw}( fv®Bw).

If we let ρ(d) be the number of solutions to (5), with a¯ 1, then completing the

square and setting m¯ 2n­b we see that ρ(d) equals the number of solutions to (13).

From the above argument it follows that

ρ(d)¯ 3
(A,B,C)`S(∆)

3
Ap

#
+Bpq+Cq

#
=d,gcd(p,q)=",

!
%q/p!

#Aw/(fv−Bw)

1, (14)

where v and w, defined by (7), depend on (A, B, C) in as much as they depend on

f¯ gcd(A, B, C). Here the (p, q) sum is over pairs of positive integers satisfying the

various conditions (except that we could have q¯ 0 if d¯A).

Examples. For example, if our polynomial is n#®5, then ∆¯ 20 and we may take

S¯²(1, 0,®5), (2, 2,®2)´.
If d¯ 4, then ρ(d)¯ ρ(4) is the number of solutions to (5) (with a¯ 1, b¯ 0,
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c¯®5, d¯ 4), hence ρ(d)¯ 2. There are two proper representations of 4 as x#®5y#

with x, y& 0 and 0% y}x! 2±1±4}(1±18®0±4)¯ 4}9, namely 4¯ 3#®5±1# and

4¯ 7#®5±3#.

Or with d¯ 10, we have ρ(d)¯ 1, and there is just one proper representation of

10 as 2x#­2xy®2y# with x, y& 0 and 0% y}x! 2±1±1}(2±3®0±1)¯ 1}2, namely

10¯ 2±2#­2±2±1®2±1#.

We can use (14) to estimate 3
d%X

ρ(d). Note that the estimate for the number of

positive integers p and q satisfying the two conditions 1%Ap#­Bpq­Cq#%X}e#

and 0% q}p! 2Aw}( fv®Bw), generalizes lemma 3±5(b) in chapter 10 of [6].

Throughout, p and q are non-negative integers, µ is the Mo$ bius function, and ν

depends on (A, B, C). Implied constants in O(\) expressions may depend on S(∆).

3
d%X

ρ(d)¯ 3
(A,B,C)`S(∆)

3
"
%Ap

#
+Bpq+Cq

#%X,gcd(p,q)=",
!
%q/p!

#Aw/(fv−Bw)

1

¯ 3
(A,B,C)`S(∆)

3
e%νoX

µ(e) 3
"
%Ap

#
+Bpq+Cq

#%X/e
#
,

!
%q/p!

#Aw/(fv−Bw)

1

¯ (6X}π#o∆) 3
(A,B,C)`S(∆)

log δ(∆}f #)­O(oX logX).

Thus, using (11), we get

3
d%X

ρ(d)¯ 6H*(∆) log δ(∆)X}π#o∆­O(oX logX). (15)

We have the classical estimate

3
n%X

d(n#­bn­c)¯ 2X 3
d%X

ρ(d)}d­O ( 3
d%X

ρ(d))­O(X) (16)

(see, e.g. [4]). Our estimate for 3
d%X

ρ(d), (15), fed into (16), and using partial

summation, gives

3
n%X

d(n#­bn­c)¯ 12H*(∆) log δ(∆)X logX}π#o∆­O(X),

as desired.
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