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Primes whose sum of digits is prime and metric number theory

Glyn Harman

Abstract

It is shown that almost all real x contain infinitely many primes in their decimal expansions (to
any base) whose sum of digits is also prime, generalising a previous result by the author. To
do this, the earlier method in metric number theory is combined with recent work by Drmota,
Mauduit and Rivat on primes with prescribed sum of digits.

1. Introduction

In [8] (see also [9, Chapters 6 & 8] for the more general context of mixing multiplicative and
metrical questions) we gave a complete solution to the following question.

Given an increasing sequence of positive reals an, where an →∞ as n →∞, are there
infinitely many primes in the sequences [αan], [αan ], [aα

n] for almost all real α > 1 (in the sense
of Lebesgue measure), where [ ] denotes integer part?

In particular, writing p to denote a prime here and throughout this paper, we showed that
if b ≥ 2 is an integer then, for almost all α > 0, we have

lim
N→∞

1
log N

|{[αbn] = p;n ≤ N}| = 1
log b

. (1)

Thus a “typical” real number has infinitely many primes in its decimal expansion. While [8] was
being written some interesting developments were taking place regarding our understanding of
the sum of digits function restricted to certain sets [4, 5], culminating in the very recent work
by Drmota, Mauduit and Rivat [3] and by Mauduit and Rivat [13]. It is the purpose of this
paper to develop the result given by (1) so that only those primes whose sum of digits written
in base b (b ≥ 2) are also prime are counted. For brevity we shall write this set as Pb. The main
result we shall prove is then as follows.

Theorem 1. Let b ≥ 2 be an integer. Then, for almost all α > 0, we have

lim sup
N→∞

1
log log N

|{[αbn] ∈ Pb; n ≤ N}| ≥ b− 1
φ(b− 1) log b

. (2)

and

lim inf
N→∞

1
log log N

|{[αbn] ∈ Pb; n ≤ N}| ≤ b− 1
φ(b− 1) log b

. (3)

Remarks. It is slightly disappointing only to be able to give results for the lim sup and
lim inf rather than a true asymptotic formula. This arises from weaknesses in our ‘overlap
estimates’ (see Section 6) where we can only obtain upper bounds of the correct order of
magnitude rather than asymptotic formulae. Since a countable union of sets with measure zero
still has measure zero, for almost all α > 0 (2) and (3) hold for every b ≥ 2. A natural question
to ask is whether the sequence bn could be replaced by some increasing sequence of reals dn
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say. We leave it to the reader to verify that the proof could be modified (with suitable changes
to the form of (2) and (3)) to accommodate a sequence dn provided that there exist constants
c2 > c1 > 1 such that

c1 ≤ dn+1

dn
≤ c2 for all sufficiently large n.

It is plausible that one could obtain a result counting primes whose sum of digits also belongs
to Pb (and iterated further a finite number of times). Certainly some of our auxiliary results
can be adapted to this situation, but the work in Section 6 becomes rather complicated at this
point.

2. The sum of digits function

We state here the results we need on the sum of digits function in base b. An important
early work on this topic, which provided the inspiration for later developments, is [6]. We write
log x for the natural logarithm modified to mean log(max(2, x)), and logb x is the logarithm to
base b. Henceforth we suppose that b is fixed and so we can leave the dependence of various
functions on b implicit for simplicity when there will be no confusion. We can likewise write P

instead of Pb. We also put µ = (b− 1)/2. If

n =
r∑

k=0

akbk, 0 ≤ ak ≤ b− 1, then we put σ(n) =
r∑

k=0

ak

for the sum of digits function in base b. An important feature of this function is that it is
concentrated near its mean value µ logb n, and in [3] (see also [11]) it is shown that this still
holds true when n takes only prime values. Before stating the result precisely we need the
following notation:

s =
b2 − 1

12
, S(k, x) = |{p ≤ x : σ(p) = k}| .

We also write, as is customary, π(x) for the number of primes up to x and recall the Prime
Number Theorem in the form

π(x) =
x

log x
+ O

(
x

(log x)2

)
. (4)

Theorem 2 (Drmota/Mauduit/Rivat). We have, uniformly for all integers k ≥ 0 with
(k, b− 1) = 1,

S(k, x) =
b− 1

φ(b− 1)
π(x)√

2πs logb x

(
exp

(
− (k − µ logb x)2

2s logb x

)
+ O

(
(log x)−

1
2+ε

))
, (5)

where ε > 0 is arbitrary but fixed, and φ(n) is Euler’s totient function.

Remarks. Of course, for all but the finitely many primes p satisfying (p, b− 1) > 1 we
have (σ(p), b− 1) = 1, and this leads to the (b− 1)/φ(b− 1) factor appearing throughout this
paper.

It immediately follows from this theorem that there are infinitely many primes whose sum
of digits is also prime. A moment’s thought then reveals that given any positive integer t there
are infinitely many primes p whose sum of digits is prime and there are t different truncations
of p having the same property. Moving on we can then deduce that there are uncountably
many α (which form a dense set in the set of positive reals) such that for infinitely many n we
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have [bnα] ∈ P. However, the form of the asymptotic formula (5) alerts us to the influence of
irregularities in the distribution of primes in short intervals. Since, given the current state of
knowledge (see [1]), we do not know that every interval of the form [z, z + z

1
2 ] contains primes

(let alone asymptotically the right number of primes) we may have intervals of x for which
Theorem 2 gives no non-trivial formula for k taking any prime value. It should be noted that
we would have this difficulty even if we knew the Riemann Hypothesis were true. Happily we
need to deal only with a weighted sum that enables us to sidestep this difficulty in our proof.
In any case, we could have appealed to results on sums of differences between primes (see [12],
for example) to obtain an “almost-all” type result.

Another immediate consequence of the above theorem is that there are infinitely many primes
with σ(p) and σ(σ(p)) both prime also, and this can be iterated as often as we wish. We shall
show elsewhere how it is possible to obtain a Mertens’ type theorem for primes restricted in
this way.

In the course of our working we shall need an upper bound for the number of primes in an
interval whose sum of digits is also prime. In order to apply a sieve method we shall need the
following result which is a strengthened version of the result in [13] obtained by applying one
of the main theorems in [3].

Theorem 3. There exists a constant θ = θ(b) > 0 with the following property. Suppose
that N, D ≥ 2. Then we have

∑

d≤D
(d,b−1)=1

∣∣∣∣∣∣∣∣

∑

p≤N
σ(p)≡0 (mod d)

1 − π(N)
d

∣∣∣∣∣∣∣∣
¿ ND(log N)3 exp

(
−θ log N

D2

)
. (6)

We explain how this follows from the work in [3] in Section 7 below.

3. Outline of the argument

We first suppose that α ∈ [0, 1). The argument for any other interval of unit length follows
mutatis mutandis. We then restrict our attention to those primes whose sum of digits is
sufficiently close to the expected mean value. To do this we write ν = µσ(p)

2
3 in the following,

and put
P(n) = {p ∈ P : |σ(p)− µn| < ν, p < bn} .

We can safely neglect all other p ∈ P since, by the work of Kátai [11], for any A ≥ 1 we have
∑

p∈P,p<bn

p/∈P(n)

1 ¿A
bn

nA
.

We write

Bn =
⋃

p∈P(n)

[
p

bn
,
p + 1
bn

)
.

Let λ(A) denote the Lebesgue measure of a real set A. Write

FN (α) = |{n ≤ N : α ∈ Bn}| , V (N) =
∑

n≤N

λ(Bn).

Our starting point for the proof of Theorem 1 is then the following which can be found as [10,
Theorem 3].
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Lemma 1. Suppose that V (∞) diverges. Suppose also that there is a positive constant c3

such that if I is any subinterval of [0, 1) then

lim
N→∞

1
V (N)

N∑
n=1

λ(I ∩Bn) = λ(I) (7)

and

lim sup
N→∞

(
N∑

n=1

λ(I ∩Bn)

)2

 ∑

1≤j,k≤N

λ(Bj ∩Bk ∩ I)



−1

≥ c3λ(I). (8)

Then we have, for almost all real α ∈ [0, 1),

lim sup
N→∞

FN (α)
V (N)

≥ 1 and lim inf
N→∞

FN (α)
V (N)

≤ 1.

To complete the proof of Theorem 1 we thus need to establish (7) and (8) with the correct
function V (N).

4. Results from Multiplicative Number Theory

We require the following simple upper bound for primes in short intervals which follows from
the more general Brun-Titchmarsh inequality in the form given by Montgomery and Vaughan
[14, (1.12)].

Lemma 2. We have, for all x > 0, y > 1, that

π(x + y)− π(x) ≤ 2y

log y
.

We also need to apply a simple upper bound sieve; the result we need may be deduced from
[7, p.20 & p.144-5].

Lemma 3. Let D ≥ 2, f ∈ N. Then there exists a sequence of reals λd with |λd| ≤ 1, and a
function ρ(n) such that

ρ(n) ≥
{

1, if n > D
1
2 is a prime;

0, otherwise;

and there is an absolute constant K with

ρ(n) ≤ K

log D

f

φ(f)
+

∑

d≤D
(d,f)=1

λd


∑

d|n
1− 1

d


 . (9)

5. Proof of (7)

We now let q also denote a prime variable. Suppose I = [g, h) ⊆ [0, 1) (the proof for other
intervals follows similarly) and write

P(n, g, h) = {p ∈ P : |σ(p)− µn| < ν, gbn ≤ p < hbn} , M = µ
(
N + N

2
3

)
.
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Then
N∑

n=1

λ(I ∩Bn) =
∑

n≤N

b−n|P(n, g, h)| + O(1).

Here the O(1) term comes from ‘edge effects’, that is the difference between p < hbn and
p + 1 < hbn. We then open out the inner term on the right hand side above and reverse the
order of summation to give

∑

q≤M

∑
n

|n−q/µ|<ν/µ

1
bn

∑

gbn≤p<hbn

σ(p)=q

1 + O(1).

In the above ν is now a function of q: ν = µq
2
3 . Applications of (5) estimate the above sum to

be

b− 1
φ(b− 1)

∑

q≤M

∑

n≤N
|n−q/µ|<ν/µ

1
bn

π(hbn)− π(gbn)√
2πsn

(
exp

(
− (q − µn)2

2sn

)
+ O(n−

1
2+ε)

)
.

Here we have absorbed into the O(n−
1
2+ε) expression those terms which arise from changing

logb(hbn) or logb(gbn) into logb(bn) = n. After an appeal to (4) (and absorbing similar errors
arising from g, h as before) this becomes

(h− g)
b− 1

φ(b− 1)

∑

q≤M

∑

n≤N
|n−q/µ|<ν/µ

1
n
√

2πsn log b

(
exp

(
− (q − µn)2

2sn

)
+ O(n−

1
2+ε)

)
.

We now concentrate on the inner sum over n above. We write η for an error term of size O(q−
1
3 ).

We may replace the n−3/2 term with (q/µ)−3/2(1 + η). Taking ε = 1
6 the term O(n−

1
2+ε) also

becomes η. By the Mean Value Theorem it is quickly seen that

exp
(
− (q − µn)2

2sn

)
= exp

(
−µ(q − µn)2

2sq

)
+ η,

where we have noted that if |q − µn| > n5/9 then the exponential term itself is O(η). Since
∑

q≤M

νη

q
3
2
¿

∑

q≤M

q−7/6,

which converges, we are left to estimate

∑

q≤M

µ
3
2

q
√

2πsq log b

∑

n≤N
|n−q/µ|<ν/µ

exp
(
− (q − µn)2

2sq

)
.

The inner sum can be replaced by an integral with a suitably small error:
∫ (q+ν)/µ

(q−ν)/µ

exp
(
− (q − µx)2

2sq

)
dx(1 + η) =

√
2sq

µ
3
2

∫∞
−∞

exp(−y2) dy(1 + η)

=
√

2πsq

µ
3
2

(1 + η)

We note that by Mertens’ Theorem [2, p.56]
∑

q≤M

1
q

= log log M + O(1) = log log N + O(1).
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Assembling all our information so far, we thus have
N∑

n=1

λ(I ∩Bn) =
b− 1

φ(b− 1)
(h− g) log log N

log b
+ O(1).

In particular, we have established (7) with

V (N) =
b− 1

φ(b− 1)
log log N

log b
+ O(1).

6. Proof of (8)

First we need an upper bound result corresponding to the work of the previous section
without the averaging over n.

Lemma 4. For 0 ≤ g, h < 1 and n ≥ 2 we have

∑

gbn<p<hbn

p∈P

b−n ≤ b− 1
φ(b− 1)

6(h− g)
n log n log b

+ O(n−
7
6 ).

Proof. We have, by two applications of Theorem 2,
∑

gbn<p<hbn

p∈P

b−n =
∑

q
|q−nµ|<ν

b− 1
φ(b− 1)

h− g

n
√

2πsn log b

(
exp

(
− (q − µn)2

2sn

)
+ O(n−

1
3 )

)
.

We divide the summation range over q into subranges of length n
1
3 . By Lemma 2 the number

of primes in such an interval does not exceed 6n
1
3 /(log n). The proof may then be completed

in a similar manner to the working of the last section.

Write, for m < n,

A(m,n) = {(p, q) ∈ P2 : bn−mp− 1 < q < (p + 1)bn−m, gbm < p < hbm}.
Then ∑

1≤j,k≤N

λ(Bj ∩Bk ∩ I) ≤ V (N)(h− g) + O(1) + 2
∑

1≤m<n≤N

b−n|A(m,n)|.

We split the range of summation over n above into two parts:
(i) m < n ≤ m log m;
(ii) n > m log m.
For case (i) we apply Lemma 2 and so make no use of the restriction q ∈ P. We thus obtain an
upper bound for this portion of the sum which is

≤ 2
∑

(i)

∑

gbm<p<hbm

p∈P

b−n bn−m + 1
(n−m) log b

≤ 12
b− 1

φ(b− 1)

∑

(i)

h− g

(log b)2(m log m)(n−m)
+ O(1)

after an application of Lemma 4. A simple calculation shows that this term is ¿ (h− g)V (N)2.
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For case (ii) we require Lemma 3 where we take D = (n/m)
1
4 , f = b. The first term on the

right hand side of (9) is then

¿
∑

(ii)

∑

gbm<p<hbm

p∈P

b−n bn−m + 1
n log(n/m)

¿ (h− g)
∑

(ii)

1 + o(1)
(m log m)(n log(n/m))

,

with an application of Lemma 4. This term is again clearly ¿ (h− g)V (N)2. The remaining
term in (9) leads to the expression

S∗ =
∑

(ii)

∑

gbm<p<hbm

b−n
∑

bn−mp−1<q<(p+1)bn−m

∑

d≤D
(d,b−1)=1

λd


 ∑

d|σ(q)

1− 1
d


 .

Applications of (6) estimate this to be

¿
∑

(ii)

∑

gbm<p<hbm

b−nn3bnD exp
(
− θn

D2

)
.

We note that exp(−θnD−2) ≤ exp(−θn
1
2 m

1
2 ) ¿ b−mn−5 since n > m log m. It follows that

S∗ ¿ (h− g)V (N) which is a suitable upper bound.
Combining all the above results we obtain∑

1≤j,k≤N

λ(Bj ∩Bk ∩ I) ¿ (h− g)V (N)2

where the implied constant only depends on b. This, with (7), establishes (8) and so completes
the proof.

7. Proof of (6)

Our remaining task is to explain how (6) can be deduced from the work in [3]. The following
is Proposition 2.1 from that paper. Here we write e(α) = exp(2πiα) and ‖β‖ = minn∈Z |β − n|.

Proposition 1. For b ≥ 2, x ≥ 2 and α ∈ R there exists a real number θ depending only
on b such that ∑

p≤x

e(ασ(p)) ¿ x(log x)3 exp
(−θ(log x)‖(b− 1)α‖2)

where the implied constant depends only on b.

The proof may now be easily completed since

∑

p≤N
σ(p)≡0 (mod d)

1 =
1
d

d−1∑

`=0

∑

p≤N

e

(
`

d
σ(p)

)

=
π(N)

d
+

1
d

d−1∑

`=1

O
(
N(log N)3 exp

(−θ log N‖(b− 1)`/d‖2))

=
π(N)

d
+ O

(
N(log N)3 exp

(
−θ log N

d2

))
,
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where we used (d, b− 1) = 1 to deduce that ‖(b− 1)`/d‖2 ≥ d−2.
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