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Abstract

For an algebraic integer β, that is the zero of the irreducible integer polynomial

Xn − an−1X
n−1 − an−2X

n−2 − · · · − a1X − a0

with all ai ≥ 0, we define the Bieri-Strebel group Gβ = G

(
[0, 1],Z

[
1

β

]
, 〈β〉

)
. This is the group

of piecewise linear homeomorphisms of the unit interval to itself with breakpoints in Z
[

1

β

]
and

slopes that are a power of β. The best known example of this is G2 which is better known

as Thompson’s Group F . It is well known [1] that elements of F can be expressed as pairs

of binary trees, and using these trees it is possible to demonstrate many properties of F . We

denote Fβ ⊂ Gβ the set of elements g ∈ Gβ for which there exist ‘tree-pairs’ to represent g. The

question arises: For which β is Fβ = Gβ .

Higman [2] has shown that for β ∈ N, Fβ = Gβ . In his 1995 [3] and 2000 [4] papers, Cleary

was able to show that Fβ = Gβ if β =

√
5 + 1

2
or β =

√
2 + 1, and in their 2018 master’s thesis

Brown [5] was able to show this holds for all β whose associated polynomial is

X2 − a1X − 1

for some a1 ∈ N.

In this thesis, we have considered all quadratic integers β, zero of the irreducible integer poly-

nomial

X2 − a1X − a0

for some a1, a0 ∈ N, and found necessary and sufficient conditions on a1 and a0 such that that

Fβ = Gβ . We have also shown that there exists β for which Fβ is a proper subset of Gβ and

conjecture that it is not even a group.

For the cases in which Fβ = Gβ , we have been able to find a presentation for Gβ , with which

we have been able to determine a presentation for the abelianisation of Gβ . We have been able

to find arbitrarily high torsion in these Gabβ .
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Chapter 1

Introduction

Groups of piecewise-linear homeomorphisms on real intervals have been particularly studied for the

past 60 years, as there have been examples found which have been shown to have surprising properties.

Perhaps the most infamous of these is Thompson’s Group F , named after Richard Thompson [6], the

group of continuous piecewise-linear homeomorphisms of the unit interval in which all breakpoints lie

in Z
[

1

2

]
=

{
a+

b

2
: a, b ∈ Z

}
and all slopes have gradient which is a power of 2. The group F is an

example of an infinite group which is finitely presented and torsion-free. The group F also has infinite

cohomological dimension [7], as for all N ∈ N, there is an injective homomorphism which embeds the

free abelian group of rank N into F ,

φN : ZN ↪→ F.

The group F has an infinite presentation

F = 〈x0, x1, x2, . . . |xjxi = xixj+1 for i < j〉 .

The elements of F are uniquely defined by their breakpoints and so we can describe any such element

g as a pair of subdivisions of the unit interval g = (S1, S2), where S1 and S2 have the same number

of breakpoints which all must lie in Z
[

1

2

]
. Then g defines a set of affine transformations which map

the ith interval in S1 to the ith interval in S2. It is well known that each of the elements of F can

be expressed as a pair of binary trees [1], with each leaf in a tree representing a sub-interval of [0, 1]

which has length that is a power of 2. In fact we can show the generators found in the presentation

of F as tree pairs. The generator x0 is displayed in tree-pair form atop the following page.

7
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x0

0 1 0 11
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1
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3
4
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2

The group F is a sub-group of Thompson’s Group V , the group of all left-continuous piecewise-

linear homeomorphisms of the unit interval in which all breakpoints lie in Z
[

1

2

]
and all slopes have

gradient which is a power of 2. The group V was one of the first found examples of a finitely presented

infinite simple group. In [2], Higman generalised the group V to Vn, and subsequently the group F to

Fn, for any 1 < n ∈ N. The group Vn is the group of left-continuous piecewise-linear homeomorphisms

of the unit interval in which all breakpoints lie in Z
[

1

n

]
and all slopes have gradient which is a power of

n, and Fn ⊂ Vn is the sub-group of Vn such that every element is a continuous homeomorphism. Note

that the group F is re-defined as F2. Furthermore the elements of the group Fn can also be expressed

as pairs of trees, but now each caret has n legs [8]. Through the use of the tree-representation of Fn,

it is possible to find a presentation for Fn, and from this show that Fn is finitely generated, but has

infinite presentation. The groups Fn were also shown to be torsion-free, finitely presented groups with

infinite cohomological dimension by Brown and Geoghegan [9].

In [3] and [4], Cleary considered variants in which the breakpoints and slopes were irrational.

These were Fω in 1995 and Fτ in 2000 where ω =
√

2 + 1, and τ =

√
5 + 1

2
. Both Fω and Fτ were

shown by Cleary to be finitely presented, torsion-free groups with infinite cohomological dimensional.

But the greatest generalisation of these groups of piecewise-linear homeomorphisms on real inter-

vals came before this, from Bieri and Strebel [10].

1.1 Bieri-Strebel Groups

Bieri and Strebel defined groups of piecewise linear homeomorphisms on real intervals as shown below.

Definition 1.1.1. The Bieri-Strebel Group

The Bieri-Strebel Group G(I, A, P ) is the group of all piecewise-linear homeomorphisms of the interval

I, with breakpoints in A, a subring of the real numbers R, and slopes with gradient in P where P is

a group of units contained in A.
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The Bieri-Strebel groups encompass almost all of the examples of groups of piecewise-linear ho-

moemorphisms of real intervals that have come before this. These include many which will appear for

the first time explicitly in this thesis. We note that Thompson’s group F is a Bieri-Strebel group,

F = F2 = G

(
[0, 1],Z

[
1

2

]
, 〈2〉

)
.

Definition 1.1.2. An algebraic integer β is the zero of some monic integer polynomial

f = Xn +

n−1∑
i=0

aiX
i

for some ai ∈ Z.

For any algebraic integer β ∈ R, we define the Bieri-Strebel group Gβ as

Gβ = G

(
[0, 1],Z

[
1

β

]
, 〈β〉

)
.

The groups Fω and Fτ introduced by Cleary, can be expressed here as

Fω = Gω = G

(
[0, 1],Z

[
1

ω

]
, 〈ω〉

)
, and

Fτ = Gτ = G

(
[0, 1],Z

[
1

τ

]
, 〈τ〉

)

Proposition 1.1.3. Let β be an algebraic integer and recall the definition of the Bieri-Strebel Group

Gβ . If g ∈ Gβ is of finite order, then g = id, the identity homeomorphism.

Proof. The proof for this is well known in the literature, see [5], but I have included this to demonstrate

a reason for considering the elements, as defined in the group, as piecewise-linear homeomorphisms.

Let g ∈ Gβ be non-trivial. As g is a piecewise-linear homeomorphism, then g is defined by the

breakpoints

{(0, 0) = (p0, q0), (p1, q1), . . . , (pt, qt) = (1, 1)}

where g(pi) = qi, and if we let ri be the gradients of the slope between (pi, qi) and (pi+1, qi+1), then

ri 6= ri+1. Note that either r0 = 1 or r0 = βs0 for some integer s0 6= 0. If r0 = 1, then r1 6= r0, so

either r0 or r1 is non-trivial. Let p ∈ {p0, . . . , pt} be the first breakpoint of g such that g(x) = x for

all x ∈ [0, p]. Note that if p = 1, then g is the identity. Otherwise, as p is a breakpoint in g, the right
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gradient at p is not equal to 1. Consider the right derivative of g at p,

D+
p (g) = lim

h→0+

{
g(p+ h)− g(p)

h

}
.

So g(p) = p, but D+
p (g) 6= 1. Consider gn for some n ∈ N, and let x ∈ [0, p]. Then

gn(x) = g ◦ g ◦ · · · ◦ g(x)︸ ︷︷ ︸
n

= g ◦ g ◦ · · · ◦ g(x)︸ ︷︷ ︸
n−1

= g(x) = x.

Now we consider the right derivative of gn at p. In composition g2(g1(x)) of elements g1, g2 ∈ Gβ , the

gradient of the intersections of any intersecting intervals in the image of g1 and the domain of g2, is

found by taking the product of the gradients. Therefore D+
p (gn) =

(
D+
p (g)

)n 6= 1 for all n ∈ N. Thus

g is not of finite order n for any n ∈ N. Therefore, g ∈ Gβ is of finite order only if there exists no

such p ∈ [0, 1) such that g(x) = x for all x ∈ [0, p], and D+
p (g) 6= 1. Therefore g ∈ Gβ is of finite order

only if g is the identity homeomorphism.

The Thompson-like Bieri-Strebel groups, such as Fn[7], Fω[3], and Fτ [4] have been shown to be

finitely presented, and have infinite cohomological dimension over Z. Also, all elements of these groups

can be expressed as tree pairs.

1.2 Tree pairs

In the year 2000 Cleary was able to show that Gτ is finitely presented [4], for τ =

√
5 + 1

2
. Burillo,

Nucinkis, and Reeves [11] were able to use tree pair representations of the elements of Gτ to find

an explicit finite presentation, and hence were able to show that the abelianisation of Gτ contained

2-torsion.

In their Master’s thesis [5], Brown extended the work of Burillo, Nucinkis, and Reeves, by consid-

ering Gτk where τk is the positive real zero of the irreducible integer polynomial

fτk = X2 − kX − 1.

Brown’s work focused on finding the tree pair representations of elements of Gτk , finding a presentation

for Gτk , and subsequently showing that Gabτk contains 2-torsion for all k ∈ N.

These results rely heavily on being able to express elements of the Bieri-Strebel group as tree pairs.
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1.3 Results Within This Thesis

This thesis focuses on the Bieri-Strebel group of the form

Gβ = G

(
[0, 1],Z

[
1

β

]
, 〈β〉

)

where the algebraic integer β is the positive real root of the irreducible polynomial

fβ = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

with ai ∈ Z≥0. In Proposition 2.2.5, we will prove that there is exactly one such positive real root β.

Theorem. For all 0 < p ∈ Z
[
1
β

]
, there exists an expression

p =
b0 + b1β + · · ·+ bn−1β

n−1

βN

for some bi, N ∈ Z≥0.

In Chapter 2, this is proved as theorem 2.2.19 and the result is shown to hold for all such β the

positive real zero of the irreducible integer polynomial

fβ = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0.

We move on to focus solely on the quadratic instances of this polynomial

fβ = X2 − a1X − a0.

We define regular β-subdivisions which correspond to trees. We find properties which arise when there

are multiple trees representing the same regular β-subdivisions. In particular we consider the cases

in which β is Pisot.

Definition 1.3.1. An algebraic integer β is Pisot if 1 < β ∈ R and all other zeros of the minimal

polynomial of β over Z, have absolute value less than 1. [12]

The following theorem appears as Corollary 2.5.12 to Theorem 2.5.10.

Theorem. If β is Pisot, then every element of Gβ can be expressed as a pair of regular β-subdivisions.
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This means that every element in Gβ can be expressed as a pair of trees, as long as β is Pisot.

In fact, in all previous works connecting Bieri-Strebel groups of the form Gβ to tree pair structures,

we have always had Pisot β:

• n is Pisot for all 1 < n ∈ N;

• ω =
√

2 + 1 and τ =

√
5 + 1

2
are both Pisot;

• β, the positive zero of X2 − kX − 1 is Pisot for all k ∈ N.

In each of these cases, Fn, Fω, Fτ , and Fτk , have been shown to have the property that all elements

can be expressed as tree pairs. Our Theorem 1.3 extends this to quadratic integers β, the positive

zero of the Pisot polynomial fβ = X2 − a1X − a0. This leads us to ask whether you can find tree

pairs for every element in Gβ if β is non-Pisot. We have shown this to not be true in Theorem 3.2.30.

Theorem. If β is non-Pisot then there exists g ∈ Gβ such that there are no regular subdivisions

S1, S2 such that g = (S1, S2).

Thus if β is non-Pisot there are elements of Gβ for which there cannot be a tree pair representation.

Building on our earlier work on regular β-subdivisions of the unit interval in which β is a quadratic

integer and Pisot, we construct generators from tree pairs and find an explicit presentation for Gβ .

The following is the statement for Theorem 4.3.20.

Theorem. Let β be the positive real zero of the Pisot polynomial fβ = X2−a1X−a0. LetK = a1+a0.

Then

Gβ =
〈
x0, x1, x2, . . . , z0, z1, z2, . . .

∣∣R1, R2

〉
with the relations

R1 : xixj = xj+K−1xi ∀ i < j

xizj = zj+K−1xi ∀ i < j

zixj = xj+K−1zi ∀ i < j

zizj = zj+K−1zi ∀ i < j

R2 : xi+a0xi+a0+1 · · ·xi+2a0−1xi = zizi+1 · · · zi+a0−1zi ∀ i ≥ 0.
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Lastly, we will consider a specific Pisot case, βn the zero of X2 − (n + 1)X − n for even n ∈ N, and

show that the abelianisation of Gβn , Gabβn
contains elements with (n+1)-torsion. This is the statement

for Theorem 4.4.11

Theorem.

Gabβn
∼= Z2n+1 ⊕ Z

/
(n+ 1)Z

Thus, there are Bieri-Strebel groups of the form Gβ in which the abelianisation Gabβn
contains

arbitrarily high torsion.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Regular Subdivisions of the Unit

Interval

2.1 Background

Recall the definition of Bieri-Strebel groups initially introduced in [10].

Definition. The Bieri-Strebel Group

The Bieri-Strebel Group G(I, A, P ) is the group of all piecewise-linear homeomorphisms of the interval

I, with breakpoints in A, a subring of the real numbers R, and slopes with gradient in P where P is

a group of units contained in A.

We will consider the family of Bieri-Strebel groups denoted Gβ where

Gβ = G

(
[0, 1],Z

[
1

β

]
, 〈β〉

)

and β is a positive real root of Xn−an−1Xn−1−an−2Xn−2−· · ·−a1X−a0 = 0, for some 0 ≤ ai ∈ Z,

a0 6= 0, and

n−1∑
i=0

ai > 1. Here 〈β〉 = {βi : i ∈ Z}.

Given g ∈ Gβ , g : [0, 1]→ [0, 1], with breakpoints {(0, 0) = (p0, q0), (p1, q1), . . . , (pt, qt) = (1, 1)},

g(x) =

(
qi+1 − qi
pi+1 − pi

)
(x− pi) + qi for x ∈ [pi, pi+1]

15
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for i ∈ {0, . . . , t− 1}. As each linear section must have gradient which is a power of β,

qi+1 − qi
pi+1 − pi

= βri

for some ri ∈ Z.

Example 1. If β = 2, we get the group G2, which is better known as Thompson’s group F

Gβ = G

(
[0, 1],Z

[
1

2

]
, 〈2〉

)

Below is the element g′ of G2.

0

1

3
4

7
8

11
2

3
8

0 1

1
2

3
8

0 1
3
4

7
8

The pair of β-subdivisions on the right are shown in the form of a rectangle diagram. The domain

of g′ is placed above the co-domain, and straight lines are drawn from the ith breakpoint in the domain

to the ith breakpoint in the co-domain. The breakpoints do not need to be labelled if it is clear what

they are. Each g ∈ Gβ has a corresponding rectangle diagram.

It is well known that each element of Thompson’s group F , can be represented as a pair of binary

trees [13]. There have been several variants of Thompsons group.

Definition 2.1.1. The set Fβ is the set of all maps g ∈ Gβ such that g can be represented by a pair

of regular trees.

We will define the set Fβ more clearly in this chapter in Definition 2.4.8, once we have a better

understanding of regular trees.



2.2. IRRATIONAL SUBDIVISIONS 17

2.2 Irrational Subdivisions

2.2.1 Positive roots of polynomials

The following Lemma is in fact a consequence of Descartes’ rule of signs [14]. A proof has been

included to demonstrate our particular requirements.

Lemma 2.2.2. Every polynomial of the form

f = anX
n − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

with ai ≥ 0 for i ∈ {1, . . . , n− 1} and an, a0 > 0 has a unique positive real zero β.

I.e., each polynomial of this form, has one and only one positive real zero.

Proof. We prove this by induction on the degree of these polynomials.

Any polynomial of the form a1X − a0 has just a single zero α1 =
a0
a1
∈ R+.

Assume that the lemma holds true for all n ≤ k − 1 for some k ∈ N.

Consider

f = akX
k − ak−1Xk−1 − ak−2Xk−2 − · · · − a1X − a0,

with ai ≥ 0 and ak > 0, a0 > 0.

Consider the derivative of f :

f ′ = akkX
k−1 − ak−1(k − 1)Xk−2 − ak−2(k − 2)Xk−3 − · · · − a2(2)X − a1.

By the inductive hypothesis, every polynomial of this form of degree less than k has precisely one

positive real root, call this αk−1. So there exists exactly one stationary point of f over R+, consider

what this stationary point could be:

Case 1: The stationary point is a local maximum of f .

As f(αk−1) is the only stationary point of f over R+, f must be strictly increasing before αk−1 and

strictly decreasing afterwards. However f is a polynomial with a positive coefficient of the highest

power of X, which means f(X) → ∞ as X → ∞. This is a contradiction, so f(αk−1) is not a local

maxima of f .
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Case 2: The stationary point is a saddle point of f .

As this is the only stationary point in R+, and as shown above f(X) → ∞ as X → ∞, f must

be increasing over R+ and in fact strictly increasing on R+\{αk−1}. As f(0) = −a0 < 0 and f is

continuous, f increases continuously from a negative value, −a0 at X = 0, to ∞ as X →∞. By the

intermediate value theorem, there must exist a unique point αk ∈ R+ such that f(αk) = 0. Thus the

lemma is true in case 2.

Case 3: The stationary point is a local minimum of f .

As f(αk−1) is the only stationary point of f over R+, then f must be strictly decreasing on (0, αk−1)

and strictly increasing on (αk−1,∞). We also know that f(0) = −a0 < 0 and since f(αk−1) is a local

minimum of f , f(αk−1) < f(0) < 0. We now have that there can be no root of f in [0, αk−1], and

that f(X) is a strictly increasing continuous function for X ∈ (αk−1,∞) with f(X)→∞ as X →∞.

By the intermediate value theorem, there must be a unique real root αk ∈ (αk−1,∞). This is the only

zero of f over R+.

In all three cases, we find that either there is a contradiction or f has a unique positive real zero. By

induction the result holds true for all polynomials of the form

f = anX
n − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

with ai ≥ 0 for i ∈ {0, 1, . . . , n− 1} and an > 0, a0 > 0.

2.2.3 Subdivision Polynomials

Definition 2.2.4. A polynomial f ∈ Z[X] is a subdivision polynomial if it is of the form

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

with ai ∈ Z≥0, a0 6= 0,

n−1∑
i=0

ai > 1 for all j ∈ {0, . . . , n − 1}, and f(X) 6= f ′(Xd) for any other

subdivision polynomial f ′ and some d ∈ Z≥2.

This final condition is best understood by considering the following examples.

Example 2. Whilst f = X −m is a subdivision polynomial for all m ∈ Z≥2, f(Xd) = Xd −m is not
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a subdivision polynomial for any d ∈ Z≥2.

Example 3. Higher degree subdivision polynomials examples:

• f = X2 −X − 1

• f = X6 −X3 −X2 − 1

• f = X24 −X15 −X10 − 1

Higher degree subdivision polynomial non-examples:

• f = X4 −X2 − 1 = (X2)2 − (X2)− 1

• f = X6 −X4 −X2 − 1 = (X2)3 − (X2)2 − (X2)− 1

• f = X6 −X3 − 1 = (X3)2 − (X3)− 1

Clearly f = Xn−an−1Xn−1−an−2Xn−2−· · ·−a1X−a0 ∈ Z[X] is not a subdivision polynomial

if there exists d ∈ Z≥2, such that d is a common factor of all i > 0 where ai is non-zero.

Remark 1. If f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0 is a subdivision polynomial. Define

the set AI>0 = {i ∈ {1, . . . , n− 1} : ai > 0}. At least one of the following must be true:

• gcd(n, j) = 1 for some j ∈ AI>0.

• gcd(n, j1, . . . , jt) = 1 where {j1, . . . , jt} = AI>0.

The first condition is clearly a special case of the second condition.

Proposition 2.2.5. Consider a degree n subdivision polynomial f ∈ Z[X],

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

with ai ∈ Z≥0, a0 6= 0 and

n−1∑
i=0, i 6=j

ai ≥ 1 for all j ∈ {0, . . . , n− 1}. Then f has just one positive zero

β > 1.

Proof. By Lemma 2.2.2 a subdivision polynomial

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0
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has a positive real zero which we will denote β. Consider

f(1) = 1− an−1 − · · · − a1 − a0 < 0

as

n−1∑
i=0

ai > 1 by our definition of subdivision polynomials. We have that f(1) < 0 and f(X) → ∞

as X → ∞ where f has a unique zero greater than 0. Since f is continuous we would clearly have a

contradiction if β, the unique positive real zero, was less than 1.

Each irreducible subdivision polynomial defines a unique 1 < β ∈ R.

The subdivision polynomial f defines a subdivision of the unit interval into real sub-intervals,

which have lengths equal to powers of τ , where τ =
1

β
:

a0τ
n + a1τ

n−1 + · · ·+ an−1τ = 1. (2.1)

These sub-intervals are not prescribed an order, so we can assume that the a0 + a1 + · · · + an−1

sub-intervals can be positioned end to end to span the unit interval without overlapping.

It is clear that β ∈ Z[τ ] and is in fact a unit of the ring Z[τ ]. Dividing both sides of the equation

2.1 by τ demonstrates this.

1 = a0τ
n + a1τ

n−1 + · · ·+ an−1τ

1 = (a0τ
n−1 + a1τ

n−2 + · · ·+ an−1)τ

1 = βτ

Therefore, we can express Z[τ ] as Z[β]

[
1

β

]
. For every element p in Z[β], p can be expressed as

p = b0 + b1β + · · ·+ bn−1β
n−1

for some bi ∈ Z (see[15]). Therefore, for all p ∈ Z[τ ] = Z[β]

[
1

β

]
, we can write an expression for p as

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm
, (2.2)

for some bi ∈ Z and m ∈ Z≥0. It becomes clear that this expression is not unique, in particular by
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using βn−1 = an−1β
n−2 + · · ·+ a1 + a0β

−1, we see that

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

p =
b0 + b1β + · · ·+ bn−1

(
an−1β

n−2 + · · ·+ a1 + a0β
−1)

βm

p =
bn−1a0β

−1 + (b0 + bn−1a1) + · · ·+ (bn−2 + bn−1an−1)βn−2

βm

p =
bn−1a0 + (b0 + bn−1a1)β + · · ·+ (bn−2 + bn−1an−1)βn−1

βm+1

p =
c0 + c1β + · · ·+ cn−1β

n−1

βm+1

where ci ∈ Z and m ∈ Z≥0.

Theorem 2.2.6. For all 0 < p ∈ Z[τ ], there exists b0, . . . , bn−1,m ∈ Z≥0 such that

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

We will prove this over the next few pages by showing that repeated use of the substitution

βN = an−1β
N−1 + · · ·+ a1β

N−n+1 + a0β
N−n.

will eventually give us an expression for p with only positive coefficients for all m ≥ N̂ for some

N̂ ∈ Z≥0.

First note the following.

Remark 2. If we can show that for any p ∈ Z[β] with

p = b0 + b1β + · · ·+ bn−1β
n−1

can be written as

p =
c0 + c1β + · · ·+ cn−1β

n−1

βm
,

with ci ≥ 0 for some m ∈ Z≥0, then we can say the same for all p ∈ Z[τ ].

This remark will be justified further in Corollary 2.2.20
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2.2.7 Linear system of Coefficients

As previously said p ∈ Z[τ ] does not have a unique expression, but does for each choice of m, when

written in the form shown earlier on 2.2. I.e. if

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

then bn−1, . . . , b1, b0 are unique for each choice of m ∈ Z≥0. To make notation easier, for each t ∈ Z≥0

define a unitary function [·]t which takes vectors from Rn and maps them onto R as follows. Let

c0, . . . , cn−1 ∈ R. 



cn−1

cn−2
...

c1

c0




t

=
c0 + c1β + · · ·+ cn−2β

n−2 + cn−1β
n−1

βt
.

We will say that b
(m)
i is the coefficient of βi when the denominator of the expression for p is βm.

This allows us to use a shorthand for this expression of p, in the form of a vector with index m:

p =





b
(m)
n−1

b
(m)
n−2
...

b
(m)
1

b
(m)
0




m

=
b
(m)
0 + b

(m)
1 β + · · ·+ b

(m)
n−2β

n−2b
(m)
n−1β

n−1

βm
.

This makes it easy to see what happens when we use the substitution
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βn−1 = an−1β
n−2 + · · ·+ a1 + a0β

−1.

p =
b
(m)
0 + b

(m)
1 β + · · ·+ b

(m)
n−1β

n−1

βm

=
b
(m)
0 + b

(m)
1 β + · · ·+ b

(m)
n−1
(
an−1β

n−2 + · · ·+ a1 + a0β
−1)

βm

=
b
(m)
n−1a0β

−1 + (b
(m)
0 + b

(m)
n−1a1) + · · ·+ (b

(m)
n−2 + b

(m)
n−1an−1)βn−2

βm

=
b
(m)
n−1a0 + (b

(m)
0 + b

(m)
n−1a1)β + · · ·+ (b

(m)
n−2 + b

(m)
n−1an−1)βn−1

βm+1

=
b
(m+1)
0 + b

(m+1)
1 β + · · ·+ b

(m+1)
n−1 βn−1

βm+1

This can be seen as a linear system of equations:

p =





b
(m+1)
n−1

b
(m+1)
n−2

...

b
(m+1)
1

b
(m+1)
0




m+1

=





an−1 1 0 0 . . . 0

an−2 0 1 0 . . . 0

an−3 0 0 1 0

...
...

...
. . .

...

a1 0 0 0 . . . 1

a0 0 0 0 . . . 0





b
(m)
n−1

b
(m)
n−2
...

b
(m)
1

b
(m)
0




m+1

.

We will denote the matrix in this system by A:

A =



an−1 1 0 0 . . . 0

an−2 0 1 0 . . . 0

an−3 0 0 1 0

...
...

...
. . .

...

a1 0 0 0 . . . 1

a0 0 0 0 . . . 0


. (2.3)

Note that this matrix is also the companion matrix of the polynomial f . It therefore follows that the

characteristic equation of the matrix is precisely f = 0. The eigenvalues are therefore the roots of

Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0 = 0
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We know then that A has an unique positive real eigenvalue β.

Definition 2.2.8. A directed graph Γ(V,E) is a pair of sets, one set of vertices, V , and one multiset

of directed edges, E = {(x, y)|x, y ∈ V 2}. Edges can be repeated.

A walk in Γ(V,E) is a sequence of vertices v1, . . . , vr, such that (vi, vi+1) ∈ E for all i ∈ {1, . . . , r−1}.

A path in Γ(V,E) is a walk in which the vertices do not repeat.

A cycle of length k in Γ(V,E) is a walk v1, . . . , vk, v1 in which v1, . . . , vk is a path.

Definition 2.2.9. A non-negative real square matrix A ∈Mn(R≥0) is irreducible if the associated

directed graph GA is strongly connected. I.e., if vi, vj are two distinct vertices in GA, then there is a

path from vi to vj .

The same matrix A is primitive if there exists k ∈ N, such that all entries of Ak are strictly positive.

The directed graph GA = Γ(VA, EA) associated to our non-negative integer matrix A, GA, has each

vertex vi associated with the ith in the matrix A. An edge (vi, vj) exists in EA, if the jth entry in the

ith row of A is non-zero. If this entry has value, d > 0, then there will be d copies of the edge (vi, vj).

Example 4. Consider the associated directed graph for A =


3 1 0

3 0 1

1 0 0

 which is the companion

matrix to the subdivision polynomial f = X3 − 3X2 − 3X − 1.

v1 v2

v3

Lemma 2.2.10. The matrix A in (2.3), is irreducible.

Proof. Consider the associated graph GA.

Let vi ∈ GA, be a vertex in the directed graph associated with A, and let vi be the vertex associated

with the ith row of A.

For 1 ≤ i ≤ n− 1, A(i, i+ 1) = 1, the (i+ 1)th entry in the ith row of A is 1. This means that the

edge (vi, vi+1) ∈ EA for 1 ≤ i ≤ n− 1. The entry A(n, 1) = 1, so (vn, v1) ∈ EA.
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Given two vertices vi, vj , we can find a path from vi to vj by following the sequence of vertices

vi, vi+1, . . . , vj−1vj . If j < i, then the sequence will be vi, vi+1, . . . , vn, v1, . . . , vj . Thus GA is strongly

connected, so A is irreducible by definition.

Theorem 2.2.11. The Perron Frobenius Theorem [16][17]

If A is an irreducible non-negative real matrix then the spectral radius, the maximal modulus of any

eigenvalue of A, ρ(A), is a positive real number, which is itself an eigenvalue of A.

If A is primitive and λ is an eigenvalue of A such that |λ| = ρ(A), then λ = ρ(A).

We have already seen that A has characteristic equation

Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0 = 0.

Thus if A is a primitive matrix, then the positive real number β is the unique eigenvalue of maximal

modulus.

Lemma 2.2.12. The matrix A is primitive.

Proof. We will make use of the fact that a non-negative matrix A is primitive if the associated digraph

is strongly connected and contains two cycles C1, . . . , Ck with lengths l1, . . . , lk respectively, such that

gdc(l1, . . . , lk) = 1 [18].

We have already seen in Lemma 2.2.10 that GA, the associated digraph to A is strongly connected. All

this leaves us to do is to show that GA contains cycles C1, . . . , Ck with lengths l1, . . . , lk respectively,

such that gdc(l1, . . . , lk) = 1.

In remark 1, we noted two conditions for f to be a subdivision polynomial. We defined the set

AI>0 = {i ∈ {1, . . . , n− 1} : ai > 0}. At least one of the following must be true:

• gcd(n, j) = 1 for some j ∈ AI>0.

• gcd(n, j1, . . . , jt) = 1 where {j1, . . . , jt} = AI>0.

We will show that if either condition holds we are able to find two cycles in GA whose lengths are

relatively prime.

CASE 1: There exists some some j ∈ AI>0 such that gcd(n, j) = 1.

Then the graph GA must contain an edge from the vertex vn−j to the vertex v1. This allows us to

consider two cycles in the graph C1 = v1, v2, . . . , vn, v1 of length n, and C2 = v1, v2, . . . , vn−j , v1 of
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length n− j. Note that if gcd(n, j) = 1, then also gcd(n, n− j) = 1. Therefore there are two distinct

cycles in GA whose lengths are relatively prime, and thus A must be primitive.

CASE 2: gcd(n, j1, . . . , jt) = 1 where {j1, . . . , jt} = AI>0.

Then the graph GA must contain the edges (vn−j1 , v1), (vj2 , v1), . . . , (vjt , v1). This allows us to

define t+ 1 cycles as follows:

C0 = v1, . . . , vn, v1

C1 = v1, . . . , vn−j1 , v1

...

Ct = v1, . . . , vn−jt , v1.

The length of cycle C0 is n, and the lengths of cycles C1, . . . , Ct are n − j1, . . . , n − jt respectively.

We can note that since gcd(n, j1, . . . , jt) = 1 and ji < n for all i, that

gcd(n, n− j1, . . . , n− jt) = 1.

Thus we have found cycles in GA whose lengths are relatively prime, and thus A must be primitive.

Thus we have the following remark.

Remark 3. The matrix A has exactly one positive real eigenvalue, which is ρ(A) = β. All other

eigenvalues of A have absolute value less than β.

2.2.13 Generalised Fibonacci Sequence

We define n linear recurrences {F (j)
N }∞−n+2 for j ∈ {1, . . . , n}, each with characteristic polynomial

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

and with initial conditions, F
(j)
1 , F

(j)
0 , . . . , F

(j)
2−n given by the jth row of our matrix A. i.e.

F
(j)
N = an−1F

(j)
N−1 + an−2F

(j)
N−2 + · · ·+ a1F

(j)
N−(n−1) + a0F

(j)
N−n
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Example 5. Let f = X3 − 3X2 − 3X − 1, then A =


3 1 0

3 0 1

1 0 0

 and

F
(1)
1 = 3 F

(1)
0 = 1 F

(1)
−1 = 0

F
(2)
1 = 3 F

(2)
0 = 0 F

(2)
−1 = 1

F
(3)
1 = 1 F

(3)
0 = 0 F

(3)
−1 = 0

Here F
(j)
N = 3F

(j)
N−1 + 3F

(j)
N−2 + F

(j)
N−3 for j ∈ {1, 2, 3}.

Definition 2.2.14. A polynomial f is asymptotically simple if the set of all zeros of f with

maximal modulus contains a unique zero with greatest multiplicity.

Consider our characteristic polynomial f . By the Perron Frobenius Theorem, as f is the charac-

teristic polynomial of the irreducible matrix A, then f has a unique eigenvalue of maximal modulus,

namely β.

Proposition 2.2.15. Szczyrba [19]

Given a linear recurrence {FN}N∈N with asymptotically simple characteristic polynomial and non-

trivial initial conditions, then the ratio limit

lim
N→∞

{
FN+1

FN

}

exists and coincides with the unique zero with maximal modulus of the characteristic polynomial

maximal multiplicity.

For each of the linear recurrences {F (j)
N }∞−n+2 this gives us a direct corollary.

Corollary 2.2.16. For j ∈ {1, . . . , n} the ratio limit of the sequence

lim
N→∞

{
F

(j)
N+1

F
(j)
N

}
= β.

Recall the irreducible matrix A. We define a linear system of recurrences

{G(j)
m }m∈Z
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by taking G
(j)
m to be the jth entry in the first column of the matrix Am. This gives us the recursion

relations for all N ∈ Z:

G
(1)
N = an−1G

(1)
N−1 +G

(2)
N−1

G
(2)
N = an−2G

(1)
N−1 +G

(3)
N−1

...

G
(j)
N = an−jG

(1)
N−1 +G

(j+1)
N−1

...

G
(n−1)
N = a1G

(1)
N−1 +G

(n)
N−1

G
(n)
N = a0G

(1)
N−1.

Lemma 2.2.17. G
(j)
N = F

(j)
N for N ≥ 2− n.

Proof. We need to show that the recursion relations on
{
G

(j)
N

}
N∈Z

expand to give

G
(j)
N = an−1G

(j)
N−1 + an−2G

(j)
N−2 + · · ·+ a1G

(j)
N−(n−1) + a0G

(j)
N−n

for all j ∈ {1, . . . , n}. We will do this by considering 3 cases.

Case 1: j = 1.

G
(1)
N = an−1G

(1)
N−1 +G

(2)
N−1

= an−1G
(1)
N−1 + an−2G

(1)
N−2 +G

(3)
N−2

...

= an−1G
(1)
N−1 + · · ·+ a1G

(1)
N−n+1 +G

(n)
N−n+1

= an−1G
(1)
N−1 + · · ·+ a1G

(1)
N−n+1 + a0G

(1)
N−n

Thus G
(1)
N = F

(1)
N for all N .

Case 2: j = n.



2.2. IRRATIONAL SUBDIVISIONS 29

G
(n)
N = a0G

(1)
N−1

= a0

(
an−1G

(1)
N−2G

(2)
N−2

)
= an−1

(
a0G

(1)
N−2

)
+ a0

(
an−2G

(1)
N−3 +G

(3)
N−3

)
= an−1G

(n)
N−1 + an−2

(
a0G

(1)
N−3

)
+ a0

(
an−3G

(1)
N−4 +G

(4)
N−4

)
...

= an−1G
(n)
N−1 + · · ·+ a2

(
a0G

(1)
N−n+1

)
+ a0

(
a1G

(1)
N−n +G

(n)
N−n

)
= an−1G

(n)
N−1 + · · ·+ a1G

(n)
N−n+1 + a0G

(n)
N−n

Thus G
(n)
N = F

(n)
N for all N .
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Case 3: j ∈ {2, . . . , n− 1}.

G
(j)
N = an−jG

(1)
N−1 +G

(j+1)
N−1

= an−j

(
an−1G

(1)
N−2 +G

(2)
N−2

)
+G

(j+1)
N−1

= an−1

(
an−jG

(1)
N−2

)
+ an−j

(
an−2G

(1)
N−3 +G

(3)
N−3

)
+G

(j+1)
N−1

= an−1

(
an−jG

(1)
N−2

)
+ an−2

(
an−jG

(1)
N−3

)
+

+ an−j

(
an−3G

(1)
N−4 +G

(4)
N−4

)
+G

(j+1)
N−1

= an−1

(
an−jG

(1)
N−2

)
+ · · ·+ an−(j−1)

(
an−jG

(1)
N−j

)
+ an−jG

(j)
N−j+

+G
(j+1)
N−1

= an−1

(
an−jG

(1)
N−2

)
+ · · ·+ an−(j−1)

(
an−jG

(1)
N−j

)
+ an−jG

(j)
N−j+

+ an−1

(
an−j−1G

(1)
N−3

)
+ · · ·+ an−(j−1)

(
an−j−1G

(1)
N−j−1

)
+

+ an−j−1G
(j)
N−j−1 +G

(j+2)
N−2

= an−1

(
an−jG

(1)
N−2 + an−j−1G

(1)
N−3

)
+

+ an−2

(
an−jG

(1)
N−3 + an−j−1G

(1)
N−4

)
+ · · ·

· · ·+ an−(j−1)

(
an−jG

(1)
N−j + an−j−1G

(1)
N−j−1

)
+

+ an−jG
(j)
N−j + an−j−1G

(j)
N−j−1 +G

(j+2)
N−2

= an−1

(
an−jG

(1)
N−2 + · · ·+ a0G

(1)
N−(n−j+2)

)
+ · · ·

· · ·+ an−(j−1)

(
an−jG

(1)
N−j + · · ·+ a0G

(1)
N−n

)
+

+ an−jG
(j)
N−j + an−j−1G

(j)
N−j−1 + · · ·+ a1G

(j)
N−(n−1) + a0G

(j)
N−n

Note that we have all the correct coefficients for G
(j)
i with i ≤ N − j.

Claim:

an−jG
(1)
N−2 + · · ·+ a0G

(1)
N−2 = G

(j)
N−1

for all j ∈ {2, . . . , n− 1} and for all N ∈ N.
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Recall the result from case 1.

an−jG
(1)
N−2 + · · ·+ a0G

(1)
N−2 = G

(1)
N+j−2 − an−1G

(1)
N+j−3 − · · · − an−(j−1)G

(1)
N−1

= G
(2)
N+j−3 − an−2G

(1)
N+j−4 − · · · − an−(j−1)G

(1)
N−1

...

= G
(j−2)
N+1 − an−(j−2)G

(1)
N − an−(j−1)G

(1)
N−1

= G
(j−1)
N − an−(j−1)G

(1)
N−(j−1)

= G
(j)
N−1

With this we have enough to prove case 3, so

G
(j)
N = an−1G

(j)
N−1 + an−2G

(j)
N−2 + · · ·+ a1G

(j)
N−(n−1) + a0G

(j)
N−n

for all j ∈ {1, . . . , n} and N ∈ Z.

2.2.18 Positive coefficients

Theorem 2.2.19. For all 0 < p ∈ Z[β], there exists N̂ ∈ N such that for all N ≥ N̂

p =





b
(N)
n−1

b
(N)
n−2
...

b
(N)
1

b
(N)
0




N

=
b
(N)
0 + b

(N)
1 β + · · ·+ b

(N)
n−2β

n−2 + b
(N)
n−1β

n−1

βN

with b
(N)
i ∈ Z≥0 for all i ∈ {0, . . . , n− 1}.
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Proof. Let p ∈ Z[β], such that p > 0 and

p =





b
(0)
n−1

b
(0)
n−2
...

b
(0)
1

b
(0)
0




0

= b
(0)
0 + b

(0)
1 β + · · ·+ b

(0)
n−2β

n−2 + b
(0)
n−1β

n−1.

By using the substitution βn−1 = an−1β
n−2 + · · · a0β−1, we can find b

(1)
i and b

(2)
i for i ∈ {0, . . . , n−1}

such that

p =





b
(1)
n−1

b
(1)
n−2
...

b
(1)
1

b
(1)
0




1

=





an−1 1 0 0 . . . 0

an−2 0 1 0 . . . 0

an−3 0 0 1 0

...
...

...
. . .

...

a1 0 0 0 . . . 1

a0 0 0 0 . . . 0





b
(0)
n−1

b
(0)
n−2
...

b
(0)
1

b
(0)
0




1

p =





b
(2)
n−1

b
(2)
n−2
...

b
(2)
1

b
(2)
0




2

=





an−1 1 0 0 . . . 0

an−2 0 1 0 . . . 0

an−3 0 0 1 0

...
...

...
. . .

...

a1 0 0 0 . . . 1

a0 0 0 0 . . . 0





b
(1)
n−1

b
(1)
n−2
...

b
(1)
1

b
(1)
0




2

p =





b
(2)
n−1

b
(2)
n−2
...

b
(2)
1

b
(2)
0




2

=


A2



b
(0)
n−1

b
(0)
n−2
...

b
(0)
1

b
(0)
0




2

.
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By repeating this substitution N times, we see that

p =





b
(N)
n−1

b
(N)
n−2
...

b
(N)
1

b
(N)
0




N

=


AN



b
(0)
n−1

b
(0)
n−2
...

b
(0)
1

b
(0)
0




N

.

By Lemma 2.2.17, AN =



F
(1)
N F

(1)
N−1 . . . F

(1)
N−(n−1)

F
(2)
N F

(2)
N−1 . . . F

(2)
N−(n−1)

...
...

. . .
...

F
(n)
N F

(n)
N−1 . . . F

(n)
N−(n−1)


so we can write b

(N)
i as

b
(N)
i = F

(i)
N b

(0)
n−1 + F

(i)
N−1b

(0)
n−2 + · · ·F (i)

N−(n−2)b
(0)
1 + F

(i)
N−(n−1)b

(i)
0 .

By Corollary 2.2.16 we have lim
N→∞

F
(i)
N+1

F
(i)
N

= β. We will use the notation ≈ here to imply that for

i ∈ {1, . . . , n} and sufficiently large N ,

F
(i)
N+1

F
(i)
N

≈ β.

Hence, if we take sufficiently large N , F
(i)
N ≈ βkF

(i)
N−k. Therefore

b
(N)
i ≈ b(0)n−1βn−1F

(i)
N−(n−1) + · · ·+ b

(0)
1 βF

(i)
N−(n−1) + b

(0)
0 F

(i)
N−(n−1)

b
(N)
i ≈

(
b
(0)
n−1β

n−1 + · · ·+ b
(0)
1 β + b

(0)
0

)
F

(i)
N−(n−1)

b
(N)
i ≈ p · F (i)

N−(n−1).

As A is a non-negative irreducible real matrix, F
(i)
N = G

(i)
N ≥ 0 for all N ∈ N. Since p > 0,s we can

conclude for large enough N

b
(N)
i ≈ p · F (i)

N−(n−1) ≥ 0

for all i ∈ {0, . . . , n− 1}.

Theorem 2.2.6 is proved in the following corollary to Theorem 2.2.19.
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Corollary 2.2.20. Let p ∈ Z[τ ] such that p > 0. Then there exists an expression for p

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

where bi,m ∈ Z≥0

Proof. Theorem 2.2.19 tells us that for all 0 < p′ ∈ Z[β] there exists an expression

p′ =
b0 + b1β + · · ·+ bn−1β

n−1

βN

where bi, N ≥ 0.

As we have previously stated, we can write Z[τ ] as

Z[τ ] = Z[β]

[
1

β

]
.

Therefore all 0 < p ∈ Z[τ ] can be written as

p =

(
b0 + b1β + · · ·+ bn−1β

n−1

βN

)
βm

=
b0 + b1β + · · ·+ bn−1β

n−1

βM

where bi,M ≥ 0, and for some M = N +m > 0.

Therefore each element p > 0 of the ring Z[τ ] can be expressed as a sum of powers of τ using only

nonnegative coefficients.



2.3. SUBDIVISIONS AND TREES 35

2.3 Subdivisions and Trees

2.3.1 β-Subdivisions

We will begin by formalising our definition of a subdivision.

Definition 2.3.2. A finite subdivision of [0, 1], S = S(B[S], I(S)), of the real interval [0, 1], is

described by a pair of sets:

• The finite set of breakpoints in S is B[S] ⊂ [0, 1]. B[S] = {0 = b0, b1, . . . , bn = 1}, where

bi < bi+1 for each i.

• The finite set of sub-intervals is I[S]. For all I, J ∈ I[S], I, J ⊂ [0, 1], and I ∩ J = ∅

The sets B[S] ∪ I[s] = [0, 1] and B[S] ∩ I[S] = ∅.

The size of the subdivision size(S) = |I(S)| = |B(S)| − 1

Remark 4. A subdivision of [0, 1], S, can be defined solely by finding either of B[S] or I[S]. Having

one set allows us to derive the other.

This remark allows us to refer to a subdivision by a set of breakpoints (respectively a set of

sub-intervals) without having to define the corresponding sub-intervals (respectively breakpoints). In

certain circumstances it will be more advantageous to think of a subdivision as a set of breakpoints,

and in other cases as a set of sub-intervals.

Definition 2.3.3. We denote the length of an interval I to be L(I).

Let β be the unique positive root of the irreducible subdivision polynomial

fβ = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

. Note that two important properties of fβ are that fβ is minimal and not equivalent to g(Xk) for

any g ∈ Z[X] and k ∈ Z≥2.

Definition 2.3.4. A β-subdivision of [0, 1], S, is any subdivision of [0, 1], S such that for any `i ∈ I[S]

L(`i) = βri , for some ri ∈ Z.

Example 6. Let f2 = X− 2 ∈ Z[X], an irreducible polynomial over Z which has 2 as the only positive

root. Then if S is a subdivision of [0, 1] with B[S] = {0, 14 ,
3
8 ,

1
2 , 1}, then S is a 2-subdivision.
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S : 0 1

1
2

1
4

3
8

Example 7. Let β =
1 +
√

5

2
. Then, fβ = X2 −X − 1, where β is the unique positive root of fβ . We

can find a β-subdivision below.

S : 0 1

1
β

Note that there is not a unique subdivision polynomial with β as a root. Consider f2 = X − 2,

and f ′2 = X2 − X − 2, both of which are subdivision polynomials for which 2 is a zero. Since f2 is

irreducible, this is the only irreducible subdivision polynomial for which 2 is a zero.

Lemma 2.3.5. Let the set {0 = p0, p1, . . . , pt = 1} partition of [0, 1] into t intervals such that pi ∈ Z[τ ]

for i ∈ {0, . . . , t}. Then there exists a β-subdivision S such that {p0, p1, . . . , pt} ⊂ B[S].

Proof. Since pi ∈ Z[τ ] ∩ [0, 1] for i ∈ {0, . . . , t}, define qi = pi − pi−1 ∈ Z[τ ] ∩ [0, 1] for i ∈ {1, . . . , t}.

We will prove the Lemma by recalling Corollary 2.2.20. As qi ∈ Z[τ ] ∩ [0, 1], there exists N ∈ N

such that

qi =





b
(i)
n−1

b
(i)
n−2
...

b
(i)
1

b
(i)
0




N

=
b
(i)
0 + b

(i)
1 β + · · ·+ b

(i)
n−2β

n−2 + b
(i)
n−1β

n−1

βN

where b
(i)
j ∈ Z≥0 for j ∈ {0, . . . , n − 1}. Each sub-interval qi can be substituted for b

(i)
0 + · · · + b

(i)
n−1

sub-intervals which all have length which is some power of β. Since we can convert every interval qi

in this way, there is a β-subdivision which contains the breakpoints {p0, p1, . . . , pt}.

Recall the definition of the Bieri-Strebel group.

Definition. The Bieri-Strebel Group

The Bieri-Strebel Group G(I, A, P ) is the group of all piecewise-linear homeomorphisms of the unit

interval (I), with breakpoints in A, and slopes with gradient in P where P is a group of units

contained in A.
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In particular, we have defined Gβ below

Gβ = G

(
[0, 1],Z

[
1

β

]
, 〈β〉

)

for β the unique positive zero of an irreducible subdivision polynomial.

Given g ∈ Gβ , g : [0, 1]→ [0, 1], with breakpoints {(0, 0) = (p0, q0), (p1, q1), . . . , (pt, qt) = (1, 1)},

g(x) =

(
qi+1 − qi
pi+1 − pi

)
(x− pi) + qi for x ∈ [pi, pi+1]

for i ∈ {0, . . . , t− 1}.

Then there exist two subdivisions of [0, 1], P and Q, both of size t, where P = {p0, p1, . . . , pt} and

Q = {q0, q1, . . . , qt}, and we write g = (P,Q), the affine interpolation from the subdivision P to the

subdivision Q.

Remark 5. Given any β-subdivisions P,Q, such that size(P ) = size(Q), the map g = (P,Q) ∈ Gβ .

Proposition 2.3.6. Let g = (P,Q) ∈ Gβ have breakpoints {(0, 0) = (p0, q0), (p1, q1), . . . , (pt, qt) =

(1, 1)}. Then there exists β-subdivisions P ′, Q′ such that g = (P ′, Q′).

Proof. Let g ∈ Gβ , such that g = (P,Q), where P = {0 = p0, p1, . . . , pt = 1} and Q = {0 =

q0, q1, . . . , qt = 1}. By Lemma 2.3.5, there exists P1, a β-subdivision of [0, 1] such that B[P ] ⊂

B[P1] = {0 = b0, b1, . . . , bs = 1}. Define Q1, a subdivision of [0, 1] by taking Q1 = g(P1) with

B[Q1] = {0 = g(b0), g(b1), . . . , g(bs) = 1}. Since pi ∈ B[P1], and g(pi) = qi for i ∈ {0, . . . , t}, then

B[Q] ⊂ B[Q1].

For all bj ∈ B[P1], such that pi ≤ bj < pi+1),

g(bj) = βri(bj − pi) + qi

for some ri ∈ Z.

Therefore if bj and bj+1 are adjacent breakpoints in P1, then the difference between the adjacent

breakpoints g(bj), g(bj+1) in Q1 is,

g(bj+1)− g(bj) = βri(bj+1 − pi) + qi − βri(bj − pi) + qi

= βri(bj+1 − pi)− βri(bj − pi)

= βri (bj+1 − bj)
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Since bj , bj+1 are adjacent breakpoints in the β-subdivision P1, bj+1−bj = βr
′
j for some r′j ∈ Z. Thus,

g(bj+1)− g(bj) = βriβr
′
j = βri,j

for some ri,j ∈ Z.

So the difference between any two adjacent breakpoints in Q1 is a power of β. So Q1 is also a

β-subdivision. Hence, g = (P1, Q1) where P1 and Q1 are both β-subdivisions.

We now know that every element of Gβ can be expressed as the affine interpolation between two

β-subdivisions.

2.3.7 Regular β-subdivisions

We will now define what it means for a subdivision to be regular. We will provide a precise definition

for regular β-subdivisions for which β is a quadratic integer. This definition will be analogous to a

definition for regular β-subdivisions for any β, the unique root of an irreducible subdivision polynomial.

Let the quadratic integer β be the positive real zero of

fβ = X2 − a1X − a0

which is an irreducible polynomial, i.e. β 6∈ Z. We can deduce from this that

β2 = a1β
1 + a0

βN = a1β
N−1 + a0β

N−2.

Since 1 = β0,

1 = a1β
−1 + a0β

−2

1 = a1τ + a0τ
2.

The subdivision polynomial fβ defines a β-subdivision of [0, 1] with a1 sub-intervals of length τ

and a0 sub-intervals of length τ2. It is useful to let K = a1 + a0, and N = a1 + a0 − 1.

Note that the β-subdivision of [0, 1] defined by fβ contains K sub-intervals, and so the number of

intervals has increased by N .
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Definition 2.3.8. The coefficient vector a of a subdivision polynomial fβ = Xn − an−1X
n−1 −

an−2X
n−2 − · · · − a1X − a0 is the vector a = (an−1, . . . , a1, a0).

Example 8. Let f3 = X − 3, then the coefficient vector a = (3).

In [5] Brown looked at subdivision polynomials with coefficient vector (k, 1) for k ≥ 1. Brown

gives us the following definition.

Definition 2.3.9. [Brown]

A k-partition of the interval [0, 1] of type (i), where 1 ≤ i ≤ k+ 1, is a subdivision of [0, 1] containing

k + 1 sub-intervals k of which have length τ and 1 which has length τ2 which can be found in the ith

position.

In a k-partition of [0, 1] of type (i), there are i − 1 longer sub-intervals of length τ preceding the

short sub-interval of length τ2.

Example 9. 2-partitions of type (1), (2), (3).

type (1)

type (2)

type (3)

A k-partition of type (i) can be performed on a general interval [A,B], and is defined to be the

image of the intervals of the k-partition of [0, 1] of type (i) under the map

x 7→ A+ (B −A)x.

We can extend this definition to subdivision polynomials with coefficient vector (a1, a0), and here

the type of the partition will still depend on the location of the shorter intervals.
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Definition 2.3.10. An (a1, a0)-partition of [0, 1] of type (i1, i2 . . . , ia0) with 1 ≤ i1 < i2 < · · ·

· · · < ia0 ≤ K, is a subdivision of [0, 1], P , such that I(P ) contains a1 sub-intervals of length τ and

a0 sub-intervals of length τ2. The a0 intervals of length τ2 are found in positions ij for 1 ≤ j ≤ a0.

Clearly a k-partition of type (i) can be equivalently described as a (k, 1)-partition of type (i1).

Example 10. Below is a (2, 2)-partition of type (1, 3).

type (1, 3)

These (a1, a0)-partitions can similarly be performed on any interval. An (a1, a0)-partition of type

(i1, . . . , ia0) of an interval [A,B] is defined to be the image of the intervals of the (a1, a0)-partition of

type (i1, . . . , ia0) of [0, 1] under the map

x 7→ A+ (B −A)x

We use (a1, a0)-partitions to build up a specific type of subdivision.

Definition 2.3.11. An (a1, a0)-subdivision of level 0 is the unit interval [0, 1].

An (a1, a0)-subdivision of level N is a subdivision of [0, 1] obtained by performing an (a1, a0)-partition

of any type on an interval in an (a1, a0)-subdivision of level N − 1.

Example 11. Below is a (2, 1)-subdivision of level 2.

Level 0

Level 1

Level 2

Since L
(
[0, 1]

)
= 1 = β0, the unit interval is a β-subdivision. By noting that the substitution

βt = a1β
t−1 +a0β

t−2 is being used whenever performing an (a1, a0)-partition on an interval of length

βt, we have the following remark.

Remark 6. An (a1, a0)-subdivision of any level is a β-subdivision.
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Definition 2.3.12. A β-subdivision which is equivalent to an (a1, a0)-subdivision of some level, is

called a regular β-subdivision.

Whilst all regular β-subdivisions are β-subdivisions, not all β-subdivisions are regular β-subdivisions.

2.4 (a1, a0)-trees

Recall the definition of a directed simple graph

Definition 2.4.1. A directed simple graph Γ(V,E) is a pair of sets, one set of vertices, V ,

and one set of directed edges, E = {(x, y)|x, y ∈ V 2, x 6= y}. A vertex v ∈ V has in-degree

din(v) =
∣∣{(x, y) ∈ E

∣∣y = v}
∣∣ and out-degree dout(v) =

∣∣{(x, y) ∈ E
∣∣x = v}

∣∣.
The degree of v is d(v) = din(v) + dout(v).

Unlike directed graphs, directed simple graphs do not admit repeated edges and so consist of a

set, rather than a multiset, of edges.

Definition 2.4.2. A (rooted) tree is a directed simple graph with a root R such that for all x ∈ V ,

there exists a unique set of vertices P = {p0, p1, . . . , pt} ⊂ V with (pi, pi+1) ∈ E, (pi+1, pi) 6∈ E, where

R = p0 and x = pt. In a tree vertices are also called nodes.

Any node x in the tree with degree d(x) = din(x) = 1 is called a leaf. A non-leaf node, y in the tree

must have dout(y) 6= 0 and is the root of a sub-tree called a caret and is the parent to some number

of other nodes called children. We use x(j) to denote the jth child of the node x as we read from left

to right.

It is worth noting that for a root node R din(R) = 0, and din(X) = 1 for all X ∈ V \R}.

In all of our trees, any edge is directed down the tree and so we will dispense with arrows to

highlight this.

The following tree can be seen to represent a regular 3-subdivision of level 2.
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For most subdivisions the nodes and leaves of the trees will represent different lengths. To show this,

fix the height of a node representing a fixed length. The lower the node, the shorter the interval.

Consider the following partition.

We can model this partition with the following caret.

We cannot move any of the nodes vertically, but they have freedom to move horizontally as long as

they do not pass each other. If two nodes represent intervals of the same length then they must be at

the same height, and if node x represents a shorter interval than node y then x should be lower than

y. We will consider (a1, a0)-partitions through a tree-representation.

Brown [5] introduces modified trees, called k-trees as a way of representing the k-subdivisions.

In a k-tree, the root node represents the interval [0, 1], then each time a k-partition is performed on

an interval, k + 1 children are added to the leaf representing the partitioned interval. Each child is

identified with an interval in the k-partition in left-to-right order, with the short interval drawn twice

as far below its parent as the other children.

Brown introduced k-partitions as having k+ 1 different types, and this will need to be the same when

defining the associated carets.
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Example 12. Consider the subdivision polynomial fβ = X2− 2X − 1 Then fβ can describe any of the

following partitions.

P1

P2

P3

These partitions have corresponding carets:

P1 P2 P3

The root of the polynomial equation f = X2 − 2X − 1 = 0 is β =
√

2 + 1. The ratio of the lengths

represented by the highest node to the lengths represented by the middle nodes is β. In fact, if this

change in height is found between any two nodes, the ratio of lengths represented is also β. The ratio

of the lengths represented by the highest node to the lengths represented by the lowest node in these

carets is β2.

β0

β−1

β−2

These k-trees can be readily adapted to correspond to (a1, a0)-subdivisions. The root of the

(a1, a0)-caret is the interval that is being (a1, a0)-partitioned. We assign each sub-interval in an

(a1, a0)-partition of type (i1, . . . , ia0) to a child in the (a1, a0)-caret with the ithj child being drawn

twice as far below the parent, for j = 1, . . . , a0.
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0 1

Figure 2.1: Example of 3-tree and associated 3-subdivision of level 2.

Example 13. There are six types of (2, 2)-partition, shown here as (2, 2)-carets:

type (1, 2) type (1, 3) type (1, 4)

type (2, 3) type (2, 4) type (3, 4)

Note, the position of the longer legs in each caret correlate to the shorter sub-intervals in the (2, 2)-

partition.

Definition 2.4.3. An (a1, a0)-tree of level N , is a tree with N carets in which every caret is an

(a1, a0)-caret of some type.

Since (a1, a0)-carets correspond to (a1, a0)-partitions

Remark 7. Each (a1, a0)-tree of level N corresponds to an (a1, a0)-subdivision of size N .

Definition 2.4.4. Let X be a node in the (a1, a0)-tree T . A sub-tree from the node X, is TX , the

(a1, a0)-tree found within T which has X as the root node.

The absence of the sub-tree from X is T
∖
TX , the (a1, a0)-tree identical to T , except that X is now

a leaf.

In Figure 2.3, we see a (2, 1)-tree with root node N . The sub-tree from the first child of N , TN(1),
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0 1

Figure 2.2: Example of (2, 2)-tree of level 2 and associated (2, 2)-subdivision.

N

Figure 2.3: The sub-tree TN(1) of the (2, 1)-tree T highlighted in red.

is highlighted with edges in red. The absence of the sub-tree from N(1), T
∖
TN(1) is highlighted with

dashed edges in blue.

Definition 2.4.5. The depth of an (a1, a0)-tree T is D(T ) = d− 1 where β−d is the smallest size of

an interval in the corresponding (a1, a0)-subdivision.

The height of a node X ∈ T is H(X) = h where β−h is the length of the corresponding interval in

the corresponding (a1, a0)-subdivision.

If T is an (a1, a0)-tree, D(T ) = H(X) + 1, where X is a non-leaf node of maximal height.

Definition 2.4.6. An end-caret in an (a1, a0)-tree T , is an (a1, a0)-caret in T , such that all the

children in the caret are leaves.

type (2) type (3)type (1)

Figure 2.4: Any (2, 1)-caret has depth 1
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The root-caret of an (a1, a0)-tree T , is the (a1, a0)-caret with the root of T as the parent.

Definition 2.4.7. The leaf sequence of an (a1, a0)-tree, T is a vector with entries equal to the heights

of the leaves in T as read from left to right and is denoted L(T ).

Example 14. Consider the following (2, 1)-tree T .

T

Then the leaf sequence of T is L(T ) = (2, 2, 3, 2, 1).

The (2, 1)-tree corresponds to the following (2, 1)-subdivision of level 2.

0 1
β−2 β−2 β−3 β

−2 β−1

Notice, the leaf sequence only tells us the intervals and their order in the (2, 1)-subdivision at level 2,

and does not tell us how this was obtained.

It is convenient to introduce a reduced (a1, a0)-tree notation. Each non-leaf node in an (a1, a0)-tree

corresponds to an (a1, a0)-partition of some type in the (a1, a0)-subdivision. Replace each (a1, a0)-

caret with a node labelled with the type of (a1, a0)-caret, and if the ith child of the (a1, a0)-caret is

a non-leaf node, give the edge joining the two labelled nodes the label i. As an example consider the

following (2, 2)-tree.

1

4

(1, 2)

(2, 4)

(2, 3)

≡
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This notation becomes particularly useful when dealing with (a1, a2)-trees where a1 or a2 are

significantly large.

If g = (S1, S2) ∈ Gβ , where S1, S2 are regular β-subdivisions, then we can also write

g = (T1, T2)

where T1 and T2 are corresponding (a1, a0)-trees to the (a1, a0)-subdivisions S1 and S2 respectively.

Now that we have an understanding of what an (a1, a0)-tree is, we can provide a proper definition

for Fβ , for β the positive zero of an irreducible subdivision polynomial fβ = X2 − a1X − a0.

Definition 2.4.8.

Fβ :=
{
g ∈ Gβ

∣∣∣ There exists (a1, a0)-trees T1 and T2 such that g = (T1, T2)
}

2.4.9 (a1, a0)-refinements

Definition 2.4.10. An (a1, a0)-refinement of size 0 of a β-subdivision S is S.

An (a1, a0)-refinement of size i, R, of a β-subdivision S is obtained by performing an (a1, a0)-

partition on a sub-interval in an (a1, a0)-refinement of size i− 1 of S .

We denote the size of an (a1, a0)-refinement of size i a β-subdivision, [S : R] = i.

An (a1, a0)-refinement of a β-subdivision S can be thought of as hanging (a1, a0)-trees from nodes

which represent the intervals of S.

Example 15. Let fβ = X2−2X−1, and so β =
√

2+1. The following β-subdivision, S, is not regular.

0 1
β−2 β−2 β−2 β−1

β−3

We can model this β-subdivision as a forest of empty (2, 1)-trees where the ith node represents the

ith sub-interval in the β-subdivision as read from left to right.
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0

1

2

3

We can demonstrate a (2, 1)-refinement on S of size 1, by performing an (2, 1)-partition of type (1)

on the fourth sub-interval of S.

0

1

2

3

This corresponds to the β-subdivision

S′ 0 1
β−2 β−2 β−2 β−2 β−2β−3 β−3

The β-subdivision S′ is regular and has associated (2, 1)-tree

We have shown an instance when we can find an (a1, a0)-refinement of a non-regular β-subdivision,

which is a regular β-subdivision.

Lemma 2.4.11. An (a1, a0)-refinement of an (a1, a0)-subdivision is still an (a1, a0)-subdivision.

Proof. An (a1, a0)-subdivision S is a regular β-subdivision, and has an associated (a1, a0)-tree T . An

(a1, a0)-refinement of S involves performing (a1, a0)-partitions on the sub-intervals of S. Each sub-

interval of S corresponds to a leaf in T , and each (a1, a0)-partition, corresponds to an (a1, a0)-caret.

So an (a1, a0)-refinement of S corresponds to hanging (a1, a0)-trees from the leaves of T . In doing

this, we will still have a tree in which every caret is an (a1, a0)-caret, so is still an (a1, a0)-tree. Every



2.4. (A1, A0)-TREES 49

(a1, a0)-tree defines an (a1, a0)-subdivision, and so every (a1, a0)-refinement of an (a1, a0)-subdivision

is also an (a1, a0)-subdivision.

Remark 8. Let S′ be an (a1, a0)-refinement of a β-subdivision S. Any (a1, a0)-refinement of S′ is also

an (a1, a0)-refinement of S.

Uniform β-Subdivisions

An advantage of using (a1, a0)-refinements is that we can avoid dealing with an (a1, a0)-tree with

incredibly unbalanced leaf sequences.

Example 16. The (2, 1)-tree, T , with leaf sequence L(T ) = (4, 3, 3, 1, 1)),

which corresponds to the (2, 1)-subdivision S

S

There is a large difference in the lengths of sub-intervals in this (2, 1)-subdivision. We can find a

refinement of S, S′ such that the ratio between any two sub-intervals is at most β =
√

2 + 1. We will

use the reduced (2, 1)-tree notation for the corresponding (2, 1)-tree to S′, T ′:

1

1

2 1

3 3 2 1

1
2 3

1 3 2 3

The leaf sequence is L(T ′) = (4, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 4, 3, 3)

Definition 2.4.12. An uniform β-subdivision of depth N is a β-subdivision with only intervals

of length
1

βN
or

1

βN+1
for some N ∈ N.
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Any (a1, a0)-tree, T , corresponding to a uniform (a1, a0)-subdivision, S, will have leaf sequence L(T ) =

(`1, . . . , `r), where `i ∈ {N,N + 1} for all i ∈ {1, . . . , r}.

In a uniform (a1, a0) subdivision, each interval is either long or short.

Note that a uniform β-subdivision is not necessarily regular, nor is a regular β-subdivision nec-

essarily uniform. A subdivision which is both uniform and regular will be called a uniform (a1, a0)-

subdivision of depth N . The (2, 1)-subdivision, S′ in example 16 is a uniform (2, 1)-subdivision,

whereas S is not.

Lemma 2.4.13. Given a β-subdivision, there exists an (a1, a0)-refinement which is a uniform β-

subdivision.

Proof. Let S be a β-subdivision, such that the smallest sub-interval in S is of length β−D. Note that

D ≥ 2 and that if D = 2, then S is already a uniform β-subdivision. All sub-intervals in I(S) have

length β−d for 1 ≤ d ≤ D.

If D = 3, then all sub-intervals are of length β−d for 1 ≤ d ≤ 3. By performing an (a1, a0)-partition

of some type on all sub-intervals of length β−1, we create an (a1, a0)-refinement of S which only has

sub-intervals of length β−2 and β−3. This (a1, a0)-refinement is a uniform β-subdivision of depth 2.

Each (a1, a0)-partition on an interval of length β−N results in replacing that sub-interval with new

sub-intervals with lengths β−(N+1) and β−(N+2). So if a sub-interval has length greater than βD−1,

we can perform successive (a1, a0)-partitions until there is no such sub-interval.

This leaves us with a β-subdivision only containing intervals of length β−(D−1) and β−D, which is

a uniform β-subdivision of depth D − 1.

Lemma 2.4.14. Let S be a uniform β-subdivision of depth N . Then there exists St an (a1, a0)-

refinement of S, where St is a uniform β-subdivision of depth N + t for t ∈ N.

Proof. As S is a uniform β-subdivision of depth N , all sub-intervals in I(S) are either of length β−N

or β−(N+1). These are called long and short intervals respectively.

To create S1 we perform an (a1, a0)-partition of some type on every long interval in S simulta-

neously. All sub-intervals in I(S1) will have length β−(N+1) or β−(N+2). Hence, S1 is a uniform

β-subdivision of depth N + 1, and S1 is an (a1, a0)-refinement of S.

To create St, a uniform β-subdivision of depth t, we perform an (a1, a0)-partition of some type

on each long interval in St−1 simultaneously. St is an (a1, a0)-refinement of St−1, and thus is also an

(a1, a0)-refinement of S.
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2.4.15 Leaf-Equivalent Trees

If the subdivision polynomial f has degree, δf = 1, then the trees associated to the regular β-

subdivisions are unique. This is not the case when δf ≥ 2. This means that the each regular

β-subdivision, S does not necessarily have a unique (a1, a0)-tree that corresponds to it.

Example 17. Consider the following (2, 1)-trees,

T1 T2

L(T1) = (2, 2, 3, 2, 1) = L(T2)

Both (2, 1)-trees correspond to the following (2, 1)-subdivision.

0 1
β−2 β−2 β−3 β

−2 β−1

Definition 2.4.16. Two (a1, a0)-trees T1 and T2 are said to be leaf-equivalent if

L(T1) = L(T2)

We say that T1 ∼ T2.

Whenever a subdivision has more than one corresponding (a1, a0)-tree, we are able to choose any

corresponding (a1, a0)-tree we like.

Common (a1, a0)-refinements

Definition 2.4.17. Let S1, S2 be β-subdivisions. S′ is a common refinement of S1 and S2 if S′ is

an (a1, a0)-refinement of both S1 and S2.

We can also define common refinements on regular β-subdivisions and (a1, a0)-trees.

Definition 2.4.18. Two (a1, a0)-subdivisions S1 and S2 have a common refinement if there exists

S′1 = S′2, where S′1 and S′2 (a1, a0)-refinements of S1 and S2 respectively.
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Similarly, two (a1, a0)-trees T1 and T2 have a common refinement if there exists T ′1 and T ′2 , (a1, a0)-

refinements of T1 and T2 respectively, such that

T ′1 ∼ T ′2 .

Example 18. The (4, 2)-carets of type (1, 2) and type (2, 3) have a common refinement. The following

(4, 2)-trees have root-carets of type (1, 2) and (2, 3) respectively, and are leaf-equivalent.

(1, 2) (2, 3)

2.4.19 Grafting

Grafting is the process of finding a common refinement between two β-subdivisions. We can then

choose whichever original β-subdivision we wish to use.

Definition 2.4.20.

An (a1, a0)-caret is of minimal type if it has type (1, i2, . . . , ia0).

An (a1, a0)-caret is of maximal type if it is of type (i1, i2, . . . , ia0−1,K), where K = a1 + a0. If an

(a1, a0)-caret is not minimal, respectively maximal, it is non-minimal, respectively non-maximal.

Definition 2.4.21. Grafting

Let S1 be a uniform β-subdivision of depth N such that the jth interval, Ij is a short sub-interval,

and the j + 1th sub-interval , Ij+1 is a long sub-interval. We construct S2, a uniform β-subdivision of

depth N identical to S1, except the jth and j + 1th sub-intervals have been swapped. Then S1 and

S2 have a common refinement. This common refinement is found by performing an (a1, a0)-partition

of type (i1, . . . , ia0) on the sub-interval Ij+1, where ia0 < k = a1 + a0. This is shown by hanging a

non-maximal (a1, a0)-caret from the node representing Ij+1 below using (3, 2)-carets as an example.

S′1

N

N + 1

N + 2

S′2

N

N + 1

N + 2
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The resulting (a1, a0)-refinement S′1, is equivalent to an (a1, a0)-refinement of S2, S′2, in which we

perform an (a1, a0)-partition of type (i1 + 1, . . . , ia0 + 1) on the jth sub-interval in S2.

We have moved a node a node of depth N + 1 to the right of a node of depth N by going from S′1 to

S′2. This is called a right graft on S1 at j + 1.

Conversely, if we go from S2 to S′2 and replace with S′1, we have performed a left graft on S2 at

j.

We can use grafting to change the type of an (a1, a0)-caret X, when X is an end caret.

Definition 2.4.22. LetN be the root node of an (a1, a0)-caret such that for some 2 ≤ j ≤ K = a1+a0,

N(j − 1) is a long leg, and N(j) is a short child. A right graft on N at j + 1, is performed by

hanging a non-maximal caret, from N(j).

N N

There is now a leaf-equivalent tree with root node N ′.

N N ′

We can now substitute the (a1, a0)-tree with root node N with the leaf-equivalent (a1, a0)-tree with

root node N ′. A left graft on N ′ at j, is defined analogously.

Note that a left graft moves a long leg to the left passing a short leg in an (a1, a0)-caret, and a

right graft moves a long leg to the right passing a short leg in an (a1, a0)-caret.

The process of grafting finds a common refinement between the sub-tree TN and T ′N , which means

they correspond to the same (a1, a0)-subdivision. As we have more than one (a1, a0)-tree corre-
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sponding to the same (a1, a0)-subdivision, we have the freedom to choose either of our corresponding

(a1, a0)-trees.

Remark 9. If it is possible to perform a right graft on a node N to get to the node N ′, then it is

possible to perform a left graft on N ′ to get to N .

type (2) type (3)

Figure 2.5: A right graft on a (2, 1)-caret at N(3)

Lemma 2.4.23. Let M be an end (a1, a0)-caret of minimal (respectively maximal) type. If a1 ≥ a0,

we can right (respectively left) graft M to be of non-minimal (respectively non-maximal) type

Proof. Consider the following (a1, a0)-caret M of type (1, 2, . . . , a0), clearly of minimal type.

M

a1

a0

Take the (a0 + 1)th child of M , which will be a short leg/long interval, then hang an (a1, a0)-caret of

type (1, 2, . . . , a0).

M

a1 − 1

a0 a1

a0

As we have assumed that a1 ≥ a0, we can find a0 distinct equivalent trees T̄r such that M is of type

(1, . . . , a0 − r, a0 − r + 2, . . . , a0 + 1) for r ∈ {1, . . . , a0}.
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M

a1 − 1

a0 − r a1 − r

a0

r r

By taking r = a0, M is of type (2, 3, . . . , a0 + 1) in T̄a0 , therefore is non-minimal.

It is not clear whether this Lemma holds for a1 < a0.

Example 19. Consider the following (1, 3)-caret M of type (2, 3, 4). Then M is of non-minimal type.

For this choice of (a1, a0) = (1, 3), there is only one non-minimal caret type.

We want to know if we can graft M to be of non-maximal type, so we need to graft M to be of type

(1, 2, 3). We need to perform a left graft at position 2, by hanging a caret of non-minimal type.

This is equivalent to the following tree in which M is of type (1, 3, 4).
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At this point we would try left graft on position 3, but the caret hanging from M(2) is minimal. Thus

we need to graft this caret until it is non-minimal. However, in order to do this we would need to

be able to graft from type (1, 2, 3) to type (2, 3, 4) which is the equivalent of grafting from (2, 3, 4) to

(1, 2, 3). This is the task we started with, so we have formed a cycle.

Note that this does not prove that there is no common refinement, but it means we cannot use

the same algorithm. This certainly suggests that the graft would not be possible.

2.5 Pisot β-subdivisions

We will prove that having the condition a1 ≥ a0 is equivalent to saying that β is Pisot. i.e. If the two

zeros of f = X2 − a1X − a0 are β and β∗, then |β∗| < 1 < β.

Definition 2.5.1. An algebraic integer β is Pisot if 1 < β ∈ R and all other zeros of the minimal

polynomial of β over Z, have absolute value less than 1. [12]

Lemma 2.5.2. If β is the zero of an irreducible subdivision polynomial of the form

fβ = X2 − a1X − a0

then

a1 ≥ a0 if and only if β is Pisot.

Proof. We know that for an irreducible subdivision polynomial fβ = X2−a1X−a0, there is a unique

positive real zero β, and β > 1. Now fβ has one other root, β∗, which must also be real.

β∗ =
a1 −

√
a21 + 4a0
2

If β is Pisot, then |β∗| < 1.
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As 0 < a1, a0 ∈ Z, β∗ =
a1 −

√
a21 + 4a0
2

< 0, so if β is Pisot, we have −1 < β∗.

−1 <
a1 −

√
a21 + 4a0
2

−2 < a1 −
√
a21 + 4a0√

a21 + 4a0 < a1 + 2

a21 + 4a0 < a21 + 4a1 + 4

4a0 < 4a1 + 4

a0 < a1 + 1

a0 ≤ a1

Every step in this series of inequalities, is reversible, and so by working upwards, a0 ≤ a1 implies that

−1 < β∗ < 0, and thus β is Pisot.

Hence, a1 ≥ a0 is a necessary and sufficient condition for β to be Pisot.

Unless otherwise stated, all lemmas, propositions, and theorems will be true for β Pisot.

Definition 2.5.3. The connected (a1, a0)-caret Ci is the (a1, a0)-caret of type (i+1, . . . , i+a0−1).

We see that in a connected (a1, a0)-caret, there are no short legs between any two long legs. In Ci

there are i short legs to the left of the first long leg.

Proposition 2.5.4. If a1 ≥ a0, and X and Y are (a1, a0)-carets of type (i1, . . . , ia0) and (j1, . . . , ja0)

respectively. Then there is a common refinement between X and Y .

Proof. Let X be the root node of an end caret of type (i1, . . . , ia0), with only leaves for children. We

will add a1 new (a1, a0)-carets, one to each of the short children of X. If X(j) is a short leg, then

hang the connected (a1, a0)-caret Ct from X(j) where t is the number of long legs to the right of

X(j). i.e. If is < j < is+1 hang the connected (a1, a0)-caret Ca0−s from X(j) for s ∈ {1, . . . , a0 − 1}.

If j < i1 then hang the connected (a1, a0)-caret C0 from X(j). If j > ia0 , then hang the connected

(a1, a0)-caret Ca0 from X(j).

The following sub-tree TX will have leaf sequence

L(TX) =
(

2, . . . , 2︸ ︷︷ ︸
a0

, 3, . . . , 3︸ ︷︷ ︸
a0

, 2, . . . , 2︸ ︷︷ ︸
a1

, · · · , 3, . . . , 3︸ ︷︷ ︸
a0

, 2, . . . , 2︸ ︷︷ ︸
a1

)
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Since this leaf sequence can be obtained from an (a1, a0)-caret of any type, there is a common refine-

ment between any two (a1, a0)-carets.

Any such substitution of (a1, a0)-caret types is called a basic move.

Example 20. Consider the following (2, 2)-carets. By following the algorithm described in the proof

of Proposition 2.5.4, we see that there is a common refinement between all three of these (2, 2)-carets.

type (1, 2) type (1, 3) type (1, 4)

The leaf sequence of each of these (a1, a0)-trees is (2, 2, 3, 3, 2, 2, 3, 3, 2, 2).

Lemma 2.5.5. Let T be an (a1, a0)-tree of depth 2 where a1 ≥ a0. Let X be an (a1, a0)-caret of

some type. Then there exists a common refinement between T and X.

Proof. Let N be the root of T . If type(N) = type(X), then by hanging TN(i) from the ith child of X,

we will get an exact copy of T . Thus if type(N) = type(X), there is a common refinement between T

and X.

Suppose then that type(N) = (j1, . . . , ja0) 6= (i1, . . . , ia0) = type(X). If we are able to perform a

basic move, to make type(N) = type(X), then we can repeat the earlier process and hang the sub-tree

TN(i) from X(i) to find our common refinement.

In order to perform our basic move, we need to have the correct type of (a1, a0)-caret hanging

from each of the short children of N . Let N(j) be a short child, so H(N(j)) = 1 , and suppose

js < j < js+1 for s ∈ {1, . . . , a0 − 1}.

If N(j) is a leaf, then we hang the connected (a1, a0)-caret Ca0−s. Otherwise, we have an end

(a1, a0)-caret hanging from N(j). If type(N(j)) = Ca0−s, then we are done. If this is not the case,

then we must perform a basic move on N(j) to make type(N(j)) = type(Ca0−s). This is possible,

as N(j) is an end-caret, and by Proposition 2.5.4, we can find a common refinement between two

(a1, a0)-carets of any different types.

If j < j1 (or j > ja0), then we can perform the same process to ensure that N(j) is the parent of

a connected (a1, a0)-caret of type Ca0 (or C0 respectively).
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By doing this for all N(j) with H(N(j)) = 1, we are able to perform basic moves to make

type(N) = type(X). Then we can find a common refinement between the (a1, a0)-tree T of depth 2

and the (a1, a0)-caret X.

Thus if T is an (a1, a0)-tree of depth 2, we can find an (a1, a0)-refinement of T which is leaf

equivalent to an (a1, a0)-tree T ′, which has root-caret X.

Proposition 2.5.6. Let T be an (a1, a0)-tree, and X an (a1, a0)-caret of some type, where a1 ≥ a0.

There exists a common refinement between T and X.

Proof. We know from Proposition 2.5.4 Lemma 2.5.5, that if D(T ) ≤ 2 and a1 ≥ a0, then there is a

common refinement between T and X. Assume that for d ≤ D ∈ N that any (a1, a0)-tree of depth d

has a common refinement with the (a1, a0)-caret X.

Now consider an (a1, a0)-tree T of depth D+1. Let N be the root node of T . If type(N) = type(X),

then we can find a common refinement by hanging the sub-tree TN(j) from X(j).

If type(N) = (i1, . . . , ia0) 6= type(X), then we consider each short child of N , N(j), where

H(N(j)) = 1. If N(j) is a leaf, we can hang the appropriate (a1, a0)-caret to perform a basic

move on N .

• If j < i1, we hang the connected (a1, a0)-caret Ca0 .

• If is < j < is+1 for s ∈ {1, . . . , a0 − 1}, we hang the connected (a1, a0)-caret Ca0−s.

• If j > ia0 we hang the connected (a1, a0)-caret C0.

If N(j) is not a leaf, but is of the type that we would choose were it a leaf, then we do not need

to make any changes to the sub-tree TN(j).

Otherwise, we want to change the type of N(j). Since the sub-tree TN(j) has depth D, we know that

there is an (a1, a0)-refinement which is leaf-equivalent to an (a1, a0)-refinement of any (a1, a0)-caret,

by assumption.

• If j < i1, we substitute TN(j) for an (a1, a0)-refinement of Ca0 which is leaf-equivalent to an

(a1, a0)-refinement of TN(j).

• If is < j < is+1 for s ∈ {1, . . . , a0 − 1}, we substitute TN(j) for an (a1, a0)-refinement of Ca0−s

which is leaf-equivalent to an (a1, a0)-refinement of TN(j).
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• If j > ia0 we substitute TN(j) for an (a1, a0)-refinement of C0 which is leaf-equivalent to an

(a1, a0)-refinement of TN(j).

We are now able to perform a basic move on the root node N to be of type(X). Call the subsequent

(a1, a0)-tree T ′ with root node N ′. Now by hanging the sub-tree T ′N(i) from X(i) for 1 ≤ i ≤ K =

a1 + a0. The resulting (a1, a0)-tree will be an (a1, a0)-refinement of X which is leaf-equivalent to an

(a1, a0)-refinement of T .

By induction, any (a1, a0)-tree T has a common refinement with an (a1, a0)-caret X of any type.

Remark 10. Given 1 ≤ i1 < · · · < ia0 ≤ K = a1 + a0, there is always a process to find an (a1, a0)-

refinement of an (a1, a0)-tree which is leaf equivalent to some (a1, a0)-tree T ′ which has a root-caret

of type (i1, . . . , ia0), as long as a1 ≥ a0.

This allows us to substitute an (a1, a0)-tree T for an (a1, a0)-tree T ′ which has any root-caret we

want it to have.

As fβ = X2 − a1X − a0 is an irreducible integer polynomial, then there are no integer roots to

fβ = 0. The rational root theorem [20], tells us that if
p

q
∈ Q is a root of fβ = 0, then p divides

a0 and q divides 1. The only such solution can be an integer solution, which gives us the following

remark.

Remark 11. As f = X2 − a1X − a0 is irreducible over Z, then β is irrational.

Lemma 2.5.7. Let β be the unique positive zero of the irreducible integer subdivision polynomial

f = X2 − a1X − a0.

The number of long intervals in a uniform β-subdivision of depth N is fixed, as is the number of

short intervals.

Proof. Suppose for contradiction that there exists two uniform β-subdivisions of depth N , S, S′ where
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S has m longs and n shorts, and S′ contains m′ longs and n′ shorts. Then

m

βN
+

n

βN+1
=1 =

m′

βN
+

n′

βN+1

m+
n

β
=m′ +

n′

β

m−m′ =
n′

β
− n

β

(m−m′)β =n′ − n

β =
n′ − n
m−m′

Thus we have a contradiction as β is irrational.

Lemma 2.5.8. Let P and Q be uniform β-subdivisions of depth N , such that Q can be obtained by

swapping a long interval with an adjacent short interval in P . If P ′ is an (a1, a0)-refinements of P ,

then there exists a β-subdivision S, which is a common refinement between P ′ and Q.

Proof. Let Ii denote the ith interval in P and I ′i denote the ith interval in Q. Without loss of generality,

let L(Ij) = β−N = L(I ′j+1) and L(Ij+1) = β−(N+1) = L(I ′j).

P

N

N + 1

Q

N

N + 1

Let P ′ be an (a1, a0)-refinement of P and let Ti be the (a1, a0)-tree representing the sequence of

(a1, a0)-partitions performed on the interval Ii to get from P to P ′. The (a1, a0)-tree Tj will also be

referred to as T , to make notation simpler.

We construct Q′, a β-subdivision, that is an (a1, a0)-refinement of Q such that P ′ = Q′. If

k 6∈ {j, j + 1}, hang the (a1, a0)-tree Tk from I ′k in Q. As the same (a1, a0)-partition is performed on

these intervals, any sub-interval I ⊂ Ik = I ′k will be identical in P ′ as in Q′.

Let Rj be the root node of the (a1, a0)-tree Tj . Let Rj be of type (i1, . . . , ia0). If i1 > 1, then

Rj is non-minimal, and so we can perform a left graft on P at j. Therefore we can find our common

refinement Q′, by hanging the sub-tree TRj(1) from I ′j and an (a1, a0)-tree T ′j+1 from I ′j+1. The

root node of T ′j+1, R′j+1, is of type (i1 − 1, . . . , ia0 − 1), and the sub-tree T ′R′j+1(t)
= TRj(t+1) for

t ∈ {1, . . . ,K − 1 = a1 + a0 − 1}. The sub-tree T ′R′j+1(K) = Tj+1. This process has been partially

shown below in reduced (a1, a0)-tree notation.
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P ′

(i1, . . . , ia0)

1

t+ 1
TRj(t+1)

TRj(1) Tj+1

Q′

(i1 − 1, . . . , ia0 − 1)

K

t
TRj(t+1)

TRj(1) Tj+1

The β-subdivisions P ′ and Q′ are identical, and so P ′ and Q have a common refinement.

If Rj is minimal, so i1 = 1, then we know that there is an (a1, a0)-refinement of P ′, P ∗, in which

Rj is non-minimal. The (a1, a0)-tree Tj has an (a1, a0)-refinement which is leaf-equivalent to T ∗j , and

the root node of T ∗j is non-minimal. We know this by Proposition 2.5.6.

We can then perform the same process as before to find an (a1, a0)-refinement of Q, Q∗, such that

P ∗ and Q∗ are identical β-subdivisions. In this case P ′ and Q have a common refinement in P ∗ = Q∗.

The following remark comes as a result of the fact that the symmetric group on n elements is

generated by adjacent permutations [21].

Remark 12. Let P,Q be uniform β-subdivisions of depth N . There exist uniform β-subdivisions of

depth N , say P = P0, P1, . . . , Pn = Q, such that Pi+1 can be obtained by swapping a long interval

with a short interval in Pi.

Lemma 2.5.9. Let S1 and S2 be uniform β-subdivisions of depth N . There exists a common refine-

ment between S1 and S2.

Proof. By Remark 12, we know that there is a sequence of uniform β-subdivisions S1 = P0, P1, . . . , Pn =

S2, such that Pi+1 can be obtained by swapping a long interval with a short interval in Pi.

Lemma 2.5.8 tells us that there is a common refinement between P1 and any (a1, a0)-refinement

of P0. In particular, P0 is the trivial (a1, a0)-refinement of P0, so there is a common refinement of P0

and P1. We shall call this P ′1.

Lemma 2.5.8, can be used again here as P2 has a common refinement with any (a1, a0)-refinement

of P1. Since P ′1 is an (a1, a0)-refinement of P1, there is a β-subdivision, P ′2, a common refinement of

P ′1 and P2. Since P ′1 is an (a1, a0)-refinement of P0, so is P ′2 an (a1, a0)-refinement of P0.

We continue in this vain, by finding the β-subdivision P ′i , a common refinement between Pi and

P ′i−1. In each case P ′i is an (a1, a0)-refinement of both Pi and P0.
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By constructing the β-subdivision P ′n, we have found a common refinement between P0 and Pn.

Thus S1 and S2 have a common refinement.

Theorem 2.5.10. If β, the zero of an irreducible subdivision polynomial fβ = X2 − a1X − a0 , is

Pisot, then any two β-subdivisions have a common refinement.

Proof. Let P and Q be β-subdivisions. By Lemma 2.4.13 there exists uniform β-subdivisions P1 and

Q1 of depths D1 and D2 respectively, which are (a1, a0)-refinements of P and Q respectively.

Lemma 2.4.14 tells us that there exists two uniform β-subdivisions of depth N1 +N2, P2 and Q2,

such that P2 is an (a1, a0)-refinement of P1, and Q2 is an (a1, a0)-refinement of Q2.

By Lemma 2.5.9, any two uniform β-subdivisions of the same depth have a common refinement if

a1 ≥ a0. If β is Pisot and the zero of an irreducible subdivision polynomial f = X2 − a1X − a0, then

a1 ≥ a0. Therefore, there exists S, a β-subdivision which is an (a1, a0)-refinement of both P2 and Q2.

Therefore S is an (a1, a0)-refinement of both P and Q, and so there is a common refinement

between P and Q.

Corollary 2.5.11. If β is Pisot, then any β-subdivision has an (a1, a0)-refinement which is a regular

β-subdivision.

Proof. Let S1 be a β-subdivision, and let S2 be the trivial subdivision of [0, 1], i.e. B[S2] = {0, 1}.

Note that S2 is a regular β-subdivision of level 0, and so is also known as an (a1, a0)-subdivision.

Our Theorem 2.5.10 tells us that there must exist a common refinement between S1 and S2. Let

S∗ be a β-subdivision which is an (a1, a0)-refinement of both S1 and S2.

Lemma 2.4.11, any (a1, a0)-refinement of an (a1, a0)-subdivision, is an (a1, a0)-subdivision. This

means that S∗ is a regular β-subdivision.

As we have found S∗ an (a1, a0)-refinement of S1, where S1 could be any β-subdivision, then any

β-subdivision has an (a1, a0)-refinement which is a regular β-subdivision.

We now note the important corollary to this theorem.

Corollary 2.5.12. Let β be the positive zero of the irreducible polynomial f = X2− a1X − a0, with

a1 ≥ a0 ≥ 1. Let g ∈ Gβ . There exists (a1, a0)-trees, T1, T2, such that

g = (T1, T2)
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and thus

Fβ = Gβ .

Proof. We have already seen that Fβ ⊂ Gβ for all β.

Let g ∈ Gβ . Then by Proposition 2.3.6, g = (P,Q), where P and Q are β-subdivisions.

We know from Corollary 2.5.11 that P has an (a1, a0)-refinement, P1, which is a regular β-

subdivision. For the jth interval in P , Ij ∈ I(P ), the (a1, a0)-refinement to get from P to P1 subdivides

Ij . As this subdivision must be made up of a series of (a1, a0)-partitions, we can think of this as hang-

ing an (a1, a0)-tree, Tj from the a node which represents the interval Ij .

We can construct Q1, a β-subdivision which is an (a1, a0)-refinement of Q, by hanging the (a1, a0)-

tree Tj from the jth interval in Q. Then

g = (P,Q) = (P1, Q1).

As Q1 is a β-subdivision, there exists an (a1, a0)-refinement of Q1 which is a regular β-subdivision.

We will call this (a1, a0)-refinement Q2. For the kth interval in P , I ′k ∈ I(P ), the (a1, a0)-refinement

to get from Q1 to Q2 subdivides I ′k. Again, this subdivision is akin to hanging an (a1, a0)-tree T ′k

from a node representing the interval I ′k.

We can similarly hang the (a1, a0)-tree T ′k from the kth sub-interval of P1 to find an (a1, a0)-

refinement of P1 which we will call P2. Since P2 is an (a1, a0)-refinement of a regular β-subdivision,

then P2 is also a regular β-subdivision. Thus

g = (P,Q) = (P1, Q1) = (P2, Q2).

Here P2, Q2 are regular β-subdivisions, so have associated (a1, a0)-trees T1 and T2 respectively.

Thus g = (T1, T2) ∈ Fβ . So Gβ ⊂ Fβ when β is Pisot. Since Fβ ⊂ Gβ ,

Fβ = Gβ

when β is Pisot.
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Of all the Bieri-Strebel Groups of type Gβ , the cases in which we have been able to find expressions

for all elements as tree-pairs, have consistently held the property that β is Pisot. Thus we make the

following conjecture.

Conjecture 2.5.13. Let β be the unique positive real zero of the irreducible integer polynomial

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0, with ai > 0 for i ∈ {0, . . . , n− 1}.

If β is Pisot, then

Fβ = Gβ .

In this chapter we have been able to show that if β is a Perron number that the matrix associated

to the subdivision polynomial is primitive. In fact, every Pisot number is a Perron number, but the

converse is not true. We will explore this further in the next chapter.
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Chapter 3

Non-Pisot β-Subdivisions

In the last chapter we were able to show that any element of Gβ , for Pisot β the zero of fβ =

X2 − a1X − a0, can be expressed as a pair of (a1, a0)-trees. In this chapter we will aim to show that

if β is non-Pisot, than there are elements gi ∈ Gβ such that there exists no (a1, a0)-trees T1, T2 such

that

gi = (T1, T2).

This means that if β is non-Pisot, then

Fβ ⊂ Gβ .

I.e., Fβ is a proper subset of Gβ . To do this, we will find find points in Z[τ ] ∩ [0, 1] which can never

be found as a breakpoint in a regular β-subdivision.

First, we will prove that for every point p ∈ Z[τ ]∩ [0, 1], there exists an element gp = (S1, S2) ∈ Gβ

for some β-subdivisions S1, S2, such that p ∈ B[S1].

3.1 Breakpoints

3.1.1 The ring Z[τ ]

Recall, τ =
1

β
where β is the unique positive real zero of the subdivision polynomial

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0.

67
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We can see that β ∈ Z[τ ] and is in fact a unit of the ring Z[τ ].

1 = a0τ
n + a1τ

n−1 + · · ·+ an−1τ

1 = (a0τ
n−1 + a1τ

n−2 + · · ·+ an−1)τ

1 = βτ

For every element p in Z[β], p can be expressed as

p = b0 + b1β + · · ·+ bn−1β
n−1

for some bi ∈ Z. [15] Therefore, for all p ∈ Z[τ ] = Z[β]

[
1

β

]
, we can write an expression for p as

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

for some bi ∈ Z and m ∈ Z≥0. It becomes clear that this expression is not unique, in particular by

using βn−1 = an−1β
n−2 + · · ·+ a1 + a0β

−1, we see that

p =
b0 + b1β + · · ·+ bn−1β

n−1

βm

p =
b0 + b1β + · · ·+ bn−1

(
an−1β

n−2 + · · ·+ a1 + a0β
−1)

βm

p =
bn−1a0β

−1 + (b0 + bn−1a1) + · · ·+ (bn−2 + bn−1an−1)βn−2

βm

p =
bn−1a0 + (b0 + bn−1a1)β + · · ·+ (bn−2 + bn−1an−1)βn−1

βm+1

p =
b′0 + b′1β + · · ·+ b′n−1β

n−1

βm+1

where b′i ∈ Z and m ∈ Z≥0.

Proposition 3.1.2. Let p ∈ Z[τ ] ∩ [0, 1]. There exists a β-subdivision of [0, 1] which contains p as a

breakpoint.
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Proof. Clearly p and 1− p are in Z[τ ] ∩ [0, 1], so by Theorem 2.2.19 can be expressed as

p =
b0 + b1β + · · ·+ bn−2β

n−2bn−1β
n−1

βm

1− p =
c0 + c1β + · · ·+ cn−2β

n−2cn−1β
n−1

βm′

for some b0, . . . , bn−1, c0, . . . , cn−1,m,m
′ ∈ Z≥0. We can use these expressions for p and 1 − p to

construct a β-subdivision of [0, 1] in which p is a breakpoint. We will make S, our subdivision of

[0, 1], by taking the initial b0 + · · · + bn−1 sub-intervals in S contain bi sub-intervals of length βi−m

for 0 ≤ i ≤ n − 1. From this, we see that p ∈ B[S]. However, S is not yet a β-subdivision. To

make this so, we need to split the remainder of the unit interval, which must have length 1− p, into

c0 + · · ·+ cn−1 sub-intervals of which precisely cj are of length βj−m
′

for 0 ≤ j ≤ n− 1.

S is now a subdivision of [0, 1], in which all intervals in I(S) have length which is a power of β. So S

is a β-subdivision containing p as a breakpoint.

Corollary 3.1.3. For all p ∈ Z[τ ] ∩ [0, 1], there exists g ∈ Gβ such that (p, p) is a breakpoint of g.

Proof. Let p ∈ Z[τ ]∩[0, 1]. By Proposition 3.1.2, we know that there exists a β-subdivision S such that

p ∈ B[S]. S can be thought of as the union of two subdivsions S≤p and S≥p which are β-subdivisions

of [0, p] and [p, 1] respectively. Let the intervals in I(S≤p) be labelled I1, . . . , Ik where k = size(S≤p).

Let Ik have length βm. We consider 2 cases:

Case 1:

First consider the case where at least one of the subdivisions S≤p or S≥p contains at least two

intervals of different lengths. Without loss of generality, suppose S≤p contains at least two intervals

whose length is not equal. Then there exists Ij which has length βm
′

for some 1 ≤ j ≤ k − 1 where

m′ 6= m. So Ij and Ik must be sub-intervals of different lengths.

Take S̄ to be the β-subdivision of [0, 1] which is identical to S except the intervals Ij and Ik have been

swapped. We will construct g by taking g = (S, S̄), the affine interpolation from S to S̄. Since S and

S̄ are both β-subdivisions of the same size, it is clear that (S, S̄) ∈ Gβ . The gradient of y = g(x) for

x ∈ [p, 1] is 1. The gradient of y = g(x) for x ∈ Ik is βm
′−m 6= 1. Thus (p, p) is a breakpoint in the

map g ∈ Gβ .

Case 2:

Suppose that all lengths of intervals in S≤p are the same, and also all lengths of intervals in S≥p are
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the same. Then by making use of the substitution

βm = an−1β
m−1 + · · ·+ a1β

m−(n−1) + a0β
m−n

to subdivide the interval Ik into smaller powers of β. For n ≥ 2, we now have the same conditions as

in case 1, and so can follow that procedure. In the case n = 1 and size(S≤p) = 1, then all sub-intervals

before p will be the same in which case we can again subdivide the sub-interval immediately before p

and we will then have the conditions to follow the instructions set out in case 1.

Corollary 3.1.3 tells us that every p ∈ Z[τ ] is a breakpoint in the domain of some some g ∈ Gβ .

If we are able to show that for some β, there exists p ∈ Z[τ ], such that p is not a breakpoint in any

regular β-subdivision, then we can definitively say that

Fβ 6= Gβ .

We will show that some β do have this property, and we will aim to find all such β which are the

unique positive zero of the irreducible quadratic subdivision polynomial

X2 − a1X − a0.

To do this we will have to work out when a point p ∈ Z[τ ] is a breakpoint of a regular β-subdivision.
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3.1.4 Obtainable points

Let β be the unique positive zero of the irreducible subdivision polynomial f = X2 − a1X − a0. The

origin of the following definition is from the work of Cleary [3], and was reintroduced in his later work

[4].

Definition 3.1.5. A point p ∈ Z[τ ] ∩ [0, 1] is said to be obtainable if there exists a regular β-

subdivision, S, such that p ∈ B[S].

We say that p is obtained as a breakpoint in S, or more simply p is obtained in S.

Recall that a regular β-subdivision is also called an (a1, a0)-subdivision, and these can always be

represented as (a1, a0)-trees.

Lemma 3.1.6. Let the point p be obtainable in an (a1, a0)-subdivision, S. Then p is obtainable in

any (a1, a0)-refinement of S.

Proof. For all (a1, a0)-refinements of an (a1, a0)-subdivision S, S̄, the set of breakpoints B[S] ⊂ B[S̄].

So if p ∈ B[S], then p ∈ B[S̄].

Recall from Lemma 2.4.13 that any (a1, a0)-subdivision can be refined to a uniform (a1, a0)-

subdivision.

Remark 13. If p ∈ Z[τ ]∩[0, 1] is obtainable in an (a1, a0)-subdivision S of depth D, then p is obtainable

in a uniform (a1, a0)-subdivision of depth D.

This means that we can find all obtainable points by considering uniform (a1, a0)-subdivisions.

This was initially considered by Cleary for the cases (a1, a0) = (2, 1)[3] and (a1, a0) = (1, 1)[4].

Definition 3.1.7. p ∈ Z[τ ] ∩ [0, 1] is obtainable at depth N if there exists an (a1, a0)-subdivision

S of depth N such that p ∈ B[S].

The following Lemma is clear.

Lemma 3.1.8. If P ∈ Z[τ ] ∩ [0, 1] is obtainable at depth N , then P is obtainable at depth N + 1.

Recall from Remark 11, that β is irrational.

Lemma 3.1.9. For all p ∈ Z[τ ], 1 ≤ N ∈ Z there exists a unique integer pair m1,m2 such that

p =
m1

βN
+

m2

βN+1
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Proof. First we need to show existence. For any p ∈ Z[τ ], we can write an expression for p in the form

p = b1 + b2τ =
b1
β0

+
b2
β1
,

for some b1, b2 ∈ Z. By using the substitution
1

β0
=
a1
β1

+
a0
β2

, we can rewrite this expression as

p =
b1
β0

+
b2
β1

=
a1b1 + b2

β1
+
a0b1
β2

.

Since a0, a1, b1, b2 ∈ Z, there exists an integer pair c1, c2 such that we have an expression for p in the

form

p =
c1
β1

+
c2
β2
.

In fact, we can always use the substitution
1

βN
=

a1
βN+1

+
a0

βN+2
, to take an expression for p at depth

N ,

p =
m1

βN
+

m2

βN+1

to attain a similar expression at depth N + 1,

p =
a1m1 +m2

βN+1
+
a1m1

βN+2
.

As there clearly exists an integer pair to satisfy such an expression when N = 1, there must also exist

an integer pair to satisfy such an expression when N ∈ Z≥1.

To show uniqueness, we will revisit the ideas presented in Lemma 2.5.7. Suppose for contradiction

that for some p ∈ Z[τ ] and for some N ∈ Z,

m1

βN
+

m2

βN+1
= p =

n1
βN

+
n2

βN+1



3.1. BREAKPOINTS 73
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Depth 0:

Depth 1:
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Figure 3.1: Obtainable points in a specific (2, 1)-subdivision

for some m1,m2, n1, n2 ∈ Z, (m1,m2) 6= (n1, n2).

m1

βN
+

m2

βN+1
=

n1
βN

+
n2

βN+1

m1 +
m2

β
= n1 +

n2
β

m1 − n1 =
n2 −m2

β

m1 − n1
n2 −m2

=
1

β

n2 −m1

m1 − n1
= β.

However, we know that β is irrational. Hence we have a contradiction, so there is in fact a unique

integer pair m1,m2 for each N ∈ Z such that p =
m1

βN
+

m2

βN+1
.

Note that Lemma 2.5.7, is a corollary of the Lemma above.

Remark 14. If p ∈ Z[τ ] ∩ [0, 1] is a breakpoint in a uniform (a1, a0)-subdivision of depth N , then the

number of longer and shorter intervals preceding p is uniquely defined.

Definition 3.1.10. A (long, short)-pair (m1,m2) is obtainable at depth N if there is a uniform

(a1, a0)-subdivision of depth N with an initial segment containing m1 +m2 intervals, m1 of which are

of length
1

βN
and m2 of which are of length

1

βN+1
.

The longer intervals described in the (long, short)-pair are longs, `, and the shorter intervals are

shorts, s. In Figure 3.1 we can see that the only (long, short)-pairs obtainable at depth 0 are (0, 0)

and (1, 0), as you can either take the entire interval or none of it.
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We recall the notation used in the previous chapter,

m1

m2


N

=
m1

βN
+

m2

βN+1
.

Remark 15. For each p ∈ Z[τ ] ∩ [0, 1] obtainable at depth N , there exists a unique (long, short)-pair

(m1,m2) that is obtainable at depth N such that

p =

m1

m2


N

=
m1

βN
+

m2

βN+1
.

This remark suggests that each (long, short)-pair is representative of an unique obtainable point

in Z[τ ] ∩ [0, 1]. Therefore by considering the set of all (long, short)-pairs obtainable at depth N , we

can find all p ∈ Z[τ ]∩ [0, 1] such that p is obtainable at depth N . We introduce a visual representation

of this idea in the following section.

3.2 (a1, a0)-Tiles

In this section we consider the set of obtainable (long, short)-pairs in a uniform (a1, a0)-subdivision

of level N , and plot them as lattice points in Z2.

Let β be the positive real zero of the irreducible subdivision polynomial f = X2 − a1X − a0.

Definition 3.2.1. The (a1, a0)-tile of level 0, T0, is the set {(0, 0), (1, 0)}.

The (a1, a0)-tile of level N ∈ Z, TN , is the set of points (p, q) ∈ Z2, p, q ≥ 0 such that there exists a

uniform (a1, a0)-subdivision of depth N which contains
p

βN
+

q

βN+1
as a breakpoint.

The (2, 1)-tiles of level 0, 1, and 2 can be seen in figure 3.2, and the (1, 3)-tiles of level 0, 1, and 2

can be seen in figure 3.3.

Remark 16. If (p, q) ∈ TN , and x =

p
q


N

=
p

βN
+

q

βN+1
, then x is obtainable in a uniform (a1, a0)-

subdivision.

As the (a1, a0)-tile of level N is defined as the set of positive integer pairs (p, q) such that P =

p

βN
+

q

βN+1
is obtainable at depth N . The contrapositive of this statement gives us the following

Lemma.
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Lemma 3.2.2. If (p, q) 6∈ TN , and x =

p
q


N

=
p

βN
+

q

βN+1
, then x is not obtainable at depth N .

The (a1, a0)-tile of level N can be considered to represent the set of all long,short-pairs that can

be found in an initial segment of some uniform (a1, a0)-subdivision of depth N . The (long, short)-pair

is unique in each tile because β is irrational.

Remark 17. If (p, q) ∈ TN , the (a1, a0)-tile of level N , then there exists an (a1, a0)-tree of depth N

which contains
p

βN
+

q

βN+1
as a breakpoint.

Note that whilst a uniform (a1, a0)-subdivision of depth 0 considers the interval [0, 1] as a long

interval, a uniform (a1, a0)-subdivision of depth −1 considers the interval [0, 1] as a short interval. We

consider the (a1, a0)-tile of level −1, T−1, to be the set of points (p, q) ∈ Z2, with p, q ≥ 0 such that

pβ + q is a breakpoint in some (a1, a0)-subdivision of [0, 1] of depth −1. Since β > 1, this set consists

of just two points, T−1 = {(0, 0), (0, 1)}, and A(T−1) = (0, 1).

Remark 18. Let N ∈ Z, such that N ≤ −2. Then the (a1, a0)-tile of level N is

TN = {(0, 0)}.

Lemma 3.2.3. If (p, q) ∈ TN , thena1 1

a0 0


p
q

 =

p′
q′

 ∈ TN+1

Proof. Let (p, q) ∈ TN , such that P =
p

βN
+

q

βN+1
. Then P is obtainable at depth N . Therefore P

is also obtainable at depth N + 1, by Lemma 3.1.8.

P =
p

βN
+

q

βN+1

= p

(
a1

βN+1
+

a0
βN+2

)
+

q

βN+1

=
a1p+ q

βN+1
+

a0p

βN+2

=


a1 1

a0 0


p
q



N+1

=


p′
q′



N+1

.



76 CHAPTER 3. NON-PISOT β-SUBDIVISIONS

Lemma 3.1.9 tells us that this is in fact the unique expression for P in terms of β−(N+1) and β−(N+2).

Since P is obtainable at depth N + 1, the (long, short)-pair (p′, q′) is obtainable at depth N + 1.

Therefore,

a1 1

a0 0


p
q

 =

p′
q′

 ∈ TN+1.

Lemma 3.2.4. Let TN be the (a1, a0)-tile of level N . Then there is some (p, q) ∈ TN such that

p

βN
+

q

βN+1
= 1.

Proof. If S is a subdivision of [0, 1], then 1 ∈ B[S]. Therefore any ((a1, a0))-subdivision of [0, 1] of

depth N , contains 1 as a breakpoint. By Remark 15, there must be a (long, short)-pair (p, q) which

is obtainable at depth N such that

p

βN
+

q

βN+1
= 1.

Definition 3.2.5. The Apex of an (a1, a0)-tile of the level N , TN , is A(TN ) = (p, q) where

p

βN
+

q

βN+1
= 1.

Remark 19. The Apex of any (a1, a0)-tile of level 0 is A(T0) = (1, 0).

The Apex of any (a1, a0)-tile of level 1 is A(T1) = (a1, a0).

Lemma 3.2.6. Let TN be the (a1, a0)-tile of level N , and let A(TN ) = (pN , qN ). Then for all

(p, q) ∈ TN , 0 ≤ p ≤ pN and 0 ≤ q ≤ qN .

Proof. Clearly if (p, q) ∈ TN , the (a1, a0)-tile of level N , then 0 ≤ p and 0 ≤ q. From the previous

chapter, Lemma 2.5.7 tells us that the number of long (respectively short) sub-intervals in a uniform

(a1, a0)-subdivision of depth N is uniquely defined. This means that there are precisely α1 long sub-

intervals and α short sub-intervals in any uniform (a1, a0)-subdivision of depth N for some α1, α2 ∈

Z≥0.

We know from Lemma 3.2.4, that the Apex of the tile, A(TN ) exists in TN . Let (pN , qN ) = A(TN ),

then
pN
βN

+
qN
βN+1

= 1. Therefore α1 = pN and α2 = qN as the unit interval must be spanned by
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The level 0 (2, 1)-tile, T0 :

`

s

The level 1 (2, 1)-tile, T1 :

`

s

The level 2 (2, 1)-tile, T2 :

`

s

Figure 3.2: The (2, 1)-tiles of levels 0, 1, and 2

The level 0 (1, 3)-tile, T0 :

`

s

The level 1 (1, 3)-tile, T1 :

`

s

The level 2 (1, 3)-tile, T2 :

`

s

Figure 3.3: The (1, 3)-tiles of levels 0, 1, 2
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the intervals counted in A(TN ). As there cannot be any more than pN long (respectively qN short)

sub-intervals in any uniform (a1, a0)-subdivision, if (p, q) ∈ TN , p ≤ pN and q ≤ qN .
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T1 ◦ T0

`

s

T0 ◦ T1

`

s

Figure 3.4: Composing the (1, 3)-tiles of level 0, 1

Lemma 3.2.7. For N ≥ 0, let TN , TN+1 be the (a1, a0)-tiles of level N and N + 1 respectively.

Then

a1 1

a0 0

A(TN ) = A(TN+1).

Proof. Let A(TN ) = (pN , qN ), so 1 =
pN
βN

+
qN
βN+1

. By using the substitution
1

βN
=

a1
βN+1

+
a0

βN+2
,

we can find the expression

1 = pN

(
a1

βN+1
+

a0
βN+2

)
+

qN
βN+1

=
a1pN + qN
βN+1

+
a0pN
βN+2

Definition 3.2.8. We compose two (a1, a0)-tiles X,Y to get

X ◦ Y := X ∪ {A(X) + y
∣∣y ∈ Y } = X ∪ {A(X) + Y }.

We extend this definition to composition of tiles

Note that here we must take the apex of a tile X to be the pair (pX , qX) such that for all (p, q) ∈ X,

p ≤ pX and q ≤ qX . This

Remark 20. For two well defined (a1, a0)-tile X and Y ,

A(X ◦ Y ) = A(X) +A(Y ).
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T1 ◦ T0

`

s

Figure 3.5: ©(T0, T1)

We can see in figure 3.4 that composition of tiles is not commutative.

Lemma 3.2.9. Composition of (a1, a0)-tiles is an associative operation.

Proof. Let X,Y, Z be (a1, a0)-tiles such that A(X), A(Y ), and A(Z) are well defined. We will first

consider (X ◦ Y ) ◦ Z.

(X ◦ Y ) ◦ Z = (X ∪ {A(X) + Y }) ◦ Z

= (X ∪ {A(X) + Y }) ∪ {A(X ◦ Y ) + Z}

= X ∪ {A(X) + Y } ∪ {A(X ◦ Y ) + Z}.

Next consider X ◦ (Y ◦ Z):

X ◦ (Y ◦ Z) = X ∪ {A(X) + (Y ◦ Z)}

= X ∪ {A(X) + Y ∪ {A(Y ) + Z}}

= X ∪ ({A(X) + Y } ∪ {A(X) +A(Y ) + Z})

= X ∪ {A(X) + Y } ∪ {A(X) +A(Y ) + Z}.

These expressions are the same as in remark 20 we noted that A(X ◦ Y ) = A(X) +A(Y ).

It makes sense that the composition is associative as it can be described visually by overlaying a

series of tiles only overlapping the origin of one tile with the apex of the tile that comes before it.
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T1 ◦ T1 ◦ T0 :

`

s

T1 ◦ T0 ◦ T1 :

`

s

T0 ◦ T1 ◦ T1 :

`

s

©(T0, 2T1) :

`

s

Figure 3.6: Possible composition of more than two (2, 1)-tiles, ©(T0, 2T1)

Definition 3.2.10. The set of all points that can be found in some composition of the (a1, a0)-tiles

X and Y in any order is

©(X,Y ) = {X ◦ Y } ∪ {Y ◦X}.

As composition is associative, we can define this set for more than two (a1, a0)-tiles, X,Y, Z:

©(X,Y, Z) =© (©(X,Y ), Z) =© (X,©(Y,Z)) .

If an (a1, a0)-tile is repeated in composition we can write it using the following shorthand.

©(µ1X,µ2Y ) =©(X, . . . ,X︸ ︷︷ ︸
µ1

, Y, . . . , Y︸ ︷︷ ︸
µ2

).
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Lemma 3.2.11. For N ≥ 0, let (p, q) ∈ TN the (a1, a0)-tile of level N . Then (p, q) ∈ TN+1.

Proof. Let (p, q) ∈ TN . Then there exists a uniform (a1, a0)-subdivision, S, that contains the break-

point

p
q


N

=
p

βN
+

q

βN+1
.

Let T be the corresponding uniform (a1, a0)-tree to S. Then initial p+ q leaves of T contain p leaves

of height N and q leaves of height N + 1.

Consider an (a1, a0)-tree T of size 1, i.e. an (a1, a0)-caret of type (i1, . . . , ia0) = L(T ). Choose the

type of this i1 > 1, so the first leaf in T has height 1.

We hang the (a1, a0)-tree T from the first leaf of T to get T (1)T . The first p+ q leaves of will contain

p leaves with height N + 1, and q leaves of height N + 2.

Thus

p
q


N+1

=
p

βN+1
+

q

βN+2
is a breakpoint in an (a1, a0)-subdivision of [0, 1]. Therefore (p, q)

belongs to the (a1, a0)-tile of level N + 1, TN+1.

Lemma 3.2.11 is true for all (p, q) ∈ TN , so we reach the following remark.

Remark 21. For N ≥ 0, let TN , TN+1 be the (a1, a0)-tiles of levels N and N + 1 respectively. Then

TN ⊂ TN+1.

Note, if T−1 and T0 are the (a1, a0)-tiles of level −1 and level 0 respectively.

T−1 6⊂ T0.

Lemma 3.2.12. Let (p, q) ∈ TN . If P =

p
q


N

∈ Z[τ ] ∩ [0, 1] is obtainable at depth N , then
P

β
is

obtainable at depth N + 1.

Proof. If (p, q) ∈ TN , then P =

p
q


N

∈ Z[τ ] ∩ [0, 1] is obtainable at depth N . By Lemma 3.2.11,
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(p, q) ∈ TN+1, so P ′ =

p
q


N+1

∈ Z[τ ] ∩ [0, 1] is obtainable at depth N + 1.

P ′ =

p
q


N+1

=
p

βN+1
+

q

βN+2
=

1

β

(
p

βN
+

q

βN+1

)
=

1

β

p
q


N

=
P

β
.

Remark 22.

[
A(T )N

]
N+t

=
1

βt

We consider the (a1, a0)-tile of level −1, T−1, to be the set of points (p, q) ∈ Z2, with p, q ≥ 0 such

that pβ + q is a breakpoint in some (a1, a0)-subdivision of [0, 1] of depth −1. Since β > 1, the set

consists of just two points, T−1 = {(0, 0), (0, 1)}, and A(T−1) = (0, 1).

Note that whilst a uniform (a1, a0)-subdivision of depth 0 considers the interval [0, 1] as a long

interval, a uniform (a1, a0)-subdivision of depth −1 considers the interval [0, 1] as a short interval.

Remark 23. Let T−1 and T0 be the (a1, a0)-tiles of level −1 and level 0 respectively. Then

T−1 6⊂ T0.

Proposition 3.2.13. For N ≥ 2, let TN−2, TN−1, TN be the (a1, a0)-tile of level N − 2, N − 1, N

respectively. Then

TN =©(a1TN−1, a0TN−2).

Proof. We must first show that each point in TN can be found in the composition©(a1TN−1, a0TN−2).

Suppose (p, q) ∈ TN , the (a1, a0)-tile of level N . Let T be an (a1, a0)-tree corresponding to a

uniform (a1, a0)-subdivision S, with P =
p

βN
+

q

βN+1
∈ B[S]. Let R be the root node of T , which

has k = a1 + a0 children, R(1), . . . , R(k). Let the type of R be (i1, . . . , ia0) . The breakpoint PN

is contained in exactly one of the sub-trees TR(1), . . . , TR(k). Note that each of these sub-trees are

uniform of depth N − 1 or depth N − 2.

Suppose without loss of generality that P as a breakpoint is found in the sub-tree R(j), with

1 ≤ iα < j ≤ iα+1 ≤ k. Then for m < j, all leaves of TR(m) must be included in the p+ q leaves that

come before the breakpoint PN . As iα < j ≤ iα+1 < k, we know that α of the first children of R will

have height 2, and j − 1− α with height 1.
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If H(R(m)) = 1, then R(m) represents the interval
1

β
, and if H(R(m)) = 2, then R(m) represents

the interval
1

β2
. There exists 0 ≤ p′, q′ ∈ Z such that

P =
j − 1− α

β
+

α

β2
+

p′

βN
+

q′

βN+1

=
j − 1− α

β
+

α

β2
+

P ′

βH(R(j))

= (j − 1− α)

[
A(TN−1)

]
N

+ α

[
A(TN−2)

]
N

+
P ′

βH(R(j))
.

Note P as a breakpoint in T corresponds to the breakpoint P ′ in TR(j), and
P ′

βH(R(j)))
=

p′

βN
+

q′

βN+1
.

Here p′ and q′ represent the number of long, and short intervals respectively, that add up to P ′ at

level N −H(r(j)). Clearly then, (p′, q′) ∈ TN−H(R(j)). This means we are able to describe any point

(p, q) ∈ TN as some α1A(TN−1) + α0A(TN−2) + (p′, q′), where 0 ≤ α1 ≤ a1, 0 ≤ α0 ≤ a0, and

(p′, q′) ∈ TN−1 ∪ TN−2. Therefore

TN ⊂ ©(a1TN−1, a0TN−2).

Conversely, suppose (p, q) ∈ ©(a1TN−1, a0TN−2). We can construct a uniform (a1, a0)-tree T of depth

N in which P =
p

βN
+

q

βN+1
is a breakpoint.

There exists and expression for (p, q) in terms of A(TN−1), A(TN − 2), namely

(p, q) = γ1A(TN−1) + γ2A(TN−2) + (p′, q′)

with 0 ≤ γ1 ≤ a1, 0 ≤ γ2 ≤ a0, (p′, q′) ∈ TN−1 ∪ TN−2.

We construct an (a1, a0)-tree T by taking the root (a1, a0)-caret to be of type (i1, . . . , iγ2 , iγ2+1, . . . , ia0)

with iγ2 < γ1 + γ2 ≤ iγ2+1. For each child of R, R(i), i 6= γ1 + γ2 + 1, we will hang a uniform (a1, a0)-

tree of depth N −H(R(i)). From R(γ1 + γ2 + 1) we will hang the uniform (a1, a0)-tree which has p′

leaves of height N −H(R(γ1 + γ2 + 1)), q′ leaves of height N + 1−H(R(γ1 + γ2 + 1)) within the first

p′ + q′ leaves.

The resulting (a1, a0)-tree is uniform and contains P =
p

βN
+

q

βN+1
as a breakpoint. Therefore

©(a1TN−1, a0TN−2) ⊂ TN .

∴ TN =©(a1TN−1, a0TN−2).
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T2 :

`

s

T1 ◦ T1 ◦ T0 :

`

s

T1 ◦ T0 ◦ T1 :

`

s

T0 ◦ T1 ◦ T1 :

`

s

Figure 3.7: The possible combinations in ©(2T1, T0)

This can be seen in a construction of the (2, 1)-tile of level 2 from the (2, 1)-tiles of level 0 and 1,

seen in figure 3.7.

We can see the process of composing (a1, a0)-tiles through the associated vectors.

Definition 3.2.14. Let TN be the (a1, a0)-tile of level N . The associated vector V (TN ) is

V (TN ) :=
−−−−−−−−−→
O(TN )A(TN ).

This is shown for (2, 1)-tiles in figure 3.8 and for (1, 3)-tiles in figure 3.9.

Definition 3.2.15. Let C be an (a1, a0)-caret of type (i1, . . . , ia0). The reverse of C is Cr which is

an (a1, a0)-caret of type (k − ia0 , . . . , k−), where k = a1 + a0.

We can similarly define the reverse of an (a1, a0)-tree.
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T1 ◦ T1 ◦ T0 :

`

s

T1 ◦ T0 ◦ T1 :

`

s

T0 ◦ T1 ◦ T1 :

`

s

The tile T2 :

`

s

`

s

Figure 3.8: The associated vectors for the possible combinations in ©(2T1, T0)

`

s

Figure 3.9: T2 as composed by V (T1) and V (T0)
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type (1, 2) type (4, 5)

Figure 3.10: The reverse of the (3, 2)-caret of type (1, 2) is type (4, 5)

T T r

Figure 3.11: The reverse of an (2, 1)-tree

Definition 3.2.16. If T is an (a1, a0)-tree of depth 1 with root (a1, a0)-caret R, the reverse tree

T is T r = Rr.

If T is an (a1, a0)-tree is of depth N , with root (a1, a0)-caret R, then the reverse of T is T r, an

(a1, a0)-tree with root (a1, a0)-caret Rr, and each sub-tree TR(j) = T rRr(k−j).

The visualization of composing (a1, a0)-tiles as seen through associated vectors suggests that each

(a1, a0)-tile of any given level is rotationally symmetrical. This is better understood in the following

Lemma.

Lemma 3.2.17. Let (p, q) ∈ TN , the (a1, a0)-tile of level N . If A(TN ) = (αN , α
′
N ), then

(αN − p, α′N − q) ∈ TN .

Proof. Let T be a uniform (a1, a0)-tree with P =

p
q


N

as a breakpoint.

First recall that

αN
α′N

 = 1 by Lemma 3.2.4. Therefore
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αN − p
α′N − q


N

=
αN − p
βN

+
α′N − q
βN+1

=
αN
βN

+
α′N
βN+1

−
(
p

βN
+

q

βN+1

)

=

αN
α′N


N

−

p
q


N

= 1− P.

We need to show that if P ∈ Z[β] ∩ [0, 1] is a breakpoint in some uniform (a1, a0)-subdivision S,

then there exists a uniform (a1, a0)-subdivision S′ such that 1− P ∈ B[S].

If T be the uniform (a1, a0)-tree which contains P as a breakpoint, then the reverse (a1, a0)-tree T r

must contain the breakpoint 1− P .

3.2.18 Tile Width

The matrix A =

a1 1

a0 0

 has eigenvector vβ =

x
y

 associated to the eigenvalue β.

Avβ = βvβa1 1

a0 0


x
y

 = β

x
y


a1x+ y

a0x

 =

βx
βy

 .

The line L := {rvβ |r ∈ R} is the extension of the eigenvector through the origin. This has equation

L : y =
a0
β
x = (β − a1)x = |β∗|x, where β∗ is the Gaussian conjugate of β.

Remark 24. Since β 6∈ Q, if (x, y) ∈ Z2 is on the line L, then x = y = 0.

We now define a semi-norm on R2, with respect to the line L.

Definition 3.2.19. For all (p, q) ∈ R2 define (p, q) to be the minimal Euclidean distance from (p, q)

to the line L : y =
a0
β
x = (β − a0)x.
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Furthermore, we describe points below L, i.e. adding some positive value to the y-coordinate is

necessary to get to L, negative. Similarly, points above this line are positive. We will use the

following notation.

T+
N :={P ∈ TN

∣∣P is positive}

T−N :={P ∈ TN
∣∣P is negative}.

The function · : R2 → R satisfies the properties of a semi-norm. For (p, q), (p′, q′) ∈ R2 and α ∈ R,

1. (p, q) + (p′, q′) ≤ (p, q) + (p′, q′)

2. α(p, q) = |α|(p, q)

Remark 25.

Remark 26. If (x, y), (p, q) ∈ R2 are both positive or both negative, then

(x, y) + (p, q) = (x, y) + (p, q)

Lemma 3.2.20. Let (p, q) ∈ TN such that (p, q) is positive (respectively negative), then

(p′, q′) =

a1 1

a0 0


p
q

 ∈ TN+1

and (p′, q′) is negative (respectively positive).

Proof. Let M be a square real matrix of size n. It is well known [22] that if all of the eigenvalues of

M are distinct then their corresponding eigenvectors are linearly independent and thus form a basis

of Rn.

Our matrix A has two distinct eigenvalues, β and β∗, and so their corresponding eigenvectors

form a basis for R2. Note that β∗ =
−a0
β

, which makes β∗ a negative number (notice that we say

negative number to highlight the difference between the commonly understood meaning of negative

with respect to the real numbers, and the negative coordinates in R2 with respect to our semi-norm).

Let vβ and vβ∗ be the normalised eigenvectors of A associated with β and β∗ respectively.
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vβvβ∗

Therefore every point P ∈ R2 can be expressed as

P = r1vβ + r2vβ∗

for some r1, r2 ∈ R. As vβ and vβ∗ are eigenvectors of A,

Avβ = βvβ

Avβ∗ = β∗vβ∗

Then letting P = r1vβ + r2vβ∗

A ∗ P =

a1 1

a0 0

 (r1vβ + r2vβ∗)

= r1

a1 1

a0 0

 vβ + r2

a1 1

a0 0

 vβ∗

= r1βvβ + r2β
∗vβ∗

= r1βvβ − r2|β∗|vβ∗

= r′1vβ + r′2vβ∗
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The sign of the coefficient of the eigenvector vβ∗ after multiplication by A is the opposite of the sign

beforehand. Therefore multiplication by A takes positive (respectively negative) coordinates in R2 and

maps them to negative (respectively positive) coordinates in R2 with respect to our semi-norm.

A(T0) is clearly a negative point, as it lies on the x-axis.

Remark 27.

A(TN ) is positive if N is odd

A(TN ) is negative if N is even.

Lemma 3.2.21. Let (p, q) ∈ R2. Then

a1 1

a0 0


p
q

 = |β∗|(p, q)

where β∗ = −a0
β

is the Galois conjugate of β.

Proof. We have already shown that for all P ∈ R2, we can write P = r1vβ +r2vβ∗ for some r1, r2 ∈ R.

P ′ = r1vβ + r2vβ∗ = |r2|vβ∗ .

If we map the point P by A, then

P ′ = A ∗ P =

a1 1

a0 0

 (r1vβ + r2vβ∗)

= r1

a1 1

a0 0

 vβ + r2

a1 1

a0 0

 vβ∗

= r1βvβ + r2β
∗vβ∗

= r1βvβ − r2|β∗|vβ∗ .
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Then P ′ can be calculated

P ′ = r1βvβ + r2β∗vβ∗

= |r2β∗|vβ∗

= |r2||β∗|vβ∗

= |β∗|P .

Since A(TN+1) =

a1 1

a0 0

A(TN ), we reach the following remark.

Remark 28. For N ≥ 0, let TN be the (a1, a0)-tile of level N . Then

A(TN+1) = |β∗|A(TN )

Remark 29. If β is Pisot, A(TN+1) < A(TN ). If β is Non-Pisot, then A(TN+1) > A(TN ).

Note that |β∗| = 1 implies that either 1 or −1 is a solution to fβ , the irreducible integer polynomial,

so there is no case such that A(TN+1) = A(TN ). Recall that the associated vector of the (a1, a0)-tile

of level N , TN , is V (TN ).

Remark 30. If β is Pisot then the associated vector of the (a1, a0)-tile of level N , V (TN ), aligns more

closely to the line L spanned by vβ as N increases. I.e., considering V (TN ) as a position vector,

V (TN+1) < V (TN )

Conversely note if β is non-Pisot, then

V (TN+1) > V (TN )

For a given TN there exists some (p′, q′) ∈ Z2 p, q ≥ 0, such that (p′, q′) > (p, q) for all (p, q) ∈ TN . In

this case, we might say that (p′, q′) is too positive, or too negative. We want to define the points in

TN which are the most positive and the most negative. These points are the further from the line L

than all other points within TN , and hence have maximal value under the semi-norm.
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The level 0 (2, 1)-tile, T0 :

L : y =
1

β
x

`

s

The level 1 (2, 1)-tile, T1 :

L : y =
1

β
x

`

s

The level 2 (2, 1)-tile, T2 :

L : y =
1

β
x

`

s

Figure 3.12: Maximal distances highlighted in (2, 1)-tiles of level 0, 1 and 2

Definition 3.2.22. For 0 ≤ N ∈ N

Dm(TN ) =

{
(p, q) ∈ TN

∣∣∣ (p, q) = max
(x,y)∈TN

{
(x, y)

}
∈ R

}
D+
m(TN ) =

{
(p, q) ∈ T+

N

∣∣∣ (p, q) = max
(x,y)∈T+

N

{
(x, y)

}
∈ R

}

D−m(TN ) =

{
(p, q) ∈ T−N

∣∣∣ (p, q) = max
(x,y)∈T−N

{
(x, y)

}
∈ R

}
.

Thus Dm(TN ) is the set of points in TN which are the furthest distance from L. In fact we can show

these to be singletons.

Lemma 3.2.23. Dm(TN ), D+
m(TN ) and D−m(TN ) are singletons for all N ≥ 0.

Proof. Suppose for contradiction that P,Q ∈ Dm(TN ) ⊂ Z2, with P = (p1, p2) 6= Q = (q1, q2). Then

−−→
PQ is parallel to L as the points P and Q are equally far from L. Then

P = Q+ λ

 p1

β − a1
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The level 0 (1, 3)-tile, T0 :

L : y =
3

β
x

`

s

The level 1 (1, 3)-tile, T1 :

L : y =
3

β
x

`

s

The level 2 (1, 3)-tile, T2 :

L : y =
3

β
x

`

s

Figure 3.13: Maximal distances highlighted in (1, 3)-tiles of levels 0, 1, 2
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p2

 =

q1
q2

+ λ

 1

β − a1

.

This gives us the following two equations:

p1 = q1 + λ

p2 = q2 + λ(β − a1).

This allows us to solve for λ in terms of p1, q1 to get λ = p1 − q1. We can rearrange the second

equation to give

p2 = q2 + (p1 − q1)(β − a1)

p2 − q2 + a1(p1 − q1) = (p1 − q1)β

p2 − q2 + a1(p1 − q1)

p1 − q1
= β.

We know that p1, p2, q1, q2, a1 ∈ Z, so this implies that β ∈ Q. However we know that β is irrational,

so we have a contradiction. In this case Dm(TN ) is a singleton. This argument also applies to D+
m(TN )

and D−m(TN ).

We have proved that D±m(TN ) are singletons for all N ∈ N.

Remark 31. D−m(TN ) > 0 for all N ≥ 0. D+
m(TN ) > 0 for all N ≥ 1.

This is easily seen if we recall that TN ⊂ TN+1, and so T0 ⊂ TN for all N ∈ N. As Dm(T0) > 0, then

Dm(TN ) > 0 for all N ∈ Z≥0.

Lemma 3.2.24. For all N ∈ N

D±m(TN ) ≤ D±m(TN+1).

Proof. Remark 21 tells us that TN ⊂ TN+1 for all N ∈ N0. Therefore Dm(TN ) ∈ TN+1, and so

Dm(TN ) ≤ Dm(TN+1).
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Let the notation [·]N extend to D±m(TN ), so that if D±m(TN ) = (x, y),

[D±m(TN )]N =

x
y


N

=
x

βN
+

y

βN+1
.

The point D+
m(TN ) (respectively D−m(TN )) is defined such that the interval [0, [D+

m(TN )]N ] (re-

spectively the interval [0, [D−m(TN )]N ]) has the greatest (respectively least) ratio of short sub-intervals

to long sub-intervals.

Lemma 3.2.25. Let N ≥ 0, and TN be the (a1, a0)-tile of level N . Then

D+
m(TN ) +D−m(TN ) = A(TN )

and as such [D+
m(TN )]N + [D−m(TN )]N = [A(TN )]N = 1.

Proof. Recall that the (a1, a0)-tile of level N is rotationally symmetrical as shown in Lemma 3.2.17.

Then to make the interval [0, [D+
m(TN )]M ] contain the greatest ratio of short sub-intervals to long

sub-intervals, you must ensure the interval [[D+
m(TN )]N , 1] contains the least possible ratio of short

sub-intervals to long intervals. This means that [[D+
m(TN )]N , 1] = [1 − [D−m(TN )]N , 1], and so we

conclude that

[D+
m(TN )]N + [D−m(TN )]N = [A(TN )]N = 1

and thus D+
m(TN ) +D−m(TN ) = A(TN ).

Proposition 3.2.26. For N ≥ 1

D+
m(TN ) =


a0A(TN−2) +D+

m(TN−1) N odd

(a1 − 1)A(TN−1) +D+
m(TN−1) N even

D−m(TN ) =


(a1 − 1)A(TN−1) +D−m(TN−1) N odd

a0A(TN−2) +D−m(TN−1) N even

.

Proof. We will prove this by induction. Consider the (a1, a0)-tiles of level −1, 0 and 1, T−1, T0 and

T1.
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D+
m(T−1) = (0, 1)

D−m(T−1) = (0, 0)

D+
m(T0) = (0, 0)

D−m(T0) = (1, 0)

D+
m(T1) = (0, a0)

D−m(T1) = (a1, 0).

We can check the hypothesis for the base case N = 1,

D+
m(T1) = (0, a0) = a0(0, 1) + (0, 0)

= a0A(T−1) +D+
m(T0)

D−m(T1) = (0, a0) = (a1 − 1)(1, 0) + (1, 0)

= (a1 − 1)A(T0) +D−m(T0).

Notice that D+
m(T1) +D−m(T1) = A(T1):

D+
m(T2) = (a21 − a1, a20) = (a1 − 1)(a1, a0) + (0, a0)

= (a1 − 1)A(T1) +D+
m(T1)

, D−m(T2) = (a0 + a1, 0) = a0(1, 0) + (a1, 0)

= a0A(T0) +D−m(T1).

Suppose that the Proposition is true for all 1 ≤ k < N .

D+
m(Tk) =


a0A(Tk−2) +D+

m(Tk−1) k odd

(a1 − 1)A(Tk−1) +D+
m(Tk−1) k even

D−m(Tk) =


(a1 − 1)A(Tk−1) +D−m(Tk−1) k odd

a0A(Tk−2) +D−m(Tk−1) k even
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Proposition 3.2.13 tells us that TN =©(a1TN−1, a0TN−2). We will split this question into four cases,

D+
m(TN ), D+

m(TN ) with N odd, and D+
m(TN ), D+

m(TN ) with N even.

Case 1, N is odd.

If N is odd, we have remark 27 which tells us that A(TN ) > 0. Since D+
m(TN ) + D−m(TN ) =

A(TN ) > 0 by Lemma 3.2.25, we see that D+
m(TN ) > D−m(TN ), and so Dm(TN ) = D+

m(TN ).

L : y =
a0
β
x

`

s

a1 × TN−1

a0 × TN−2

Figure 3.14: The associated vectors in the (a1, a0)-tile composition of some TN

In figure 3.14, we can see the associated vectors of a tile composition of the (a1, a0)-tile of level

N , TN , in terms of TN−1 and TN−2. Each line in the figure is the associated vector of either TN−1

or TN−2, and each circle represents the origin of one of these (a1, a0)-tiles. Clearly the apex of TN is

seen to be a positive point.

By looking at figure 3.14, we can justify two possible tiles which could contain Dm(TN ) = D+
m(TN ),

these being where the origin and associated vector has been coloured red. We can therefore assume

that D+
m(TN ) ∈ {(x, y) + (a0 − 1)A(TN−2)| for some (x, y) ∈ ©(TN−1, TN−2)} .
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The maximal distance in the tile must be equivalent to one of the maximal distances in either the

tile of level TN−1 or the tile of level TN−2. Thus D+
m(TN ) = (a0 − 1)A(TN−2) + D+

m(TN−2), or

D+
m(TN ) = a0A(TN−2) + D+

m(TN−1). We will now compare the two to see which must have greater

maximal distance. Making use of Lemma 3.2.24, we find that,

a0A(TN−2) +D+
m(TN−1) = a0A(TN−2) +D+

m(TN−1)

> a0A(TN−2) +D+
m(TN−2)

> (a0 − 1)A(TN−2) +D+
m(TN−2)

= (a0 − 1)A(TN−2) +D+
m(TN−2).

Therefore D+
m(TN ) = a0A(TN−2) + D+

m(TN−1). From this we can deduce an iterative formula for

D−m(TN ). Recall Lemma 3.2.25 tells us that D+
m(TN ) + D−m(TN ) = A(TN ). By rearranging this we

see that

D−m(TN ) = A(TN )−D+
m(TN )

= (a1A(TN−1) + a0A(TN−2))−
(
a0A(TN−2) +D+

m(TN−1)
)

= a1A(TN−1)−D+
m(TN−1)

= (a1 − 1)A(TN−1) +
(
A(TN−1)−D+

m(TN−1)
)

= (a1 − 1)A(TN−1) +D−m(TN−1).

Therefore D−m(TN ) = (a1 − 1)A(TN−1) +D−m(TN−1) when N is odd.



100 CHAPTER 3. NON-PISOT β-SUBDIVISIONS

L : y =
a0
β
x

`

s

a0 × TN−2

a1 × TN−1

Figure 3.15: The associated vectors in the (a1, a0)-tile composition of TN , N even

Case 2, N is even. In figure 3.15 we see the (a1, a0)-tile composition of TN where N is even.

Remark 27 tells us that A(TN ) is negative, and so Dm(TN ) = D−m(TN ). The point in TN of maximal

negative distance must lie in one of the (a1, a0)-tiles indicated by the blue edges, which have their

bases highlighted by blue circles. This means that either D−m(TN ) = (a0 − 1)A(TN−2) + D−m(TN−2),

or D−m(TN ) = a0A(TN−2) +D−m(TN−1).

Thus D+
m(TN ) = (a0 − 1)A(TN−2) +D+

m(TN−2), or D+
m(TN ) = a0A(TN−2) +D+

m(TN−1). We will

now compare the two to see which must have greater maximal distance. Making use of Lemma 3.2.24,

we find that

a0A(TN−2) +D−m(TN−1) = a0A(TN−2) +D−m(TN−1)

> a0A(TN−2) +D−m(TN−2)

> (a0 − 1)A(TN−2) +D−m(TN−2)

= (a0 − 1)A(TN−2) +D−m(TN−2).
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Therefore D−m(TN ) = a0A(TN−2) +D−m(TN−1).

From this we can deduce an iterative formula for D+
m(TN ). Recall Lemma 3.2.25 tells us that

D+
m(TN ) +D−m(TN ) = A(TN ).

By rearranging this we see that

D+
m(TN ) = A(TN )−D−m(TN )

= (a1A(TN−1) + a0A(TN−2))−
(
a0A(TN−2) +D−m(TN−1)

)
= a1A(TN−1)−D−m(TN−1)

= (a1 − 1)A(TN−1) +
(
A(TN−1)−D−m(TN−1)

)
= (a1 − 1)A(TN−1) +D+

m(TN−1).

Therefore D+
m(TN ) = (a1 − 1)A(TN−1) +D+

m(TN−1) when N is odd.

By considering the two cases we have shown that for N ≥ 1, we reach our intended result:

D+
m(TN ) =


a0A(TN−2) +D+

m(TN−1) N odd

(a1 − 1)A(TN−1) +D+
m(TN−1) N even

,

D−m(TN ) =


(a1 − 1)A(TN−1) +D−m(TN−1) N odd

a0A(TN−2) +D−m(TN−1) N even

.

It will become extremely useful to create a shorthand for the apex of a tile. Whenever TN appears in

an equation, we will take this to mean A(TN ) unless specified otherwise. The following is a statement

about the apexes of the (a1, a0)-tiles of level N − 2, N − 1, and N

TN = a1TN−1 + a0TN−2

The context will usually make it clear which definition is being used.
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Corollary 3.2.27. For N − 2 ≥ 0:

D+
m(TN ) =



(a1 + a0 − 1)
(
TN−2 + · · ·+ T3 + T1

)
+

 0

a0

 N odd

(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T3 + T1

)
+

 0

a0

 N even

,

D−m(TN ) =



(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T2 + T0

)
+

1

0

 N odd

(a1 + a0 − 1)
(
TN−2 + · · ·+ T2 + T0

)
+

1

0

 N even

.

Proof. For each of D+
m(TN ) and D−m(TN ) we consider the cases, N odd and N even.

Case 1, D+
m(TN ) with N odd

By Proposition 3.2.26, we know that we can write D+
m(TN ) = a0TN−2 +D+

m(TN−1). We are then able

to reuse Proposition 3.2.26 to expand D+
m(TN−1):

D+
m(TN ) = a0TN−2 +D+

m(TN−1)

= a0TN−2 + (a1 − 1)TN−2 +D+
m(TN−2)

= (a1 + a0 − 1)TN−2 +D+
m(TN−2)

= (a1 + a0 − 1)TN−2 + a0TN−4 +D+
m(TN−3)

= (a1 + a0 − 1)TN−2 + a0TN−4 + (a1 − 1)TN−4 +D+
m(TN−4)

= (a1 + a0 − 1) (TN−2 + TN−4) +D+
m(TN−4)

...

= (a1 + a0 − 1) (TN−2 + TN−4 + · · ·+ T1) +D+
m(T1)

= (a1 + a0 − 1) (TN−2 + TN−4 + · · ·+ T1) +

 0

a0

 .

Case 2, D+
m(TN ) with N odd

Again by Proposition 3.2.26, we know that we can write D+
m(TN ) = (a1 − 1)TN−1 +D+

m(TN−1). We
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are then able to use our previous result to expand D+
m(TN−1), as N − 1 is odd.

D+
m(TN ) = (a1 − 1)TN−1 +D+

m(TN−1)

= (a1 − 1)TN−1 + (a1 + a0 − 1) (TN−3 + TN−5 + · · ·+ T1) +

 0

a0

 .

Case 3, D−m(TN ) with N even

By Proposition 3.2.26, we know that we can write D−m(TN ) = a0TN−2 +D−m(TN−1). We are then able

to reuse Proposition 3.2.26 to expand D−m(TN−1):

D−m(TN ) = a0TN−2 +D−m(TN−1)

= a0TN−2 + (a1 − 1)TN−2 +D−m(TN−2)

= (a1 + a0 − 1)TN−2 +D−m(TN−2)

= (a1 + a0 − 1)TN−2 + a0TN−4 +D−m(TN−3)

= (a1 + a0 − 1)TN−2 + a0TN−4 + (a1 − 1)TN−4 +D−m(TN−4)

= (a1 + a0 − 1) (TN−2 + TN−4) +D−m(TN−4)

...

= (a1 + a0 − 1) (TN−2 + TN−4 + · · ·+ T2 + T0) +D+
m(T0))

= (a1 + a0 − 1) (TN−2 + TN−4 + · · ·+ T2 + T0) +

1

0

 .

Case 4, D+
m(TN ) with N even

Again by Proposition 3.2.26, we know that we can write D+
m(TN ) = (a1 − 1)TN−1 +D+

m(TN−1). We

are then able to use our previous result to expand D+
m(TN−1), as N − 1 is even.

D+
m(TN ) = (a1 − 1)TN−1 +D−m(TN−1)

= (a1 − 1)TN−1 + (a1 + a0 − 1) (TN−3 + TN−5 + · · ·+ T2 + T0) +

1

0

 .
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Combing the four cases, we have proved that for N ≥ 2:

D+
m(TN ) =



(a1 + a0 − 1)
(
TN−2 + · · ·+ T3 + T1

)
+

 0

a0

 N odd

(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T3 + T1

)
+

 0

a0

 N even

,

D−m(TN ) =



(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T2 + T0

)
+

1

0

 N odd

(a1 + a0 − 1)
(
TN−2 + · · ·+ T2 + T0

)
+

1

0

 N even

.

Remark 32. For N ≥ 2,

Dm(TN ) = (a1 + a0 − 1)A(TN−2) +Dm(TN−2).

We can see in Figure 3.16 and Figure 3.17, the maximal distances within the tiles as described in

Corollary 3.2.27.
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The level 1 (2, 1)-tile, T1 :

L : y =
1

β
x

`

s

D+
m(T1) =

(
0
a0

)
=

(
0
1

)
D−m(T1) = (2− 1)

(
1
0

)
+

(
1
0

)
=

(
2
0

)
The level 2 (2, 1)-tile, T2 :

L : y =
1

β
x

`

s

D+
m(T2) = (2− 1)

(
2
1

)
+

(
0
a0

)
=

(
2
2

)
D−m(T2) = (2 + 1− 1)

(
1
0

)
+

(
1
0

)
=

(
3
0

)

Figure 3.16: The maximal distances in (2, 1)-tiles as found using their formulae
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The level 1 (1, 3)-tile, T1 :

L : y =
3

β
x

`

s

D+
m(T1) =

(
0
a0

)
=

(
0
3

)
D−m(T1) = (1− 1)

(
1
0

)
+

(
1
0

)
=

(
1
0

)
The level 2 (1, 3)-tile, T2 :

L : y =
3

β
x

`

s

D+
m(T2) = (1− 1)

(
1
3

)
+

(
0
3

)
=

(
0
3

)
D−m(T2) = (1 + 3− 1)

(
1
0

)
+

(
1
0

)
=

(
4
0

)

Figure 3.17: The maximal distances in (1, 3)-tiles as found using their formulae
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Lemma 3.2.28. For N ≥ 2,

Dm(TN ) = (a1 + a0 − 1)|β∗|N−2A(T0) +Dm(TN−2).

In fact we can derive the following:

Dm(TN ) =


(a1 + a0 − 1)

(
|β∗|N−2 + · · ·+ |β∗|3 + |β∗|

)
A(T0) + (0, a0) N odd

(a1 + a0 − 1)
(
|β∗|N−2 + · · ·+ |β∗|2 + 1

)
A(T0) + (1, 0) N even

.

Proof. By combining Remark 32, and Remark 28, we see that

Dm(TN ) = (a1 + a0 − 1)|β∗|N−2A(T0) +Dm(TN−2).

Now recall from Corollary 3.2.27, that

D+
m(TN ) =



(a1 + a0 − 1)
(
TN−2 + · · ·+ T3 + T1

)
+

 0

a0

 N odd

(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T3 + T1

)
+

 0

a0

 N even

,

D−m(TN ) =



(a1 − 1)TN−1 + (a1 + a0 − 1)
(
TN−3 + · · ·+ T2 + T0

)
+

1

0

 N odd

(a1 + a0 − 1)
(
TN−2 + · · ·+ T2 + T0

)
+

1

0

 N even

.

Also recall that Dm(TN ) = D+
m(TN ) if N even, and Dm(TN ) = D−m(TN ) if N odd. Since all of the

apexes added will share the same parity, we can see that

TN−2 + · · ·+ T2 + T0 = TN−2 + · · ·+ T2 + T0 if N even

TN−1 + · · ·+ T3 + T1 = TN−1 + · · ·+ T3 + T1 if N odd.

Lemma 3.2.29. If β is non-Pisot, then there exists (p0, q0) ∈ Z2 where

p0
q0


0

= P ∈ Z[τ ] ∩ [0, 1],



108 CHAPTER 3. NON-PISOT β-SUBDIVISIONS

such that a1 1

a0 0


N p0

q0

 > Dm(TN ) for all N ≥ 0.

Proof. Let (p0, q0) ∈ Z2 such that P =

p0
q0


0

= p0 +
q0
β
∈ Z[τ ] ∩ [0, 1].

Let

pN
qN

 =

a1 1

a0 0


N p0

q0

 and recall that

pN
qN


N

= P .

If we let (p0, q0) = d, then (pN , qN ) = |β∗|N ×d. In Lemma 3.2.28, we have a formula for Dm(TN ),

so suppose for contradiction that

(pN , qN ) = |β∗|N × d ≤


(a1 + a0 − 1)

(
|β∗|N−2 + · · ·+ |β∗|3 + |β∗|

)
A(T0) + (0, a0) N odd

(a1 + a0 − 1)
(
|β∗|N−2 + · · ·+ |β∗|2 + 1

)
A(T0) + (1, 0) N even

.

Without loss of generality, suppose N is even, and rearrange the inequality to find the expression,

d ≤ 1

|β∗|N
(

(a1 + a0 − 1)
(
|β∗|N−2 + · · ·+ |β∗|2 + 1

)
A(T0) + (1, 0)

)
≤ (a1 + a0 − 1)

(
|β∗|N−2

|β∗|N
+ · · ·+ |β

∗|2

|β∗|N
+

1

|β∗|N

)
A(T0) +

(1, 0)

|β∗|N

≤ (a1 + a0 − 1)
(
|β∗|−2 + · · ·+ |β∗|2−N + |β∗|−N

)
A(T0) + (1, 0)|β∗|−N

< (a1 + a0 − 1)A(T0)

N∑
i=1

1

|β∗|i
+ (1, 0)|β∗|−N

< (a1 + a0 − 1)A(T0)

∞∑
i=1

1

|β∗|i
+ (1, 0)|β∗|−N .

As
1

|β∗|
< 1, the geometric series

∞∑
i=1

1

|β∗|i
converges to some positive constant [23], and so the value

for d is bounded above.

Since P = (p0, q0) can be any integer pair such that

p0
q0


0

∈ Z[τ ]∩ [0, 1], we can find P such that

P = d is arbitrarily large. Hence there can be no such upper bound for d, and so we have reached a

contradiction. Therefore there must exist P = (p0, q0) satisfying the conclusion of the lemma.
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This Lemma directly proves our theorem.

Theorem 3.2.30. If β is non-Pisot, then there exist breakpoints P ∈ Z[τ ] ∩ [0, 1] that cannot be

found in a regular β-subdivision.

Corollary 3.2.31. Let β be the positive root of the irreducible polynomial X2 − a1X − a0 ∈ Z[X]

where 0 < a1 < a0. Then

Fβ  Gβ .

I.e., Fβ is a proper subset of Gβ .

Proof. Let β be the positive root of the irreducible polynomial X2−a1X−a0 ∈ Z[X] where 0 < a1 <

a0. Then β is non-Pisot and by Theorem 3.2.30, there exists P ∈ Z[τ ] ∩ [0, 1] such that P is not a

breakpoint in any regular β-subdivision.

Corollary 3.1.3 tells us that for every p ∈ Z[τ ] ∩ [0, 1], there exists g ∈ Gβ which contains (p, p) as a

breakpoint. In particular this means that there exists gP ∈ Gβ such that (P, P ) is a breakpoint of gP .

If we assume for contradiction that gP = (T1, T2) ∈ Fβ where T1, T2 are (a1, a0)-trees then this implies

that P is a breakpoint of both T1 and T2, but Theorem 3.2.30 tells us that in fact P cannot be a

breakpoint in either T1 or T2.

Thus we have an element gP ∈ Gβ but gP 6∈ Fβ . So Fβ is a proper subset of Gβ .

Fβ  Gβ .

3.2.32 Example f = X2 −X − 3

We now know that Fβ is sometimes a proper subset of Gβ , which leads us to ask is Fβ even a subgroup

of Gβ . Throughout this section we will use the example β =
1 +
√

13

2
, the zero of fβ = X2 −X − 3.

We will begin by finding an explicit element of Gβ which can not be found in Fβ . This is found by

looking at properties of the points of maximal distance.

Lemma 3.2.33. For N ≥ 1,

a1 1

a0 0

D+
m(TN ) = D−m(TN+1)−

a1
0

 ,

a1 1

a0 0

D−m(TN ) = D+
m(TN+1) +

a1
0

 .
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Proof. We prove this in 4 cases, D+
m(TN ) with N even and odd, and D−m(TN ) with N even and odd.

Case 1, D+
m(TN ), N odd:

We take the definition for D+
m(TN ) for odd N from Corollary 3.2.27 and then pre-multiply by the

matrix

a1 1

a0 0

:

a1 1

a0 0

D+
m(TN ) =

a1 1

a0 0

((a1 + a0 − 1)
(
TN−2 + · · ·+ T3 + T1

)
+

 0

a0

)

= (a1 + a0 − 1)

a1 1

a0 0

(TN−2 + · · ·+ T3 + T1
)

+

+

a1 1

a0 0


 0

a0


= (a1 + a0 − 1)


a1 1

a0 0

TN−2 + · · ·+

a1 1

a0 0

T1

+

a0
0


= (a1 + a0 − 1) (TN−1 + · · ·+ T2) +

a0
0

 .

Note that

a0
0

 =

a1 + a0 − 1

0

+

1

0

−
a1

0

 = (a1 + a0 − 1)T0 +

1

0

−
a1

0

. Thus

a1 1

a0 0

D+
m(TN ) = (a1 + a0 − 1)

(
TN−1 + · · ·+ T4 + T2

)
+

a1 + a0 − 1

0

+

1

0

−
a1

0


= (a1 + a0 − 1)

(
TN−1 + · · ·+ T4 + T2 + T0

)
+

1

0

−
a1

0


= D−m(TN+1)−

a1
0

 .

Case 2, D+
m(TN ), N even:

We take the definition for D+
m(TN ) for even N from Proposition 3.2.26, and then pre-multiply by the
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matrix

a1 1

a0 0

. So

a1 1

a0 0

D+
m(TN ) =

a1 1

a0 0

((a1 − 1)TN−1 +D+
m(TN−1)

)

= (a1 − 1)

a1 1

a0 0

TN−1 +

a1 1

a0 0

D+
m(TN−1).

In case 1, we showed that

a1 1

a0 0

D+
m(TN−1) = D−m(TN )−

a1
0

 if N is even.

a1 1

a0 0

D+
m(TN ) = (a1 − 1)

a1 1

a0 0

TN−1 +D−m(TN )−

a1
0


= (a1 − 1)TN +D−m(TN )−

a1
0


= D−m(TN+1)−

a1
0

 .

Case 3, D−m(TN ), N even:

We take the definition for D+
m(TN ) for even N from Corollary 3.2.27, and then pre-multiply by the
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matrix

a1 1

a0 0

. So

a1 1

a0 0

D−m(TN ) =

a1 1

a0 0

((a1 + a0 − 1)
(
TN−2 + · · ·+ T0

)
+

1

0

)

= (a1 + a0 − 1)

a1 1

a0 0

(TN−2 + · · ·+ T0
)

+

a1 1

a0 0


1

0


= (a1 + a0 − 1)


a1 1

a0 0

TN−2 + · · ·+

a1 1

a0 0

T0

+

a1
a0


= (a1 + a0 − 1) (TN−1 + · · ·+ T3 + T1) +

 0

a0

+

a1
0


= D+

m(TN+1) +

a1
0


= Dm(TN+1) +

a1
0

 .

Case 4, D−m(TN ), N odd:

We take the definition for D−m(TN ) for odd N from Proposition 3.2.26, and then pre-multiply by the

matrix

a1 1

a0 0

. So

a1 1

a0 0

D−m(TN ) =

a1 1

a0 0

((a1 − 1)TN−1 +D−m(TN−1)
)

= (a1 − 1)

a1 1

a0 0

TN−1 +

a1 1

a0 0

D−m(TN−1).
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In case 3, we showed that

a1 1

a0 0

D−m(TN−1) = D+
m(TN ) +

a1
0

 if N is odd.

a1 1

a0 0

D−m(TN ) = (a1 − 1)

a1 1

a0 0

TN−1 +D+
m(TN ) +

a1
0


= (a1 − 1)TN +D+

m(TN ) +

a1
0


= D+

m(TN+1) +

a1
0

 .

Putting all four cases together, we have proved that for N ≥ 0

a1 1

a0 0

D+
m(TN ) = D−m(TN+1)−

a1
0


a1 1

a0 0

D−m(TN ) = D+
m(TN+1) +

a1
0

 .

Lemma 3.2.34. For a1 6= a0 + 1, there exists a family of points

xN
yN

 ∈ R2 with

a1 1

a0 0


xN
yN

 =

xN+1

yN+1



and a fixed real vector

X
Y

 ∈ R2 such that

xN
yN

 =



Dm(TN ) +

X
Y

 if N odd

Dm(TN )−

X
Y

 ifNeven

.
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We can determine the values of X and Y to beX
Y

 =
a1

a1 − a0 + 1

 1

−a0

 .

Proof. Let a1, a0 ≥ 0, such that a1 + 1 6= a0. Suppose there exists X,Y ∈ R such that for some even

N ,

a1 1

a0 0


xN
yN

 =

xN+1

yN+1


a1 1

a0 0


Dm(TN )−

X
Y


 = Dm(TN+1) +

X
Y


a1 1

a0 0

Dm(TN )−

a1 1

a0 0


X
Y

 = Dm(TN+1) +

X
Y

 .

Since N is even, Dm(TN ) = D−m(TN ), and Dm(TN+1) = D+
m(TN+1). We can then use Lemma 3.2.33

to expand the left hand side of this system of equations.

a1 1

a0 0

D−m(TN )−

a1 1

a0 0


X
Y

 = D+
m(TN+1) +

X
Y


D+
m(TN+1) +

a1
0

−
a1X + Y

a0X

 = D+
m(TN+1) +

X
Y


a1

0

−
a1X + Y

a0X

 =

X
Y

 .

From the second components, we see that Y = −a0X. We can substitute this into the first components

to find

a1 − a1X + a0X = X

a1 − (a1 − a0 + 1)X = 0

X =
a1

a1 − a0 + 1
.
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Hence we have X
Y

 =
a1

a1 − a0 + 1

 1

−a0

 .

We now need to check that this is still true when N is odd.

We have worked out what values these would take.

Now let

x0
y0

 = Dm(T0)− a1
a1 − a0 + 1

 1

−a0

 =

1

0

− a1
a1 − a0 + 1

 1

−a0

 Then

xN
yN

 =

a1 1

a0 0


N x0

y0

 .

Note that the case a1 + 1 = a0, can already be discounted, as the subdivision polynomial f =

X2 − a1X − (a1 + 1) is reducible over Z,

X2 − a1X − (a1 + 1) = (X − (a1 + 1))(X + 1).

In Figure 3.18, we see the (2, 1)-tiles of level 1 and 2. The points of maximal distance within the

tiles have been highlighted. When (a1, a0) = (2, 1),

X
Y

 =
2

2− 1 + 1

 1

−1

 =

 1

−1

 .

Thus x1
y1

 = Dm(T1) +

 1

−1

 =

0

1

+

 1

−1

 =

1

0


x2
y2

 = Dm(T2)−

 1

−1

 =

3

0

−
 1

−1

 =

2

1

 .

In Figure 3.19, we see the (1, 3)-tiles of level 1 and 2. The points of maximal distance within the
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tiles have been highlighted. When (a1, a0) = (1, 3),

X
Y

 =
1

1− 3 + 1

 1

−3

 =

−1

3

 .

Thus x1
y1

 = Dm(T1) +

−1

3

 =

0

3

+

−1

3

 =

−1

6


x2
y2

 = Dm(T2)−

−1

3

 =

4

0

−
−1

3

 =

 5

−3

 .

Notice that when (a1, a0) = (2, 1), (x1, y1) < Dm(T1), but when (a1, a0) = (1, 3), (x1, y1) >

Dm(T1).

The level 1 (2, 1)-tile, T1 :

`

s

The level 2 (2, 1)-tile, T2 :

`

s

Figure 3.18: The points

(
x1
y1

)
,

(
x2
y2

)
inside the (2, 1)-tiles of level 1 and 2
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The level 1 (1, 3)-tile, T1 :

L : y =
3

β
x

`

s

x1
y1



The level 2 (1, 3)-tile, T2 :

L : y =
3

β
x

`

s

x2
y2



Figure 3.19: The point

(
x1
y1

)
,

(
x2
y2

)
outside the (1, 3)-tiles of level 1 and 2

Whether

X
Y

 is positive or negative with respect to the semi-norm · is dependent on the sign

of
a1

a1 − a0 + 1
= γ.

If a0 ≤ a1, then
a1

a1 − a0 + 1
= γ > 0, and so

X
Y

 is directed South East.

If a0 ≥ a1 + 2, then
a1

a1 − a0 + 1
= γ < 0 and so

X
Y

 is directed North West.

The case γ > 0 is represented in Figure 3.20.
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X
Y

 =

 γ

−a0γ

 L : y =
a0
β
x

Figure 3.20:

(
X
Y

)
when a1 + 2 ≤ a0

Lemma 3.2.35. If a1 + 2 ≤ a0, for all N ≥ 0

(xN , yN ) > Dm(TN ).

Proof. If a1 ≤ a0 + 2, then

X
Y

 = γ

 1

−a0

 =

 γ

−a0γ

 where γ < 0. In Figure 3.20, we can

clearly see that

 γ

−a0γ

 is positive with respect to the semi-norm as long as γ < 0, so X,Y > 0. If

we take N to be odd, we see that

(xN , yN ) = Dm(TN ) + (X,Y )

= D+
m(TN ) + (X,Y )

= D+
m(TN ) + (X,Y )

> D+
m(TN )

> Dm(TN ).

Conversely if N is even

(xN , yN ) = Dm(TN )− (X,Y )

= D−m(TN )− (X,Y )

= D−m(TN ) + (X,Y )

> D−m(TN )

> Dm(TN ).
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Note that if

x0
y0

 ∈ Z2 and a1 + 2 ≤ a0, then

x0
y0

 6∈ T0.

Remark 33. If

x0
y0

 ∈ Z2, then

xN
yN

 ∈ Z2 for all N ≥ 0.

This leads us to the following Lemma.

Lemma 3.2.36. If a1 + 2 ≤ a0, and

x0
y0

 ∈ Z2. Then for N ≥ 0,

xN
yN

 ∈ Z2, and

xN
yN

 6∈ TN .

Proof. If

x0
y0

 ∈ Z2 then

x1
y1

 =

a1 1

a0 0


x0
y0

 =

a1x0 + y0

a0x0

. Since a0, a1, x0, y0 ∈ Z, then it

must also be the case that a1x0 + y0 ∈ Z and a0x0 ∈ Z. So

x1
y1

 ∈ Z2. As A =

a1 1

a0 0

 ∈M2(Z),

we can extend this to xN
yN

 =

a1 1

a0 0


N x0

y0

 ∈ Z2.

If a1 + 2 ≤ a0, then by Lemma 3.2.35,

(xN , yN ) > Dm(TN ).

Thus by definition of Dm(TN ), (xN , yN ) 6∈ TN .

Therefore if

x0
y0

 ∈ Z2 and the corresponding β is non-Pisot, then the real value P =

xN
yN


N

is

not obtainable at depth N for all N ≥ 0.

We will now return to our specific case, (a1, a0) = (1, 3). Here β =
1 +
√

13

2
is the positive root of

the irreducible polynomial f = X2 −X − 3 and is non-Pisot, as |β∗| ≈ 1.3028 > 1.
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The level 0 (1, 3)-tile, T0 :

L : y =
3

β
x

`

s

 2

−3


The level 1 (1, 3)-tile, T1 :

L : y =
3

β
x

`

s

−1

6



The level 2 (1, 3)-tile, T2 :

L : y =
3

β
x

`

s

 5

−3



Figure 3.21: Points of fixed distance outside the (1, 3)-tiles of level 0, 1 and 2
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By definition of the fixed points

xN
yN

 , we can see that

x0
y0


0

=

x1
y1


1

=

x2
y2


2

= · · · =

xN
yN


N

= · · · .

As a1 + 2 ≤ a0, and

x0
y0

 ∈ Z2 we know that

xN
yN

 6∈ TN for all N ≥ 0. This means that

P =

x0
y0


0

=

xN
yN


N

is not obtainable. In our case P =

 2

−3


0

= 2− 3

β
≈ 0.6972.

As P is not obtainable, we know that 1− P = −1 +
3

β
=

[
−1 3

]
0

is also not obtainable.

However, we notice that

1− P =

−1

3


0

=


1 1

3 0


−1

3



1

=

 2

−3


1

=
1

β

 2

−3


0

=
P

β
.

Consider then the map g as shown below.

P

1

1− P 1

The map g is not in Fβ as neither P , nor P are obtainable points. The two slopes have gradients
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P

1− P
= β and

1− P
P

=
1

β
respectively, and so we have an explicit example of an element g ∈ Gβ ,

but g 6∈ β.

Remark 34. When (a1, a0) = (1, 3),

P =

xN
yN


N+1

∈ Z[τ ] ∩ [0, 1] is not obtainable.

3.3 Conjecture

3.3.1 Higher degree algebraic integers

It seems reasonable to hypothesise that for a cubic irreducible subdivision polynomial f = X3 −

a2X
2 − a1X − a0 we could construct something akin to (a2, a1, a0)-tiles, TN , although they might be

best described as (a2, a1, a0)-staircases. The corresponding matrix

A =


a2 1 0

a1 0 1

a0 0 0


Consider two cases, first where β is the only real root of f = X3 − a2X

2 − a1X − a0 = 0.

Figure 3.22: Parabolic curve

This matrix has one real eigenvalue, β with corre-

sponding eigenvector vβ . The other eigenvalues

are the complex conjugate roots of f = 0. The

associated eigenvectors to the complex eigenval-

ues span a plane and spiralling towards the origin

if β is Pisot, and spiralling away from the origin

if β is non-Pisot.

If β is non-Pisot, the eigenspace of A, will

map points in R3 by way of a parabolic curve,

similar to that shown in figure 3.22. This

parabolic curve will be skewed, but effectively

centered on the eigenvector vβ , so we could still

define our semi-norm · .
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If we were able to similarly find a formula for the maximal distance of a point in the (a2, a1, a0)-tile

of level N , Dm(TN ), then we should be able to show that for some P =

p0
q0


0

∈ Z
[

1

β

]
∩ [0, 1]. Then

AN

p0
q0

 > Dm(TN )

for all N ≥ 0. If we are able to prove this then we can state that there exists P ∈ Z
[

1

β

]
∩ [0, 1] such

that P is not obtainable in a β-regular subdivision of any depth.

Alternatively consider the case where f = X3 − a2X2 − a1X − a0 = 0 has 3 real roots β, α1, α2. Two

of these must be negative by Lemma 2.2.2, so α1, α2 < 0. Also since β is a Perron number but is

non-Pisot, we can say that for at least one of these negative roots, say α1,

−|β| < α1 ≤ −1.

As |α1| > 1, each subdivision level takes the unique triple representing any real value p to unique

triple which is further from the eigenvector corresponding to β, vβ . Since all coordinates that are

obtainable tend to stay close to the line spanned by vβ , there is enough justification to make the

following conjecture.

Conjecture 3.3.2. Let β be the positive real zero of an irreducible integer polynomial f = X3 −

a2X
2 − a1X − a0 and let β be Non-Pisot. Then there exists P ∈ Z

[
1

β

]
∩ [0, 1], such that P is not a

breakpoint in any regular β-subdivision.

In fact, this argument could theoretically extend to any non-Pisot β the root of any irreducible

subdivision polynomial

f = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

Therefore we can make the further conjecture:

Conjecture 3.3.3. Let β be the positive real zero of an irreducible integer polynomial f = Xn −
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an−1X
n−1−an−2Xn−2−· · ·−a1X−a0 and let β be Non-Pisot. Then there exists P ∈ Z

[
1

β

]
∩ [0, 1],

such that P is not a breakpoint in any regular β-subdivision.

This would imply that if β, the positive real zero of Xn−an−1Xn−1−an−2Xn−2−· · ·−a1X−a0,

is non-Pisot, then

Fβ  Gβ

i.e. Fβ is a proper subset of Gβ for all such non-Pisot β.

3.3.4 Is Fβ a group?

Let β be the positive real zero of the irreducible subdivision polynomial f = X2 − a1X − a0. When

a1 ≥ a0, we know that β is Pisot, and by Corollary 2.5.12 that

Fβ = Gβ .

So if β is the root of the Pisot polynomial f = X2 − a1X − a0, then Fβ is a group.

Conversely, if β is the zero of a non-Pisot irreducible integer polynomial f = X2 − a1X − a0 , we

do not know if Fβ is a sub-group of Gβ . Recall that Fβ is a non-empty set consisting of the maps

in Gβ which can be expressed as pairs of (a1, a0)-trees. The operation under which Fβ could form a

group is composition of maps.

We should already note the following is clear.

• Composition of maps is associative over the elements of Fβ

• The identity map, id ∈ Fβ

– For any (a1, a0)-tree T , id = (T , T )

• Every element in Fβ has an inverse

– For every pair of (a1, a0)-trees (T1, T2), (T1, T2)−1 = (T2, T1)

Thus, if we are able to show that Fβ is closed under composition, then we will have shown that

Fβ is a group.

Let us return to the non-Pisot case where (a1, a0) = (1, 3), and β =
1 +
√

13

2
. Then g1, as shown

below, is certainly a map contained in Fβ .



3.3. CONJECTURE 125

T1

g1

T2

Consider the rectangle diagram for g1. The gradient of each linear segment of g is highlighted in

the middle section of the diagram.

β 1 1
1

β

We construct the rectangle diagram for g21 , and remove any lines which do not denote a change in

gradient. A dashed line does not change the gradient but tracks where a breakpoint has been mapped

to.

β 1
1

β

β 1
1

β

If we simplify this we have the simplified rectangle diagram for g21 .

β2 β 1
1
β

1

β2

So g21 has breakpoints
{

(0, 0)(τ3, τ), (τ2, 2τ − τ2), (4τ2 − τ, τ + 2τ2), (3τ2, 4τ2 + 2τ3)(1, 1)
}

.

In particular, note that 4τ2 − τ is a breakpoint in the domain of g21 , and that (−1, 4) ∈ L1 where

Li :

xi
yi

+ λ


xi+2

yi+2

−
xi
yi


 for λ ∈ [0, 1].
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Lemma 3.3.5. Let (p, q) be a point on the straight line between

xi
yi

 and

xi+2

yi+2

 for some i ≥ 0.

i.e. (p, q) ∈ Li where

Li :

xi
yi

+ λ


xi+2

yi+2

−
xi
yi


 for λ ∈ [0, 1].

Then a1 1

a0 0


p
q

 ∈ Li+1.

Proof. Let λ∗ ∈ [0, 1] such thatp
q

 =

xi
yi

+ λ∗


xi+1

yi+1

−
xi
yi


 ∈ Li.

Then a1 1

a0 0


p
q

 =

a1 1

a0 0



xi
yi

+ λ∗


xi+2

yi+2

−
xi
yi





=

a1 1

a0 0


xi
yi

+ λ∗


a1 1

a0 0


xi+1

yi+1

−
a1 1

a0 0


xi
yi




=

xi+1

yi+1

+ λ∗


xi+3

yi+3

−
xi+1

yi+1


 ∈ Li+1.

We have all points on Li are mapped to Li+1. However we do not yet know that whether an

integer point that lies on a line Li can ever be obtained in some (a1, a0)-tile. For this reason, the

following is left as a conjecture.

Conjecture 3.3.6. Let P =

p
q


N

∈ Z[τ ] ∩ [0, 1] for some N ∈ Z≥0, such that (p, q) lies on the line

Li for some i ∈ Z≥0. Then P is not obtainable at any depth.

In particular, this would mean that the in our earlier example,

−1

4


1

= 4τ2−τ is not obtainable at

any depth. Therefore, there exists no regular (1, 3)-subdivision which contains 4τ2−τ as a breakpoint.
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In particular this means that the map g2 cannot be expressed as a (1, 3)-tree pair. i.e. Fβ is not closed

under composition, and thus Fβ is not a group.

We conjecture that this extends to all non-Pisot β.

Conjecture 3.3.7. If β, the positive real zero of the irreducible subdivision polynomial fβ = X2 −

a1X − a0 is non-Pisot, then Fβ is not a group.
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Chapter 4

A Presentation of Gβ

4.1 Background

In a previous chapter concerning regular subdivisions of the unit interval, we found Theorem 2.5.11

has the Corollary 2.5.12 which stated that if β the positive real zero of the irreducible subdivision

polynomial fβ = X2 − a1X − a0 is Pisot, then

Fβ = Gβ .

We want to use this information to find a presentation for the group Gβ .

If β is the positive zero of the subdivision polynomial X2 −X − 1 then Cleary first showed that

Fβ was FP∞ and hence finitely generated in [4]. In [11], Burillo, Nucinkis, and Reeves found an

explicit finite presentation for Fβ using (1, 1)-tree pairs, and in particular used this to show that the

abelianisation F abτ contained 2-torsion.

We will be looking at some examples for our polynomials of the form X2−a1X−a0 to find similar

results where possible. An infinite presentation has been found in the work of Brown [5] who in turn

found 2-torsion in the abelianisations for these groups.

In this chapter we will find a presentation for Fβ where β is Pisot and the zero of the irreducible

Pisot polynomial f = X2 − a1X − a0, with a1, a0 > 0. We will then attempt to find properties of the

abelianisations for particular choices of β.

Much of the work on (a1, a0)-tree pairs is already well known in the irrational Thompsons group

129
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canon, but I have attempted to include as much background as is necessary to understand the notations

and proofs. I am indebted to the work of Bieri [10] Brown [5], Burillo [13], Nucinkis and Reeves [11].

4.2 Tree pair Multiplication

Let β be the positive real zero of the irreducible subdivision polynomial fβ = X2 − a1X − a0, and let

β be Pisot. From Corollary 2.5.12, every element of Gβ can be expressed as a pair of (a1, a0)-trees.

We will say that (T1, T2) is an (a1, a0)-tree pair if (T1, T2) ∈ Fβ , i.e. size(T1) = size(T2). The size

of an (a1, a0)-tree pair, is size(T1, T2) = size(T1) = size(T2).

In notation, we will only refer to Fβ as the (a1, a0)-tree pair description of elements will be more

useful for us.

4.2.1 Simultaneous refinements

Definition 4.2.2. Let g = (T1, T2) ∈ Fβ , for some (a1, a0)-trees T1, T2. A simultaneous refinement

of (T1, T2) is an (a1, a0)-tree pair (T ′1 , T ′2 ) where T ′1 and T ′2 are (a1, a0)-refinements of T1 and T2

respectively, such that

g = (T ′1 , T ′2 ).

.

A simultaneous refinement of (T1, T2) is found by hanging an (a1, a0)-tree Ti from the ith leaf of

both T1 and T2.

Example 21. Consider the following (2, 1)-tree pair

T1 T2

We can find a simultaneous refinement of (T1, T2), by performing the same (a1, a0)-refinement on each

sub-interval represented by a leaf in T1 as on the sub-interval represented by the corresponding leaf

in T2. I.e, we need to hang the same (a1, a0)-tree from corresponding leaves in T1 and T2.
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T ′1 T ′2

Here, (T ′1 , T ′2 ) is a simultaneous refinement of (T1, T2).

Lemma 4.2.3. Let g = (T1, T2) ∈ Fβ , and let (T ′1 , T ′2 ) be a simultaneous refinement of (T1, T2). If

g′ = (T ′1 , T ′2 ) then g = g′.

Proof. Let It and Jt be the intervals corresponding to the tth leaves in T1 and T2 respectively. Then

g(It) = (Jt), for all t. Let (T ′1 , T ′2 ) be a simultaneous refinement of (T1, T2). Let Tt be the (a1, a0)-tree

representing the (a1, a0)-refinement of It that takes T1 to T ′2 . As (T ′1 , T ′2 ) is a simultaneous refinement,

Tt is also the (a1, a0)-refinement of Jt that takes T2 to T ′2 .

Then if lk is the kth leaf of Tt, and Itk and Jtk the corresponding intervals T ′1 and T ′2 respectively.

Then

H(Jt)−H(It) = H(Jtk)−H(Itk)

for each of the leaves in Tt . Therefore the gradient of the slope in (T1, T2) as in (T ′1 , T ′2 ), and thus

g = (T ′1 , T ′2 ).

4.2.4 Composition of (a1, a0)-tree pairs

Given g ∈ Fβ , there is not a unique (a1, a0)-tree pair (T1, T2) such that g = (T1, T2). This means that

in order to define composition of elements in Fβ , we must find a well-defined multiplication of any

two (a1, a0)-tree pairs.

For the purposes of this, we need to address the direction of our composition, and the direction in

which g ∈ Fβ acts on [0, 1]. We have previously shown g as a left action, g(x) for x ∈ [0, 1] and we

will keep to this convention. We will also follow the convention that (g2 ◦ g1)(x) = g2(g1(x)).

Definition 4.2.5. (a1, a0)-tree multiplication
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Let (T1, T2) and (T ′1 , T ′2 ) be (a1, a0)-tree pairs. Define (not uniquely)

(T1, T2) ? (T ′1 , T ′2 ) = (R1, S2)

where (R1, R2) and (S1, S2) are simultaneous refinements of (T1, T2) and (T ′1 , T ′2 ) respectively, and

R2 ∼ S1.

We note that there must exist (a1, a0)-trees R2 and S1, refinements of T2 and T ′1 respectively, with

R2 ∼ S1, as we have shown in Chapter 1.

The choice of output of (a1, a0)-tree pair multiplication is not unique. Thus in certain cases, as

shown in the following remark, we will make a natural choice.

Remark 35. Let T1, T2, T3 be (a1, a0)-trees. We make the choice

(T1, T2) ? (T2, T3) = (T1, T3).

Lemma 4.2.6. Let g1, g2 ∈ Fβ and let g1 = (T1, T2) and g2 = (T ′1 , T ′2 ). Then

g2 ◦ g1 = (T1, T2) ? (T ′1 , T ′2 ).

Proof. Let g1, g2 ∈ Fβ , represented by some (a1, a0)-tree pairs g1 = (T1, T2) and g2 = (S1, S2). Let

(R1, R2) = (T1, T2) ? (S1, S2). Note that (R1, R2) is not unique, so can be any (a1, a0)-tree pair such

that (R1, T ′2 ) and (S′1, R2) are simultaneous refinements of (T1, T2) and (S1, S2) respectively.

As (R1, T ′2 ) and (S′1, R2) are simultaneous refinements of (T1, T2) and (S1, S2) respectively, then

g1 = (R1, T ′2 ) and g2 = (S′1, R2). We now have

(R1, R2) = (R1, T ′2 ) ? (S′1, R2)

Let g3 = (R1, R2). Let P1, P2, P3 represent the regular β-subdivisions of [0, 1] that are represented

by R1, T ′2 ∼ S′1, and R2 respectively. Then g3 = (P1, P3), which is the same as performing the

affine linear interpolation (P1, P2) followed by (P2, P3). We have already seen that (P1, P2) = g1 and

(P2, P3) = g2, so this means that

g3 = (R1, R2) = T ? (S1, S2) = g2 ◦ g1
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as required.

In contrast to the order of composition of maps, the multiplication of (a1, a0)-tree pairs is written

g2 ◦ g1 = (T1, T2) ? (T ′1 , T ′2 ). To remind us that this is strange multiplication, we have used the symbol

?.

Example 22. Consider the following multiplication of two (2, 1)-tree pairs.

T1 T2

?

T ′1 T ′2

We perform simultaneous refinements on (T1, T2) and (T ′1 , T ′2 ) to get

R1 R2

?

S1 S2

We see that R2 ∼ S1, so we can find a (2, 1)-tree pair (R1, S2) = (T1, T2) ? (T ′1 , T ′2 ).

R1 S2
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4.2.7 Right aligned (a1, a0)-trees

(a1, a0)-spines

Definition 4.2.8. The spine of an (a1, a0)-tree T with root node R, is the (a1, a0)-tree S contained

in T that features the (a1, a0)-carets of the form R(K)(K)(K) · · · (K) where K = a1 + a0.

To be clear, the notation X(i)(j), is the jth child of the ith child of X.

The (a1, a0)-carets in the spine of T are all of the (a1, a0)-carets which contain an edge in the

unique path from the R to the right-most leaf in T .

Definition 4.2.9. An (a1, a0)-spine of size S, Sp(S) is an (a1, a0)-tree of size S with only (a1, a0)-

carets of type (1, . . . , a0). Each (a1, a0)-caret in an (a1, a0)-spine except from the lowest caret has a

single child from the right-most leg.

Example 23. The (3, 2)-spine of size 3, demonstrated in the reduced (3, 2)-tree notation, and standard

(3, 2)-notation.

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

K

K

It is useful to use the notation Sp(T ) to refer to an (a1, a0)-spine which is the same size as the

(a1, a0)-tree T .

Right alignment

Definition 4.2.10. A right aligned (a1, a0)-tree is a simplified (a1, a0)-tree with a spine of (a1, a0)-

carets of type (1, · · · , a0).

A right aligned (a1, a0)-tree T has a spine of connected (a1, a0)-carets of type C0. Recall the

definition of connected (a1, a0)-carets from Chapter 1.

Definition 4.2.11. The connected (a1, a0)-caret Ci is the (a1, a0)-caret of type (i, i + 1, . . . , i +

a0 − 1).
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Figure 4.1: A right-aligned (3, 1)-tree

In a connected (a1, a0)-caret, there are no short legs between any two long legs. In Ci there are i

short legs to the left of the first long leg. We can use connected (a1, a0)-carets to perform basic moves.

Lemma 4.2.12. Let X and Y be (a1, a0)-carets of any type. There is a common refinement between

X and Y .

Proof. Let X be the root node of an (a1, a0)-caret of type (i1, . . . , ia0), with only leaves for children.

We will add a1 new (a1, a0)-carets, one to each of the short children of X. If X(j) is a short leg,

then hang the connected (a1, a0)-caret Ct from X(j) where t is the number of long legs to the right

of X(j). I.e., If is < j < is+1 hang the connected (a1, a0)-caret Ca0−s from X(j) for s ∈ {1, . . . , a0}.

If j < i1, hang Ca0 , and if ia0 < j.

The resulting (a1, a0)-tree TX will have leaf sequence

L(TX) =
(

2, . . . , 2︸ ︷︷ ︸
a0

, 3, . . . , 3︸ ︷︷ ︸
a0

, 2, . . . , 2︸ ︷︷ ︸
a1

, · · · , 3, . . . , 3︸ ︷︷ ︸
a0

, 2, . . . , 2︸ ︷︷ ︸
a1

)
).

We can find an (a1, a0)-refinement of Y , with the same leaf sequence by following the same rules.

Since this leaf sequence can be obtained from an (a1, a0)-caret of any type, there is a common refine-

ment between any two (a1, a0)-carets.

Recall the basic move defined in 4.2.12 in Chapter 1.

Definition 4.2.13. A basic move is any graft which can be described by the above process defined

in Lemma 4.2.12.

Note that for connected (a1, a0)-carets of type C0, and Ca0 , the basic move will add only connected

(a1, a0)-carets of type C0 and Ca0 .
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Lemma 4.2.14. There exists a common (a1, a0)-refinement between an (a1, a0)-tree T with root

node R, and the connected (a1, a0)-caret C0 in which the sub-tree TR(K) is unchanged.

Proof. In 4.2.12, we showed that there is a common (a1, a0)-refinement between any two (a1, a0)-carets

X and Y of type (i1, . . . , ia0) and type (i′1, . . . , i
′
a0) respectively, by following the basic move method.

However, if there exists 1 ≤ s ≤ K such that it < s < it+1 and i′t < s < i′t+1 s ∈ {1, . . . ,K} and

t ∈ {1, . . . a0 − 1}, then the (a1, a0)-caret hung from X(s) is the same as that from Y (s). This is

redundant, and so to find a common refinement between X and Y we can avoid hanging anything

from X(s) and Y (s).

Now let T be an (a1, a0)-tree with root-caret R of type (i1, . . . , ia0). If R(K) is a short leg, i.e.

ia0 < K, then in order to find a common refinement between R and the connected (a1, a0)-caret C0

without hanging anything from either X(K) or C0(K).

For each R(j) for j 6∈ {i1, . . . , ia0}, with j < K the sub-tree TR(j) has a common refinement with the

(a1, a0)-caret Ca0−s where is < j < is+1. Call this (a1, a0)-refinement of Ca0−s, T ′R(j). Then we can

construct an (a1, a0)-tree T ′ with root caret R, with T ′R(it)
= TR(it), R(j) = T ′j for j 6∈ {i1, . . . , ia0},

with j < K, and T ′R(K) = TR(K). Then we are able to perform a basic move to change the root-caret

R to be the connected (a1, a0)-caret of type C0, with the sub-tree T ′R(K) = TR(K) unchanged.

Conversely if R(K) = ia0 , then R(K) is a long leg. Now for all j 6∈ {i1, . . . , ia0}, we can similarly

find a common refinement of the sub-tree TR(j) with an (a1, a0)-tree T ′j with root-caret of type Ca0−s,

where is < j < is+1. By swapping out all of the sub-trees TR(j) for T ′j , we construct the (a1, a0)-tree

T ′. This (a1, a0)-tree T ′ is a sub-tree of the (a1, a0)-tree constructed in Lemma 4.2.12, and so we are

able to swap out this for the leaf-equivalent refinement of C0. Note that this means the (a1, a0)-tree

TR(K) is unchanged.

Example 24. Consider the (2, 2)-carets of type (2, 3) and (3, 4), and .

C0 type (1, 3) type (1, 3)

There exists a common refinement between the (2, 2)-caret of type (1, 2), the connected (2, 2)-caret

C0, and any (2, 2)-caret X of type (i1, i2) where XX(4) is untouched.
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C0 type (1, 3)

C0 type (1, 3)

Proposition 4.2.15. Any (a1, a0)-tree has an (a1, a0)-refinement which is leaf equivalent to a right

aligned (a1, a0)-tree.

Proof. Suppose that the (a1, a0)-tree T has a spine containing n (a1, a0)-carets, R = X1, . . . , Xn,

where Xi+1 is the Kth child of Xi.

Consider the last (a1, a0)-caret in the spine of T , Xn. We know that Xn(K) is a leaf. If Xn is of

type C0, then we will leave the sub-tree TXn
alone. Otherwise, suppose that Xn(K) is a short leg.

We know from Lemma 4.2.14, that there is an (a1, a0)-refinement of TXn
which is leaf-equivalent to

an (a1, a0)-refinement of C0 in which there is no (a1, a0)-refinement of Xn(K). Thus there exists T ′Xn

which has a root-caret R′ of type C0, with R′(K) a leaf.

If Xn(K) is a long leg, then we can similarly find a common refinement between TXn
and C0, in

which we do not refine the node Xn(K). Therefore, there exists T ′Xn
which has root-caret R′ of type

C0, and so R′(K)(K) is a short leg, and is a leaf. This must be so as there must be a node Y ∈ T ′Xn

of height 2 which is a leaf, and corresponds to Xn(K) in TXn
. Now, R′(K) is the root node of the

last (a1, a0)-caret in the spine of T ′Xn
, and the Kth leg is short. We can therefore replace T ′R′(K) with

a leaf-equivalent (a1, a0)-tree with root-caret of type C0.

In both cases, we are able to replace TXn
with a right aligned sub-tree T ′Xn

.

Now consider the (a1, a0)-caret in the spine Xj such that TXj
is a right aligned (a1, a0)-tree.

I.e., Xj+1, . . . , Xn are all of type C0. If Xj is of type C0, then TXj is a right-aligned (a1, a0)-tree.

Otherwise, we wish to find an (a1, a0)-refinement of TXj
which is leaf-equivalent to a right-aligned

(a1, a0)-tree.
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Suppose Xj(K) is a short leg. By Lemma 4.2.14, we can find an (a1, a0)-refinement of TXj
which is

leaf-equivalent to an (a1, a0)-tree T ′Xj
with root-caret R′j of type C0, where TXj(K) = T ′R′(K). Therefore

the sub-tree T ′R′j is a right-aligned (a1, a0)-tree.

If Xj(K) is a long leg, we can similarly find an (a1, a0)-refinement which is leaf-equivalent to an

(a1, a0)-refinement of the (a1, a0)-caret C0. Call the (a1, a0)-refinement of C0 T ′, with root node R′j .

As each sub-interval represented by a node in the sub-tree TXj(K) must have also be represented by a

node found in T ′, R′j(K)(K) is a short leg, and corresponds to the node Xj(K). Therefore there is an

(a1, a0)-refinement of the (a1, a0)-tree TR′j(K) which is leaf-equivalent to a right aligned (a1, a0)-tree,

as shown in the case where Xj(K) was a short leg.

By repeating this process for each Xi, we can find an (a1, a0)-refinement of T which is leaf-

equivalent to a right aligned (a1, a0)-tree.

Corollary 4.2.16. Given an (a1, a0)-tree pair (T1, T2), we can find an equivalent (a1, a0)-tree pair

(T ′1 , T ′2 ) such that T ′1 and T ′2 are right aligned.

Proof. Let (T1, T2) be an (a1, a0)-tree pair. There exists an (a1, a0)-refinement of T1 which is a right

aligned (a1, a0)-tree. Let this (a1, a0)-refinement be T ′, and let (T ′1 , T ′2 ) be a simultaneous refinement

of (T1, T2).

If T ′2 is not right aligned, we can certainly find an (a1, a0)-refinement of T ′2 which is right-aligned,

by following the process outlined in Proposition 4.2.15.

Consider the right-most leaf of T ′2 throughout this process. At no point is there a refinement of

the corresponding interval to this leaf. Therefore, there is an (a1, a0)-refinement of T ′2 , R2, such that

R2 is leaf-equivalent to a right-aligned (a1, a0)-tree R′2 and if (R1, R2) is the simultaneous refinement

of (T ′1 , T ′2 ), then R1 is a right-aligned (a1, a0)-tree. This is because, in the process of refining T ′2 to

R2, we will not affect the spine of T ′1 in the simultaneous refinement to R1.

Therefore g = (R1, R
′
2) where both R1 and R′2 are right-aligned (a1, a0)-trees.

Definition 4.2.17. An (a1, a0)-tree pair (T1, T2) in which both T1 and T2 are right aligned, is called

a right aligned (a1, a0)-tree pair.

Lemma 4.2.18. Let (T1, T2) and (T ′1 , T ′2 ) be right aligned (a1, a0)-tree pairs. Then there exists

(T1, T2) = (T1, T2) ? (T ′1 , T ′2 ) such that (T1, T2) is also a right aligned (a1, a0)-tree pair.
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Proof. Let (T1, T2) and (T ′1 , T ′2 ) be right-aligned (a1, a0)-tree pairs. Then

(T1, T2) ? (T ′1 , T ′2 ) = (R1, S2)

where (R1, R2) and (S1, S2) are simultaneous refinements of (T1, T2) and (T ′1 , T ′2 ) respectively, and

R2 ∼ S1.

Therefore R2 and S1 are (a1, a0)-refinements of T2 and T ′1 respectively. Now R2 and S1 represent

a common refinement of T2 and T ′1 . Since T2 and T ′1 are right aligned, they will have spines consisting

of only connected (a1, a0)-carets of type C0. Suppose the pines of T2 and T ′1 are SX = {X1, . . . , Xn}

and SY = {Y1, . . . , Ym} for some n,m ∈ N.

If n = m, then we can find a common refinement between T2 and T ′1 without hanging anything

from the right-most leaf of either tree. In this case the simultaneous refinements (R1, R2) and (S1, S2)

will still be right-aligned (a1, a0)-tree pairs, and thus so will (R1, S2).

If n 6= m, without loss of generality, we can assume that n < m. Therefore in the spine of T2,

Xn(K) is a leaf, whereas Yn(K) is not a leaf. In fact the sub-tree hanging from Yn(K) is a right-

aligned (a1, a0)-tree. We can hang this from Xn(K) to achieve a right-aligned (a1, a0)-tree which has

a spine, the same size as that of T ′1 . As the spines of these right-aligned (a1, a0)-trees are now the

same size, we have previously shown that we can find a common refinement without adding to the

spine.

Therefore, for any right-aligned (a1, a0)-tree pairs (T1, T2) and (T ′1 , T ′2 ), there exists a right aligned

(a1, a0)-tree pair (T1, T2), such that

(T1, T2) = (T1, T2) ? (T ′1 , T ′2 ).

4.2.19 Positive (a1, a0)-tree pairs

For every g ∈ Fβ , there is an (a1, a0)-tree pair (T1, T2). This (a1, a0)-tree pair has a simultaneous

refinement (T ′1 , T ′2 ), which is a right aligned (a1, a0)-tree pair. We also know that the set of right

aligned (a1, a0)-tree pairs is closed under (a1, a0)-tree pair multiplication.

We can therefore consider only right aligned (a1, a0)-tree pairs to represent every element g ∈ Fβ .
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Definition 4.2.20.

A right aligned (a1, a0)-tree pair (T1, T2) is said to be positive if T2 is an (a1, a0)-spine.

A right aligned (a1, a0)-tree pair (T1, T2) is said to be negative if T1 is an (a1, a0)-spine.

Remark 36. The right aligned (a1, a0)-tree pair (T1, T2) is negative if (T1, T2)−1 = (T2, T1) is positive.

In example 22, the (2, 1)-tree pairs (T1, T2), (T ′1 , T ′2 ) and (R1, S2) are all positive.

Example 25. Below is a positive (3, 2)-tree pair.

Lemma 4.2.21. For each g ∈ Fβ , there exists positive (a1, a0)-tree pairs P,Q, such that g = P ?Q−1.

Proof. For all g ∈ Fβ , there is a right aligned (a1, a0)-tree pair (T1, T2) such that g = (T1, T2). Since

size(T1) = size(T2), Sp(T1) = Sp(T2).

g = (T1, T2) = (T1, Sp(T1)) ? (Sp(T2), T2) = P ? Q−1

where P = (T1, Sp(T1)) and Q = (T2, Sp(T2)). Since both T1 and T2 are right aligned (a1, a0)-trees,

P and Q are both positive right aligned (a1, a0)-tree pairs.

Definition 4.2.22. The element g ∈ Fβ is positive if g = (T , Sp(T )), for some right aligned (a1, a0)-

tree T .

As the element g is not represented by a unique a-tree pair, it is not trivial to state whether a

given g is positive, even when given g = (T1, T2) for some (a1, a0)-tree pair (T1, T2).

Lemma 4.2.23. The set of positive elements of Fβ is closed under composition.

Proof. Let g1 = (T1, Sp(T1)) and g2 = (T2, Sp(T2)) be positive elements of Fβ for some right aligned

(a1, a0)-trees T1, T2. Then to find g2 ◦ g1 = (T1, Sp(T1)) ? (T2, Sp(T2)) we must find (a1, a0)-tree pairs

(R1, R2) and (S1, S2) that are simultaneous refinements of (T1, Sp(T1)) and (T2, Sp(T2)) respectively

such that R2 ∼ S1.

This equates to finding a common refinement between Sp(T1) and T2. Since T2 is a right-aligned

(a1, a0)-tree, then the spine of T2 contains only connected (a1, a0)-carets of type C0. Suppose the
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spine of T2 consists of the (a1, a0)-carets X1, . . . , Xn where Xi(K) = Xi+1, and Xi is of type C0 for

all i. Let the (a1, a0)-spine SP (T1) be of size m.

If m = n, then T2 is an (a1, a0)-refinement of Sp(T1), and so we do not need to refine T2 to find a

common refinement between them.

If m < n, then we can first extend the (a1, a0)-spine Sp(T1) by hanging an (a1, a0)-spine of size

n−m from the right-most leaf. We now have an (a1, a0)-spine of size n, so T2 is an (a1, a0)-refinement

of this (a1, a0)-spine, and we can therefore find a common refinement without having to refine T2.

Since we do not need to refine T2 in these cases, to find a common refinement with Sp(T1) then

we do not need to simultaneously refine Sp(T2).

If m > n, then we can hang an (a1, a0)-spine of size m − n from the right-most leaf of T2 to

get T ′2 . Notice that in the simultaneous refinement of (T2, SP (T2)) to (T ′2 , S) the (a1, a0)-tree S, is

an (a1, a0)-refinement of Sp(T2), obtained by hanging an (a1, a0)-spine of size m − n from the right

most leaf of Sp(T2). Note that this remains an (a1, a0)-spine, and so S = Sp(T ′2 ). Therefore, we

have g2 = (T ′2 , Sp(T ′2 )), and T p2 rime is an (a1, a0)-refinement of Sp(MT1). We can therefore find a

common refinement of T ′2 and Sp(T1) in which we do not refine T ′2 .

Since we do not need to refine T ′2 to find a common refinement with Sp(T1), then we do not need

to simultaneously refine Sp(T ′2 ).

In any case,

g2 ◦ g1 = (T1, Sp(T1)) ? (T2, Sp(T2)) = (R1, R2) ? (R2, Sp(R2))

where (R1, R2) is a simultaneous refinement of (T1, Sp(T1)) and R2 is a common refinement of Sp(T1)

and T2.

Therefore, there is an expression for g2 ◦ g1 of the form (R1, Sp(R1)), therefore g2 ◦ g1 is also

positive.
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4.3 A presentation for Fβ

4.3.1 Generating set of Fβ

(a1, a0)-Generators

Definition 4.3.2. The (a1, a0)-generator [i1, . . . , ia0 ]j ∈ Fβ , 1 ≤ i1 < · · · < ia0 ≤ K, j ∈ Z≥0,

is the map represented by the right aligned (a1, a0)-tree pair (T , Sp(T )). Let S be a spine of size⌊
j − 1

K − 1

⌋
+ 1. Then S has at least j + 1 leaves. The (a1, a0)-tree T is obtained by (a1, a0)-refining S

by hanging the (a1, a0)-caret of type (i1, . . . , ia0) from the j + 1th leaf of S.

Example 26. Consider the (2, 2)-generator [1, 3]4. We need the (a1, a0)-spine S to have at least 5

leaves.

Let S be an (a1, a0)-spine of size

⌊
4− 1

2 + 2− 1

⌋
+ 1 =

⌊
3

3

⌋
+ 1 = 2.

[1, 3]4

In the left tree of the positive (a1, a0)-tree pair representing the (a1, a0)-generator [i1, . . . , ia0 ]j ,

the (a1, a0)-caret (i1, . . . , ia0) has j leaves preceding it.

Example 27. Below are the positive (a1, a0)-tree pairs representing the (2, 1)-generators, [2]1 and [3]0.

[2]1 [3]0

These (2, 1)-generators were initially used in example 22. There it was seen that [3]0 ◦ [2]1 = (R1, S1).
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R1

[3]0 ◦ [2]1

S2

You can see that the (2, 1)-tree R1 has 0 leaves to the left of the (2, 1)-caret of type (3).

Multiplication of (a1, a0)-generators

Remark 37. Each (a1, a0)-generator is represented by a positive (a1, a0)-tree pair, and is therefore

positive. Therefore the product of two (a1, a0)-generators is also positive.

Lemma 4.3.3. Let (T , Sp(T )) be a positive (a1, a0)-tree pair, and let [i1, . . . , ia0 ]j = (T1, Sp(T1)).

Then there exists an (a1, a0)-tree T ′, such that

(T ′, Sp(T ′)) = (T , Sp(T )) ? (T1, Sp(T1))

and T ′ is an (a1, a0)-refinement of T such that the j + 1th, . . . , j +Kth leaves of T ′ are the children

of an (a1, a0)-caret of type (i1, . . . , ia0).

Proof. If (T ′, Sp(T ′)) = (T , Sp(T )) ? (T1, Sp(T1)), then there exists T ∗, a common refinement of

Sp(T ) and T1, such that (T ′, Sp(T ′)) = (T ′, T ∗)) ? (T ∗, Sp(T ′)) where (T ′, T ∗) and (T ∗, Sp(T ′)) are

simultaneous refinements of (T , Sp(T )) and (T1, Sp(T1)) respectively.

As (T1, Sp(T1)) is a positive (a1, a0)-tree pair, T1 is a right aligned (a1, a0)-tree and has a spine

of (a1, a0)-carets of type C0. Let the (a1, a0)-carets in the spine of T1 be X1, . . . , Xn such that

Xj+1 = Xj(K).

If size(Sp(T )) = n, then T1 is an (a1, a0)-refinement of Sp(T ), and [Sp(T ) : T1]. Our common

refinement T ∗ = T1 is obtained by hanging an (a1, a0)-caret of type (i1, . . . , ia0) from the j+ 1 leaf of

Sp(T ).

If size(Sp(T )) = s > n, then we can find an (a1, a0)-refinement of T1, T ∗, by hanging an (a1, a0)-

spine of size s−n from Xn(K). This (a1, a0)-tree T ∗ is also an (a1, a0)-refinement of Sp(T ), obtained
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by hanging the (a1, a0)-caret of type (i1, . . . , ia0) from the j + 1th leaf of Sp(T ).

In each of these cases, the corresponding simultaneous refinement of (T1, Sp(T1)) is (T ∗, Sp(T ∗)).

The corresponding simultaneous refinement of (T , Sp(T )) is (T ′, T ∗), where T ′ is an (a1, a0)-refinement

of T , with [T , T ′] = 1. The only (a1, a0)-caret added in this (a1, a0)-refinement of T is the (a1, a0)-

caret of type (i1, . . . , ia0), which is hung from the j + 1th leaf of T .

Alternatively, if size(Sp(T )) = s < n, then T ∗ = T1 is an (a1, a0)-refinement of Sp(T ), with

[Sp(T ) : T ∗] = n − s + 1. We can obtain T1 from Sp(T ) by hanging an (a1, a0)-spine of size n − s

from the right-most leaf of Sp(T ), and then by hanging an (a1, a0)-caret of type (i1, . . . , ia0) from the

j + 1th leaf of the resulting (a1, a0)-spine.

We see that (T1, Sp(T1)) = (T ∗, Sp(T ∗)), and that (T ′, T ∗) is a simultaneous refinement of

(T , Sp(T )) and the j + 1th, . . . , j + Kth leaves of T ′ are the children of the (a1, a0)-caret of type

(i1, . . . , ia0).

If (T , Sp(T )) is a positive (a1, a0)-tree pair, then multiplying by the (a1, a0)-tree pair representing

[i1, . . . , ia0 ]j , hangs the (a1, a0)-caret of type (i1, . . . , ia0) from the j + 1th leaf of T . If T has fewer

than j + 1 leaves, then the spine is extended until there are sufficient leaves.

In example 22, we see that post-multiplying by the (2, 1)-tree pair representing [3]0 hangs an

(2, 1)-caret from the (0 + 1)th leaf of the (a1, a0)-tree T1.

Lemma 4.3.4. Every positive (a1, a0)-tree pair (T , Sp(T )) can be expressed as

(T , Sp(T ))) = (T1, Sp(T1)) ? · · · ? (Tn, Sp(Tn))

where (Tr, Sp(Tr)) is the positive (a1, a0)-tree pair representing the (a1, a0)-generator [i
(r)
1 , . . . , i

(r)
a0 ]jn

for each r ∈ {1 . . . , n}.

Proof. Let (T , Sp(T )) be a positive (a1, a0)-tree pair, such that the spine of T has s carets. Let

id ∈ Fβ be the identity map. Then id = (S, S) where S is an (a1, a0)-spine of size s.

Then T is an (a1, a0)-refinement of S. Let [S : T ] = n, and let S = T0, T1, . . . , Tn = T be

(a1, a0)-trees such that Tr+1 is an (a1, a0)-refinement of Tr, and [Tr : Tr+1] = 1 for all r.

If the (a1, a0)-refinement of Tr−1 to get to Tr requires hanging an (a1, a0)-caret of type (i
(r)
1 , . . . , i

(r)
a0 )

from the jr + 1th leaf of Tr−1, then (Tr, Sp(Tr)) = (Tr−1, Sp(Tr−1)) ? (Tr, Sp(Tr)) where (Ti, Sp(Ti))

is the positive (a1, a0)-tree pair representing the (a1, a0)-generator [i
(r)
1 , . . . , i

(r)
a0 ]jn .
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This being true for all r ∈ {1, . . . , n} means that

(T , Sp(T ))) = (S, S) ? (T1, Sp(T1)) ? · · · ? (Tn, Sp(Tn)).

Since (S, S) is the identity (a1, a0)-tree pair, we can drop the (S, S) from our tree-pair multiplication.

Proposition 4.3.5. The set of positive elements of Fβ is generated by (a1, a0)-generators.

Proof. If g ∈ Fβ is positive, then g = (T , Sp(T )), where T is a right aligned (a1, a0)-tree.

Thus

(T , Sp(T ))) = (T1, Sp(T1)) ? · · · ? (Tn, Sp(Tn))

where (Tr, Sp(Tr)) is the positive (a1, a0)-tree pair representing to an (a1, a0)-generator [i
(r)
1 , . . . , i

(r)
a0 ]jn

for all r ∈ {1, . . . , n}.

Thus,

g = [i
(n)
1 , . . . , i(n)a0 ]jn ◦ · · · ◦ [i

(1)
1 , . . . , i(1)a0 ]j1 .

Any (a1, a0)-tree T can be thought of as a product of (a1, a0)-generators, one for each (a1, a0)-caret

not in the spine.

Example 28. Recall the example of a positive (3, 2)-tree pair.

This represents [3, 4]1 ◦ [1, 2]3 but also represents [1, 2]7 ◦ [3, 4]1.

There are clearly some relations between our (a1, a0)-generators. This first kind come about if two

(a1, a0)-carets X,Y , are added (a1, a0)-tree to make the (a1, a0)-tree T such that TX and TY have no

shared nodes. In this case the order in which you add X and Y does not matter.

In fact this means that if i < j,

[i1 . . . , ia0 ]i ◦ [j1 . . . , ja0 ]j = [j1 . . . , ja0 ]j+K−1 ◦ [i1 . . . , ia0 ]i
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Reducing the generating set

Recall the definition of a connected (a1, a0)-caret from Chapter 1, and recall the process described as

a basic move.

Definition 4.3.6. Connected (a1, a0)-generators

The positive connected (a1, a0)-generator [Ci]j is the (a1, a0)-generator

[Ci]j = [i+ 1, i+ 2 . . . , i+ a0]j .

The negative connected (a1, a0)-generators are of the form [Ci]
−1
j .

It is convenient to drop the ◦ composition notation, and instead write

[Ci1 ]j1 ◦ [Ci2 ]j2 = [Ci1 ]j1 [Ci2 ]j2 .

Lemma 4.3.7. Let [i1, . . . , ia0 ]j be an (a1, a0)-generator. Then

[Ca0 ]j · · · [Ca0 ]j+i1−2[Ca0−1]j+i1 · · · [Ca0−1]j+i2−2[Ca0−2]j+i2 · · ·

· · · [C2]j+ia0−1−2[C1]j+ia0−1
· · · [C1]j+ia0−2[C0]j+ia0

· · ·

· · · [C0]j+K−2[C0]j+K−1[i1, . . . , ia0 ]j = [C0]j+a0 [C0]j+a0+1 · · ·

· · · [C0]j+K−1[C0]j .

Proof. Let X be the (j+1)th leaf of some (a1, a0)-tree T , and let g = (T , Sp(T )) be a positive element

of Fβ .

Consider the (a1, a0)-tree pair representation of

[Ca0 ]j · · · [Ca0 ]j+i1−2[Ca0−1]j+i1 · · · [Ca0−1]j+i2−2[Ca0−2]j+i2 · · ·

· · · [C2]j+ia0−1−2[C1]j+ia0−1
· · · [C1]j+ia0−2[C0]j+ia0

· · ·

· · · [C0]j+K−2[C0]j+K−1[i1, . . . , ia0 ]j ◦ g.

and then consider the sub-tree TX . The root node, R, of TX is an (a1, a0)-caret of type [i1, . . . , ia0 ].

Recall that composition by the connected (a1, a0)-generator [Ci]k hangs the connected (a1, a0)-caret

Ci from the (k + 1)th leaf.
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• From each of the short legs R(1), . . . , R(i1 − 1), we hang a connected (a1, a0)-caret of type Ca0 .

• From each of the short legs R(i1 + 1), . . . , R(i2 − 1), we hang a connected (a1, a0)-caret of type

Ca0−1.

• From each of the short legs R(is+1), . . . , R(is+1−1), we hang a connected (a1, a0)-caret of type

Ca0−s.

• From each of the short legs R(ia0), . . . , R(K), we hang a connected (a1, a0)-caret of type C0.

In fact, we have constructed the (a1, a0)-tree defined in our basic move from Lemma 4.2.12. This

means that we can find an (a1, a0)-tree T ′X which is leaf-equivalent to TX and consists of only connected

(a1, a0)-carets of type C0,

[Ca0 ]j · · · [Ca0 ]j+i1−2[Ca0−1]j+i1 · · · [Ca0−1]j+i2−2[Ca0−2]j+i2 · · ·

· · · [C2]j+ia0−1−2[C1]j+ia0−1
· · · [C1]j+ia0−2[C0]j+ia0

· · ·

· · · [C0]j+K−2[C0]j+K−1[i1, . . . , ia0 ]j = [C0]j+a0 [C0]j+a0+1 · · ·

· · · [C0]j+K−1[C0]j .

Example 29. Consider the (3, 3)-generator [2, 4, 5]3. By Lemma 4.3.7

[C3]3[C2]5[C0]8[2, 4, 5]3 = [C0]6[C0]7[C0]8[C0]3.

The (3, 3)-tree representation of these outcomes are shown below. Since these are both positive, they

have a (3, 3)-spine as the right-hand tree which is not included in the diagram below.

[C3]3[C2]5[C0]8[2, 4, 5]3 [C0]6[C0]7[C0]8[C0]3
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Both of these (3, 3)-trees have leaf-sequence

(2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 1, 1).

Therefore

[2, 4, 5]3 = [C3]−13 [C2]−15 [C0]−18 [C0]6[C0]7[C0]8[C0]3.

Lemma 4.3.7 holds for all (a1, a0)-generators [i1, . . . , ia0 ] and only requires adding (a1, a0)-generators

of type [C0]j0 , [C1]j1 , . . . , [Ca0 ]ja0
.

Remark 38. For any (a1, a0)-generator [i1, . . . , ia0 ]j , there exists maps P,Q such that P,Q are products

of connected (a1, a0)-generators of type [C0]j0 , . . . , [Ca0 ]ja0
, and Q ◦ [i1, . . . , ia0 ]j = P . Therefore

[i1, . . . , ia0 ]j = Q−1P

Therefore Fβ is generated by the connected (a1, a0)-generators

〈C0, C1, . . . , Ca0 , . . . , Ca1〉

4.3.8 Relations in the Presentation

4.3.9 Connected (a1, a0)-generators

We already know two relations on the set of connected (a1, a0)-generators.

The first kind comes from seeing that two independent sub-trees can be added in either order.

R1: [Cr]i[Cs]j = [Cs]j+K−1[Cr]i for i < j.

The second kind of relation comes from our basic moves.

R2:

[Ca0 ]j · · · [Ca0 ]j+r−1[C0]j+a0+r · · · [C0]j+K−1[Cr]j = [Ca0 ]j · · · [Ca0 ]j+s−1[C0]j+a0+s · · · [C0]j+K−1[Cs]j

for all j ≥ 0.

Of course, [Ci]
−1
j [Ci]j is the identity map, but we must ask if there are any other relations that

can be found between the (a1, a0)-generators and their inverses. We want to be able to say that

g = Q−1 ◦ P where P,Q are compositions of connected (a1, a0)-generators, to avoid having to find

such relations.
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Lemma 4.3.10. Let g ∈ Fβ . Then there exists 0 ≤ i1, . . . , im, im+1, . . . , ir ≤ a1 such that

g = [Ci1 ]−1j1 · · · [Cim ]−1jm [Cim+1 ]jm+1 · · · [Cir ]jr .

Proof. In Remark 38, we saw that g can be written as the composition of connected (a1, a0)-generators

and their inverses. There is no restriction on the location on the inverses in this remark, and so the

generators and their inverses can appear in any order. Our goal is to show that, by using the relations

R1 and R2, we can move all inverses to the left of this list.

Firstly, consider R1. For 0 ≤ i < j, and for 0 ≤ r, s ≤ a1,

[Cr]i[Cs]j = [Cs]j+K−1[Cr]i

[Cr]
−1
i [Cr]i[Cs]j [Cr]

−1
i = [Cr]

−1
i [Cs]j+K−1[Cr]i[Cr]

−1
i

[Cs]j [Cr]
−1
i = [Cr]

−1
i [Cs]j+K−1.

So if i < j, [Cs]j [Cr]
−1
i = [Cr]

−1
i [Cs]j+K−1.

We can gain more information by considering R1 again:

[Cr]i[Cs]j = [Cs]j+K−1[Cr]i

[Cs]
−1
j+K−1[Cr]i[Cs]j [Cs]

−1
j = [Cs]

−1
j+K−1[Cs]j+K−1[Cr]i[Cs]

−1
j

[Cs]
−1
j+K−1[Cr]i = [Cr]i[Cs]

−1
j .

So if i > j, Cr]i[Cs]
−1
j = [Cs]

−1
j+K−1[Cr]i.

Now, given [Cr]i[Cs]
−1
j we can find some way to move the inverted (a1, a0)-generator to the left

provided i 6= j. If i = j, we need to consider the second kind of relation. For 0 ≤ r, s ≤ a1, and for
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j ≥ 0,

[Ca0 ]j · · · [Ca0 ]j+r−1[C0]j+a0+r · · · [C0]j+K−1[Cr]j =

= [Ca0 ]j · · · [Ca0 ]j+s−1[C0]j+a0+s · · · [C0]j+K−1[Cs]j

[Ca0 ]j · · · [Ca0 ]j+r−1[C0]j+a0+r · · · [C0]j+K−1[Cr]j [Cs]
−1
j

= [Ca0 ]j · · · [Ca0 ]j+s−1[C0]j+a0+s · · · [C0]j+K−1[Cs]j [Cs]
−1
j

[Cr]j [Cs]
−1
j = [C0]−1j+K−1 · · · [C0]−1j+a0+r[Ca0 ]−1j+r−1 · · · [Ca0 ]−1j [Ca0 ]j · · ·

· · · [Ca0 ]j+s−1[C0]j+a0+s · · · [C0]j+K−1.

Here we have swapped [Cr]j [Cs]
−1
j for some composition of connected (a1, a0)-generators and their

inverses, in which all of the inverses are written to the left.

We have devised three methods to move the negative (a1, a0)-generators to the left of the positive

(a1, a0)-generators, which cover all possible combinations of positive and negative (a1, a0)-generators.

Now we can consider all of the relations on the positive connected (a1, a0)-generators.

There is a third kind of relation which comes from the following remark.

Remark 39. Given a connected (a1, a0)-caret Ci, there is a common refinement of Ci and Ci+1,

obtained by hanging a connected (a1, a0)-caret Cr from Ci(i + a0 + 1) and hanging Cr+a0 from

Ci+1(i+ 1), for 0 ≤ r ≤ a1 − a0. This increases Ci to Ci+1.

Similarly, we can decrease Ci+1to Ci by hanging Cr′ from Ci+1(i + 1), for a0 ≤ r′ ≤ a1. This is

leaf-equivalent to hanging Cr′−a0 from Ci(i+ a0 + 1).

This method of increasing Ci works because Cr has at least a0 short legs on the right hand side,

which are matched to the a0 long children of Ci. This gives us the third kind of relation:

R3: [Cr]j+i+a0 [Ci]j = [Cr+a0 ]j+i[Ci+1]j for 0 ≤ r ≤ a1 − a0.

Example 30. Consider the connected (4, 2)-caret C0. We can increase C0 to C1 by hanging a connected

(4, 2)-caret Cr from C0(3), where 0 ≤ r ≤ 2. Below we have chosen Cr = C1.
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C0 C1

[C1]j+2[C0]j = [C3]j [C1]j .

Notice that we can repeat this process and increase C1 to C2 by hanging some Cr′ from C1(4), where

0 ≤ r′ ≤ 2. Below we choose r′ = 0.

[C0]j+3[C1]j = [C2]j+1[C2]j

[C1]j+2[C0]j+3[C0]j = [C3]j [C2]j+1[C2]j

[C0]j+8[C1]j+2[C0]j = [C3]j [C2]j+1[C2]j .

We can move the short leg that is to the right of the 2 long legs, to the left of the long legs by

increasing the type.

The maximum number times that we can increase a connected (a1, a0)-caret is a1 times, increasing

from C0 to Ca1 .

[Cr1 ]j+a0 [Cr2 ]j+a0+1 · · · [Cra1
]j+K−1[C0]j = [Cr1+a0 ]j [Cr2+a0 ]j+1 · · · [Cra1

+a0 ]j+a1−1[Ca1 ]j .

Suppose then that T is a connected (a1, a0)-tree with root node of type Ci, for 0 ≤ i ≤ K − 1.

We can construct algorithms to find a common refinement between T and Ci+1. Let R be the root

node of T .

Increase type:

• Consider R(i+ a0 + 1).

– If R(i+ a0 + 1) is a leaf, hang Cj for 0 ≤ j ≤ a1 − a− 0 from R(i+ a0 + 1). We are done.

– If R(i+ a0 + 1) is of type Cj for 0 ≤ j ≤ a1 − a− 0 from R(i+ a0 + 1), then we are done.

• Otherwise R(i+ a0 + 1) is a caret of type Ct for a1 − a0 + 1 ≤ t ≤ K.

– Perform the decrease type algorithm on R(i+ a0 + 1)
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– Repeat the increase type algorithm on R.

Decrease type :

• Consider R(i).

– If R(i) is a leaf, hang Cj for 0 ≤ j ≤ a1 − a− 0 from R(i). We are done.

– If R(i) is of type Cj for 0 ≤ j ≤ a1 − a− 0 from R(i), then we are done.

• Otherwise R(i) is a caret of type Ct for a1 − a0 + 1 ≤ t ≤ K.

– Perform the increase type algorithm on R(i).

– Repeat the decrease type algorithm on R.

Lemma 4.3.11. Let T , T ′ be (a1, a0)-trees with connected root-carets of type Ci and Ci+1 respec-

tively. If we have to add (a1, a0)-carets to increase the type of Ci to Ci+1, then T 6∼ T ′.

Proof. Let T , T ′ be (a1, a0)-trees such that T ∼ T ′ and the root-carets are of type Ci and Ci+1

respectively. Let S1 and S2 be the (a1, a0)-subdivisions corresponding to T and T ′ respectively. Then

B[S1] = B[S2]. Here we will use τ = β−1 to make notation more convenient.

Let R be the root node of T ′. The first i children of R are short legs and represent sub-intervals of

length τ . The next a0 children of R, R(i+1), . . . , R(i+a0) are all long legs, and represent sub-intervals

of length τ2 in S1. Then R(i+ a0 + 1) is a short leg.

If R(i + a0 + 1) is a leaf for 1 ≤ i ≤ a0, then there is no breakpoint in S1 in the real interval(
a0τ

2 + (i− 1)τ, a0τ
2 + iτ

)
. However (i+ 1)τ is a breakpoint of S2, and

iτ + a0τ
2 ≤ (i+ 1)τ ≤ (i+ 1)τ + a0τ

2.

Therefore R(i+ a0 + 1) cannot be a leaf if T ∼ T ′. Therefore R(i+ a0 + 1) must be the parent of an

(a1, a0)-caret of type Cr1 . If 0 ≤ r1 ≤ a1 − a0, then we can increase the type of Ci to Ci+1 without

adding any (a1, a0)-carets which would be a contradiction. So then a1 − a0 + 1 ≤ r1 ≤ a1.

Denote R(i+ a0 + 1) = R1, and consider R1(a1− a0 + 1). As R1 is a connected (a1, a0)-caret Cr1 ,

for some a1−a0 + 1 ≤ r1 ≤ a1, at least the first a1−a0 + 1 children of R1 are short legs and represent

sub-intervals of length τ2 in S1. Consider the node R2 = R1(a1 − a0 + 1), and the interval that it
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represents, [iτ + a1τ
2, iτ + (a1 + 1)τ2]. Note that

τ2 = a1τ
3 + a0τ

4 > a1τ
3 ≥ a0τ3

Since (i+ 1)τ = iτ + a1τ
2 + a0τ

3,

iτ + a1τ < (i+ 1)τ < iτ + (a1 + 1)τ2

Therefore R2 is not a leaf in T , and is therefore a parent of an (a1, a0)-caret of type Cr2 , for some

0 ≤ r2 ≤ a1.

Therefore 0 ≤ r2 ≤ a0− 1, and for all j ≥ 2a0 R2(j) is a short leg in the (a1, a0)-caret of type Cr2 .

Let R2(2a0) = R3, which represents the sub-interval

[iτ + a1τ
2 + (a0 − 1)τ3 + a0τ

4, iτ + a1τ
2 + a0τ

3 + a0τ
4]

Recall that (i+ 1)τ = iτ + a1τ
2 + a0τ

3. Also since τ2 > a0τ
3, we can deduce that τN > a0τ

N+1.

Therefore

iτ + a1τ
2 + (a0 − 1)τ3 + a0τ

4 < (i+ 1)τ < iτ + a1τ
2 + a0τ

3 + a0τ
4

Once again, R3 is not a leaf and so must be the parent in an (a1, a0)-caret of type Cr3 for 0 ≤ r3 ≤ a1.

Therefore a1 − a0 + 1 ≤ r3 ≤ a1. Let R3(a1 − a0 + 1) = R4, a node representing the interval

[iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4, iτ + a1τ
2 + a0τ

3 + (a1 + 1)τ4].

Again, we can conclude that

iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4 < (i+ 1)τ < iτ + a1τ
2 + a0τ

3 + (a1 + 1)τ4.

So R4 is not a leaf, and is the parent in an (a1, a0)-caret of type Cr4 .

Continuing this process, we construct an (a1, a0)-tree T ∗, whose root-caret is of type Ci and cannot

be increased without adding more (a1, a0)-carets

• For odd n, Rn(a1 − a0 + 1) = Rn+1,
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– Rn+1 is the parent of an (a1, a0)-caret of type Crn+1
where 0 < rn+1 < a0 − 1.

• For even n, Rn(2a0) = Rn+1,

– Rn+1 is the parent of an (a1, a0)-caret of type Crn+1
where a1 − a0 + 1 < n+ 1 < a1.

This gives us the (a1, a0)-tree shown in Figure 4.2. Let t = a1 − a0, as a shorthand. In Figure

4.2, all nodes not labelled are left as leaves. Writing indicates the number of nodes which would be

present there, and if no writing is present, then it is possible to deduce the number of nodes.

R

i

a0

a1 − i− 1
R1

t

a0

a1 − r1
R2

r2

a0

t
R3

R4

...
t

a0

a1 − r3

Figure 4.2: The (a1, a0)-tree T ∗[H], whose root-caret cannot be increased without adding (a1, a0)-
carets

Let J0 be the unit interval, and let Ji be the interval represented by the node Ri.

J0 :[0, 1]

J1 :[iτ + a0τ
2, iτ + a0τ

2]

J2 :[iτ + a1τ
2, iτ + (a1 + 1)τ2]

J3 :[iτ + a1τ
2 + (a0 − 1)τ3 + a0τ

4, iτ + a1τ
2 + a0τ

3 + a0τ
4]

J4 :[iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4, iτ + a1τ
2 + (a0 − 1)τ3 + (a1 + 1)τ4]

...

Notice that each if the intervals Ji are of length τ i. Let J∞ be the result of infinitely repeating the

process.
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Let L(Jr) be the lower bound of Jr, and U(Jr) be the upper bound of the interval Jr.

L(J0) = 0

L(J1) = iτ + a0τ
2

L(J2) = iτ + a1τ
2

L(J3) = iτ + a1τ
2 + (a0 − 1)τ3 + a0τ

4

L(J4) = iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4

L(J5) = iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4 + (a0 − 1)τ5 + a0τ
6

L(J6) = iτ + a1τ
2 + (a0 − 1)τ3 + a1τ

4 + (a0 − 1)τ5 + a1τ
6

...

Now consider L(J∞).

L(J∞) = iτ + a1τ
2 +

∞∑
k=1

(
(a0 − 1)τ2k+1 + a1τ

2k+2
)

= iτ + a1τ
2 +

∞∑
k=1

τ2k+1 (a0 − 1 + a1τ) .

We can rearrange 1 = a1τ + a0τ
2 to get,

1 = a1τ + a0τ
2

a0 = a0 − 1 + a1τ + a0τ
2

a0 − a0τ2 = a0 − 1 + a1τ.
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Substituting this into L(J∞), gives us

L(J∞) = iτ + a1τ
2 +

∞∑
k=1

τ2k+1 (a0 − 1 + a1τ)

= iτ + a1τ
2 +

∞∑
k=1

τ2k+1
(
a0 − a0τ2

)
= iτ + a1τ

2 +

∞∑
k=1

(
a0τ

2k+1 − a0τ2k+3
)

= iτ + a1τ
2 +

(
a0τ

3 − a0τ5
)

+
(
a0τ

5 − a0τ7
)

+
(
a0τ

7 − a0τ9
)

+ · · ·

= iτ + a1τ
2 + a0τ

3

= iτ + τ = (i+ 1)τ.

Thus L(Jr) < (i+ 1)τ for all r ∈ N.

Now consider the upper bounds U(J − r):

U(J0) = 1

U(J1) = 1− (a1 − i− 1)τ

U(J2) = 1−
[
(a1 − i− 1)τ + (a0 − 1)τ2 + a0τ

3
]

U(J3) = 1−
[
(a1 − i− 1)τ + (a0 − 1)τ2 + a1τ

3
]

U(J4) = 1−
[
(a1 − i− 1)τ + (a0 − 1)τ2 + a1τ

3 + (a0 − 1)τ4 + a0τ
5
]

U(J5) = 1−
[
(a1 − i− 1)τ + (a0 − 1)τ2 + a1τ

3 + (a0 − 1)τ4 + a1τ
5
]

U(J6) = 1−
[
(a1 − i− 1)τ + (a0 − 1)τ2 + a1τ

3 + (a0 − 1)τ4 + a0τ
5 + (a0 − 1)τ6 + a0τ

7
]

...

U(J∞) = 1− (a1 − i− 1)τ −

[
(a0 − 1)τ2 + a1τ

3 +

∞∑
k=1

(a0 − 1)τ2k+2 + a1τ
2k+3

]

= (i+ 1)τ + a0τ
2 −

[
(a0 − 1)τ2 + a1τ

3 +

∞∑
k=1

(a0 − 1)τ2k+2 + a1τ
2k+3

]

= (i+ 1)τ + τ2 −

[
a1τ

3 +

∞∑
k=1

(a0 − 1)τ2k+2 + a1τ
2k+3

]
.
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Consider the sum,

∞∑
k=1

(a0 − 1)τ2k+2 + a1τ
2k+3 =

∞∑
k=1

τ2k+2 ((a0 − 1) + a1τ).

Recall that a0 − 1 + a1τ = a0 − a0τ2.

U(J∞) = (i+ 1)τ + τ2 −

[
a1τ

3 +

∞∑
k=1

(a0 − 1)τ2k+2 + a1τ
2k+3

]

= (i+ 1)τ + τ2 −

[
a1τ

3 +

∞∑
k=1

τ2k+2 ((a0 − 1) + a1τ)

]

= (i+ 1)τ + τ2 −

[
a1τ

3 +

∞∑
k=1

τ2k+2
(
a0 − a0τ2

)]

= (i+ 1)τ + τ2 −
[
a1τ

3 + a0τ
4
]

= (i+ 1)τ + τ2 − [τ2]

= (i+ 1)τ2.

Therefore U(Jr) > (i+ 1)τ2 for all r ∈ N. Therefore (i+ 1)τ ∈ Jr for all r ∈ N.

Thus, if increasing the type of the root-caret of the (a1, a0)-tree T to be the same type as the

root-caret as T ′ requires adding carets, then T 6∼ T ′.

Corollary 4.3.12. Let the (a1, a0)-trees T and T ′ are leaf equivalent with root-carets of type Ci and

Cj respectively with i < j. Then it is possible to increase the type of Ci to Cj using the Increase type

algorithm, without adding any new (a1, a0)-carets.

Proof. If j = i + 1, then we have shown in Lemma 4.3.11 that it is possible to increase type of the

root-caret of T to be of type Ci+1.

If j = i + 2, then the breakpoint (i + 1)τ is still a breakpoint in T ′, and therefore if we are

unable to increase the type of the root-caret of T to Ci+1, then the (a1, a0)-tree T must resemble

the (a1, a0)-tree T ∗, shown in figure 4.2. In Lemma 4.3.11, we showed that T ∗ cannot contain the

breakpoint (i + 1)τ , and so this is a contradiction, so it is in fact possible to use the increase type

of the root-caret of T without adding any new (a1, a0)-carets. Therefore there exists an (a1, a0)-tree

T1 where T ∼ T1 ∼ T ′, and the root-caret of T1 is of type Ci+1. Since j = (i + 1) + 1 then we can

increase the type of the root-caret of T1 to be the same as the type of the root-caret of T ′. Therefore

we have increased the type of the root-caret of T to be the same as the type of the root-caret of T ′.
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Now suppose that we can increase the type of Ci to be of type Cj for all j ≤ i + N , for some

N ∈ N, and consider the case where j = N +1. Then since j = i+N +1 > i, then (i+1)τ is certainly

a breakpoint in the (a1, a0)-tree T ′. Therefore by Lemma 4.3.11, if we are unable to increase the type

of the root-caret of T to be of type Ci+1 then (i+ 1)τ is not a breakpoint in T . Since T ∼ T ′, this is

a contradiction, so we are able to increase the type of the root-caret of T to be of type C1. We call

this new (a1, a0)-tree T1, and note that T ∼ T1 ∼ T ′, and the type of the root-caret of T1 is Ci+1.

In particular T1 ∼ T ′ and the root-carets are of type Ci+1 and Cj respectively, where j = (i+1)+N .

Therefore it is possible to increase the type of the root-caret of T1 to be of type Cj without adding

any new (a1, a0)-carets. Therefore we have increased the type of the root-caret of T to be of type Cj .

By induction, we have reached our result.

Lemma 4.3.13. If T1 and T2 are leaf-equivalent connected (a1, a0)-trees, then it is possible to graft

from T to T ′ by using the Increase type and Decrease type algorithms.

Proof. We prove this by induction on the depth of the (a1, a0)-trees T and T ′. The result is trivial

for T and T ′ of depth 0 and 1. Suppose T is a connected (a1, a0)-tree of depth 2.

Suppose that for if T and T ′ are any (a1, a0)-trees of depth d ≤ N for some N ∈ N with T ∼ T ′,

then it is possible to graft from T to T2 using the Increase type and Decrease type algorithms.

Now let T and T ′ be connected (a1, a0)-trees of depth N + 1 and let T ∼ T ′. Let R and R′ be

the root-carets of T1 and T ′ respectively. If type(R) = type(R′), then we consider the sub-trees TR(j)

and T ′R′(j) for 1 ≤ j ≤ K. These are both connected (a1, a0)-trees of depth N or N − 1 and must

be leaf-equivalent, and as such we by our inductive hypothesis it is possible to graft from one to the

other using the Increase type and Decrease type algorithms. Therefore if type(R) = type(R′) then we

can graft from T to T ′ by using the Increase type and Decrease type algorithms.

If type(R) 6= type(R′), then without loss of generality suppose that type(R) = Ci < type(R′) = Cj .

Then by Corollary 4.3.12 we can increase the type of R to be of type Cj , without adding any new

(a1, a0)-carets. Call this new (a1, a0)-tree T̄ . Then T̄ and T ′ are leaf-equivalent connected (a1, a0)-

trees of depth N + 1 with root-carets of the same type, and as shown earlier, this allows us to graft

the sub-trees T̄R(j) to be T ′R(j) for each 1 ≤ j ≤ K.

Therefore, by induction we can graft any connected (a1, a0)-tree T to a leaf-equivalent connected

(a1, a0)-tree T ′ using only the Increase type and Decrease type algorithms.

We have already seen that the positive connected (a1, a0)-generators form a generating set for Fβ ,
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and have found two types of relations:

R1 :αiγj = γj+K−1αi for i < j, α, γ ∈ {[C0], . . . , [Ca0 ]},

R3 :[Cr]j+i+a0 [Ci]j = [Cr+a0 ]j + i[Ci+1]j for 0 ≤ r ≤ a1 − a0.

If there is any other type of relation, which cannot be derived from R1 and R3, on the positive

(a1, a0)-generators, then for some i1, . . . , ia0

[Ci1 ]j1 · · · [Cit ]jt = [C ′i1 ]j′1 · · · [C
′
it ]j′t .

This equates to there being two equivalent positive (a1, a0)-tree pairs (T1, Sp(T1)) and (T2, Sp(T2))

in which T1 ∼ T2. The (a1, a0)-trees T1 and T2 are leaf-equivalent connected (a1, a0)-trees and so

by Lemma 4.3.13, we can graft from T1 to T2 using the Increase type and Decrease type algorithms.

These algorithms describe the relation R3, and so there cannot be any other relations on the positive

connected (a1, a0)-generators.

Thus we have proved the following.

Proposition 4.3.14. A presentation for Fβ

Fβ =

〈
[C0]j1 , . . . , [Ca1 ]ja1

for ji ≥ 0

∣∣∣∣R1, R3

〉

where the relations R1 and R3 are:

R1 :αiγj = γj+K−1αi for i < j, α, γ ∈ {[C0], . . . , [Ca0 ]},

R3 :[Cr]j+i+a0 [Ci]j = [Cr+a0 ]j + i[Ci+1]j for 0 ≤ r ≤ a1 − a0.
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4.3.15 x, z-caret relations

Definition 4.3.16.

The connected (a1, a0)-carets of type C0 and Ca0 are called (a1, a0)-carets of type x, z.

The connected (a1, a0)-generators of type x, z are {xj = [C0]j , zj = [Ca0 ]j}j≥0.

Lemma 4.3.17. Let [Ci]j be the connected (a1, a0)-generator for some 0 ≤ i ≤ a0. Then

zjzj+1 · · · zj+i−1xj+i+a0xj+i+a0+1 · · ·xj+2a0 [Ci]j = xj+a0xj+a0+1 · · ·xj+2a0−1.

Proof. Much like in Lemma 4.3.7, for some positive element g = (T , Sp(T )) the (a1, a0)-tree con-

structed by taking

zjzj+1 · · · zj+i−1xj+i+a0xj+i+a0+1 · · ·xj+2a0 [Ci]j ◦ g

hangs an (a1, a0)-tree TX from the (j+1)th leaf of T . Call this leaf X. The (a1, a0)-tree T is the same

as the tree constructed in Lemma 4.2.12, and so has a leaf-equivalent (a1, a0)-tree which contains only

x-type carets. Hence

zjzj+1 · · · zj+i−1xj+i+a0xj+i+a0+1 · · ·xj+2a0 [Ci]j = xj+a0xj+a0+1 · · ·xj+2a0−1.

Example 31. Consider the connected (4, 3)-generator [C2]2. Lemma 4.3.17 tells us that

z2z3x7[C2]2 = x5x6x7x2.

We will show the (4, 3)-trees pairs representing these maps is shown below, not including the (4, 3)-

spines which would be of size 5.

z2z3x7[C2]2

z z x

x5x6x7x2

x x x
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The leaf sequence of both of these (4, 3)-trees is

(2, 2, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 1, 1, 1, 1).

Therefore

[C2]2 = [3, 4, 5]2 = x−17 z−13 z−12 x5x6x7x2.

Remark 40. For any connected (a1, a0)-generator [Ci]j , there exists maps P,Q such that P,Q are

products of (a1, a0)-generators of type x, z, and Q ◦ [Ci]j = P . Therefore

[Ci]j = Q−1P,

This remark leads us directly to the following proposition.

Proposition 4.3.18. The set {x0, x1, . . . , z0, z1 . . .} is a generating set for Fβ .

We will consider two kinds relations on our x, z-type (a1, a0)-generators.

We have already seen the first kind,

R1: αiγj = γj+K−1αi if i < j, for all α, γ ∈ {x, z}.

The second kind of relation on the (a1, a0)-generators of x, z-type, comes from our basic moves

and is a variation of Lemma 4.3.17.

R2: xi+a0xi+a0+1 · · ·xi+2a0−1xi = zizi+1 · · · zi+a0−1zi, for i ≥ 0.

x

x x· · ·

· · ·

· · ·

z

z z· · ·

· · ·

· · ·

Example 32. Let T be a right aligned (2, 2)-tree, and let R be the ith leaf of T . If g = (T , SP (T )), a

positive element of Fβ , we will see that

xi+2 ◦ xi+3 ◦ xi ◦ g = zi ◦ zi+1 ◦ zi ◦ g.

Below are the sub-trees hanging from R after having post-composed by xi+2 ◦xi+3 ◦xi and zi ◦zi+1 ◦zi

respectively.
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R R

These (a1, a0)-trees are leaf-equivalent, and so the composition of (a1, a0)-generators satisfy

xi+2 ◦ xi+3 ◦ xi = zi ◦ zi+1 ◦ zi.

Lemma 4.3.19. For all g ∈ Fβ , there exists P,Q such that g = Q−1P and P and Q are of the form

P = α
(1)
j1
· · ·α(r)

jr

for α(i) ∈ {x, z}.

Proof. In Remark 40, we noted that any g ∈ Fβ can be expressed as the composition of (a1, a0)-

generators of type x, z and their inverses. We want to be able to move all of the inverse (a1, a0)-

generators of type x, z to the left of this list. We will use the relations R1 and R2. We have

R1: αiγj = γj+K−1αi for i < j and α, γ ∈ {x, z}.

From R1, we can find the following expressions for i < j and α, γ ∈ {x, z}:

γjα
−1
i = α−1i γj+K−1 and αiγ

−1
j = γ−1j+k−1αi.

Therefore, if the pair of (a1, a0)-generators αiγ
−1
j for i 6= j, appears in the expression for g in terms

of x, z-type generators, then we can move the inverses to the left.

If i = j, then we need to consider the relation R2:

R2: xj+a0xj+a0+1 · · ·xj+a0xj = zjzj+1 · · · zj+a0−1zj .

From R2, we can find the following expressions for xjz
−1
j and zjx

−1
j :

xjz
−1
j = x−1j+2a0

· · ·x−1j+a0+1x
−1
j+a0

zjzj+1 · · · zj+a0−1

zjx
−1
j = z−1j+a0−1 · · · z

−1
j+1z

−1
j xj+a0xj+a0+1 · · ·xj+2a0 .
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We have now covered a method to swap any expression αiγ
−1
j for an expression in which all

negative (a1, a0)-generators are to the left of the positive generators. This means that we can find

P,Q generated by positive (a1, a0)-generators of type x, z, such that g = Q−1P .

For all β the root of a quadratic Pisot subdivision polynomial fβ = X2 − a1X − a0, we can find a

presentation for Fβ .

Theorem 4.3.20. For β the positive zero of the Pisot subdivision polynomial fβ = X2 − a1X − a0,

Fβ =
〈
x0, x1, x2, . . . , z0, z1, z2, . . .

∣∣R1, R2

〉
with the relations:

R1 : xixj = xj+K−1xi ∀ i < j

xizj = zj+K−1xi ∀ i < j

zixj = xj+K−1zi ∀ i < j

zizj = zj+K−1zi ∀ i < j

R2 : xi+a0xi+a0+1 · · ·xi+2a0−1xi = zizi+1 · · · zi+a0−1zi ∀ i ≥ 0.

Proof. We have already shown that the (a1, a0)-generators of type x, z form a generating set for Fβ .

We consider the relations on the generating set of connected (a1, a0)-generators. We will show

that these relations reduce to the relations R1 and R2 when we substitute each [Ci]j for an expression

in terms of (a1, a0)-generators of type x, z.

The relation R1 is the same, and is representative of the ability to hang non-intersecting sub-trees

in any order. We have already noted that the relation R2 can be derived by repeating the relation

R3, and by choosing r = 0 every time:

R3: [Cr]j+i+a0 [Ci]j = [Cr+a0 ]j+i[Ci+1]j .

We can rearrange this to find an expression for [Ci+1]j in terms of [Ci]j , [Cr]j+i+a0 , [Cr+a0 ]j+i, for

some 0 ≤ r ≤ a1 − a0. This gives us

[Cr]j+i+a0 [Ci]j = [Cr+a0 ]j+i[Ci+1]j

[Cr+a0 ]−1j+i[Cr]j+i+a0 [Ci]j = [Ci+1]j .
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In particular we can choose r = 0, and replace [C0], [Ca0 ] with x, z:

[Ci+1]j = z−1j+ixj+i+a0 [Ci]j

= z−1j+ixj+i+a0z
−1
j+i−1xj+i+a0−1[Ci−1]j

= z−1j+ixj+i+a0z
−1
j+i−1xj+i+a0−1z

−1
j+i−2xj+i+a0−2[Ci−2]j .

Thus for all [Ci]j , we can find an expression in terms of (a1, a0)-generators of type x, z.

[Ci]j = z−1j+i−1xj+i+a0−1[Ci−1]j

= z−1j+i−1xj+i+a0−1z
−1
j+i−2xj+i+a0−2[Ci−2]j

...

= z−1j+i−1xj+i+a0−1z
−1
j+i−2xj+i+a0−2 · · · z

−1
j+1xj+a0+1[Ci−(i−1)]j

= z−1j+i−1xj+i+a0−1z
−1
j+i−2xj+i+a0−2 · · · z

−1
j+1xj+a0+1z

−1
j xj+a0 [Ci−i]j

= z−1j+i−1xj+i+a0−1z
−1
j+i−2xj+i+a0−2 · · · z

−1
j+1xj+a0+1z

−1
j xj+a0xj .

We consider the relation R3, and start by replacing [Ci+1]j . Then

[Cr]j+i+a0 [Ci]j = [Cr+a0 ]j+i[Ci+1]j

= [Cr+a0 ]j+iz
−1
j+ixj+i+a0 [Ci]j

[Cr]j+i+a0 = [Cr+a0 ]j+iz
−1
j+ixj+i+a0 .

Now we can replace [Cr]j+i+a0 with (a1, a0)-generators of type x, z. Then

[Cr]j+i+a0 = z−1j+i+a0+r−1xj+i+a0+r+a0−1[Cr−1]j+i+a0

...

= z−1j+i+a0+r−1xj+i+a0+r+a0−1 · · · z
−1
j+i+a0+(r−s)xj+i+a0+a0+(r−s)[Cr−s]j+i+a0

...

= z−1j+i+a0+r−1xj+i+a0+r+a0−1 · · · z
−1
j+i+a0

xj+i+a0+a0 [C0]j+i+a0

= z−1j+i+a0+r−1xj+i+a0+r+a0−1 · · · z
−1
j+i+a0

xj+i+2a0xj+i+a0 .



4.3. A PRESENTATION FOR Fβ 165

We can also replace [Cr+a0 ]j+i:

[Cr+a0 ]j+i = z−1j+i+r+a0−1xj+i+r+a0+a0−1[Cr+a0−1]j+i

...

= z−1j+i+r+a0−1xj+i+r+a0+a0−1 · · · z
−1
j+i+(r+a0−s)xj+i+a0+(r+a0−s)[Cr+a0−s]i+j

...

= z−1j+i+r+a0−1xj+i+r+a0+a0−1 · · · z
−1
j+i+1xj+i+a0+1[C1]i+j

= z−1j+i+r+a0−1xj+i+r+a0+a0−1 · · · z
−1
j+ixj+i+a0xi+j .

Note here that the first (a1, a0)-generators of type x, z in the expressions for [Cr]j+i+a0 and [Cr+a0 ]j+i

are identical, as j + i+ a0 + r + a0 − 1 = j + i+ r + a0 + a0 − 1. In fact

[Cr]j+i+a0 = [Cr+a0 ]j+iz
−1
j+ixj+i+a0

xj+i+a0 = z−1j+i+a0−1xj+i+a0+a0−1 · · · z
−1
j+ixi+j+a0xj+iz

−1
j+ixj+i+a0 .

Pre-composing with x−1j+1+a0
zi+j gives us

zj+i = z−1j+i+a0−1xj+i+a0+a0−1 · · · z
−1
j+ixi+j+a0xj+i.

If we let t = j + i, this becomes.

zt = z−1t+a0−1xt+a0+a0−1 · · · z
−1
t+1xt+a0+1z

−1
t xt+a0xt. (4.1)

In Lemma 4.3.19, we saw that xjz
−1
i = z−1i xj+(K−1). If we consider the right hand side of equation

(4.1), we notice that for each xjz
−1
i , i < j. In fact, every x-type generator has higher index than

every negative z-type generator. Therefore we can move all our x-type generators to the right of the

z-type generators.

zt = z−1t+a0−1 · · · z
−1
t+1z

−1
t xt+a0+a0−1+(K−1)(a0−1) · · ·xt+a0+1+(K−1)xt+a0xt

ztzt+1 · · · zt+a0−1zt = xt+a0+a0−1+(K−1)(a0−1) · · ·xt+a0+1+(K−1)xt+a0xt.
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From the relation R1, we see that xj+(K−1)xi = xixj for all i < j. In the equation above, the first

two terms xt+2a0−1+(K−1)(a0−1)xt+2a0−2+(K−1)(a0−2) satisfy the conditions of the first relation:

xt+2a0−1+(K−1)(a0−1)xt+2a0−2+(K−1)(a0−2) = xt+2a0−2+(K−1)(a0−2)xt+2a0−1+(K−1)(a0−2).

In fact, using R1, we can move move xt+2a0−1+(K−1)(a0−1) past the next a0 − 1 x-type generators:

ztzt+1 · · · zt+a0−1zt = xt+a0+a0−2+(K−1)(a0−2) · · ·xt+a0+1+(K−1)xt+a0xt+2a0−1xt.

Similarly we can now move xt+2a0−2+(K−1)(a0−2) past the next a0 − 2 x-type generators. We can

repeat this process until there are no x-type generators have an added (K − 1) in their subscripts.

ztzt+1 · · · zt+a0−1zt = xt+a0+a0−1+(K−1)(a0−1) · · ·xt+a0+1+(K−1)xt+a0xt

= xt+a0+a0−2+(K−1)(a0−2) · · ·xt+a0+1+(K−1)xt+a0xt+2a0−1xt

...

= xt+a0+1+(K−1)xt+a0xt+a0+2 · · ·xt+2a0−1xt

= xt+a0xt+a0+1xt+a0+2xt+a0+3 · · ·xt+2a0−1xt.

This is exactly the relation R2. Therefore, the relations R1 and R3 in connected (a1, a0)-generators

collapse down to the two relations R1 and R2 in just (a1, a0)-generators of type x, z. So a presentation

for Fβ is

Fβ =
〈
x0, x1, x2, . . . , z0, z1, z2, . . .

∣∣R1, R2

〉
with the relations

R1 : xixj = xj+K−1xi ∀ i < j

xizj = zj+K−1xi ∀ i < j

zixj = xj+K−1zi ∀ i < j

zizj = zj+K−1zi ∀ i < j

R2 : xi+a0xi+a0+1 · · ·xi+2a0−1xi = zizi+1 · · · zi+a0−1zi ∀ i ≥ 0.
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4.4 Abelianizations

4.4.1 Orbits in Fβ

In [5], the case a0 = 1, Brown found a presentation for Fβ , and this presentation has been used to

find F abβ . The abelianisation of all of the cases contained 2-torsion, and a free abelian group of rank

K = a1 + a0.

In fact, given an irreducible subdivision polynomial fβ = Xn − an−1X
n−1 − · · · − a1X − a0

and corresponding positive real zero β, β not necessarily Pisot, Nucinkis has given a proof that the

abelianisation of Fβ has an embedded free group of rank K, where K = an−1 + an−2 + · · ·+ a1 + a0.

This result is in fact a variant on a result by Bieri and Strebel, and so whilst the work below was

completed in private communications with Nucinkis, the credit for the result goes to Bieri and Strebel.

This result can be found in section 5 of their work [10].

Result from Bieri and Strebel

Let β be the positive real zero of an irreducible subdivision polynomial

fβ = Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0

and let τ =
1

β
Recall that Z[τ ] = Z[β][

1

β
], as β ∈ Z[τ ].

Lemma 4.4.2.

There is a well defined surjective ring homomorphism

π : Z[β]→ Z
/

(K − 1)Z

where K = an−1 + · · ·+ a1 + a0.

Proof. There is a well defined surjective ring-homomorphism (evaluation at X = 1)

p : Z[X] � Z
m∑
i=0

biX
i 7−→

m∑
i=0

bi.



168 CHAPTER 4. A PRESENTATION OF Gβ

Hence p(fβ(X)) = −(K − 1), and the projection onto Z
/

(K − 1)Z now extends to

π : Z[X]/(fβ(X))� Z
/

(K − 1)Z.

The claim follows from the fact that

Z[X]
/

(fβ(X)) ∼= Z[β].

Recall the corollary to Theorem 2.2.19: Every element x ∈ Z[τ ] has an of the form

x =
b0 + b1β + · · ·+ bn−1β

n−1

βm

where bi,m ∈ Z≥0.

Note that β0, β1, . . . , βn−1 ≥ 1, which leads to the following remark.

Remark 41. Let x ∈ Z[τ ] ∩ (0, 1), there is an expression for x in the form

x =
b0 + b1β + · · ·+ bn−1β

n−1

βm

where m, bi ∈ Z≥0.

In fact, for any given x there will not necessarily be an expression of this form with m = 0. Once

a value for m for which there is an expression for x is found, say m = µ, then there will also be an

expression in this form where we take m = µ+ t for any t ∈ Z≥0. This means there must always be a

minimal choice of m ∈ Z≥0 for such an expression for each x ∈ Z[τ ] ∩ (0, 1).

Proposition 4.4.3.

There is a well-defined surjective ring-homomorphism

π : Z[τ ] � Z
/

(K − 1)Z

b0 + b1β + · · ·+ bn−1β
n−1

βm
7−→ b0 + b1 + · · ·+ bn−1.

Proof. This follows from Remark 41, and we see that the well-definedness relies on β being mapped

to 1̄ by the homomorphism of Lemma 4.4.2.
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Orbits of Gβ

By Proposition 4.4.3, the breakpoints of the elements in Gβ fall into K − 1 classes. Now we will show

that this implies that there are K − 1 orbits in Z[τ ] ∩ (0, 1) under the action of Gβ .

Lemma 4.4.4.

Let g ∈ Gβ , and x ∈ Z[τ ]∩ (0, 1), a breakpoint of g such that π(x) ≡(K−1) i. Then π(f(x)) ≡(K−1) i.

Proof. Let l ∈ Z. Suppose 0 ≤ l ≤ n−1. Then clearly π(βl) = 1. Note that for l < 0, βl = τ |l| =
1

β|l|
,

and so π(βl) = 1. Now if l ≥ n, βl = an−1β
l−1 + an−2β

l−2 + · · ·+ a1β
l−(n−1) + a0β

l−n. Therefore

π(βn) = π
(
an−1β

n−1 + an−2β
n−2 + · · ·+ a1β + a0

)
= an−1 + an−2 + · · ·+ a1 + a0

= K ≡(K−1) 1.

As π is a ring homomorphism, π(βn+1) = π(β)× π(βn) = 1×K = K ≡(K−1) 1. We can repeat this

for π(βn+2), and realise that for all l ∈ Z

π(τ l) = π(β−l) ≡(K−1) 1.

Now suppose that x = x1 is the first breakpoint of g. Then there is there is l1 ∈ Z such that

g(x1) = βl1x1 = y1. Hence

π(y1) = π(g(x1)) = π(βl1x1) = π(βl1)π(x1) = π(x1).

Now suppose that x = xt, the tth breakpoint in g, and that π(yt−1) = π(g(xt−1)) ≡(K−1) π(xt−1),

where (xt−1, yt−1) is the (t−1)th breakpoint of g. Then the line segment from the (t−1)th breakpoint

to the tth breakpoint is found by taking

yt − yt−1 = τ lt(xt − xt−1)
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for some lt ∈ Z. Therefore

π(yt − yt−1) = π
(
βlt(xt − xt−1)

)
π(yt)− π(yt−1) = π(βlt)(π(xt)− π(xt−1))

π(yt) = π(xt)− π(xt−1) + π(yt−1).

Since π(yt−1) = π(g(xt−1)) ≡(K−1) π(xt−1),

π(yt) = π(g(xt)) ≡(K−1) π(xt).

By induction, if x ∈ Z[τ ] ∩ (0, 1) is a breakpoint in g ∈ Gβ then π(g(x)) ≡(K−1) π(x).

Therefore for any two breakpoints x, y ∈ Z[τ ] ∩ (0, 1) such that x and y lie in the same Gβ-orbit,

π(x) ≡(K−1) π(y).

Lemma 4.4.5.

Any two elements x, y ∈ Z[τ ] ∩ (0, 1) such that π(x) ≡(K−1) π(y) lie in the same Gβ-orbit.

Proof. Remark 41, tells us that we can find expressions for x and y in the form

x =
b0 + b1β + · · ·+ bn−1β

n−1

βm1
and y =

c0 + c1β + · · ·+ cn−1β
n−1

βm2

where bi, ci ∈ Z≥0, and m1,m2 > 0. Furthermore, by assumption

π(x) = b0 + b1 + · · ·+ bn−1 ≡(K−1) c0 + c1 + · · ·+ cn−1 = π(y).

Since bi, ci ≥ 0 for each i, we can subdivide the intervals (0, x) and (0, y) into the sub-intervals which

are powers of β. The subdivision of (0, x) will contain π(x) =
∑n−1
i=0 bi sub-intervals, b0 of length

β−m1 , b1 of length β1−m1 , . . ., bi of length βi−m1 , . . ., and bn−1 of length βn−1−m1 . Similarly the

interval (0, y) can be subdivided into π(y) =
∑n−1
i=0 ci sub-intervals.

Without loss of generality, we can assume that π(x) =

n−1∑
i=0

bi ≤
n−1∑
i=0

ci = π(y). I.e.,

π(x) =

n−1∑
i=0

bi + l(K − 1) =

n−1∑
i=0

ci = π(y)
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for some l ∈ Z≥0. If l = 0, then the subdivisions of (0, x) and (0, y) contain the same number of sub-

intervals. If l > 0, then consider the first sub-interval in the subdivision of (0, x). Let this interval be

I1 and have length βi−m1 for some 0 ≤ i ≤ n− 1. Then we can subdivide the interval I1 = [0, βi−m1 ]

into K smaller sub-intervals using

βi−m1 = an−1β
i−m1−1 + · · ·+ a1β

i−m1−(n−1) + a0β
i−m1−n.

By replacing I1 in the subdivision of (0, x) with this subdivision, we have subdivided (0, x) into

π(x) + K − 1 =
∑n−1
i=0 bi + (K − 1) sub-intervals, each of length which is a power of β. We can

repeat this process l times, until we have subdivided the interval (0, x) into π(x) + l(K − 1) =∑n−1
i=0 bi + l(k − 1) =

∑n−1
i=0 ci = π(y) sub-intervals each with length a power of β.

As π(x) = π(y), then

π(1− x) = π(1)− π(x) = π(1)− π(y) = π(1− y)

and so we can similarly subdivide the intervals (x, 1) and (1−y) into the same number of sub-intervals.

We have then found two β-subdivisions S1 and S2 of [0, 1] such that the π(y)th of S1 is x and of S2

is y. We can therefore construct an element g = (S1, S2) ∈ Gβ such that y = g(x), and (x, y) is a

breakpoint of g. Therefore, x and y lie in the same Gβ-orbit.

There are now K − 1 possible orbits for the elements x ∈ Z[τ ] ∩ (0, 1). By including the points 0

and 1, which are fixed points under action by elements of Gβ , the combination of Lemma 4.4.4 and

Lemma 4.4.5 proves the following theorem.

Theorem 4.4.6. There are K + 1 orbits of elements in Z[τ ] ∩ [0, 1] under the action of Fβ .

We now consider the abelianisation of Gβ .

Theorem 4.4.7.

The abelianisation of Gβ contains a free abelian sub-group of rank K.

Proof. We begin by showing that there is a homomorphism φ from Gβ to the free abelian group of

rank N + 2. Let g ∈ Gβ .

For each breakpoint b ∈ [0, 1] of g, we denote by lgb the gradient of the left slope, and by rgb the

gradient of the right slope of g at b.
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The breakpoints of g fall into K − 2 distinct orbits Oi, for i ∈ {1, . . . ,K − 1}. For each orbit Oi,

we define a number sgi as follows

sgi =

ti∑
j=1

(
−log(lgbj ) + log(rgbj )

)
.

Here ki is the number of breakpoints of g that lie in Oi, bj ∈ [0, 1] is one of those breakpoints in g,

and the log is of base β. We then define

φ : Gβ → ZK+1

g 7−→
(
log(rg0), sg1, . . . , s

g
K−1, log(lg1)

)
.

This does indeed satisfy the properties of a group homomorphism, as slopes of linear functions are

multiplicative, and since all gradients of these slopes are powers of β the logarithms are additive.

Note that if we were to refine the list of breakpoints, and include points in which the gradient of

g does not change, then φ(g) will remain the same, as for any “non-proper” breakpoint b, lgb = rgb .

We also observe that

log(rg0) + sg1 + · · ·+ sgK−1 + log(lg1) = 0.

Therefore we can induce the following surjective homomorphism:

φ : Gβ � ZK

g 7−→
(
log(rg0)− log(lg1), sg1, . . . , s

g
K−1

)
as required.

This result is in line with previous results on Fn for n ∈ N, and for Fβ where β is the golden mean.

In general if the group Fβ has a description of elements in tree-pair diagrams then K is equal to the

number of legs in a caret.

4.4.8 The group F ab
βn

We will look at the case with βn, positive real zero of the subdivision polynomial

fβn
= X2 − (n+ 1)X − n
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for some n ∈ N. We will aim to find the group F abβn
. Note, that here K = 2n+ 1.

From Theorem 4.3.20 we have the presentation for the group Fβ :

Fβ =
〈
x0, x1, x2, . . . , z0, z1, z2, . . .

∣∣R1, R2

〉
with the relations

R1 : xixj = xj+2nxi ∀ i < j

xizj = zj+2nxi ∀ i < j

zixj = xj+2nzi ∀ i < j

zizj = zj+2nzi ∀ i < j

R2 : xi+nxi+n+1 · · ·xi+2n−1xi = zizi+1 · · · zi+n−1zi ∀ i ∈ N.

A presentation for F abβn
is gained by adding a third relation

R3 : gihj = hjgi ∀ i, j and for h, g ∈ {x, z}.

The addition of of the relation R3, allows us to find a smaller generating set for F abβn
.

Lemma 4.4.9. F abβn
is generated by the set

{x0, x1, . . . , x2n, z0, z1, . . . , z2n}.

Proof. The set {x0, x1, x2, . . . , z0, z1, z2, . . .} is clearly a generating set. We consider what happens

when we use a combination of the relations R1 and R3.

xixj = xj+2nxi = xixj+2n

xj = xj+2n for j ≥ 1

xizj = zj+2nxi = xixj+2n

zj = zj+2n for j ≥ 1.

Thus we only need {x0, x1, . . . , x2n, z0, z1, . . . , z2n} to generate F abβn
.

We can then reduce this generating set using the relations R2 and R3.

Lemma 4.4.10. For even n ∈ N, F abβn
is generated by the set

{x0, z0, z1, . . . , z2n}
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Proof. Consider the family of relations R2. For each value i ∈ N0, we denote the relation by R2(i).

i = 0 : xnxn+1 · · ·x2n−1x0 = z0z1 · · · zn−1z0

i = 1 : xn+1xn+2 · · ·x2nx1 = z1z2 · · · znz1

i = 2 : xn+2xn+3 · · ·x2n+1x2 = z2z3 · · · zn+1z2

...
...

i = n : x2nx2n+1 · · ·x3n−1xn = znzn+1 · · · z2n−1zn

i = n+ 1 : x2n+1x2n+2 · · ·x3nxn+1 = zn+1zn+2 · · · z2nzn+1

i = n+ 2 : xn+2x2n+3 · · ·x3n+1xn+2 = zn+2zn+3 · · · z2n+1zn+2

...
...

i = 2n− 2 : x3n−2x3n−1 · · ·x4n−3x2n−2 = z2n−2z2n−1 · · · z3n−3z2n−2

i = 2n− 1 : x3n−1x3n · · ·x4n−2x2n−1 = z2n−1z2n · · · z3n−2z2n−1

i = 2n : x3nx3n+1 · · ·x4n−1x2n = z2nz2n+1 · · · z3n−1z2n
...

...

In lemma 4.4.9 we saw that xj = xj+2n, and zj = zj+2n for all j ≥ 1. This means that we can reduce

the number of generators in the 2n+ 1 relations above. Since the generators x0, z0 do not appear in

the list aside from when i = 0, we can confirm that if i = j + 2n for some j ≥ 1, then

R2(i) = R2(i− 2n) = R2(j).

We can therefore ignore all relations R2(i) for i ≥ 2n + 1, as they are equivalent to some relation

already in this list.

We can also remove any generator αj in a given relation in which j ≥ 2n + 1, as shown in the
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proof of Lemma 4.4.9. This process repeats until we are left with only the 2n+ 1 equations below.

i = 0 : xnxn+1 · · ·x2n−1x0 = z0z1 · · · zn−1z0

i = 1 : xn+1xn+2 · · ·x2nx1 = z1z2 · · · znz1

i = 2 : xn+2xn+3 · · ·x1x2 = z2z3 · · · zn+1z2

...
...

i = n : x2nx1 · · ·xn−1xn = znzn+1 · · · z2n−1zn

i = n+ 1 : x1x2 · · ·xnxn+1 = zn+1zn+2 · · · z2nzn+1

i = n+ 2 : x2x3 · · ·xn+1xn+2 = zn+2zn+3 · · · z1zn+2

...
...

i = 2n− 2 : xn−2xn−1 · · ·x2n−3x2n−2 = z2n−2z2n−1 · · · zn−3z2n−2

i = 2n− 1 : xn−1xn · · ·x2n−2x2n−1 = z2n−1z2n · · · zn−2z2n−1

i = 2n : xnxn+1 · · ·x2n−1x2n = z2nz1 · · · zn−1z2n

We will be assuming that all generators have been reduced to be of type x1, . . . , x2n, z1, . . . , z2n

whenever possible.

We will now convert this to an easier to read form, namely an additive form. This is clearly possible

through the map xixj −→ xi + xj .
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i = 0 : x0 + xn + xn+1 + · · ·+ x2n−1 = 2z0 + z1 + · · ·+ zn−1

i = 1 : x1 + xn+1 + xn+2 + · · ·+ x2n = 2z1 + z2 + · · ·+ zn

i = 2 : x2 + xn+2 + xn+3 + · · ·+ x1 = 2z2 + z3 + · · ·+ zn+1

...
...

i = n : xn + x2n + x1 + · · ·+ xn−1 = 2zn + zn+1 + · · ·+ z2n−1

i = n+ 1 : xn+1 + x1 + x2 + · · ·+ xn = 2zn+1 + zn+2 + · · ·+ z2n

i = n+ 2 : xn+2 + x2 + x3 + · · ·+ xn+1 = 2zn+2 + zn+3 + · · ·+ z1

...
...

i = 2n− 2 : x2n−2 + xn−2 + xn−1 + · · ·+ x2n−3 = 2z2n−2 + z2n−1 + · · ·+ zn−3

i = 2m− 1 : x2n−1 + xn−1 + xn + · · ·+ x2n−2 = 2z2n−1 + z2n + · · ·+ zn−2

i = 2n : x2n + xn + xn+1 + · · ·+ x2n−1 = 2z2n + z1 + · · ·+ zn−1

Our goal is to eliminate x1, . . . , x2n. To do this we will consider R2(1) − R2(2), R2(2) − R2(3),. . . ,

R2(2n− 1)−R2(2n), and R2(2n)−R2(1).

R2(1)−R2(2) : xn+1 − x2 = 2z1 − z2 − zn+1

R2(2)−R2(3) : xn+2 − x3 = 2z2 − z3 − zn+2

...
...

R2(n− 1)−R2(n) : x2n−1 − xn = 2zn−1 − zn − z2n−1

R2(n)−R2(n+ 1) : x2n − xn+1 = 2zn − zn+1 − z2n

R2(n+ 1)−R2(n+ 2) : x1 − xn+2 = 2zn+1 − zn+2 − z1
...

...

R2(2n− 1)−R2(2n) : xn−1 − x2n = 2z2n−1 − z2n − zn−1

R2(2n)−R2(1) : xn − x1 = 2z2n − z1 − zn
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We have not yet eliminated any generator. Now consider R2(2n)−R2(0)

R2(2n)−R2(0) : x2n − x0 = 2z2n − z0.

This rearranges to give

x2n = x0 − 2z0 + 2z2n.

We have now eliminated the generator x2n as it can be found by composing other generators.

Below, the previous R2(i)−R2(i+ 1) have been relabelled. Looking at equation 1, . . . , 2n, we see

that each of the generators x1, . . . , x2n occur exactly twice. This means that x2n can be substituted

in to two of these equations.

1 : xn+1 − x2 = 2z1 − z2 − zn+1

2 : xn+2 − x3 = 2z2 − z3 − zn+2

...
...

n− 1 : x2n−1 − xn = 2zn−1 − zn − z2n−1

n : x2n − xn+1 = 2zn − zn+1 − z2n

n+ 1 : x1 − xn+2 = 2zn+1 − zn+2 − z1
...

...

2n− 1 : xn−1 − x2n = 2z2n−1 − z2n − zn−1

2n : xn − x1 = 2z2n − z1 − zn

We can substitute x2n into either equation n or equation 2n− 1.

Case 1: First we will choose to substitute x2n into equation 2n − 1. In case 1, we will call our

generating set G1 = {x0, x1, . . . , x2n−1, z0, z1, . . . , z2n}. We have

xn−1 − x2n = 2z2n−1 − z2n − zn−1 so

xn−1 = x2n + 2z2n−1 − z2n − zn−1 so

= x0 − 2z0 + 2z2n + 2z2n−1 − z2n − zn−1 so

= x0 − 2z0 − zn−1 + 2z2n−1 + z2n.
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We have now written xn−1 in terms of other generators of F abβn
and so we can eliminate it from our

generating set G1. We will note that each of the equations 1, . . . , 2n follows a similar form

i : xi+n − xi+1 = 2zi − zi+1 − zi+ n.

This means that the other occurrence of xn−1 is in equation n− 2

x2n−2 − xn−1 = 2zn−2 − zn−1 − z2n−2 so

x2n−2 = xn−1 + 2zn−2 − zn−1 − z2n−2 so

= x0 − 2z0 − zn−1 + 2z2n−1 + z2n + 2zn−2 + 2z2 − z2n−1 − zn−2 so

= x0 − 2z0 + 2zn−2 − 2zn−1 − Z2n−2 + 2Z2n−1 + z2n.

So we have now eliminated x2n, xn−1, x2n−2 from our list of generators. If we continue this process, we

would look at equation 2n− 3. Here we would be able to eliminate the first x generator which would

be x2n−3+n ≡ xn−3. Through this process, once we have eliminated the generator xi, we consider the

equation i− 1, and can then eliminate xi+(n−1).

Case 2: Alternatively, we could start by substituting the generator x2n into equation n. Our gener-

ating set will be called G2 = {x0, x1, . . . , x2n−1, z0, z1, . . . , z2n}.

x2n − xn+1 = 2zn − zn+1 − z2n so

xn+1 = x2n − 2zn + zn+1 + z2n so

= x0 − 2z0 + 2z2n − 2zn + zn+1 + z2n so

= x0 − 2z0 − 2zn + zn+1 + 3z2n.

We can thus eliminate xn+1 from the generating set G2. We can find then substitute xn+1 into

equation 1.

xn+1 − x2 = 2z1 − z2 − zn+1 so

x2 = xn+1 − 2z1 + z2 + zn+1 so

= x0 − 2z0 − 2zn + zn+1 + 3z2n − 2z1 + z2 + zn+1 so

= x0 − 2z0 − 2Z1 + z2 − 2Zn + 2zn+1 + 3Z − 2n.
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So we have now eliminated x2n, xn+1, x2 from our list of generators. If we continue this process, we

would look at equation n+ 3. Here we would be able to eliminate the second x-type generator which

will be xn+3+1 ≡ xn+4. Through this process, once we have eliminated the generator xi, we consider

the equation i+ n, and can similarly eliminate xi+(n+1).

Claim: If n is even, we can express the variable xi in terms of x0, z0, z1, . . . , z2n for i ∈ {1, . . . , 2n}.

If gcd(n−1, 2n) = 1 or gcd(n+1, 2n) = 1, then either of these processes will reach all of the variables

x1, x2, . . . , x2n. Note that gcd(n − 1, 2n) = 1 if and only if n is even. Similarly gcd(n + 1, 2n) = 1 if

and only if n is even.

In either generating set G1 or G2, we will be able to eliminate all of the generators x1, . . . , x2n, as

long as n is even. Thus we can find a generating set for F abβn
, namely

G = {x0, z0, z1, . . . , z2n}.

Now that we have a reduced generating set for the abelianization of F abβn
, we can look at the

properties of the generators.

Theorem 4.4.11. If n ∈ N is even,

F abβn
∼= Z2n+1 ⊕ Z

/
(n+ 1)Z.

Proof. From Theorem 4.4.6, we know that if Gβ is a Bieri-Strebel group where β is the root of the

subdivision polynomial Xn − an−1Xn−1 − an−2Xn−2 − · · · − a1X − a0, then the Gabβ has at least K

free generators, where K = an−1 + an−2 + · · ·+ a1 + a0.

In the case of our βn, fβn
= X2 − (n + 1)X − n, so K = 2n + 1. We know that our Thompson

like group Fβn is a Bieri-Strebel group, so we also know that any generating set for F abβn
must contain

at least 2n+ 1 free generators. Since our generating set for F abβn
from Lemma 4.4.10 is of size 2n+ 2,

there must be 2n+ 1 free generators and so each must be isomorphic to a generator of Z.

We will substitute the new expressions for xn, xn+1, . . . , x2n−1 into the relation from Lemma 4.4.10,

R2(0), which we will relabel as equation 0.
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0: x0 + xn + xn+1 + · · ·+ x2n+1 = 2z0 + z1 + · · ·+ zn−1.

In Lemma 4.4.10 we deduced two possible substitutions for the generator x2n, each of which led to

the creation of a different generating set. These were labelled G1 and G2. The order in which the

generators were eliminated from Gi are as follows

G1 : xn−1, x2n−2, xn−3, x2n−4, xn−5, . . . , xn.

G2 : xn+1, x2, xn+3, x4, xn+5, . . . , xn.

So if 1 ≤ i ≤ n is even then xi was eliminated first by G2, and if 0 ≤ i ≤ n is odd then xi is first

eliminated by G1. Conversely, if n + 1 ≤ j ≤ 2n is even, then xj was first eliminated by G1, and

if n + 1 ≤ j ≤ 2n − 1 is odd then xi is first eliminated by G2. It should be recognised that since

n is even, then all xi will be eliminated in both G1 and G2, and the expression for xi in terms of

x0, z0, z1, . . . , z2n will be the same in both G1 and G2.

So we will consider the expressions for the eliminated generators first eliminated from G1:

x2n = x0 − 2z0 + 2z2n

xn−1 = x0 − 2z0 − zn−1 + 2z2n−1 + z2n

x2n−2 = x0 − 2z0 + 2zn−2 − 2zn−1 − z2n−2 + 2z2n−1 + z2n

xn−3 = x0 − 2z0 − zn−3 + 2zn−2 − 2zn−1 + 2z2n−3 − 2z2n−2 + 2z2n−1 + z2n

...
...

xi = xi−(n−1) + 2zi−n − zi−(n−1) − zi

...
...

We want to find the expressions for xi, where n ≤ i ≤ 2n and i even. This allows us to skip every
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other generator in the above list, and only consider the evenly labelled generators.

x2n = x0 − 2z0 + 2z2n

x2n−2 = x0 − 2z0 + 2zn−2 − 2zn−1 − z2n−2 + 2z2n−1 + z2n

x2n−4 = x0 − 2z0 + 2zn−4 − 2zn−3 + 2zn−2 − 2zn−1 − z2n−4 + 2z2n−3 − 2z2n−2 + 2z2n−1 + z2n

...
...

xi = xi−(n−1) + 2zi−n − zi−(n−1) − zi

= xi−2 + 2zi+1 − zi+2 − zi−(n−1) + 2zi−n − zi−(n−1) − zi

= xi−2 + 2zi−n − 2zi−(n−1) − zi + 2zi+1 − zi+2.

This gives us an expression for the generators xi for n+ 2 ≤ i ≤ 2n− 2 and i even. We will consider

i = n as a special case later. For k ∈ {1, . . . , n
2
− 1},

x2n−2k = x0 − 2z0 +

2k∑
j=1

(
(−1)j2zn−j

)
− z2n−2k +

2k−1∑
j=1

(
(−1)j+12z2n−j

)
+ z2n.

We now consider the expressions for generators first eliminated from G2

x2n = x0 − 2z0 + 2z2n

xn+1 = x0 − 2z0 − 2zn + zn+1 + 3z2n

x2 = x0 − 2z0 − 2z1 + z2 − 2Zn + 2zn+1 + 3Z − 2n

xn+3 = x0 − 2z0 − 2z1 + 2z2 − 2zn + 2zn+1 − 2zn+2 + zn+3 + 3z2n

...
...

xi = xi−(n+1) − 2zi−1 + zi + zi−(n+1)

...
...

We want to find the expressions for xi, n ≤ i ≤ 2n, i odd, in terms of x0, z0, . . . , z2n. We only need
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to consider the odd labelled generators in the list above.

xn+1 = x0 − 2z0 − 2zn + zn+1 + 3z2n

xn+3 = x0 − 2z0 − 2z1 + 2z2 − 2zn + 2zn+1 − 2zn+2 + zn+3 + 3z2n

xn+5 = x0 − 2z0 − 2z1 + 2z2 − 2z3 + 2z4 − 2zn + 2zn+1 − 2zn+2 + 2zn+3 + 2zn+4 + zn+5 + 3z2n

...
...

xi = xi−(n+1) − 2zi−1 + zi + zi−(n+1)

= xi−2 − 2zi−(n+2) + zi−(n+1) + zi−2 − 2zi−1 + zi + zi−(n+1)

= xi−2 − 2zi−(n+2) + 2zi−(n+1) + zi−2 − 2zi−1 + zi.

This gives us an expression for the generators xi for n+ 1 ≤ i ≤ 2n−1 and i odd. For k ∈ {1, . . . , n
2
},

xn+(2k−1) = x0 − 2z0 +

2(k−1)∑
j=1

(
(−1)j2zj

)
+

2k−1∑
j=1

(
(−1)j2zn+j−1

)
+ 3z2n.

An expression for the generator xn in terms of x0, z0, . . . , z2n can be found from either G1 or G2.

The even generator eliminated immediately before xn from G1 is x1. We will substitute x1 into

equation 2n:

xn − x1 = 2z2n − z1 − zn

xn = x1 + 2z2n − z1 − zn.

We can find an expression x1 by rearranging equation n + 1, and using an expression for xn+2 =

x2n−n−2.

x1 = xn+2 + 2zn+1 − z1 − zn

x1 = x0 − 2z0 +

n−2∑
j=1

(
(−1)j2zn−j

)
− z2n−2k +

n−3∑
j=1

(
(−1)j+12z2n−j

)
+ z2n

+ 2zn+1 − zn+1 − z2n.
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Thus we get

xn = x1 + 2z2n − z1 − zn

xn = x0 − 2z0 +

n−2∑
j=1

(
(−1)j2zn−j

)
− z2n−2k +

n−3∑
j=1

(
(−1)j+12z2n−j

)
+ z2n

+ 2zn+1 − zn+1 − z2n + 2z2n − z1 − zn

xn = x0 − 2z0 +

n−1∑
j=1

(
(−1)j2zn−j

)
− zn +

n−1∑
j=1

(
(−1)j+12z2n−j

)
+ 3z2n.

The generator eliminated immediately before xn from G2 is x2n−1. We can substitute x2n−1 into

equation n− 1 to obtain

x2n−1 − xn = 2zn−1 − zn − z2n−1

xn = x2n−1 − 2zn−1 + zn + z2n−1

xn = x0 − 2z0 +

n−2∑
j=1

(
(−1)j2zj

)
+

n−1∑
j=1

(
(−1)j2zn+j−1

)
+ z2n−1 + 3z2n

− 2zn−1 + zn + z2n−1

xn = x0 − 2z0 +

n−1∑
j=1

(
(−1)j2zj

)
+ zn +

n∑
j=1

(
(−1)j2zn+j−1

)
+ 3z2n.

These are equivalent expressions for xn as in both cases

xn = x0 − 2z0 − 2z1 + 2z2 − · · · − 2zn−1 − zn + 2zn+1 − 2zn−2 + · · ·+ 2z2n−1 + 3z2n.

Consider equation 0.

0: x0 + xn + xn+1 + · · ·+ x2n−1 = 2z0 + z1 + · · ·+ zn−1.

We want to substitute our expressions for xn, xn+1, . . . , x2n−1 in terms of x0, z0, z1, . . . , z2n into equa-

tion 0. For the left hand side of this equation, we create a table of coefficients, table 4.1, for the

generators x0, z0, z1, . . . , z2n. We also make note of the occurrences in the expressions for which of

the eliminated generators they appear in.
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Generator Appears in term for Coefficient in LHS of eq.0
x0 x0, xn, . . . , x2n−1 n+ 1
z0 xn, . . . , x2n−1 −2n
z1 xn, xn+3, xn+5, . . . , x2n−1 (−2)×1 + (−2)×(n2 − 1) = −n
z2 xn, xn+2, xn+3, xn+5, . . . , x2n−1 (2)×2 + (2)×(n2 − 1) = n+ 2
z1 xn, xn+2, xn+5, . . . , x2n−1 (−2)×2 + (−2)×(n2 − 2) = −n
z2 xn, xn+2, xn+4, xn+5, . . . , x2n−1 (2)×3 + (2)×(n2 − 2) = n+ 2
...

...
...

zn−1 xn, xn+2, . . . , x2n−2 (−2)×(n2 ) + (−2) = −n
zn xn, xn+1, xn+3, . . . , x2n−1 (−1)×1 + (−2)×(n2 ) = −(n+ 1)
zn+1 xn, xn+2, xn+3, . . . , x2n−1 (2)×2 + (1)×1 + (2)×(n2 − 2) = n+ 1
zn+2 xn, xn+2, xn+3, . . . , x2n−1 (−1)×1 + (2)×2 + (2)×(n2 − 2) = −(n+ 1)

...
...

...
z2n−1 xn, xn+2, . . . , x2n−2, x2n−1 (2)×n2 + (1)×1 = n+ 1
z2n xn, . . . , x2n−2, xn+1, . . . , x2n−1 (3)×1 + (1)×n2 − 1 + (3)×n2 = 2(n+ 1)

Table 4.1: Coefficients and occurrences of generators in LHS of equation 0

We use this table that all of these substitutions reduce equation 0 to

2z0 + z1 + · · ·+ zn−1 = (n+ 1)x0 − 2nz0 − nz1 + (n+ 2)z2 − · · ·

· · · − nzn−1 − (n+ 1)zn + (n+ 1)zn+1 − · · ·

· · · − (n+ 1)z2n−2 + (n+ 1)z2n−1 + 2(n+ 1)z2n.

We can rearrange the equation to give

0 = (n+ 1)x0 − 2(n+ 1)z0 − (n+ 1)z1 + (n+ 1)z2 − · · ·

· · · − (n+ 1)zn−1 − (n+ 1)zn + (n+ 1)zn+1 − · · ·

· · · − (n+ 1)z2n−2 + (n+ 1)z2n−1 + 2(n+ 1)z2n.

There is now a common factor of n+ 1 in every coefficient in this expression. This implies that there

is a generator whose order divides n+ 1. It is not yet clear that

We will take a step back and recall that Lemma 4.4.9 showed us that S = {x1, . . . , x2n, x0, z0, . . . , z2n}

is a finite generating set for F abβn
, and is a set of size 4n + 2. We define φ : Z4n+2 → F abβn

, an onto

homomorphism where

φ(i1, i2, . . . , i2n, i2n+1, i2n+2, . . . , i4n+2) = i1x1 + · · ·+ i2nx2n + i2n+1x0 + i2n+2z0 + · · ·+ i4n+2z2n.
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Consider the kernel of φ, Kerφ. From Lemma 4.4.10, we that for some Pj ∈ Z[X1, . . . , X2n], there

are 2n linear sums of generators which equate to the additive identity.

0 =x1 − x0 + 2z0 + P1(z1, . . . , z2n)

0 =x2 − x0 + 2z0 + P2(z1, . . . , z2n)

...
...

0 =x2n−1 − x0 + 2z0 + P2n−1(z1, . . . , z2n)

0 =x2n − x0 + 2z0 + P2n(z1, . . . , z2n).

We also have the following linear sum,

0 = (n+ 1)x0 − 2(n+ 1)z0 − (n+ 1)z1 + (n+ 1)z2 − · · ·

· · · − (n+ 1)zn−1 − (n+ 1)zn + (n+ 1)zn+1 − · · ·

· · · − (n+ 1)z2n−2 + (n+ 1)z2n−1 + 2(n+ 1)z2n.

These sums form the basis for Kerφ. Let A ∈ M4n+2(Z) be the (2n + 2) × (4n + 2) integer matrix

representing Kerφ, with respect to the ordering given in basis S. Then the first 2n+ 2 columns of A

resemble the matrix shown below.

A =



1 0 0 . . . 0 0 −1 2 . . .

0 1 0 . . . 0 0 −1 2 . . .

0 0 1 . . . 0 0 −1 2 . . .

...
...

...
. . .

...
...

...
...

0 0 0 . . . 1 0 −1 2 . . .

0 0 0 . . . 0 1 −1 2 . . .

0 0 0 . . . 0 0 (n+ 1) −2(n+ 1) . . .

0 0 0 . . . 0 0 0 0 . . .

...
...

...
...

...
...

...
...

. . .

0 0 0 . . . 0 0 0 0 . . .


Note that for each non-zero row, the first non-zero entry will divide all other non-zero entries within

the row. Therefore, by performing column operations this matrix can be reduced to the following

diagonal matrix
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A =



1 0 0 . . . 0 0 0 0 . . . 0

0 1 0 . . . 0 0 0 0 . . . 0

0 0 1 . . . 0 0 0 0 . . . 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . 1 0 0 0 . . . 0

0 0 0 . . . 0 1 0 0 . . . 0

0 0 0 . . . 0 0 n+ 1 0 . . . 0

0 0 0 . . . 0 0 0 0 . . . 0

...
...

...
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 0 0 . . . 0


This matrix can also be written as

Diag(1, . . . , 1︸ ︷︷ ︸
2n

, n+ 1, 0, . . . , 0︸ ︷︷ ︸
2n+1

)

This matrix has been reduced to the Smith normal form, and thus we can use a variant of the

classification of finitely generated modules over PIDs [24]. We will use this to show that

Kerφ ∼= Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
2n

⊕(n+ 1)Z.

We also know that φ : Z4n+2 → F abβn
is a surjective homomorphism, so we are able to use the first

isomorphism theorem.

F abβn
∼= Z4n+2

/
Kerφ ∼= Z4n+2−2n−1 ⊕ Z

/
(n+ 1)Z ∼= Z2n+1 ⊕ Z

/
(n+ 1)Z

We have shown that there exists Thompson-like Bieri-Strebel groups with arbitrarily large torsion

in their abelianisations. We will offer up the following two conjectures.

Conjecture 4.4.12. Let n ∈ N. Then

F abβn
∼= Z2n+1 ⊕ Z

/
(n+ 1)Z.
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An example of this is the (2, 1) group which has been shown to contain 2-torsion in the abeliani-

sation.

Conjecture 4.4.13. Let β be the unique positive real zero of the irreducible Pisot polynomial fβ =

X2 − a1X − a0. Then

F abβ
∼= Za1+a0 ⊕ Z

/
(a0 + 1)Z.



188 CHAPTER 4. A PRESENTATION OF Gβ



Bibliography

[1] James W Cannon, William J Floyd, and Walter R Parry. Introductory notes on Richard Thomp-

son’s groups. Enseignement Mathématique, 42:215–256, 1996.
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