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Abstract

Multilevel regression and poststratification (MRP) has become a popular and important

small area estimation method in social sciences. The method enables researchers to

reliably estimate public opinion in small areas such as constituencies, states, and

districts. Since it was first developed, numerous studies have extended and advanced

the method. This thesis asks whether we can further improve MRP estimates with

alternative methodological approaches. Each chapter explores how these methodologies

could be applied with MRP, and whether each improves MRP estimate accuracy.

As a preface to the introduction of these alternative methods, in chapter two, the

thesis asks: what is standard practice for the application of MRP in social science?

I address this question through a systematic review of 86 studies which use MRP.

Drawing on the collective wisdom of researchers to date, the chapter details how each

of the main MRP characteristics are typically applied in practice. In chapter three, I

explore whether using cross-validation lasso regression can improve variable selection

for MRP applications. I explore how the method should be applied, and whether this

method is an improvement on what might be considered current standard practice

for variable selection. The results are somewhat mixed but show that lasso could

be a useful tool. I argue that incorporating lasso into the model building process,

alongside standard variable selection approaches, would represent an improvement

over current MRP variable selection practice. In chapter four, I explore whether

an unevenly distributed sample among small areas might be a useful strategy when

applying MRP to electoral forecasting. The chapter set outs how this method could be
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applied and explores whether it improves MRP. Overall, the results show the method

can improve estimate accuracy in important small areas, and in turn, can improve the

probability of correctly forecasting an electoral outcome. In the final chapter, I explore

how we can use informative priors with MRP. I employ a two-stage prior elicitation

method with MRP and apply to estimating vote choice at numerous elections. The

results indicate the method can improve estimate accuracy and precision. The results

also give some indication that this method could be useful for improving sub-group

inference and computational efficiency. However, improvements are inconsistent across

different elections, and often improvements are only significant for the smallest sample

sizes.
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Chapter 1

Introduction

Recent methodological advances in public opinion research have led to the development

of multilevel regression and poststratification (MRP). The method enables researchers

to estimate opinion or behaviour of populations in sub-national geographic units

known as small areas, such as states, districts, and constituencies. Standard public

opinion polls rarely offer the opportunity to infer below a national level picture, while

older methods have been shown to achieve poorer estimate accuracy than MRP (Lax

and Phillips, 2009b; Warshaw and Rodden, 2012).

Since its first development (See Gelman and Little, 1997; Park et al., 2004), the

method has become impressively popular (Leemann and Wasserfallen, 2017) and is

regarded by some as the ‘gold standard’ of small area estimation (Selb and Munzert,

2011). Overall, the development of the method means researchers are better equipped

to understand what the public think and how they behave.

To date, numerous studies have made significant contributions towards demonstrat-

ing the efficacy of the method and setting out how MRP can be applied in practice

(See Lax and Phillips, 2009b; Warshaw and Rodden, 2012; Buttice and Highton, 2013;

Kastellec et al., 2016). Subsequently, the method has been applied across numerous

fields in social science. However, although the method has gained popularity and is
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increasingly used in a variety of research settings, there are still challenges to the

wider application of the model (Gelman et al., 2016). This thesis seeks to contribute

to the continued development of the method by assessing whether alternatives to the

standard application can improve MRP estimates. In doing so it is hoped the thesis

will advance our understanding of the method overall, and advance our understanding

of how best to apply the method.

The motivation for this research is based on two inter-related realities of public

opinion research. First, research analysing sub-national small area opinion is important

if not vital for social science fields. For extensive periods in social science, research

has overlooked geographic variation in opinion, instead focusing on the national-level

picture (Rodden, 2010). Today however, this is no longer the case, with analysis of

sub-national opinion a growing area of academic interest. There now seems to be

both a broad recognition that opinion geographically varies within countries, and a

recognition that studies and academic fields need to account for this.

Second, directly inferring small area opinion from surveys is simply not feasible.

In nearly all applications, surveys are designed to be nationally representative and do

not enable researchers to investigate below a national or regional level. This means

researchers are restricted in what research questions they can address, and the extent

to which they can truly analyse the nature of opinion within countries.

Both these realities are why the development of MRP has been important for

social science research on public opinion. The method enables researchers to reliably

estimate public opinion and behaviour within small areas. This has led to a plethora

of studies applying the method to address numerous key substantive questions in

social science. Importantly, the method comes with little (financial) costs to the

researcher. Free to use analysis tools (R and Python) and state-of-the-art probabilistic

programming tools (Stan), make the method relatively easy to implement. Similarly,

advances in computational power mean that estimating - even highly complex - MRP
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models is relatively quick and easy.

But as an emerging methodology, there is still much we do not know about the

method. For example, we do not know how the method is applied in practice. Although

there is often wide-spread recognition that the method has become popular and has

grown in use in social science, there is no documentation which accounts for its use in

studies. There is also much to learn about the best ways we can and should apply the

method. There is no one-size fits all with MRP. Across different settings, the model

will require tailoring according to the unique aspects of each application. For example,

when estimating a variety of different small area opinion, the relevant and predictive

variables will vary and researchers need to incorporate different sources of information

to account for this. In order to better equip researchers with the knowledge how best

to apply MRP, we need to continue the development of the method exploring how we

might apply to alternative settings. Finally, we also need to continue exploring how

we might improve the method, asking whether variations to the standard application

might enhance our small area opinion estimates.

This thesis seeks to contribute towards our understanding of the method in both

how it is applied, and how it should be applied. In this thesis, I do so from the

perspective that MRP is successful at estimating small area opinion because it is

highly adept at combining a variety of information sources to produce estimates. It

combines information about individual person types through respondent-level survey

data, information about the small areas through area-level variables, and structural

information about the population through the poststratification frame.

The thesis will assess whether we can better leverage information or leverage

new information for MRP applications. In the three main chapters, I assess three

methodologies, exploring how we might incorporate these alternative approaches with

MRP applications, and importantly, assess the degree to which each improves MRP

estimates. Chapter three explores whether we can improve how we select information
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(variables) for MRP. Chapter four asks whether we can use past information about

the estimated opinion or behaviour to determine a sampling strategy that improves

MRP estimates. The final chapter examines whether we can incorporate further

information from past models through informative priors. For the remainder of this

introductory chapter, I introduce MRP, discussing the method background, theory,

and development, and conclude with a roadmap for the thesis ahead.

1.1 Background

Public opinion surveys

Public opinion and behaviour are core areas of interest for much of social science.

What people think and how they behave are important questions for researchers

interested in better understanding the human world. In order to investigate these

topics, researchers make use of various forms of qualitative and quantitative methods.

In quantitative studies, surveys are perhaps the most common method used. They

provide researchers the opportunity to speak to a small but representative group of

the population delivering a snapshot of public opinion or behaviour.

The method offers a relatively quick and inexpensive means to carry out research,

with results which are - in theory at least - representative of the wider population.

Such is the popularity of the method that today, opinion survey research is a large

commercial industry (Gelman et al., 2016).

Unfortunately, opinion surveys are not without their problems. Indeed, there

is an extensive range of methodological issues associated with them (for a detailed

discussion, see Groves, 1987). The main issue that concerns this thesis is the inability

of surveys to reliably capture opinion or behaviour below the national level. If a

researcher is interested in the opinion or behaviour of small area populations such as

states, districts or constituencies, surveys are for the most part unsuitable.
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Surveys are designed to be nationally representative with the goal of enabling

researchers to make claims about the population under study. In practice, researchers

choose a sample size which will provide estimates of national public opinion with a

margin of error of +/-3% at the 95% confidence interval. This means that a typical

survey sample is too small for scholars to be able to make inferences about sub-national

small area opinion (Warshaw and Rodden, 2012: 203; Buttice and Highton, 2013:

449). For example, using a sample size of 2,000 to investigate opinion in US states

would result in a margin of error of +/-15%.1 In the United Kingdom, to achieve a

+/-3% margin of error for 632 constituencies, assuming a population of 100,000 in

each, a sample of over 500,000 would be required.

There are examples of surveys with large enough sample sizes to enable researchers

to directly infer small area opinion. However, these are mostly confined to the United

States, where the number of areas is relatively small (i.e. 51 states including District

of Columbia). And even in the United States, it is widely recognised these surveys are

simply not suitable when investigating opinion at the sub-state level (Hersh and Nall,

2016: 292). Surveying small area populations is possible, although applications are

rare, expensive, and carried out infrequently meaning that comparison between small

areas is often impossible (Park et al., 2004: 375; Lax and Phillips, 2013: 1).

The need for subnational estimates

The inability of surveys to gauge sub-national opinion or behaviour is not a problem

for the majority of studies. However, for some topics there is a need to be able to

gauge opinion or behaviour of sub-groups in the population. For dyadic representation,

researchers need reliable estimates of opinion for small area populations (for early and

key studies on dyadic representation, see Miller and Stokes, 1963; Hill and Hurley,

1999; Weissberg, 1978). This is because the study analyses the extent to which
1This calculation is based on the assumption that respondents are evenly distributed among

states.
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elected representatives vote in line with the opinion of the populations that elect

them (for a discussion on how MRP has been important for representation studies see

Caughey and Warshaw, 2019). MRP examples include Lax and Phillips (2012), whose

study demonstrated that there is a gap between the views of US voters and the way

senators vote across 39 different policy areas. Lewis and Jacobsmeier (2017) use MRP

to estimate dynamic state-level support for same-sex marriage. Using these MRP

estimates, they showed that direct democracy institutions can improve congruence

between opinion in states and elected state representatives. In the UK, Hanretty et al.

(2017) show that MPs are responsive to the opinion of constituents on support for

same-sex marriage and Britain’s membership in the EU.

Small area estimates are similarly important for electoral forecasting. To predict

an electoral outcome we require reliable and accurate estimates of voting behaviour in

each small area. In parliamentary democracies, who governs is not based on which

party receives the highest national level vote share, but rather which party wins a

majority of parliamentary seats. To forecast the electoral outcome, we therefore need

estimates which enable the prediction of the party winner in each small area rather

than a national level picture. Even in presidential electoral systems such as the United

States, the president is not elected by ‘popular vote’ but rather based on electoral

college votes. To forecast the presidential election we need to be able to forecast vote

share in each state. Examples of electoral forecasting with MRP include predicting

the 2016 US presidential election, the UK 2017 general election, and the UK 2016

EU referendum (Kiewiet de Jonge et al., 2018; Wyatt et al., 2016; Lauderdale et al.,

2020).

In other fields, limiting analysis of opinion to a national level might not inhibit

research altogether. However, only analysing opinion at a national level might mean

that we fail to capture idiosyncrasies that are apparent in societies. In recognition

of geographic heterogeneity in opinion, numerous researchers have applied MRP to
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various fields in social science, exploring both the causes and implications of variation

in opinion. For example, studies have used MRP to explore geographic variation of

opinion towards gender equality (Koch and Thomsen, 2017), policy mood and ideology

(Enns and Koch, 2013), attitudes toward environment (Howe et al., 2015; Mildenberger

et al., 2016; Howe, 2018; Kaufmann et al., 2017 ; Fowler, 2016, 2017; Eun Kim and

Urpelainen, 2018), attitudes towards immigrants (Butz and Kehrberg, 2015, 2016),

and migration intentions (Williams et al., 2018).

Estimating sub-national opinion or behaviour

Awareness that surveys are incapable of providing sub-national opinion or behaviour

estimates is by no means recent. Researchers have long been developing methods

to enable them to investigate small area opinion or behaviour. One of the simplest

methods is to use a proxy of opinion or behaviour and treat the proxy as a reliable

indicator of the opinion or behaviour of interest. For instance Berkman and O’Connor

(1993) use state-level membership of an abortion rights group and number of Christians

as indicators of state-level opinion towards abortion. Another example is that of

Berry et al. (1998), who used voting records of elected representatives to construct

a state-level ideology score. However, this method is considered problematic as it

assumes that opinion or behaviour maps onto the proxy often without supporting

empirical evidence (Pacheco, 2011; Lax and Phillips, 2013). Ultimately, the proxy

measure was viewed as a sub-optimal solution, but viewed as satisfactory in the

absence of an alternative method (Norrander and Wilcox, 1999).

Subsequent scholars developed disaggregation, a method which aggregates numer-

ous polls into one large N survey. The combined survey has a large enough sample

size to enable researchers to directly estimate small area opinion or behaviour. It was

first developed by Erikson et al. (1994), who used the method to establish state-level

public opinion on government policies. Brace et al. (2004) later used the method to
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investigate how political ideology changes over time in US states.

Although an improvement on proxy measures, the need for identical survey ques-

tions across numerous polls means there is a limited number of topics which can

be investigated (Kastellec et al., 2016; Buttice and Highton, 2013; Lax and Phillips,

2009a). Furthermore, because there are typically an insufficient number of polls

in a single year, researchers must collate polls across numerous years. As a result,

estimates are not snapshots at one given time period, but the average across time

periods. In turn, this means we cannot measure temporal changes in opinion or

behaviour (Kastellec et al., 2016; Howe et al., 2015). The method is also only possible

in applications where the number of areas is relatively small (Warshaw and Rodden,

2012). This is why the application is mostly restricted to the United States, where

studies estimate opinion or behaviour within 51 states. For applications with a larger

number of small areas, the method is no longer a feasible way to estimate small area

opinion or behaviour.

MRP

In response to the need for better methods to estimate small area opinion or be-

haviour, scholars developed multilevel regression and poststratification. MRP was

first developed in the United States with the work of Gelman and Little (1997), and

subsequently Park et al. (2004). Their work built upon previous research which had

developed poststratification (Pool et al., 1965; Weber et al., 1972), combining it with

multilevel modelling. Importantly, studies have demonstrated that MRP is better able

to estimate public opinion than previous methods. When compared to disaggregation

for example, MRP consistently produced more reliable and accurate estimates of

small area opinion (Park et al., 2004; Lax and Phillips, 2009b; Warshaw and Rodden,

2012; Pacheco, 2011). Even Buttice and Highton (2013), who are cautionary in their

support of MRP, contend that MRP is a superior method of opinion estimation than
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disaggregation.

The first application of MRP estimated opinion and behaviour at US state-level,

but has since been applied to a range of small areas including US congressional and

senate districts (Warshaw and Rodden, 2012), US cities and towns (Tausanovitch and

Warshaw, 2013), and US counties (Kaufmann et al., 2017). Outside of the United

States, MRP has been applied in German electoral districts (Selb and Munzert, 2011),

Swiss Cantons (Leemann and Wasserfallen, 2016, 2017), UK constituencies (Hanretty

et al., 2016, 2017), EU states (Toshkov, 2015; Kolczynska et al., 2020), EU regions

(Lipps and Schraff, 2021), Canadian federal districts (Mildenberger et al., 2016), and

South African electoral districts (Ornstein, 2017).

The method can also be applied to estimate variables that are not strictly opinion

or behaviour. For example, studies in both the US and the UK have combined MRP

with item response theory (IRT) to produce estimates of broad political sentiment

(Tausanovitch and Warshaw, 2013; Hanretty et al., 2017). Outside of social science,

notable applications include population health studies (See Zhang et al., 2014; Downes

et al., 2018; Downes and Carlin, 2020a, 2020c, 2020b).2

Theory

MRP sits within the wider field of small area estimation methods (SAE). The field

incorporates a wide-range of advanced methodologies which produce estimates for small

area populations. Small areas in this field are unique geographic sub-national units,

including states, districts and constituencies. As discussed above, direct estimation

from surveys is not possible, instead this field focuses on developing model-based

methods which typically use survey data to estimate means or quartiles for small area

populations (for a discussion on SAE, see Rao and Molina, 2015; Pfeffermann, 2013).
2This thesis will focus entirely on the use of the MRP in social sciences. The method is largely

unchanged between applications in social and health sciences. However, the development of the
method in the two applications is largely separate in the literature. Furthermore, the use of MRP
requires subject-specific tailoring, and lessons here may not be applicable to other contexts.
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There are two stages of an MRP model: first, a multilevel model is fit to the data;

second, the model estimates are weighted to small area population figures through

the poststratification frame.

At the first stage, a multilevel model is estimated where individuals are nested

within small areas. At level-1 of the multilevel model, opinion or behaviour is

modelled as a function of individual-level characteristics (Lax and Phillips, 2013: 5).

Individual-level variables are obtained from survey data and are typically demographic

characteristics of respondents. This is not a technical requirement but necessary due

to limitations on available data.3 In most applications of MRP, all individual-level

variables are estimated as random intercept terms. This means each individual-level

category is drawn from a common distribution of parameter effects (Hanretty, 2019).

At level-2 of the multilevel model, the parameters for each small area are estimated.

The parameters are again estimated as random intercept terms drawn from a common

distribution. To help the model better identify variation between small areas, most

MRP applications use additional area-level variables. The inclusion of these variables

improves parameter estimation by shrinking each small area parameter towards other

areas with similar characteristics (Gelman and Hill, 2007: 269; Hanretty et al., 2016:

574). Models may also include additional levels to further improve estimate accuracy.

This means that individuals are nested within small areas, and these areas are in turn

nested within a higher geographical unit such as a region. The additional level can

improve estimate accuracy as small area estimates are shrunk towards the mean of

each higher geographical unit.

One of the key reasons why MRP is particularly effective at estimating opinion or

behaviour in small areas is because of partial pooling in the multilevel model. The

classic regression case either fully pools respondents or does not pool respondents at all

(Gelman and Hill, 2007: 254; Lax and Phillips, 2013: 11; Warshaw and Rodden, 2012:
3The is predominantly because of data requirements for the poststratification frame, as will be

explained in further detail below.
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206). In the fully pooled case, the model uses the full sample but does not account for

differences between small areas. In the case of no-pooling, the model estimates each

group separately using only using sample from each small area. Multilevel modelling,

on the other hand, partially pools respondents across small areas. This means small

area estimates are directly estimated from respondents within each small area, as well

as from the wider sample. In practice, small area estimates are shrunk towards the

population mean. The degree of shrinkage is decided by the model internally, with

areas with fewer respondents shrunk towards the overall mean to a greater extent

(Lax and Phillips, 2013: 11). Pooling is also greater when the area level variance is

smaller, that is, less variation in opinion between small areas.

Although there are numerous ways to specify the model, for explanatory purposes

here, I will describe a simple multilevel model with four individual-level variables

(age, education, ethnicity and gender) and three area-level variables (region, past vote

share and religion).4

In most applications the multilevel model is estimating Y , a binary variable. The

model is typically a multilevel logistic regression model, estimating where Y = 1. It

can be written as follows:

Pr(Yi = 1) = logit−1(βθ + βF emale · Female[i] + aArea
s[i] + aAge

j[i] +

aEducation
k[i] + aEthnicity

l[i] + aRegion
m[i] ), for i = 1, ..., n.

(1.1)

Here i indexes the individual respondent in the survey, for i = 1, ..., n. βθ refers to

the global intercept, βF emale is the parameter for female respondents.5 aArea
s , aAge

j ,
4I use these variables because the systematic review identified them as some of the most commonly

used in MRP applications.
5The parameter for gender (female) can also often specified as a varying intercept term.
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aEducation
k , aEthnicity

l and aRegion
m are all varying intercept terms. Where:

aAge
j ∼ N(o, σ2) for j = 1, ..., J

aEducation
k ∼ N(o, σ2) for k = 1, ..., K

aEthnicity
l ∼ N(o, σ2) for l = 1, ..., L

(1.2)

The parameters for each category of age, education and ethnicity variables are drawn

from a normal distribution with mean of 0 and some variance (σ2). The aArea
s term is

estimated similarly, but is estimated as a function of the area-level variables, that is:

aArea
s ∼ N(aRegion

m[s] + βvote · vote[s] + βReligion · Religion[s], σ2) (1.3)

Here the small area parameter aArea
s is estimated as a function of the Region of the

small area, the past vote share at the small area-level, and the proportion of a religious

group in each small area. Region is itself a modelled random intercept term, where:

aRegion
m ∼ N(o, σ2) for m = 1, ..., M (1.4)

The method’s first stage estimates opinion or behaviour for each person-type across

all small areas. That is, the model produces estimates for each combination of all

individual-level categories within each small area. For example, if we include age (with

categories of 18-24, 25-44, 45+) and ethnicity (with categories of white, non-white),

the model would produce estimates of opinion or behaviour for 18-24 white people,

18-24 non-white people and so on.

The second stage of MRP involves poststratification. The process of poststratifi-

cation is principally a weighting scheme, where the estimated opinion or behaviour

for each person-type are weighted according to the proportion each person-type rep-

resents in the population. The poststratification frame is constructed by accessing



1.1. Background 13

census data, or similarly large individual-level survey-type data, which provides the

joint-distributions for all individual-level variables included in the first level of the

multilevel model. Using the above example, we need data which will enable us to

determine the proportion of each small area population which is 18-24 and white,

18-24 and non-white, and so on for each combination of all individual-level variables

included. The poststratification procedure is as follows:

Y P red
s =

∑
cϵs Nc πc∑

cϵs Nc

(1.5)

Where Nc is the population count for each small area, and the πc is the person-type

estimate. The final small area estimations of opinion are thus person-type estimates

weighted according to the proportion they represent in the population within each

small area.

Requirements for MRP to perform well

MRP is a method which is useful to forecast opinion or behaviour in small areas.

However the method may not always be applicable nor the best method for estimating

opinion. Data requirements of MRP are a non-trivial restriction to the wider applica-

tion. The method requires at least three separate data-types, each limited by distinct

but related ways.

1. Individual-level survey data

Individual-level variables are obtained from survey data, which capture the

opinion or behaviour of interest as well as characteristics of each respondent. In

most academic applications, scholars typically use free-to-access surveys. This

can be a limiting factor as researchers can only estimate opinion or behaviour

included in the survey. And further, can only use surveys where the necessary

individual-level characteristics are available. In most applications these variables
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are demographic characteristics, but this is not a technical requirement. All

individual-level characteristics used are also required for the poststratification

frame, where there are far greater data limitations.

2. Area-level variables

Area-level variables are used at level-2 of the multilevel model. They are

typically continuous variables and capture information about the small area or

the population of the small area. For example the percentage which previously

voted for a certain political party, or the percentage of the population from

a certain religion. These variables are often the least restrictive, as in most

applications, governments publish a variety of free-to-access statistics about

small areas.

3. Poststratification frame data

Data for the poststratification frame is the hardest to obtain. It requires the

joint-distribution proportions for all individual-level categories in each small

area. In the United States, this data is available from the census or the ACS, a

large census-like survey. In most other countries, the required micro-level data

is not accessible. This has led to researchers developing alternative methods

to produce a poststratification frame (See Hanretty et al., 2016; Leemann

and Wasserfallen, 2017). While these methods overcome data limitations

present for the construction of a poststratification frame, they require further

methodological investment from researchers.

Another requirement for MRP to perform well concerns the variation in opinion between

small areas (inter-subgroup), and within each small area (intra-subgroup). MRP is

best used to capture inter-subgroup variation in opinion or behaviour. Subgroups here

can be small area populations or demographic subgroups. Should there be limited
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variation between subgroups, the benefits of MRP are likely to be negligible. For

example, at the onset of the UK coronavirus lockdown, if we estimated the proportion

in each constituency which believed the pandemic was the biggest issue facing the

country, we would likely have seen little difference across small areas and the benefits

of MRP would be minor6

If there is significant intra-area group variation (that is significant variation of

opinion within each small area) MRP may produce poor estimates. This is because if

there is variation in opinion that we are not accounting for in the model, the model

may be poor at estimating opinion. This risk can be averted - or at least minimised -

by the inclusion of individual-level variables which capture the intra-group variation.

The method is also known to struggle at reliably estimating low incidence opinion

(Hanretty, 2019). This means if only a small proportion of a population have a certain

opinion or exhibit a certain behaviour, MRP will most likely perform poorly. For

example, in electoral forecasting MRP estimates for small parties will typically be less

accurate and reliable than estimates for larger parties.

Sample size

Part of the appeal of the method is that MRP can produce accurate and reliable

estimates with relatively small sample sizes. For instance, Lax and Phillips (2009b)

argued their study demonstrated MRP was able to produce accurate estimates in 50

US states with a total sample of around 1,400. Kastellec et al. (2016) echoed such

findings, again arguing that a sample of around 1,400 was sufficient to estimate in

50 US states. Warshaw and Rodden (2012) extended the application by exploring

how the method performed at lower geographical levels. They found sample sizes of

2,500 and 5,000 were sufficient for US congressional districts (436 small areas) and for
6Ipsos Mori have tracked the single biggest issue among UK public since 2010. They have

shown that at start of lockdown, 85% of UK public said that the Coronavirus / pandemic was
the biggest issue. See https://www.ipsos.com/sites/default/files/ct/news/documents/2021-
02/issues_index_jan21_cati_v1_public.pdf

https://www.ipsos.com/sites/default/files/ct/news/documents/2021-02/issues_index_jan21_cati_v1_public.pdf
https://www.ipsos.com/sites/default/files/ct/news/documents/2021-02/issues_index_jan21_cati_v1_public.pdf
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Senate districts (1,942 small areas), respectively. Outside the United States, Hanretty

et al. (2016) demonstrated the effectiveness of the method with between 8,000-12,000

respondents for 632 small areas.

Importantly, the necessary ratio of respondents to the number of small areas is

lower in applications where there are a large number of small areas (Hanretty, 2019).

Put a different way, when we are estimating for a larger number of small areas, the

required number of respondents per small area will be lower than if we were estimating

for relatively few small areas. This is important because it means that we are able

to estimate for a large number of small areas with obtainable sample sizes. Whereas

for disaggregation, to estimate in a large number of small areas the method would

require a sample size that is simply not feasible.

Survey non-response

MRP is a particularly useful technique in the context of the growing problems of

survey data. Response rates for random probability phone surveys have continually

declined in recent periods making it increasingly difficult to obtain samples. This

has led to the increase in non-probability online samples, which are far easier to

obtain, but can have significant selection effects. Both methods suffer from survey

non-response and a lack of representative samples. MRP however, is a method that

can alleviate concerns about survey non-response (Park et al., 2004: 376; Gelman

et al., 2016: 5). Indeed, Wang et al. (2015) demonstrated that MRP is able to

produce accurate estimates of voting behaviour even with highly unrepresentative

samples. Numerous studies have since demonstrated that MRP can be highly effective

at estimating reliable opinion or behaviour with non-probability samples (Kennedy

and Gelman, 2020; Cerina and Duch, 2020a, 2020b). This means the method equips

researchers with a viable mechanism to deal with the problems associated with modern

survey samples.
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Dynamic opinion and behaviour

One of the drawbacks of disaggregation was that typically the method was not able to

measure change in opinion or behaviour across years. This was because the method

required researchers to merge multiple surveys - often across years - into one large

sample to disaggregate. MRP, on the other hand, is highly adept at capturing temporal

changes in opinion or behaviour within small areas. Pacheco (2011) developed a pooled

approach to use MRP to estimate dynamic opinion and behaviour at US state-level

(Pacheco, 2011). She has subsequently applied this method to measure dynamic

opinion towards a range of political and social issues (Pacheco, 2012, 2013, 2014;

Pacheco and Maltby, 2017, 2019). More recently researchers have estimated dynamic

opinion or behaviour by including the time-period as a parameter in the model. In

this specification, time-periods can be included as a linear or quadratic term (See

Gelman et al., 2016), or estimated with far greater flexibility through estimating the

time-period with a spline (See Kolczynska et al., 2020).

Sub-group inference

MRP is also a particularly useful method when we are interested in the opinion

or behaviour among subgroups in small areas. For example, Ghitza and Gelman

(2013) showed how including multiple and cross-level interactions can significantly

improve inference among subgroups of the population. A more recent variant of MRP

- which includes structured priors - has been shown to potentially enable researchers

to investigate much smaller sub-groups than was previously possible (Gao et al., 2021).

In this study, structured priors enabled them to produce reliable estimates for up to

72 separate age categories (Gao et al., 2021).
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Extensions of MRP

The initial studies on MRP validated the method through applications to the United

States, where the necessary data to construct a poststratification frame is readily

available and relatively easy to access. Outside of the United States, there is far more

limitation on what data is available, restricting the countries where MRP could be

applied. In response, Selb and Munzert (2011) developed a slight variant to MRP

which did not have such strong data demands. Through an application to German

electoral districts, they demonstrated the proficiency in estimating opinion with their

alternative (Selb and Munzert, 2011).

Further studies have since focused on developing alternative methods to construct

poststratification frames. All these alternative methods lessen the strict data require-

ments of MRP and enable the application to countries where the necessary census-like

data is not available. Hanretty et al. (2016) used a raking procedure to construct a

poststratification frame. Although this would still require large N sample data, the

necessary sample size is significantly lower than for the standard MRP case. Leemann

and Wasserfallen (2017) developed what they call synthetic poststratification, which

can use standard survey sample sizes to synthetically construct the joint-distributions

necessary. More recently, Cerina and Duch (2020b) have developed a method of

constructing a poststratification frame through imputation.

Other extensions of the standard MRP model have focused on replacing the mul-

tilevel model component of MRP with alternative regularisation methods. These

alternative approaches produce estimates for each person-type which are then poststrat-

ified to the population. Bisbee (2019) developed BARP, a method which uses Bayesian

additive trees and poststratification. The non-parametric approach used here is argued

to provide improved regularisation and can be particularly useful when modelling

complex (or deep) interactions. Ornstein (2020) introduced stacked regression and
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poststratification (SRP) which employs a model averaging technique.7 Ornstein argues

that this technique is beneficial with interactions - especially cross-level interactions

- and consistently demonstrates improvements over the standard MRP case. The

improvements in SRP are also particularly notable when estimating outcome variables

that are not cultural topics. In another machine learning application, Cerina and

Duch (2020b) have employed a random forest model to replace the multilevel model

in MRP.

Along the same lines, some extensions have replaced the standard multilevel model

with the goal of automating variable selection for MRP. In a similar manner to

Ornstein (2020), Broniecki et al. (2021) used a Bayesian model averaging method with

poststratification. Their method was used to improve variable selection, and combines

the estimates from a range of variable selection models. They showed consistent

improvements when compared to the classic MRP case across a large range of different

estimated opinions. Another feature selection method combined with MRP is that

of Goplerud et al. (2018), whose Sparse multilevel regression and poststratification

(sMRP) utilises lassoPlus to induce sparsity acting as a feature selection process. This

method was shown to be particularly useful in situations where deep interactions are

modelled.

1.2 Roadmap

I begin the thesis in chapter two where I set out how the method has been applied in

social science to date. This is achieved by a systematic review, where I document how

each main model component is specified across 86 unique studies within social science.

Across all studies, I document what might be considered the key components of MRP,

including sample size, variables, small areas, topics, and time periods. The chapter
7The model averages estimates from lasso, k-nearest neighbour, random forest and gradient-

boosting.
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asks the question: is there a standard application of the method, and if so, what

does this standard specification look like? The chapter seeks to identify areas where

there is standard practice in the use of MRP, and explore areas where variation in the

application exists. This is accompanied by some discussion on the considerations that

drive variation in MRP specification. Rather than act as a document of best practice,

the chapter is intended to improve our understanding of how the method is applied in

social science.

In chapter three, I explore whether we can improve variable selection for MRP.

Although there has been some notable and innovative work on variable selection and

MRP (see Broniecki et al., 2021; Goplerud et al., 2018), this chapter seeks to explore

how we can incorporate automated variable selection on all MRP variables, while

maintaining the standard MRP form. This is achieved by exploring whether a variant

of lasso (Group-lasso interaction-NET) can be used to simultaneously select individual-

level variables, area-level variables, and interactions. Through an application to

forecasting 2017 Conservative party vote share in GB constituencies, I first explore

how this method is best applied to the MRP case. I subsequently assess whether this

method improves MRP estimate accuracy when compared to path dependency and

theory-based variable selection.8 On the one hand, the chapter argues that the results

cannot be used to support the outright use of automated variable selection in the

form used here. On the other hand, the chapter contends that when used alongside

other variable selection methods, incorporating lasso into the model building process

represents an improvement on what is most likely current standard practice for MRP

variable selection.

The fourth chapter investigates whether we can improve MRP predictions by

oversampling respondents from certain small areas. In electoral forecasting, to correctly

predict an electoral outcome we often require a higher degree of accuracy in certain
8I use the phrase ‘path dependency’ to refer to a situation where a researcher chooses identical

variables to previous studies.
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small areas known as marginals. This chapter explores whether a method which

allocates a higher proportion of the sample to marginal small areas can improve MRP

prediction accuracy. Through a simulation study and two real-world applications in

the UK and US, I set-out how this could be applied to MRP electoral forecasting, and

assess whether this method improves MRP estimates. I argue that, whilst not useful

in all settings, in electoral forecasting an uneven sample distribution can improve

estimate accuracy in certain small areas, which in turn can improve the probability of

correctly predicting an electoral outcome. The results have direct implications for the

use of MRP to forecast elections and, I argue, wider implications for the use of MRP

where survey samples are typically unevenly distributed among small areas.

The fifth chapter explores how we can use informative priors in MRP. The method

of MRP is increasingly estimated in a Bayesian framework which means researchers

must specify priors for the models. To date, most use either weakly-informative or non-

informative priors. This chapter explores whether using informative priors could be

useful for MRP estimates. Specifically, through the application to electoral forecasting,

I assess whether we can improve MRP by combining it with a two-stage prior elicitation

method. In practice, this takes the form of imputing prior distributions from past

election model posteriors. I first set out how this method could be applied, and second,

assess whether this method improves estimate accuracy, estimate precision, parameter

estimation, and computational efficiency. The chapter shows that informative priors

can both improve and harm estimate accuracy and precision. Whether the priors

improve or worsen accuracy is a result of numerous factors including the similarity

between elections, the reliability of past data/models, and the sample size. The

results also show the method can improve computational efficiency and could have

the potential to improve subgroup inference. Overall however, given the variability in

accuracy improvements, I argue the risks involved in the two-stage prior elicitation

method outweigh the potential benefits.
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The concluding section of this thesis looks back across each chapter, summarising

the main findings and contributions from chapter three, four, and five. This is followed

by a discussion of the main limitations of this thesis, potential future research areas,

and finally, a note of advice for the applied MRP researcher.



Chapter 2

What is MRP standard practice?

Multilevel regression and poststratification (MRP) is a method developed to estimate

public opinion of populations who live in sub-national small areas.1 Sitting within the

wider field of small area estimation methods, MRP is a model-based technique which

uses survey data along with statistical modelling to produce estimates of opinion in

small areas.

Since its first development, it has become popular and its use has been impressively

high for a new method (Leemann and Wasserfallen, 2017: 1,003). The method’s rise in

popularity can broadly be attributed to two main aspects. First, it is an improvement

on older alternative methods which estimate small area opinion (see Lax and Phillips,

2009b). Second, the method has enabled researchers to investigate sub-national public

opinion on topics that were not previously possible (Lax and Phillips, 2009a: 371).

Together, these have led many to conclude that MRP is theoretically and statistically

superior to alternative methods (Fowler, 2016), and represents the ‘gold standard’ of

sub-national small area opinion estimation (Selb and Munzert, 2011).

Following the first introduction of the method (see Gelman and Little, 1997; Park

et al., 2004), numerous studies have demonstrated its proficiency at estimating small
1Small areas are geographically exclusive units within a country, typically below national and

regional levels. These include administrative, political or census defined areas such as districts,
constituencies, states, counties or equivalent.
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area opinion or behaviour (see Lax and Phillips, 2009b; Warshaw and Rodden, 2012),

have compared the relative contributions of different MRP components (see Hanretty

et al., 2016), and developed various extensions of the standard model (see chapter 1).

This has led to the continued growth in the use of MRP, with it becoming an important

tool for researchers in academia and further afield. While there are studies which

provide a worked example of how to apply MRP to estimate opinion or behaviour (see

Hanretty, 2019; Lopez-Martin et al., 2019; Kennedy and Gabry, 2020), there is still

limited understanding of how the method is typically applied by researchers.

The following chapter seeks to address this gap by reviewing how MRP has been

applied across social science to date. In doing so, the chapter will explore to what

extent there is a standard practice in the application of MRP, and if present, what

does this standard practice look like? The chapter will also explore and identify where

there is variation in the application of MRP. Differences in application are driven by

either methodological or substantive decisions associated with the topic of interest.

Where there is variation in the application, the chapter will provide some discussion

on the methodological and substantive decisions that researchers face.

To achieve the above, the chapter carries out a systematic review of the application

of MRP in social sciences, documenting how each of the MRP model components are

applied. In effect, the research will draw on the collective wisdom of social science

researchers, with the aim of advancing our understanding of the method’s application.

Below, I describe the systematic review process, followed by the presentation of

descriptive statistics for each MRP model component.

2.1 Method

This study was designed to summarise how MRP models have been used in previous

social science research. To achieve this, the research must first identify relevant
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literature which has used MRP, and second, document how each model characteristic

has been used.

Selection criteria

To select the relevant studies and provide some practical parameters, the following

selection criteria were used.

1. Studies in social science

The application of MRP is not restricted to social science, with notable

applications in public health (see Zhang et al., 2014). However, this research

will focus solely on the use of MRP in social science. This is because there may

be significant differences in how MRP is applied across academic disciplines.

If these differences are nontrivial, the standard practice documented in this

chapter will no longer be applicable to the application in social science.

2. Published studies

The analysis presented in this paper only takes into consideration published

work. This decision is based on both methodological and practical considerations.

From a methodological standpoint, if we are primarily concerned with identifying

standard practice, only considering published and peer reviewed work seems

reasonable. Although this approach could be argued to risk publication bias,

because MRP is not concerned with statistical significance, I believe this risk

is minor. From a practical standpoint, this approach was necessary to create a

feasible research project. An initial search of both published and unpublished

papers produced over 140 studies. While a larger N is often preferable, I deemed

this to be an unfeasible number of papers to document.
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Finding studies

Identifying relevant research in a systematic manner was one of the main challenges of

this project. This is primarily because published research which uses MRP spans across

numerous social science fields, lacking a uniform title, topic, or abstract. To ensure

I had the best opportunity to identify all relevant studies, I used two independent

approaches: keyword and citation-based search approach. The keyword approach

searched for studies published between 1997-2018 in two academic study databases

(Jstor and Web of Science). The search terms were as follows:

• State level public opinion

• District level public opinion

• Constituency level public opinion

• Multilevel regression

The search terms were intentionally broad to reduce type I error. Once duplicates

and invalid results had been removed, the full list of potential articles from this stage

totalled 1,350.

The citation based approach searched for papers which had cited two articles

considered as the founding papers: Gelman and Little (1997) and Park et al. (2004).

These papers are recognised as the first to publish work solely focused on developing

MRP and applying it to social science. To find papers which had cited the above

studies, I used Google Scholar’s ‘cited’ function. I accessed the lists in September 2019

and found 159 and 321 results for Gelman and Little (1997) and Park et al. (2004),

respectively. Once combined there was a total of 373 unique potential papers.

To identify relevant studies from the lists of potential papers, I first excluded

studies which had not used MRP, or I was not able to freely obtain access to. Second,

I excluded papers outside of social science (for example health studies) and papers

that had not yet been published. I also excluded papers which used MRP estimates
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from a previous study or studies which did not included details on model specification.

The final list of papers totalled 86.2 I show the breakdown of studies identified by

each approach in table 2.1.

Table 2.1: Number of papers by identification method

Identification method N

Key-word 13

Citation 37

Both 36

Total 86

As noted above, identifying relevant studies by paper methodology was challenging.

The key-word search produced a large number of false-positives and was an inefficient

method of finding relevant literature. The citation-based approach, while more efficient,

was more prone to false-negatives as it relied on citation of two studies rather than

paper content. Nonetheless, the overlap of studies identified by the two approaches

gives confidence that together, the two strategies were able to identify a majority of

studies which have applied MRP.

Documenting model characteristics

Once relevant studies had been identified, I created a data-set which documented

model characteristics for each unique MRP model in every paper. For the purpose of

this study, I classed a model as unique when at least one of the model characteristics

differed from other models in the same paper. For example, if one paper estimated five

models which were identical except for the opinion or behaviour estimated, each would
2I provide a list of the 86 studies in appendix A.1.
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be included as a unique model in the data-set. This could lead to the analysis giving

too much weight to studies which estimated numerous MRP models. To factor for this,

all descriptive statistics only count each unique feature from each paper once. For

instance, in the above example the five unique opinions or behaviours would be counted

in the descriptive statistics. However, all other model characteristics would only be

counted once as these were all identical cases. Although this is an imperfect solution to

documenting model characteristics, I believe this is the most suitable approach. Using

this method, papers which estimated numerous models were not over-represented

in the descriptive statistics, but the range in unique models/characteristics was

still captured. Table 2.2 shows N for papers, unique models, and unique characteristics.

Table 2.2: Number of unique papers, models and characteristics

Unique N

Papers 86

Unique MRP models 441

Estimated opinion or behaviour topic 396

Sample size 212

Small areas 105

Individual-level variables 104

Interactions 91

Area-level variables 118

Hierarchical levels 116

Time periods 102
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Bayesian models 86

Model characteristics were determined by an initial review of MRP literature. The

process was iterative with numerous amendments before the final list of characteristics

was confirmed. Although the list did not capture every single possible component of

MRP models, it accounts for what could be considered the core characteristics of

standard MRP models. Below I provide the list of characteristics, notes on coding

and what will be reported for each.

Estimated opinion or behaviour topic: The topic of each model was coded

according to the topic of the estimated opinion or behaviour. The code-frame for

topics was adapted from the Pew Research Centre list of research topics, which

provides a comprehensive list of public opinion and behavioural research areas.3 I

coded each opinion or behaviour according to the main categories in the Pew research

topics. The exception is when a specific sub-category appeared more than five times.

In these instances, I included the sub-category as a separate code. For instance,

‘Abortion’ is included in the Pew Research ‘Politics & Policy’ category, but I included

as a separate category as more than five models estimated opinion on this topic.

Where a model opinion or behaviour had clear overlap across topics, I counted both

topics. The figures reported are the proportion of models which estimated opinion or

behaviour on each topic.

Small areas: I report the small area as well as the country which the small area

belongs to. In some cases, a model used fewer small areas than there are. As I was

interested in the model and not the geographic units, I recorded the number of small
3The full list and inclusion criteria is provided in the appendix A.2. The Pew research top-

ics can be accessed here: https://www.pewresearch.org/topics-categorized/?menuItemId=
725ceef3d3181b99e26f459ffd55a01a

https://www.pewresearch.org/topics-categorized/?menuItemId=725ceef3d3181b99e26f459ffd55a01a
https://www.pewresearch.org/topics-categorized/?menuItemId=725ceef3d3181b99e26f459ffd55a01a
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areas used in the model.

Sample size: The sample size was recorded as the total sample for each model.

Figures were taken from the paper, or if not reported, the published survey sample

size. If a study estimated temporal changes in opinion by estimating a separate model

per time period, I treated the numerous models as one and report the total combined

sample size.

Hierarchical levels: I report the number of hierarchical levels included in each

model. For example, a three-level model would include individuals nested in states,

which in turn are nested in regions. I code a model as two-levels when a researcher

fails to explicitly state that they use more than two-levels.

Individual-level variables: I report the number of individual-level variables

used, the combined total of categories for all variables, and the list of variables used.

The combined categories are the sum of all individual-level variable categories. The

final list of variables is the result of grouping analogous variables together. Where

interactions are included, I count each individual variable separately. I report the

proportion of unique models which use each individual-level variable.

Area-level variables: I recorded the area-level variable and the variable type

(categorical or continuous). The list of variables was re-coded grouping similar

variables into over-arching categories.

Interactions: I report the number of number of interactions included in MRP

models and the list of interacted variables.
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Time periods: I documented time period as each unit of time that estimates

are produced for. For example, both one day and one year were recorded as one unit.

I report the proportion of models which estimate across time periods, the average

number of time periods, and the estimation method. Estimation method was recorded

as either a static model for each time period, pooled sample estimates, or directly

including time periods as a model parameter.

Bayesian modelling: I report the number of models which state they were

estimated as a Bayesian model. Models which do not explicitly state, or it could

not be directly inferred, were not recorded as Bayesian models. I also report prior

specification of Bayesian MRP models.

Missing information

Broadly papers which have used this method fall into two categories: those with

a methodological focus, or those which focus on addressing a substantive topic.

The latter typically dedicated significantly less discussion towards the MRP model.

This meant for some papers, details on the MRP model were brief or for certain

characteristics not reported. Furthermore, within the literature there was not always

consistency how the model characteristics were explained. This led to some difficulties

in interpretation, and in some cases, it was not possible to determine how they had

used the model. In these instances, I did not record model characteristics. Though

somewhat unavoidable, this means the analysis will give more weight to papers which

report model specification clearly.
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Descriptive statistics

In this chapter I report a range of descriptive statistics for the model characteristics

identified above. To report the frequency with which a characteristic is used, I report

the proportion of unique models which use the characteristic. For interactions and

Bayesian priors, the N I report is a percentage of models which use interactions or are

Bayesian. To report the range of a given characteristic, for example sample size, I

report the median, first (25%) and third (75%) quartile.4

2.2 Analysis

Growing use of MRP in social sciences

The application of MRP in social sciences has grown because the method enables

researchers to estimate sub-national small area opinion or behaviour. The growth in

the use of the method can be seen figure 2.1, which shows study by year of publication.

The histogram shows the proportion of studies which were published in each year, along

with a smoothed density line (red dashed-line). The figure shows there is a general

trend upwards starting in 2008. The method has clearly grown in popularity and seems

to have been particularly popular in 2017-2018. The figure shows a downward trend

in the past two years (2019-2020), but this is most likely due to the cut-off date for

identifying studies. Although the figure only includes published studies, and excludes

studies outside of social sciences, the figure demonstrates the growing popularity and

use of the method since its first application to social sciences in 2004.
4I report the median rather than the mean as the distribution for most of the characteristics is

skewed.
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Figure 2.1: Study publication date.
Notes: showing proportion of studies by publication date.

Estimated opinion or behaviour

As set out in the introduction of this thesis, MRP was developed to produce reliable

estimates of small area opinion or behaviour. This subsequently meant researchers

have been able to investigate questions and topics that were previously impossible

(Lax and Phillips, 2009a: 371). Yet, at present no comprehensive list of topics which

MRP has been applied towards exists. Table 2.3 provides a list of opinion or behaviour

estimated with MRP, grouped into overarching topics. In the left column I show the

topic and the right hand column reports N, the percentage of unique models which

estimated the given topic.

Table 2.3: Topic of MRP estimates

Topic N

Gender & LGBT 17%

Economy & Work 15%
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Elections & voters 10%

Politics & Policy 9%

Criminal justice 8%

Climate, Energy & Environment 7%

Health policy 6%

Immigration & Migration 6%

Abortion policy 5%

Education policy 4%

Family & Relationships 3%

Defense & National security 3%

Gun policy 2%

Race & Ethnicity 2%

Other 1%

Science 1%

Religion 1%

International Affairs 1%

Note: N = 396

From table 2.3 we can see that to date, MRP has been used across a relatively

broad range of topics with no single dominant subject. Clearly, in social science there

is no single standard topic which MRP can or should be applied to. Most topics

estimate opinion rather than behaviour. The main exception to this is ‘Elections

and voters’, where the models are estimating voting behaviour. Although there is

variation in estimated opinion or behaviour, most topics in table 2.3 are established

political cultural debates. That most studies fall under this overarching topic is most

likely because of three reasons. First, MRP is argued to be adept at estimating

opinion or behaviour for topics under this category, while seen as less useful for
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economic topics (Buttice and Highton, 2013; Ornstein, 2020). Second, most studies

use publicly available surveys, where the list of available questions are often focused

on key economic and political debates. Third, these are key topics in social science

and typically attract significant interest from researchers.

Variation in topics is driven by what interests the researcher, with choices of what

to estimate being dependent on the research objectives of the wider study. However,

methodological concerns most likely also guide researcher decisions, with researchers

needing to consider the suitability of MRP to estimate their opinion or behaviour of

interest. Researchers need to ensure that there is sufficient variation in opinion or

behaviour within the population, including geographic variation among small areas.

Furthermore, researchers need to ensure that their topic will have sufficient incidence

within the population, as MRP is known to perform poorly when the opinion or

behaviour has low incidence (Hanretty, 2019).

Small areas

Table 2.4 reports the small areas which the MRP models are estimating opinion or

behaviour for. From left to right, I report the country of the small area, the small

area itself, the number of small area units, and the percentage of unique models which

estimate for the given small area. From Table 2.4 we can see most models estimate

opinion in the United States, with a majority (53%) of all models estimating at state

level. This is perhaps unsurprising because the method was first developed in the

United States, the necessary data is more extensive and readily available, and the

political system means that representation studies are particularly relevant there.

Outside of the United States, MRP models have been applied in Canada, the United

Kingdom, Germany, Switzerland, Denmark, Portugal, EU country level, and Taiwan.

These countries are indicative of standard practice for MRP in terms of two necessary

features. First, populations where there is variance in opinion by geography, and
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second, countries where there is available data required for MRP.5

Table 2.4: Small areas

Country Small area Number of small areas Models (N)

United States States 43-51 53%

United States Congressional Districts 435-436 13%

United Kingdom Constituencies 632 5%

United States Counties 1835-3143 5%

United States Census administrative area 917-9981 4%

United States State legislative districts 1942-4335 3%

Switzerland Cantons 26 2%

United States Cities (>20,000) 1600 2%

United States Metropolitan areas 365-381 2%

Australia Electoral districts 151 1%

Canada Electoral districts 338 1%

Canada Metropolitan areas 4 1%

Canada Provinces 10 1%

Denmark Congressional Districts 12 1%

EU Countries 27 1%

EU Regions 9 1%

Germany Electoral districts 299 1%

Portugal Administrative districts 18 1%

Taiwan Census administrative area 23 1%

United Kingdom Local authority 380 1%

5See ‘Introduction to MRP’ section which explains the necessary data required for MRP. Although
alternative methods for the construction of a poststratification frame can alleviate such strict data
requirements (see Hanretty et al., 2016; Leemann and Wasserfallen, 2017), most applications still use
the standard method.
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United States Designated Marketing Area 101 1%

Note: N = 105

The number of small areas is interesting and highlights the variety of settings

which MRP has been applied to. For instance, the range of small areas from 4-

9,981 shows that MRP has been applied to estimating small area figures for both

large (Canadian metropolitan areas) and small populations (US census administrative

districts). However, most models do not estimate for such large of small populations.

Indeed, if the goal is solely to estimate opinion or behaviour, the benefits of MRP

will be somewhat negligent for such large populations. For such small populations,

the model would need a large survey to obtain a sufficient number of respondents per

small area, or if there is not sufficient coverage, many small area estimates will simply

be a function of the area-level variables included. Decisions on which small area to

estimate for will most likely be solely substantive, with the research question dictating

what area the researcher requires opinion estimated within.

Sample size

One of the reasons that MRP was argued to be better than disaggregation was the

ability to estimate small area opinion with much smaller sample sizes (see Lax and

Phillips, 2009a). Indeed, early research into MRP argued that the method was able to

produce reliable estimates of opinion from standard sample surveys of around 1,400

(Lax and Phillips, 2009b). Yet, despite acknowledgments that MRP enables researchers

to use smaller samples, there are few guidelines on required minimum sample size. This

is partly because sample size requirements for multilevel modelling are complicated.

As opposed to standard regression, multilevel models have sample size requirements

at multiple levels (Bell et al., 2008). In MRP, and multilevel modelling more generally,

there is no consensus on minimum or optimal sample size. Often suggestions for
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minimum or optimal sample size are study-specific and somewhat subjective. The

below figures cannot provide a minimum nor best sample size for MRP, but advance

our understanding by showing the standard range which most MRP sample sizes fall

within.

Overall sample size

Table 2.5 reports the median, first, and third quartiles for total sample for all MRP

models. The median figure of 7,742 is an indicator of the total sample size used

by MRP models in general, while the first and third quartiles of 2,512 and 54,196,

respectively, highlight the range of sample sizes used by most MRP models. The

median figure highlights that typically MRP uses surveys which have a larger sample

size than is conventional for nationally representative surveys.6 The interquartile

range of 51,684, shows that sample size for MRP varies significantly. This is largely

because necessary sample size is somewhat dependent on the number of small areas

and the number of time periods which opinion or behaviour is being estimated for.

An increase in either of these typically requires a larger sample size.

Table 2.5: Total sample size

Median First quartile (25%) Third quartile (75%)

All models 7742 2512 54196

Note: N = 212

Sample size and small areas

Sample size considerations are closely linked to the number of small areas used.

Accordingly, the below analysis highlights how sample size varies depending on number

of small areas. To explore this, I first group MRP models according to the number of
6Typically nationally representative survey samples are between 1,000-2,000.
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small areas opinion or behaviour is estimated for. Among unique models, the range

in number of small areas is from 4 to 9,981 with a median of 50. I divide MRP

models according to the number of small areas, with > 51 small areas labeled as the

upper-half, and models which estimate for ≤ 51 labeled as lower-half.7

Table 2.6 reports sample size according to the two groupings of small areas. From

the median figures, it is clear the number of small areas affects sample size. Models in

the upper-half (i.e. models estimating in > 51 small areas) use much larger sample

sizes than those in the lower-half (i.e. models estimating ≤ 51 small areas). Upper-half

models have a median sample size of 27,116 and a first and third quartile of 9,342 and

71,437, respectively. Whereas, lower-half models had a median sample size of 5,110,

with a first quartile of 2,004 and third quartile of 19,766.

Table 2.6: Total sample size (Models grouped by number of small areas)

Median First quartile (25%) Third quartile (75%)

Lower-half 5110 2004 19766

Upper-half 27116 9342 71437

Note: N = 212

As models which have a greater number of small areas will require more respondents

to ensure adequate sample per small area, it is unsurprising that the total sample size

for upper-half models is larger. However, although total sample size for upper-half

models will be larger, sample size per small area will most likely be smaller. Table 2.7

reports the number of respondents per small area for all models, upper and lower-half

categories. These assume an evenly distributed sample among small areas, something

which is unlikely, but nonetheless are useful to better understand standard MRP
7Although the median number of small areas is 50, I decided to separate models by ≤ 51 and

> 51. This is because models with 50 or 51 small areas are both estimating opinion or behaviour
at US state-level. It did not make sense to analyse these models separately and so I increased the
lower-half threshold. The two groupings therefore are unequal sizes, but serve the purpose here of
exploring how sample size varies depending on number of small areas.
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sample sizes.

Table 2.7: Average sample per small area

Median First quartile (25%) Third quartile (75%)

All models 87 25 243

Lower-half 110 40 516

Upper-half 19 13 153

Note: N = 212

In contrast to table 2.6, which highlighted that lower-half models typically use

smaller samples, table 2.7 shows that lower-half models use more respondents per

small area than upper half models. For all models, MRP uses samples which have

on average 87 respondents per small area. However, in the lower-half category this

rises to 110 respondents, while for the upper-half, the number of respondents per

small area decreases to 19. This pattern is most likely because estimating small area

parameters is easier with a greater number of small areas, and therefore requires fewer

respondents per small area (Theall et al., 2011). Whereas, with fewer number of small

areas, the estimation of small area parameters is more difficult and therefore requires

a bigger sample per small area. Furthermore, while we need adequate coverage of

respondents per small area, we also need to ensure that overall we have a large enough

sample to reliably estimate all parameters included in the model. This means that

models with fewer small areas will typically have more respondents per small area.

Sample size and time periods

The final characteristic to account for when considering sample size is whether the

model estimates opinion over a time period. These models require larger sample sizes

to ensure adequate respondents within small areas and across time periods. Table 2.8

reports sample sizes controlling for time periods of a model. Once we account for time
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periods, total sample size is much lower than the figures reported in either table 2.5

or 2.6. The median sample size for all models is 4,583, with a first and third quartile

of 1,977 and 12,001, respectively. For lower-half category models the median sample

size is 2,784 and for upper-half models the median sample size is 12,063.

Table 2.8: Total sample per time period

Median First quartile (25%) Third quartile (75%)

All models 4583 1977 12001

Lower-half 2784 1607 7435

Upper-half 12063 5619 56024

Note: N = 212

Finally, table 2.9 reports respondents per small area accounting for time periods

for all models, upper and lower-half small area categories. From table 2.9 we can see

that the standard (median) sample size per small area is 49 for all models, 61 and 14

for lower and upper-half models, respectively. We again see a similar trend, that is,

models with a greater number of small areas have fewer respondents per small area,

while models with fewer small areas typically use samples with more respondents per

small areas.

Table 2.9: Average sample per small area and time period

Median First quartile (25%) Third quartile (75%)

All models 49 21 141

Lower-half 61 37 146

Upper-half 14 7 96

Note: N = 212
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When considering sample size for MRP, researchers may refer to (Lax and Phillips,

2009b) who have argued that around 1,400 respondents are adequate to reliably

estimate opinion in 49 small areas, while Warshaw and Rodden (2012) suggested that

2,500 and 5,000 samples were suitable for 436 and 1,942 small areas, respectively.

However, analysis by Buttice and Highton (2013) noted that small sample sizes - such

as 1,500 for 50 small areas - resulted in significant variation in MRP estimate accuracy.

The results presented here are not meant to be a guide for minimum sample size but

provide some results which are indicative of standard practice for the application of

MRP in social science. The figures highlight how the number of small areas and time

periods must be taken into account when considering sample size. Accordingly, the

figures reported in table 2.8 and 2.9 - both of which take into account time period

and number of small areas - perhaps best reflect the standard sample sizes used by

MRP to date.

However, these tables show even when we account for number of small areas

and time periods, there is still significant variation in sample sizes, as shown by the

interquartile ranges. This variation will most likely be due to other practical and

methodological considerations that researchers face. For example, researchers who

wish to estimate a more complex model will require a larger sample size.

Hierarchical levels

One of the key principles of MRP is that opinion is modelled as a function of

demographic and geographic variables hierarchically. That is, respondents are nested

within small areas. To explore standard practice among MRP models, table 2.10

reports the number of hierarchical levels of MRP models. The table shows that across

all models, most use three hierarchical levels. This means that individuals are nested

within small areas, which are then in turn nested within a higher geographical area

such as region. That the majority of models use three hierarchical level suggests that
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most researchers believe small area estimates benefit from including an additional

level.

For lower and upper-half small area categories, there seems to be little difference

between how many hierarchical levels are used. Both have a median of three, while the

small differences in first and third quartiles indicate that lower-half models sometimes

use two hierarchical levels, while upper-half models sometimes use four hierarchical

levels.

Table 2.10: Hierarchical levels

Median First quartile (25%) Third quartile (75%)

All models 3 2 3

Lower-half 3 2 3

Upper-half 3 3 4

Note: N = 116

Individual-level variables

Individual-level variables are an important feature of MRP models. Indeed, opinion

is modelled as a function of individual-level variables (Lax and Phillips, 2013: 5).

Typically, these are demographic characteristics of respondents. This is not a technical

requirement, but rather a function of what data is available to researchers.8 Despite a

limited set of possible variables, researchers are still faced with decisions of what to

include and what to exclude. It is therefore useful to explore how many and which

individual-level predictors are typically used by MRP models. This should advance

our understanding of what type of variables are standard - and useful - for estimating

opinion and behaviour.
8All individual-level predictors are required to be part of the poststratification frame. To build

a poststratification frame we need joint distributions of all variables for each small area. This is
restricted to a limited set of primarily demographic variables.
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Number of categories

Table 2.11 reports the standard number of individual-level variables used by MRP

models and the standard number of combined categories of the variables used. For

example, if a MRP model used gender (Male, Female) and Ethnicity (White, Non-

white), the number of variables would be two, with four categories. The first row

shows that standard practice is to use four individual-level variables, as can be seen by

the median and first quartile figure of four. There is a greater range in the number of

categories that researchers use for the individual-level variables. Standard practice is

for a combined total of 13 categories, but first and third quartiles of 8 and 16 highlight

that there is significant variation in the number of categories typically used. Decisions

on the number of individual-level variables will most likely be associated with sample

size, with larger sample sizes enabling the use of more variables and a greater number

of categories. Although, researchers may simply prefer to estimate simpler models

with fewer variables, especially if they think that gains from additional individual-level

variables will be marginal, or non-existent.

Table 2.11: Number of individual-level variables and categories

Median First quartile (25%) Third quartile (75%)

Variables (N) 4 4 5

Categories (N) 13 8 16

Note: N = 104

Variable choice

As noted above, researchers face constraints on which individual-level variables are

available for use. Nonetheless, their choices between even a limited set of individual-

level predictors, represents assumptions and expectations that the given variables

are predictive of the opinion of interest. Table 2.12 reports the proportion of unique
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models which used each individual-level variable.

Table 2.12: Individual-level variables

Variable N

Gender 92%

Education 89%

Age 86%

Ethnicity 70%

Past vote 17%

Poll 8%

Time period 8%

Income 6%

Marital status 6%

Employment 5%

Housing tenure 5%

Social Grade 5%

Ideology 3%

Foreign born 2%

Language 1%

Policy 1%

Religion 1%

Note: N = 104

From Table 2.12 it is clear four individual-level variables are the most common:

gender, age, education and, ethnicity. Gender was used in 92% of the unique models

analysed here, education 89%, age 86%, and ethnicity in 70% of models. There

are some differences in how researchers use these variables, whether as categorical



2.2. Analysis 46

or dichotomous, or whether combined with another variable, for instance gender &

ethnicity. But clearly previous research has strongly relied on these demographic

features as drivers of opinion across various topics. Other demographic variables

include characteristics concerning a respondent’s income, family or relationship status,

or their housing situation. Past vote is also a widely used individual-level variable,

owing to the frequency with which MRP is used to forecast elections and because vote

choice is often highly predictive of other political opinions. The other non-demographic,

but widely used variable, is time period. This refers to the time period which the

respondent was surveyed.

The prevalence of the individual-level variables reported in table 2.12 will most

likely be a combination of methodological and substantive decisions. From a method-

ological standpoint, researchers are limited by which variables are available in the

survey and what variables they can include in the poststratification frame. From a

substantive perspective, researchers should choose variables that they deem predictive

of their opinion or behaviour of interest. While Buttice and Highton (2013) caution

against assuming past variables will be predictive of other opinion, it is clear that

past applications of MRP believe gender, education, age, and ethnicity are strongly

predictive of a wide variety of opinion or behaviour.

Area-level variables

Area-level variables are an important aspect of MRP, as they are used at level-2 of

the model and contribute towards the model better identifying area-level variance.

The importance has been demonstrated by studies which have found that estimate

accuracy is most impacted by the inclusion of area-level variables (see Buttice and

Highton, 2013; Hanretty et al., 2016). It is therefore important that researchers choose

relevant and predictive variables to ensure accurate estimates.
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Number of variables

An important first consideration is how many area-level variables researchers use.

Table 2.13 reports the median, first, and third quartiles for all models, lower and

upper-half small area categories. From table 2.13 we can see for all models the median

number of area-level variables is three, with most models using between two and five,

as can be seen by the first and third quartiles. The number of area-level predictors

is clearly related to the number of small areas. For models with fewer small areas

(lower-half category), standard practice is to use two area-level variables, while for

models with a larger number of small areas (upper-half category), the average is six.

This difference can be explained by the difference in potential risk of overfitting the

model. With fewer small areas, the number of area-level variables that can be used

before the model overfits is lower than is the case for models with a greater number of

small areas.

Table 2.13: Number of area-level variables

Median First quartile (25%) Third quartile (75%)

All models 3 2 5

Lower-half 2 2 3

Upper-half 6 4 8

Note: N = 118

Type

Individual-level variables are always categorical as we need to poststratify by the

variable categories. However, area-level variables can be either categorical or con-

tinuous. Table 2.14 reports the breakdown of area-level predictors into continuous

and categorical variables. As can be seen in table 2.14, using continuous area-level

variables is far more common than categorical variables. Indeed, continuous variables
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account for over nearly three quarters of the area-level variables used. This is most

likely because continuous variables are typically better at helping the multilevel model

identify variation in small area opinion or behaviour. When researchers use categorical

variables, it is mostly to account for geographical units above the small areas.

Table 2.14: Type of area-level variable

Variable Type N

Continuous 72%

Categorical 28%

Note: N = 236

Variable choice

Table 2.15 reports area-level variables used among the MRP models under consideration

here. The first column lists the variable, and the second column lists the percentage

of unique models which include each area-level variable. The most common is higher

geographical area, which accounts for nearly all the categorical variables identified in

table 2.14. This variable is typically the region which the small area is in. It is used

in MRP to encourage shrinkage of opinion or behaviour to the mean of the region.

Although this is typically classed as an area-level variable, it is specified in the same

way as small areas and individual-level variables - that is - as a random intercept term.

The second most common variable used is party vote share. The prevalence of past

vote share is unsurprising, as it is often available at small area level and can be highly

predictive of political opinion or behaviour. The remaining variables are predominantly

demographic, or characteristics of the population in the small areas. Some of the more

commonly used variables include Religion (43%), Jobs / Employment (25%), and

income of the small area population (22%). As with individual-level variables, data

availability is perhaps the most significant factor in determining which variables are
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used. However, at the area-level there is a much greater range in variables available,

including free-to-access government statistics on small areas.

Overall, researchers tend to use variables that capture something (typically de-

mographic) about the small area population. However, numerous studies also use

variables which are specific to their estimated opinion or behaviour. For example, if

interested in the opinion towards the environment, researchers might include variables

about the environment in each small area. While the number and type (categorical

or continuous) of area-level variables are methodological decisions, variable choice

is substantive and should be based on which variables a researcher believes to be

predictive of their topic.

Table 2.15: Area-level variables

Variable N

Higher geographical area 69%

Past vote share 51%

Religion 43%

Jobs / Employment 25%

Population income 22%

Population ethnicity 14%

Urban / Rural 10%

Education 9%

Same-sex households 9%

Military veterans 8%

Political attitudes 8%

Geography 6%

Car / drivers 5%

Immigrant population 5%
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Population age 4%

Population size / density 4%

Environmental 3%

Government attribute 3%

Health / disability 3%

Population language 3%

Poverty 3%

Electoral candidate 3%

Housing tenure 3%

Social grade 3%

Crime rates 2%

Family size 2%

Female population 2%

Marital status 2%

Party vote share 2%

Segregation 1%

Time period 1%

None 7%

Note: N = 118

Interactions

Researchers may also use interactions in the MRP models. Including interactions

has been shown to improve prediction and inference, especially among sub-groups

within each small area (Ghitza and Gelman, 2013). In MRP, researchers can interact
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individual-level variables - as is the most common case - but can also include cross-level

interactions between individual and area-level variables.

While the majority of MRP models do not use interactions, the use is still prevalent

in MRP applications with just over one-third (36%) of unique models including

interactions. For models which use interactions, standard practice is to use a single

interaction, as can be seen in table 2.16, which reports the median, first and third

quartiles of number of interactions. Using a single interaction is most likely due

to a number of factors, including sample size and concerns about model complexity.

Including one or more interactions will typically require a larger sample size. Researcher

decisions on the number of interactions is therefore restricted by the sample size

available. Similarly, including interactions makes the model more complex and harder

to estimate. This means that researchers will often restrict the number of interactions

to ensure they can reliably and efficiently estimate the model.

Table 2.16: Number of interactions included

Median First quartile (25%) Third quartile (75%)

1 1 2

Note: N = 33

Finally, in table 2.17 I report the interacted variables and frequency of use among

interaction models. The interactions most used in MRP applications are either

ethnicity and gender or age and education. These interactions are not particularly

surprising, given that they include the four individual-level variables most used by

MRP models. When including an interaction, it would seem that standard practice is

to include one interaction and interact two individual-level variables already included

in the model. Although cross-level interactions are possible to implement in MRP,

only a few papers make use of them.
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Table 2.17: Variables interacted

Interaction N

Ethnicity & Gender 58%

Age & Education 42%

Age, Ethnicity & Gender 9%

Age & Ethnicity 6%

Age & Past Vote 6%

Education & Ethnicity 6%

Education & Past Vote 6%

Age & Gender 3%

Age & School 3%

Age, Education & Employment 3%

Education & Gender 3%

Ethnicity & Income 3%

Ethnicity & Past Vote 3%

Ethnicity & Region 3%

Ethnicity & State 3%

Foreign born & Gender 3%

Gender & Profession 3%

Income & Region 3%

Income & State 3%

Past Vote & Past Vote 3%

Past Vote & Time 3%

Note: N = 33
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Time periods

One argument put forward for why MRP was an improvement over disaggregation was

its ability to measure opinion change over time in small areas (Howe et al., 2015). The

smaller sample sizes required by MRP, compared to disaggregation, meant researchers

now had the opportunity to investigate temporal shifts in opinion or behaviour. Indeed,

using MRP to estimate small area opinion change over time periods is popular among

researchers who use MRP. Among all unique models analysed here, just over two-fifths

(42%) estimated opinion or behaviour over a time period. Decisions about whether to

estimate temporal changes in opinion or behaviour will solely be based on whether

the research question requires it. However, greater data requirements - and model

complexity depending how time periods are estimated - will most likely also play a

role in the decision.

On average, the median number of time periods estimated for is 20, with first and

third quartiles of 6 and 29, respectively. Time periods here could be years, days or any

similar units, where respondents can be nested within. How a model estimates opinion

across these given time periods also varies significantly. Broadly, there are three ways

that MRP can be used to estimate opinion or behaviour over time periods. First, a

separate static estimate, where there is a separate MRP model for each time period.

Second, pooled-sample estimates where again there is a separate MRP model for each

time period. However in this application, the sample is pooled so that survey data

from the preceding and subsequent time periods are included to produce estimates

for each time period. Third, time periods are directly included in the MRP model

as a parameter. This method estimates one model with all data and a parameter

for the time period. Table 2.18 reports the breakdown of MRP time period models

by method. Including time period as a MRP parameter is the most commonly used

approach, followed by the pooled-sample, while static estimates are the least common

method. Which method a researcher uses will most likely be driven by methodological
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decisions about the method they think will produce the best estimates.

Table 2.18: Time period estimation method

Method N

Modelled 35%

Pooled 30%

Unique model 21%

No data 14%

Note: N = 43

Bayesian models

MRP is increasingly estimated as a Bayesian method. The benefit of Bayesian

estimation for MRP is in part because it “propagates uncertainty across the modeling,

and thus gives more realistic confidence intervals” (Lopez-Martin et al., 2019). Table

2.19 reports the percentage of models which are Bayesian. The majority of models are

still not estimated as Bayesian models, but nonetheless, nearly a third of the models

under analysis here are estimated as Bayesian models.9

Table 2.19: Bayesian model

Bayesian estimation N

No 71%

Yes 29%

Note: N = 86

For Bayesian analysis, priors are an additional model component that researchers

must specify. Priors are a means to incorporate knowledge that we have before
9These figures are indicative of whether a paper stated the model was Bayesian. Papers which

did not explicitly state the model was Bayesian were assumed to not be.
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estimation into the model and affect the estimation of parameters. Typically, we

can categorise them as non-informative where the data is allowed to speak for itself.

Weakly-informative priors where we rule out unlikely or impossible parameter values

or informative priors where we directly encode strict numerical values for the expected

distribution of the parameter. In table 2.20, I report the prior specification of the

Bayesian MRP models. In MRP papers, many are not explicit or simply do not

state the type of prior that they use in their Bayesian model. Indeed, half of the

Bayesian models analysed here do not report prior specification. Among those who

do explain their prior distribution, half are non-informative and half are weakly-

informative priors. The debate between non-informative and weakly informative priors

is solely methodological, and represents a wider debate in Bayesian analysis over which

researchers should use.

Table 2.20: Prior specification

Prior N

Non-informative 20%

Weakly-informative 20%

Other 8%

Not reported 52%

Note: N = 25

2.3 Conclusion

The motivation for this chapter was the belief that at present there is limited clear

guidance on how best to use MRP. By documenting how the method has been used in

social sciences to date, the chapter drew on the collective expertise of previous scholars

who have used MRP. By doing this, the chapter has advanced our understanding of how
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MRP is typically applied in social science. The chapter has identified standard practice

when present, and identified areas where there is greater variation in the application

of the method. When identifying variation, the chapter also provided discussion on

the key methodological and substantive considerations that drive researcher decisions.

The analysis identified that standard practice for sample size was around 49

respondents per area. This varied depending on the number of small areas, with fewer

small areas requiring more respondents per small area, whereas the larger number of

small areas required fewer respondents per small area. Similarly, when we account for

time periods the standard sample sizes decrease. Indicating, that while time period

MRP models require larger sample sizes overall, they require fewer respondents per

time period, when compared to models which estimate for a single time period.

For individual-level variables, the analysis highlighted that standard practice is to

use four individual-level predictors, and between 8-16 categories altogether. The most

used individual-level variables in MRP were age, gender, education, and ethnicity.

These variables have been used by most models under analysis here. The prevalence

is most likely due to the predictive power of these demographic characteristics and

that they are often readily available at the right level and in the right format. For

area-level variables, for all models the standard (median) was three, with most models

using between two and five area-level variables. This also varied depending on the

number of small areas, with models which have more small areas using more area-level

variables. There is a broader range of area-level variables compared to individual-level

variables. Nonetheless, area-level variables used typically fall into three categories,

geographic, demographic and political.

Interactions are used by around a third (36%) of all papers analysed here. Typically,

researchers use one interaction, and most often, researchers interact either age and

education or gender and ethnicity. The analysis also identified that most models used

three hierarchical levels, that is individual respondents nested in small areas, which in
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turn were nested in a higher geographical unit. When investigating temporal changes

in opinion in small areas, researchers differ in how they use MRP. To date, most

common is to directly include the time period in the model as a parameter, followed

by the survey pooling method. Most MRP models are not Bayesian, although this

is a growing feature of MRP in applied work. When estimating MRP as a Bayesian

method, researchers often do not state what their prior distributions are, and of those

who do, researchers typically either use non-informative or weakly informative priors.

Across all the MRP components identified in this chapter, a standard practice does

seem to emerge. However, for each component there is still variation. This means

standard practice is not a single specification, but a range in which most of MRP models

fall within. Researchers who wish to apply MRP should take note of these ranges, and

use them to guide their MRP application decisions. The chapter has also provided

some discussion for the main reasons for variation in application, highlighting the

different methodological and substantive considerations of researchers when applying

MRP. For the most part, these decisions are largely driven by methodological concerns

and the limitations that a researcher faces, perhaps of most significance, are the sample

size available and limitations of available data.



Chapter 3

MRP and variable selection

Multilevel regression and poststratification (MRP) is a method used to produce

estimates of public opinion or behaviour in sub-national units of interest (small areas).

Though the method has gained popularity and has been applied in social sciences

to answer numerous substantive questions, the method is far from a panacea for all

situations. Indeed, there are many instances where MRP is not a useful method (for a

detailed discussion see Hanretty, 2019). As well as not being suitable in every situation,

MRP cannot be uniformly applied to estimate small area opinion or behaviour.

One reason for this is the need for tailored variable selection. Researchers need

to undertake preliminary research and analysis to ensure their variable selection

choices are rooted in existing theory. This is a time-consuming task and, for many

researchers, not a viable method to determine relevant variables. As an alternative,

most applications of MRP directly replicate variables from previous applications

(a method referred to here as path dependency). This method is often employed

regardless of whether estimated opinion or behaviour is the same. Path dependency is

presumably employed on the assumption that replicated variables will be predictive

of all opinion or behaviour in social sciences. However, previous research by Buttice

and Highton (2013) found significant variation in estimate accuracy when employing



3.1. Background 59

a single set of variables to estimate a variety of opinion and behaviour.

Motivated by the fact that path dependency is unsatisfactory, while theory-based

variable selection is not feasible in many applications, this chapter explores whether au-

tomated variable selection through ‘Least Absolute Shrinkage and Selection Operator’

(lasso) can offer researchers a viable alternative. Lasso regression is a regularisation

method which “shrinks the coefficient estimates toward zero” (James et al., 2013).1 For

variable selection, variables with a non-zero coefficient value are selected for inclusion

in the model. By combining with MRP, this would avoid simple path dependency and

relieve the requirements of extensive preliminary analysis of theory.

The findings presented within this chapter suggest that when using lasso to select

variables for MRP, the estimates are as, if not more, accurate than path dependency

variable selection. The results also highlight that the benefits of lasso are notable for

area-level variables, though less clear for individual-level variables and interactions.

While it is difficult to compare the accuracy of lasso to theory based variable selection,

a more conservative approach would favour theory-based variable selection. This

chapter proceeds first with a brief introduction to MRP, variable selection and lasso

regression. This will be followed with the theory of lasso regression, a description

of the chapter method, the presentation of the results, and finally discussion of the

findings.

3.1 Background

When interested in public opinion or behaviour, researchers typically use surveys to

gauge a national-level picture. However, when interested in opinion or behaviour

within sub-national small areas, surveys are no longer a practical method. In these

instances, researchers need to make use of small area estimation techniques, such as
1In contrast to other regularisation methods such as ridge regression, lasso may shrink coefficients

to exactly zero.
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MRP. The method was first developed by Gelman and Little (1997), and subsequently

applied to estimating opinion in social science by Park et al. (2004). To date, there

have been numerous studies which have made significant contributions toward setting

out how MRP can be used (See Lax and Phillips, 2009b; Warshaw and Rodden, 2012;

Buttice and Highton, 2013; Kastellec et al., 2016). As a result, it has now been applied

by numerous researchers in social sciences across a range of mostly political topics.

MRP works in two stages. First a multilevel model is estimated where opinion or

behaviour is modelled as a function of demographic-geographic variables (Tausanovitch

and Warshaw, 2013: 334). For example, if the model included gender, age, and

education, the first stage would produce an estimate for every female, aged 18-24, and

university educated in each small area. Second, the estimates for each demographic-

geographic person type are weighted to the population frequencies (Pacheco, 2011:

420). That is, the estimates are weighted according to the proportion each person

type represents in the population.

MRP variables

MRP variables are one of the most important components of the model. Indeed, the

model estimates opinion as a function of different individual and area-level predictors

(Tausanovitch and Warshaw, 2013: 334). It is therefore imperative that these variables

are well-suited to the opinion of interest, as poorly selected variables that are not

predictive of the estimated opinion will result in inaccurate small area estimates. In

recognising the importance of variable selection choices, scholars have emphasised the

importance of researchers tailoring variable selection for their topic (Warshaw and

Rodden, 2012; Buttice and Highton, 2013). As well as choosing the right variables,

selecting the right interactions between variables may have significant impact on the

estimates. Key work by Ghitza and Gelman (2013) has demonstrated that including

‘deep-interactions’ in MRP models can significantly improve estimate accuracy.



3.1. Background 61

At level-1 of the multilevel model, opinion or behaviour is modelled as a function

of individual-level variables. In most cases, these are demographic characteristics

of respondents. In applications of MRP to date, there are four main individual-

level variables used: age, gender, ethnicity, and education (see chapter 2). Whether

combined or used alone, these variables are used by most MRP models, regardless of

country or topic.

Researchers are faced with numerous restrictions when selecting individual-level

variables. First, the variables must be included in the survey, second, the poststratifica-

tion frame requires the small area joint distribution proportions for all individual-level

variables included. For example, if we include gender (Male and Female) and age

(18-24, 25-49, 50-64, 65+) as individual-level variables, we need the proportions of

Males 18-24, Females 18-24, and so forth in each small area. Typically, this is done

by directly inferring these proportions from a census or similar data frame. This

restricts the application of MRP to countries where the required data is available.

However, the development of alternative methods to construct a poststratification

frame have enabled the wider application of MRP. For instance, Hanretty et al. (2016)

constructed a frame by a raking procedure, while Leemann and Wasserfallen (2017)

developed what they call ‘synthetic’ poststratification which allows researchers to

construct a poststratification frame with relatively small N survey sizes.

At level-2 of the multilevel model, we estimate the effects of each small area. This

is equivalent to estimating separate intercepts or slopes for each small area.2 Typically,

small area effects are modelled as a function of area-level variables (Kastellec et al.,

2010: 772). Area-level variables are auxiliary data which capture some characteristic of

each area. These could be political, demographic or geographic features of each small

area. Using area-level variables is key to the MRP model better identifying small area

variation (Gelman and Hill, 2007: 269). Indeed, previous research has demonstrated
2Most MRP applications only estimate a random intercept.



3.1. Background 62

that the inclusion of area-level variables has the largest impact on estimate accuracy

(Warshaw and Rodden, 2012; Buttice and Highton, 2013; Hanretty et al., 2016).

As with individual-level variables, availability of data in the correct format is

the main limitation when researchers are deciding which area-level variables to use.

However, there are fewer restrictions than for individual-level variables. Indeed, in

many applications there are numerous free-to-access small area statistics, providing

researchers with an abundance of potential variables to use.

The direct impact of both individual and area-level variables has led scholars

to stress the importance of carefully selecting variables, and tailoring them towards

the estimated opinion or behaviour (Buttice and Highton, 2013). Yet, chapter 2

highlighted a distinct lack of variation in variables used across MRP applications

regardless of country or topic. This might partly by due to researchers’ inability to

ensure their variable selection will lead to accurate estimates. Validating variable

selection is difficult because we rarely have true small area opinion figures with which

to compare MRP estimates against.

One application where this is possible is electoral forecasting, where researchers can

validate estimates against electoral results. This means that researchers can determine

whether their selected variables are well suited. For most other topics this is not

possible. Instead, it seems researchers base variable selection on previous applications

of MRP which estimate a political opinion or behaviour. This is presumably employed

on the basis that drivers of all political opinion or behaviour are identical or similar.

However, researchers cannot be certain these variables will be well suited to their

specific application of MRP. Indeed, Buttice and Highton (2013) noted significant

variation in accuracy when using a single set of variables to predict a variety of opinion

or behaviour.

In applications where no previous validated examples exist, the process of variable

selection is more difficult. Researchers must carry out an extensive survey of the exist-



3.1. Background 63

ing theory, or if no theory exists, in-depth preliminary analysis to identify predictive

variables. The latter is a more onerous task than the former, but nonetheless, both

represent a significant challenge to researchers who wish to apply MRP to new topics.

Although examples of researchers tailoring their models are rare, there are some.

For instance, Leemann and Wasserfallen (2016) tested different combinations for

each MRP model, and only presented the findings of the best model. However, this

example is the exception rather than the rule. In most cases there seems to be limited

consideration given to how the variables used will affect MRP estimates - beyond

recognising that the variables have been demonstrated to perform well on political

issues in previous studies.

Variable selection

Variable selection is a key component of any statistical modelling. Which variables we

use to predict, explain, or describe is one of the most important decisions researchers

face. The decisions have direct impact on the validity and reliability of statistical

models and the research more broadly. Researchers thus need to carefully select vari-

ables, ensuring they include all relevant and predictive variables, exclude unnecessary

and irrelevant variables, and ensure they avoid collinearity among variables. This is

a time-consuming task, and with the growth in volume of available data, this task

has become increasingly onerous. Furthermore, should a researcher wish to include

interactions between variables, the tasks becomes more problematic as the number of

features significantly increases.

Combing MRP with automated variable selection is not entirely new. Sparse

MRP (of sMRP) is currently being developed by Goplerud et al. (2018). The method

combines variable selection of lasso with a multilevel model (Goplerud et al., 2018: 1).

Their work has demonstrated that by applying lassoPLUS priors on the coefficients,



3.1. Background 64

they introduce sparsity directly into the multilevel model.3 The estimates may then be

poststratified as is done in the standard MRP application. However, unlike a normal

multilevel model, where individual-level variables are treated as varying intercept

terms, their model treats individual-level characteristics as fixed effects. A main

argument for multilevel modelling was the benefits of partial pooling (Gelman and Hill,

2007), which was achieved by the varying intercept terms. By treating individual-level

characteristics as fixed effects we lose this advantage. Proponents of sMRP would

maintain that the sparsity introduced by the priors achieves the same goal as partial

pooling. While it is beyond the scope of this chapter to comment in favour of either

strategy, for those who wish to use varying intercepts, sMRP is not suitable.

Another recent development is work by Broniecki et al. (2021), whose method

uses Ensemble Bayesian Model Averaging (EBMA), to produce estimates which

are a weighted combination of five independent variable selection methods.4 They

demonstrated that EBMA performs better than theory-based selection, and better

than each of the five independent selection methods, including lasso. However, their

method only performs variable selection on area-level variables, and though there is

good reason for this, if we are interested in variable selection of both individual and

area-level variables this method is not suitable.5

Lasso variable selection

In regression analysis, researchers have developed automated variable selection to

lessen the burden. These methods seek to identify the best model by determining the

optimal combination of variables to use. That is, they seek to determine the best fitting

model to predict an outcome variable. The growth in use and popularity of automated
3The lassoPLUS framework is itself a recent development by Ratkovic and Tingley (2017).
4The five variable selection methods they use are: best subset, lasso, PCA, gradient boosting,

and support vector machine.
5The improvements in accuracy are greatest from the inclusion of area-level variables. They also

note that the risks of overfitting are high for area-level variables, but much less problematic for
individual-level variables.
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variable selection may partly be attributed to the growth in computational power,

which has meant researchers can sift through large numbers of potential candidate

models with relative ease and speed.

Perhaps the simplest and most widely used are stepwise and best-subset methods.

These methods seek to find the best model by selecting variables according to some

predefined criterion. Stepwise works by starting with either a full or null model,

then sequentially adding or subtracting variables according to whether the variable

improves the model. The original, and still widely used criteria, is whether the added

variable is statistically significant (See Heinze and Dunkler, 2017). The best model is

when all variables included have a statistically significant p-value. Later alternatives

have made use of AIC or BIC to determine variable inclusion (Hastie et al., 2009).

Best-subset works along a similar line of logic, the method works by searching

through all possible variable combinations to find the best model according to a set

criterion (Hastie et al., 2009). The criteria used to select variables include R-squared,

AIC, BIC, log-likelihood, and Mallows C, depending on the model and researcher

preference.

Both methods are widely used within social sciences and further afield. However,

neither offer satisfactory solutions to variable selection. They are both criticised for

their discrete process, tendencies of high variance, and inability to reduce prediction

error from the null or full model (Hastie et al., 2009). Indeed, Breiman (1995)

demonstrated that traditional model selection methods were not suitable as they did

not lead to better prediction and did not provide stable solutions. The solutions

provided by both methods typically fit well locally but perform poorly globally (Yuan

and Lin, 2006).

In response to such problems, researchers have recommended least absolute shrink-

age and selection operator (lasso). Lasso works be applying a penalty (known as

lambda) to the coefficients, which shrinks them towards, and in some cases to zero.
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For variable selection, we simply take-forward variables with non-zero coefficients. As

a variable selection method, lasso has been demonstrated to improve overall prediction

and model interpretability (Tibshirani, 1996). The method provides stable solutions

and does not suffer from high variability that best-subset and stepwise do (Hastie

et al., 2009). Although there is some dispute whether lasso is useful for parameter

inference, the shrinkage induced by lasso is widely seen as an optimal solution for

prediction purposes (Heinze et al., 2018).

The shrinkage (or regularisation) of lasso regression adjusts the bias-variance trade

off, by reducing variance while increasing bias. Importantly, the reduction in variance

can improve prediction accuracy as the risks of overfitting are restricted. This is

especially important for out-of-sample prediction, where reducing variance is necessary

to ensure the model can be applied to new data. The MRP case is an example of

out-of-sample prediction, as the poststratification stage is cell-prediction using the

multilevel model and the poststratification frame as new data. Therefore, although it

is not desirable to oversimplify the model and increase bias, it is a necessary risk to

reduce variance and ensure the predictions are stable and ultimately accurate.

There are alternative regularisation methods that have been proposed such as ridge

or elastic-net, however, I believe that lasso is the best solution to use here. Ridge

shrinks coefficients towards zero, but never to zero and therefore cannot be used for

variable selection. A more recent innovation is elastic-net, which incorporates the

benefits of both ridge and lasso regularisation (Zou and Hastie, 2005). Elastic-net was

designed to resolve two issues associated with lasso: first, lasso has been shown to

perform poorly when the number of predictor variables are greater than N; second,

when there are two collinear variables, lasso selects one at random. However, I would

argue that these problems are unlikely to arise in the MRP case, or at least, do not

represent significant problems for the MRP application. It is highly unlikely, and

I am not aware of, a MRP application where variables are greater than N. While



3.2. Theory 67

the collinear problem is of limited concern given that MRP is a prediction method

solely concerned with estimate accuracy. Furthermore, the benefits achieved with

extensions of the standard lasso - used in this chapter and explained below - outweigh

the potential problems that can arise with lasso.

3.2 Theory

Lasso is an extension of standard ordinary least squares (OLS) regression. It works

along the same procedure as OLS regression but introduces a penalty that shrinks

(or regularises) the coefficients. In some cases, the coefficients are shrunk to zero and

because of this, we also refer to lasso regression as introducing sparsity.

First, consider the standard linear case, where:

Y = βθ + βX + ϵ (3.1)

Here βθ refers to the intercept, βX are coefficients for X, a matrix of X1, X2, ..., Xp

variables. To solve this problem, we introduce the ordinary least squares (OLS)

method which aims to find values of βθ and βX which minimise the sum of squared

error (or residual sum of squares, RSS). Put another way, we wish to find a solution

that provides us with the ‘line of best fit’ given a set of data. The OLS solution is

thus:

min
(βθ,βX)

=
n∑

i=1
(yi − βθ −

p∑
j=1

βjXij)2 (3.2)

Where i represents the individual case, j references a unique variable, and p refers to

the total number of variables. Here the OLS solution is an intercept and slope where

the residuals (the difference between the actual value of y and the predicted y) are

minimised.

The error in a linear regression case can be further divided into squared bias,
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variance, and irreducible error (error which cannot be avoided). Variance is the

amount by which the regression solution would change if the model were estimated

with new data (James et al., 2013: 34). Whereas bias is the degree to which the

regression model is too simple to capture the complexity of the relationship (James

et al., 2013: 35). In the linear regression case, bias is often low and variance high.

However, in some applications we wish to modify the bias-variance trade-off, meaning

we wish to reduce variance at the cost of introducing bias. Lasso regression is one

method that achieves this. This is done by introducing a penalty on the regression

coefficients that shrinks them towards - and in some cases to - zero. The solution

works in a similar way to OLS regression. The lasso solution is as follows:

min
(βθ,βX)

=
n∑

i=1
(yi − βθ −

p∑
j=1

βjXij)2 + λ
p∑

j=1
|βj| (3.3)

As can be seen above, the lasso equation is identical as the OLS (Eq3.2) except for the

penalty: λ
∑p

j=1 |βj|. The penalty equates to sum of absolute values of β coefficients *

lambda (λ). In the lasso solution, λ induces shrinkage, with larger values of lambda

inducing greater shrinkage of the coefficients. Where λ = 0, this is equivalent to the

standard OLS solution and where λ = ∞, all regression coefficients are equal to zero.

For each value of lambda, we are provided with a different solution with different

regression coefficient values relative to the degree of regularisation. To determine

which value of lambda is most suited, we make use of k-folds cross validation. K-fold

cross validation works by partitioning the data into K subsets. We take one group

of K and set aside, then estimate the model using the data of the remaining groups.

The model is tested on the group that was partitioned to determine model accuracy.

This is repeated for each of the K groups. For instance, if K =10, we would use 9/10

groups to estimate (or train) the data, and the remaining group to test the model. In

each case, the model itself is discarded, but the evaluation score is kept and used to
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evaluate which model is best, according to whichever pre-defined evaluative criterion

the researcher uses.

When applied to lasso regression, we use K-fold cross validation to determine

which value of λ provides us with the lowest cross-validation error, this value is

known as lambda-hat (λ̂). For variable selection, we would simply take forward the

variables in the λ̂ model that have non-zero coefficients. However, λ̂ solutions have

been demonstrated to select overfitted models (Krstajic et al., 2014. 2014: 11). As an

alternative, it is recommended that researchers should use λ̂1Std, which represents the

largest λ value within 1 cross-validation standard error from λ̂ (see, Breiman, 1998;

Hastie et al., 2009). While λ̂ often produced an overfitted solution, λ̂1Std enforces

greater regularisation leading to a more parsimonious solution.

The classic lasso was developed for the linear regression case, but this research will

make use of numerous extensions beyond the linear application. First, the research

will use the group-lasso to select variables. In situations where variables are a grouping

of categories, it would not make sense to include some categories of the group and

exclude others. For example, if we were to include regions as a group-effect, it would

not make sense to only include some regions. To overcome this issue, Yuan and

Lin (2006) introduced the group-lasso. The group-lasso works along similar lines as

the standard lasso, however the process of selection takes place at the group level,

where, if any category of a group is selected, all categories are selected and included

in the model. This is especially important for selecting variables in the MRP case, as

individual-level variables are included as a group of varying intercept effects.

Another extension to be utilised here is the lasso for generalized linear models.

Lasso for generalized linear models works along the same procedure as the linear case

but substitutes the sum of squares with the negative log-likelihood (Meier et al., 2008).

It was first developed by Lokhorst (1999), and later developed to become the group

lasso for logistic regression (Meier et al., 2008). The logistic group lasso can be written
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as:

min
(βθ,βX)

= l(β) + λ
g∑

g=1
s(dfg)||βg||2 (3.4)

Here g references the gth predictor from g = 1...G groups of predictors, while df is the

degrees of freedom for each g predictor. S is a rescaling function necessary to rescale

the penalty. l() is the log-likelihood function, i.e.:

l(βθ, βX) =
g∏

g=1
p(xi) (3.5)

The final extension that this research will make use of is the ‘Group-lasso interaction-

NET’ which was developed to enable researchers to find pairwise interactions via the

group-lasso (Lim and Hastie, 2015). This is especially important for the purpose of

this research, which aims to discover interactions for modelling with MRP. In a similar

way to the group-lasso, when an interaction is selected, both unique variables are also

selected for inclusion. This is important, as we know failing to include interaction

variables as independent variables will most likely lead to biased parameters (Brambor

et al., 2006: 68).

3.3 Data and methods

This research was designed to test how we can use lasso to select variables for MRP,

and whether the variables selected lead to accurate MRP estimates. To achieve this,

the research is primarily focused on answering the following:

1. How we can use lasso to select variables for MRP? And what degree of regulari-

sation selects variables that produce the most accurate MRP estimates?

To test whether lasso is a viable variable selection method for MRP, we first need

to establish how best to apply it to the MRP case. To use lasso regression to select

variables, I make use of cross-validation (CV) to determine a value of λ that selects
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variables with the lowest prediction error. As discussed above, λ̂ is the model with

the lowest CV error, but it has been argued that we should instead use the model

associated with λ̂1Std (Breiman, 1998).

To test this, I first utilise CV lasso regression to select individual and area-level

variables, and any associated pairwise interactions. Next, using the selected variables,

I estimate the 2017 Conservative vote share within GB constituencies using MRP.

Each model has a different set of variables and represents a different value of λ: from

λ̂ through to λ̂1Std. Because there were some cases where different values of lambda

produced identical solutions, and because I was interested in estimate accuracy of

greater regularisation, I estimated a further three models. These models all had values

of λ > λ̂1Std . In total I planned to estimate 18 MRP models each with a unique set

of variables.

2. Are lasso regression MRP estimates more accurate than path dependency or

theory-based variable selection?

As identified previously, it seems evident that many applications of MRP select

variables by replicating previous examples, referred to here as path dependency

variable selection. The second stage seeks to analyse how lasso-MRP compares to

‘off-the-shelf model specification’, that is, models which replicate variable choices from

previous applications of MRP. For this stage, I take forward λ̂1Std and compare with

two models which replicate variables used in two previous UK studies.6 This stage

also makes a brief comparison between lasso MRP estimates and MRP estimates from

Lauderdale et al. (2020), which I treat as a theory-based variable selection model.

Data

Multilevel regression and poststratification requires three data types, individual

and area-level data used in the multilevel model, and data used to construct the
6Hanretty et al. (2016) and Hanretty et al. (2017).
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poststratification frame. Individual and area-level data are subject to data availability

issues, but broadly, researchers can access the necessary data with relative ease. Data

required for the poststratification frame, on the other hand, is much harder to obtain.

To construct, researchers need the joint-distribution proportions for each individual-

level variable. The easiest way to construct a poststratification frame is to use the

census or similar data. However, in most countries, there is insufficient available data

to do this. Researchers have instead developed a raking procedure (Hanretty et al.,

2016) or used synthetic poststratification (Leemann and Wasserfallen, 2017). To avoid

this added level of complication, I make use of a poststratification frame published by

Hanretty (2019).7

Individual-level data

Individual-level data used in this research is from the British Election Study (BES), a

large survey of the British public’s political opinion and behaviour. The study surveys

around 30,000 respondents online at intervals each year, as well as prior and post

a general election. This study makes use of the 2017 pre-election campaign survey

data, wave 12 of the British Election Study. Once missing data was removed, the final

sample was around 25,000.

Individual-level variables were restricted by variables included in the poststratifi-

cation frame. The following variables were included: age (16-19, 20-24, 25-29, 30-44,

45-59, 60-64, 65-74, 75+), education (None, Level 1, level 2, level 3, level 4+, other),

housing (own, rent), Social grade (AB, C1, C2, DE), and sex (Male, Female). I also

included a variable which indexed the week of the campaign period that the survey

data was collected. This was done to account for temporal changes in behaviour over

the course of the campaign period.
7The poststratification frame (and number of categories) includes gender (2), age (8), education

(6), social grade (4) and housing (2). It can be accessed here: https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU
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To produce estimates of vote share I estimated vote intention and turnout from

the BES survey data. Conservative vote intention was derived from the 2017 vote

intention question. This was re-coded into a dummy variable, Conservative = 1, all

other, including would not vote, = 0. Turnout was also derived from the same 2017

vote intention question, intention to vote was coded = 1 and ‘would not vote’ = 0.

Area-level data

The area-level variables used within this research were from a data set assembled

by the Financial Times, for their analysis of the 2017 election.8 All variables were

publicly available data and were predominantly demographic, health, economic and

political variables. For variables with 5 or less missing values, I replaced missing values

with figures from the preceding year, or closest possible year.9 Variables with more

than 5 cases of missing data were excluded, leaving a total of 39 area-level variables.

Using a pre-assembled set of area-level variables meant I was able to forgo an

initial research step of finding a ‘long-list’ of potentially relevant variables. The data

has most likely excluded variables which are relevant and predictive of 2017 voting

behaviour. However, I believe this data set is sufficient for the purposes of testing

whether lasso is able to select the most predictive and relevant variables from a set of

variables.

Lasso regression

To select variables and any associated pairwise interactions, I make use of lasso re-

gression. I first merged the individual and area-level variables into a single matrix of
8Accessed here: https://github.com/ft-interactive/ge2017-dataset
9For the 6 variables that had missing data, each only had a two missing cases. None of these

variables were selected as stand-alone area-level variables, but were selected as interactions for some
models. To check that the replacement of values was not affecting selection, I re-ran the lasso model
on two subsets of the full sample (one with respondents from these areas and one without respondents
from these areas). The results showed very small differences giving confidence that missingness and
imputation was not affecting lasso selection.

https://github.com/ft-interactive/ge2017-dataset
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predictor variables and estimated a hierarchical group-lasso logistic model, using Con-

servative vote choice as the binary dependent variable. I limited pairwise interactions

to only allow interactions between variables of the same level; meaning individual-level

variables could only be interacted with other individual-level variables and likewise

for area-level variables.10 The model used k-fold cross validation to select the value

of lambda (λ̂) with the least prediction error. I estimated the lasso models with the

glinternet.cv function available through the R package glinternet (Lim and Hastie,

2013). The output included 50 values of lambda and the corresponding selected

variables.11

Multilevel regression and Poststratification

For both stage 1 and 2, to estimate 2017 Conservative constituency vote share, I use

multilevel regression and poststratification. The modelling strategy pursued here is

motivated by previous studies which estimate vote choice using MRP. First, as with

Selb and Munzert (2011), and Hanretty et al. (2016) I estimate vote choice as a binary

outcome. Second, I follow the modelling procedure of Kiewiet de Jonge et al. (2018)

by estimating turnout from the survey data and applying to vote estimates. Turnout

was estimated by using the lasso and MRP strategy outlined in this chapter.12 The one

exception is that rather than post-stratify to constituency level, I keep the estimates

for each row of the poststratification frame. I then apply the turnout estimates to

vote intention estimates for each row of the poststratification frame. The final vote
10This was because I wanted to limit the complexity of the MRP models by excluding cross-level

interactions.
11I provide a full of list of all variables and interactions selected for each lambda value in appendix

B.2
12Because this chapter is testing whether lasso can select variables for MRP, it could be argued I

should not have used this method to select variables for the turnout model. To ensure the results,
and interpretation of results, were not a function of this turnout measure, I also produced results
with two further turnout measures. Broadly, the interpretations do not change regardless of turnout
measure. I show stage-1 results with the two alternative turnout measures in appendix B.1.
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intention was thus:

PrFinalV otei = Pr(Ti) ∗ Pr(Vi) (3.6)

Where i represents each cell-type, T refers to turnout and V to vote. Thus, to estimate

the ‘Final Vote’ probability for any given cell-type I multiply turnout by vote share.

Except for variation in variables, all MRP models were identical. Each included

campaign week as an additional random effect. All were estimated as Bayesian

multilevel logistic regression models, with weakly informative student-t priors on the

intercept and model coefficients (for a discussion on priors, see Gelman et al., 2008). I

estimated the model with 2 Markov chains each with 1000 iterations (500 warm-up

and 500 sampling). To decrease computational time, I included a QR decomposition

in each model. All models were estimated using the stan_glmer function through the

rstanarm package (Goodrich B, Gabry J, Ali I, Brilleman S 2020).

Following the estimation of the multilevel model, I drew 500 samples from the

posterior, using the poststratification frame as a new data. I generated mean and 90%

credible intervals (Low and High estimates) from the 500 posterior samples. Because

the poststratification frame includes figures for the entire adult population, the final

constituency estimates are Conservative vote share as a percentage of all adults, rather

than of voters as is typically used in psephology.

3.4 Results

In most instances, conventional measures of goodness-of-fit would be suitable to

assess the accuracy of a model. However, for MRP, the goal is to estimate opinion

or behaviour of a sub-national unit. Assessing the goodness-of-fit of the multilevel

model, or the prediction accuracy at the individual-level are therefore not particularly

useful. It is far more suitable to assess the accuracy of estimates in each sub-national

unit. In the application here, this is relatively straightforward as we can compare
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the MRP estimates with actual 2017 Conservative constituency vote share. To assess

the accuracy of MRP estimates I use three measures: Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE) and Correlation (Cor). MAE and RMSE are first

calculated for each small area across the 500 posterior samples. I then calculate the

average, and 90% credible intervals (Low, 5% and High 95%) across all constituencies

to provide overall MAE and RMSE. Correlation is calculated between the mean

constituency estimates and true constituency vote share.

In the first stage, I compare MRP estimates of various different λ values. Much

of the emphasis here is on comparing results of various λ solutions to λ̂1Std, which

I treat as the baseline model. In the second stage, I take forward the baseline, and

compare to two ‘off-the-shelf’ models and estimates from a theory model.

3.4.1 Comparing CV lasso lambda solutions

I first present the results from stage 1 of the research: how we can use lasso to select

variables for MRP? In this stage I show MRP estimates for a range of λ solutions. To

first give an indication of the relative size of each λ value, and the associated in-sample

prediction error, in figure 3.1 I show the cross-validation (CV) error for all lambda

values. In the figure there are two plots, on the left plot the x-axis shows raw lambda

values and on the right plot the x-axis shows the logarithm of lambda. For both, CV

error is shown on the y-axis and the two red lines show λ̂ (left) and λ̂1Std (right). I

estimate MRP models with selected variables from λ̂ through to λ̂1Std, and a further

three models where λ > λ̂1Std.

The first plot is useful to see the relative size of each lambda value, and thus

the relative degree of regularisation that each λ enforces. Although there is a clear

difference between λ̂ and λ̂1Std values, they are relatively similar compared to the

range in λ value sizes. The right-hand plot makes it easier to see the CV error of all

the λ solutions estimated in this section. As we would expect, λ̂ has the lowest CV



3.4. Results 77

λ̂ λ̂1Std

0.62

0.63

0.64

0.65

0.66

0.67

0e+00 2e−04 4e−04
Lambda

C
ro

ss
−

va
lid

at
io

n 
er

ro
r λ̂ λ̂1Std

0.62

0.63

0.64

0.65

0.66

0.67

−12 −11 −10 −9 −8
Log Lambda

C
ro

ss
−

va
lid

at
io

n 
er

ro
r

Figure 3.1: Lambda CV error
Notes: showing raw lambda on left and log lambda on right.

error, while λ̂1Std has 0.01 greater CV error - hence why selecting λ̂1Std is called the

one-standard-error rule (Hastie et al., 2009: 244).

Next, I present the accuracy of the MRP models with variables selected with the

different lambda values. Here I report the estimates of 16 separate MRP models,

each representing a different value of lambda. I originally intended to estimate 18

models in total, however, two MRP models (12 and 13) are not included in the

results because the multilevel models failed to estimate. These models are the two

with the smallest λ values, λ̂ and the value immediately above it. For both models,

two columns (coefficients) were dropped because of rank deficiency and thus the

resulting estimates cannot be analysed. The rank deficiency is most likely a result

of multicollinearity among the matrix of predictor variables. Indeed, a surface-level

examination of selected variables showed there are cases where one area-level variable

was a direct linear combination of two other variables.13 The degree of regularisation

imposed by these two lambda values was clearly too small and the resulting associated

models were overfit to the data.

Figure 3.2 reports the MAE, RMSE and correlation for each of the MRP models. I

report the accuracy figures for each model, labeled by the λ index number. The larger
13For instance, both models include social grade variables C2, DE, and C2DE. The latter is the

combined percentage of the first two, and thus, a perfect linear combination.
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Figure 3.2: Estimate accuracy for lambda solutions
Notes: showing correlation, MAE and RMSE. Points show mean accuracy value. For
MAE and RMSE lines indicate 90% credible intervals. Red lines show accuracy value
for the baseline model.

index number indicates a larger λ value and therefore a higher degree of regularisation.

On the left-hand side of figure 3.2 I show correlation between model estimates and

actual vote share, MAE is displayed in the middle and RMSE displayed on the right.

In each chart, the accuracy value is represented by the circle, with MAE and RMSE

also showing lines either side of the circle indicating the 90% credible intervals. Finally,

the red dashed line shows the value for the λ̂1Std (the baseline| Model 28) and should

be used as a point of comparison for all other models.

Looking at correlation in figure 3.2 - the left-hand graph - we can see there is

little difference between each model’s correlation to actual Conservative constituency

vote share. Indeed, the difference between the lowest and highest correlation is less
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than 0.5%, ranging from just below 97.3% to just above 97.6%. Although differences

are small, most points are to the right of the red line, indicating that most models

achieve higher correlation than the baseline. Overall, a general pattern seems to be

present where models with a smaller λ value (i.e. less regularisation) achieve greater

correlation.

Turning to the middle chart which reports MAE of model estimates. For all models,

MAE is just under 4%, with the credible intervals ranging from around 2-8%. Overall,

there seems to be small differences between each model’s MAE. Although, most MAE

points are just to the right of the red line, which indicates that most model’s MAE is

marginally higher than the baseline. Finally, looking at RMSE on the right-hand side

of figure 3.2, we see a similar picture to MAE. RMSE for all models is around 4%,

with the upper and lower estimates ranging from around 2-8%. Again, most RMSE

point estimates seem positioned just to the right of the red line indicating most model

RMSE is marginally worse than the baseline.

To further explore how each model compares to the baseline model, in table 3.1, I

report increase or decrease from the baseline for correlation, average MAE and average

RMSE. To show +/- from the baseline, I report figures which are a percentage of the

baseline value. For example, model 38 MAE is 1%, which indicates an increase by 1%

of the baseline MAE value.

Looking first at correlation, each model has a 0% figure. This indicates that in

each case, there is no difference between any model and the baseline model correlation.

This is evident in figure 3.2, which shows less than 0.5% difference between all model

correlations. In figure 3.2 to account for the 90% credible intervals, the x-axis for

MAE and RMSE extends from 2-8%. This made it difficult to determine whether

any model achieved better MAE or RMSE than the baseline. However, using table

3.1 we are better able to identify differences no matter how small. For MAE, it is

evident no model performed better than the baseline (Model 28), although model 26
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Table 3.1: Comparing lambda solution’s accuracy to baseline

Model Correl MAE RMSE
38 0% 1% 2%
35 0% 3% 3%
29 0% 3% 2%
27 0% 1% 1%
26 0% 0% -1%
24 0% 2% 1%
23 0% 2% 2%
22 0% 2% 2%
20 0% 2% 2%
19 0% 2% 1%
18 0% 2% 1%
17 0% 2% 2%
16 0% 4% 4%
15 0% 2% 2%
14 0% 2% 2%

Note:
Values are % increase/decrease
of the baseline value

is equally as accurate. Whereas for model 16, MAE increases by 4%. Finally, looking

at RMSE, model 26 is an improvement on the baseline, with a 1% improvement for

RMSE. However, all other models perform worse than the baseline, with model 16

again faring the worst with RMSE 4% higher. Although these differences are small,

when assessed alongside the failure of λ̂ to estimate altogether, the results seem to

support the case for λ̂1std.

3.4.2 Comparing lasso with path dependency variable selec-

tion

The first stage explored how best we should use CV lasso to select variables for MRP.

I next compare the approach with the path dependency strategy, which replicates

variable selection from past studies (referred to here as ‘off-the-shelf’ model specifi-
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cation). Below, I compare the model variables and the estimate accuracy of three

models: lasso-MRP (Baseline | ˆλ1Std)14, off-the-shelf-A which replicates selection from

Hanretty et al. (2016), and off-the-shelf-B which replicates variables from Hanretty et

al. (2017).15

First, in table 3.2 I present the variables used in each of the three MRP models. As

can be seen from table 3.2, there is little variation in individual-level variables used by

all three models. This is primarily because each model used the same poststratification

frame, and therefore each was restricted to the same set of individual-level variables.

This has clearly made it difficult to determine the benefits of lasso when selecting

individual-level variables. The omission of gender in the lasso model is the only

distinguishing feature for variable selection at this level. Though small, this difference

may highlight the ability of lasso to select relevant and predictive variables and exclude

irrelevant individual-level variables.

The difference between models is much clearer for area-level variables. First it

is notable that the lasso-MRP model selected three area-level variables, while Off-

the-shelf-A and B used 11 and 15, respectively. The lasso model used two political

variables and one demographic, off-the-shelf-A used mostly demographic and two

geographic variables, while off-the-shelf-B used a mixture of political and demographic

variables.

The differences in accuracy are most likely due to the differences in these variables.

Of note, is the selection of political variables by the lasso model and off-the-shelf-B.

There is extensive evidence in the literature which demonstrates political variables

(and particularly past vote choice) are highly predictive of vote choice. It is therefore

unsurprising that lasso-MRP and off-the-shelf-B achieved higher accuracy than off-the-
14In line with the recommendations of Breiman (1998), I have taken forward λ̂1Std as the lasso

model to compare.
15It would have been useful to replicate models from different authors, but there are few studies

which apply MRP to the UK. I am only aware of one with entirely different authors, but they do not
report model variables.
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Table 3.2: Model variables

Variable Lasso-MRP Off-the-shelf-A Off-the-shelf-B
Individual-level Age Gender Gender

Education Age Age
Housing Education Education
Social grade Housing Housing

Social Grade Social Grade

Area-level Leave vote share Region Region
Conservative 2015 vote Density 2015 Conservative vote share
Aged 18-24 Christian population 2015 Labour vote share

Other religion Leave vote share
Non-white 2015 Green vote share
Owns house Plaid Cymru 2015 vote
Female population Aged 18-24
Average education Aged 65+
Married Own house
Private sector Self-employed
Median social grade Unemployed

Economically inactive
White population
Density
Level 4 Qualifications
Health bad

shelf-A (full accuracy results are reported below). The inclusion of political variables

for these models was most likely a significant contributing factor to the improved

accuracy. This is significant because lasso has enabled us to to identify political

variables as the most predictive without the need for in-depth research.

The lasso method selected a mixture of political and demographic variables, but

a more restricted list than either of the off-the-shelf models. However, lasso-MRP

achieved similar, if not better, accuracy than the two off-the-shelf models with a

much smaller set of variables. This could be seen as evidence that the method is

highly efficient at selecting the best predictive and relevant variables, while also able

to exclude variables that do not contribute to improved accuracy.

Turning to the comparison in accuracy, figure 3.3 presents three scatter plots,
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one for each of the three models being compared here (lasso, off-the-shelf-A, and

off-the-shelf-B). The y-axis shows the MRP estimate and the x-axis shows the actual

2017 Conservative vote share. In each individual graph, the MRP mean estimates are

shown by the points, with vertical blue lines representing the 90% credible intervals.

The red line shows the relationship between the estimates and true vote share (with

the line angle reported on each plot), while the dashed grey line visualises a perfect

linear relationship. For all the model estimates, we can see the red line is above

the dashed line when Conservative vote share is small, and below the dashed line

when Conservative vote share is high. This indicates that the models over-estimate

Conservative vote share when true vote share is small, and under-estimate vote share

when true vote share is high. However, lasso and off-the-shelf-B have a line angle of

35◦ whereas for off-the-Shelf-A has a 32◦. This means that lasso and off-the-shelf-B

estimates are closer to a linear relationship (i.e. 45◦) with true vote share. Furthermore,

it seems evident from the scatter plot that the 90% credible intervals for lasso and

off-the-shelf-B are shorter, meaning we have greater confidence in the estimates and

generally indicates better model estimation.

Comparison of the model’s accuracy is further explored in figure 3.4, which shows

MAE, RMSE and correlation for each model. For both MAE and RMSE, the circle is

the point estimate while the lines indicate the 90% credible intervals for the accuracy

measure. The plot shows that both lasso and off-the-Shelf-B have higher correlation

(both over 97%), while off-the-Shelf-A has a lower correlation of just under 93%.

Turning to MAE, it is evident that lasso and off-the-shelf-B perform better than

off-the-Shelf-A, with nearly a 1% reduction in error. RMSE shows a similar pattern,

lasso and off-the-shelf-B have RMSE of around 4%, whereas off-the-shelf-A has RMSE

of over 5%.
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Figure 3.3: MRP estimates: lasso versus Off-the-shelf
Notes: showing estimates versus true 2017 Conservative vote share.
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Correlation MAE RMSE

93% 94% 95% 96% 97% 2% 5% 8% 10% 2% 4% 6% 8% 10%

Lasso−MRP

Off−the−shelf−A

Off−the−shelf−B

Figure 3.4: MRP accuracy: lasso versus Off-the-shelf
Notes: Correlation (left), MAE (middle), RMSE (right). MAE and RMSE points
show average accuracy with lines indicating 90% credible intervals.
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3.4.3 Comparing lasso with theory-based variable selection

To make some comparison between lasso and a theory-based model, I next compare

the lasso estimates to those of Lauderdale et al. (2020). Their study presented results

of their MRP 2017 UK general election estimates, including Conservative party vote

share. While I am not aware of their exact variable selection process, the variables

are not identical to those from previous studies and thus we can assume that theory

and prior analysis informed their variable choices.

The estimates were originally published by YouGov before the election and correctly

predicted a hung parliament.16 In order to directly compare the two, I first convert

YouGov estimates to the same format as lasso-MRP estimates (a percentage of the

constituency population as opposed to percentage of voters).17 I then calculate

accuracy for these figures. To make the lasso estimates directly comparable, I calculate

accuracy on mean constituency estimates, as opposed to the previous section where I

calculated accuracy across iterations of the poststratification stage.

The YouGov Conservative party estimates achieved MAE of 2.5%, RMSE of 3.1%

and correlation 97.8%. The baseline lasso model achieved 3.3% MAE, RMSE of 4.1%

and has a correlation of 97.4%. The Lauderdale et al. (2020) estimates are a significant

improvement on the lasso-MRP estimates, and would support the idea that theory

driven variable selection leads to improved estimate accuracy. However, it should be

noted that the comparison here is not entirely fair, as the Lauderdale et al. (2020)

model uses a much larger sample, individual-level past vote and cross-level interactions.

It is therefore difficult to disentangle whether the improved accuracy is because of

improved variable selection choices or other beneficial characteristics.
16Can be accessed here: https://yougov.co.uk/topics/politics/articles-reports/2017/

05/31/how-yougov-model-2017-general-election-works
17Although Lauderdale et al. (2020) provide accuracy figures in their paper, it was necessary to

convert estimates to percentage of population first, in order to compare with lasso-MRP estimate
accuracy.

https://yougov.co.uk/topics/politics/articles-reports/2017/05/31/how-yougov-model-2017-general-election-works
https://yougov.co.uk/topics/politics/articles-reports/2017/05/31/how-yougov-model-2017-general-election-works
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3.5 Discussion

This research was designed to test whether researchers could make use of lasso regression

to select variables for MRP. When estimating small area opinion or behaviour with

MRP, individual and area-level variables have a direct impact on the accuracy of

the estimates. This is because the opinion or behaviour is modelled as a function of

these variables (Kastellec et al., 2010: 771). In recognition, researchers have argued

that users of MRP need to carefully select variables and ensure their relevance to

estimated opinion or behaviour (See Warshaw and Rodden, 2012; Buttice and Highton,

2013). Yet, at present, it seems most variable selection for MRP is based upon a path

dependency approach, as opposed to driven by the existing theory. This is most likely

because theory driven variable selection is a time-consuming strategy. To provide

researchers with an alternative, this research tested whether using lasso regression as

a preliminary stage to MRP could automate variable selection and produce accurate

estimates.

As a precursor to this, the research first sought to establish how lasso could be used

for applications with MRP. I used cross-validation and tested a variety of λ values to

determine best practice for MRP. Breiman (1998) and Hastie et al. (2009) recommend

using λ̂1Std rather than λ̂. They argue the higher degree of regularisation leads to a

more parsimonious model and better prediction accuracy. The results presented in this

chapter show that for applications with MRP, this recommendation should be followed.

Indeed, the MRP model associated with λ̂ failed to estimate entirely, whereas, λ̂1Std

consistently demonstrated among the best prediction accuracy. Although, among all

λ solutions there were only marginal differences in accuracy.

Importantly, this research has demonstrated that lasso and MRP work to pro-

duce estimates that are equally, if not more, accurate than simple path dependency.

Comparing lasso MRP estimates with two different off-the-Shelf models, lasso-MRP

produced estimates equally as accurate as one model and better than the other. On the
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one hand, it could be argued that this research has not demonstrated any particular

benefit to using lasso for the MRP case. Rather, we have demonstrated that path

dependency can lead to accurate estimates, despite previously suggesting the opposite

would be true. However, by demonstrating that lasso is equally - if not more - accurate

than path dependency, I would argue lasso is preferable. Lasso, at worst is equal to

path dependency, and at best, improves accuracy.

Beyond accuracy, lasso may be viewed as superior to path dependency models as it

produced competitively accurate estimates with a far simpler model. Although there

has been a drive for complex solutions in science, econometrics, and social sciences,

most scientists still contend that simpler statistical models are preferable (See Green

and Armstrong, 2015; Zellner et al., 2002). As was highlighted in table 3.2, the

lasso solution was far simpler than either off-the-shelf-A or B. This may lead us to

conclude that lasso was more adept at determining predictive variables than simple

path dependency

Directly comparing lasso to theory-based variable selection is difficult and this

chapter has not been able to make an adequate comparison. Nonetheless, the limited

comparison that this chapter made suggests that theory-based variable selection can

lead to higher accuracy than lasso MRP models.

Overall, this research has demonstrated that lasso can be a useful tool to select

variables for use with MRP. Equally, the research has shown that theory and path

dependency can produce accurate estimates. The comparison between these methods

throughout this chapter has created a narrative that these strategies are in opposition

to each other. However, in most applied settings, the methods work best together.

It therefore seems evident that best practice for researchers is to use a combination

of these methods, with all incorporated into the model building process. Although

this is not a fully automated process, this represents an improvement over the current

standard practice for MRP model building, which largely seems to be based upon
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simple path dependency.

The inclusion of lasso in the model-building process may prove particularly useful in

applications where there is limited theory and no previous MRP application examples.

In these instances, preliminary analysis with lasso can help guide variable selection.

The lasso solution is not a panacea, and researchers will still need to find a ‘long-list’

of potentially predictive variables which lasso can select from. But, as has been

demonstrated here, we can have confidence that lasso will select variables that are

predictive of the opinion or behaviour of interest.

The results presented in this chapter have shown the benefits of lasso are particularly

notable for the selection of area-level variables. This is an important finding as previous

work has demonstrated that these variables have the largest impact on estimate

accuracy (Hanretty et al., 2016). When compared to path dependency, lasso selected

a more limited set of variables, but was still able to achieve comparable accuracy. This

signifies that, unlike path dependency, lasso was able to efficiently select relevant and

predictive variables, while excluding additional variables that did not contribute to

improved MRP estimate accuracy.

When a researcher wishes to include interactions in a model, the potential number

of features to choose from increases dramatically. In such instances, lasso may be

particularly useful as it can be used to detect possible predictive interactions. However,

from the results here, it is unclear whether lasso is efficient at detecting and selecting

interactions. In stage one, some MRP models included interactions, but these models

performed no better than models without interactions. Perhaps not permitting

cross-level interactions was too restrictive, as research where these are included has

demonstrated high levels of accuracy (see Lauderdale et al., 2020). Conversely, it

may be the case that no interactions were particularly useful for predicting 2017

Conservative vote share, and lasso was able to identify this. Unfortunately there is no

‘ground truth’ to determine which, if any, interactions are predictive of voting behaviour.
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This means we are ill-equipped to be able to fully assess the lasso performance on

selecting interactions. Future research could focus on a simulation study to be able to

properly investigate this.

Similarly, the results of using lasso to select individual-level variables are not clear.

This is because this research was limited to a small set of individual-level variables due

to all strategies using an identical poststratification frame. The comparison between

path dependency and lasso variables highlighted that all models used near identical

individual-level variables, and therefore we are not able to properly establish the

benefit of lasso to select these variables. Future research may find it interesting to

investigate whether using lasso with a larger set of individual-level variables -including

variables beyond demography- can improve small area estimate accuracy.

A consideration that should be taken into account, but has been overlooked

throughout this study, is at what point in the model building process or research

overall do we use this method? In this study, I have used variable selection at a single

and fixed point, using the method to select variables for the final vote share prediction

model. However, in scenarios where we wish to estimate opinion or behaviour across

time periods, further consideration needs to be given to where this method fits into the

process. If we are forecasting vote share in small areas over the course of an election,

should variable selection be undertaken at the start of a campaign period and not

changed throughout the election? Or should the process be continuous, where we

constantly update variable selection based on new data collection? While substantial

shifts in voting patterns over the course of an election are rare, failing to account

for them in the variable selection process could be problematic. Similarly, studies

which apply MRP to estimating opinion over the course of a significant time-period

may need to consider how we select variables that account for potential shifts in the

relationship between the opinion or behaviour of interest and predictor variables.
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3.6 Conclusion

This chapter set out to explore how best to use lasso variable selection for MRP, and

whether the method produces accurate estimates. The chapter has demonstrated

that lasso can be used efficiently to select variables for MRP and these models can,

in turn, produce accurate estimates. The research has shown how we can use cross-

validation lasso to select variables for applications with MRP, and shown what degree

of regularisation is appropriate for MRP. In line with Breiman (1998) and Hastie et al.

(2009), the results support the argument that λ̂1Std is the preferable λ value, leading

to stable and accurate estimates.

Importantly, the results show that the estimates are equally, if not more, accurate

than a simple path dependency approach. This chapter has not been able to adequately

compare theory-based variable selection with lasso, but a conservative interpretation

of the comparison made here would suggest that we should favour theory-based

selection where possible. Nonetheless, this chapter has contributed to our wider

understanding of MRP variable selection, showing that lasso may be a useful tool in

the model-building process.

However, the results presented here have not made a significant contribution

towards demonstrating that lasso is beneficial to selecting individual-level variables.

This is partly because this research made use of a limited set of individual-level

variables which have differed little between models. Similarly, we have not been able

to make any inferences about the benefit of lasso to select interaction pairs. Few

lasso models selected any interaction pairs, and as the results show, the inclusion of

interactions had no impact on estimate accuracy.

For selecting area-level variables, this research has demonstrated that lasso is

an efficient method, and associated MRP models produce accurate results. This is

important, as work has demonstrated that inclusion of area-level variables improve

estimate accuracy to the greatest extent (Warshaw and Rodden, 2012; Hanretty et
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al., 2016). Furthermore, as there are risks of overfitting for area-level variables, it is

particularly important that selection is considered (Broniecki et al., 2021). Although if

the benefits of lasso are only notable for area-level variables, researchers may be better

served by applying the autoMRP approach developed by Broniecki et al. (2021). Their

research demonstrated the effectiveness of this method to select area-level variables,

and outperformed lasso variable selection.



Chapter 4

Improved MRP sample distribution

Multilevel regression and poststratification (MRP) has become increasingly popular in

academia and further afield. This is largely because the method enables researchers to

produce reliable and accurate estimates of public opinion or behaviour in sub-national

small areas. One of the main benefits of MRP is that the method requires relatively

small survey sample sizes. Indeed, much early work was dedicated to investigating

minimum and optimal sample sizes necessary for MRP (See Lax and Phillips, 2009b;

Warshaw and Rodden, 2012; Buttice and Highton, 2013)

However, discussion on MRP samples rarely goes beyond sample size. This is

probably because most applications of the method make use of publicly available

surveys, where researchers have no control over the survey or the sampling procedure.

Therefore the discussion focuses solely on whether a survey can - or cannot - be

utilised for MRP with a given sample size. But, in applications where researchers

have input into the survey design and sampling strategy, they should also consider

other characteristics which directly affect both estimates and estimate accuracy. For

example, the distribution of respondents among small areas directly affects sample

estimates but is almost never discussed in the MRP literature.

Again, the lack of discussion on the distribution of the sample is most likely



4.1. Background 94

because typically researchers have no input into the sampling strategy. However,

when researchers have control over the sample design, in certain applications they

might want to consider whether oversampling respondents from certain small areas

could improve their MRP estimates. In practice, the strategy would involve adjusting

the sample distribution so that certain small areas receive a greater proportion of

the sample. For example, in electoral forecasting we may wish to pursue a strategy

where to improve prediction accuracy in certain small areas we allocate them a larger

proportion of the sample. This strategy may be advantageous if predicting an electoral

outcome rests on correctly predicting the outcome in certain small areas.

Accordingly, this chapter seeks to explore whether for electoral forecasting an

uneven sample distribution can improve prediction accuracy in certain small areas. I

address this question with a simulation study and two real-world applications. Overall,

the results presented in this chapter are supportive of the strategy. The findings show

that the method can improve estimate accuracy in small areas deemed important, and

this in turn can improve our ability to forecast elections.

4.1 Background

MRP was developed to provide reliable estimates of opinion or behaviour for popula-

tions in small sub-national areas. Its development was necessary because traditional

methods of inquiry such as surveys are not suitable when interested in these popula-

tions (See CH1: Introduction to MRP). Although alternative small area estimation

methods have been utilised in previous research, these have since been demonstrated

to produce unreliable and inaccurate estimates. MRP, on the other hand, has been

shown to produce reliable estimates with much smaller sample sizes than would be

necessary to directly infer opinion or behaviour. For instance, Lax and Phillips (2009a)

argued that their study demonstrated MRP was able to produce accurate estimates in
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50 US states with a total sample of around 1,400.1 Kastellec et al. (2016) have echoed

such findings, again arguing that a sample of around 1,400 was sufficient to estimate

in 50 US states. Warshaw and Rodden (2012) subsequently found that a sample of

2,500 and 5,000 were suitable for US congressional districts (436 small areas) and

for Senate districts (1,942 small areas), respectively. Outside of the United States,

Hanretty et al. (2016) suggested a sample of between 8,000 and 12,000 respondents

for 632 small areas was sufficient.

Why does MRP perform better with smaller samples?

MRP benefits from the hierarchical structure of multilevel modelling, which, by

partially pooling respondents across small areas can produce reliable estimates for

each small area even with small sample sizes (Selb and Munzert, 2011; Leemann and

Wasserfallen, 2017: 1005). In practice this means the final estimates for each small

area are derived from information across the entire sample, as well as information

specific to each small area. In standard regression, analysis is typically one of either

full or no pooling. The former means the sample is pooled together, and the model

is blind to any variance by groupings such as small areas. The latter - no pooling -

means we model opinion or behaviour separately for each small area. This is also an

unsatisfactory solution as it means our analysis fails to account for the variation across

the population in general and will most likely lead to poor estimates. Furthermore,

in most cases sample sizes are too small to enable reliable model estimation for each

small area separately.

Partial pooling is a midpoint between the two, where small area estimates “borrow

strength” from the whole sample (Gelman and Hill, 2007). Area parameters are drawn

for a common distribution, which means the estimation of area-level parameters are
1Buttice and Highton (2013) noted significant variation in accuracy with these sample sizes.

Although, they still argued that MRP represented an improvement on past alternative methods such
as disaggregation.



4.1. Background 96

derived from information specific to each small area, as well as information from all

small areas (Hanretty et al., 2016; Hanretty, 2019). In practice, area-level parameters

are shrunk towards the overall sample mean after controlling for individual-level

variables (Kastellec et al., 2010). The degree of shrinkage can be considered as a

weighting scheme, where areas with smaller sample sizes have estimates shrunk towards

the overall mean to a greater extent (Gelman and Hill, 2007: 254). While areas with a

larger sample size are shrunk to a lesser extent and estimates can vary away from the

overall mean to a greater extent.2 The partial pooling is also relative to the degree of

variance, with more pooling when variance between small area opinion or behaviour is

small (Lax and Phillips, 2009b: 111).

Partial pooling principally manifests in two related but independent ways: the

partial pooling of individual-level random effects and the partial pooling of area-level

variance effects. Individual-level characteristics (typically demographic) are included

in the multilevel model as varying intercept effects. This means that the entire

sample informs the individual-level variable parameters regardless of which small area

a respondent resides in (Selb and Munzert, 2011: 457). The second and perhaps

more important way that partial pooling benefits MRP is through the estimation of

area-level parameters, which are again estimated as varying intercept effects. Because

the sample per area is typically small (or at least too small to directly infer parameters)

the partial pooling is essential to reliably estimate parameters for each small area.

Typically, area-level parameters are also modelled as a function of area-level variables.

This improves the partial pooling as small area estimates are shrunk towards the mean

of areas similar to each specific small area (Gelman and Hill, 2007: 269). Indeed,

partial pooling alone has been shown to have limited impact on estimate accuracy

(Hanretty et al., 2016). However, With the introduction of area-level variables there

is consistent and significant improvement in estimate accuracy (See Warshaw and
2Assuming the individual small area estimate is different to the overall mean.
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Rodden, 2012; Selb and Munzert, 2011; Hanretty et al., 2016).

MRP sample distribution

Discussion on MRP sample tends to focus on the total sample size, with a specific

focus on the necessary minimum and optimal sample sizes. This is a natural extension

of one of the main reasons MRP was developed: the inability to reliably infer small

area opinion or behaviour with standard sample sizes. However, there may also be

value in paying closer attention to how the sample is distributed across small areas.

That is, how many respondents each small area has and how this may - or may not -

affect our estimates of opinion or behaviour.

Most applications of MRP make use of publicly available survey data which means

researchers do not have control over sample distribution. As a result, discussion

on sample rarely goes beyond recognising that the sample distribution may impact

individual small area estimates (Buttice and Highton, 2013; Muller and Schrage, 2014:

144; Park et al., 2004: 320; Lax and Phillips, 2009b: 111; Pacheco, 2011). However,

if we have control over the sampling procedure, researchers should pay attention

to the distribution as this has the potential to affect estimates. Indeed, in certain

applications, structuring the sample distribution so that certain small areas receive a

larger proportion of the sample may improve prediction accuracy. This is particularly

relevant if we have finite resources and therefore a limited total sample size. In these

instances, an uneven sample distribution may be the best strategy to achieve the

highest accuracy possible.

Applications for an uneven distribution

Distributing the sample unevenly among small areas is most likely not preferable in

all MRP applications. However, in instances where it is preferential or required to

achieve a higher level of accuracy in certain small areas, an uneven sample distribution



4.1. Background 98

may be useful.

The most obvious example is in electoral forecasting, where our ability to correctly

predict an electoral outcome (i.e. who governs) rests on prediction accuracy within a

subset of small areas, not accuracy across all small areas.

This is because in representative democracies, the electoral outcome is often decided

by which party wins an overall majority of all electoral districts (i.e. small areas).3

However, in practice the distribution of the electorate is such that most electoral

districts are consistently won by the same party, while some electoral districts - known

as marginals - regularly switch between parties and have lower margin of victory.

For example, among the 632 GB constituencies, 70% have been won by the same

party over the last four elections, with an average margin of victory of 27%. Whereas

constituencies which have changed twice or more over the last four elections have an

average margin of victory of 10%.

A strategy which focuses on ensuring greater accuracy in specific small areas

might, therefore, improve our ability to predict an electoral outcome. By focusing

on improving accuracy in marginal small areas we risk worsening accuracy in both

non-marginal and across all small areas. However, if our goal is electoral prediction

the benefits of this method might still outweigh these negatives.

Take for example the fake scenario in table 4.1. The table shows vote share

estimates for two different models, as well as overall model MAE. Both models are

estimating vote share for party X in small areas area 1 and 2. Assuming a two-party

competition where a party needs >50% to win, Party X wins the vote in both small

areas 1 and 2. In Model A, the predictions are within 3% of the true vote share, but

in area 2 the prediction fails to correctly forecast party X as the winner. On the

other hand, model B has improved accuracy in area 2, significantly worse accuracy for

small area 1, but predicts the seat winner for both. Model A achieves better MAE
3This is major reason why MRP has been used to predict multiple elections, as the method enables

us to predict vote share in each small area.
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Table 4.1: Example scenario

Model A Model B
Actual Vote Estimates Absolute error Estimates Absolute error

Area 1 70% 67% 3% 60% 10%
Area 2 52% 49% 3% 51% 1%
MAE 3% 6%

overall and would be considered the better model by this metric. However, if we assess

by the ability of models to predict seat winners, then Model B is preferable. Such

a contrived example may never manifest in practice but illustrates how assessing a

model by estimate accuracy may not lead us to the best model should our objective

be predicting an election, rather than estimating vote share.

Multilevel modelling and uneven sample distribution

For small areas where higher levels of accuracy are deemed to be of greater importance,

the benefit of an uneven sample distribution may be two-fold. First, as these small

areas would receive a larger proportion of the sample, the raw data for these small

areas will most likely be closer to the true value. This would mean the model should

be better informed and equipped to produce accurate estimates.4 Second, assuming

the raw data is more accurate, the larger sample size will mean less shrinkage induced

through partial pooling. Therefore, the resulting area-level parameters will be allowed

to be distinct from the overall mean to a greater extent.

Conversely, small areas which receive a smaller proportion of the sample are at

potential risk of greater inaccuracy. Furthermore, it is currently unknown how an

uneven sample distribution may affect the estimation of small area variance. Area-level

parameter estimation may be problematic with an uneven sample distribution because
4This assumes that increasing sample size will improve accuracy of the raw data. This assumption

will not necessarily hold true in every case. However, across all small areas it seems a fair assumption
that for the most part increasing sample size will improve accuracy.
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the estimation is based on a sample over-represented by respondents from certain small

areas. If voting behaviour in over-sampled small areas is distinct from other small

areas, then the model will learn too much from a sub-group who are not representative

of the wider population.

The same potential problem applies to the individual-level variables (which are

modelled as varying intercept terms). If the unevenly distributed sample leads to

the over representation of certain sub-groups, then the estimation of individual-level

characteristics will be more difficult as some parameters will be estimated with low

N. However, this is less likely to arise as individual-level variables typically have

few categories, while the sample should be sufficiently large that the uneven sample

distribution will not affect estimation of these parameters.

As already noted, in MRP applications there is somewhat limited discussion on

sample characteristics, including the distribution of respondents among small areas.

Where discussion is present, it is largely restricted to simple acknowledgment that

areas with a larger sample size are more likely to have estimates distinct from the

overall mean (see Muller and Schrage, 2014: 144; Park et al., 2004: 320). One of

the few studies which has directly addressed varied sample distribution and estimate

accuracy is Toshkov (2015), whose study explored potential use of MRP to estimate

opinion among EU states. As part of the study, he estimated two identical models

with different sample distributions. One model had an evenly distributed sample, and

in the other, each country sample size was relative to its proportion of the total EU

population. He found no significant differences between the two strategies, but in some

cases the uneven sample distribution produced more accurate estimates (Toshkov,

2015: 457).

Research by Wang et al. (2015) investigated the use of highly unrepresentative

samples to estimate vote share for the 2016 US Presidential election. Their sample was

acquired by a survey of online Xbox gamers. The sample was highly unrepresentative,
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comprised largely of young males. They showed that the “borrowing of strength” of

MRP enabled the model to reliably estimate for all voter types, despite the sample

being unevenly spread across groups. However, the study used a sample which

had around 400,000 respondents. This sample size meant that groups who were

proportionally underrepresented were still much larger in absolute terms than sample

sizes in most MRP applications. Therefore, the results from this study might not be

indicative of parameter estimation when samples are much smaller.

The limited discussion on sample size distribution in MRP is mirrored in the wider

multilevel modelling literature. Here, most studies discuss and analyse sample size

requirements assuming the even distribution of sample among sub-groups (Cohen,

2005; McNeish and Stapleton, 2016). Although more recently, some studies looking at

multilevel modelling have begun to incorporate or directly address unevenly distributed

samples. Across a variety of fields and different conditions, several studies have

investigated how uneven sample distribution may - or may not -impact multilevel

model parameter estimation. In each case the authors stress the importance of not

interpreting the findings beyond the specific conditions they analyse. Nonetheless,

the findings can inform our expectations of how MRP estimation will perform with

uneven samples.

Research in the field of randomized control experiments, tested whether an uneven

sample distribution negatively impacts Type I error rate, statistical power, bias, and

standard errors for mixed effect logistic regression models (Heo and Leon, 2005). They

argue their results indicate an uneven distribution does not negatively impact the

measures they use to evaluate the models (Heo and Leon, 2005). In education research,

Milliren et al. (2018) investigated whether an unbalanced sample distribution was

detrimental to linear random effect models. Their results also show no significant

negative impact on the ability of a model to identify true random effects with an

unbalanced sample distribution. Similar conclusions were reached by Schoeneberger
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(2016) for the multilevel logistic case.5 Specifically, they found that performance is

mostly affected by level-2 sample size, with logistic models requiring larger sample

sizes (Schoeneberger, 2016).

Investigating data sparseness for multilevel models, Bell et al. (2008) explored

how increasing the proportion of cells which had a single respondent impacted model

performance for linear multilevel models. They found that the proportion of singleton

cells had a limited impact on model performance when there was a sufficiently large

number of small areas.6 However, when there were few areas and a higher proportion

of singletons, the accuracy of level-2 parameters were negatively impacted. Broadly, in

linear and logistic multilevel models, data spareness does not negatively impact model

estimation as long as there is sufficient number of small areas (>50) and sufficient

sample per small area (>3-5 respondents) (Clarke and Wheaton, 2007; Clarke, 2008).

However, when these conditions are not met, variance estimation can be problematic,

with inaccurate estimation more pronounced for logistic applications (Clarke, 2008).

4.2 Data and Methods

4.2.1 Simulation study

The simulation component of this research involved two stages. First, creating fake

data and, second, estimating MRP models for different sample sizes, number of small

areas, and sample distributions.
5Although their study did not directly address uneven sample distribution, they incorporated

uneven sample distribution into the simulation study.
6They evaluated model performance by looking at variance estimation, fixed effects, standard

errors, and convergence.
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Simulating fake data

To create “fake data” for the simulation study, I followed the procedure itemised

below:

(1) Start with a “real” poststratification frame.

To create fake data that was comparable to real data for an actual population, I used

a “real” poststratification frame of the GB population.7 The poststratification frame

included the joint distributions for a variety of individual characteristics for all 632

GB constituencies. This acted as the base from which I created a simulated data for a

fake population.

(2) Create individual-level variables and append area-level variables.

In line with standard practice identified in chapter 2, I use 4 individual-level and 3

area-level variables. To create the individual-level variables I re-coded variables from

the real poststratification frame, collapsing some categories. This provided me with 4

individual-level variables with varying categories: X1 (2 categories), X2 (3 categories),

X3 (4 categories), and X4 (5 categories). Altogether, this meant that each small area

had 120 different person-type or individual-level variable joint-distribution variations.

To generate area-level variables, I used actual political and demographic statistics for

GB constituencies.8 The area-level variables (renamed A1, A2 and A3) were appended

to the poststratification frame for each small area. To create a person-type weight for

the poststratification frame, that is, the proportion each person type represents in

each small area, I made use of the weight included in the original poststratification

frame. As the original frame included more person types, I recalculated the weight so

it was representative of the 120 person-types in the new poststratification frame.
7It can be accessed here: https://dataverse.harvard.edu/dataset.xhtml?persistentId=

doi:10.7910/DVN/IPPPNU
8I used Conservative party 2017 vote share, 2016 EU referendum vote choice, and % 18-24. These

were chosen as variables selected by lasso regression in chapter 3.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU


4.2. Data and Methods 104

(3) Creating fake Y.

The procedure of creating Y was undertaken with the intention of imitating a binary

vote choice in a two-party system where 1 indicates a vote for party A and 0 a vote

for party B. To generate Y for each person type (i.e. each row of the poststratification

frame), I first calculated the probability that Y = 1 for each person type. This

was achieved by taking the inverse-logit of the sum of each variable multiplied by a

coefficient. Thus Pr(Yi = 1) was calculated by the following:

Pr(Yi = 1) = logit−1
g∑

g=1
Xgi

βg (4.1)

Here g references the gth variable of g = 1..., G variables, while X is a N*G matrix,

βg is a vector of coefficients for each variable, and i indexes an individual. To produce

Y, I drew binary outcomes (0,1) from a Bernoulli distribution:

Pr(Yi = 1) = pi, P r(Yi = 0) = qi = 1 − pi (4.2)

Where i references the ith individual in the data frame, p is the probability from

equation 1 and q is the inverse of p. I directly included area-level error into the

calculation of pi, while individual-level error was introduced by the random draws.

(4) Create “master” poststratification frames for each small area N.

To create the poststratification frames for each small area N, that is, for the various

number of small areas tested here (either 50, 200, 400 or 600), I randomly sampled

small areas from the poststratification frame created by steps 1-3. The sampling was

random without replacement and provided me with four master poststratification

frames for each of the small area N: 50, 200, 400, and 600.

(5) Create fake individual-level survey data.
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To generate fake survey data, I sampled person types from the master poststratification

frames. The procedure was random sampling with replacement, using the person type

weight as probability for selection. This procedure meant I imitated random survey

sampling where more populous sub-groups are represented to a greater degree in the

survey sample. For each small area N, the sampling procedure was replicated for four

different average small area sample sizes (5, 10, 20 and 30) and for three different

sample distribution ratios (Even, 2:1, and 3:2:1).9 In total, the process generated, 48

data sets with four unique small area sample sizes (5, 10, 20, and 30), three different

ratios (Even, 2:1, and 3:2:1), and four unique number of areas (50, 200, 400, and

600).10

Ratios were calculated by using the small area margin of victory (i.e. the difference

between proportion of Y =1 and Y= 0). Thus, where s references each small area, the

calculation was as follows:

Margin = abs(
∑

Ys = 1 −
∑

Ys = 0) (4.3)

Using the margin, I divided small areas evenly into thirds or halves depending on the

sample distribution ratio. There were three sample distribution ratios used: ‘Even’

which meant the sample was evenly spread among small areas, ‘2:1’ ratio, where the

‘most marginal’ group (i.e. smallest margin of victory) received around 2/3 of the

sample and the ‘least marginal’ group a 1/3 of the sample. Finally, the ‘3:2:1’"’ ratio

where the ‘most marginal’ group received 1/2 of the sample, the ‘mid marginal’ group

received 1/3 of the sample and the ‘least marginal’ received 1/6 of the sample.
9To ensure that the sampling procedure and the resulting samples were comparable, I used the

R set.seed function to ensure consistency in sampling. This meant, that for data frames where the
sample per small area ratios were either ‘2:1’ or ‘3:2:1’, the areas with more respondents would have
the same respondents as the ‘Even’ sample dataset, plus additional respondents. This was to ensure
that increasing sample size would most likely increase accuracy of the raw data.

10For samples where the ratios are not even, the small area sample sizes are average sample size
per small area.
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Simulation modelling procedure

For the 48 variations in sample size, small area N and sample distribution ratios, I

estimated the proportion of Y = 1 in each small areas using multilevel regression

and poststratification (MRP). Except for the sample size, small area N and sample

distributions, all models were estimated in an identical way. I first estimated Bayesian

multilevel logistic models. Each mode included X2, X3 and X4 as random effects,

and X1, A1, A2, and A3 as fixed effects.11 Each model included weakly-informative

student-t priors on both the intercept and the coefficients (for a discussion on prior

choices, see Gelman et al., 2008). The model was thus as follows:

Pr(Yi = 1) = logit−1(βθ + βX1
X1[i] + αX2

j[i] + αX3
k[i] + αX4

l[i] + αArea
s[i] ), (4.4)

Where each random intercept term (αX2
j , αX3

k αX4
l ) is assumed to be normally

distributed with a mean zero and some variance σ2.

αX2
j ∼ N(0, σ2) for j = 1, ..., 3

αX3
k ∼ N(0, σ2) for k = 1, ..., 4

αX4
l ∼ N(0, σ2) for l = 1, ...5

The small area random intercept term (αArea
s ) is itself modelled as a function of

area-level variables A1, A2, A3, and again, assumed to be normally distributed with

some variance. Where s indexes the relevant small area, it is:

αArea
s ∼ N(βA1 · A1s + βA2 · A2s + βA3 · A3s, σ2) for s = (1, ..., S)

11X1 was an individual-level variable and could have been included as a varying intercept term, as
was done with all the other individual-level variables.
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For all β and the σ parameters for the random intercept terms, I include student-t

priors with 5 degrees of freedom, mean 0 and standard deviation of 5. Each model

was estimated with 2 chains, 500 warm-up and 500 sampling. To improve estimation

and reduce computation time, the models included QR decomposition on the fixed

effects. All models were estimated with Stan called through RStan (S. D. Team, 2020)

and implemented with stan_glmer function of rstanarm (Goodrich et al., 2020). To

estimate the proportion of individuals in each small area where Y = 1, the multilevel

estimates were poststratified using each small area N poststratification frame. In

practice this meant I drew 500 samples from the multilevel model posteriors using the

poststratification frames as new data.

Y mrp
s =

∑
cϵs Nc πc∑

cϵs Nc

(4.5)

Here s indicates the small area, Nc is the relevant population count and πc is the

person-type cell estimate. The final small areas estimates are the mean and the 90%

credible intervals for the estimates.

4.2.2 External validation

The second stage of the research - the external validation - estimated voting behaviour

in the UK and US. I estimated Conservative Party vote share in UK constituencies for

the 2019 election and Republican vote share at state-level for the 2016 US presidential

election. These elections represent real-world manifestations of the upper and lower

small area N used in the simulation study.12 Broadly, the external validation followed

a similar strategy to the simulation study, with minor modifications necessary for each

applied case.
12UK constituencies number 632 and US states number 50.
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Individual (survey) data

For the UK validation study, I made use of the British Election Study (BES) election

campaign wave survey. The survey included around 30,000 respondents from all

UK constituencies and included vote intention as well as respondent demographic

characteristics. For the 2016 US Presidential election, individual-level data was

obtained from the Cooperative Congressional Election Study (CCES). Here I use the

pre-election survey data. The survey sample size was around 50,000+ respondents,

with respondents from all 50 US states.

Poststratification frame

For the UK, I used a publicly available poststratification frame from Hanretty et al.

(2017). This poststratification frame included all demographic individual-level variables

used in the multilevel model. The frame was constructed using UK census data and a

raking procedure to provide a range of individual-level variable joint-distributions at

GB constituency level.13 For the US poststratification frame, I constructed using the

2014-2018 American Community Survey (ACS) 5-year Public Use Microdata Sample.

The data has over 18 million individual responses and is regarded as a reliable source

for deriving demographic joint-distributions required for the poststratification frame.

I calculated person type (or cell) weights by summing the number of individuals in

each cell and dividing by the total population for the given state. The procedure was

as follows: ∑
cϵt Nc∑
cϵt Ns

(4.6)

Where t references the total number of person types, c indexes a unique cell in t, and

s the state.
13For a detailed account of poststratification construction, please refer to Hanretty et al. (2016),

Hanretty et al. (2017), and Hanretty (2019).
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Variables

Vote intention for the Conservative Party was derived from a vote intention question

which asked whether “in the upcoming election the respondent knew which party

they would vote for”. I excluded those who reported they would not vote and those

who reported they “Did not know”. US vote intention was derived from one of two

questions in the survey. For those who had already voted, I used their declared vote.

For those who were yet to vote, I derived vote intention from a question which asked for

a respondent’s preferred candidate for the 2016 upcoming US presidential election.14 I

Table 4.2: Model variables

Individual-level Area-level
UK

Gender (2) GE2017 vote
Age (8) EU2016 vote
Education (6) % Long-term unemployed
Campaign week (4) % Industry manufacturing

Population density
Region

US
Gender (2) Region
Age (4) 2012 vote
Ethnicity (4)
Education (4)
Marital status (4)
Campaign week (4)

excluded those who stated they would not vote and those who did not intend to vote

for either Republican or Democrat presidential candidates.

Individual and area-level variable selection was based on variables used in the

MRP models of Lauderdale et al. (2020). In their paper, they estimate UK party

vote share for the 2017 General Election and the US 2016 presidential election. I have

not included individual-level past vote due to limitations on available data and to
14Candidate preference is an imperfect proxy for vote intention, but I believe is a sufficient proxy

for the purposes of this study: comparing sampling strategies.
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reduce model complexity/computation time, I have not included interactions used in

Lauderdale et al. (2020). For both models, to account for temporal change in vote

choice, I also include a varying intercept term for the week of survey fieldwork. The

variables used in each case are reported in table 4.2.

Sample distribution and size

Assigning small areas into marginal groups is more complicated in a real-world setting

than was the case for in the simulation study. First, in a real world setting we would

not know the margin of victory prior to the election. As the best substitute, I made

use of margin of victory in the previous election.15 For the UK, I used past vote

from the 2017 election, calculating difference between the Conservative and all other

parties’ vote share. For the US, I calculated the difference between Republican and

Democratic vote share. Second, in a real-world setting, splitting small areas into

groups of thirds or halves - as has been done in the simulation study - is not practical.

Using this method could result in small areas included in the ‘most marginal group’,

even though by conventional metrics they would not be considered a marginal small

area. Instead, I assigned a small area into a marginal group based on whether past

margin of victory is below either 5% or 10%. In table 4.3 I report the cut-off points

used to assign small areas into marginal and non-marginal groups.

Table 4.3: Marginal group categories

Most marginal Mid marginal Least marginal

Two groups (2:1) <10% ≥ 10%

Three groups (3:2:1) <5% ≥ 5% & <10% ≥ 10%

15There are risks by using past vote as we are assuming that small areas which were marginal in a
past election will again be marginal. If this is not the case, our strategy risks greater inaccuracy in
important small areas than would be achieved with an evenly spread sample.
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Determining sample distribution among small areas groups is also more complicated

than was the case in the simulation study. In most applications there are too few

small areas in the ‘most marginal’ and ‘mid marginal’ groups, such that the ratios

used in the simulation are no longer applicable from both a modelling and a practical

standpoint. From a modelling perspective, the ‘least marginal’ group, which includes

most small areas, would receive too small a proportion of the sample. Although we

wish to redistribute the sample, we still need sufficient number of respondents in

non-marginal small areas for reliable estimation. From a practical perspective, the

necessary samples sizes for ‘most’ and ‘mid’ marginal small areas are not feasible with

the surveys I use here (BES and CCES).

As an alternative, I calculated a weighted ratio for the sample distribution. To

calculate this, I first create a weight that is the number of small areas in a group

divided by the total number of small areas. I take the proportion of sample that each

group should receive, according to the original ratios, and multiply by the weight.

The weighted ratio is then rescaled so that the sum of weighted ratios equals 1. The

calculation is as follows:
wtg · Rg∑G

g=1 wtg · Rg

(4.7)

Where g references the group of small areas, R the original ratio and wt the weight as

described above. The weighted ratio thus provides a means to calculate the sample

distribution that accounts for marginal group size, that is, the number of small areas

in each group.

The weighted ratio determined the sample distribution, and provided the required

sample per small area. To select survey respondents from the total sample, I randomly

sampled respondents without replacement from each small area using the survey

weight as the probability for selection. I completed the sampling procedure once for

both US and UK. This provided me with a single survey sample for each of the ratios.

In the US, the three samples have on average 30 respondents per small area, with the
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sample distributions as follows:

• Even: 30 respondents per small area

• ‘2:1’: 23:46 respondents per small area

• ‘3:2:1’: 21:42:63 respondents per small area.

In the UK, the BES sample did not have adequate coverage across small areas to

enable an average of 30 respondents per small area. Instead, I tested an average of 20

respondents per small area across the three distributions.16 The distributions are as

follows:

• Even: 20 respondents

• ‘2:1’: 16:32 respondents per small area

• ‘3:2:1’: 15:29:44 respondents per small area.

Model estimation

For each unique sample - 6 in total - I have followed the estimation strategy pursued

by Hanretty et al. (2016) and Selb and Munzert (2011) where I estimate vote choice

as a binary outcome .17 In the UK application, I estimated Conservative vote share

within each GB constituency (632) for the 2019 general election (Conservative = 1,

all other parties = 0). In the US case, I estimated Republican vote share in each US

state (50) for the 2016 presidential election. I again estimated vote choice as a binary

outcome, where Republican = 1 and Democrat = 0. In both cases I excluded those

who reported they would not vote and those who stated they “Don’t know”. In the
16Even with an average of 20 respondents, some small areas did not have the sufficient sample

size required for a given ratio distribution. For the ‘Even’ and ‘2:1’ distribution, around 99% of
small areas had sufficient sample sizes. For the ‘3:2:1’ distribution, only 83% of small areas had the
necessary 44 respondents. However, all except one small area had larger sample sizes than 29, with
the majority relatively close to the desired 44 respondents.

17An alternative would be to estimate all parties with a multilevel multinomial model, as is the case
in Lauderdale et al. (2020). There are clear benefits to this strategy but it is far more computationally
demanding.
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US application, I also excluded those who did not intend to vote for either Republican

or Democrat.

In both US and UK applications, except for different sample distributions all

models were identical. In each case, vote choice was first estimated as a Bayesian

multilevel logistic regression model. I estimated the models with student-t priors on

all varying intercept σ and all β parameters, with 5 degrees of freedom, mean of 0 and

5 standard deviation. Each model had two chains of 1000 iterations (500 warm-up

and 500 sampling). All models were estimated with Stan called through RStan (S. D.

Team, 2020) and implemented with the brms package (Bürkner, 2017).18

To produce small area vote share, I poststratified the multilevel estimates for

UK and US with their respective poststratification frames. In both applications, the

poststratification frames I have used are for all adults. This means that the estimates

are vote share as a proportion of all adults in each small area, rather than of voting

population as would be normal in electoral forecasting.

To account for voter turnout, I have applied actual small area turnout to estimates

for each election. This strategy fails to account for any sub-group turnout differentials,

something which we know to be apparent. However, to be able to apply differential

turnout to subgroups in the electorate we need to estimate turnout first. This is

a difficult task, and one which is often harder than forecasting vote choice. For

instance, Lauderdale et al. (2020) argue that their turnout estimates were consistently

unsatisfactory and responsible for some of the error in their constituency and state

vote share estimates. For simplicity and to avoid needing to disentangle effects of

turnout and the effects of uneven sample distribution, I apply actual turnout to small
18I include full UK and US model notation in appendix C.2 and C.3.
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area vote estimates.19 The final estimates are thus:

Y V ote
s = Y mrp

s ∗ Turnout (4.8)

4.3 Results

I first present the results of the simulation study followed by the two external validation

exercises. When presenting the results here, I discuss accuracy of the MRP estimates

rather than the estimates themselves. However, accuracy in this chapter takes on two

related but different meanings. For the most part, accuracy refers to the comparison

between the estimates and actual party vote share. The measures used to represent

this type of accuracy are mean absolute error (MAE), root mean squared error (RMSE)

and correlation. In the validation exercises, I also refer to seat prediction accuracy,

which refers to whether the estimates correctly predicted the party winner. For seat

prediction accuracy, I make use of the Brier score.20

4.3.1 Simulation study

The simulation study included 48 separate models; for four different small area N (50,

200, 400 and 600), four different average sample sizes (5, 10, 20 and 30) and three

different sample distributions (Even, 2:1 and 3:2:1).21 Below I present MRP estimate

accuracy by comparing estimates to true vote share generated in the “simulating fake

data” procedure.
19To provide confidence that the turnout measure did not impact the results, I produced results

with a model-based turnout measure as well. I explain estimation procedure for the model-based
turnout and show results produced with this alternative turnout in appendix C.5. Importantly, the
findings in this chapter do not change with the model-based turnout.

20The brier score is a measure used to calculate the accuracy of probabilistic predictions.
21For uneven distribution sample designs, the sample size refers to the average sample size.
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50 Areas 200 Areas 400 Areas 600 Areas

N
 =

 30
N

 =
 20

N
 =

 10
N

 =
 5

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

MAE

Design 2:1 3:2:1 Even

Figure 4.1: Simulation model accuracy
Notes: showing MAE for all sample sizes (rows) and small area N (columns). Points
show average MAE with 90% CI shown by lines. Even sample distributions show in
blue, 2:1 in red and 3:2:1 by green.

The uneven sample distribution has been implemented to improve accuracy in

certain small areas. However, it is important to consider how changes in the sample

distribution impact overall small area accuracy. This will allow us to understand how

the uneven sample distribution affects model estimates more generally. Accordingly,

figure 4.1 shows MAE of estimates for all small area N, sample size and sample

distribution. Each column represents a different number of small areas, starting at

50 on the left and increasing to 600 small areas in the right-hand column. Each row

shows MAE for different average sample size per small area, starting at N = 30 at the

top and going down to N = 5. Finally, the colours indicate the sample distribution.

Blue shows MAE for ‘Even’ distribution models, red for ‘2:1’ distribution models, and
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green ‘3:2:1’ distribution models. In each plot, the point represents the average MAE

across all small areas, while the lines indicate the 90% credible intervals.

Overall, the accuracy figures reported in figure 4.1 are in line with expectations

informed from previous research. As we would expect, the larger samples produce

more accurate estimates regardless of sample design and number of small areas. From

the figure, it seems the uneven sample distribution has relatively little effect on overall

estimate accuracy. In each plot, the point estimates (indicating average MAE), show

little difference regardless of sample distribution. Similarly, the 90% credible intervals

seem similar in length for nearly all plots. The results are largely unaffected by the

number of small areas, but sample size seems to have a small effect, with ‘2:1’ and

‘3:2:1’ MAE widths are longer when sample sizes are smaller. Altogether, the figure

highlights that the uneven sample distributions do not have a significant effect on

overall MRP estimate accuracy.

As previously noted, our primary interest is to compare the prediction accuracy

of certain small areas between different sample distributions. To determine sample

distribution, the simulation study assigned small areas according to margin of difference

(calculated as the difference between the proportion Y = 1 and the proportion Y ̸= 1).

This meant that, for ‘2:1’ and ‘3:2:1’ sample distributions, areas with a larger margin

of difference received a smaller proportion of the sample and should therefore have

poorer estimate accuracy. On the other hand, small areas with a smaller margin of

difference received a larger proportion of the sample and should therefore have higher

accuracy.

To investigate how uneven sample distributions impact estimate accuracy for

marginal small areas, table 4.4 analyses results by grouping small areas according to

the marginal grouping (most, mid and least marginal). These are the same groupings

used to determine the sample distribution, where the most marginal group received the

largest proportion of the sample. The table shows MAE and the width - calculated as
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Table 4.4: Simulation small area accuracy (3:2:1 distribution)

50 Areas 200 Areas 400 Areas 600 Areas
Groups MAE Width MAE Width MAE Width MAE Width
Sample: 30

Most marginal -0.01 -0.03 -0.03 -0.04 -0.02 -0.04 -0.02 -0.03
Mid marginal 0.00 0.01 0.00 0.00 0.00 0.00 0.00 -0.01
Least marginal 0.02 0.07 0.02 0.07 0.02 0.06 0.03 0.07

Sample: 20
Most marginal -0.02 -0.06 -0.02 -0.04 -0.01 -0.05 -0.01 -0.05
Mid marginal -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Least marginal 0.01 0.07 0.02 0.07 0.03 0.07 0.02 0.07

Sample: 10
Most marginal -0.03 -0.08 -0.03 -0.06 -0.02 -0.06 -0.02 -0.06
Mid marginal 0.00 -0.02 -0.01 -0.01 0.00 -0.02 0.00 -0.01
Least marginal 0.05 0.08 0.05 0.08 0.04 0.08 0.05 0.07

Sample: 5
Most marginal -0.03 -0.08 -0.03 -0.09 -0.05 -0.11 -0.04 -0.11
Mid marginal 0.00 -0.01 -0.01 -0.04 -0.01 -0.07 -0.01 -0.06
Least marginal 0.03 0.04 0.05 0.04 0.10 0.03 0.09 0.02

Note: Showing +/- from ’Even’ MAE and width. Areas grouped into marginal
categories

the difference between the 90% credible intervals - for the ‘3:2:1’ sample distribution.22

I report results for the different sample sizes (across rows) and the different small

area N (shown in the columns). The figures reported in the table are the increase

or decrease from the ‘Even’ sample distribution. A minus figures indicates a lower

MAE or width (i.e. an improvement), while a positive value indicates higher MAE or

a larger width (i.e. poorer accuracy). From the table, we can therefore see that when

estimating in 50 areas with a sample size of 30, the most marginal group MAE is 1%

less than the ‘Even’ distribution, while the width is 3% shorter.

Importantly, the results presented in the table demonstrate the effectiveness of

an uneven sample distribution. For every sample size and for every small area N, we
22In appendix C.1 I present the same table for the sample distribution with two groups and a ratio

of ‘2:1’.
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consistently see that for the most marginal small areas MAE decreases and widths

shorten. In each case, this improvement represents a reduction in MAE of between

1-5%, while widths are between 3-11% shorter. This means that for the most important

small areas, we improve accuracy as well as precision and confidence in our estimates.

However, for the least marginal areas MAE increases and widths widen. MAE increases

are typically around 2-5%, but for the smallest sample size go up to 10%. For the

‘mid marginal’ group, MAE is either identical or 1% less than the ‘Even’ distribution

MAE.

This pattern is evident for all sample sizes but is particularly notable when average

sample sizes are smaller. This is most likely because with smaller sample sizes, the

increase/decrease in respondents may have a larger impact on making the underlying

raw data more/less accurate than might be the case for larger sample sizes. And as a

result, when the sample is unevenly distributed the differences in prediction error are

starker.

4.3.2 External validation

Turning to the external validation, I next present the findings from the application

of an uneven sample distribution to real-world settings: 2019 UK General Election

and 2016 US presidential election. Overall the findings presented from the simulation

study seem to be upheld in the real-world application.

UK

I first present the accuracy for models estimating Conservative Party vote share at

the UK 2019 General Election. The election saw the Conservative Party win an

overall majority, by winning 363 of the 632 Great Britain electoral districts available.23

23The UK parliament is made up for 650 MPs elected to represent UK electoral districts. However,
no GB party stands in Northern Ireland, and typically modelling of UK general election does not
include constituencies for Northern Ireland.
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Figure 4.2: UK estimates vs. true vote share
Notes: Points show mean constituency estimate with 90% CI shown by vertical lines.
Red line shows line of best fit and dashed grey line shows 45 degree line.

Figure 4.2 shows scatter plots showing estimates (on the y-axis) vs the actual 2019

Conservative vote share (on the x-axis). The figure shows three plots for the ‘Even’,

‘2:1’ and ‘3:2:1’ sample distributions. On each, the points represent the mean estimate

while the vertical lines show the 90% credible intervals. The red line represents the

line of best fit across all small areas, while the grey dashed line represents the line for

a perfectly linear relationship. On each plot I also report the MAE, the root mean

squared error (RMSE) and correlation (Cor).

From figure 4.2 we can see the ‘3:2:1’ sample distribution achieves the lowest

MAE and RMSE, followed by the ‘2:1’ model. This is contrary to the results of

the simulation study where overall accuracy showed little difference between sample

distributions. However, the differences are relatively small, with all models achieving
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Table 4.5: UK: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.035 0.081
Mid marginal 0.041 0.094
Most marginal 0.045 0.093

3:2:1
Least marginal 0.036 0.057
Mid marginal 0.035 0.062
Most marginal 0.037 0.061

Table 4.6: UK: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.035 0.081
Most marginal 0.043 0.093

2:1
Least marginal 0.035 0.057
Most marginal 0.036 0.062

a MAE within 0.2% of each other. Similarly, the difference in correlation between all

three models is almost non-existent. The ‘3:2:1’ model achieves correlation of 97.7%,

while both other models achieve 97.6%. RMSE shows slightly greater differences

between the uneven and ‘Even’ sample distributions. Two uneven samples achieve a

RMSE of 3.9%, while the ‘Even’ sample distribution achieved RMSE of 4.3%.

Next, I examine the difference in accuracy of small area marginal groups - the

same groupings used to determine sample distributions. Table 4.5 compares ‘Even’

and ‘3:2:1’ distribution, showing MAE and width for the ‘most’, ‘mid’, and ‘least’

marginal small areas. Table 4.6 compares accuracy between ‘Even’ and ‘2:1’ sample

distribution model, showing MAE and width for ‘most’ and ‘least’ marginal small

areas.

From table 4.5 and 4.6 we can see that the ‘2:1’ and ‘3:2:1 ’sample distribution

models achieved greater accuracy for the most marginal small area groups when
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compared to the evenly distributed sample. In both cases, the MAE of most marginal

small areas was between 0.7-0.8% less than for the most marginal small areas of

the ’Even’ distribution model. Unlike in the simulation study, the improvements in

accuracy for most marginal small areas was not at the cost of accuracy in the least

marginal small areas. In the ‘3:2:1’ distribution the least marginal small areas has

0.1% worse MAE, while for the ‘2:1’ distribution MAE was the same as the ‘Even’

sample distribution. Furthermore, we can see that the estimate widths for the uneven

sample distribution models are shorter than the ‘Even’ distribution model for all small

areas regardless of which marginal grouping they were. Broadly, the results seem to

indicate that in a real application, we can improve estimate accuracy in certain small

areas with an uneven sample distribution. However, this does not tell us whether we

have improved our ability to predict an election, as was the basis and justification for

an uneven sample distribution.

To investigate whether uneven sample distributions improve seat prediction accu-

racy, I next show the brier score of estimates for each model. The results are presented

in the table 4.7.24 The brier scores of the ‘3:2:1’ and ‘2:1’ sample distribution were

identical (although unrounded scores show ‘3:2:1’ achieves the best brier score), with

both showing an improvement over the ‘Even’ sample distribution score. The results

certainly lend weight to the central argument here: an uneven sample distribution

improves accuracy in marginal small areas, and this in turn can improve the probability

of predicting an electoral outcome.

US

The results for the 2016 US presidential election are presented below. They broadly

show similar patterns to the simulation and the UK application. The 2016 US
24I calculate the probability of a Conservative victory in each seat by calculating the number of

times (out of the 500 posterior samples) that the Conservative estimate is greater than the largest
true vote among all other parties.
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Table 4.7: UK election prediction accuracy

Model Brier score
Even 0.033
2:1 0.024
3:2:1 0.024

presidential election result was contrary to most predictions prior to the election,

with the Republican candidate Donald Trump winning the presidency. Although the

Democrats won 51% of the popular vote between the two parties, Donald Trump won

the presidency by winning enough states to secure more than the 270 electoral college

votes needed to win overall.25

Figure 4.3 presents the scatter plots showing the estimates vs the actual 2016

Republican vote share. The points show the mean estimates while the lines indicate

the 90% credible intervals. The red line is the line of best fit for the estimates, while

the grey dashed line is 45◦ line representing a perfectly linear relationship. In each

scatter plot I also report the MAE, RMSE and correlation. We can see from the

graphs that the model with a ‘3:2:1’ distribution achieves highest overall accuracy,

with MAE of 3.3%, RMSE of 4.2%, and correlation of 95.2%. The ‘2:1’ distribution is

the second most accurate, with MAE of 3.5% and RMSE of 4.4%, while the ‘Even’

sample distribution achieved MAE of 4% and RMSE of 5%. From the scatter plots

we can see the ‘Even’ sample distribution fitted line is consistently under the 45◦

line, indicating that this model consistently under-predicts Republican vote share.

Conversely, the two uneven sample distributions show under-prediction of Republican

vote share in states where the party received low vote share. Importantly however,

the models show estimates are closer to actual Republican vote share in states where

the party received a greater share of the vote.

Turning to comparing accuracy between states according to marginal groups. Table
25This is a classic example of where MRP may be useful, as it could be used to forecast results in

each small area rather than assessing electoral outcome probabilities on a national vote share.
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Figure 4.3: US estimates vs. true vote share
Notes: Points show mean state estimate with 90% CI shown by vertical lines. Red
line shows line of best fit and dashed grey line shows 45 degree line.
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Table 4.8: US: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.039 0.117
Mid marginal 0.043 0.133
Most marginal 0.040 0.130

3:2:1
Least marginal 0.035 0.111
Mid marginal 0.036 0.122
Most marginal 0.032 0.123

Table 4.9: US: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.039 0.117
Most marginal 0.042 0.132

2:1
Least marginal 0.033 0.104
Most marginal 0.032 0.113

4.8 shows MAE and width for ‘most’, ‘mid’ and ‘least’ marginal small areas, comparing

‘Even’ and ‘3:2:1’ sample distribution models. We can see that the estimates for the

‘3:2:1’ distribution are more accurate and have marginally shorter widths. At odds

with results from the simulation and the UK application, here we see that the uneven

sample distribution improves accuracy for all states, including those in the ‘least’

marginal group. This means that the ‘3:2:1’ distribution improves estimate accuracy,

even in states where the sample size is lower than if we had an evenly distributed the

sample. Next, table 4.9 compares ‘Even’ and ‘2:1’ distribution models, showing MAE

and width for small areas separated into ‘most’ and ‘least’ marginal groups. Again,

the uneven sample distribution achieves better MAE and marginally shorter widths

for all small areas, including in the ‘least’ marginal small areas.

Finally, table 4.10 presents the brier scores for each model. The scores are identical

for ‘3:2:1’ and ‘2:1’ sample distributions, although again the unrounded brier scores
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Table 4.10: US election prediction accuracy

Model Brier score
Even 0.074
3:2:1 0.052
2:1 0.052

show ‘3:2:1’ as lowest. Importantly, the results once again show the uneven sample

distributions improve electoral prediction, with the ‘Even’ sample brier score higher

than both ‘3:2:1’ and 2:1 sample distributions. Clearly, the uneven sample distribution

has again improved accuracy in the small areas which are key to predicting an electoral

outcome, i.e. those with a small margin of victory. And this in turn, has improved

our ability to correctly predict seat winners and the overall result. The results

however, contrary to the simulation and UK application, show the uneven sample

distribution improves accuracy across all small areas. This means that the ‘Even’

sample distribution achieved poorer accuracy in small areas where the sample size

was greater than was the case for both the uneven sample distributions.

The improvements in accuracy in least marginal small areas is most likely due to

two reasons specific to the US application. First, the uneven sample distributions

resulted in samples with an overall Republican vote share of 52-53%, compared to the

50% of the ‘Even’ sample distribution. Because of partial pooling, state estimates will

be shrunk towards the overall vote share figure. This meant for the ‘Even’ distribution,

estimates were shrunk towards 50%. This would have acted to the detriment of

estimates in states where true Republican vote share is high. This can be seen in the

scatter plots, which show the ‘Even’ model consistently under-predicting Republican

vote share.

The Second, and perhaps more likely reason, is the underlying data is inaccurate.

The basic assumption of an uneven sample distribution is that by increasing our sample

in any given small area we are improving the probability that the raw underlying
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data will be more accurate. This is probably a fair assumption, however, by no means

a given. In the simulation and the UK application this has broadly been the case,

but in the US example this assumption has not held. For instance, in the ‘3:2:1’

distribution, ‘least’ marginal small areas had 21 respondents, 9 fewer than when the

sample was distributed evenly. However, for some of the ‘least’ marginal small areas,

the raw data is more accurate than is the case for the ‘Even’ distribution sample.

That is, state Republican vote share is closer to true republican vote share. If the

underlying assumption that more respondents = improved raw data accuracy is not

upheld, then an uneven sample distribution will quickly become far more problematic

than an ‘Even’ distribution. In the US application, the underlying assumption has not

held, although this resulted in improved estimates for all small areas with an uneven

distribution. Importantly however, this highlights that increasing sample size might

not improve raw data accuracy. If this problem arises, we might make estimates far

worse than would have been the case with an evenly distributed sample.

4.4 Discussion

This chapter has introduced a method to determine sample distributions and shown

that this can improve MRP estimate accuracy. The chapter contributes to the wider

literature on forecasting elections, and specifically forecasting elections with MRP, by

demonstrating the improvements in estimate accuracy of this method. This chapter has

demonstrated that by over-sampling in certain small areas, we can improve estimate

accuracy in the most important small areas which in turn improve our ability to

forecast elections.

One of the notable strengths of this approach is that the benefits are accompanied

with relatively low-level risks. In the simulation study, overall estimate accuracy

was largely unaffected by the sample distribution. However, the uneven sample
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distributions resulted in improved estimate accuracy in the most marginal small areas.

The uneven sample distribution also impacted non-marginal small areas, but for

these areas it was to the detriment of estimate accuracy. In the two-applied settings,

the results were more emphatic, showing the uneven sample distributions improved

accuracy overall. Improvements in estimate accuracy in the most marginal small

areas was not accompanied by significant decreases in accuracy in non-marginal small

areas. This, I believe, is the result of the weighted ratio measure I have introduced in

this chapter.26 The weighted ratio determined sample distributions which increased

marginal small area sample size significantly, but only at the cost of nominal reduction

in sample size for non-marginal small areas. Altogether, the results in both simulation

and real-world applications show that the benefits of this method can be significant,

while the risks of poorer accuracy in non-marginal small areas seem small at worst,

and non-existent at best.

In many applications of MRP, researchers use publicly available surveys where

they don’t have control over the sampling strategy. However, when researchers have

control over the sample, this research will be of interest. This is particularly the case

given that most research has finite resources and a limit on total sample size. In these

circumstances, researchers should take into consideration how they wish to structure

their sample so that their estimate accuracy can be targeted in the small areas which

they deem most important. In an electoral setting, this manifests by over-sampling

marginal small areas.

This method has demonstrated how we can get the most out of our sample for

any sample size. However, the results are of particular interest to researchers with

small sample sizes. The results of the simulation study show that the benefits (and
26In a previous version of the real-world application, I split groups evenly by past-vote share, in

an identical way to the simulation study. Results were similar to those present in the chapter, but
for the UK, non-marginal small area estimates had poorer accuracy. For the US, improvements in
marginal small areas were not as significant as those presented above. This gives confidence that the
weighted ratio is, in part at least, responsible for reducing risks involved with the uneven sample
distributions. See appendix C.4 where I provide figures and tables with the previous version results.
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risks) of an uneven sample distribution are most prominent for smaller sample sizes.

Therefore, should a researcher only have resources that will permit a relatively small

sample size, then an uneven sample distribution may be particularly beneficial.

The chapter also contributes to our wider understanding of how sample distributions

can affect MRP estimate accuracy and estimate precision. Although this method will

not be beneficial to all applications of MRP, the results should be of interest to all

who use MRP. This is because the results highlight that the sample distribution can

have significant consequences on MRP estimates. As mentioned above, most MRP

applications use publicly available surveys, where samples are typically distributed

unevenly in order to be representative of the wider population. This means that across

small areas there will be varying degrees of accuracy and precision. This is rarely

given consideration in many MRP studies, with researchers not accounting for this

variation when presenting results or using the MRP estimates for further analysis.

In the chapter I have often discussed how increasing sample size will lead to

improved MRP estimates because we are increasing the sample size within a small

area. If this assumption does not hold true, then the estimates will certainly not

benefit from improved accuracy, and rather, we will entrench inaccuracy further. This

potential problem was borne out in the US application, although in this chapter this

worked to the detriment of the ‘Even’ rather than uneven sample distributions.

One consideration that has largely been overlooked in this chapter, is how variance

of opinion or behaviour within and between small areas could affect this strategy.

This is a significant omission, as the degree of shrinkage through partial pooling is

determined in part due to this variance. Where variance is limited, the partial pooling

between small area estimates is greater. This has significant implications for the use

and efficiency of an uneven sample distribution. Here I have neglected discussing

variance because it is entirely beyond the control of the researcher. Nonetheless,

researchers need to explore how their variable of interest varies between and within
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small areas. As with multilevel modelling more widely, the uneven sample distribution

should be particularly useful when there is greater variation between small areas.

An important consideration for the use of an uneven sample distribution is how

we determine which small areas should receive a greater proportion of the sample. In

the simulation study I used the difference between Y = 1 and Y ̸= 1. However, in

real-world applications, this is obviously not possible, and in the external validation I

used past vote. This poses significant risks as this assumes that small areas which

were previously a marginal will be a marginal in the future. In many cases there is

consistency between elections, but this is not guaranteed. If previous non-marginals

become marginals (and vice versa), we risk greater inaccuracy than if we had an evenly

distributed sample.

In all applications in this chapter, I have assigned small areas into marginal groups

based on the absolute difference between Y = 1 and Y ̸= 1. That is, the absolute

difference between vote for one party minus vote for all other parties. However, in a

multiparty system, this is a problematic way to assign small areas into marginal group

and risks misclassification. It would be more appropriate to estimate a multinomial

model, estimating all parties at once. In this application, we would simply use the

majority of the previous winning party to determine whether a small area was a

marginal or not. Future work could apply the uneven sample distribution tested here

to forecasting elections with an MRP multinomial model.

Similarly, future research could further advance this method by adapting the

weighted ratio so that it could be applied in other electoral contests. This is necessary

because in its present form, it may not be useful in all electoral systems. For instance,

in the German Bundestag where voters have two votes: one for the constituency

representative, and one for the proportional party make-up of parliament. The system

requires accurate forecasts in each constituency to forecast the political make-up of

parliament. In this application there might be electoral districts where first choice
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is a marginal but the second vote is not a marginal - or vice versa. For the wider

application of the weighted ratio, researchers will need to tailor it to account for the

idiosyncrasies of different electoral systems such as the German Bundestag.

4.5 Conclusion

This research has tested whether an uneven sample distribution can improve MRP

estimate accuracy. The sampling strategy proposed here will not be useful in many -

if not most - applications of MRP. But in applications where we are more concerned

with accuracy in certain small areas, this chapter has demonstrated this strategy can

be useful. The most obvious application for this strategy - and the application which

has been applied here - is to forecast elections, where typically a minority of small

areas decide electoral outcomes.

Through a simulation study and two external validation exercises, this chapter

sets out how this method can be applied, as well as demonstrating the benefits. In

both the simulation study and the two applied cases in the UK and US, the research

showed this strategy can improve estimate accuracy in small areas that we deem

more important. In the two applied cases, the uneven sample distribution improved

estimate accuracy in the most important small areas by just under 1%. In turn, these

improvements translated into an enhanced ability to forecast the elections.



Chapter 5

MRP and informative priors

Multilevel regression and poststratification (MRP) is a small area estimation method

that has grown in use and popularity in academic and non-academic settings. In

academia, the use of the method has grown since its first introduction (See Gelman

and Little, 1997), with notable applications in social sciences and population health

studies. The use in social sciences extends across a range of behaviour and public

opinion topics, as was documented in chapter 2. Outside of academia, the notoriety

of the method and its application is largely restricted to forecasting elections, which it

has been shown to be proficient at (see Lauderdale et al., 2020).

Part of the reason MRP is adept at estimating small area opinion and behaviour

is because it enables researchers to combine numerous sources of information into

one unified framework. For instance, we use individual-level data from surveys,

incorporate information about the small areas as area-level variables, and structural

information about the population through the poststratification frame. With MRP

increasingly estimated as a Bayesian model, we have the opportunity to incorporate

further information through the specification of informative priors.

These are an important - albeit sometimes seen as a controversial - aspect of

Bayesian estimation. And although MRP is increasingly Bayesian, the literature
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rarely discusses the specification of priors. Indeed, in the literature on MRP, there are

only a few papers which directly address priors (see Downes et al., 2018; Gao et al.,

2021). This omission might be because most see the inclusion of informative priors

as unnecessary, given that we already include prior information through the use of

area-level variables and the poststratification frame (Gelman, 2009). However, for

electoral forecasting there is sufficient reason to believe that incorporating knowledge

from previous elections could be beneficial to estimating vote share.

In representative democracies, from election-to-election there are rarely substantial

shifts in the voter-type for a given political party. Variables that are predictive of

vote share in one election will be predictive in the next election, and the magnitude of

parameter effects will most likely be consistent. This means we can take information

from the previous election and use this to help the model for the current electoral

forecast. This may improve estimate accuracy, enhance the precision of estimates and

improve estimation efficiency. There are, however, potential risks involved with such a

modeling strategy. Perhaps the greatest risk is if the current election differs significantly

from a previous election, we may do more harm than good by incorporating past

information into the model.

This chapter sets out to explore how we can directly incorporate past information

into current electoral forecasting models, and importantly, if these improve small

area estimate accuracy. Specifically, in a series of tests I explore whether a two-stage

prior elicitation strategy could be useful for MRP electoral forecasting.1 I test the

method at elections in both the US (2008 and 2012) and the UK (2017 and 2019).

Broadly, the results show that informative priors, as operationalised in this study, only

improve estimate accuracy for the smallest sample size. Furthermore, improvements

are dependent on the election and the value of lambda used. However, informative

priors do seem to improve computational efficiency, as measured by model run-time,
1I formally specify the models in the theory section.



5.1. Background 133

and show signs that they could improve inference for sub-groups in the population.

5.1 Background

Priors

In Bayesian analysis priors are used to incorporate information that we have before we

conduct any formal research or analysis (Wesel et al., 2011). They provide researchers

with a means to systematically incorporate current knowledge into the model. More

specifically, priors are the expected distribution of any given parameter effect or

coefficient. The prior affects the posterior (i.e. the estimates) through Bayes’ rule,

which states:

P (θ|data) = P (data|θ) · P (θ)
P (data) (5.1)

Here P (θ|data) is the posterior, P (data|θ) the likelihood , P (θ) the prior, and P (data)

is the probability of the data given the likelihood and prior. Thus, the prior has

a direct impact on the posterior through its interaction with the likelihood. The

resulting posterior distribution is a combination of the two components.2 In practice,

the impact of the prior on the posterior is by giving the model a distribution which

acts as a search space for a given parameter.

Prior distributions can be of any form (for example normal, student-t, or uniform),

and can range in specificity or informativeness (Schoot et al., 2021). However, because

priors can have a significant impact on the posterior, and because they are not directly

informed from the data, they are often viewed as the most controversial feature in

Bayesian analysis. This has led to debate about how informative a prior should

be. Broadly, we can categorise them into three distinct groups, non-informative,

weakly-informative and informative priors (Depaoli and Schoot, 2017).
2In the estimation of parameters, the resulting posterior might not cross-over with the prior, if

the likelihood and data are strong enough.
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Figure 5.1: Impact of the prior
Notes: showing example plot of likelihood and posterior for Non-Informative, Weakly-
Informative, and Informative priors.

In figure 5.1 I visualise how these three types of priors can affect the posterior.3 In

each plot the green dashed line is the likelihood (which remains identical in each plot),

the blue dashed line is the prior, and the orange shape shows the resulting posterior

distribution. As is evident in the figure - and discussed more specifically below - prior

choices can have a strong and significant impact on the posterior.

Non-informative priors

Non-informative (or flat) priors are implemented with the goal of providing as little

information as possible. They do not attempt to restrict the parameter estimation,
3Plots originally inspired by those in (Depaoli and Schoot, 2017). To produce plots, I adapt code

from: https://gist.github.com/wjakethompson/1189514071478a2ca59491f43f21afec

https://gist.github.com/wjakethompson/1189514071478a2ca59491f43f21afec
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and allow the data to speak entirely for itself. In the left-hand column of figure 5.1 we

can see the non-informative prior is mostly flat, shown by the dashed blue line across

the plot. This means that all parameter values are given equal probability of sampling

for the posterior. The resulting posterior distribution is similar to the likelihood, with

a peak close to around 0. However, while the data is ‘allowed to speak for itself’, the

flat prior results in a posterior with more density in the tails of the distribution than

the likelihood.

The use of non-informative priors are advocated by some, who argue that informa-

tive priors amounts to ‘data falsification’ (García-Pérez, 2019). This argument rests

on the idea that informative priors manipulate the estimation of data, by forcing it to

conform to paradigms that we set, rather than ones identified in the data. However,

suggestions that priors are subjective overlook the fact that many decisions in the

analysis and modeling of data is subjective, and prior specifications are no different

(Gelman and Hennig, 2015). Furthermore, the ‘flat’ nature of non-informative prior

distributions can have significant effects on the resulting posterior and this could

be considered analogous to the effect of informative priors (Lemoine, 2019). Indeed,

research has demonstrated that non-informative priors can act to the detriment of

estimation and harm the posterior (Lenk and Orme, 2009).

Weakly-informative priors

An alternative to non-informative priors are those known as weakly-informative priors.

These are more restrictive than non-informative priors, and limit the search space

for parameter estimation. The priors, while not enforcing a strict distribution on the

posterior, rule out impossible or highly unlikely parameter values. Weakly-informative

priors are thus argued to offer a good balance between informative and non-informative

priors, by ruling out unlikely outcomes and encouraging some shrinkage (Simpson et

al., 2015). In figure 5.1 the middle plot shows the posterior of a weakly-informative
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prior. Unlike the non-informative prior, the prior here is a normal distribution with

a much smaller standard deviation. The distribution is still centered around 0, but

the smaller standard deviation means there is less probability given to values further

from 0. The resulting posterior distribution has a higher peak and less density in

the tails and mirrors the likelihood to a greater extent than the non-informative

posterior. However, the weakly-informative posterior distribution is still flatter than

the likelihood with greater density in the tails.

Previous research has demonstrated that weakly-informative priors are an improve-

ment on non-informative priors. They are argued to stabilise estimates, encoding

a good degree of regularisation while still being vague enough to be used in a wide

variety of contexts (Gelman et al., 2008). The benefit of weakly-informative priors is

that when the data is strong, the prior has limited impact on the posterior. However,

when data is weak, the weakly-informative prior will have a much greater influence

on the estimation of the posterior. Some argue that weakly-informative priors can

work well as a default prior, but because they do not contribute any domain specific

knowledge, the goal for researchers should still be to use informative priors (Gelman

et al., 2017).

Informative priors

Informative priors are where we encode strict numerical values to structure the posterior

(Depaoli and Schoot, 2017). This means that the prior has a much stronger impact on

the posterior, providing the model with a specific parameter search space. Such priors

are a means to directly incorporate theoretical, logical, and empirical knowledge we

already have (Lee and Vanpaemel, 2018). If we have such valuable information, we

should incorporate it into our model, and this is no different to a variety of decisions

researchers make based on past evidence (Golchi, 2019). In figure 5.1 the right-hand

column shows an informative prior and the resulting posterior distribution. As can be



5.1. Background 137

seen in the figure, relative to both the non and weakly-informative, the informative

prior distribution is much narrower with a high peak. The prior distribution means

that we place most probability within a narrow range and have a high degree of

certainty about the parameter. The resulting posterior is similarly narrow, placing

nearly all density in a short parameter range.

Importantly, studies have shown that when compared to non-informative priors,

informative priors can improve estimation and computational efficiency (Golchi, 2019;

Grzenda, 2016), and can aid with model identifiability and reduce model complexity

(Lee and Vanpaemel, 2018). These improvements in estimation are often particularly

noteworthy for smaller parameter effects (Zondervan-Zwijnenburg et al., 2017; Jaynes,

1985).

By ensuring that the posterior distribution is in line with our domain knowledge,

informative priors can significantly aid estimation of parameters. However, some

argue the risks of informative priors outweigh the potential benefits, and therefore,

researchers should use weakly-informative priors instead (S. D. Team, 2020). One of

the main risks associated with informative prior is that when there is a discrepancy

between the prior and the likelihood, an informative prior can shift the posterior away

from the likelihood (Schoot et al., 2021). This could mean that our posterior does not

capture the likelihood well, and our parameter estimation is poor. In these instances,

as well as poor parameter estimation, the statistical and computational benefits of

informative priors are typically no longer realised.

Determining informative priors

Informative priors are often criticised for being subjective in nature. Advocates of this

view contend that the process of defining priors is simply the researcher arbitrarily

choosing probability distributions. However, this is often not the case, but rather an

objective scientific process whereby previous knowledge is formalised into a numerical
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format for the prior distribution. Skepticism towards informative priors might partly

be because there is an absence of well-defined methods for specifying them. This

could also be one of the main reasons why non-informative priors are often the default

choice (Lee and Vanpaemel, 2018). Recognition of both of these is not new, indeed,

there have been calls for more work on how to define priors for many years (see Jaynes,

1985).

More recently, these calls seem to have been heard with the growth in research

on prior elicitation techniques. Prior elicitation methods involve systematically gath-

ering information and subsequently transforming the information into a probability

distribution (Depaoli and Schoot, 2017). For example, gathering expert opinion,

knowledge, and judgment to define probability distributions is one growing field

(O’Hagan, 2019). For a detailed review see O’Hagan (2006). Another method is the

use of past studies to determine a prior distribution. This method uses past theory or

empirical results, which are sourced from one or more studies and sometimes in the

format of a meta-analysis (Zondervan-Zwijnenburg et al., 2017; Lee and Vanpaemel,

2018). Alternatively, researchers could carry out a pilot study, with the results used

to investigate priors for the main study (for a worked example of this method, see

Gelman et al., 1996). A similar approach includes splitting the data and using a

sub-set for a training model. The training model posterior is in turn used to determine

priors for the full model (Wesel et al., 2011).

A variant of splitting the data is the use of historic data to determine priors

for the current model. The ‘two-stage’ solution uses the posterior of a model with

historic data to define a prior distribution for the current model. This method of prior

elicitation has shown promising results in the work of Yu and Abdel-Aty (2013). Their

study found the ‘two-stage’ solution produced the best results when compared with

non-informative priors alongside other prior elicitation methods (Yu and Abdel-Aty,

2013). Along similar lines, Chen and Ibrahim (2000) have developed the ‘power-prior’
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which includes both historic and current data in a single model, specifying coefficient

priors from the joint data. The method is particularly effective because the power-prior

is scaled by a parameter a0, which controls for the similarity between the current and

historic data (for a detailed explanation, see Chen and Ibrahim, 2000; Ibrahim et al.,

2015). Others, rather than focus on direct prior elicitation, emphasise the importance

of prior predictive checks to test the sensitivity of priors and that they comply with

domain knowledge (Gabry et al., 2019).

MRP and priors

As identified in the systematic review, the majority of MRP applications to date are

not Bayesian and therefore do not incorporate or discuss priors.4 While it is difficult

to ascertain the point at which MRP became a fully Bayesian methodology, Ghitza

and Gelman (2013) recognised that while their work was not yet Bayesian, they hoped

future analysis would be estimated in a Bayesian probabilistic program. This seems to

have been realised with more recent MRP work being estimated as Bayesian models.

However, for Bayesian MRP models there is still limited discussion on prior

specification. Among Bayesian MRP models, around half do not state what priors

they use in their model. The remaining half who provide details of prior specification,

use either non-informative or weakly-informative priors. Overall, the use and discussion

of priors in MRP applications is somewhat limited.

In the broader MRP literature, priors have been discussed by Downes et al. (2018),

whose study investigated the performance of MRP to estimate health outcomes. The

study also assessed the impact of three different priors (non-informative uniform,

bounded uniform and weakly-informative normal). They concluded that priors had

little impact on the posterior and estimates. Although they noted the more informative

priors produced more precise parameter posteriors, and this was especially the case
4Or at least the majority do not explicitly state that they estimated a Bayesian model.
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for variables with few categories (Downes et al., 2018: 1789).

More recently, the innovative work of Gao et al. (2021) demonstrates how priors

could be deployed to improve MRP estimates. Their work introduced structured priors,

a method which can improve MRP estimates and significantly enhance sub-group

inference. Structured priors take advantage of the structures within the population to

improve estimation. The standard MRP specification benefits from partial pooling,

where group parameters are shrunk towards the global mean. This is particularly

useful for groups with small samples and works to stabilise estimates by reducing

variance. Structured priors, rather than shrinking to the global mean, shrink group

estimates to the mean of groups closer and more similar to them. For example,

probability of voting for a left-wing party often decreases with age. With structured

priors, the younger age categories would be shrunk towards age categories above and

below, and vice-versa for older groups. This means that estimation takes into account

the known directional structure of the relationship between age and voting behaviour.

The work demonstrates how using priors can significantly enhance prediction accuracy

and sub-group inference. Importantly, it shows how priors can act as an additional

source of information that can aid MRP estimates.

5.2 Theory

This chapter seeks to explore how informative priors can be incorporated into MRP

electoral forecasting and whether such a strategy improves small area estimate accuracy.

To do this, the chapter will explore forecasting multiple elections in the UK and US

using a standard MRP format with informative priors and an alternative MRP format

with informative priors. I explain model specification below using the UK case.5

5For explanation here I use the UK model as an example. In appendix D.1 and D.2, I show
notation for the US model.
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5.2.1 MRP with weakly-informative priors

In the classic case, MRP is estimated as a multilevel logistic regression model, with

individual and area-level variables. The model can be written as follows:

Pr(Yi = 1) = logit−1(βθ+βF emale
F emalei

+aArea
j[i] +aAge

k[i] +aEducation
l[i] +aRegion

m[i] ), for i = 1, ..., n.

(5.2)

Where aArea
j , aAge

k , aEducation
l and aRegion

m are varying intercept terms and βF emale is a

fixed effect for female gender. We assume the varying intercept terms are drawn from

a normal distribution with a mean 0 and some variance, which is itself a modelled

parameter.

aAge
k ∼ N(0, (σAge)2) for k = 1, ..., 8

aEducation
l ∼ N(0, (σEducation)2) for l = 1, ..., 6

aRegion
m ∼ N(0, (σRegion)2) for m = 1, ..., 11

(5.3)

The area term is modeled as a function of region, Labour vote share at previous

election (lab), percent of constituency which is classed as long-term unemployed

(unem), population density (dens), percentage of constituency which work in industry

and manufacturing (ind) and EU referendum constituency leave vote share (leave).

aArea
j ∼ N(aRegion

m[j] + βlab · lab + βunem · unem + βdens · dens + βind · ind +

βleave · leave, (σArea)2), for j = 1, ..., 632

(5.4)

We specify priors for the variance σ2 and β parameters. For weakly-informative priors,

this might be in the format where, variance is given a student-t prior with scale 5,

mean 0 and standard deviation 5. The intercept and all β terms are given normal
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priors with a mean 0 and standard deviation of 5.

σArea, σRegion, σAge, σEducation ∼ Stt(5, 0, 5)

βθ, βfemale, βpastvote, βunemployed, βdensity, βindustry, βleave ∼ N(0, 5)
(5.5)

These can be considered weakly-informative as they attempt to ‘rule out’ effects

greater than +/- 5 standard deviations from 0. Effects outside this range are highly

unlikely, but the prior distribution is still vague enough to allow the ‘data to speak

for itself’ and the likelihood to strongly influence the posterior.

5.2.2 MRP with informative priors

Informative priors enter the above model by replacing the weakly-informative priors,

defined in equation 5.5. Informative priors are derived from the historic model posterior

PH(θH |XH), where H denotes the historic model. I calculate the historic median

(X̃H) and historic standard deviation (σH) of the distribution of each given parameter

posterior. The X̃H and σH are then directly imputed as priors for the current election

MRP model. For example, take the aAge
k term for varying age intercepts, the prior

specification would be as follows:

aAge
k ∼ N(0, (σAge)2) for m = 1, ..., 8,

σAge ∼ Stt(5, X̃H , σH)
(5.6)

As before, we assume the aAge
k term is drawn from a normal distribution, with mean

0 and some standard deviation. The standard deviation is still given a student-t

distribution prior with a scale of 5, but now, rather than a mean of 0 and standard

deviation of 5, we give the prior X̃H and σH which refer to the historic parameter

posterior median and standard deviation, respectively. This process is replicated for

all parameters, with β terms given a normal distribution and X̃H and σH .
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To account for differences between the historic and the current election, I multiply

the standard deviation by a scaling constant, lambda (λ). For λ values > 1, this acts

to widen the prior distribution, which should account for potential small shifts in a

parameter effect. If for example, from one election to the next age categories have a

different effect on vote choice, the wider prior distribution should better account for

this shift. The intention of this can be seen as somewhat comparable to the intention

of the power prior scaling constant parameter a0 (Chen and Ibrahim, 2000; Ibrahim

et al., 2015). That is, an attempt to account for variation in the similarity between

historic and current data.

By providing the MRP model with informative priors, the benefits could be three-

fold. First, we may improve estimate accuracy. If we have good knowledge of a given

parameter effect, specifying informative priors should influence the parameter posterior

towards the true parameter value. This in turn should ensure greater estimate accuracy.

Second, we may improve the degree of certainty in the parameter estimate. That is,

we may shorten the credible interval widths of the parameters and the final estimates.

With informative priors, we place most probability in a narrow range of parameter

values. The resulting posterior should similarly be narrow with limited density in

the tails of the distribution. Third, informative priors may improve computational

efficiency in model estimation.

However, as noted previously, the risks of informative priors have been suggested

to outweigh the potential benefits (S. D. Team, 2020). The potential risk is that if

we specify a prior that does not align with the data and the likelihood, the posterior

estimation can be problematic. This means if there is limited overlap of prior and

likelihood distributions, we risk shifting the posterior away from the likelihood (Schoot

et al., 2021). In the application here, this problem could arise if the historic election

is dissimilar to the current election, or the historic data and model are inaccurate. If

either of these two manifest, our prior will not align with the likelihood and data, and
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therefore, we may be providing the current model with priors that are not close to the

true parameter distribution.6

5.2.3 Alternative MRP specification with informative priors

The method described above incorporates information from past elections into the

current election forecast. It is possible to extend this approach to incorporate this

information in a more direct and stricter fashion. To do this, each category of each

variable is estimated as a separate β term (or fixed effect), rather than a group of

varying intercept terms. Each β term for each variable category is then given its own

specific prior, whereas in the standard specification, we give a prior for the distribution

from which parameter effects are drawn from.

This approach is not possible for all varying intercept terms, but for age education

and region, where the number of categories is relatively few, there is a large enough

sample size to directly estimate each category effect. For the area varying intercept

terms, this would not be possible because for each area we would only have sample sizes

between 5-30 respondents.7 In the standard MRP notation, aAge
k , aEducation

l , aRegion
m

are all varying intercept terms, where each category parameter is drawn from a normal

distribution, which we assume to be 0-centred with some variance:

aAge
k ∼ N(0, (σAge)2) for m = 1, ..., 8

aEducation
l ∼ N(0, (σEducation)2) for m = 1, ..., 6

aRegion
m ∼ N(0, (σRegion)2) for m = 1, ..., 11

(5.7)

In the alternative MRP specification, area and gender terms remain the same as in

equation 5.2. However, the terms for age, education and region are changed so that
6We can of course check that the historic model correctly predicts past vote. However, accurate

small area estimates does not guarantee that parameters are estimated well or correctly.
7This range in sample size per small area is indicative of the sample sizes used in this chapter.

With larger sample sizes, we might have sufficient number of respondents per small area to reliably
estimate small area parameters as β terms.
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each category of these variables is specified as an independent β terms. The model

would thus be written as follows:

Pr(Yi = 1) = logit−1(βθ + aAreas
j[i] + βF emale · Female + βAge · XAge +

βEducation · XEducation + βRegion · XRegion), for i = 1, ..., n.

(5.8)

Where βAge, βEducation, βRegion are vectors of β coefficients of P categories for the

variables age, education and region. XAge, XEducation, XRegion are matrices of 0 and

1s, with each row indexing the ith respondent from i = 1..., n and columns for each

category of the given variable, where there are p categories, from 1..., P .

For prior specification, I use an identical historic model to that used for the

standard MRP with informative priors. However we now take different information

from the historic model. For the standard MRP format, we use X̃H and σH from the

varying intercepts variance parameter. For the alternative specification, I take the X̃H

and σH for each variable category intercept. These are then imputed as the priors,

such that each β parameter has a prior that is a normal distribution with mean and

standard deviation from the historic posterior, β ∼ N(X̃H , σH).

We can consider this method a more direct and strict incorporation of past historic

information than the standard MRP format. In the standard format, we provide

the model with a distribution from which a parameter is drawn from. This method,

however, estimates each variable-category separately and provides specific numerical

values for the expected distribution of each variable-category. This means that we

bring forward more specific information (i.e. the exact effect of each category). And

incorporate this into the current model in a more specific way (i.e. specifying the exact

expected distribution of a given variable category effect).

This specification imposes stricter restrictions on the model parameters. This

could benefit the model, as the stricter parameters are informed by the historic

election model. However, this could prove problematic if there are differences between
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elections, or the historic model is not good at capturing the true relationship between

our predictor variables and voting behaviour. If either of these problems manifest,

then our forecasts will be inaccurate, and inaccurate to a greater degree than the

standard MRP format. This method also loses the benefit of partial pooling for

all parameters which were previously estimated as varying intercept terms. Partial

pooling is credited as one of the key reasons MRP is adept at forecasting sub-national

opinion, and removing this could act to the detriment of MRP estimates. Partial

pooling is useful because it enables the ‘borrowing of strength’ which means small N

group parameters have less variance. However, the narrow distribution of informative

priors is known to alleviate problems with variance, which might arise when estimating

parameters for groups with smaller sample sizes.

5.3 Data and methods

This study seeks to test whether informative priors in two-different MRP specifications

can improve small area estimate accuracy. This will be achieved by comparing these

two specifications against a standard MRP model with weakly-informative priors

(the baseline). The study will forecast numerous elections in both the UK and

US, comparing primarily estimate accuracy, but also estimate widths, parameter

coefficients, and computational efficiency. In the UK I estimate Labour vote share in

constituencies for the 2017 and 2019 parliamentary elections, and in the US I estimate

state-level Democrat vote share in the 2012 and 2016 presidential elections.

Data

For MRP we use both individual and area-level variables. The former captures

characteristics of the respondent, while the latter captures characteristics of the small

area. Individual-level data comes in the format of surveys where respondents provide
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their vote choice, demographic characteristics, and the small area which the respondent

resides. In the UK, I make use of the publicly available British Election Study (BES),

which carries out large online-sample surveys at regular intervals, as well as before

and after elections. I make use of the campaign waves (5, 12, 18), with interviews

conducted throughout the month immediately prior to the election. In the US case, I

use the American National Election Studies (ANES) time-series study survey data.

These surveys have been carried out pre and post US presidential elections since 1948.

The samples are a mixture of online and face-to-face random probability samples.

Area-level variables are also included in both the UK and US case. These are all

publicly available at either UK constituency or US State-level. For the UK, I access

the necessary area-level variables through the BES ‘Linked data’, which provides

previous election results and census data at the constituency level. For the US, the

only area-level variable I use is past vote, obtained through the MIT Election Data

and Science Lab dataframe, ‘US President 1976-2020’ which provides historic voting

records for US states.

Variable selection in this study is directed by the Lauderdale et al. (2020) paper

on forecasting elections with MRP. The study discusses MRP electoral forecasting

for numerous elections including UK 2017 and US 2016. Lauderdale et al. (2020)

demonstrate the ability of MRP to forecast elections with MRP. Where possible,

I replicate variable selection used in their models. The individual and area-level

variables used in this study are reported in table 5.1.

Past vote in table 5.1, refers to the past Labour or Democratic vote share in

the preceding election. In the UK case, as the 2016 EU referendum was after the

2015 election, I do not include ‘Leave vote’ in the 2015 historic model, but include

in the 2017 and 2019 election models. Lauderdale et al. (2020) also use a variety

of individual-level political variables, including past vote and political attenuation.

To use these, researchers need to construct poststratification frames that include
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Table 5.1: Individual and area-level variables

Individual-level Area-level
UK

Gender (2) Past Lab vote
Age (8) EU2016 Leave vote
Education (6) % Long-term unemployed
Campaign week (4) % Industry manufacturing

Population density
Region

US
Gender (2) Region
Age (4) Past Dem vote
Ethnicity (4)
Education (4)
Marital status (4)
Campaign week (4)

Note:
Number of categories for each variable in brackets
’EU2016 Leave vote’ is only included in the 2017 and 2019 models

joint-distributions of these variables.8 For this study, this is an added complication I

chose to avoid and only use demographic individual-level variables that are available

in the poststratification frames I use. I also do not include interactions that are used

in the Lauderdale et al. (2020) model. The introduction would increase computational

demand, and for the purposes here, I think the more limited set of variables will still

enable the study to sufficiently address the research question(s).

Poststratification frame

In the US case, I construct a poststratification frame with American Community

Survey (ACS). The ACS regularly conducts large N sample surveys which provide

a data source for reliably estimating the proportion of each demographic sub-group
8This could be achieved by a raking procedure (Hanretty et al., 2016), synthetically constructing

the joint-distributions (Leemann and Wasserfallen, 2017) or through imputation (Cerina and Duch,
2020b)
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in each US State. I use the 5-year Public Use Microdata Samples (PUMS) of the

ACS, for the 2012 I use 2008-2012 file and for 2016 I use the 2012-2016 file. In the

UK, data limitations mean that to construct a poststratification frame researchers

need to use alternative methods (See Hanretty et al., 2016). To avoid this, I make

use of a publicly available poststratification frame for all UK adults.9 The frame was

constructed using 2011 census data, which could pose problems for estimate accuracy,

but should be sufficient to produce estimates for a range of models with the goal of

assessing differences in accuracy.

Turnout

Turnout is notoriously hard to estimate, owing in part to over-reporting of turnout by

respondents in surveys. Poor turnout estimates at state or constituency level have

previously been noted as a common source of error for MRP estimates (Lauderdale et

al., 2020). In order to limit this potential, I apply turnout to estimates by using actual

Constituency or State level turnout from the election being forecast. This means

the final estimates do not take into account differential turnout among demographic

sub-groups, which could be problematic for estimate accuracy. However, I believe

the problems that could arise from this are less problematic than potential error

introduced by an inaccurate turnout measure, and the subsequent need to disentangle

effects of informative priors from error associated with a turnout measure.10

Samples

In this study I test four different sample sizes (5, 10, 20 and 30 respondents per small

area). To generate these, I sample respondents from the full survey sample. Because
9Poststratification frame can be accessed: https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/IPPPNU
10To give confidence results presented in this chapter are not a function of using actual turnout, I

also produced results with a model-based turnout measure. Details of the turnout measure and some
of the results with the model-based turnout are presented in appendix D.4.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IPPPNU
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respondents are not evenly distributed among small areas in the BES and ANES, I was

not able to generate samples where respondents are evenly spread. Instead, for each

sample size above, I calculate what the total sample size should be, i.e. respondents

per small area * number of small areas. I then sample respondents ensuring that the

proportion of respondents from each small area is relative to the proportion in the

full sample. I ensure that every small area has at least 1 respondent in the sample.

This means the sample sizes I test, are an average of 5, 10, 20 and 30 respondents

per small area. I use this sampling procedure once, to create a single dataset for each

sample size for each election.

Modelling strategy

For each election the procedure of estimating vote share with informative priors

involves first a model for the historic election (the preceding election) and then a

model to forecast the current election. The elections to be forecast (including historic

model) are as follows:

• 2017 UK election (2015 UK election)

• 2019 UK election (2017 UK election)

• 2012 US election (2008 US election)

• 2016 US election (2012 US election)

Historic model

The first stage of forecasting each election is estimating a historic model. In each

case, I estimate the historic model in the standard MRP format (shown in equation

5.2). The historic model uses the full survey sample for each election, whereas the

informative prior models use sub-samples identified above. I estimate the models with

the weakly-informative priors identified in the theory section, that is, student-t priors,

with a scale of 5, mean of 0 and standard deviation of 5 on the random-intercept



5.3. Data and methods 151

standard deviations, and normal priors with mean 0 and standard deviation of 5 on

the intercept and β parameters

Specifying informative priors

To specify the informative priors for the current election, I follow the two-stage prior

elicitation method. I take the historic parameter posterior distribution and calculate

the median and the standard deviation of the distribution. I apply a scaling value

(λ) to account for differences between the historic and current election. In practice,

this is applied by multiplying the historic standard deviation σH or beta βH by λ. I

test three λ values here, 1, 1.5, and 2. For the alternative specification, because the

demographic and regional terms are now β parameters, one category is specified as

the reference for all other variable categories. To account for this in the priors, I add

the reference category X̃H to the X̃H for all other categories.

Modelling estimation

To forecast vote choice I estimate Bayesian multilevel logistic regression models,

where vote choice for either Labour or the Democrat Party = 1, and vote choice for

other parties in the UK or Republicans in the US = 0. For the UK I exclude those

who would not vote and those who ‘Don’t know’, and for the US I exclude those

who would not vote for either Democrat or Republican. In both the UK and US

applications, the variables in both elections remain consistent, as identified above.

However, how the models are estimated varies. With the standard application I

estimate demographic and the region variable as random intercept parameters. With

the alternative specification, each category of each variable is specified as a separate β

parameter. Models were estimated with Rstan (S. D. Team, 2020), and called through

the brms package (Bürkner, 2017). Each model had 2 chains, each with 1000 iterations

(500 warm-up and 500 sampling).
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The multilevel model estimates were poststratified to produce estimates for Labour

or Democrat vote share in UK constituencies and US States respectively. To post-

stratify I drew 500 samples from the posterior using the poststratification frame as

new data. I apply turnout to each row of the poststratification frame, such that each

estimated probability for voting for either Labour or Democrat have been adjusted for

the associated constituency or state turnout. Because the poststratification frames I

use are for total adult population, the final Labour and Democrat small area estimates

are as a percentage of the total adult population, rather than the eligible voting

population.

5.4 Results

For this study, accuracy refers to accuracy of estimates of Labour vote share in UK

constituencies or Democratic vote share in US states. To measure this, I use mean

absolute error (MAE). That is, the absolute average error of predicted vote share

across all small areas. This is calculated first across iterations and next across small

areas. When presenting results below, I show changes in MAE from the baseline model

rather than show MAE of each model. In each case, the baseline is the standard MRP

specification with weakly-informative priors, and unless otherwise stated, the baseline

has an identical sample size to the model it is being compared with. A decrease from

the baseline represents an improvement in accuracy as MAE has decreased, while an

increase in MAE represents a worse model.

5.4.1 Alternative MRP with informative priors

I first present the results of the alternative MRP specification, where all variables

except the small area, are modelled as separate β parameters. Table 5.2 shows the

change from the baseline model(s) for the two UK elections, 2017 and 2019. In each
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column are the results for each of the four sample sizes (average of 5, 10, 20 and 30

respondents per small area). In the rows of the table are the different λ values 1, 1.5

and 2, which in turn are grouped by election year, 2017 and 2019. In table 5.2, we

can see that overall the alternative MRP specification has a small impact on estimate

accuracy. With the exception of one model, for both elections, all sample sizes, and

all λ values, differences from the baseline model(s) range between 0-0.3%. This means

that nearly all model estimates were either the same or worse than the baseline

model. The one case of improvement was for the 2019 election, a sample of 5, and

Table 5.2: Alternative MRP accuracy (UK)

Sample
Model 5 10 20 30
2017

Lambda = 1 0.1% 0.2% 0.3% 0.3%
Lambda = 1.5 0% 0.1% 0.2% 0.2%
Lambda = 2 0% 0.1% 0.2% 0.2%

2019
Lambda = 1 -0.2% 0.2% 0% 0.1%
Lambda = 1.5 0% 0.2% 0.1% 0.1%
Lambda = 2 0.1% 0.2% 0% 0%

Note: showing inf. prior MAE as +/- from
baseline.

where λ = 1. The tables shows this model decreased MAE by 0.2%, which represents

an improvement from the baseline model. Clearly, in this particular example, the

alternative specification with informative priors works to the detriment of accuracy,

albeit, to a small degree.

Turning to table 5.3, the table shows the results for the alternative MRP specifica-

tion for the US results. For the US, the differences between baseline and alternative

specification are much starker. In 2012, the alternative MRP specification significantly

improves MRP estimates for the smallest sample size. For each λ value, MAE has

decreased by 1.9%, 1.5% and 1.3%, respectively. However, as sample size increases, the
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differences in MAE are largely nonexistent. When λ = 1 the models show a consistent

improvement in MAE, but MAE only decreases between 0.1-0.2%. For larger sample

sizes, and when λ = 1.5 or 2, MAE is the same or marginally worse (ranging from a

0-0.3% increase). For 2016, the results show the alternative specification is consistently

Table 5.3: Alternative MRP accuracy (US)

Sample
Model 5 10 20 30
2012

Lambda = 1 -1.9% -0.2% -0.1% -0.1%
Lambda = 1.5 -1.5% 0% 0.1% 0%
Lambda = 2 -1.3% 0.1% 0.3% 0%

2016
Lambda = 1 0.4% 0.6% 1.5% 1.8%
Lambda = 1.5 0.3% 0.4% 1.2% 1.5%
Lambda = 2 0.3% 0.6% 1% 1%

Note: showing inf. prior MAE as +/- from
baseline.

worse. For the smallest sample size, each model has MAE that represents an increase

from the baseline, ranging from 0.3-0.4%. As sample size increases, the difference in

MAE from the baseline also increases. For the largest sample size, the alternative

specification with informative priors increases MAE between 1-1.8%.

As well as sample size having an impact, the results highlight how the different λ

values affect the estimates differently. In 2012, the lowest λ value improves accuracy

consistently and to the greatest extent. Whereas in 2016, the lowest λ value worsens

accuracy to the greatest degree. However, sample size and λ values do not account for

all differences between elections. This suggests that the elections themselves have an

effect on how this method impacts estimate accuracy. Intuitively, this makes sense as

we would expect similarity between historic and current elections to affect the extent

to which informative priors improve estimate accuracy.

Altogether, the results do not suggest that the alternative specification with
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informative priors is beneficial to estimate accuracy. In a very specific circumstance,

and for the smallest sample size, estimate accuracy improves. But the results also

show far bigger and more consistent increases in MAE, with some models producing

results that are on average nearly 2% worse.

5.4.2 Standard MRP with informative priors

For the remainder of the results section I focus on the standard MRP specification

with informative priors. First, in table 5.4 and 5.5 I show the increase or decrease in

MAE from the baseline model. As with the tables above, results by sample size are

displayed in the columns, while λ values are along the rows grouped by election year.

The UK results, in table 5.4, are somewhat mixed. Informative priors seem to have

a different impact depending on the election and sample size. Looking at the first

three rows, the results for 2017 show that informative priors for this election do not

seem to change estimate accuracy significantly. For the smallest sample, informative

priors improve accuracy with a decrease in MAE of 0.1-0.2%. For a sample of 10,

MAE becomes worse, for 20 respondents the accuracy is identical to the baseline and

for the largest sample size, when λ = 1 or 1.5 MAE increases by 0.1%, while when

λ = 2 there is no difference. For 2019, the results are clearer and more supportive

of the case for informative priors. The smallest sample size of 5 shows significant

improvements in MAE of around 0.8-0.9%. For the average sample sizes of 10 and

20, MAE decreases by 0.1% for all λ values, and for the largest sample size MAE is

identical to the baseline model.

The results for the US are once again starker than the results for the UK, with

larger and more consistent improvements in MAE. For the 2012 US Presidential

election, the smallest sample size shows improvements in MAE between 1.3-1.4% for

the three λ values. However, for all sample sizes of 10 and above and for all λ values,

MAE increased when compared to the baseline model(s), ranging from 0.1-0.4%. For
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Table 5.4: Standard MRP accuracy (UK)

Sample
Model 5 10 20 30
2017

Lambda = 1 -0.1% 0.2% 0% -0.1%
Lambda = 1.5 -0.1% 0.2% 0% -0.1%
Lambda = 2 -0.2% 0.1% 0% 0%

2019
Lambda = 1 -0.8% -0.1% -0.1% 0%
Lambda = 1.5 -0.8% -0.1% -0.1% 0%
Lambda = 2 -0.9% -0.1% -0.1% 0%

Note: showing inf. prior MAE as +/- from
baseline.

Table 5.5: Standard MRP accuracy (US)

Sample
Model 5 10 20 30
2012

Lambda = 1 -1.4% 0.4% 0.3% 0.3%
Lambda = 1.5 -1.3% 0.2% 0.2% 0.1%
Lambda = 2 -1.3% 0.1% 0.1% 0.1%

2016
Lambda = 1 -0.8% -0.3% -0.3% -0.1%
Lambda = 1.5 -0.8% -0.3% -0.2% -0.1%
Lambda = 2 -0.6% -0.2% -0.1% -0.1%

Note: showing inf. prior MAE as +/- from
baseline.

2016, the results show consistent improvement in MAE for all informative prior models.

For the smallest sample size, the improvements in MAE are not as large as shown for

2012, but still range from 0.6-0.8%. As sample size increases, the improvements in

MAE are smaller, but are still consistently an improvement from the baseline model.

Although the differences between different λ values seems to be small, there does

seem to be a pattern for both elections. In 2012, with the exception of the smallest

sample size, error is larger for smaller λ values. Whereas in 2016, the smaller λ values
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generally result in larger improvements.

5.4.3 Do informative priors enable smaller sample sizes?

I next present analysis which explores whether informative prior models could enable

the use of smaller sample sizes. That is, whether the accuracy of models with a smaller

sample size and informative priors are comparable to the accuracy of models with a

larger sample size and weakly-informative priors. In table 5.6 and 5.7, as with the other

tables shown above, I show the increase or decrease of MAE from the baseline model.

However, here the baseline model is the model with weakly-informative priors and

one sample size above. For example, in table 5.6 the smallest sample size of 5, shows

Table 5.6: Larger sample accuracy comparison (UK)

Sample
Model 5 10 20
2017

Lamba = 1 0.3% 0.6% 0%
Lamba = 1.5 0.3% 0.6% 0%
Lamba = 2 0.2% 0.5% 0%

2019
Lamba = 1 0.3% 0.1% 0%
Lamba = 1.5 0.3% 0.1% 0%
Lamba = 2 0.2% 0.1% 0%

Note: showing inf. prior MAE
as +/- from larger sample baseline.

the informative prior model being compared with the model with weakly-informative

priors and a sample size of 10.

In table 5.6 I show the results for the two UK elections. Overall, the results show

that informative prior models do not allow us to produce accuracy that is comparable

to models with a larger sample size and weakly-informative priors. For both elections,

for sample sizes of 5 and 10 and all λ values, the estimates have greater error than

models with larger sample sizes and weakly-informative priors. For the sample size of
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Table 5.7: Larger sample accuracy comparison (US)

Sample
Model 5 10 20
2012

Lamba = 1 0.7% 1.3% 0.6%
Lamba = 1.5 0.8% 1.1% 0.5%
Lamba = 2 0.7% 1.1% 0.4%

2016
Lamba = 1 0.2% 0.2% 0.1%
Lamba = 1.5 0.2% 0.3% 0.1%
Lamba = 2 0.4% 0.3% 0.2%

Note: showing inf. prior MAE as
+/- from larger sample baseline.

20, for both elections and all λ values the results are identical to the larger sample

size and weakly-informative prior model.

The results for US, shown in table 5.7, show a similar story. The smaller sample

size models with informative priors do not produce estimates that are comparable to

the larger sample size models with weakly-informative priors. The poorer estimate

accuracy is particularly prevalent for the 2012 election, where increase in MAE ranges

from 0.4-1.3%. For the 2016 election, the increase in MAE is smaller than is apparent

for 2012, with increases ranging from 0.1-0.4%.

Overall, the results presented in table 5.6 and 5.7 show that sample size has a

larger impact on estimate accuracy than informative priors might. The degree, if any,

to which informative priors enable better estimate accuracy is somewhat unclear. But

it is clear that any gains in estimates accuracy are not sufficient to allow researchers

to use smaller sampler sizes.

5.4.4 Estimate precision

The results so far show improvements in estimate accuracy are inconsistent. Significant

improvements are observed for some elections, but only present for the smallest sample
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sizes. Below I present analysis which explores whether informative priors improve

precision in estimates. To explore this I use estimate widths, that is, the difference

between the 5% and 95% credible interval. In figure 5.2 I show the range in estimate

widths across all UK constituencies for the 2019 election. In the figure the points

indicate the median width (also shown in the top left of each plot), the thicker lines

show the 50% interval and the thin line shows the 80% interval in estimate widths. I

show individual plots for each sample size (shown in the columns) and for the different

priors (shown in the rows). Points and intervals to the right signify a larger width,

while points and intervals to the left signify shorter widths and therefore greater

precision in MRP estimates.

Overall, figure 5.2 shows that informative priors tend to improve estimate precision.

This is evident in the plots which show most point and interval ranges to the left of

the baseline. Furthermore, for nearly all lambda values and sample sizes, the median

estimate width is smaller than the baseline median width. This is true for all sample

sizes, but the differences are more pronounced for smaller sample sizes.

In figure 5.3, I show estimate widths for the US 2016 election, with sample sizes

in columns and lambda values in rows. The results are somewhat less clear than the

UK case. For the two smallest sample sizes, the figure clearly shows that informative

priors improve precision. Both the median width reported, as well as the range in

widths, show improvements from the baseline. For the two larger sample sizes, the

median estimate widths are identical to the baseline. For the sample size of 20, the

interval range for estimate widths seems marginally smaller than the baseline, but for

the largest sample size the range in widths seems broadly similar to the baseline.

For both the US and the UK applications, differences in estimate widths seem to

follow a similar pattern to the one that emerged when looking at estimate accuracy.

Informative priors show improvements, but these are mostly evident for smaller sample
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Figure 5.3: US (2016) average widths
Notes: Showing interval range of state estimate widths. For clarity range restricted to
80% interval range.

sizes, and are more prominent for the UK 2019 and US 2016 election.11 For larger

sample sizes and for UK 2017 and US 2012 election, improvements are small in real

terms and there are also examples when informative priors perform worse than the

baseline.

5.4.5 Parameter estimation

The above analysis has shown how small area estimates change with informative priors.

I next explore where and how these changes manifest in the estimation of parameters.

I use two variables to show differences between the distribution of parameters. In
11I show the plots for UK 2017 and US 2012 in appendix D.3.
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Figure 5.4: UK age coefficient plot
Notes: showing UK 2017 model age category coefficients. Values converted from logit
to probability.

the UK I show age categories and in the US I show education categories. These

parameters were selected because there are starker differences between the baseline

and the informative prior parameters. For some parameters the differences are not

as notable, while some parameters show no signs of difference from baseline models.

Figure 5.4 shows the parameter coefficient of each age category for voting Labour in

the UK case. The plot is for the 2017 election and for models with a sample of 30.12

In figure 5.4, each column is a separate age category and each row is either the

baseline or an informative prior model with a λ value of 1, 1.5 or 2. In each plot the

point is the median parameter value and the lines show the 90% credible interval for
12I selected the largest sample size to demonstrate how informative priors can impact parameter

estimation despite this sample size showing little change in the resulting MRP estimates.
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the parameter. In each individual plot the value in the top left corner is the width

(the difference between the 5% and 95% interval). The red dashed line in each plot

represents the median point for the baseline model for each given age category. Using

the red dashed line, we can see that the points (i.e. the median of the parameter

distributions) are consistently similar, although not identical. Where λ = 1 or 1.5 the

parameter estimates are to the right of the red dashed line. This indicates that these

models have effects which increase the probability of voting Labour to a greater extent

than the Baseline. This is also true when λ = 2, but the differences seem marginally

smaller. This is in line with the wider results, which have highlighted that when λ = 2

estimates are closer if not identical to the baseline. Importantly, results show how the

informative priors affect the credible interval ranges. For each λ value, the informative

priors decrease the width of the estimates. This highlights how informative priors

could enable improved inference for sub-groups of the population (here age categories).

The improvements in credible intervals are particularly notable for smaller λ values,

with width increasing as λ increases.

A similar pattern is shown in figure 5.5, which shows the parameter coefficients for

each education category for the US 2012 election. As with the UK case, the median

parameter values are similar to the baseline, but show some small differences. For

those with ‘no high school diploma’ and ‘postgraduate’ the parameters are smaller

than the baseline, as shown by the median points positioned to the left of the dashed

line. For all other categories, the parameters show a marginally larger effect than the

baseline, shown by the median points positioned to the right of the dashed red line.

In absolute terms these differences are small and likely insignificant. Again, the more

significant difference is exhibited in the credible intervals of each education category.

We can see that when λ = 1, the 90% credible interval is smaller by up to 10% for

each education category. The improvement in inference is still significant for the two

larger λ values, but to a lesser extent.
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5.4.6 Computational efficiency

MRP can be computationally demanding, owing partly to large sample sizes, complex

models with numerous cross-level interactions, and a large number of small areas.13

Here, informative priors may be of use as a means to improve estimation efficiency.

Informative priors can achieve this because the parameter search space is reduced,

better enabling the model to estimate parameters efficiently. To explore whether

informative priors have been useful here, I use model chain estimation time, including

both warm-up and sampling.14

In table 5.8 and 5.9 I report the change from the baseline model for all MRP

specifications, λ values, sample sizes, and elections. The figures reported are percentage

increase or decrease from the associated baseline model. For example, in table 5.8,

for the 2017 election, sample size of 5, and λ = 1, the figure of -35% represents a

35% reduction in estimation time. From the table, it is evident that informative

priors consistently improve computational efficiency. However, improvements are most

noticeable when λ = 1, with model run-time reduced to the greatest extent. For larger

λ values, the improvements are less consistent. This is particularly the case for the

two larger lambda values and the largest sample sizes, where improvements range

from 4-7% reduction in model run-time, with one model increasing model run-time by

3%.

For the US, the results are somewhat similar. The smallest λ value consistently

and significantly reduces model run-time. When λ = 1.5 model run-times are nearly

always reduced, but to a lesser degree. For the largest λ value of 2, the results are

mixed. For some models, model run-time is an increase on the baseline, while for
13For example, in Lauderdale et al. (2020) sample sizes are between 40,000-80,000 respondents,

estimate for a minimum of 380+ small areas, and include numerous (cross-level) interactions.
14A previous version of this chapter reported model run-time as the difference between start and

finish of running in R. This meant that compilation of the model in brms was also included in the
time (i.e. the process of the model set-up). When model tun-time was measured in this way, smaller
sample sizes often had longer model run-times. This is of note, because improvements in run-time
could be offset by compilation times when sample sizes are small.
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Table 5.8: UK computational efficiency

Sample
Model 5 10 20 30
2017

Lambda = 1 -35% -50% -44% -37%
Lambda = 1.5 -37% -38% -41% -7%
Lambda = 2 -35% -34% -40% 3%

2019
Lambda = 1 -26% -32% -39% -30%
Lambda = 1.5 -16% -29% -34% -4%
Lambda = 2 -11% -25% -14% -7%

Note: Showing % +/- from baseline model
run-time

Table 5.9: US computational efficiency

Sample
Model 5 10 20 30
2012

Lambda = 1 -27% -54% -26% -43%
Lambda = 1.5 -10% -32% -1% -11%
Lambda = 2 1% -33% 10% -6%

2016
Lambda = 1 -30% -16% -24% -37%
Lambda = 1.5 -23% -3% 1% -15%
Lambda = 2 20% 5% -12% -4%

Note: Showing % +/- from baseline model
run-time
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others there is a reduction in time. Whether the model is an increase or decrease

seems somewhat random, with no clear patter related to sample size or election.

Overall, gains in computational efficiency are greater for smaller λ values. When

λ = 1 there is a consistent decrease in model run-time, ranging in the UK from 26-50%

and in the US from 16-54%. For larger λ values, in the UK, there is still a reduction

in model run-time, but often these are smaller and less consistent improvements. In

the US, When λ = 1.5 or 2, there was a decrease in estimation time for most cases,

but also instances when model run-time increased.

5.5 Similarity between elections

The results presented so far show inconsistencies in whether informative priors improve

MRP estimates. I argue that one reason for these inconsistencies is variation between

how similar the historic election is to the current election. When an election is

similar to the historic election we would expect informative priors to improve estimate

accuracy. Conversely, when there are greater discrepancies between the current and

historic election, we would expect the informative priors to either have no effect on

estimates, or worsen estimate accuracy.

In the UK case, the 2017 election was seen as a shift from the previous elections.

The EU referendum took place in between the elections and has been argued to

have had a separate and distinct effect (Hobolt, 2018), and caused a realignment of

voters (Heath and Goodwin, 2017). This meant between the two elections, there

were complicated voter flows (Mellon et al., 2018). Although there is some dispute

whether voter ‘realignment’ was Brexit related (Jennings and Stoker, 2017), or was a

return to older voter alignments (Johnston, Rossiter, Manley, et al., 2018), both these

arguments are a recognition that there was a shift between 2015 and 2017.

For some, 2019 was a clear continuation of the political realignment that manifested
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in the previous elections (Cutts et al., 2020; Flinders, 2020). However, others argue

that 2019 was a continuation for the Conservative Party, but not for Labour (Prosser,

2021), or at least not to the same degree that was present for the Conservative Party

(Curtice, 2020). Overall, the literature suggests that the 2019 UK election exhibited

some similarities and also demonstrated some divergence from the previous election.

The UK results presented in this study are somewhat in line with the literature

on the similarity between 2015-2017 and 2017-2019. For the alternative specification,

the results show this method did not improve MAE. Neither 2015-2017 or 2017-2019

were similar enough for this strategy to be effective. This method incorporates past

information in a stricter and more direct way. As a result, unless elections are very

similar, we would not expect the alternative method to improve estimate accuracy.

For the standard MRP specification, informative priors improved estimate accuracy

for the smallest sample sizes, but only when elections shared some similarities with the

previous election. That is, using 2017 information improved 2019 electoral forecasts

because of greater similarity, but using 2015 information for 2017 did not improve

estimate accuracy.

In the US case, Obama’s second election in 2012 was seen as similar to the 2008

election, with Obama’s 2008 coalition of voters maintained (Galston, 2013). In both

elections, younger, non-white, and urban voters heavily favoured Obama. In the

2016 election, support for Clinton from this coalition was not maintained to the same

degree. For example, non-white voters still favored Clinton over Trump, but not to

the same margin they did for Obama over Romney. Some suggest that vote switching

between 2012 and 2016 took place to a significant degree among white working class

voters (Morgan and Lee, 2018). However, this trend has also been argued to have

roots during the Obama presidency. White non-college educated voters shifted to the

Republican party, with the more significant changes taking place after 2008 election

(Sides et al., 2017; Weisberg, 2015).
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The results presented in this study show signs of support for the literature and

some divergence from the literature. The alternative specification improved estimate

accuracy for the smallest sample size for 2012 but not for 2016. This is in line with the

literature which argues that 2012 was a continuation from 2008, while in 2016 voting

patterns changed. For the standard MRP specification, informative priors significantly

improved estimate accuracy for the smallest sample sizes. This was apparent for

both elections, but improvements were greater for the 2012 election. However, for

larger sample sizes, informative priors worsened estimate accuracy at the 2012 election,

whereas in 2016 informative priors continued to improve estimate accuracy. This is at

odds with some literature, which argues that 2012 was more similar to its preceding

election than was the case for 2016. Based on the literature alone, we would have

expected 2012 to show consistent improvements rather than 2016.

To explore similarities between elections further, below I present analysis which

seeks to quantify variation between the elections. I combine historic and current

data and estimate a Bayesian multilevel logistic model for vote choice. The models

are identical to the standard multilevel models estimated in this chapter, but also

include a varying intercept term for the election year.15 The year effect should capture

variation between the elections controlling for the same variables used throughout this

chapter. Although this is an imperfect measure, it should be a sufficient indicator of

similarity. In figure 5.6 I show coefficient plots for the year varying intercept terms.

The points show the median of the parameter distribution, and the lines show the

credible intervals. Although the parameter values are somewhat arbitrary, a smaller

value indicates greater similarity between the historic and current election. In the

UK case, the 2019 election coefficient is much closer to zero (left-hand side) than

the 2017 election, indicating 2017 showed greater variation from its historic election
15For the US case, I merge the total samples to model combined vote choice. In the UK, I used

a total sample of 7,000 respondents, randomly sampled from the total survey sample and with an
even split between historic and current data. The sample of 7,000 was chosen as this sample size
consistently ensured coverage of all 632 small areas.
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Figure 5.6: Election similarity
Notes: Models include current and historic data. Showing year varying intercept
coefficient.

than was the case for 2019. This is broadly in line with both the literature and the

results presented in this study. In the US case, the 2016 election shows a much smaller

parameter value than the 2012 election. This demonstrates that the 2016 election

was more similar to the 2012 election, than the 2012 election was to the 2008 election.

This is at odds with some of the literature, but in line with the results presented in

this chapter.

5.6 Discussion

This chapter explored how a two-stage prior elicitation method could be used to

specify informative priors for MRP. Specifically, the chapter explored how we could
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use a historic election model to derive informative priors for a current MRP electoral

forecast model. The research first tested whether informative priors with an alternative

MRP specification could improve estimate accuracy. Here, each variable category

was modelled as a separate β parameter.16 On the whole, the results showed the

method was not beneficial to estimate accuracy and for some cases highly detrimental.

I believe this is testament to the benefits of partial pooling gained through estimating

demographic characteristics as varying intercepts.

For the standard MRP specification, improvements in estimate accuracy were

mostly present for the smaller sample sizes. There were examples of improvements

for larger sample sizes, but these were small and inconsistent. Overall, the research

has shown that sample size is clearly far more important than informative priors.

Even when informative priors improve estimate accuracy, the gains still do not make

the estimates comparable with estimates from a model with a larger sample size and

weakly-informative priors. Researchers only interested in MRP estimate accuracy,

should focus on ensuring that they can achieve a sufficient sample size rather than

informative priors.

Beyond estimate accuracy, the research has demonstrated that informative priors

have the potential to improve precision in estimates. The results showed that estimate

widths were often shorter than weakly-informative prior models. However, as with

estimate accuracy, improvements were inconsistent, showing greater improvements

for smaller sample sizes and for specific elections. The results, although showing

informative priors could improve estimate precision, once again demonstrated that

sample size seemed to have a larger affect on estimate precision than informative

priors might.

Benefits of this method for estimate accuracy and precision are inconsistent.

However, improvements in estimation time seem more consistent and significant.
16The model still estimated small area as random effects as the sample sizes used here would not

permit this variable to be specified as a fixed effect.
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Overall, informative priors nearly always and often significantly improve estimation

times. This is especially the case for models with many small areas (i.e. the UK)

and smaller λ values. Researchers will of course preference estimate accuracy over

computation time, but the results show when used at the right election and properly,

informative priors consistently improve computation time. The results have also shown

that we can improve inference among subgroups of the population with informative

priors. This is not true for all demographic variables, but there were clear examples

of informative priors improving the precision of parameter estimation.

Finally, while the research tested using λ as a scaling constant to account for

differences between elections, the results are inconclusive to determine which value

we should use. The results indicate that the value of lambda should be linked to the

similarity between the elections. Where elections are similar, a smaller λ value is more

useful. On the other hand, when there is a discrepancy between elections, a smaller

λ value is more detrimental to estimate accuracy. The larger λ values seem to offer

less benefit to estimates, with the accuracy being similar to the weakly-informative

model accuracy. This suggests that λ values of 1.5 and 2 are too large to enable the

model to incorporate the benefits of informative priors. However, these values are

far less risky than a value of 1, where the potential detriment to estimates is much

greater. Future research could test whether this method could be improved with a

different range of λ values, for example > 1, but < 1.5. These values might be better

at avoiding the risks associated with λ = 1, but better able to realise the benefits of

informative priors than when λ = 1.5 or 2.

For both the alternative and standard MRP specification, the research has shown

that the potential success of such a strategy is dependent on the extent to which an

election is similar to the preceding election. This, however, emphasises the major

potential risk of the method. In practical applications we do not know the extent to

which voting patterns will shift, and therefore the use of this method is highly risky.
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Although I have demonstrated a method to determine similarity between elections

(which broadly seems to align with cases where this method has worked best), I have

not developed a method which can establish whether informative priors can or should

be used. New and innovative work which seeks to develop a standardised measure

on distance (or similarity) between elections might offer a potential solution (See

Faliszewski et al., 2020, 2019).

Another potential avenue for future research could be to explore whether the

method set out in this chapter could be improved with different historic information.

First, research could examine whether different elections might be better suited as

the historic model. For instance, it has been argued that US midterm elections,

which are held two-years into a presidency, represent a ‘referendum’ on the incumbent

President (Tufte, 1975). Using the midterm election as the historic model might

provide informative priors which are closer to the true parameter distribution than

the previous presidential election.

Second, research could explore whether informative priors could be used throughout

an election campaign. In this application, a historic model would use data from the

initial stages of a campaign period. Informative priors would be derived from the

historic model and imputed for a model predicting vote share closer to the election

date. This would negate the issue of similarity between elections, and could improve

estimation for the final election forecast model. However, if there is a significant shift

in opinion over the course of a campaign, this technique would be at risk of the same

problems of using a dissimilar historic election.

Throughout this chapter I have discussed how we can use historic data to improve

current MRP estimates. However, this overlooks the potential risk of incorporating

errors from the historic model or data. If the historic model and or data is inaccurate,

this method would embed these errors into the current model. We could check historic

model estimate accuracy in an attempt to ensure that the model and data is accurate.
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However, even when small area estimates are accurate, parameters may still have been

estimated poorly. And while these errors might not harm estimates for the historic

model, they may cause greater estimate inaccuracy for the current election model.

5.7 Conclusion

This study has demonstrated that informative priors can be useful in specific circum-

stances when forecasting elections with MRP. However, the results also demonstrate

that using this method without knowledge of similarity between historic and current

election could be problematic. Importantly, in this chapter I have shown that for

estimate accuracy, we should be far more concerned with ensuring that we have a

large enough sample. Indeed, significant accuracy improvements from informative

priors were largely only evident for the smallest sample sizes.

Besides accuracy, the research has shown that informative priors may be useful to

improve sub-group inference by improving the estimation of parameters. Equally, the

research has shown that informative priors could aid MRP by improving computation

time. In future research it would be interesting to explore whether this method is

useful for much more complex models. For example if we wish to include numerous

interactions (including cross-level interactions), informative priors may be particularly

useful for improving efficiency in estimation.

The study has contributed to the wider Bayesian literature on prior elicitation

by showing how a two-stage prior elicitation method could be applied to electoral

forecasting. Furthermore, the chapter has set out how we can incorporate a scaling

constant (similar to that used with power priors) and apply to the two-stage method

to account for variation between historic and current data.

For the MRP literature generally, and specifically for MRP electoral forecasting, the

chapter has contributed to our understanding of when this method could be employed.
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This chapter has shown under what conditions this strategy could improve MRP

estimates and estimation. Importantly, the chapter has shown that for most instances

the risks of this strategy outweigh the potential benefits. Overall, the implications

suggest that researchers should focus on sample size over informative priors. Should a

researcher only have access to small sample sizes, this method might be useful. But,

as has been shown, there are still risks when the historic election is dissimilar to the

current election. For researchers concerned with sub-group inference, the results give

some suggestion that this strategy might be useful, but more research is needed in

this area.



Chapter 6

Conclusion

The contribution of MRP to social science cannot be underestimated. By equipping

researchers with the means to reliably estimate opinion at a sub-national level, the

method has advanced numerous academic disciplines, extending both the potential

research topics and available methods to research on already established topics.

We know that opinion can vary significantly within countries, including geographi-

cally among small areas. While this thesis has not argued that all disciplines require

analysis of opinion at the small area level, I maintain that failing to account for

geographic variation altogether is an oversight. Accordingly, this thesis was motivated

by a belief that the continued development and improvement of MRP is important

and worth the attention of methodological research.

In recognising both the importance of small area estimates of opinion and the

capacity of MRP to reliably estimate small area opinion, this thesis was designed with

two principal aims: first, to contribute to an improved understanding of the method;

and second, explore whether alternatives or extensions of the standard methodology

can improve MRP estimates. Below, I briefly re-visit the main chapters of this thesis,

summarising the key findings and identifying important contributions of each. This is

followed by a discussion on the overarching limitations of this study and suggestions
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for relevant future research. I conclude with a brief note of advice for the applied

researcher.

6.1 MRP and variable selection

In chapter three, I argued that variable selection in applications of MRP needs

improvement. The systematic review identified limited variation in the variables used

across a relatively broad range of estimated opinion or behaviour. This suggests

that many studies base variable selection on a path dependency approach (selecting

identical variables to previous MRP studies) rather than theory based selection. Given

that most applications estimate opinion or behaviour that could be deemed to have

similar predictive variables, one could argue that this does not represent a significant

problem. However, in line with Buttice and Highton (2013), who noted variation in

estimate accuracy with identical predictor variables, I argued that we should expect

more variation.

As an alternative, chapter three explored how we can use cross-validation (CV)

lasso regression to select variables for use with MRP, and whether this leads to

improved MRP estimate accuracy. This was achieved through the application of

estimating Conservative party vote share in GB constituencies for the 2017 election.

The chapter first explored what degree of regularisation (i.e. what λ value) researchers

should use when using CV lasso regression to select variables for MRP. In line with

recommendations of Breiman (1998) and Hastie et al. (2009), this research found that

λ̂ (the lambda value which minimises squared error across cross-validation) enforced

too little regularisation resulting in an overfitted model. On the other hand, the

model associated with λ̂1Std (largest lambda value within 1 standard error of λ̂)

was consistently one of the most accurate among all λ values tested. The λ̂1Std

value imposed more regularisation leading to a more parsimonious model and better
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out-of-sample prediction. I argued this demonstrated that for MRP variable selection

applications, researchers should use λ̂1Std for CV lasso regression.

The chapter subsequently assessed the performance of lasso-MRP estimates against

path dependency and theory. When compared to two path dependency models, lasso-

MRP performed equally, if not better. With no discernible differences in accuracy

between lasso-MRP and the best path dependency model, I argued that the lasso

model represented a superior choice given that it was a more parsimonious solution

(in this case fewer variables). When comparing the lasso-MRP estimates with theory

driven variable selection, the theory MRP model achieved significantly better estimate

accuracy. However, the research was not able to make a fair comparison between the

two. The theory model used a much larger sample, included variables unavailable in

the lasso-MRP model, and included numerous cross-level interactions. Nonetheless,

taking a conservative approach, the chapter suggested that theory based variable

selection is preferable to lasso variable selection.

The chapter argued that the results would support the use of the lasso-MRP

method as a tool to be deployed in the model-building process. The systematic

review seemed to indicate that many MRP applications do not use theory for variable

selection. Therefore, incorporating lasso into the model building process alongside

theory and path dependency would represent an improvement in MRP variable

selection. Importantly, this addition comes with no financial cost to the researcher,

and only relatively small computation and time costs.

This chapter has contributed to the MRP literature by continuing to explore

how we can better select variables. More specifically, the chapter has contributed

by setting-out how best to apply CV lasso regression to select variables for MRP.

Two existing papers have explored how automated variable selection can be combined

with MRP. However, Goplerud et al. (2018) method changes the MRP format, while

Broniecki et al. (2021) does not offer a solution which can select individual-level,
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area-level, and interactions in a unified framework. Chapter three addresses this gap by

exploring how CV lasso can select all MRP variables and interactions simultaneously.

The benefits of such a method might be small when there is good theory to use,

but when there is little or no theory to inform variable selection this method could

prove particularly useful. While I argue that the results in this chapter do not support

the indiscriminate use of CV lasso to select variables for MRP, the results suggest

that when used alongside other methods in the model building process the method

could improve applications of MRP. Overall, improving variable selection for MRP

could lead to improved MRP estimate accuracy and could extend the application of

MRP to new areas where we have less theory to inform variable selection.

The chapter also contributed to the wider literature on selecting λ for lasso with

cross-validation curves. The ‘one-standard-error’ rule was proposed as a conservative

approach to selecting λ values, as λ̂ had been shown to select overfitted solutions

(Hastie et al., 2009: 244). As an alternative, λ̂1Std selects a far more parsimonious

model while also keeping within one standard error of λ̂ cross-validation error. This

chapter has contributed to this literature by providing further evidence that λ̂1Std is

preferable for out-of-sample prediction, and that λ̂ selects overfitted solutions. This

speaks to the wider bias-variance trade off debate. In this example, reducing variance

is preferable for prediction accuracy.

6.2 Improved MRP sample distribution

In chapter four I explored how an unevenly distributed sample can improve estimate

accuracy. The premise of this chapter was that in certain applications of MRP there is

greater need to ensure estimate accuracy in certain small areas. The clearest example

- and the application in this chapter - is electoral forecasting. In most elections, the

electoral outcome is based upon which party can win a majority of electoral contests
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across all electoral districts (small areas). To predict an electoral outcome we therefore

need to forecast vote choice or party winners in each electoral district.

However, in most elections small areas are divided between those where one party

or candidate wins with a large majority of votes (non-marginals) and those where

a party wins with a small majority (marginals). To correctly predict the electoral

outcome in marginal small areas we therefore need a high level of accuracy and

precision. Whereas, in non-marginal small areas we can typically afford lower accuracy

without the risk of incorrectly predicting the small area party winner.

This chapter explored whether oversampling respondents from marginal small areas

improved MRP electoral forecasting. This was achieved by first introducing a method

to determine how the sample should be distributed among small areas, and second,

by assessing whether this improved MRP estimates. Through a simulation study and

two real-world applications (2017 UK and 2016 US), the chapter demonstrated that

the method both improves estimate accuracy and our ability to predict elections.

In the simulation study I showed that overall accuracy was largely unaffected by

the different sample distributions. However, when looking at small areas by margin of

victory, the results showed that the uneven sample distributions improved accuracy

and precision among small areas which received a larger proportion of the sample. On

the other hand, small areas which received a smaller proportion of the sample had

poorer accuracy when compared to the even sample distribution.

Improvements in marginal small area estimate accuracy also manifested in the two

real-world applications. In the UK I estimated 2017 Conservative vote share and in

the US 2016 Republican vote share. In the UK improvements in MAE ranged between

0.6-0.7%, while in the US improvements ranged between 0.8-1%. These improvements

in estimate accuracy translated into improved ability to predict an election, with both

the UK and US cases showing significant improvements in brier scores. Interestingly,

in the real-world applications the improvements in estimate accuracy in marginal
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small areas did not come at a cost of accuracy in non-marginal small areas. In the

US, I argue this is partly a function of the data. However, across both real-world

settings, I argued this is in part because of the weighted ratio I used to determine

sample distributions. The weighted ratio proved an efficient way to determine a

sample distribution that satisfies dual objectives: increasing the sample in marginal

small areas and maintaining sufficient sample in non-marginal small areas. In the

two real-world applications, the oversampling method combined with the weighted

ratio improved estimate accuracy in marginal small areas, but not to the detriment of

non-marginal small area accuracy.

The implications of this research are two-fold. First, for electoral forecasting

both with MRP and without, this research has demonstrated how an uneven sample

distribution may be useful to improve our ability to forecast an election. This is an

important finding and speaks to wider literature on sampling strategies for voting

behaviour. By over-sampling small areas which have small margins of victory, we

can improve our ability to predict an overall electoral result. The implications of this

research should be of particular interest to researchers with limited or finite resources.

In these applications, researchers will have a maximum sample available, and this

strategy has demonstrated how we can achieve the best possible accuracy with a given

sample size.

Second, the results have implications for the wider application of MRP. In most

applications of MRP, researchers make use of publicly available surveys which in

most cases do not sample respondents evenly. The results presented here further

demonstrate that an unevenly distributed sample will result in varying degrees of

estimate accuracy across small areas. In the applied use of MRP, researchers should

attempt to ensure that their results, and the interpretation of their results, better

account for this variation in accuracy. This implication is especially important for

studies which use MRP point estimates in a further model.
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6.3 MRP and informative priors

Chapter five looked at how we could incorporate further information into the MRP

model through Bayesian informative priors. MRP is increasingly estimated as a

Bayesian model and this provides an opportunity for researchers to incorporate further

information into the method. In this chapter, I set out how we can apply a two-stage

prior elicitation method to specify informative priors with MRP. Through applications

to forecasting elections in the US and UK, I showed how we can use historic election

model posteriors as informative priors. Specifically, I demonstrated how to obtain the

distributions for each parameter posterior and impute these as priors for the current

election model. I also explored how we could incorporate a λ value into the prior

specification process, with the intention of accounting for differences between the

historic and current election.

This approach was applied with the standard MRP specification, and with an

alternative MRP specification that enabled a more direct impact of the informative

priors. For both specifications, the chapter tested whether informative priors improved

estimate accuracy when compared to a standard MRP model with weakly informative

priors.

The alternative specification results showed that the method did not improve

estimate accuracy for the most part, and at points was actively detrimental for

estimate accuracy. This, I argued, was testament to the benefits of partial pooling

obtained by specifying individual-level variables as varying intercept terms. For the

standard MRP specification with informative priors, the results were somewhat mixed.

There were examples of the method improving estimating accuracy, but mostly showed

informative priors to be of limited benefit at best, and marginally detrimental towards

estimate accuracy at worst.

For the smallest sample sizes, informative priors improved estimate accuracy, but

the degree of improvement varied depending on the election. For larger sample sizes,
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informative priors typically either had little effect on estimates or were detrimental

to accuracy. The research was able to highlight some other benefits including im-

proved estimate precision, improvements in computational efficiency and subgroup

inference. But overall, the chapter demonstrated that this strategy cannot be applied

indiscriminately nor uniformly, and would require preliminary analysis to ensure the

right conditions were met to achieve any benefits.

The implications of this research for the application of Bayesian MRP models are

two-fold. First, the research has demonstrated that researchers should focus on sample

size over informative priors. Although increasing sample size is not a cost free strategy,

the research has shown that informative priors cannot produce comparable results

to MRP models with larger sample sizes. More broadly, the only sample size which

demonstrated somewhat consistent improvements in estimate accuracy are smaller

than the standard MRP sample sizes identified in the systematic review.

Second, the research has shown under what conditions informative priors might

be useful. If a researcher only has access to small sample sizes, informative priors

might be an attractive strategy to improve estimate accuracy. In the application of

electoral forecasting, the research demonstrates that when elections are similar, using

the historical model posterior as priors for the current election can improve estimate

accuracy. When there are dissimilarities between elections, this method will work

to the detriment of estimate accuracy. Although I have not explored whether this

holds true for other opinion or behaviour, it seems a reasonable assumption to suggest

similar patterns will manifest.

For the wider Bayesian literature on priors, this chapter has contributed to exploring

how historical model posteriors may be directly imputed as informative priors. This

area of research is a growing field, with the two-stage prior elicitation a relatively

new and emerging method. In this chapter, I provided a worked example of how

this approach could be applied to an electoral forecasting context. Motivated by the
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scaling constant a0 parameter in power priors (which controls for similarity between

historic and current data), the chapter also showed how the two-stage method could

be adapted to account for differences between the historic and current election through

the use of a λ value.

6.4 Limitations and future research

This thesis has sought to assess new ways to leverage information and new information

that we can leverage. Throughout the thesis I assessed how these leveraging techniques

could be applied to MRP and whether they improve MRP estimates. This was

undertaken partly with the goal of contributing towards the wider application of MRP.

Part of the appeal of MRP is that it can be uniformly applied across different academic

disciplines, and as the systematic review identified, broadly has a standard practice in

its application. However, in this thesis I have proposed and tested methodologies that

could not be indiscriminately nor uniformly applied across MRP applications. This

limits the impact of this research as I have not developed ‘ready to use’ methods for

the wider application of MRP. Each additional step suggested here would most likely

need to be tailored for the variety of MRP applications identified in the systematic

review.

The uneven sample distribution introduced in chapter four could not be uniformly

applied across electoral contests without modification. An example of this is in the

German Bundestag where voters have two votes, or France, where parliamentary and

presidential candidates are on the same ballot. In these situations a small area that is

a marginal in one vote might not be in another. This means that researchers would

need to find new methods to define marginals and determine sample distributions.

In chapter five, I show that informative priors can improve MRP estimate accuracy

but only for the smallest sample sizes and only under certain conditions. Overall,
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improved estimate accuracy and precision, as well as improved sub-group inference,

will most likely only manifest when the historic and current election are similar. For

the wider application of this method we would first have to determine a way to reliably

establish electoral similarities a priori.

Future research could focus on ways in which these methods could be applied

uniformly across a variety of applications rather than the specific applications in this

thesis. For the wider application of the uneven sample distribution, one avenue would

be to further develop the weighted ratio so that it could be applied universally to

multiparty systems with more than one vote. This research would of course also need

to assess whether these sample distributions still maintained the improvements in

estimate accuracy that were reported in chapter four. For informative priors to be

uniformly applied, we would need a method to assess similarity between elections.

Proponents of the power prior (Chen and Ibrahim, 2000) would argue that this already

exists. An extension of the basic power prior allows for the modelling of the scaling

constant a0, which controls for how influential the historical data is in the estimation

of the posterior. Incorporating power priors to the MRP case might be a fruitful

avenue of future research.

A related limitation is that throughout this thesis I have only applied each appli-

cation to electoral forecasting. While chapter four most likely has limited application

beyond electoral forecasting, chapter three and five could be applied to topics beyond

voting behaviour. From a practical standpoint, voting behaviour is one of the best

test applications, as we can compare estimates against known outcomes. However, by

only estimating voting behaviour there are two significant limitations: first, I cannot

claim that these methods and findings from this research more generally, will be

applicable to other opinion or behavior; second, I cannot claim to have contributed to

the wider application of the method. Although part of the premise of this research

was the contribution to the extension of MRP. Without providing firm examples of
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these methods contributing to the wider application of MRP, it could be argued this

thesis has not yet satisfied this goal.

As well as not demonstrating application beyond electoral forecasting, the way I

have estimated vote choice could be argued to restrict the extent to which I have truly

tested the efficacy of these methods for electoral forecasting. Throughout this thesis I

have consistently treated vote choice as a binary outcome where support for a political

party = 1, and support for all other parties = 0. This decision was not substantive,

but rather practical and followed the examples set out in previous MRP studies (see

Selb and Munzert, 2011; Hanretty et al., 2016). On the one hand, estimating vote

choice in this format was preferable to demonstrate these methods for MRP. This

is because in most applications researchers are estimating opinion towards a given

topic where support = 1, and opposition = 0, and thus identical to how vote choice is

operationalised here. On the other hand, treating vote choice as a binary outcome in

a multiparty system is most likely different to present-day MRP electoral forecasting,

with researchers preferring multinomial regression which estimates all main parties in

a single model.

This could be deemed problematic as this means I do not know whether various

alternative applications tested in this thesis are applicable for how researchers actually

forecast elections with MRP, i.e. with a multinomial MRP model. For example, in

chapter three selecting variables for a multinomial model is not possible with the

Group-Lasso interaction-NET I make use of. Future research would need to test

alternative lasso solutions which facilitate the selection of variables with a multinomial

model. In chapter four, I calculate whether a small area is a marginal by calculating

the difference between the proportion in each small area where Y = 1 and Y ̸= 1. In

a multiparty system, this is a problematic way to identify marginals and could have

high type I and II error rates. When treating vote choice as binary in a multiparty

system, determining marginals will always be an imperfect solution. If we estimate a
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multinomial MRP model for vote choice, this would negate the problem as we would

define a marginal in terms of past winning candidate majority. Finally, in chapter five

estimating the model as a multinomial model would not have altered the application

of informative priors significantly. However, the more complex nature of a multinomial

model might be a circumstance where informative priors are of greater benefit than

any of the applications tested in this thesis. Again, estimating vote choice as a binary

outcome has not enabled an assessment of informative priors true to how MRP is used

to forecast elections.

In the introduction, I framed the thesis along the lines of how we can better

leverage information for MRP applications. In each chapter, I have discussed how we

can leverage information on the assumption that the information will improve MRP

estimates. However, as is the case for MRP more generally, using past information

in any form can be problematic. In chapter four using past information takes the

form of using past vote to determine which small areas should be deemed marginal,

and therefore receive a larger proportion of the sample. In chapter five, the historic

model is used to derive informative priors for the current election model. In both of

these applications, we are assuming that the historic information will be useful for the

current MRP model. In electoral forecasting this is often a fair assumption, but an

assumption nonetheless. If the information we incorporate into an MRP model is not

useful, this may not only fail to improve MRP estimates, but it could also be (highly)

detrimental to estimate accuracy. Overall, throughout the thesis there has been

recognition that historic information could be problematic for MRP estimates, but I

rarely make a significant contribution to proposing ways to alleviate these concerns.

Future research could seek to develop methods which are better able to determine

whether the historic information will be useful. Of particular interest could be a

new area of research which seeks to identify how we can measure the similarity (or

distance) between elections (See Faliszewski et al., 2020, 2019). If we are able calculate
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a standardised measure of similarity between elections, sensitivity analysis could be

used to determine the distance at which a historic election is, or is not, useful.

Another important limitation concerns how I have analysed whether each proposed

methods improves MRP. Assessing efficacy of information leveraging techniques pro-

posed in this thesis has predominantly been done by focusing on estimate accuracy.

As a prediction rather than inference method, this approach has largely been the

most appropriate. However, there are other criteria that might have been useful to

assess the alternative methods, but I have been restricted by the lack of ground truth

available to make such assessments.

In chapter three, I compared lasso-MRP with a path dependency variable selection

approach. In the chapter I compared accuracy and the variables selected, but was

not able to compare whether either approach selected the best variables, as there was

no ground truth on which variables were the most predictive of voting behaviour.

This was particularly problematic for assessing the efficacy of the method to select

interactions and individual-level variables. Without knowledge of which variables

should be selected I was unable to assess whether the lasso extension I applied (Group-

Lasso interaction-NET) was able to correctly select all variables and interactions. This

was a significant limitation because the method was chosen partly on the basis of its

capacity to select all variables and interactions in a unified framework.

In chapter five, I showed that informative priors changed some parameter values

and hypothesised that these were the cause for the differences in estimate accuracy.

However, without knowledge of the true parameter values, I could not determine

whether these parameter estimates were an improvement over parameters which were

estimated with weakly-informative priors.

In real-world settings, overcoming these limitations is somewhat impossible. Simu-

lation studies might be able to provide some indication, but will not offer a comparable

analysis with the same degree of complexity present in real-world applications. Ulti-
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mately, assessing implications of the methods tested in this thesis by estimate accuracy

is the most practical but nonetheless, poses limitations for developing an understanding

of exactly how each alternative method changes MRP estimation.

For some of the methods proposed in this thesis, the benefits would most likely

arise in applications with highly complex MRP specifications. However, for the most

part I have consistently restricted MRP complexity in each application. In chapter

three, I used a poststratification frame that only allowed for a limited set of individual-

level variables and I did not allow cross-level interactions. Previous research has

demonstrated that political individual-level variables and cross-level interactions can

produce highly accurate MRP vote choice estimates (See Lauderdale et al., 2020).

Therefore, restricting potential variables and interactions might have meant that

benefits from this approach did not manifest because the most predictive variables

and interactions were not available.

Similarly, in chapter five I explored how informative priors might improve estimate

accuracy. I restricted the models to relatively simple specifications with no interactions

altogether. However, posterior estimation is harder when including interactions and

informative priors might have significantly aided posterior estimation. Overall, the

simple models tested in chapter five are not representative of model complexity in

real-world electoral forecasting applications. This could call into question whether I

have offered a true test for whether informative priors improve MRP estimates and

estimation.

At numerous points throughout this thesis I have stated that restricting complexity

was a reasonable choice and one that did not affect satisfying research objectives. From

the perspective of creating a feasible research project this is most likely true. However,

from the perspective of testing whether methodologies improve accuracy, one could

argue that the MRP applications in this thesis should have been closer in comparison

to real MRP applications. This speaks to a wider internal vs. external validity trade-off
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in methodological research. In this thesis, I have attempted to replicate how MRP is

applied in practice, while also simplifying the model to ensure I could identify whether

any of the proposed methodologies truly improve MRP estimates.

6.5 Advice for applied researchers

For the applied MRP researcher, this thesis has numerous implications. In this closing

statement, I try to translate these implications into advice for applied researchers.

Before discussing direct implications from this research, I first wish to briefly

discuss the implementation of MRP, the necessary software and tools, and prerequisite

knowledge and skills. For applied researchers with a good foundation in statistics and

programming, the implementation of all of the methods in this project are feasible.

Those with limited experience in either of these should first dedicate time towards

acquiring the prerequisite knowledge and skills. The application of MRP more broadly

requires understanding of multilevel modelling, and more recently Bayesian statistics.

Useful textbooks which will take researchers from limited statistical knowledge and

coding experience, through to being comfortable with Bayesian statistics and multilevel

modelling include Gelman et al. (2020); McElreath (2020), while Gelman and Hill

(2007) is an excellent textbook, it assumes the reader already has some knowledge of

Bayesian statistics.

Should researchers already have the prerequisite knowledge, implementation of

the standard MRP form is relatively straightforward. However, those with no prior

experience in applying MRP, should first refer to the numerous free-to-access online

resources which provide worked examples, including code which researchers can borrow

from (See Alexander, 2019; Williams, 2018; Rivers, 2018; Dunham, 2018; Mastny, 2017;

Leemann and Wasserfallen, 2018; Hanretty, 2019; Kastellec et al., 2016; Lopez-Martin

et al., 2019; Kennedy and Gabry, 2020).1

1These resources were largely informed from a list compiled by Josh McCrain, accessed here:
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Throughout this thesis I have used R (R. C. Team, 2020), and the R package

tidyverse (Wickham et al., 2019), to clean, wrangle, and visualise data. This was

essential to produce the research embodied in this thesis. Researchers who have a

preference for alternative programs, such as Python, could easily implement all data

preparation with this software instead. However, most of the development of MRP

and, to my knowledge, worked examples of MRP use R. This means that researchers

who wish to implement MRP in different software will need to be able to translate R

code or statistical notation into their preferred programming language.

Similarly, the MRP models in the thesis has all been implemented with the

Bayesian modelling programme Stan, and called through Rstan (S. D. Team, 2020)

with the aid of R packages rstanarm (Goodrich et al., 2020) and brms (Bürkner,

2017). These packages enable the specification of Stan models with standard R

model-fitting functions, making implementing complex Bayesian models relatively

easy and straightforward. Researchers who have a preference for Python, could

implement their analysis through Pystan, the Python interface with Stan. Although

there are limited Python libraries which enable researchers to forgo writing the full

MRP model specification in the Stan model format.2 Alternatively, models could

be implemented in other Bayesian probabilistic programming tools such as PyMC3

(Salvatier et al., 2016), or Edward (Tran et al., 2017). Although these tools could

produce different estimates, as both use different Bayesian sampling methods to Stan’s

default No-U-Turn Sampler (Hoffman and Gelman, 2011) Overall, for those who do

not have an advanced knowledge of Bayesian statistics or advanced programming

in Python, the use of Rstan (called through rstanarm or brms) is recommended for

applied researchers.

Turning now to the implications of this thesis for applied researchers. First, when

https://joshuamccrain.com/index.php/mrp-in-r/
2There are some recent examples of packages designed to make implementing Stan in python

easier, including pybrms (Haber 2020), the Python version of brms.

https://joshuamccrain.com/index.php/mrp-in-r/
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estimating opinion or behaviour with MRP, theory should drive variable selection.

For instance, in electoral forecasting there is an extensive body of literature which

examines what the key and main drivers of vote choice are. This body of literature

now also includes numerous examples of MRP being applied to electoral forecasting.

For researchers forecasting elections with MRP, they should base variable selection

on both the theory and MRP examples. However, as an additional technique lasso

may compliment the model building process. Importantly, it comes with relatively

few costs to the researcher and may provide further confidence in variable selection.

Should a researcher wish to use CV lasso regression to select variables, researchers

should make use of λ̂1Std (the largest λ value within one standard error of λ̂, the

value with the lowest CV error). More broadly, researchers should choose greater

regularisation as this is preferential for out-of-sample prediction (i.e. in MRP the

poststratification stage).

For the wider application of MRP, variable selection is often harder. This is

because we cannot validate our choices by comparing previous model results with

known outcomes. In these circumstances, when there are limited examples of MRP

being applied to estimate the opinion, and the wider theory on which variables are

predictive is limited, the incorporation of lasso into the model building process becomes

more important. Using lasso as a complementary variable selection method can provide

researchers with confidence that the variables selected will lead to reliable and accurate

estimates. Instead of lasso, alternative solutions such as autoMRP (Broniecki et al.,

2021), and sMRP (Goplerud et al., 2018) could also be viable options, should a

researcher be less interested in selecting individual-level variables or maintaining the

standard MRP form. Although, researchers may still prefer the lasso approach as this

maintains the standard multilevel model which offers greater model intelligibility than

alternative MRP regularisation approaches (Gao et al., 2021).

The oversampling strategy proposed in chapter four seems to show promising signs
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for electoral forecasting. When researchers have control over sampling design, they

should follow the method set out in chapter four. The method has been shown to

improve accuracy in the most important small areas, while having no detrimental affect

on overall accuracy. The weighted ratio might need adapting for certain applications,

but it is an efficient way to determine sample distributions and should be used when

applying this method. Overall, the method will improve prediction accuracy in

important small areas, which in turn can improve the probability of predicting an

election.

For the wider application of MRP, this method could be useful where greater

accuracy is needed for a subset of small areas which can be identified in advance.

However, when accuracy is equally important for all small areas, this method will

rarely be suitable. Despite the real-world examples showing almost no risks involved

in applying the method, the simulation demonstrated there was potential the method

could be detrimental to accuracy in certain small areas. Taking a conservative approach,

this method should only be applied when two criteria are met: first, improving accuracy

in certain small areas is a justified necessity; second, there is a high degree of confidence

that poorer accuracy in certain small areas will not impact the overall prediction goals.

Although it is not advised this method is applied to all MRP applications, the

results still have implications for the wider use of MRP. The chapter provided further

evidence that unevenly distributed samples result in differing degrees of accuracy

across small areas. When researchers use surveys which distribute the sample unevenly

among small areas, the discussion and interpretation of the MRP results should give

greater consideration to these differences. This is especially important when using

MRP results in further analysis. In these applications, analysis using MRP results

should account for the variation in estimate accuracy among small areas.

Informative priors could be an attractive feature to employ when forecasting

elections. However, the results presented in this thesis should be seen as a cautionary
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tale how the indiscriminate use could be problematic. Should a researcher wish to

use informative priors for MRP electoral forecasting, the advice is twofold: first,

researchers should focus on ensuring they can achieve a sufficient sample size, as

sample size is clearly more important than prior type; second, researchers need to

ensure that there are similarities between elections, which at present we do not have

the methods to achieve. If researchers are interested in improving computation time,

or interested in sub-group inference of voting patterns, informative priors could be

useful. However, at present there is not sufficient evidence to warrant the use of this

method to achieve these goals.

Informative priors deployed in the two-stage procedure should rarely be used for

wider applications.3 This is mainly because there are most likely few applications

where there is good enough past information that would warrant the use of informative

priors as used in this chapter. Furthermore, the gains in accuracy seem to be small

given the potential risks of the two-stage method. As with electoral forecasting,

researchers should focus on sample size over informative priors. Overall, I struggle

to see an application beyond electoral forecasting where we can have confidence the

two-stage method, identical to the one set-out in chapter five, would improve MRP

estimates. This is not to say informative priors more generally will not improve

estimates, but should not be used as operationalised in this chapter.

More broadly, in line with previous literature on MRP, this research has continued

to show the importance of sample size. In the simulation study in chapter four,

accuracy improvements were greater for smaller sample sizes, and for chapter five,

significant improvements were mostly only present for the smallest sample size. This

emphasises both the impact and importance that sample size has on MRP accuracy,

and suggests researchers should always first ensure they have a sufficient sample size

for their MRP application. If researchers are limited by available sample size, then
3For the explanation of informative and weakly-informative priors, refer back to 5.1, and to see

details on the two-stage prior elicitation method refer back to 5.2.
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some of the leveraging techniques proposed in this thesis could be useful. This lesson

has truth beyond this thesis, where alternative methodologies proposed in the MRP

literature tend to show particular improvements when sample sizes are small.

Applied researchers may also improve their models by paying closer attention to

what their goals of applying MRP are, and what metrics they should use to assess the

accuracy of their MRP application. The uneven sample distribution was implemented

because I considered that predicting an election was more important than overall

estimate accuracy. Equally, we might choose to use informative priors because we are

more interested in sub-group inference or estimate precision. Overall, only considering

estimate accuracy might not lead to the best methodological decisions. In the applied

us of MRP, researchers should give consideration to what the overall goals of their

MRP application is, and how these might affect their modelling decisions.

Similarly, researchers must ensure they tailor their MRP model according to their

specific application. The need to tailor MRP models for each application is a theme

that has run throughout this thesis. In the introduction, I stated there is no one-size

fits all for MRP and this has broadly rung true throughout each chapter. Automated

variable selection was an attempt to tailor variables choices for MRP applications.

The uneven sample distribution is a tailored approach of MRP based on the need for

higher accuracy in certain small areas. Equally, informative priors are a way to tailor

the information we provide the MRP model. Clearly tailoring the model is the basis

for the successful application of MRP, and researchers should be advised to embrace

this practice.



Appendix A

Chapter 2

In chapter 2 I presented the results from the systematic review which documented

standard practice for the application of MRP in social science studies. In appendix

A.1 I list all studies included in the systematic review. In appendix A.2 I provide

the list of topics and inclusion criteria. This list was originally adapted from the Pew

Research Centre list of research topics.
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Table A.1: Topics list

Topic Notes

Abortion policy Originally part of Politics and Policy category
Climate, Energy & Environment Originally part of Politics and Policy, Science and International Affairs categories
Criminal justice Originally part of Politics and Policy category, includes death penalty
Defense & National security Originally part of Politics and Policy, International Affairs and Immigration and Migration
Economy & Work Included Economic Conditions, Income, Wealth & Poverty, Business & Workplace, Economic Policy

Global Trade, Economic Systems, Personal Finances
Education policy Originally part of Politics and Policy, Science, Internet and Technology and Other topics
Elections & voters Originally part of Politics and Policy category
Family & Relationships Included Household Structure & Family Roles, Family Caregiving, Marriage & Divorce

Parenthood Romance & Dating, Friendships

Gender & LGBT Included LGBT Attitudes & Experiences, Economics, Gender & Work/ Education/ Politics
Gender & Leadership/ Religion, Gender Equality & Discrimination, Gender Roles

Health policy Politics and Policy, Science and International Affairs categories
Immigration & Migration Topics included Immigration Attitudes, Immigrant Populations, Immigration & Economy

Integration & Identity, Legal Immigration, Refugees & Asylum Seekers

Unauthorized Immigration, Border Security & Enforcement, Technology & Immigration
International Affairs Included World Leaders World Elections, Global Image of Countries, Organizations

Alliances & Treaties, Global Balance of Power, Bilateral Relations, War & International Conflict
Global Economy & Trade, Global Tech & Cybersecurity, Human Rights, International Political Values

Politics & Policy Included Trust, Facts & Democracy, Political Parties & Polarization, Politics & Media, Leaders

Political Ideals & Systems, Political & Civic Engagement, Issue Priorities
Political Discourse, Protests & Uprisings, Generations, Age & Politics

Race & Ethnicity Included Racial Bias & Discrimination, Race, Ethnicity & Politics, Race Relations
Racial Intermarriage, Racial & Ethnic Identity, Racial & Ethnic Shifts, Ethnic groups

Religion Included Beliefs & Practices, Religion & Social Values, Religious Freedom & Restrictions

Religion & Government, Religion & Politics, Interreligious Relations, Non-Religion & Secularism
Religion & Science, Religious Demographics, Religious Identity & Affiliation
Religious Leaders & Institutions, Religious Knowledge & Education

Science Included Trust in Science, STEM Education & Workforce, Science Funding
Religion & Science, Biotech, Evolution, Food Science, Gene Editing, Space, Human Enhancement

Gun policy Added
Other Any topic which did not clearly fit any category.



Appendix B

Chapter 3

In chapter 3 to produce MRP estimates, I used a turnout measure which was estimated

using variables selected with the lasso approach. To give confidence that the results -

and interpretation of results - were not a function of the turnout measure, I produced

MRP estimates with two alternative turnout measures. I provide details of the turnout

measures and show alternative results for all λ solutions in B.1.

In B.2 I provide a list of all variables available for selection in the lasso model. The

table also provides details on variable selection for different lambda solutions, showing

which were selected as a stand-alone variable, which were selected as an interaction

variable, and which were selected as both an interaction and as a stand-alone variable.

B.1 Alternative turnout

For the first alternative turnout measure, I estimated by replicating variable selection

from previous studies. Turnout was estimated using the same data used in chapter

3 - BES wave 12. The estimation procedure was based on a turnout model from

Lauderdale et al. (2020), with variable selection also informed by the meta-analysis

of Stockemer (2017). The model included age, education, region, and constituency

as varying intercept effects, as well as area-level variables of past turnout and past
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seat-winner majority. The second turnout measure was actual 2017 constituency-level

turnout. Using actual turnout meant that estimates did not account for different

turnout among sub-groups. However, this measure provided a check that results were

not a function of a potentially poorly estimated turnout measure.

All turnout measures, including the one used in chapter 3, were imperfect. The

two model-based turnout measures produced similar MRP estimates, but both over

estimated turnout. However, the estimates produced with these turnout measures

were much more accurate than the estimates produced with actual 2017 turnout.

This was a result of the way I estimated vote choice - where Conservative = 1

and all other (including ‘would not vote’) = 0. MRP estimates which used actual

turnout consistently under-predicted vote share across all constituencies. Whereas the

turnout measures derived from the BES data produced estimates that consistently

over predicted turnout, but this worked in favour of constituency vote share estimate

accuracy.

Importantly, although MRP estimates are different with the alternative turnout

measures, the interpretation of the results does not change. The results still showed

more regularisation produced better MRP estimate accuracy, with marginally poorer

correlation. Furthermore, both also showed that λ̂1tsd was consistently among the

models with the highest accuracy. This gives confidence that the results presented in

the chapter were not a product of the lasso turnout measure. In table B.1 and B.2

I show increase/decrease from the baseline for MAE, RMSE, and correlation for all

λ values. The values reported are a percentage of the baseline (λ̂1tsd) value. These

tables are identical to table 3.1 reported in chapter 3.

Table B.1: Comparing lambda solution’s accuracy to baseline

Model Correl MAE RMSE

38 0% 1% 1%
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35 0% 1% 1%

29 0% 1% 1%

27 0% 0% 1%

26 0% 0% -1%

24 0% 1% 1%

23 0% 1% 1%

22 0% 0% 0%

20 0% 1% 1%

19 0% 1% 1%

18 0% 1% 2%

17 0% 3% 3%

16 0% 3% 4%

15 0% 1% 1%

14 0% 3% 3%

Note:

Replication turnout measure

Values are +/- % of the base-

line value

Table B.2: Comparing lambda solution’s accuracy to baseline

Model Correl MAE RMSE

38 0% 2% 2%

35 0% -2% -2%

29 0% -2% -2%

27 0% -1% -1%

26 0% -1% -1%
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24 0% 0% 0%

23 0% 0% 0%

22 0% 0% 0%

20 0% 1% 1%

19 0% 1% 1%

18 0% 1% 1%

17 0% 2% 2%

16 0% 2% 2%

15 0% 1% 1%

14 0% 1% 1%

Note:

Actual turnout measure

Values are +/- % of the base-

line value

B.2 Lasso variables and interactions
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Table B.3: Lasso variables and interactions

Variable 38 35 29 28 27 26 24 23 22 20 19 18 17 16 15 14 13 12

Individual-level
Gender * * * * * * * * * * * * * *
Age - - - - - - + + + + + + + + + + + +
Education - - - - + + + + + + + + + + + * *
Housing - - - - + + + + + + + + + + + + + +
Social grade - - - - - - + + + + + + + + +

Area-level
Region - - - -
hanrettyLeave - - - - - - - - - - - - - - - - - -
Con_2015 - - - - - + + + + + + + + + + + + +
Green_2015 - - - - - + + + + +
Lab_2015 * * * * *
LD_2015 *
Plaid_2015 - - - - -
SNP_2015 *
UKIP_PC_2015 * *
Age_18to24 - - - - - - - - - + + + * * * *
Age_65plus - - - -
Born_Britain *
Born_restOfEurope * * * *
Born_restOfWorld
Demos_nationalID * * *
demos_nonWhiteUk * * * * *
Edu_degree
Edu_noQuals *
Econ_seg_AB
Econ_seg_C1 * *
Econ_seg_C2 * *
Econ_seg_DE * * * * * *
Econ_seg_ABC1 * *
Econ_seg_C2DE * *
Econ_activityRate * * * * * * * * * * *
Econ_employmentRate * * * * * * * * * * * * *
Econ_managers * * * * *
Econ_professionals *
Econ_tech_3
Econ_administrative * * * *
Econ_skilledTrades *
Econ_careLeisure * * * * * *
Econ_routine *
BadHealth
Health_activitiesLimitedALot
Health_activiesLimitedAny
Turnout_2015 * * * *
Pop_density
Edu_students_termTime * * *
Econ_MedianHousePrice

Individual interactions N 0 0 0 0 3 2 3 4 4 6 7 7 7 7 7 7 7 7
Area interactions N 0 0 0 0 0 3 3 2 2 2 2 3 4 7 30 32 38 23

Note:
Model 13 and 12 failed to estimate due to rank deficiency
- = Variable
* = Interaction
+ = Both
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Chapter 4

This appendix provides supplementary materials for chapter 4. In the results for the

simulation study I showed estimate accuracy for marginal small areas, comparing the

‘3:2:1’ and ‘Even’ sample distributions. In C.1 I provide results from the simulation

study comparing the ‘2:1’ and ‘Even’ distributions for the ‘most’ and ‘least’ marginal

small areas.

The chapter included two real-world applications with uneven sample distributions.

I provide model specification for the UK in C.2 and for the US model in C.3. I show

the results from a previous version of the real-world application, where small areas

were evenly divided into halves and thirds in C.4. Finally, in C.5 I present results of

the two real-world applications which use model-based turnout measures rather than

actual turnout used in the chapter.

C.1 Simulation results for 2:1 ratio

In chapter 4 I showed small area accuracy for the simulation study. I reported MAE

and widths for small areas grouped into ‘Most’, ‘Mid’ and ‘Least’ marginal small

areas, for all sample sizes (5, 10, 20 and 30), and small area N (50, 200, 400 and

600). In the chapter, table 4.4 showed results comparing accuracy between ‘Even’ and
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‘3:2:1’ sample distributions. Below, in table C.1 I show the same table but comparing

‘Even’ and ‘2:1’ sample distributions with small areas grouped into ‘Most’ and ‘Least’

marginal small areas.

Table C.1: Simulation small area accuracy (2:1 distribution)

50 Areas 200 Areas 400 Areas 600 Areas
Groups MAE Width MAE Width MAE Width MAE Width
Sample: 30

Most marginal -0.01 -0.02 -0.01 -0.03 -0.01 -0.02 -0.01 -0.02
Least marginal 0.02 0.04 0.01 0.04 0.01 0.04 0.01 0.04

Sample: 20
Most marginal -0.02 -0.05 -0.01 -0.03 -0.01 -0.03 -0.01 -0.04
Least marginal 0.02 0.04 0.01 0.05 0.01 0.04 0.02 0.04

Sample: 10
Most marginal -0.02 -0.05 -0.02 -0.04 -0.02 -0.04 -0.02 -0.04
Least marginal 0.01 0.04 0.02 0.04 0.02 0.04 0.01 0.04

Sample: 5
Most marginal -0.04 -0.07 -0.02 -0.08 -0.03 -0.08 -0.03 -0.08
Least marginal 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.02

Note: Showing MAE and widths for 2:1. Areas grouped into marginal categories
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C.2 UK model specification

Pr(Yi = 1) = logit−1 (βθ + Female · βF emale + aConstit
j[i] +

aAge
k[i] + aEducation

l[i] + aRegion
m[i] + aW eek

p[i] )

aAge
k ∼ N(0, (σAge)2) for k = 1, ..., 8

aEducation
l ∼ N(0, (σEducation)2) for l = 1, ..., 6

aRegion
m ∼ N(0, (σRegion)2) for m = 1, ..., 11

aW eek
p ∼ N(0, (σRegion)2) for p = 1, ..., 4

aConstit
j ∼ N(aRegion

m[j] + βCon2017 · Con2017 + βunem · unem + βdens · dens +

betaind · ind + βleave · leave, (σConstit)2),

for j = 1, ..., 632

(C.1)
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C.3 US Model specification

Pr(Yi = 1) = logit−1 (βθ + Female · βF emale + aState
j[i] + aAge

k[i] + aEducation
l[i] + aRegion

m[i] + aW eek
p[i]

+ aEthnicity
q[i] + aMarital

r[i] )

aAge
k ∼ N(0, (σAge)2) for k = 1, ..., 4

aEducation
l ∼ N(0, (σEducation)2) for l = 1, ..., 4

aRegion
m ∼ N(0, (σRegion)2) for m = 1, ..., 4

aW eek
p ∼ N(0, (σW eek)2) for p = 1, ..., 4

aEthnicity
q ∼ N(0, (σEthnicity)2) for q = 1, ..., 4

aMarital
r ∼ N(0, (σMarital)2) for r = 1, ..., 4

aState
j ∼ N(aRegion

m[j] + βRep2012 · Rep2012, (σState)2),

for j = 1, ..., 51

(C.2)

C.4 External validation - Alternative sample dis-

tribution

In chapter 4 I introduced the weighted ratio, which I argued was an efficient method

to distribute the sample among small areas. It significantly increased sample size in

marginal small areas while nominally decreasing sample size in non-marginal small

areas. By minimising the decrease in sample size for non-marginal small areas, the

accuracy in these small areas was largely unchanged. In a previous version I had

divided small areas according to the procedure from the simulation study. In this

version, the sample size for non-marginal small areas was much smaller, and this
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resulted in decreased accuracy in the least marginal small areas. Because of this, in

the chapter I argued the weighted ratio resulted in improved accuracy in marginal

small areas, while having little effect on least marginal small areas accuracy.

Below I present the previous version results, where small areas were divided into

equal groups of halves or thirds. In figure C.1 and C.2 I show estimates versus actual

results for UK and US, respectively. In table C.2 and C.3 I show UK MAE results

for small areas grouped according to marginal groupings. In C.4 and C.5 I show US

MAE of small areas grouped according to marginal groups.
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Figure C.1: UK Constituency estimates vs. true vote share

Table C.2: UK: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.029 0.067
Mid marginal 0.040 0.088
Most marginal 0.043 0.092

3:2:1
Least marginal 0.047 0.057
Mid marginal 0.030 0.065
Most marginal 0.033 0.068



C.4. External validation - Alternative sample distribution 216

Table C.3: UK: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Most marginal 0.043 0.092
Least marginal 0.031 0.073

2:1
Most marginal 0.033 0.061
Least marginal 0.038 0.053

MAE:3.6%
RMSE:4.4%
Cor:93.7%

MAE:3.3%
RMSE:4%
Cor:93.5%
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Figure C.2: US State estimates vs. true vote share

Table C.4: US: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.035 0.112
Mid marginal 0.042 0.122
Most marginal 0.043 0.131

2:1
Least marginal 0.033 0.107
Mid marginal 0.037 0.114
Most marginal 0.038 0.118
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Table C.5: US: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.037 0.114
Most marginal 0.043 0.129

2:1
Least marginal 0.031 0.102
Most marginal 0.034 0.109

C.5 Model-based turnout results

In chapter 4 the MRP estimates were produced using actual UK constituency or

US state turnout. I chose to use actual turnout because reliably estimating turnout

is notoriously difficult. I argued poor turnout estimates risked blurring the correct

interpretation of the results. However, it could be argued that using actual turnout,

and not accounting for differential turnout among sub-groups, faces the same risk.

To check chapter 4 results were not a function of using real turnout, I also produced

estimates which used model-based turnout measures. These turnout measures, al-

though somewhat unsatisfactory, allow the MRP estimates to better account for

differential turnout among sub-groups. Importantly, when using the model-based

turnout measures, both results and interpretation do not significantly differ. Below, I

describe the methods followed to estimate turnout for the UK and US. In figure C.3,

table C.6 and C.7 I show UK results with the model-based turnout. In figure C.4,

table C.8 and C.9 I show US results with model-based turnout.

UK: To estimate turnout for the UK election I used the 2015 and 2017 BES

validated vote data. The face-to-face survey collects recalled turnout and validates

against the UK voter register. I broadly follow the procedure discussed in appendix B,

which is primarily based on the method set out in Lauderdale et al. (2020). I estimated

a multilevel logistic model, where Turnout = 1. I included region, age, and education

as varying intercept terms. Gender, 2017 constituency turnout and 2017 constituency
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majority were included as fixed effect terms. I draw 500 samples from the posterior

and calculate the median turnout for each poststratification frame row. I subsequently

apply turnout to vote choice estimates at each row of the poststratification frame.
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Figure C.3: UK Constituency estimates vs. true vote share

Table C.6: UK: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.036 0.079
Mid marginal 0.040 0.090
Most marginal 0.043 0.090

3:2:1
Least marginal 0.038 0.055
Mid marginal 0.035 0.059
Most marginal 0.036 0.059

US: To estimate turnout for the US election I used the 2012 CPS data, a large N

survey which captures voter turnout immediately proceeding an election. I broadly

follow Lauderdale et al. (2020) for variable selection, although the estimation strategy

differs. I estimated a multilevel logistic model, where Turnout = 1. I used state,

age education, ethnicity, marital status as varying intercept terms, with gender, 2012
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Table C.7: UK: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.036 0.079
Most marginal 0.042 0.090

2:1
Least marginal 0.037 0.055
Most marginal 0.035 0.060

state-level turnout and 2012 state-level majority as fixed effect terms. I draw 500

samples from the posterior and calculate the median turnout for each row of the

poststratification frame. However, because the CPS survey has relatively large rates of

turnout over-reporting, I employ an adjustment method somewhat similar to that used

by Ghitza and Gelman (2013). To calculate the adjustment factor, I divided actual

state-level turnout by the unweighted state-level turnout estimate. The state-level

adjustment factor was subsequently applied to turnout for each poststratification row.

The adjustment was necessary because the unweighted estimates was consistently high.

The weighting procedure reduced bias introduced from CPS turnout over-reporting,

while maintaining the relative turnout levels between subgroups.
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Figure C.4: US State estimates vs. true vote share

Table C.8: US: Even and 3:2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.039 0.117
Mid marginal 0.043 0.133
Most marginal 0.040 0.130

2:1
Least marginal 0.035 0.110
Mid marginal 0.036 0.122
Most marginal 0.031 0.122

Table C.9: US: Even and 2:1 accuracy comparison

Groups MAE Width
Even

Least marginal 0.039 0.117
Most marginal 0.042 0.132

2:1
Least marginal 0.034 0.104
Most marginal 0.032 0.112
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Chapter 5

In chapter 5, I provided model specification for both the standard and alternative

MRP format. In the chapter I used the UK case to explain model specification. In D.1

I provide the full US standard MRP model, and in D.2 I provide the US alternative

MRP specification.

In the results of the chapter, I showed variance in estimate widths for the UK 2019

and US 2016 models. In D.3 I show results for the UK 2017 and US 2012 models.

Finally, in D.4 I provide results for the standard MRP specification with a model-based

turnout measure rather than actual turnout used in the chapter.
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D.1 US model specification (Standard)

Pr(Yi = 1) = logit−1 (βθ + Female · βF emale + aArea
j[i] + aAge

k[i] +

aEducation
l[i] + aRegion

m[i] + aW eek
p[i] + aEthnicity

q[i] + aMarital
r[i] ), for i = 1, ..., n.

aAge
k ∼ N(0, (σAge)2) for k = 1, ..., 4

aEducation
l ∼ N(0, (σEducation)2) for l = 1, ..., 4

aRegion
m ∼ N(0, (σRegion)2) for m = 1, ..., 4

aW eek
p ∼ N(0, (σW eek)2) for p = 1, ..., 4

aEthnicity
q ∼ N(0, (σEthnicity)2) for q = 1, ..., 4

aMarital
r ∼ N(0, (σMarital)2) for r = 1, ..., 4

aArea
j ∼ N(aRegion

m[j] + βP ast−Dem · Past − Dem, (σArea)2),

for j = 1, ..., 51

(D.1)

D.2 US model specification (Alternative)

Pr(Yi = 1) = logit−1(βθ + aArea
j[i] + βF emale · Female + βAge · XAge +

βEducation · XEducation + βRegion · XRegion +

βEthnicity · XEthnicity + βMarital · XMarital,

for i = 1, ..., n.

aArea
j ∼ N(aRegion

m[j] + βP ast−Dem · Past − Dem, (σArea)2),

for j = 1, ..., 51

(D.2)
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D.3 Estimate precision
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Figure D.2: US (2012) average widths

D.4 Model-based turnout results

In chapter 5 I used real turnout to produce estimates for both UK and US elections.

As discussed in the chapter, this meant that the results did not take into account

deferential turnout among subgroups. In order to demonstrate that using actual

turnout did not affect the results nor the interpretation of the results, I produced

estimates for the same elections, but use a model-based turnout measure. Below,

I describe the methods used to estimate the model-based turnout measures, and

subsequently show UK and US results with the alternative turnout measure.

For the UK, I used the same 2017 turnout measure estimated for chapter 4 and

described in appendix C.5. For the 2019 election, I followed an identical estimation

procedure to that used to estimate 2017. I used the 2015 and 2017 BES validated
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vote surveys, and estimated a multilevel logistic model, where Turnout = 1, and did

not vote = 0. I include varying intercept terms for age, education, and region, while

2017 turnout and 2017 winning party majority are included as area-level variables.

The model estimates were poststratified to each row of the poststratification frame,

taking the median of 500 posterior draws.

For the US, I estimated turnout for both the 2012 and 2016 elections, replicating

the method used and explained in C.5. I use the CPS survey (2012 and 2016), model

turnout with a Bayesian multilevel logistic regression model with age, education, state,

ethnicity, marital status as varying intercept terms. Gender, past state turnout and

past state-level majority are all included as β terms. I adjust the turnout estimates

according to known state-level turnout, the same procedure explained in C.5. Finally,

I poststratify the estimates to each row of the poststratification frame, taking the

median of 500 posterior draws. Turnout is applied to vote choice estimates at each

row of the poststratification frame. Overall, each measure over-estimated turnout,

and produced estimates equal or worse than those presented in the chapter. However,

unlike the turnout used in the chapter, the measures were able to capture differential

turnout among sub-groups. Importantly, the interpretation of the results do not

change when the model-based turnout measure is used. Below I show results identical

to tables 5.4 and 5.5 presented in chapter 5. The tables show the increase or decrease

in MAE from the baseline for all sample sizes and for all elections.
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Table D.1: Standard MRP accuracy (UK)

Sample
Model 5 10 20 30
2017

Lambda = 1 -0.2% 0.1% 0% -0.1%
Lambda = 1.5 -0.2% 0.1% 0% -0.1%
Lambda = 2 -0.2% 0.1% 0% 0%

2019
Lambda = 1 -0.6% 0% 0% 0%
Lambda = 1.5 -0.6% -0.1% -0.1% 0%
Lambda = 2 -0.6% -0.1% 0% 0%

Note: showing inf. prior MAE as +/- from baseline.

Table D.2: Standard MRP accuracy (US)

Sample
Model 5 10 20 30
2012

Lambda = 1 -1.3% 0.4% 0.2% 0.2%
Lambda = 1.5 -1.2% 0.2% 0.1% 0.1%
Lambda = 2 -1.3% 0.1% 0% 0.1%

2016
Lambda = 1 -0.9% -0.3% -0.3% -0.1%
Lambda = 1.5 -0.8% -0.3% -0.2% -0.1%
Lambda = 2 -0.7% -0.3% -0.1% 0%

Note: showing inf. prior MAE as +/- from baseline.
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