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Abstract—The filtering paradigm is revisited through the
perspective of characteristic functions. This results in the
derivation of a novel particle filtering technique for sequential
estimation/tracking of quaternion-valued ↵-stable random
signals. Importantly, the derived particle filter incorporates an
efficient information fusion format and collaborative/distributed
estimation framework to accommodate the push toward use
of sensor networks. The distributed setting provides for the
distribution of computational complexity among agents of a
sensor network, while allowing each agent to retain an estimate
of the state. Furthermore, the quaternion-valued structure
allows for the derivation of a rigorous algorithm that is
advantageous when dealing with signals of a multidimensional
nature commonly encountered in sensor arrays.

Index Terms—↵-stable random signals, quaternion-valued
signal processing, particle filtering, distributed estimation.

I. INTRODUCTION

Recent observations in an increasing number of
applications [1]–[5] have come to indicate that the underlying
signal and/or noise exhibits sharp spikes resulting in
distributions that do not decay as fast as the Gaussian
case [1]–[3]. In these applications, outliers are not mistakes,
but an integral part of the signal. In these settings, the
“↵-stable” class of distributions has proven to be a useful
tool in modelling the behaviour of signals, mainly due
to the fact that they admit the generalized central limit
theorem [1]–[3,5]. However, a closed-form expression for
the probability distribution function (pdf) of the generality of
↵-stable random processes does not exist, making deriving
signal processing techniques cumbersome.

For the case of real-valued ↵-stable random variables
with elliptically contoured distributions, it is shown that the
characteristic function (CF) will take the form [1]
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where ⌘2 = �1, E {·}, is the statistical expectation, and
�Z(·) denotes the CF of real-valued random variable Z, with
the semi-positive definite matrix Cz determining the elliptical
distribution of Z and referred to as the covariation matrix,
while 0 < ↵  2 is referred to as the characteristic exponent.
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In recent years, the introduction of the HR-calculus [13]
and the augmented quaternion statistics [14]–[16], have
kindled a great deal of interest in quaternion-valued signal
processing as quaternions provide a natural representation for
three-dimensional signals encountered in many applications
including, smart grid [17], target tracking [18], machine
intelligence [19], and attitude estimation [20]. The use of
quaternion algebra has particularly proven advantageous, when
dealing with multidimensional signals encountered in sensor
arrays [17]–[19,23,24]. However, these works rely on second-
order statistics and are not generalizable for quaternion-valued
↵-stable random signals.

This work focuses on deriving a truly distributed quaternion-
valued particle filter for sequential tracking of quaternion-
valued ↵-stable signals that include Gaussian signals as a
particular case. This is achieved through exploiting the one-
to-one relation between a distribution and its CF, where it is
shown that the operations of a quaternion-valued particle filter
can be approximated in a distributed fashion. Furthermore,
the distributed format accommodates use of the derived filter
in modern sensor networks, while the quaternion setting
accommodates for the rigorous modelling of multidimensional
signals from sensor arrays.
Mathematical notations: Scalars, column vectors, and
matrices are denoted by lowercase, bold lowercase, and bold
uppercase letters respectively, while uppercase bold italic
letters denote multivariate random processes, with uppercase
italic letters denoting univariate random processes. The
transpose and Hermitian transpose operators are denoted by
(·)T and (·)H, whereas E {·} denotes the statistical expectation
operator. The pdf of the random process X is denoted by PX(·)
and ln(·) denotes the natural logarithm. Finally, the real and
quaternion domains are denoted by R and H.

II. PRELIMINARIES

The skew-field of quaternions is a four-dimensional, non-
commutative, associative, division algebra. A quaternion
variable q 2 H consists of a real part, <{q}, and a three-
dimensional imaginary part ={q}, comprised of the three
imaginary components, =i{q}, =j{q}, and =k{q}. Hence, q



can be expressed as

q =<{q}+ ={q} = <{q}+ =i{q}+ =j{q}+ =k{q}
=qr + iqi + jqj + kqk

where qr, qi, qj , qk 2 R, while i, j, and k are imaginary units
obeying the following product rules

ij = k, jk = i, ki = j, i2 = j2 = k2 = ijk = �1

whereas the conjugate and norm of q 2 H are respectively
given by q⇤ = <{q} � ={q} and |q| =

p
qq⇤. A quaternion

q 2 H can alternatively be expressed in its polar presentation,
given by [21]

q = |q|e⇠✓ = |q|
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�
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The involution of q 2 H around  2 H is defined as q =
q�1 [22] and can be seen as the quaternion counterpart of
the complex conjugate, as the four real-valued components of a
quaternion variable, q 2 H, can be expressed using involutions
as [13]- [18]
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�
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The quaternion involution has seen extensive use in
modelling three-dimensional rotations. In this setting, the
Cartesian coordinates ⇢ = (x, y, z) are modelled as the
quaternion q⇢ = ix+ jy+ ky; then, the rotation of q⇢ around
the unit vector ⌘ by the angle ' is expressed in terms of
quaternion involutions by q⇢0 = e⌘'/2q⇢e�⌘'/2, where q⇢0

denotes the post-rotation coordinates [20]. Advantageously,
quaternions do not suffer form gimbal lock [20].
Remark 1: The expressions in (2) establish a relation between
the augmented quaternion vector, qa = [q, qi, qj , qk]T 2 H

4

and the real-valued vector [qr, qi, qj , qk]T 2 R
4. This duality

forms the basis of the HR-calculus [13] and the augmented
quaternion statistics [14]- [16].

Consider the quaternion-valued random variable Q, the joint
statistical information of its real-valued components are fully
described by their joint CF given by
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where following the same approach as the HR-calculus
and through exploiting the relation between H and R, the
characteristic function in (3) can be expressed directly in the
quaternion domain as
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with s = sr + isi + jsj + ksk. Note that in (4) the quaternion
random vector must be used in its augmented form and
therefore the expression in (4) is referred to as the augmented
quaternion characteristic function (AQCF).

The random vector Qµ with mean vector µ can be
decomposed into Qµ = Q+µ where Q is a zero-mean random
vector; therefore, given the definition in (4), the AQCF of Qµ

can be expressed as
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A quaternion-valued random vector is referred to as ↵-stable
if its real-valued components are jointly ↵-stable and has the
following important properties:

1) For an elliptically contoured zero-mean quaternion-
valued ↵-stable random variable with 1 < ↵  2, given
the expression (1) and the duality between H and R

established in (2), the AQCF takes the form
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where Cqa , referred to as the augmented covariation
matrix, determines the elliptical shape of the distribution,
and is the augmented covariance matrix if ↵ = 2.

2) Consider a real-valued univariate random variable, Z
with �Z(#) = e�|#|↵/2

and a quaternion-valued
Gaussian random vector G with covariance matrix Cga

that is independent of Z; then, the quaternion-valued
random vector Q =

p
ZG is an ↵-stable random variable

with covariation matrix Cga .1

The proofs of these characteristics have been omitted for
brevity, as they closely follow those of the real-valued vector
cases that are presented in [1].
Remark 2: Hereafter, the focus of this work is on elliptically
distributed ↵-stable signals with 1 < ↵  2, where first-
order moments are finite, allowing to build a framework for
establishing conditional statistical expectations and statistical
inference.

III. THE QUATERNION DISTRIBUTED PARTICLE FILTER

Consider the evolution of the quaternion-valued augmented
state vector sequence {xa

n
, n = 0, 1, 2, . . .}, given by

xa

n
= fn

�
xa

n�1,⌫
a

n

�

where fn(·, ·) is the state evolution function at time instant
n and {⌫a

n
, n = 0, 1, 2, . . .} is the augmented state evolution

noise sequence. The objective is to track xa

n
in real-time from

the observations made by a set of sensors, denoted by N , that
are interconnected in a network. These observations are given
by

ya

l,n
= hl,n (xa

n
) + !a

l,n

where ya

l,n
and hl,n(·) are respectively the augmented

observation vector and observation function at time instant

1For details on generating samples of a real-valued random variable with
�Z(#) = e�|#|↵/2

the keen reader is referred to [1].



n at sensor l, while {!a

l,n
, n = 0, 1, 2, . . .} is the augmented

measurement noise sequence at sensor l.
The observation sequence from all the sensors in

the network that can be expressed as ya

col,1:n =
{ya

col,1, . . . ,y
a

col,n
} where
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and |N | is number of nodes in the network. Taking the
conventional particle filtering approach [9], [25]- [26], the
AQCF of xa

0:n = {xa

0 , . . . ,x
a

n
} conditional on the observation

sequence ya

col,1:n can now be expressed as

�Xa
0:n|Ya

col,1:n
(sa) =

Z

DXa
0:n

e
⌘
4 s

aHxa
0:nPXa

0:n
(xa

0:n|ya

1:n)dx
a

0:n

⇡ 1
P

M

m=1 w
{m}
n

MX

m=1

w{m}
n

e
⌘
4 s

aHxa{m}
0:n

where PXa
0:n

(xa

0:n|ya

col,1:n) denotes the probability of the
augmented state sequence xa

0:n given the augmented
observation sequence ya

col,1:n, whereas DXa
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domain of X0:n, while xa
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particles drawn from the distribution of X0:n, or its importance
function P(xa
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Now, assuming that the current state is independent of future
observations and that the importance function is selected to be
factorisable so that
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allows the weights to be updated in a sequential manner as
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where the probability function PXa

n+1|Xa
n
(xa

n+1|xa

n
) is

determined by the state evolution function.
In order to construct a likelihood distribution we consider

the averaged observation, i.e. diffused observation, given by
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where �n represents the covariation matrix of  
n

.
Making the assumption that the observational noise of one

node is independent from that of other nodes in the network
and replacing (7) into (8) yields
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where after some mathematical manipulations we have

� Ya
l,n
|N|

����Xa
n

(sa) =�Ya
l,n|Xa

n

✓
1

|N |s
a

◆

=e
⌘

4|N| s
aHya

l,ne
�( 1

32|N|2 saHC!a
l,n

sa)
↵
2

.

(10)

Moreover, replacing (10) into (9) gives
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therefore, equating the expressions in (11) and (8) allows the
covariation matrix �n to be calculated through the widely-
linear quaternion-valued regression
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Assuming that the network is connected, that is, there exists
a path between any two nodes in the network, allows each node
to calculate �Ya

col,n|Xa
n
(sa) in the formulation given in (11)

through the diffusion of observations ya

l,n
and the quaternion-

valued regression in (12). This, in turn, permits each node
to reconstruct the likelihood distribution at each node due
to the one-to-one relation between the pdf and the AQCF.
Furthermore, approximating the distribution of Xa

0:n to that of
an elliptically countered one2 allows the distribution of Xa

0:n

to be fully obtained at each node through the diffusion of the
local mean estimates given by

µ
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and local covariation matrix estimates calculable from the
widely-linear regression
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Thus, the operations of the particle filter can be performed in
a distributed fashion as summarized in Algorithm 1, where Ni

denotes the set of nodes in the neighbourhood of node i, that
is the set of nodes that can communicate with node i including
self-communication.

2This is equivalent to stating that the state evolution function at each time
instant can be approximated with the quaternion-valued widely-linear function
xa
n = Aa

nx
a
n�1 + Ba

n⌫
a
n�1 where Aa

n and Ba
n are the Jacobian matrices

of fn(·, ·) with regards to xa
n�1 and ⌫a

n�1.



Algorithm 1. Quaternion Distributed Particle Filter (QDPF)
For node l = {1, · · · , |N |}:
Initialize:
Draw samples xa

{m}

0 and assign weights w{m}
0 using P(xa

0).
At each time instant:

1) Sample from the importance density
P(xa

0:n�1|ya

col,1:n�1) and assign weights through
(5).

2) Track samples through the state evaluation function
using the distribution PXa

n|Xa
n�1

(xa
n
|xa

n�1).
3) Share ya

l,n
and C!a

l,n
with neighbouring nodes.

4) Approximate �Ya
col,n|Xa

0:n
(sa) through (11)-(12) where

|N | is replaced with |Ni|.
5) Reassign weights through (6) using �Ya

col,n|Xa
0:n

(sa) to
reconstruct the likelihood function.

6) Share µ
l,n

and Cl,n with neighbouring nodes.
7) Approximate the distribution of Xa

0:n with that of an
elliptically contoured ↵-stable distribution with mean
and covariation matrix

µ
n
=

1

|Ni|
X

8l2Ni

µ
l,n

and Cxa
0:n

=
1

|Ni|
X

8l2Ni

Cl,n.

8) Draw particles from a quaternion-valued elliptically
contoured ↵-stable distribution with mean µ

n
and

covariation matrix Cxa
0:n

to be propagated to the next
stage.

IV. NUMERICAL EXAMPLE

One of the most important applications of quaternion
algebra is to track three dimensional rotations using data
from multiple redundant gyroscopes measuring the three Euler
angles ✓, �, and �, that respectively represent roll, pitch,
and yaw of the rotating body and are within the range
[�⇡,⇡]. The total rotation of the body (e.g., aircraft) is now
fully characterized by the quaternion � = ln

�
ei✓ej�ek�

�

where �/|�| gives the rotation axis and |�| gives the rotation
angle [28].

In order to track three-dimensional rotations in real-time,
the state vector xn = [�n, �̇n]T with the state space model

xn =


1 �T
0 1

�
xn�1 +


1
2 (�T )2

�T

�
⌫n

yl,n =
⇥
0 1

⇤
xn + !l,n

was used, where �̇n indicates the first-order rate of change
of �n at time instant n, with its second-order rate of change
modeled as the state evolution noise ⌫n, whereas �T denotes
the sampling interval. The observational noise was considered
to be a quaternion-valued 1.93-stable random process to best
reflect the observational noise of laser gyroscopes [29] and the
state evolution noise was selected to be a quaternion-valued
1.98-stable random process in order to to be able to account
for sharp terns with higher rates of angular change than can
be modelled using Gaussian random processes. In addition,
for simulations the sampling interval was �T = 0.04 s.

The sensor network shown in Fig. 1 was used to track
synthetically generated three-dimensional rotations through
implementing the developed quaternion distributed particle
filter (QDPF). The estimates of the rotation parameters are
shown in Fig. 2. Observe that all the sensors in the network
accurately tracked the three-dimensional rotations.

Fig. 1. The sensor network used in simulations.
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Fig. 2. The real-valued components of the quaternion rotation parameter �n.
Estimates obtained at different nodes of the sensor network lie within the red
region.

V. CONCLUSION

The dilemma of tracking multidimensional non-Gaussian
signals was visited. Stemming from the natural ability of
quaternion division algebra for modelling multidimensional
signals and the capacity of ↵-stable distributions to
characterise the behaviour of non-Gaussian phenomena, a
quaternion-valued particle filter was derived based on the
characteristic functions of ↵-stable random signals with
elliptically contoured distributions. In addition, the framework
was derived to be suitable for collaborative estimation tasks
over sensor networks. The performance of the derived particle
filter was demonstrated in a numerical example.
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