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Abstract

We propose a methodology to use functional factors in empirical asset pricing
models. We establish conditions under which it is possible to recover linear beta
pricing. The proposed estimation approach allows us to use high dimensional func-
tional curves, such as the term structure of interest rates or the implied volatility
smile, as factors. This framework enables the estimation of functional factor load-
ings as well as risk premium parameters of factor models. We derive estimation
algorithms and establish the asymptotic consistency and normality of the param-
eter estimates. In an empirical application, we show that the implied variance
smile of the S&P500 is a potential pricing factor for momentum sorted portfolios.
In particular, a positive risk premium is earned by the convexity of the implied
variance curve.

Key Words: bootstrap, functional data analysis, functional risk premium,
implied volatility curve.

JEL Codes: G12, C13
∗We are greatly indebted to the Editor Fabio Trojani, the Associate Editor and the Referee for

comments that have led to substantial improvements both in content and presentation. We also
thank Rodrigo Dupleich, Andreas Kaeck, Alex Kurov, Steve Satchell, and the seminar participants at
Nottingham Business School as well as the University of Sussex Young Finance Scholar Conference for
helpful comments on earlier drafts of the paper.

†Department of Computing, Imperial College London, London SW7 2AZ, UK; email:
p.nadler@imperial.ac.uk.

‡Department of Economics, Royal Holloway University of London, Egham TW20 0EX, UK; email:
asancetta@gmail.com.

1



1 Introduction

This paper studies empirical asset pricing models in which risky assets load on func-
tional factors. Typical examples are the term structure of interest rates and the option
volatility smile. Formally, a functional factor takes values in a normed space, possibly
infinite dimensional. Here we focus on Hilbert valued functional factors. An early ex-
ample of the regularity of these factors and the associated loadings is Cochrane and
Piazzesi (2005). Using a vector of term structure yields at different tenors, they find
that the associated loadings have a remarkably regular structure. Many economic vari-
ables of interest exhibit a functional form. A functional framework has the benefits
of enhancing statistical efficiency for parameter estimation by viewing estimation in
terms of one functional parameter instead of multiple scalar parameters. For the sake
of definiteness, let us recall the definition of pricing factor when the factor is a vector.
To this end, let Rt be a K × 1 vector of returns on risky assets at time t. The L × 1

vector Ft is a pricing factor for the K risky assets if there is a constant α and an L× 1

vector λ such that
ERt = 1Kα + βλ

where β = Cov (Rt, Ft)V ar (Ft)
−1 and 1K is the K×1 vector with entries equal to one.

Throughout, the symbol ′ stands for transpose, V ar (Ft) is the variance of the vector
Ft, an L× L dimensional matrix, and Cov (Rt, Ft) is the covariance of the arguments,
a K×L matrix (Munk, 2013, Definition 10.1). For an economy with a risk free interest
rate and one pricing factor Ft equal to the market return, we recover the Capital Asset
Pricing Model (CAPM). In this case, α is the risk free interest rate and β is the vector
of market betas. We extend this definition to functional factors and give conditions
for its validity. In particular, let Ft := {Ft (s) : s ∈ [0, 1]} be an L × 1 vector valued
continuous function. We give conditions for Ft to be a functional pricing factor for the
K risky assets in terms of the following pricing equation

ERt = 1Kα +

ˆ 1

0

β (s)λ (s) ds. (1)

Here, α is a constant, β is a K × L matrix valued function of loadings and λ is an
L-dimensional column vector of functional risk premia. The exact meaning of (1) is
given in Definition 1, in Section 2. When Ft (s) is constant for each s we are back to the
usual framework of pricing factors. For L = 1, if Ft is a term structure pricing factor
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based on yields at different maturities, then we can regard Ft as a function of the tenor
standardised to be in [0, 1]. In our empirical application, we consider the case L = 2,
where Ft is the return on the market portfolio together with the unpredictable part of
the 3-month options implied volatility smile on the S&P500.

The goal of the paper is to extend empirical asset pricing to functional factors. We
show the restrictions that need to be satisfied by α and β in (1) in order to guarantee
that Ft is a pricing factor. Assuming that all quantities are Hilbert space valued, we
provide representations that can be used to decompose risk into factor scores. In prac-
tice, to recover the factor scores that are priced, we use standard principal components.
This paper shows that the econometric procedure is valid under weak conditions.

To our knowledge, this is the first study concerned with this important aspect of
asset pricing. The availability of large datasets has led to considerable proliferation of
empirical asset pricing models via the so called factor zoo (Cochrane, 2011). However,
with the exception of a few studies (e.g. Cochrane and Piazzesi, 2005, Ait-Sahalia et
al., 2018, Della Corte et al., 2021, and references therein), the information coming from
functional factors such as term structures has not been exploited.

1.1 Functional Factors and Principal Components

Here we use the standard term structure of interest rates to showcase the importance of
functional factors. Consider the yield on a zero coupon government bond with maturity
(tenor) j months from now. For example, we may observe yields at 3 months up to 30
years. In this case, suppose that we use the linear transformation s (j) = (j − 3)/360

where j is the tenor. In our context the yield on a 12 months zero coupon bond
is written as Ft (s (12)) (j = 12). Assuming that we observe yields on zero coupon
bonds for every month, {Ft (s (j)) : j = 3, 4, 5, ..., 360} is a vector of dimension 357. It
is customary to use principal components and only extract the first three factor scores
to be used as pricing factors. The first three factor scores are usually interpretable
as level, slope and curvature. The possible problem with this procedure is that a
consistent estimator of the covariance matrix is required in order to compute principal
components in a consistent way (Johnstone and Lu, 2009). With no further restrictions,
consistency of a 357 × 357 dimensional covariance matrix requires sample sizes that
are prohibitively large. However, in a functional data framework the estimation of
large covariance matrices becomes a standard procedure. Essentially, this is the case if´ 1

0
EF 2

t (s) ds < ∞, switching from summations to integrals when we assume that we
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can observe yields at a continuous number of expiry dates. From a mathematical point
of view the switch to continuous s ∈ [0, 1] removes the dependency on the dimension.
Hence, the functional factor framework allows us to justify commonly used approaches
in empirical asset pricing when the data are high dimensional, but with some structure.
This is not just a statistical problem as it has theoretical implications for pricing and
the validity of (1). In this respect, we provide the theoretical details for pricing in this
general framework (Section 2).

Within the functional pricing framework, interest does not only exclusively lie in
estimating factor scores. We may want to know if there is a specific portion of the yield
curve with higher loading relative to another. Similarly, we may want to know what
portion of the yield curve produces a higher risk premium. These questions can be
answered within the framework of this paper considering functional loadings and risk
premia.

In summary the functional data framework allows us to cover problems where factors
can be represented as curves (possibly partially observed) in a unified a consistent way
irrespective of the number of points at which the curve is observed.

1.2 Outline of the Paper

The rest of the paper is structured as follows. Section 2 introduces the definition of
pricing functional factor and the conditions that need to be satisfied in this context
(Definition 1 and Lemmas 1 and 2). Section 2.6 introduces the estimation algorithms.
Consistency and asymptotic normality of the estimators can be found in Section 2.7.
Section 3 discusses the application to the implied variance curve. In particular, we show
that the curvature of implied volatility helps in explaining the risk premium earned by
momentum strategies. Section 4 concludes. The proof of all the results including
additional details concerning the empirical analysis can be found in the Supplementary
Material to this paper (Sections A.1 and A.3). There we also include a simulation study
to assess the finite sample performance of the estimators under realistic simulation
designs (Section A.4).
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2 Functional Pricing Factors

2.1 Scope and Limitations

Functional data has found numerous application in econometrics (inter alia, Ramsay
and Ramsey, 2002, Kargin and Onatski, 2008, Müller et al., 2011, Kokoszka et al., 2015,
Sancetta, 2015, 2019). The statistics literature is vast (Wang et al., 2016, for an article
review and Bosq, 2000, Horváth and Kokoszka, 2012, and Ferraty and Vieu, 2016, for
monograph treatments).

We briefly elaborate on some details within the context of the paper. To simplify
the discussion, suppose that the factor Ft (s) is real valued (i.e. L = 1), mean zero,
and continuous in s ∈ [0, 1]. We wish to represent this in terms of a few factor scores,
as we would in the case of vector valued factors, using principal components. Even
if Ft is a function, hence infinite dimensional, we can find good approximations using
only a few factor scores if the covariance function CFF (s, v) := EFt (s)Ft (v), s, v ∈
[0, 1], is the kernel of a compact operator. This is the case if E

´ 1

0
F 2
t (s) ds < ∞.

For simplicity we shall use the same symbol for the operator and its kernel. By the
Karhunen-Loeve expansion, we have that Ft (s) =

∑∞
i=1

√
ρiξt,iΦi (s) where (ρi)i≥1 and

(Φi)i≥1 are eigenvalues and eigenfunctions of the CFF , and equality is under the uniform
norm if CFF is continuous. The condition that E

´ 1

0
F 2
t (s) ds < ∞ not only means

that CFF is compact, but also that (ρi)i≥1 is summable. Then, we cannot invert CFF

because its eigenvalues converge to zero. However, we can construct factor scores St,i =´ 1

0
Ft (s) Φi (s) ds =

√
ρiξt,i, i = 1, 2, ..., I for some finite I. As long as the I th largest

eigenvalue ρI is strictly greater than zero, the covariance matrix of the first I factor
scores is invertible. If the eigenvalues decay fast, we can expect good approximations
for small I.

For clarity and to put the discussion into context, we provide high level details on
what type of problems we cover within this framework. The paper presents conditions
for pricing using functional factors. In this respect, the context is the one of possibly
large number K of risky assets but a finite number of L functional factors. While the
number L of functional factor is finite, we allow it to be greater than one. This is
important in order to provide a general treatment. For example, we can have standard
real valued factors like the market returns and functional factors as pricing factors. In
this case, we can think of L = 2 and the the real valued factor to be a constant function
of its argument s ∈ [0, 1]. Finally, the use of functional pricing factors requires some
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care because of the infinite dimensionality of the pricing factors. The details will be
provided in Definition 1 and Lemmas 1 and 2.

Most of the quantities used in empirical asset pricing need to be estimated. This
paper provides the justification for doing so within the standard principal components
approach. The econometric results of this paper include the case when the dimension
K of assets is large. Mathematically, this is addressed by letting K → ∞. We do
this in a way that does not depend on the sample size. This is important because the
number of assets to price can be large and we should not be restricted by the sample
size. We do place additional restrictions on the number of priced factor scores in order
to use standard estimation methods. For the moment, suppose again that L = 1.
Then, we suppose that only a finite number I of factor scores is priced in order to
provide consistency and asymptotic normality of the estimators. Given that Rt is K
dimensional, it is clear that (1) is trivially satisfied for I large enough if K is a fixed
finite number. This is no different from the case where we have L uncorrelated scalar
factors and we let L→∞. For this reason, we confine attention to finite and bounded
I. To put the restriction into perspective, in the case of the term structure of interest
rate, the first three factor scores are customary used. These can be interpreted as level,
slope and curvature. In our empirical application, we consider the implied volatility
curve and only work with the first three factor scores. These explain 99% of variability.
Hence, the scope is the one of a few functional factors pricing a large number of risky
assets. Within these functional factors, only the risk from a small number of factor
scores is priced. We also note that I can be small but unknown. In this case, the
usual methods for selecting the number of principal components apply (e.g. Gavish
and Donoho, 2014, and references therein). One of our theoretical results (Theorem 2)
also suggests that we can directly test for the number of non-priced factor loadings.

Finally, we work with densely observed data. In consequence, we use the standard
empirical covariance function estimator, which is consistent under the conditions we
shall use. Hence, mutatis mutandis, the assumption of densely observed data is similar
to the one of Kargin and Onatski (2008) and Kokoszka et al. (2015, 2018), among oth-
ers. Kargin and Onatski (2008) consider a functional autoregressive problem to predict
curves, for example the yield curve using the past observed one. They do not con-
strain their results to a finite number of factors, hence they need to use regularization.
Kokoszka et al. (2015) recasts the usual factor model into a functional factor model to
estimate the constant factor beta using multiple intraday frequencies and an intercept
that is allowed to vary with the time frequency. Kokoszka et al. (2018) considers the
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sorted cross-section of stock returns on a monthly basis and recast such returns into a
functional variable, where the index is the fraction of sorted assets. The estimation in
the latter two references does not require any regularization due to the problem struc-
ture. More complex estimators exist for sparsely and irregular observed data, but we
do not need the extra complication here (e.g. Sancetta, 2015, and references therein).

Within the functional data framework, we derive algorithms for the estimation of
functional loadings, risk prices based on linear functional discount factors, and func-
tional risk premia. The algorithms are based on the extension of asset pricing to
functional factors. Our econometric results ensure consistency in this setup as well
asymptotic normality of the estimators. In particular, the estimators for the functional
factors and factor scores are asymptotically Gaussian. However, due to the initial esti-
mation of factor scores, we induce error in variables in the subsequent estimation steps.
The covariance of the estimators depend on the covariance of the estimated eigenfunc-
tions. These have a rather complex structure (Bosq, 2000, Ch.4). Hence, we make
no attempt to provide the functional form of the covariance of our estimators in the
statement of the results. Instead, having shown asymptotic normality, we can rely on
the bootstrap to carry out inference.

There is a rich literature on estimation functional regression with scalar response
(Horváth and Kokoszka, 2012, Ch.8.4 for references). Our approach corresponds to the
standard one where only a few factors scores are assumed to be loaded. This is usually
referred to functional principal component regression (Horváth and Kokoszka, 2012, eq.
8.19). More general approaches do not make such assumption and essentially belong
to the general family of linear inverse problems (Carrasco et al., 2007 for a treatment
of such problems in econometrics, Horváth and Kokoszka, 2012, for the applications to
functional regression problems). Once extended to the multivariate case (L > 1), these
results would be of interest if an infinite number of factor scores were priced. However,
for many pricing applications, the number I of priced factor scores would be small.
Hence, we focus on the validity of procedures that are more commonly employed by
practitioners but justified using functional data analysis.

2.2 Notation

We shall define pricing factors and a linear stochastic discount factor in a functional data
context. Given that we need to use functional factors, we provide additional notation to
guide the reader through some of the more theoretical results of the following sections.
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The reader can skim through the following and use it as reference when reading the
statement of the results.

We let |·|F be the Frobenius norm: |x|2F = Trace (x′x) for any matrix x ∈ Ru×v .
If v = 1, this is the Euclidean norm that we denote by |·|2. Let Hu = Hu ([0, 1]) be
the separable Hilbert space of u× 1 dimensional vector valued functions on [0, 1] with
inner product 〈x, y〉Hu =

´ 1

0
x (s)′ y (s) ds, x, y ∈ Hu. The norm |·|Hu is the one induced

by the inner product. If u = 1, we just write H = H1. Let F (l)
t ∈ H denotes the lth

entry in the L × 1 functional factor Ft ∈ HL, and C
(l)
FF : [0, 1] × [0, 1] → R be the

covariance function of F (l). We denote the kth element in the vector of returns Rt by
R

(k)
t . Throughout, 1K and 0K will denote theK-dimensional column vectors of ones and

zeros, respectively. While standard, for the sake of clarity, we recall that for any two
column random vectors X and Y , we have that Cov (X, Y ) = E (X − EX) (Y − EY )′

and V ar (X) = Cov (X,X).
To help the reader’s intuition, we consider the following examples.

Example 1 (CAPM) The CAPM is a special case of our framework. In this case,
Ft (s) = Re

t,m where Re
t,m is the market excess return. Hence, the market excess return is

a functional factor that is constant for s ∈ [0, 1]. Then, CFF (s, v) = Cov (Ft (s) , Ft (v)) =

V ar
(
Re

t,m

)
.

Example 2 (One Functional Factor) Consider a one dimensional functional factor.
This corresponds to the case Ft ∈ HL with L = 1. Then, Ft is a square integrable
function on [0, 1] and its covariance function CFF is real valued. For example, this
could be the yield curve with tenors normalised to be in [0, 1].

Example 3 (Functional and Non-Functional Factors) Our framework enables us to
combine scalar and functional factors for inference. This example is relevant to our
application in Section 3. Suppose that Ft (s) =

[
Re

t,m,Σt (s)
]′, where Re

t,m is the market
excess return and Σt is a functional factor, such as the unpredictable part of the variance
smile. This corresponds to the case Ft ∈ HL with L = 2. Then, for s ∈ [0, 1], the matrix
valued covariance function of the functional factor Ft is

CFF (s, s) =

[
V ar

(
Re

t,m

)
Cov

(
Re

t,m,Σt (s)
)

Cov
(
Re

t,m,Σt (s)
)

V ar (Σt (s))

]
,
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and the covariance with the risky assets returns is

CRF (s, s) =
[
Cov

(
Rt, R

e
t,m

)
Cov (Rt,Σt (s))

]
.

Moreover, we define C
(1)
FF (s, s) = V ar

(
Re

t,m

)
, C(2)

FF (s, s) = V ar (Σt (s)). Note that
C

(1)
FF (s, s) does not change with s ∈ [0, 1] and similarly the first column in CRF .

2.3 Pricing Factors

The variable Ft is supposed to have a finite second moment and represents L functional
factors.1 Next, we define when Ft is a pricing factor.

Definition 1 Let Rt be the K-dimensional column vector of returns with finite second
moment at time t. Then, Ft ∈ HL is a pricing factor for Rt if there is a scalar α and
a λ ∈ HL such that (1) holds where for any γ ∈ HL, the transpose of the kth row of β,
is β(k) ∈ HL satisfying

Cov

(
R

(k)
t −

ˆ 1

0

β(k) (s)′ Ft (s) ds,

ˆ 1

0

γ (s)′ Ft (s) ds

)
= 0 (2)

for k = 1, 2, ..., K.

Definition 1 allows us to use functional pricing factors. WhenHL is RL and V ar (Ft)

is invertible, (2) implies that β = Cov (Rt, Ft)V ar (Ft)
−1, as usual.

The fact that Ft is a functional factor inHL has nontrivial implications for Cov (Rt, Ft)

as the following result shows.

Lemma 1 Let the coefficients (θi)i≥1 and the functions
{

Ψi ∈ HL : i ≥ 1
}
be the eigen-

values and related eigenfunctions of the L×L matrix valued covariance function CFF :=

{Cov (Ft (v) , Ft (s)) : v, s ∈ [0, 1]}, where θi ≥ θi+1, i ≥ 1 and θi → 0. Then, in Defini-
tion 1, β(k) ∈ HL if and only if

∞∑
i=1

Cov
(
R

(k)
t , 〈Ft,Ψi〉HL

)2

θ2
i

<∞ (3)

uniformly in k = 1, 2, ..., K.
1With no further mention, all vectors are column vectors.
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Lemma 1 says that the correlations of the factor scores {〈Ft,Ψi〉HL : i ≥ 1} with
the asset returns needs to go to zero fast enough for Ft to be a pricing factor. From a
practical point of view, we could think that only the first few factor scores are priced,
while the rest are eventually redundant.

2.4 Stochastic Discount Factor

For the absence of arbitrage, we require a stochastic discount factor Mt such that
E (1K +Rt)Mt = 1K . Let R

(0)
t be the return on the zero beta portfolio. Its expectation

is denoted by α := ER(0)
t . The return R(0)

t satisfies Cov
(
R

(0)
t ,Mt

)
= 0 by definition.

By no arbitrage, E
(

1 +R
(0)
t

)
Mt = 1, which can be rewritten as

E
(

1 +R
(0)
t

)
Mt = Cov

(
R

(0)
t ,Mt

)
+ E

(
1 +R

(0)
t

)
EMt.

This implies that EMt = 1/ (1 + α). Under the regularity conditions presented in
Lemma 2 below, the linear relation in (1) is equivalent to the existence of a linear
stochastic discount factor

Mt =
1−
´ 1

0
[(1− E)Ft (s)]′ b (s) ds

(1 + α)
, (4)

where {b (s) : s ∈ [0, 1]} is an element in HL. For this to hold, we are assuming that Ft

is a pricing factor as in Definition 1.
The above displays together with the previous discussion imply that

ERt = α1K +

ˆ 1

0

Cov (Rt, Ft (s)) b (s) ds. (5)

Hence, b is the price of factor covariance risk. We shall refer to it simply as risk price,
throughout. We can now extend the standard relation between the risk price b and
the risk premium to the functional framework. This is equivalent to showing that (5)
is equal to the beta pricing model in (1). Under fast decay in correlation between the
returns and the factor scores as in (3), we can show that this is the case if and only if
the risk premia satisfy a certain decay condition as stated in the following.

Lemma 2 Suppose that (3) holds. Then,
´ 1

0
Cov (Rt, Ft (s)) b (s) ds =

´ 1

0
β (s)λ (s) ds

for β as in Definition 1 and b ∈ HL if and only if
∑∞

i=1 〈λ,Ψi〉2HL /θ2
i <∞.
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In the finite dimensional case, i.e. Ft (s) constant for each s ∈ [0, 1] as in the
CAPM Example 1, the lemma is trivial, as we have that β = Cov (Rt, Ft)V ar (Ft)

−1,
λ = V ar (Ft) b. When (3) holds, we still have that the risk price b (s) can be mapped
into the risk premium via a linear transformation. However, the transformation has
non-trivial implications. From a practical point of view, it states in a different way the
conclusion of Lemma 1: the risk premium of factor scores must admit a series expansion
λ =

∑∞
i=1 〈λ,Ψi〉HL Ψi where the coefficients 〈λ,Ψi〉HL decay fast.2

Next we discuss series expansions for the quantities of interest. We can then define
estimation procedures for functional factors using these expansions.

2.5 Series Representation for Functional Data Factors and Risk

Premia

We need to establish series representations that will allow us to derive approximations
and expressions for the estimators of the functional betas, risk prices, and the risk
premia. We shall use the following condition.

Condition 1 The factor F (l)
t is in H, E

∣∣∣F (l)
t

∣∣∣2
H
< ∞, and its covariance function is

continuous, l = 1, 2, ..., L.

The linear stochastic discount factor (4) together with Condition 1 allows us to
derive the series expansions for the quantities that we have introduced. These are the
basis for the construction of our estimators. They will also be used in our empirical
analysis. Under Condition 1, the series expansion for the factors holds under the uniform
norm. Moreover, we focus on expansions for each individual factor separately. Examples
will follow at the end of this section.

Theorem 1 Let Rt be the K-dimensional column vector of returns with finite second
moment at time t. Suppose the stochastic discount factor (4) and that Condition 1
holds. We have the following.

1. There are L orthonormal bases of H,
{{

Φ
(l)
i : i = 1, 2, ...

}
: l = 1, 2, ..., L

}
, such

that,

Cov
(
F (l) (s) , F (l) (v)

)
=
∞∑
i=1

ρ
(l)
i Φ

(l)
i (s) Φ

(l)
i (v)′ (6)

2The condition on λ means that it must be an element in the reproducing kernel Hilbert space of
the kernel κ such that κ (v, s) =

´ 1
0
CFF (v, r)CFF (r, s) dr. However, this fact is not further exploited

in the rest of the paper.
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for absolutely summable scalar coefficients ρ(l)
i satisfying ρ(l)

i ≥ ρ
(l)
i+1 ≥ 0 and the

series on the right hand side converges uniformly in s, v ∈ [0, 1].

2. The factors admit the representation

F
(l)
t (s) = EF (l)

t (s) +
∞∑
i=1

√
ρ

(l)
i ξ

(l)
t,i Φ

(l)
i (s) , l = 1, 2, ..., L, (7)

where ξ(l)
t :=

{
ξ

(l)
t,i : i = 1, 2, ...

}
is a sequence of mean zero, variance one uncor-

related random variables, and the second moment of the right hand side converges
uniformly in s ∈ [0, 1].

3. If (3) holds, the pricing equation (1) with β as in (2) holds with

ˆ 1

0

β(k) (s)λ (s) ds =
L∑
l=1

∞∑
i=1

β
(k,l)
i λ

(l)
i , k = 1, 2, ..., K, (8)

for some scalar coefficients β(k,l)
i and λ(l)

i such that
∑∞

i=1

(∣∣∣β(k,l)
i

∣∣∣2 +
∣∣∣λ(l)

i

∣∣∣2) <∞,

k = 1, 2, ..., K, l = 1, 2, . . . , L. In particular, denoting the lth entry in β(k), λ ∈ HL

by β(k,l) and λ(l), we have that

β(k,l) (s) =
∞∑
i=1

β
(k,l)
i Φ

(l)
i (s) , λ(l) (s) =

∞∑
i=1

λ
(l)
i Φ

(l)
i (s) ,

where equality is under the norm |·|H, l = 1, 2, ..., L.

4. Then, we have that

ˆ 1

0

Cov (Rt, Ft (s)) b (s) ds =
L∑
l=1

∞∑
i=1

√
ρ

(l)
i

(
ERtξ

(l)
t,i

)
b

(l)
i

for scalar coefficients satisfying
∑∞

i=1

∣∣∣b(l)
i

∣∣∣2 < ∞. In particular, The lth entry in
b (s) ∈ HL can be written as

b(l) (s) =
∞∑
i=1

b
(l)
i Φ

(l)
i (s) , (9)

and the equality in (9) is under the norm |·|H, l = 1, 2, ..., L. Furthermore, the
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pricing equation (5) can be represented as

ERt = α1K +
L∑
l=1

∞∑
i=1

√
ρ

(l)
i

(
ERtξ

(l)
t,i

)
b

(l)
i . (10)

To avoid any ambiguity due to the use of the same symbol for elements in H and
the scalars in the series representation, we shall always use a subscript i when referring
to the coefficients in the series representation of β(k,l), λ(l) and b(l).

Theorem 1 is the main representation that allows us to carry out estimation of
the functional risk prices and premia. The decompositions in Theorem 1 are stated
elementwise for each l = 1, 2, ..., L as we do want to retain the characteristics of each
factor by computing factor scores for each F (l)

t separately. Finally, the variables ξ(l)
t are

possibly correlated across l and t. Throughout, we shall write S(l)
t,i :=

√
ρ

(l)
i ξ

(l)
t,i so that

S
(l)
t,i is a factor score.
For practical application of Theorem 1, we assume that only the first I factor scores

are priced for each factor l = 1, 2, ..., L. By this, we mean that the risk price (9) admits
the representation b(l) (s) =

∑I
i=1 b

(l)
i Φ

(l)
i (s), l = 1, 2, ..., L.

The next result establishes the linear beta decomposition of excess returns in terms
of risk exposure to factors scores plus an orthogonal component which is not priced.
This is the extension of a standard result that holds in the less familiar functional
factors framework.

Lemma 3 Suppose that Condition 1 holds and that for each functional factor only the
first I factor scores are priced.

1. Then, (5) reduces to ERe
t = Cov (Rt, St) b0 where Re

t = Rt−1KR
(0)
t , the return in

excess of the zero beta portfolio, and St and b0 are LI×1 vectors with i+(l − 1) I

entry equal to S(l)
t,i and b(l)

i , respectively.

2. If the factor scores have full rank covariance matrix, this also implies that Re
t =

a + BSt + εt, where a = ERe
t − BESt is K × 1, B = Cov (Rt, St)V ar (St)

−1 is
K × LI and εt is K × 1 vector uncorrelated with St. If the factor scores St are
also tradable, a = 0K.

3. Finally, we also have that ERe
t = BΛ where Λ is an LI×1 vector with i+I (l − 1)

entry equal to λ(l)
i as in (8).
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The indexing in Lemma 3 is based on the following convention. The factor score St

is obtained stacking the vectors
(
S

(l)
t,1, ..., S

(l)
t,I

)′
one below the other, l = 1, 2, ..., L. A

similar comment applies to the other quantities. This ordering convention is followed
throughout.

We shall build on Examples 1, 2 and 3 to clarify the current framework.

Example 4 (CAPM, Example 1 Cont’d) Recall that Ft (s) = Re
t,m is the market excess

return. Trivially, the CAPM implies that we only have one eigenvalue ρ1 = V ar
(
Re

t,m

)
with eigenfunction Φ1 (s) = 1 while ρi = 0 for i ≥ 2. Then, the first factor score
is St,1 = Re

t,m − ERe
t,m, while St,i = 0 for i ≥ 2. Using the notation in Theorem 1,

St,1 =
√
ρ1ξt,1. Moreover, Cov (Rt, Ft (s)) = E

[
Rt

(
Re

t,m − ERe
t,m

)′]. Hence, we recover
the usual results for the CAPM: ERe

t = βmλm, where βm is the beta on the market risk
premium λm.

Example 5 (One Functional Factor Only, Example 2 Cont’d) Without change in nota-
tion, this is the setup of Theorem 1 with L = 1. Then, CFF (s, v) = Cov (Ft (s) , Ft (v)) =∑∞

i=1 ρiΦi (s) Φi (v). Suppose that there K non-redundant assets priced in the economy.
From Theorem 1, we have that

ERt = α1K +
∞∑
i=1

√
ρi (ERtξt,i) bi.

Suppose that only the first I price of risk coefficients bi are non-zero (we are writing
bi = b

(1)
i because L = 1). Using Lemma 3, the above display can be written as ERe

t =

BΛ. Note that ERe
t is in the span of K linearly independent vectors in RK. Hence, we

can identify the risk premium on at most K factor scores. Moreover, if the functional
factor is tradable (i.e. factor scores are tradable), we must have I < K. If I = K − 1,
then all K risky assets are redundant, i.e. they are a linear combination of the K − 1

tradable factor scores and the zero beta portfolio.

Example 6 (Functional and Non-Functional Factors, Example 3 Cont’d) The eigen-
functions

{
Φ

(l)
i : i = 1, 2, ..., I

}
are derived from

{
C

(l)
FF (s, s) : s ∈ [0, 1]

}
l = 1, 2. For

l = 1 these are just one for i = 1 and zero otherwise because C(1)
FF (s, s) does not de-

pend on s, as in Example 4. Under the assumption that only the first I factor scores
are priced, we can rewrite ERt = α + βmλm +

´ 1

0
βΣ (s)λΣ (s) ds as ERt = BΛ where

B = [1K , βm, βΣ,1, ..., βΣ,I ] and Λ = [α, λm, λΣ,1, ..., λΣ,I ]
′. Here, the vectors βm and
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βΣ,i are K × 1. They are the loadings on the market and on the ith factor scores of
Σ. On the other hand, λm and λΣ,i are the associated scalar risk premia. Making α a
parameter to estimate allows us to test whether the pricing restriction holds. When we
use the risk free interest rate for the zero beta portfolio, α is interpreted as the risk free
interest rate. Recall that Re

t = Rt − R(0)
t 1K, then in ERe

t = BΛ, the first entry in Λ is
the pricing error and this should be zero. Recall that R(0)

t is the return on the zero beta
portfolio.

We now focus on estimators for the above quantities as outlined in the following
section.

2.6 Estimation Algorithms

We consider a two-step estimation of loadings and risk premia and the generalised
method of moments estimator of the risk prices b. In what follows we use Ê to denote
empirical expectation over the time index t, i.e. the sample average, based on a sample
of n observations.

The asymptotic properties of the estimators will be studied in Section 2.7. Finite
sample properties are also studied via simulations in Section A.4 of the Supplementary
Material.

2.6.1 Algorithm for Functional Two-Step Procedure

The classical two-step procedure consists of a time series regression to estimate the
factor loadings and a cross-sectional regression of the time averaged returns on the
estimated loading to find the risk premia. In the context of functional factors the
procedure is similar and is shown in Algorithm 1. The loadings are directly estimated
relying on the restrictions imposed by Definition 1.
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Algorithm 1 Two-Step Estimation.
1. Estimate Ĉ(l)

FF as sample counterpart of C(l)
FF and find its first I empirical eigenfunc-

tions
{

Φ̂
(l)
i : i = 1, 2..., I

}
, l = 1, 2, .., L.

2. Compute the sample factor scores Ŝ(l)
t,i =

〈
F

(l)
t , Φ̂

(l)
i

〉
H
, ∀t, i, l and define Ŝ to be the

n × LI matrix with (t, i+ (l − 1) I) entry equal to Ŝ(l)
t,i and Ŝt the transpose of the t

row of Ŝ.
3. Compute the LI × LI matrix ĈŜŜ = Ê

(
Ŝt − ÊŜt

)(
Ŝt − ÊŜt

)′
and the K × LI

matrix ĈRŜ = ÊRt

(
Ŝt − ÊŜt

)′
.

4. Compute the K × LI matrix B̂ = ĈRŜĈ
−1

ŜŜ
.

5. Estimate the LI × 1 vector Λ̂ =
(
B̂′B̂

)−1

B̂′ÊRt where the i + (l − 1) I entry is an

estimator for λ(l)
i in Theorem 1.

In Point 2 of Algorithm 1, the matrix Ŝ is constructed appending the I factor scores
for each factor l one on the right of each other. This is the same ordering convention
discussed right after Lemma 3.

While we write the algorithm assuming continuous argument s ∈ [0, 1] in the func-
tional factors and covariances, in practice we only sample the factors at a discrete set of
points SN := {s1, s2, .., sN} ⊂ [0, 1]. This means, that integrals are replaced by averages
over N terms. In this case, the eigenfunctions are approximated by

√
N the eigenvec-

tors of the covariance matrix
{
C

(l)
FF (s, t) : s, t ∈ SN

}
and the eigenvalues by N−1 times

the corresponding matrix eigenvalues. Note that these adjustments ensures that the
resulting quantities converge to the true values and the scaling does not change with
N (e.g. Rasmussen and Williams, 2006, p.99). This is because the matrix eigenvalues
grow linearly with N and the matrix eigenvectors decrease as N−1/2. In practice, given
that N is fixed, we may just use the eigenvectors and related eigenvalues if consistent
scaling is not required.

2.6.2 Algorithm for Functional Discount Factor Estimation

Let R(k)
t be the kth entry in Rt . We consider the GMM estimator:

1

K

K∑
k,l=1

Ŵk,l

(
1

n

n∑
t=1

Mt (b)R
(k)
t

)(
1

n

n∑
t=1

Mt (b)R
(l)
t

)
, (11)
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whereMt (b) is the candidate discount factor (as in (4)), which depends on an unknown
parameter b ∈ HL, and Ŵk,l is the k, l entry of a possibly estimated matrix Ŵ . When Ŵ
is the inverse of the sample second moment matrix of the returns, (11) becomes a sample
estimator of the Hansen-Jagannathan distance. The estimator Ŵ can be noisy, hence
it might be preferable to restrict it to be diagonal. For this reason, we shall constrain
Ŵ to be diagonal in the empirical application in Section 3. Given that diagonal Ŵ
also simplifies the technical arguments, we shall assume it when proving consistency
and normality of the estimator in Section 2.7.2.3 Following the notation from Theorem
1, we assume that b(l) (s) =

∑I
i=1 b

(l)
i Φ

(l)
i (s) s ∈ [0, 1]. This means that only the first

I factor scores of F (l)
t are priced for each l = 1, 2..., L. Then, Algorithm 2 shows how

to compute the estimator b̂0 for b0 where the latter is as in Lemma 3. Recall that b0 is
the vector that collects the coefficients in the series expansion of b(l) (s), l = 1, 2, ..., L.

Algorithm 2 Discount Factor Estimation.
1. Estimate ĈRŜ as in Algorithm 1.

2. Estimate the LI × 1 vector b̂0 =
(
Ĉ ′

RŜ
Ŵ ĈRŜ

)−1

Ĉ ′
RŜ
Ŵ ÊRt with diagonal Ŵ .

2.7 Asymptotic Analysis

This section establishes the asymptotic properties of the estimators obtained from Al-
gorithms 1 and 2. The finite sample properties of the estimators are studied in a set
of simulations in Section A.4 of the Supplementary Material. Conclusions from such
simulations are in line with the asymptotic theory established in this section.

We start introducing a set of conditions followed by a brief set of remarks. We
then show that the estimators in Algorithms 1 and 2 are consistent and asymptotically
normal.

2.7.1 Regularity Conditions

The following regularity conditions will be used in all the results in order to show
consistency of the estimators in Algorithms 1 and 2, as well as their weak convergence
to Gaussian random elements after proper scaling and centering.

3At the cost of technical complexity and additional moment conditions, our asymptotic results
would hold if Ŵ/K had square summable entries for K →∞.
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Condition 2 The factor process {Ft : t = 1, 2, ...} is a sequence of i.i.d. mean zero
random variables satisfying Condition 1, and E |Ft|4HL <∞.

Condition 3 The returns {Rt : t = 1, 2, ...} are i.i.d. random variables with values in

RK such that maxk≤K E
∣∣∣R(k)

t

∣∣∣4 <∞ (R(k)
t is the kth entry in Rt), where K is a positive

integer, possibly growing with the sample size. The same distributional and moment
conditions apply to the zero beta portfolio.

Condition 4 Let C(l)
FF :=

{
Cov

(
F

(l)
t (r) , F

(l)
t (s)

)
: r, s ∈ [0, 1]

}
. The first I + 1

eigenvalues of C(l)
FF are distinct, l = 1, 2, ..., L.

Condition 5 Let St be the LI × 1 vector with i + (l − 1) I entry equal to the factor
score S(l)

t,i . The LI × LI matrix CSS = V ar (St) and the K × LI matrix CRS/K
1/2 =

Cov (Rt, St) /K
1/2 have singular values contained in a compact interval inside (0,∞).

For CRS/K
1/2 this holds uniformly in K.

Condition 6 There is a K×K diagonal matrix W such that
∣∣∣Ŵ −W ∣∣∣2

F
= Op (Kn−1).

Moreover, W has entries in a compact interval inside (0,∞), which is independent of
K.

We shall refer to the above as the Regularity Conditions. In what follows we im-
plicitly assume that L and I are finite and fixed integers. On the other hand, we do
not restrict the number of risky assets K.

Next we remark on the conditions. When dealing with pricing models, we can con-
sider the unpredictable part of the quantities of interest. Hence there is no loss of
generality to assume Ft to have mean zero. The i.i.d. assumption is used to avoid
distracting technicalities. It is possible to account for dependence at the cost of ad-
ditional technicalities (Bosq, 2000, Horváth and Kokoszka, 2012, Ch. 16). Condi-
tions 5 and 6 are only used for analysis of the GMM estimator. Regarding Condition
5, if only the first I factor scores are priced for each factor, Lemma 3 implies that
CRS = BV ar (St). The smallest singular value is the square root of the smallest eigen-
value of C ′RSCRS = V ar (St)B

′BV ar (St). Given that V ar (St) is full rank by assump-
tion, the singular values of CRS are proportional to the ones of B. Then, Condition 5
means that B′B must have eigenvalues that grow linearly with K. This is reasonable
as each entry in B′B is the sum of K elements. Clearly, this is true for the CAPM. To
simplify the notation, we have not made I dependent on the factor F (l)

t , l = 1, 2, ..., L.
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Condition 6 says that the estimated scaling matrix with dimension K×K is consis-
tent in the Frobenius norm divided by K1/2. In the empirical study, we shall suppose
that Ŵ is proportional to the inverse of the sample variance of the returns. This choice
makes pricing implied by (11) invariant to returns variability keeping the focus on the
original portfolios because the scaling matrix is diagonal.

2.7.2 Consistency and Asymptotic Normality of the Estimators

In this section we show consistency and asymptotic normality of the estimators obtained
from Algorithms 1 and 2.

In the following results, the Regularity Conditions (Conditions 2, 3, 4) are tacitly
supposed to hold. We shall use, without mention, the notation in these regularity
conditions and in Theorem 1 and Lemma 3. The central limit theorem (CLT) results
are stated without explicitly showing the form of the covariance of the process. This is
because the expressions are too complex for practical use, but details are given in the
proofs. The CLT results justify the use of the bootstrap, which is the natural route to
conduct inference in the present context.

Theorem 2 Let A be a K × p matrix with rank p, where p is fixed, and such that
E |A′Rt|42 < ∞. For B = CRSC

−1
SS , using Algorithm 1,

√
nA′

(
B̂ −B

)
→ GA in

distribution, where GA is a mean zero p × LI Gaussian random matrix. We also
have that K−1/2

∣∣∣B̂ −B∣∣∣
F
→ 0. These results hold true even when K → ∞, if

lim supK E |A′Rt|42 <∞.

The matrix A ensures that we can establish asymptotic normality of quantities
whose dimension K goes to infinity. This is a common approach in high dimensional
econometrics (e.g. Li et al., 2015, Theorem 4.3). The matrix can be used to pick up
a finite number of elements in B̂. More generally, it can pick up all the elements in B̂
but in a constrained way. Hence, its role is equivalent to testing p restrictions in the
true B. One application of Theorem 2 is to test whether an additional factor score is
loaded. This can be instrumental in choosing the number of factor scores I. In what
follows we shall show convergence to Λ and b0 as defined in Lemma 3.

Theorem 3 Suppose that for each factor only the first I factor scores are priced. Using
Algorithm 1,

√
n
(

Λ̂− Λ
)
→ GΛ in distribution, where GΛ is an LI × 1 mean zero

Gaussian vector. We also have that
∣∣∣Λ̂− Λ

∣∣∣
2
→ 0 in probability. The result holds even

when K →∞.
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Theorem 4 Suppose that for each factor only the first I factor scores are priced. Let
b0 be as in Lemma 3. Using Algorithm 2,

√
n
(
b̂0 − b0

)
→ Gb0 in distribution, where

Gb0 is a Gaussian vector with mean zero. The result holds even when K →∞.

Despite some of the results being stated in terms of loadings of estimated eigen-
functions, we can recover the functional parameters and show that they converge to a
Gaussian process.

Lemma 4 Suppose that â :=
{
â

(l)
i : l = 1, 2, ..., L; i = 1, 2, ..., I

}
is an LI × 1 random

vector such that, for some a ∈ RLI
√
n (â− a) converges in distribution to a Gaussian

vector with mean zero. Let Gn ∈ HL be such that its l entry is
√
n
(∑I

i=1 â
(l)
i Φ̂

(l)
i −

∑I
i=1 a

(l)
i Φ

(l)
i

)
.

Then, Gn converges weakly to a mean zero Gaussian process in HL with continuous
sample paths.

Lemma 4 can be applied to Theorems 2, 3 and 4. For example, we can define
λ̂(l) =

∑I
i=1 λ̂

(l)
i Φ̂

(l)
i and show that

√
n
(
λ̂(l) − λ(l)

)
converges to a Gaussian process in

H where λ(l) is a in Theorem 1. Here, we are denoting by λ̂(l)
i the i+(l − 1) I entry in Λ̂.

Estimation of the factor scores makes the covariance of the limiting Gaussian processes
complex for all of the above results. For this reason, we suggest to use the bootstrap.
Validity of the bootstrap follows from the asymptotic normality of the estimators.

3 Application: Momentum and the Variance Smile as

its Pricing Factor

To show the scope of our approach empirically, we consider empirical asset pricing of
momentum sorted portfolios using the market excess returns and the S&P500 implied
volatility curve.

3.1 Motivation

Momentum strategies cannot be reconciled with the CAPM and the Fama and French
(1993) three-factor model, and their payoff does not necessarily appear to be linear
with the market (Moskowitz et al., 2012, Daniel and Moskowitz, 2016). It was observed
that a higher level of uncertainty is associated with higher performance of momentum
strategies (Hong et al., 2000, Zhang, 2006). However, the literature also showed that
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momentum is negatively affected by volatility. Its performance can be considerably
increased by reducing risk exposure in periods of high volatility (Barroso and Santa-
Clara, 2015, Daniel and Moskowitz, 2016). We use the implied volatility curve as
a functional factor to shed further light on this anomaly. Our theory justifies the
econometric analysis for this problem.

We apply our methodology using the market and the implied variance smile. Our
main finding is that curvature/convexity is priced in momentum sorted portfolios. The
curvature often increases when the level decreases as shown in Figure 1, where we
observe no average convexity during the financial crisis of 2008 as opposed to bull years
such as 2013 and 2017. This means that curvature is associated to good states of the
world. Hence, holding curvature pays when we transition to such states. In consequence,
convexity will have to earn a positive risk premium. The empirical results show that the
loading on convexity of momentum portfolios is positive. Hence, such portfolios earn a
positive risk premium. In our sample, find that the up minus down (UMD) portfolio
(aka momentum portfolio), which is nearly market neutral, has a positive loading on
convexity.

3.2 Implied Variance Innovation Process

Let BS (Pt, σt,m, T − t) be the Black and Scholes (B-S) formula for a call at time t on
an asset with price Pt, implied volatility σt, moneyness m and time to expiry T − t.
Here, the moneyness m is defined as strike price divided by Pt. In particular,

BS (Pt, σt,m, T − t) = Pt [N (d+)−mN (d−)]

where N (x) = Pr (Z ≤ x) and Z is a standard normal random variable and

d± = − ln (m)

σt
√
T − t

± σt
√
T − t
2

. (12)

The implied volatility is the value of volatility that equates the B-S formula to the
observed option market price for each given moneyness. We shall work with σ2

t =

{σ2
t (m) : m ∈ [m,m]}, the variance smile at time t on a 3-month option. In our study

m = 0.8 and m = 1.20. The smile process is {σ2
t : t = 1, 2, 3, ...}, where time shall

be measured at daily frequency. The implied variance process is persistent over time
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Figure 1: Implied Variance Curves for SPX. Yearly average of 3-month daily implied
variance curves: ’.’ line is for 2008 (market return: -15.5 basis points (bps) per day),
the squares line is for 2013 (market return: +12.2bps per day), the ’o’ line is for 2017
(market return: +7.9bps per day). The implied curves have been standardized to daily,
dividing them by 252.

t.4 Let Et−1 be expectation conditioning on information up to time t − 1. We define
the one period innovation to be Σt = σ2

t − Et−1σ
2
t . For ease of notation, we suppose

that the moneyness m has been mapped to [0, 1] so that {Σt (s) : s ∈ [0, 1]} where
s = s (m) = (m−m) / (m−m). Differencing removes most of the time series depen-
dence. This is expected because the implied variance curve should behave locally as
a functional random walk plus a drift, which represents a roll yield. In a frictionless
market, predictability of the implied variance beyond a risk premium would imply the
possibility of arbitrage, as it is a tradable instrument via options.

3.3 Data Description

We use 3-month option implied volatility data on the S&P500 (SPX). Quarterly options
are the most traded and this has been traditionally so since the introduction of options

4Descriptive statistics in support of this and other related remarks can be found in Section A.3.2
of the Supplementary Material.
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on SPX in 1983.5 These options are listed on the CBOE. The data are obtained from
Bloomberg, and their values are expressed as percentages in annualized terms. Each
day, the curve is built by Bloomberg calibrating to a lognormal mixture model and back-
ing up the implied vol from the model.6 This ensures smooth curves and data in the
form of functional data as shown in Figure 1. Bloomberg records the volatility smile at
moneyness in {80, 90, 95, 97.5, 100, 102.5, 105, 110, 120}. We interpolate by cubic spline
smoothing to ensure equally spaced points with 2.5% moneyness between points. We
then map these values into [0, 1] by linear transformation. Hence, our functional obser-
vations are actually 17-dimensional vectors. We consider daily frequency for the period
2006/12/27-2019/02/28. We start at the end of 2006, as the dataset from Bloomberg
starts in March 2006, but there are missing data. Starting at the end of 2006 ensures
that we can construct implied variance differences from January 2007. The sample
size is n = 3062. For the price data, we use the publicly available data from Ken-
neth French’s data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html#Research. In particular we use the 10 portfolios sorted
by momentum and the up minus down (UMD) portfolio. Both are at daily frequencies.

3.4 Empirical Results

The 10 momentum portfolios are sorted from low to high momentum. We also include
UMD as 11th portfolio, which is the difference of the highest and lowest momentum
portfolio. Although more commonly used as factor, we do include UMD as portfolio
to extend available base assets and to understand how such “market neutral” portfolio
is priced. We proceed and compute excess returns for all 11 portfolios. The 2008
crisis is characterized by a pronounced increase in the level of variance. After this
the level of variance has decreased progressively during the subsequent bull market.
An unexpected decrease in the curvature of implied variance appears to be associated
with relatively low market performance. We compute the factor scores for the implied
variance innovation process Σ. This entails calculation of the empirical eigenvectors of
its 17 × 17 dimensional covariance matrix. We retain the first 3 factor scores which
explain about 99% of the total variation. Figure 2 displays the first three eigenvectors.
With no loss of generality, these have been signed so that the first value is positive.

5http://www.cboe.com/blogs/options-hub/2018/07/02/35-years-of-s-p-500-index-options-trading-
at-cboe

6See Section A.3.1 in the Supplementary Material for more details.
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Figure 2: Eigenfunctions of the smile process. The first three estimated eigenfunctions
are plotted. These correspond to level (“squares” line), slope (“+” line) and curvature
(“*” line).

From the shape of the eigenvectors, we can interpret the first three factor scores as
level slope and curvature. The correlation of these three factor scores with the market
is time varying, but strongly negative for the level, mildly negative for the slope, and
mildly positive for the curvature.7

3.4.1 Preliminary Analysis using Factor Mimicking Portfolios.

Having estimated the factor scores, we compute factor mimicking portfolios for the
level, slope and curvature of the implied variance curve.8 Figure 3 shows the cumulative
returns from the factor mimicking portfolios as well as UMD. We note that the level
earns negative risk premium as expected. Results for the slope are inconclusive.9 The
curvature earns a positive risk premium. UMD, the winners minus losers portfolio can

7See Section A.3.3 of the Supplementary Material for the details regarding the above remarks.
8These factor scores are real valued and the estimation of factor mimicking portfolios is standard.

Details and empirical results can be found in Section A.3.6 of the Supplementary Material.
9The slope factor score derived here is orthogonal to the level. Hence our result is consistent with

the results in Kozhan et al. (2013) who find an insignificant risk premium once a skew swap is hedged
by a variance swap.
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earn a positive risk premium, but is highly exposed to crashes (Barroso and Santa-
Clara, 2015, Daniel and Moskowitz, 2016). These results motivate our investigation
using an empirical pricing model in the next section. As robustness check we also used
monthly data and found qualitatively similar results.10

Figure 3: Compounded Returns of Scaled Mimicking Portfolios for Level, Slope, Cur-
vature, and the UMD Factor. The scaling is performed so that the Euclidean norm of
the loadings is one.

10See Section A.3.6 of the Supplementary Material for a discussion.
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3.4.2 Estimation Results using Functional Empirical Pricing

We use Algorithms 1 and 2 to carry out our estimations.

Two-Step Regression Results. Figure 4 plots the estimated loadings B̂ from the
time series regression and shows a remarkable regularity. Except for the alpha (the
intercept) and the level, these estimates of the loadings are significantly different from
zero at any conventional level when using bootstrap standard errors.11 Interestingly,
we note that the slope has a negative loading and curvature has a positive loading for
high deciles momentum sorted portfolios and for the momentum factor UMD (portfolio
11 in Figure 4).

The cross-section regression of time averaged returns on these loadings produce the
estimated risk premia. The results are in Table 1, where we report the non-parametric
95% bootstrap confidence interval.

As often the case, due to the high level of noise in financial data, the confidence
interval does contain the origin. However, they are evidently positively shifted in the
case of the market and curvature, and negatively shifted in the case of the level. The
results are in agreement with the discussion regarding the factor mimicking portfolios.
Again, we note that the risk premium on curvature tend to be positive. This result is

11Details can be found in Table A.4, Section A.3.4 of the Supplementary Material.
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Figure 4: Factor Betas. The alpha (“.” line), the market (“o” line), the level (“squares”
line), the slope (“+” line) and the curvature (“*” line) are plotted against the portfolios.

new and in contrast to level. Level and curvature are orthogonal components in sample.
An unexpected increase in level is associated with transitions into negative states of
the world where marginal utility is high. In consequence, under risk aversion, we are
willing to pay for insurance in these cases. On the other hand, an unexpected increase
in curvature appears to be related to transitions to good states of the world.

Functional Loadings and Premia. Table 2 reports the reconstructed functional
loadings and the functional risk premium using the level, slope and curvature factor
scores and the estimated eigenfunctions. These are obtained from the estimated eigen-
functions and the factor loadings and risk premia estimates (mutatis mutandis as in
Lemma 4). The functional risk premium is negative as expected, but convex in mon-
eyness. For portfolios with highest momentum (i.e. Portfolio 10) as well as for UMD
(Portfolio 11), the loadings for high moneyness are larger in absolute value than the
loadings for low moneyness. In consequence, a simultaneous and equal increase in high
and low moneyness variance (i.e. an increase in curvature) would benefit high momen-
tum portfolios (consistently with the results in Table 1).
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Table 1: Cross-Section Regression. The average return of the 11 portfolios are regressed
on a constant pricing error and the estimated betas from the time series regression.
The bootstrap 2.5% (Q2.5%) and 97.5% (Q97.5%) quantiles are also reported. These
represent a 95% bootstrap confidence interval. Numbers are multiplied by 100 and
represent basis points per day for the risk premia.

Pricing Error Market Level Slope Curvature
Risk Premia 0.0 3.9 -2.6 0.1 0.8

Q2.5% -0.9 -0.6 -7.1 -1.0 -0.5
Q97.5% 0.8 8.5 0.6 0.9 1.7
R2 94.7

Stochastic Discount Factor Estimation. Using Algorithm 2 we estimate the dis-
count factor and report the results in Table 3. These are consistent with the estimates
in Table 2 for the two-step regression procedure. The R2 from these estimations is in
excess of 95%.

3.5 Discussion

The results suggest that curvature is a possible driver in the performance of momentum
portfolios. To put our results into context, in the supplement to this paper, we compare
our results to Carhart four-factor model. Our model fares as well as the later for the
sample period. Given the both models use four factors and Carhart model is specifically
designed to account for momentum, the results are encouraging.

We did carry out some robustness checks. For example, a large shift in curvature
is observable from 2008 to later periods (see Figure 1). Hence, we checked whether we
can obtain the same results excluding 2008. By doing so, we found that the loadings
of curvature across portfolios became flatter relative to what we observe in Figure
4. Nevertheless, high momentum portfolios still loaded positively the curvature factor
score. The estimated risk premium of the curvature factor score was close to zero relative
to the results obtained using the full sample. On the other hand the performance of the
curvature mimicking portfolio was essentially as the one in Figure 3. In fact it was better
as it did not include the 2008 dip. Finally, we also observed that the functional risk
premium was not convex anymore, but negative and upward sloping. This is consistent
with the fact that curvature may have a lesser role in this case. Similar results, though
with more noise were obtained by sample splitting. In summary, the risk premium on
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Table 2: Implied Variance Functional Risk Premium and Loadings. Values are only
reported for a subset of moneyness. Numbers for the risk premium are multiplied by
100, hence in basis points per day.

Moneyness %
80 85 90 95 100 105 110 115 120

Risk Premium
-1.5 -3.1 -3.8 -3.5 -2.9 -2.7 -2.0 -1.7 -0.9

Port. Loadings
1 0.5 5.6 7.4 5.1 1.3 -0.5 -5.4 -7.6 -13.6
2 1.5 4.2 4.8 3.0 0.0 -1.4 -5.2 -6.9 -11.5
3 3.3 2.8 2.0 1.0 -0.6 -1.4 -3.3 -4.2 -6.7
4 2.1 2.1 1.7 0.8 -0.4 -1.0 -2.5 -3.2 -5.2
5 0.8 1.2 1.2 0.6 -0.4 -0.8 -2.0 -2.6 -4.0
6 -0.1 0.1 0.2 0.1 -0.2 -0.3 -0.6 -0.8 -1.2
7 -0.9 -0.8 -0.6 -0.4 0.0 0.1 0.5 0.7 1.3
8 -0.6 -1.4 -1.6 -1.0 -0.1 0.4 1.6 2.1 3.5
9 -1.6 -1.7 -1.5 -0.7 0.4 0.9 2.4 3.0 4.8
10 -0.7 -2.4 -2.8 -1.6 0.3 1.2 3.8 4.9 7.9
11 -2.6 -4.4 -4.5 -2.7 0.3 1.7 5.4 7.1 11.7

the curvature factor progressively decreased after the financial crisis. This observation
is consistent with the fact that the performance on UMD (the momentum factor) has
also deteriorated after the financial crisis.

4 Conclusion

This paper studies asset pricing relations with functional factors. Typical examples
are the term structure of interest rates and the implied volatility smile. When factors
are vectors, the results reduce to usual well known relations. In practice, our results
naturally apply to the case of vector valued factors that are highly correlated, as it is
the case for the yield curve and the options implied volatility curve. Hence, the theory
allows us to extend the domain of factor based asset pricing to empirically relevant
quantities in a natural way. Relying on the machinery of functional data analysis,
we are able to construct sample estimators for the population quantities derived from
the theory. The pricing theory suggests two elementary estimation algorithms using
functional pricing factors. These algorithms are non-trivial extension of the usual two
step regression procedure and the GMM estimator of risk prices using a linear discount
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Table 3: Discount Factor Estimation. Results from GMM estimation minimizing the
Hansen-Jagannathan Distance (11) using a diagonal scaling matrix equal to the esti-
mated variance of the portfolios. The bootstrap 2.5% (Q2.5%) and 97.5% (Q97.5%)
quantiles are also reported. These represent a 95% bootstrap confidence interval. Num-
bers are multiplied by 100, hence basis points per day.

Market Level Slope Curvature
b -30.4 -145.3 0.2 1625.4

Q2.5% -54.6 -271.2 -458.5 -916.6
Q97.5% 5.7 20.4 377.5 2669.3

λ 3.9 -2.6 0.2 0.9
Q2.5% -0.7 -6.8 -1.0 -0.5
Q97.5% 8.3 0.9 1.0 1.7
R2 95.9

factor. For all the estimators, we derive consistency and central limit theorems. These
results allows us to carry out inference on the sample estimates and justify the use
of the bootstrap in our empirical application. All the inference results are valid for
the sample size going to infinity as well as for a diverging number of assets without
constraints on the rates of divergence of both.

While our results are asymptotic in the sample size, simulations results, reported in
Section A.4 of the supplement, show that its applicability is justified within the context
of our empirical application. Additional results can be found there.

As an empirical application we used the implied variance curve as a pricing fac-
tor. We decomposed the implied variance curve into three factor scores that can be
interpreted as level, skew, and convexity. We find that curvature earns a positive risk
premium.

We found that higher momentum portfolios load the curvature of the implied vari-
ance curve positively. This means that an unexpected increase in the curvature of
the implied variance curve should lead to higher returns for momentum. Our results
suggest that there is information in the implied variance curve and this has not been
extensively exploited by past research.
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Supplementary Material to “Empirical Asset Pricing

with Functional Factors” by P. Nadler and A. Sancetta

A.1 Proof of Results

We start with the proof of Lemmas 1 and 2 and Theorem 1. We then state some
preliminary lemmas that will be used to prove each of the remaining results in the
paper.

A.1.1 Proof of Lemma 1

For simplicity, we drop the subscript t in the random variables. Using the spectral
theorem,

CFF (v, s) := Cov (F (v) , F (s)) =
∞∑
i=1

θiΨi (v) Ψi (s)′ (A.1)

where the functions Ψi are L × 1 vector valued and satisfy 〈Ψi,Ψj〉HL = 1 if i = j

and zero otherwise. The coefficients θi are non-negative and decreasing. To keep the
notation simpler, suppose that EF = 0L. We can then expand

F (s) =
∞∑
j=1

√
θiζiΨi (s) (A.2)

where the random variables ζi have mean zero and variance one and are uncorrelated
across the index i. The above series expansions also hold uniformly by the multivariate
version of Mercer theorem (De Vito et al., 2013). These quantities should not be
confused with ρ(l)

i , ξ(l)
i , and Φ

(l)
i as defined in Theorem 1, which are derived from the

scalar valued factors F (l) independently across l = 1, 2, ..., L, as opposed to F . We have
that

Cov
(
F (s) , R(k)

)
=
∞∑
i=1

√
θi
(
ER(k)ζi

)
Ψi (s) .

The definition of pricing factor says that β(k) ∈ HL, where β(k) is the transpose of the kth

row of β. Since β(k) is an element in the Hilbert space HL, we have the representation

β(k) (s) =
∑∞

i=1 β̃
(k)
i Ψi (s), where the scalar coefficients β̃(k)

i satisfy
∑∞

i=1

∣∣∣β̃(k)
i

∣∣∣2 < ∞,

1



uniformly in k = 1, 2, ..., K. From (2) and the above display, we deduce that

∞∑
i=1

√
θi
(
ER(k)ζi

)
γi =

∞∑
j=1

θiβ̃
(k)
i γi

for any γ (s) =
∑∞

i=1 γiΨi (s). Given that the coefficients γi are arbitrary except for the
fact of being square summable, this implies that β̃(k)

i = θ
−1/2
i

(
ER(k)ζi

)
for any i ≥ 1.

For β̃(k)
i to be square summable, we must have that

∑∞
i=1 θ

−1
i

∣∣ER(k)ζi
∣∣2 <∞, uniformly

in k = 1, 2, ..., K. Using (A.2) this summation is the same as (3). This establishes the
desired implication, which clearly is in both directions.

A.1.2 Proof of Lemma 2

For simplicity we drop the subscript t in the random variables. We use the notation
from Lemma 1 and its proof. From that proof recall that β(k) (s) =

∑∞
i=1 β̃

(k)
i Ψi (s)

where β̃i = θ
−1/2
i

(
ER(k)ζi

)
. First, we show the only if implication, i.e. we assume that

b ∈ HL. We expand b (s) =
∑∞

i=1 b̃iΨi (s) where
∑∞

i=1

∣∣∣b̃i∣∣∣2 <∞. Then,

ˆ 1

0

Cov
(
R(k), F (s)

)
b (s) ds =

∞∑
i=1

√
θi
(
ER(k)ζi

)
b̃i.

Defining λ̃i := θib̃i, the r.h.s. can be rewritten as
∑∞

j=1 β̃
(k)
i λ̃i so that λ (s) =

∑∞
i=1 λ̃iΨi (s).

Dy definition of the coefficients λ̃i, we deduce that

∞∑
i=1

〈λ,Ψi〉2HL

θ2
i

=
∞∑
i=1

∣∣∣b̃i∣∣∣2 <∞.
The implication on the other side requires use to use the above display, hence, it is
trivial.

A.1.3 Proof of Theorem 1

For simplicity we drop the subscript t in the random variables. The existence of the sec-
ond moment means that the covariance functions C(l)

FF =
{
Cov

(
F (l) (s) , F (l) (v)

)
: s, v ∈ [0, 1]

}
,
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l = 1, 2, . . . , L, are well defined and continuous. By the spectral theorem,

C
(l)
FF (s, v) =

∞∑
i=1

ρ
(l)
i Φ

(l)
i (s) Φ

(l)
i (v)′ (A.3)

where∞ > ρ
(l)
i ≥ ρ

(l)
i+1 ≥ 0 for i ≥ 1, and

{
Φ

(l)
i : i = 1, 2, ...

}
is an orthonormal basis of

H. By Mercer Theorem (Bosq, 2000), the series on the right hand side also converges
uniformly. By orthonormality of the basis functions,

ˆ 1

0

C
(l)
FF (s, s) ds =

∞∑
i=1

ρ
(l)
i = E

∣∣F (l)
∣∣2
H <∞ (A.4)

so that the eigenvalues are absolutely summable. This proves Point 1 of the theorem.
By the Karhunen-Loéve Theorem, for l = 1, 2, ..., L,

F (l) (s) = EF (l) (s) +
∞∑
i=1

√
ρ

(l)
i ξ

(l)
i Φ

(l)
i (s)

where
{
ξ

(l)
i ∈ R : i = 1, 2, ...

}
are mean zero, variance one, uncorrelated random vari-

ables. The second moment of the series on the right hand side converges uniformly.
This proves Point 2 of the theorem.

For each l = 1, 2, ..., L, given that
{

Φ
(l)
i : i = 1, 2, ...

}
in (A.3) forms a basis of H,

there are scalars β(k,l)
i and λ(l)

i such that

β(k,l) (s) =
∞∑
i=1

β
(k,l)
i Φ

(l)
i (s) , λ(l) (s) =

∞∑
i=1

λ
(l)
i Φ

(l)
i (s)

and
∑∞

i=1

(∣∣∣β(k,l)
i

∣∣∣2 +
∣∣∣λ(l)

i

∣∣∣2) < ∞, where the convergence is under the norm |·|H, for

k = 1, 2, ..., K and l = 1, 2, ..., L. Then,
´ 1

0
β(k) (s)′ λ (s) ds =

∑L
l=1

∑∞
i=1 β

(k,l)
i λ

(l)
i as

required. This proves Point 3 of the theorem.
By assumption b(l) ∈ H, hence,

b(l) (s) =
∞∑
i=1

b
(l)
i Φ

(l)
i (s) (A.5)

where the equality is under the |·|H norm, and the scalar coefficients b(l)
i are square

3



summable over i for l = 1, 2, ..., L. By Point 2, deduce that,

Cov
(
R,F (l) (s)

)
=
∞∑
i=1

√
ρ

(l)
i

(
ERξ(l)

i

)
Φ

(l)
i (s)′ . (A.6)

Using (A.6) and (A.5) in (5), deduce that

ER = α +
L∑
l=1

∞∑
i=1

√
ρ

(l)
i

(
ERξ(l)

i

)
b

(l)
i ,

which is the last result we needed to show.

A.1.4 Proof of Lemma 3

Here and throughout the rest of all the proofs, we shall use the notation of Lemma 3
with possibly no further mention. Lemma 3 is a consequence of Theorem 1 and the
following.

Lemma 5 Suppose that Condition 1 holds and that in the discount factor (4) only the
first I factor scores are priced for each factor l = 1, 2, ..., L, and that their covariance
matrix is full rank. Let Re

t = Rt − 1KR
(0)
t , where R(0)

t is the zero beta portfolio. Then,

Re
t = a+BSt + ε (A.7)

where
a = (ERe

t −BESt) , B = Cov (Rt, St)V ar (St)
−1 (A.8)

and the error term εt is a mean zero vector, uncorrelated with the factor scores St. The
equality in (A.7) holds under E |·|22. If the factor scores are also tradable, a = 0K.

Proof. The linear projection of (1− E)Re
t onto (1− E)St is B (1− E)St where

B = Cov (Rt, St)V ar (St)
−1. We have used the fact that, by definition of the zero beta

portfolio, Cov
(

1KR
(0)
t , St

)
is zero. Hence,

(1− E)Re
t = B (1− E)St + εt

where εt = (1− E)Re
t −B (1− E)St. By construction, εt is mean zero and orthogonal

4



to St. Rewrite the previous display as

Re
t = (ERe

t −BESt) +BSt + εt.

The pricing relation via the discount factor implies

0K = ERe
tMt = ERe

t −
ˆ 1

0

Cov (Rt, Ft (s)) b (s) ds = ERe
t − Cov (Rt, St) b0

where b0 is as in Lemma 3, because b(l) (s) =
∑I

i=1 biΦ
(l)
i (s) by Theorem 1. Hence, the

last two displays imply that

Rt = (BV ar (St) b0 −BESt) +BSt + εt. (A.9)

If the factors are excess returns of tradable assets, the factors and any of their linear
combinations are also priced by the discount factor, so that

0LI = EStMt = ESt − Cov (St, St) b0.

The above display implies that V ar (St) b0 = ESt. Inserting this in (A.9) we have that
that a = (BV ar (St) b0 −BESt) = 0K .

A.1.5 Preliminary Lemmas for the Proof of Remaining Results

We need additional notation in order to state the results of this section. Let Hu×v =

Hu×v ([0, 1]) be the separable Hilbert space of u×v dimensional matrix valued functions
on [0, 1] with inner product 〈x, y〉Hu×v =

´ 1

0
Trace

(
x (s)′ y (s)

)
ds, x, y ∈ Hu×v and

norm |·|Hu×v induced by the inner product. For any matrix covariance function C, its

Hilbert-Schmidt norm is defined to be |C|S =
√´ 1

0

´ 1

0
|C (r, s)|2F drds. If C has finite

Hilbert-Schmidt norm, we write C ∈ S. We shall still use the same notation when C is
real valued rather than matrix valued. As in the main text, recall that we use CRS and
similar quantities to denote the covariance between the variable in the subscripts. For
any matrix A and compatible vector x, |Ax|2 ≤ |A|op |x|2 ≤ |A|F |x|2. Here, |·|op is the
operator norm, i.e. the maximum singular value. Moreover, for compatible matrices
A and B, |AB|F ≤ |A|F |B|F . We recall that the Frobenius norm of a matrix can be
written as the sum of its squared entries. At times we shall use the basic inequality
|Cov (X, Y )|2F ≤ 2 |EXY ′|2F for arbitrary, possibly vector valued random variables X

5



and Y .
The estimated eigenfunctions are only identified up to a sign change. With no loss

of generality, we assume throughout that
〈

Φ
(l)
i , Φ̂

(l)
i

〉
H
> 0 for l = 1, 2, . . . , L.

Finally, recall that Ê will denote empirical expectation over the time index t, i.e.
sample average, based on a sample of size n.

We shall rely on the following simple calculation in multiple places.

Lemma 6 Let X := (Xt)t∈Z and Y := (Yt)t∈Z be u× 1 and v × 1 sequences of random

vectors. Then,
∣∣∣ÊXtY

′
t

∣∣∣2
F
≤ Ê |Xt|22 Ê |Yt|

2
2 and

∣∣∣ÊXtY
′
t

∣∣∣2
F
≤ Ê |Xt|22 |Yt|

2
2

Proof. By definition,
∣∣∣ÊXtY

′
t

∣∣∣2
F

=
∑u

k=1

∑v
l=1

∣∣∣ÊXt,kYt,l

∣∣∣2, where the subscript
denotes the element in the vector. Applying Holder inequality, we obtain the first
inequality. Conversely, using Jensen inequality we obtain the second inequality.

The above can easily be extended to the product of Hu and Hv valued random
elements and we might do this with no further mention. Clearly, Lemma holds for
expectation w.r.t. any probability measure, e.g. using E instead of the empirical
expectation Ê.

We shall also use the L2 law of large numbers in separable Hilbert spaces.

Lemma 7 Suppose that (Xt)t∈Z is an i.i.d. sequence of random variables with mean
zero, finite variance, and values in a separable Hilbert space H equipped with the inner
product 〈·, ·〉H and norm |·|H, induced by this inner product. Then, E

∣∣ 1
n

∑n
t=1Xt

∣∣2
H ≤

1
n
E |X1|2H.

Proof. This follows by the i.i.d. condition because E 〈Xs, Xt〉H = 〈EXs,EXt〉H = 0

if s 6= t.
Note that the above result remains true if we replace the i.i.d. condition with a mar-

tingale difference condition. In this case, the l.h.s. is bounded above by 1
n

maxt≤n E |Xt|2H.
Lemma 7 shall be applied with Xt equal to Ft, (1− E)FtF

′
t , and (1− E)A′RtF

′
t

with the norms |·|HL , |·|S , and |·|Hp×L , respectively, where A is as in Theorem 2. To
this end, we state the following.

Lemma 8 Under the Regularity Conditions, E |(1− E)FtF
′
t |

2
S = O (1), E |(1− E)A′RtF

′
t |

2
Hp×L =

O (1), where A is as in Theorem 2.
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Proof. It is sufficient to show that both E |FtF
′
t |

2
S and E |A′RtF

′
t |

2
Hp×L are O (1).

Note that E |FtF
′
t |

2
S = E |Ft|4HL <∞. Moreover, E |A′RtF

′
t |

2
Hp×L = E |A′Rt|22 |Ft|2HL . By

Holder inequality, it is sufficient to note that E |A′Rt|42 < ∞ and E |Ft|4HL < ∞ by the
Regularity Conditions and the assumption on A. This concludes the proof.

We need the following well know result about the second order effect of using sample
means when computing sample covariances. For completeness we give the proof as we
are considering Hilbert valued random variables. For ease of notation, we use Ê in what
follows.

Lemma 9 Suppose that (Xt)t∈Z and (Yt)t∈Z are sequences of random variables with
values in Hu and Hv respectively. Then,

ĈXY − CXY =
(
Ê− E

)
[(1− E)Xt] [(1− E)Yt]

′ −
[(

Ê− E
)
Xt

] [(
Ê− E

)
Yt

]′
where

ĈXY := Ê
[(

1− Ê
)
Xt

] [(
1− Ê

)
Yt

]′
= Ê

[(
1− Ê

)
Xt

]
Y ′t

and CXY := Cov (X, Y ) = E [(1− E)Xt]Y
′
t .

In particular, if the random variables are i.i.d. and E |Xt|2Hu + E |Yt|2Hv <∞, then∣∣∣∣[(Ê− E
)
Xt

] [(
Ê− E

)
Yt

]′∣∣∣∣
Hu×v

= Op

(
1

n

)
.

Proof. For the sake of clarity, we note that the equalities on the r.h.s. for the
sample and population covariance, i.e. ĈXY = Ê

[(
1− Ê

)
Xt

]
Y ′t and similarly for

CXY , are trivially verified by direct calculation. We now start the proof. Adding and
subtracting Ê [(1− E)Xt]Y

′
t , and rearranging, we have that

ĈXY − CXY =
(
Ê− E

)
[(1− E)Xt]Y

′
t − Ê

[(
Ê− E

)
Xt

]
Y ′t .

Now, add and subtract
(
Ê− E

)
[(1− E)Xt]EY ′t =

[(
Ê− E

)
Xt

]
EY ′t to find that the

above display is equal to(
Ê− E

)
[(1− E)Xt] [(1− E)Yt]

′ −
[(

Ê− E
)
Xt

] [(
Ê− E

)
Yt

]′
and the first part of the result follows. For the second part, by definition of the norm
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|·|Hu×v and the Cauchy-Schwarz inequality for the Frobenius norm,∣∣∣∣[(Ê− E
)
Xt

] [(
Ê− E

)
Yt

]′∣∣∣∣
Hu×v

≤
∣∣∣(Ê− E

)
Xt

∣∣∣
Hu

∣∣∣(Ê− E
)
Yt

∣∣∣
Hv
.

Then, applying Lemma 7 to each of the two terms on the r.h.s. we obtain the result.
This completes the proof of the lemma.

The following is Corollary 4.6 in Bosq (2000).

Lemma 10 Under Condition 2, for every l = 1, 2, ..., L,
√
n
(
Ĉ

(l)
FF − C

(l)
FF

)
→ G

(l)
FF as

an element in S where G(l)
FF is a mean zero Gaussian element with covariance operator

Γ
(l)
FF from S to S such that for any a ∈ S,

(
Γ

(l)
FFa

)
(u, r) = Cov

(ˆ 1

0

ˆ 1

0

F (l) (v)F (l) (s) a (v, s) dvds, F (l) (u)F (l) (r)

)
, u, r ∈ [0, 1] .

The following is Theorem 2.7 in Horváth and Kokoszka (2012).

Lemma 11 Suppose that the Regularity Conditions hold. Then, E
∣∣∣Φ̂(l)

i − Φ
(l)
i

∣∣∣2
H

=

O (n−1) for i = 1, 2, ..., I and l = 1, 2, ..., L.

The following is Corollary 4.8 in Bosq (2000).

Lemma 12 Suppose that the Regularity Conditions hold. Then,
√
n
(

Φ̂
(l)
i − Φ

(l)
i

)
→

G
(l)
i weakly as an element in H, where G(l)

i is a mean zero Gaussian process with con-
tinuous sample paths, for i = 1, 2, ..., I, l = 1, 2..., L. In particular,

G
(l)
i (·) =

ˆ 1

0

ˆ 1

0

D
(l)
i (·, s)G(l)

FF (s, v) Φ
(l)
i (v) dsdv,

where D(l)
i (s, v) =

∑
j 6=i

(
ρ

(l)
i − ρ

(l)
j

)−1

Φ
(l)
j (s) Φ

(l)
j (v). The coefficient ρ(l)

i are the eigen-

values as in (6), and G(l)
FF is as in Lemma 10.

It appears that there is a small typo in the statement of Corollary 4.8 in Bosq
(2000). The expression above can also be deduced from Proposition 10 in Dauxois et
al. (1982). We now show that the sample factor scores are consistent.

Lemma 13 Suppose that the Regularity Conditions hold. Then, Ê
∣∣∣Ŝt − St

∣∣∣2
2

= Op (n−1).

8



Proof. Note that

Ê
∣∣∣Ŝt − St

∣∣∣2
2

=
1

n

n∑
t=1

L∑
l=1

I∑
i=1

∣∣∣〈F (l)
t , Φ̂

(l)
i − Φ

(l)
i

〉
H

∣∣∣2 .
By the Cauchy-Schwarz inequality, the right hand side is bounded above by

L∑
l=1

1

n

n∑
t=1

∣∣∣F (l)
t

∣∣∣2
H

I∑
i=1

∣∣∣Φ̂(l)
i − Φ

(l)
i

∣∣∣2
H
.

By Lemma 11,
∣∣∣Φ̂(l)

i − Φ
(l)
i

∣∣∣2
H

= Op (n−1). This holds for i = 1, 2, ..., I, l = 1, 2, .., L.

Given that 1
n

∑n
t=1

∣∣∣F (l)
t

∣∣∣2
H

= Op (1) and that L and I are bounded, we deduce the
statement of the lemma.

We now state a series of convergence results for the sample covariance estimators.

Lemma 14 Suppose that the Regularity Conditions hold. Then, K−1
∣∣∣ĈRŜ − CRS

∣∣∣2
F

=

Op (n−1).

Proof. By linearity of the empirical covariance, adding and subtracting CRS, and
using ĈR,(Ŝ−S) to denote the sample covariance of Rt with Ŝt − St,

K−1/2ĈRŜ = K−1/2CRS +K−1/2
(
ĈRS − CRS

)
+K−1/2ĈR,(Ŝ−S). (A.10)

By Lemma 9,∣∣∣K−1/2
(
ĈRS − CRS

)∣∣∣
F

=
∣∣∣K−1/2

(
Ê− E

)
[(1− E)Rt] [(1− E)S ′t]

∣∣∣
F

+OP

(
n−1
)

if E
∣∣K−1/2Rt

∣∣2
2
+E |St|22 <∞. The finiteness of the two expectations follows by the Reg-

ularity Conditions because E
∣∣R(k)

∣∣4 <∞ and E
(∑∞

i=1

∣∣∣S(l)
t,i

∣∣∣2)2

= E
(∑∞

i=1 ρ
(l)
i

∣∣∣ξ(l)
t,i

∣∣∣2)2

=

E
∣∣F (l)

∣∣4
H <∞, k = 1, 2, ..., K, l = 1, 2, ..., L, together with the fact that L is bounded.

We have actually argued that E
∣∣K−1/2Rt

∣∣4
2

+ E |St|42 < ∞, as we will need this mo-
mentarily. Using Lemma 7 again, we deduce that the first term on the r.h.s. of
the previous display is Op

(
n−1/2

)
if E

∣∣K−1/2 [(1− E)Rt] [(1− E)S ′t]
∣∣2
F
< ∞. By the

Cauchy-Schwarz inequality for the Frobenius norm and Holder inequality this is the
case if E

∣∣K−1/2Rt

∣∣4
2

+ E |St|42 < ∞. By the previous remarks, those expectations are

finite. Hence, by the continuous mapping theorem,
∣∣∣K−1/2

[
ĈRS − CRS

]∣∣∣2
F

= Op (n−1).

9



We now bound the last term in (A.10). By definition of sample covariance, a basic
inequality, and Lemma 6,

1

K

∣∣∣ĈR,(Ŝ−S)

∣∣∣2
F
≤ 2

1

K
Ê |Rt|22 Ê

∣∣∣Ŝt − St

∣∣∣2
2
.

Using Lemma 13 and a moment bound, deduce that K−1
∣∣∣ĈR,(Ŝ−S)

∣∣∣2
F

= Op (n−1) be-
cause L and I are bounded.

Lemma 15 Suppose that the Regularity Conditions hold. Then,
∣∣∣ĈŜŜ − CSS

∣∣∣2
F

= Op (n−1).

Proof. By linearity, ĈŜŜ − CSS = ĈŜ,Ŝ−S + ĈŜ−S,S where the sample covariance is
computed between the objects in the subscript. By Lemma 6, and a basic inequality,

we have that
∣∣∣ĈŜ,Ŝ−S

∣∣∣2
F
≤ 2Ê

∣∣∣Ŝt

∣∣∣2
2
Ê
∣∣∣Ŝt − St

∣∣∣2
2
. We note that Ê

∣∣∣Ŝt

∣∣∣2
2

= Op (1) because

L is bounded. Hence, using Lemma 13,
∣∣∣ĈŜ,Ŝ−S

∣∣∣2
F

= Op (n−1). The same argument

applies to ĈS,Ŝ−S. This completes the proof.

Lemma 16 Suppose that the Regularity Conditions hold. Then, K−1/2
∣∣∣B̂ −B∣∣∣

F
→ 0

in probability.

Proof. By definition,

1

K

∣∣∣B̂ −B∣∣∣2
F

=
1

K

∣∣∣ĈRŜĈ
−1

ŜŜ
− CRSC

−1
SS

∣∣∣2
F
. (A.11)

Adding and subtracting ĈRŜC
−1
SS , and using a standard inequality, the above is bounded

above by two times

1

K

∣∣∣ĈRŜ

(
Ĉ−1

ŜŜ
− C−1

SS

)∣∣∣2
F

+
1

K

∣∣∣(ĈRŜ − CRS

)
C−1

SS

∣∣∣2
F
. (A.12)

By Lemma 14, we can replace K−1/2ĈRŜ with K−1/2CRS on an event that has prob-
ability going to one. By the Regularity Conditions, the latter has largest eigenvalue
bounded away from infinity. Then, by Lemma 15 and the fact that CSS is full rank by
Condition 5, we can replace Ĉ−1

ŜŜ
with Ĉ−1

SS so that the first term in the above display
goes to zero in probability. The second term also goes to zero in probability by Lemma
14 because CSS has smallest eigenvalue bounded away from zero using the Regularity
Conditions.
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Lemma 17 Suppose that the Regularity Conditions hold. For A as in Theorem 2,
we have that

√
nA′ĈR,Ŝ−S → GA,1 in distribution, where GA,1 is a mean zero random

matrix and the convergence also holds for K →∞.

Proof. Note that
√
nAĈR,Ŝ−S = 1√

n

∑n
t=1A

′
[(

1− Ê
)
Rt

] (
Ŝt − St

)
so that the

i+ (l − 1) I column of the r.h.s. is equal to

1√
n

n∑
t=1

A′
[(

1− Ê
)
Rt

] 〈
F

(l)
t , Φ̂

(l)
i − Φ

(l)
i

〉
H
.

This display is a p× 1 vector and is equal to

ˆ 1

0

1

n

n∑
t=1

A′
[(

1− Ê
)
Rt

]
F

(l)
t (s)

√
n
(

Φ̂
(l)
i (s)− Φ

(l)
i (s)

)
ds (A.13)

By Lemma 12,
√
n
(

Φ̂
(l)
i − Φ

(l)
i

)
converges weakly to a mean zero Gaussian process G(l)

i

in H, and the convergence is joint in l = 1, 2, . . . , L and i = 1, 2, .., I as long as LI is
bounded. Then the proof is complete if we can show that each element in the sample
average in (A.13) is in H. Write

1

n

n∑
t=1

A′
[(

1− Ê
)
Rt

]
Ft (s)′

=
1

n

n∑
t=1

A′
[(

E− Ê
)
Rt

]
Ft (s)′ +

1

n

n∑
t=1

A′ [(1− E)Rt]Ft (s)′ . (A.14)

The equality follows adding and subtracting A′ (ERt)Ft (s)′. It is sufficient to show
that each of the terms on the r.h.s. is in Hp×L. Using a simple extension of Lemma 6,
we have that∣∣∣∣∣ 1n

n∑
t=1

A′
[(

E− Ê
)
Rt

]
F ′t

∣∣∣∣∣
Hp×L

≤ Ê
∣∣∣(E− Ê

)
A′Rt

∣∣∣2
2
Ê |Ft|HL .

We note that E
∣∣∣(E− Ê

)
A′Rt

∣∣∣2
2
≤ n−1E |A′Rt|22 = O (n−1) by Lemma 7 and the as-

sumption on A. Hence, the last display is Op (n−1). This implies that the first term
on the r.h.s. of (A.14) is asymptotically zero in Hp×L, in probability. Now, note that
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EA′ [(1− E)Rt]Ft (s)′ = A′CRF . By Lemmas 7 and 8,

E

∣∣∣∣∣ 1n
n∑

t=1

[((1− E)A′Rt)F
′
t − A′CRF ]

∣∣∣∣∣
Hp×L

→ 0.

These calculations imply that the l.h.s. of (A.14) converges to A′CRF as an element in
Hp×L. This implies that each entry in A′ĈRF is in H with probability going to one, and
this completes the proof.

Lemma 18 Suppose that the Regularity Conditions hold. For A as in Theorem 2,
we have that

√
nA′

(
ĈRS − CRS

)
→ GA,2 in distribution, where GA,2 is a mean zero

random matrix and the convergence also holds for K →∞.

Proof. By Lemma 9,
√
nA′

(
ĈRS − CRS

)
has same distribution as

1√
n

n∑
t=1

[(1− E)A′Rt] [(1− E)St]
′

if E |A′Rt|22 +E |St|22 <∞. As shown in the proof of Lemma 14, this is the case. Hence,
by the i.i.d. condition, for the central limit theorem to apply to the above display, it
is sufficient to show that E |A′RtS

′
t|

2
F < ∞ (Aldous, 1976). By Holder inequality, this

moment bound is implied by E |St|42 ≤ E |Ft|4HL <∞ and E |A′Rt|42 <∞. The finiteness
of the latter quantities is shown in the proof of Lemma 14. When K →∞ we actually
need uniform integrability of E |A′Rt|42, but this holds by the conditions of Theorem 2.
Hence the above display converges to a Gaussian random matrix.

We need to control the eigenvalues of C ′RSW
jCRS for j = 1, 2; here W j = WW j−1.

To this end, we state the following standard results (Bathia, 1997, III.20 p.72).

Lemma 19 Let A and B be two compatible matrices with singular values in [a, a] and[
b, b
]
, respectively. Then, the singular values of AB are bounded above and below by a b

and a b, respectively.

Using Lemma 19, we deduce the following.

Lemma 20 Suppose that Conditions 5 and 6 hold. Then, for any finite integer j,
C ′RSW

jCRS has minimum and maximum eigenvalues bounded below and above by a
constant multiple of K.

12



Proof. Because of Lemma 19 and the fact that K−1/2CRS has singular values
bounded away from zero and infinity, it is sufficient to show that the eigenvalues of
W are bounded away from zero and infinity. This follows by Condition 6 because a
diagonal matrix has eigenvalues equal to its diagonal. Note that the eigenvalues will
grow (shrink) as a power of j. As long as j is finite, the eigenvalues will remain bounded
away from zero and infinity.

A.1.6 Proof of Theorem 2

Using a decomposition analogous to (A.10), it is easy to see that the result follows
from Lemmas 17 and 18 together with Lemma 15, the continuous mapping theorem
and Slutsky theorem.

A.1.7 Proof of Theorem 3

It is sufficient to show convergence in distribution as the dimension of Λ̂ is fixed and
finite. By Lemma 3, ERe

t = BΛ so that

ÊRe
t = B̂Λ +

(
B − B̂

)
Λ +

(
Ê− E

)
Re

t .

By the definition of Λ̂, adding and subtracting Λ, we have that

Λ̂ = Λ +

(
B̂′B̂

K

)−1
B̂′

K

[(
B − B̂

)
Λ +

(
Ê− E

)
Re

t

]
.

By Lemma 16, we can replace
(
B̂′B̂/K

)−1

K−1B̂′ with (B′B/K)−1K−1B′ using the

continuous mapping theorem because B′B
K

has minimal eigenvalue bounded away from
zero. The latter remark follows from the condition on the singular values of CRS/K

1/2,
the invertibility of CSS, and (A.8) in Lemma 5. Then, subtracting Λ on both sides and
multiplying by

√
n we deduce that

√
n
(

Λ̂− Λ
)

=

(
B′B

K

)−1
B′

K

[√
n
(
B − B̂

)
Λ +
√
n
(
Ê− E

)
Re

t

]
+ op (1) . (A.15)

We define A := B
K

(
B′B
K

)−1
and show that such A satisfies the condition of Theorem 2.

To this end, it is sufficient to check that E |A′Rt|42 < ∞. Now, K1/2A = B
K1/2

(
B′B
K

)−1
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has largest singular value, say ρB, bounded away from infinity. Hence,

E
(
K−1R′t (KAA′)Rt

)2
= E

(
ρ2
BK

−1R′tRt

)2
.

It is easy to see that the above display is finite as long as maxk≤K E
∣∣∣R(k)

t

∣∣∣4 < ∞,
which is the case by the Regularity Conditions. Hence, A satisfies the conditions of
Theorem 2 and the first term in (A.15) converges in distribution to a Gaussian vector
by Theorem 2. The second term in (A.15) is

√
n
(
Ê− E

)
A′Re

t and its convergence to a
p× 1 Gaussian random vector follows by the same argument as in the proof of Lemma
18. In consequence we deduce the result.

A.1.8 Proof of Theorem 4

To ease the notation, write Rt for Re
t throughout. The solution to (11), when only the

first I factor scores are priced for each factor, is the standard generalised least square
estimator

b̂0 =
[
Ĉ ′

RŜ
Ŵ ĈRŜ

]−1

Ĉ ′
RŜ
Ŵ ÊRt, (A.16)

which is LI × 1. From (A.16), we have that

(
b̂0 − b0

)
=

[
Ĉ ′

RŜ
Ŵ ĈRŜ

K

]−1 Ĉ ′
RŜ
Ŵ
(
ÊRt − ĈRŜb0

)
K

.

By Lemma 14, we can replace ĈRŜ with ĈRS throughout. Moreover, Ŵ is diagonal
and consistent for W under the Frobenius norm. Hence, by the continuous mapping
theorem, the LI ×K matrix [

Ĉ ′
RŜ
Ŵ ĈRŜ

K

]−1
Ĉ ′

RŜ
Ŵ

K

can be replaced with the matrix[
C ′RSWCRS

K

]−1
C ′RSW

K
.

Now, by Lemma 20, the above display has singular values proportional to K−1/2. To
ease notation, define QK = C ′RSW/K, which is an LI ×K matrix. By Lemma 20, this
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matrix has singular values bounded by a constant multiple of K−1/2. Hence, we claim
that that QK satisfies the conditions of A as in Theorem 2. To see this, we note that LI
is a fixed finite number and that E |QKRt|42 = E |R′tQ′KQKRt|2 = O

(
E (K−1R′tRt)

2
)
by

the aforementioned remarks on the singular values of QK . Given that E (K−1R′tRt)
2
<

∞, we have proved the claim. Then, we shall now focus on finding the asymptotic
distribution of

√
nQK

(
ÊRt − ĈRŜb0

)
=
√
n
(
ÊQKRt −QKCRSb0

)
+
√
nQK

(
ĈRS − CRS

)
b0

+
√
nQKĈR(Ŝ−S)b0. (A.17)

The first term on the r.h.s. of (A.17) has mean zero because ERt = CRSb0 by Lemma
3. Hence,

√
n
(
ÊQKRt −QKCRSb0

)
=

1√
n

n∑
t=1

QK (1− E)Rt.

By the same argument as in the proof of Lemma 18, the central limit theorem applies
to the above display. By Lemma 18, also the second term in (A.17) satisfies the cen-
tral limit theorem. Finally, by Lemma 15, the third term in (A.17) also converges in
distribution to a Gaussian vector. This completes the proof.

A.1.9 Proof of Lemma 4

Write

√
n

(
I∑

i=1

â
(l)
i Φ̂

(l)
i −

I∑
i=1

a
(l)
i Φ

(l)
i

)
=

I∑
i=1

√
n
(
â

(l)
i − a

(l)
i

)
Φ̂

(l)
i

+
I∑

i=1

a
(l)
i

√
n
(

Φ̂
(l)
i − Φ

(l)
i

)
.

By the assumed convergence in distribution of the coefficients and Lemma 11, the first
term on the r.h.s. converges to a mean zero Gaussian process. By Lemma 12 also the
second term converges to a Gaussian process with mean zero. By Slutsky theorem, the
result follows.
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A.2 Bootstrap Confidence Intervals and Standard Er-

rors

Our estimations are based on intermediate results, as we estimate the eigenfunctions
and compute the estimated factor scores. These intermediate estimations do not alter
the asymptotic distribution. However, they result in standard errors that are difficult
to compute. For this reason we use the following bootstrap procedure.

1. Given the sample {(Rt, Ft) : t = 1, 2, ..., n} resample n observations with replace-
ment.

2. Compute the factor scores and carry out all the estimations to derive a value for
loadings, risk prices and risk premia.

3. Repeat 1000 times

4. Center all the 1000 bootstrap estimates using the estimates from the original
sample.

5. Compute the standard deviation assuming zero mean and divide by
√
n to find

the bootstrap standard errors. Alternatively, compute confidence intervals from
the empirical distribution of the bootstrap distribution.

The bootstrap is valid if the asymptotic distribution of the statistic is normal and if the
test statistic is smooth. The validity of this procedure is guaranteed by the convergence
result in Section 2.7.2.

A.3 Additional Details on Empirical Results

A.3.1 The Implied Vol Data

The implied volatilities were obtained from Bloomberg using the ticker: “SPX 3M m

VOL LIVE INDEX”. Here, m is the corresponding moneyness value from 80 to 120
per cent. The implied volatility surface is calculated by Bloomberg’s Listed Implied
Volatility Engine (LIVE). After estimating the corresponding implied forwards LIVE
calculates a grid of implied volatility points for the option chain of each listed expiration
date. The underlying model used for such calibrations is the lognormal mixture model
of Brigo and Mercurio (2002). Implied volatility is quoted annualized. Since we conduct
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our analysis on a daily frequency we convert the implied volatility to daily volatility by
dividing the original data by

√
252 .

A.3.2 Implied Variance Statistics

We plot the time series of the implied variance at different levels of moneyness and find
it to be persistent (Figure A.1).

Figure A.1: Implied Variances from end of 2006 to 2019. The 80% (top line), the
100% (middle line) and the 120% (bottom line) implied variances are plotted against
time at daily frequency.

The plots for the autocorrelation function of the at the money variance and variance
changes suggest time series dynamics that can be approximated by a local random walk
(Figure A.2).
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Figure A.2: ACF. Autocorrelation of implied variance in levels (top panel) and first
differences (bottom panel).
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A.3.3 Descriptive Statistics of Returns and Factor Scores

Table A.1 reports yearly averages of the main quantities of interest. The results are
difficult to interpret. Hence, we also compute correlations in Table A.2. We find that
the market is always negatively correlated with the level of variance. During the 2008-
2009 crisis period, the slope was positively correlated with the market. However, in all
subsequent years, the correlation was negative. The opposite appears to be true for
the curvature. This seems to suggest that the skew has essentially decreased during
the years, while the curvature has increased. Given that in a year, there are about 252
trading days, the standard error for a zero correlation is approximately 0.063 (numbers
in Table A.2 are multiplied by 100). In summary, we conclude that higher values of the
market and curvature are associated to good states of the world, while the reverse is
for level and slope.

Table A.1: Yearly Means. Average daily values of excess market returns (Mrk), the
level factor score (Lvl), the slope factor score (Slp) and curvature factor score (Crv) of
implied variance, and UMD. The overall mean (Overall) using the full sample of daily
observations is also reported for each variable. Given that for 2019 we only have 2
months, row “Overall” does not coincide with the average over the years. Numbers are
multiplied by 100 and represent basis points per day.

Year Mrk Lvl Slp Crv UMD
2007 0.91 0.51 0.01 -0.09 9.39
2008 -15.48 1.48 -0.01 0.00 6.44
2009 11.31 -1.57 0.02 0.05 -26.24
2010 7.00 -0.14 -0.01 0.03 2.58
2011 1.34 0.31 0.07 -0.06 4.53
2012 6.36 -0.39 -0.05 0.04 -0.09
2013 12.22 -0.20 -0.07 0.01 2.83
2014 4.68 0.26 0.15 0.05 1.31
2015 0.51 -0.04 -0.01 -0.03 7.12
2016 5.30 -0.10 -0.07 0.03 -7.71
2017 7.88 -0.08 0.06 0.05 3.39
2018 -2.20 0.46 -0.04 -0.12 5.14
2019 28.95 -2.53 0.06 0.37 -20.10

Overall 3.63 0.01 0.00 0.00 0.45

We compute the contribution of the first factor score of the variance innovation
curve. We do so over time, as we go from market stress into a bull market. To this end,
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Table A.2: Yearly Correlation. Correlations are computed for excess market returns
(Mrk) and the level factor score (Lvl) with the slope factor score (Slp) and curvature
factor score (Crv) of implied variance, and the momentum factor (UMD). The overall
correlation (Overall) using the full sample of daily observations is also reported for each
pair of variables. Numbers are multiplied by 100 and rounded the the nearest integer.

Year Mrk,Lvl Mrk,Slp Mrk,Crv Mrk,UMD Lvl,Slp Lvl,Crv Lvl,UMD
2007 -87 -28 55 5 41 -40 -13
2008 -85 45 -20 -63 -48 34 48
2009 -81 30 17 -77 -39 -12 68
2010 -81 -43 31 68 65 -30 -61
2011 -81 -31 33 -13 47 -22 7
2012 -78 -48 36 -52 70 -19 40
2013 -72 -41 29 47 71 13 -38
2014 -79 -44 34 46 66 -10 -28
2015 -88 -63 47 -9 76 -30 0
2016 -89 -73 72 -44 82 -64 32
2017 -76 -66 22 37 74 3 -35
2018 -88 -73 56 39 86 -53 -36
2019 -87 -23 70 -24 37 -77 34

Overall -80 -11 20 -35 0 0 33

Table A.3: First Eigenvalue Contribution. The ratio of the first eigenvalue of the
implied variance curve over the total sum of the eigenvalues is computed for each year.
Numbers are multiplied by 100 and rounded the nearest integer.

Year ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19
Ratio 94 99 99 97 96 89 82 84 94 94 82 93 91

we report the ratio between the first eigenvalue and the total sum of the eigenvalues.
This calculation is repeated for each year. We expect the level to dominate in periods of
market stress consistently with our previous remarks. Table A.3 shows that this is the
case. Hence, any unexpected change in the curve during the crises was mostly captured
by the level.

A.3.4 The Cross-Sectional Regression

In Table A.4, taking into account the standard errors, we see that the loadings for the
constant and the level are statistically small. The market loading dominates, but as

20



expected, UMD (portfolio 11) has the smallest loading on the market. The loadings on
slope and curvature provide interesting insights. The higher the momentum, the more
negative is the loading on slope with reverse sign for lower momentum portfolios, re-
sembling a decreasing linear function. This means that an unexpected increase in slope
(higher out of the money put variance) reduces the return on momentum strategies.
An increase in the slope means an increase in the implied variance of out of the money
puts relative to the out of the money calls (i.e. a more negative slope). Conversely,
the loading on curvature is positive. We can see that UMD (portfolio 11) is the one
with the highest loading. UMD is close to being market neutral but still benefits from
this increase in out of the money calls. We view this increase in curvature as “good
variance” as opposed to the variance of the level factor which is associated with market
distress.

Table A.4: Time Series Regression. The excess returns of the 11 portfolios are regressed
on an intercept (const), the market excess return (Mrk) and the first three factor scores
(Lvl, Slp, Crv) of the implied variance innovations. Standard errors (s.e.) are computed
using the bootstrap. Numbers are multiplied by 100 and rounded to the nearest integer.

Portfolio
1 2 3 4 5 6 7 8 9 10 11

const -4 -1 0 0 1 0 1 1 0 1 1
s.e. 3 2 1 1 1 1 1 1 1 1 2
Mrk 175 138 118 110 102 97 93 92 98 109 -28
s.e. 8 4 3 2 2 1 1 1 2 3 4
Lvl 61 -14 -12 -12 -29 -21 -14 -2 19 43 18
s.e. 33 20 16 11 8 6 6 7 8 12 18
Slp 494 443 308 230 162 42 -62 -138 -205 -300 -474
s.e. 94 57 47 28 24 20 18 22 24 37 55
Crv -439 -306 -112 -97 -86 -28 24 95 92 199 282
s.e. 121 84 55 39 34 30 36 41 41 70 79
R2 67 80 86 90 93 95 95 92 89 76 18

A.3.5 Comparison to Carhart Four Factor Model

Carhart four-factor model (Carhart, 1997) is used here as a benchmark to put the
results of the paper into perspective. Once we retain the factor scores from the implied
variance surface, the number of factors is four as in Carhart four-factor model. The
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models are non-nested. The results from the factor loadings estimation are reported in
Table A.5. We use the estimates to compute the regression in the cross-section. For the
sample in question, Carhart four-factor model does not price the cross section better
than our implied variance model. This can be seen comparing the R2 in Tables A.6 and
A.7 with the ones in Tables 1 and 3. It is worth noting that we were able to produce
similar results to Carhart four-factor model without the use of UMD as factor. UMD
has been specifically designed to capture the risk premium on momentum.

Table A.5: Time Series Regression. The excess returns on the 11 portfolios are re-
gressed on an intercept (α), the market excess return (Mrk) and small minus big (SMB),
high minus low (HML) and UMD. Standard errors (s.e.) are computed using the boot-
strap. Numbers are multiplied by 100 and rounded to the nearest integer.

Portfolio
1 2 3 4 5 6 7 8 9 10 11

α 0 1 1 0 1 1 -1 0 0 0 0
s.e. 1 1 1 1 0 0 0 1 0 1 0
Mrk 101 100 100 99 98 100 105 119 0 119 0
s.e. 1 1 1 1 1 1 1 2 0 2 0
SMB 5 -1 -6 -3 -3 2 5 24 0 24 0
s.e. 1 2 2 2 2 1 1 3 0 3 0
HML 1 5 5 2 1 5 5 -1 0 -1 0
s.e. 2 2 2 2 1 2 1 3 0 3 0

UMD -58 -34 -22 -5 9 25 37 60 100 60 100
s.e. 1 1 1 1 1 1 1 2 0 2 0
R2 97 95 95 95 95 95 95 90 100 90 100

Table A.6: Cross-Section Regression. The average return of the 11 portfolios are
regressed on a pricing error and the estimated betas from the time series regression.
The bootstrap 2.5% (Q2.5%) and 97.5% (Q97.5%) quantiles are also reported. These
represent a 95% bootstrap confidence interval. Numbers are multiplied by 100, hence
in basis points per day.

Pricing Error Market SMB HML UMD
Risk Premia 0.1 4.1 -2.6 -5.0 0.0

Q2.5% -0.8 -0.3 -10.1 -16.2 -3.7
Q97.5% 1.0 8.3 5.8 5.7 3.7
R2 91.9
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Table A.7: Discount Factor Estimation. Results from GMM estimation minimizing
the Hansen-Jagannathan Distance (11) using a diagonal scaling matrix equal to the
estimated variance of the portfolios. The bootstrap 2.5% (Q2.5%) and 97.5% (Q97.5%)
quantiles are also reported. These represent a 95% bootstrap confidence interval. Num-
bers are multiplied by 100, hence in basis points per day.

Market SMB HML UMD
b 5.2 -10 -14.9 -3.4

Q2.5% 0.4 -33.4 -41.8 -13.7
Q97.5% 10 16.9 9.5 6.9

λ 4.2 -2.8 -4.4 0.1
Q2.5% 0 -10.6 -13.2 -3.7
Q97.5% 8.3 5.4 4.4 3.6
R2 92.7

A.3.6 Additional Details on Factor Mimicking Portfolios

The pricing equation (1) still holds if we use factor mimicking portfolios in place of the
non tradable factors (e.g. Breeden, 1979, Breeden et al., 1989, Huberman et al., 1987).
When the factor is a curve, in principle, we may need an infinite number of portfolios for
the argument to be valid. However, due to the fact that the covariance of the functional
data is the kernel of a compact operator (it is square integrable), we can in principle use
a small number of portfolios as approximation. This is clearly the case if only a small
number of factor scores is priced. Then, we only need to mimic these factor scores. Let
St be the three dimensional vector of factor scores for {Σt (s) : s ∈ [0, 1]}. Then, we use
the 11 portfolios to construct a factor mimicking portfolio for St. In particular,

St = γ0 + γ′1Rt + εt (A.18)

where γ0 and γ1 are 3×1 and K×3 dimensional matrices, and the error term εt is a 3×1

mean zero vector when conditioning on Rt. Table A.8 reports estimation details for the
constant, and portfolios 1, 10 and 11 (UMD). We note that the level loads positively
portfolio 1, which has the lowest momentum. The bootstrap confidence intervals suggest
little relation to portfolios 10 and UMD. The slope is the one that is most related to
UMD. Given the overall poor performance of UMD over the sample, we understand why
the slope does not gain a risk premium. On the other hand, as expected, the curvature
does load significantly the highest momentum portfolio. Results are in Table A.8.
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We construct tradable portfolios standardizing the γ1 matrix to have columns with
unit Euclidean norm. Given that the ith column in γ1 is the exposure to the portfo-
lios returns for the ith factor score, this ensure a homogeneous exposure across factor
scores.12

Table A.8: Factor Mimicking Portfolios. Results from the regression in (A.18). The
regression was carried out using Rt (11 portfolios), but only the values for the intercept
and the estimated entry in γ1 corresponding to the coefficient of UMD (γ1,umd) are
reported. The bootstrap 2.5% (Q2.5%) and 97.5% (Q97.5%) quantiles are also reported.
These represent a 95% bootstrap confidence interval. Numbers are multiplied by 100.

Level Slope Curvature
γ0 0.82 0.02 -0.02

Q2.5% 0.23 -0.16 -0.11
Q97.5% 1.37 0.18 0.07
γ1,port1 2.04 -0.19 0.00
Q2.5% 0.05 -0.58 -0.12
Q97.5% 3.70 0.24 0.13

- - - -
γ1,port10 -0.27 -0.29 0.25
Q2.5% -2.62 -0.79 0.05
Q97.5% 2.06 0.22 0.46
γ1,port11 -0.45 1.04 -0.19
Q2.5% -7.28 -0.45 -0.66
Q97.5% 5.99 2.58 0.29
R2 65.55 9.36 5.64

Table A.9, reports summary statistics for the excess returns on the market, UMD,
the highest decile portfolio (portfolio 10) and the scaled curvature mimicking portfolio.
UMD has not fared well during the sample period. The market, portfolio 10, and
the curve mimicking portfolios enjoyed higher levels of returns. The low correlation
between portfolio 10 and UMD suggest that the performance of portfolio 10 was not
driven by UMD. Both portfolio 10 and the curvature mimicking portfolios are highly
correlated with the market. The market remains the main pricing factor for portfolio
10. However, the correlation between portfolio 10 and the curvature mimicking portfolio

12This means that the portfolio weights do not add to one, as it is usually the case. However, this
has no consequences for empirical results, as the portfolio remains factor mimicking (Huberman et al.,
1987, Proposition 1).
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Table A.9: Summary Statistics of Scaled Curvature Mimicking Portfolio Excess Re-
turns and Other Portfolios. Mean, standard deviation (std) and Sharpe ratio are in
annualized terms for the market (Mrk), UMD, the highest decile portfolio (Port10) and
the scaled curvature mimicking portfolio (Crv). Here, Crv is scaled by the Euclidean
norm of the portfolios γ1 loadings. The correlations (corr) between these portfolios are
also reported with numbers multiplied by 100 and rounded to the nearest integer.

Mrk UMD Port10 Crv
mean 9.15 0.33 11.92 6.09
std 19.83 15.83 23.82 12.57
Sharpe 0.46 0.02 0.50 0.48
corr Mrk - - - -
corr UMD -35 - - -
corr Port10 86 5 - -
corr Crv 86 0 93 -

is higher than 90%. This is in line with the other results in the paper that show that
curvature is positively loaded by high momentum portfolios. These correlation results
show that the curvature mimicking portfolio and portfolio 10 are long market beta,
while UMD is short market beta, in the sample. We also carried out our analysis at
monthly frequencies. In that case, the curvature mimicking portfolio was less correlated
with portfolio 10 (35%) and its Sharpe went up to 1.15. To put this into perspective,
the monthly Sharpe ratios on market, UMD and portfolio 10 at monthly frequencies
were 0.55, -0.02, and 0.54, respectively. However, due to the possibility of an extreme
increase in error in variables in our analysis when using monthly frequencies - due to
factor scores estimation - we preferred to use daily frequencies.

A.3.6.1 Scatter Plots of Factor mimicking Portfolios

Figure A.3 reports various scatter plots to further highlight the relation of the factor
mimicking portfolios with the market and UMD.
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Figure A.3: Scatter Plots of Mimicking Portfolios and Factors.
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A.4 Finite Sample Performance

To assess the performance of the theoretical results in a finite sample, we use simula-
tions. We focus on a design relevant to the empirical results from Section 3. In particu-
lar, the starting point is the data from Section 3. We use the computed eigenfunctions
and factor scores as if they were the population ones. We also use the estimated loadings
from the times series regression to compute residuals. The time series regression is the
one of returns on the portfolios regressed on market excess return and the three factor
scores. We then simulate error terms and factors ensuring that the same structure of
the original data is preserved. The details on how the data are simulated is given in
Algorithm 3. Our results use 1000 simulations to compute the quantities of interest
with increasing sample size n0 ∈ {1250, 2500, 5000} and varying levels of noise relative
to the original data to assess the sensitivity of the results.
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Algorithm 3 Monte Carlo Simulation.
Define
Xt =

(
Re

t,m, Ŝt,1, Ŝt,2, Ŝt,3

)′
where Ŝt,1, Ŝt,2, Ŝt,3 are the first three factor scores estimated

from the sample data in the empirical section of the paper;{
Φ̂i (·) : i = 1, 2, 3

}
to be the estimated eigenfunctions;

Compute
The mean and covariance matrix of {Xt}, say µ̂X , ĈX ;
The estimator

(
â0, β̂0, β̂1, β̂2, β̂3

)
(of dimension 11× 4) from the time series regression

Rt = a0 + β0R
e
t,m +

∑3
i=1 βiŜt,i + εt;

The residuals from this regression and estimate their covariance matrix, say Ĉε.
Set
n0 ∈ {1250, 2500, 5000}, τ ∈ {1/2, 1, 2}.
For r = 1, 2, ..., 1000

Simulate error terms
{
ε

[r]
t : t = 1, 2, ..., n0

}
from a multivariate normal distribution with

mean zero and covariance τĈε;
Simulate factor scores

{
X

[r]
t : t = 1, 2, ..., n0

}
from a multivariate normal distribution

with mean µ̂X and covariance ĈX ;
Define

{
R

[r]
t : t = 1, 2, ..., n0

}
where R[r]

t = â0 +
∑4

i=1 β̂i−1X
[r]
t,i + ε

[r]
t ;

Define
{
F

[r]
t : t = 1, 2, ..., n0

}
where F [r]

t (·) =
∑3

i=1X
[r]
t,i+1Φ̂i (·);

Carry out the estimations as in the paper but using the simulated data;
End of for loop.

In Algorithm 3 we use the superscript r within square brackets to mean that the
variables are the result of the rth simulation. This should not be confused with the
superscripts used to denote the k risky asset of the l factor. Hence, in Algorithm 3, R[r]

t

is the 11× 1 vector of risky assets from the rth simulation.
In order to understand the results, note that we use τ in the simulation Algorithm

3 to vary the signal to noise. In particular, τ = .5 corresponds to a signal to noise
ratio increased by two times relative to the sample data in the empirical section. On
the other hand, τ = 2 implies a reduction of the signal to noise by two. The results
show that a relatively large sample size may be needed when the signal to noise is very
low. Consistent estimation of the risk premia for very low signal to noise (i.e. τ = 2)
can be challenging. The detailed results are in Tables A.10, A.11, A.12, and A.13. To
summarise these results, we note that the estimation of the loadings is not very sensitive
to the level of noise. However, the risk premium estimation is more challenging and
does require larger sample sizes when the signal to noise drops substantially.
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Table A.10: Time Series Regression: Estimated loadings. The true values are reported
on the top line. Mean and s.e. are the mean and standard errors from from 1000
simulations.

Const. Market Level Slope Curvature
n0 τ True 0.008 1.092 0.428 -2.995 1.994
1250 0.5 mean 0.008 1.092 0.424 -2.986 2.000
1250 0.5 s.e. 0.000 0.001 0.003 0.010 0.020
2500 0.5 mean 0.008 1.092 0.427 -2.988 2.011
2500 0.5 s.e. 0.000 0.000 0.002 0.007 0.014
5000 0.5 mean 0.008 1.093 0.427 -2.981 1.991
5000 0.5 s.e. 0.000 0.000 0.001 0.005 0.010
1250 1 mean 0.008 1.092 0.423 -2.983 2.002
1250 1 s.e. 0.001 0.001 0.004 0.014 0.028
2500 1 mean 0.008 1.092 0.427 -2.985 2.018
2500 1 s.e. 0.000 0.001 0.003 0.010 0.019
5000 1 mean 0.008 1.093 0.427 -2.975 1.990
5000 1 s.e. 0.000 0.000 0.002 0.007 0.014
1250 2 mean 0.008 1.092 0.421 -2.979 2.005
1250 2 s.e. 0.001 0.001 0.006 0.020 0.040
2500 2 mean 0.008 1.092 0.426 -2.981 2.028
2500 2 s.e. 0.001 0.001 0.004 0.014 0.027
5000 2 mean 0.008 1.093 0.427 -2.967 1.989
5000 2 s.e. 0.000 0.001 0.003 0.010 0.020
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Table A.11: Cross-sectional Regression: Estimated risk premia from the two-step
regression. The true values are reported on the top line. Mean and s.e. are the mean
and standard errors from from 1000 simulations. Numbers multiplied by 100.

Const. Market Level Slope Curvature
n0 τ True -0.016 3.918 -2.584 0.124 0.800
1250 0.5 mean -0.025 3.931 -2.777 0.020 0.655
1250 0.5 s.e. 0.015 0.116 0.066 0.017 0.021
2500 0.5 mean -0.018 3.975 -2.696 0.064 0.708
2500 0.5 s.e. 0.010 0.081 0.045 0.012 0.017
5000 0.5 mean -0.021 3.953 -2.643 0.095 0.760
5000 0.5 s.e. 0.007 0.058 0.035 0.008 0.011
1250 1 mean -0.022 3.929 -2.880 -0.052 0.538
1250 1 s.e. 0.022 0.117 0.091 0.024 0.028
2500 1 mean -0.019 3.972 -2.791 0.013 0.625
2500 1 s.e. 0.014 0.082 0.062 0.016 0.022
5000 1 mean -0.023 3.953 -2.694 0.067 0.719
5000 1 s.e. 0.010 0.059 0.048 0.012 0.015
1250 2 mean 0.014 3.894 -2.930 -0.134 0.388
1250 2 s.e. 0.036 0.121 0.131 0.034 0.034
2500 2 mean -0.010 3.955 -2.907 -0.057 0.501
2500 2 s.e. 0.021 0.083 0.088 0.022 0.028
5000 2 mean -0.025 3.950 -2.777 0.017 0.642
5000 2 s.e. 0.014 0.060 0.067 0.017 0.021
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Table A.12: Risk Price from GMM: Estimated risk prices. The true values are reported
on the top line. Mean and s.e. are the mean and standard errors from from 1000
simulations.

Market Level Slope Curvature
n0 τ True -0.280 -1.303 0.087 16.925
1250 0.5 mean -0.252 -1.220 -0.487 13.247
1250 0.5 s.e. 0.006 0.027 0.084 0.350
2500 0.5 mean -0.261 -1.248 -0.258 14.696
2500 0.5 s.e. 0.004 0.018 0.058 0.281
5000 0.5 mean -0.270 -1.274 -0.090 15.828
5000 0.5 s.e. 0.003 0.014 0.042 0.191
1250 1 mean -0.229 -1.148 -0.820 10.626
1250 1 s.e. 0.008 0.036 0.113 0.447
2500 1 mean -0.249 -1.213 -0.510 12.847
2500 1 s.e. 0.006 0.025 0.079 0.370
5000 1 mean -0.265 -1.262 -0.241 14.832
5000 1 s.e. 0.004 0.019 0.058 0.259
1250 2 mean -0.191 -1.006 -1.090 7.437
1250 2 s.e. 0.010 0.049 0.149 0.533
2500 2 mean -0.226 -1.142 -0.826 10.195
2500 2 s.e. 0.008 0.035 0.107 0.464
5000 2 mean -0.252 -1.228 -0.500 12.990
5000 2 s.e. 0.006 0.026 0.080 0.342
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Table A.13: Risk Premia from GMM: Estimated risk premia based on GMM. The
true values are reported on the top line. Mean and s.e. are the mean and standard
errors from from 1000 simulations. Numbers multiplied by 100.

Market Level Slope Curvature
n0 τ True 3.861 -3.059 0.189 0.844
1250 0.5 mean 3.852 -2.869 0.079 0.577
1250 0.5 s.e. 0.114 0.061 0.016 0.019
2500 0.5 mean 3.907 -2.993 0.120 0.681
2500 0.5 s.e. 0.080 0.042 0.012 0.016
5000 0.5 mean 3.883 -3.035 0.152 0.763
5000 0.5 s.e. 0.057 0.032 0.008 0.011
1250 1 mean 3.868 -2.719 0.030 0.431
1250 1 s.e. 0.114 0.080 0.021 0.024
2500 1 mean 3.915 -2.941 0.074 0.563
2500 1 s.e. 0.080 0.056 0.016 0.020
5000 1 mean 3.890 -3.013 0.121 0.691
5000 1 s.e. 0.058 0.043 0.011 0.015
1250 2 mean 3.886 -2.434 -0.003 0.280
1250 2 s.e. 0.114 0.105 0.027 0.028
2500 2 mean 3.921 -2.809 0.024 0.409
2500 2 s.e. 0.080 0.076 0.020 0.024
5000 2 mean 3.895 -2.956 0.072 0.575
5000 2 s.e. 0.058 0.058 0.015 0.019
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