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Abstract

Studies on unfolding methods and measurements of tt̄ differential cross sections in

the l+jets decay channel at the Large Hadron Collider are presented in this thesis.

Available and novel unfolding algorithms are compared using known and new figures

of merit and a response matrix estimation method that is less dependent on the

size of the training data. Lastly, a novel covariance matrix estimation method is

presented that includes both statistical and systematic uncertainties from various

sources. Measurements of tt̄ production cross sections in the l+jets decay channel

at the Large Hadron Collider are presented. A total integrated luminosity of 139

fb−1 of proton-proton collision data at a centre-of-mass energy of
√
s = 13 TeV has

been collected at the ATLAS detector. The production cross section as a function

of several kinematic variables are measured, unfolded and compared to theory. The

unfolded differential cross sections are used to estimate and constrain the c8
tq and c8,1

Qq

Wilson coefficients of the Standard Model Effective Field Theory with individual and

two-parameter fits using LO and NLO QCD SMEFT predictions. The results are

found to be in good agreement with the SM.
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Chapter 1

Introduction

Any contemporary particle physicist will acknowledge that they are standing on the

shoulders of giants. The development of the Standard Model (SM) has been a theo-

retical success story and is one of the most accurate quantum field theories (QFT) to

date. Also, the massive collaborative effort, technological innovation and experimen-

tal creativity that produced the evidence to support the Standard Model is impressive

to say the least. The Large Hadron Collider (LHC) at the Conseil Européen pour la

Recherche Nucléaire (CERN) has been probing the fundamental building blocks of

nature for 13 years and affirmed our view on nature with the discovery of the Higgs

boson in 2012 by both the ATLAS and CMS experiments. However, many unan-

swered questions about our universe remain.

Measurements on the top quark, the most massive particle of the Standard Model,

can be used to both improve measurements of Standard Model parameters and test

the validity of new QFTs. The Large Hadron Collider provides unique conditions

to study the top quark and produce high precision data. This thesis presents top

quark pair differential cross sections in the lepton+jets decay channel using pp col-

lisions at a centre-of-mass energy of
√
s = 13 TeV as recorded by the ATLAS detector.

1



Many SM extensions, i.e. Beyond the Standard Models (BSM), have emerged that

posed solutions for unanswered questions. However, none have been supported with

sufficient evidence to become the new status quo. We need to take a step back, widen

our scope and redefine our direction in our theoretical landscape. Effective field the-

ory (EFT) is the ideal framework to provide this wide model-agnostic scope. This

thesis therefore presents estimates and confidence bounds on parameters of the Stan-

dard Model Effective Field Theory using the top quark pair differential cross section

measurements.

The proper statistical treatment of measurements and their comparison with theory

is crucial. A vital part of many particle physics statistical frameworks is unfolding :

the process of correcting measured differential distributions for detector effects. This

thesis therefore also presents research on novel deconvolution methods that can be

applied to differential cross section measurements such as the one presented in this

thesis.

The thesis is structured as follows: Chapter 2 provides an introduction to quantum

field theory in the context of particle physics and how its principles are used to define

the Standard Model. It also summarizes some of the phenomena the Standard Model

fails to describe, an introduction to effective field theory and the specific EFT that is

used in this thesis known as the Standard Model Effective Field Theory (SMEFT).

Lastly, it describes the phenomenological models used to simulate top quark pair

production at the LHC. Chapter 3 provides an overview of the experimental setup

used to collect the data, i.e. the Large Hadron Collider and the ATLAS detector.

Chapter 4 describes the data analysis methods used to reconstruct meaningful physics

analysis objects from the data collected at the ATLAS detector. Chapter 5 presents

2



the research on unfolding methods. Chapter 6 presents the measurement of the tt̄

differential cross sections in the l+jets decay channel. Chapter 7 presents how these

measurements are used to constrain SMEFT Wilson coefficients and Ch. 8 closes

with some conclusions.

Personal contribution

The ATLAS Collaboration consists of 5500 members spanning 41 countries that con-

tribute as physicists, engineers, technicians, students and support staff. This thesis

has been made possible by the collaborative effort of these members. Any scientific

results that has been produced in part or completely by someone else is referenced

accordingly. Here I would like to outline my personal contributions.

Chapter 5 presents unfolding studies that emerged whilst maintaining, developing

and supporting the RooUnfold software package. I was one of the two first authors of

the comparison study and the main investigator of the response matrix and covari-

ance estimation studies.

Chapter 6 presents a differential cross section measurement that has been done in

collaboration with an ATLAS analysis team. The event and object selection has

been developed and applied by the analysis team and previous analysis teams that

performed a tt̄ differential cross section measurement. The data and Monte Carlo

samples were produced by members of ATLAS dedicated to these specific tasks. I

contributed by validating the produced data and Monte Carlo samples, studying data-

MC agreement, setting up the unfolding framework and producing the final unfolded

result.
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Chapter 7 presents measurements of SMEFT Wilson coefficients produced by my-

self. This includes defining the strategy and statistical framework, producing the

SMEFT Monte Carlo samples, applying the Rivet object and event selection and

writing the code for the fitting procedures.
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Chapter 2

Theoretical Framework

This chapter presents the theoretical framework needed to make predictions for pp

collisions at the LHC. Over the years many theorists have shown great creativity and

effort in the development of theories that describe the character of matter on the

smallest possible scales. The goal of these theories is to model nature in a mathemat-

ical framework resulting in predictions for observable quantities that can be compared

with experiment.

Quantum Field Theory (QFT) was born in the necessity to improve the concepts

of relativistic quantum mechanics. In the 1920s Paul Dirac took the first steps by

quantizing classical electromagnetic fields in an attempt to describe the creation and

annihilation of particles. However, it was only in the 1949 that Richard Feynman

reformulated Dirac’s theory of Quantum Electrodynamics (QED) into one with cal-

culable quantities. This resulted in the first QFT which was followed by many others.

The Standard Model of Particle Physics is a group of quantum field theories that have

been amassed over the years. Together they supply one of the most accurate theories

in history and is the current status quo of the subatomic world.
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Section 2.1 will start with a brief superficial introduction on the Standard Model i.e.

a general description of all the subatomic particles and fundamental forces it con-

tains. Section 2.2 continues with some basic concepts of a quantum field theory, how

they are used to describe particles and how they manifest themselves into measur-

able observables such as cross sections. Section 2.3 continues by introducing gauge

symmetries and how they are used to define the quantum field theories that make

up the Standard Model. Section 2.4 describes the Higgs mechanism that is needed

to explain particle masses. Section 2.5 discusses some open issues of the Standard

Model that motivate the experiments at the LHC. Section 2.6 discusses a special type

of quantum field theory known as an effective field theory (EFT) that is used to ex-

plore new physics in a BSM theory agnostic way. Section 2.7 discusses the theoretical

principles used to simulate top quark pair production at the LHC.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is a renormalizable quantum field theory

[1, 2] that describes the most fundamental building blocks of the universe and the

interactions between them. This section will give a general summary of the particles

it contains, some of their characteristics and how they interact.

In Fig. 2.1 an overview is shown of all the currently known elementary particles

along with their mass, colour charge, electric charge and spin. The latter divides

the elementary particles into two groups: the fermions with half integer spin and the

bosons with integer spin. The fermions consist of the quarks and leptons which make

up all matter around us whilst the gluons, photons, Z and W bosons mediate the

strong, electromagnetic and weak force, respectively. The Higgs boson is an excita-

tion of the Higgs field but does not introduce a new force like the before mentioned
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bosons. Instead the Higgs field “gives” particles mass through the Higgs mechanism,

discussed in Sec. 2.4. The top quark is the most massive fermion of the Standard

Model and will be the focus of this thesis.

At the bottom right of Fig. 2.1 a space is left blank for the hypothesized graviton

boson [3] which should mediate the gravitational force. No particle with fitting char-

acteristics has yet been found to support a theory of quantum gravity [4, 5]. However,

in the upcoming sections the gravitational force can be neglected as its strength is

negligible on subatomic scales [6].

Figure 2.1: The particles of the Standard Model. From [7].

This zoo of particles has a very intricate mathematical framework behind them. Treat-

ing the particles as point- or sphere-like objects, as many envision subatomic particles,

can be a good classical approximation in certain scenarios such as in Rutherford scat-

tering [8]. However, a more complete description can be given with quantum field

theories that consider particles as excitations of quantum fields. The Lagrangian for-

malism is one of the narratives used within quantum field theories to build models

and make predictions.
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2.2 Lagrangian Formalism

The Lagrangian formalism [9, 10] initially was a reformulation of the Newtonian

classical mechanics. However, in this section we will show how the concepts of this

mathematical framework can be used as a natural starting point for a quantum field

theory. There are two different ways to generalize the classical Lagrangian formalism

to a quantum field theory: the path integral description and the canonical quanti-

zation. We will not discuss the canonical quantization here. However, additional

material on the canonical quantization can be found in [11, 12] and Appendix A.1.

The rest of this chapter will follow the Lagrangian formalism with the path integral

narrative.

2.2.1 Principle of Least Action

The path integral approach starts with the principle of least action. This is a varia-

tional principle that, when applied to the action, gives the equations of motion of a

system [9]. The action is defined as

S[q(t)] =

∫ t2

t1

L(q(t), q̇(t)) dt. (2.1)

The action is a time integral over the Lagrangian L(q(t), q̇(t)) which is a function of

a set of generalized coordinates q(t) = (q1(t), q2(t), ..., qN(t)) and their time derivates

q̇(t) = (dq1(t)
dt

, dq2(t)
dt

, ..., dqN (t)
dt

). The evolution from one state at time t1 to another at t2

can go along different paths in the space spanned by the generalized coordinates and

its time derivatives. The principle of least action states that the path taken by the

system will be the one for which the action is stationary to the first order, i. e. δS = 0

[13], as depicted in Fig. 2.2. From this the Euler-Lagrange equations can be derived

d

dt

(∂L
∂q̇

)
− ∂L

∂q
= 0. (2.2)

8



The equations of motion of a system can be derived from the Euler-Lagrange equations

by defining an appropriate Lagrangian.

Figure 2.2: Different paths through configuration space. The red line indicates the
path for which δS = 0. From [14].

2.2.2 Path Integrals in Quantum Mechanics

In 1948 Feynman showed that there is an analogous approach to the classical path

integral approach for non-relativistic quantum mechanical systems [15]. He argued

that the evolution of a quantum system is not deterministically determined by the

principle of least action but probabilistic of nature. Each possible path in q-space

between an initial and a final quantum state comes with a probabilistic amplitude eiS ,

where S is the previously introduced action. The squared sum of these amplitudes

is the probability that the transition from an initial state |qi, ti〉 to a final quantum

state |qf , tf〉 will occur. The probability is defined as

P (qf , tf ; qi, ti) = |〈qf , tf |qi, ti〉|2 (2.3)

with the probability amplitude defined as
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〈qf , tf |qi, ti〉 =

∫
Dq(t) ei/~

∫ tf
ti

dtL(q,q̇) (2.4)

where Dq(t) denotes an integral taken over all possible paths between qf and qi [2].

2.2.3 Free Scalar Field Theory

In this section we will introduce the concept of fields and how they represent particles

with a simple toy example. Particles are considered to be excited states, or quanta,

of different fields that permeate all space. To include fields in the path integral

formalism one can make the following replacements.

q(t) −→ φ(x, t) (Field)

L(q(t)), q̇(t) −→ L(φ, ∂µφ) (Lagrangian Density)

(2.5)

Here we introduce the four-gradient ∂µ =
(

1
c
∂
∂t
,∇
)

and the scalar field φ. A scalar

field was chosen over vector and tensor fields to keep the example simple. Let us also

introduce the space-time coordinates x = (x, t) for notational ease. The action and

Euler-Lagrange equations are resp. redefined as

S[φ(x)] =

∫
L(φ, ∂µφ) d4x (2.6)

∂µ

( δL
δ(∂µφ)

)
− δL
δφ

= 0 (2.7)

Now let us introduce the Lagrangian density corresponding to the free scalar field

theory i.e. a non-interacting 0-spin particle.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (2.8)
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The probability amplitude of Eq. (2.4) changes into the functional

Z0[J ] ≡ 〈0|0〉J =

∫
Dφ ei/~

∫
d4x(L0+Jφ) (2.9)

also known as the functional integral. J(x) is known as the source and is added to

the lagrangian density L as a mathematical trick to calculate probability amplitudes.

|0〉 corresponds to the vacuum state i.e. a state with no particles present. For free

field theory we can define the functional as [2],

Z0[J ] = exp

[
i

2

∫
d4x d4x′ J(x)∆(x− x′)J(x′)

]
(2.10)

with the Feynman propagator,

∆(x− x′) =

∫
d4k

(2π)4

eik(x−x′)

k2 +m2 − iε . (2.11)

We can use these definitions to calculate n-point time-ordered correlation functions

which can be used to calculate transition probability amplitudes with the

Lehmann–Symanzik–Zimmermann(LSZ) reduction formula [2, 16]. A n-point time-

ordered correlation function [2, 1] can be defined as

〈0|T φ(x1)φ(x2)...φ(xn)|0〉 =

∫
Dφφ(x1)φ(x2)...φ(xn)ei/~

∫
d4xL0∫

Dφ ei/~
∫
d4xL0

=
1

i

δ

δJ(x1)

δ

δJ(x2)
...

δ

δJ(xn)
Z0[J ]

∣∣∣
J=0

.

(2.12)

Here we introduce the functional derivative δ
δJ(x)

and the time ordering symbol T . See

Appendix A.2 for some example correlation functions for the free scalar field theory.

According to Wick’s theorem [17] we can redefine the correlation functions in terms

of the Feynman propagators (Eq. (2.11)) as
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〈0|T φ(x1)φ(x2)...φ(x2n)|0〉 =
1

in

∑
p

∆(xp1 − xp2)...∆(xp2n−1 − xp2n). (2.13)

with
∑

p summing over all the permutations between the indices p1, p2, ..., p2n. It is

possible to pictorially represent the terms of the correlation functions with graphs

known as Feynman diagrams [18]. These graphs can make computations for more

complex correlation functions easier by following Feynman rules [2, 19]. These rules

are different for each underlying theory but can make the calculation of probability

amplitudes a lot simpler. Some example Feynman diagrams for the free scalar field

theory can be found in Appendix A.2.

Now let us use Eq. (2.13) to calculate the probability amplitude of an initial state

with n massive scalar particles with momenta (k1, k2, ..., kn) to a final state with m

massive scalar particles with momenta (p1, p2, ..., pm). The LSZ reduction formula

[2, 16] states that this probability amplitude can be defined as

〈p1, p2, ..., pm|k1, k2, ..., kn〉 =

m∏
j=1

[∫
d4xj ie

pjxj(∂2
xj

+m2)

]
×

n∏
l=1

[∫
d4xl ie

klxl(∂2
xl

+m2)

]

× 〈0|T φ(x1)φ(x2), ..., φ(x2n)|0〉.

(2.14)

Here we see how the correlation functions determine the scattering amplitude. Now

let us assume a simple example of 2 incoming and 2 outgoing massive scalar particles

with momenta p1, p2, p3 and p4. For 2 incoming and 2 outgoing particles we need the

free scalar field 4-point correlation of Eq. (A.5). The scattering amplitude becomes
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〈p1, p2|p3, p4〉0 =∫
d4x1 d

4x2 d
4x3 d

4x4 e
i(p1x1+p2x2−p3x3−p4x4)(∂2

x1
+m2)(∂2

x2
+m2)(∂2

x3
+m2)(∂2

x4
+m2)

× (∆(x1 − x2)∆(x3 − x4) + ∆(x1 − x3)∆(x2 − x4) + ∆(x1 − x4)∆(x2 − x3))

(2.15)

If we fill in the definition of the propagator (Eq. (2.11)) and apply Fourier transfor-

mations [2] we get

〈p1, p2|p3, p4〉0 =(2π)4δ4(p1 − p3)(2π)4δ4(p2 − p4)F (p1, p3)F (p2, p4)

+ (2π)4δ4(p1 − p4)(2π)4δ4(p2 − p3)F (p1, p4)F (p2, p3)

+ (2π)4δ4(p1 − p2)(2π)4δ4(p3 − p4)F (p1, p2)F (p3, p4)

(2.16)

with F denoting a Fourier transform term that does not need specifying for now.

The most important part is to note the delta functions δ. These tell us that all the

three terms contribute to “no scattering” events as they require the incoming and

outgoing momenta to be the same. See Appendix A.2 for Feynman diagrams that

represent these “no scattering events”. These are also known as vacuum diagrams

because they represent particles appearing and disappearing without any interaction.

We are interested in pp collisions where particles interact i.e. in diagrams that are

said to be fully connected.

2.2.4 Weak Coupling Perturbation Theory

One way of introducing an interaction is by including a perturbative contribution in

the free scalar Lagrangian,

L = L0 + Lint (2.17)
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with L0 being the free scalar field Lagrangian of Eq. (2.8) and Lint some interaction

term. The generating functional of Eq. (2.9) is redefined as

Z[J ] =

∫
Dφ exp

[
i/~
∫
d4x (L0 + Lint + Jφ)

]
. (2.18)

Now let us assume a quartic self-interaction between the scalar fields with coupling

strength λ.

Lint = − λ
4!
φ4 (2.19)

In Appendix A.2 it is shown how generating functionals, Taylor expansions and func-

tional derivatives can be used in a similar way to the previous section to calculate

n-point time-ordered correlation functions. Again we can plug the 4-point correlation

function of the weak coupling perturbation Lagrangian (See Appendix A.2) into the

2→ 2 LSZ formula and apply Fourier transformations as we did with Eq. (2.16).

〈p1, p2|p3, p4〉 = 〈p1, p2|p3, p4〉0 − iλ(2π)4δ4(p1 + p2 − p3 − p4) + ... (2.20)

In Appendix A.2 it is shown how the commonly used terms leading order (LO) and

next-to-leading order (NLO) accuracy correspond to the first and second order of

the Taylor expansion of the correlation functions in λ, respectively. One can include

higher order λ-contributions to improve the accuracy of the scattering amplitude. For

now we define the interaction scattering amplitude at leading order as

〈p1, p2|p3, p4〉int = −iλ(2π)4δ4(p1 + p2 − p3 − p4) (2.21)
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2.2.5 Cross Sections

Now that we know how to calculate a scattering amplitude 〈p1, p2|p3, p4〉int we need

to convert it into an observable that can be measured by particle collider experiment.

One of the go-to observables of particle collider experiments is the cross section. One

can define the total cross section as [2]

σ =

∮ |M|2
64π2s

dΩ (2.22)

with the
√
s being the center-of-mass energy of the collision, the integral done over

a whole sphere solid angle and M the matrix element. The matrix element M is

connected to the scattering amplitude 〈p1, p2|p3, p4〉int by [2]

〈p1, ..., pm|k1, ..., pn〉int = iM(2π)4δ4(k1 + ...+ kn − p1 − ...− pm). (2.23)

For a 2 → 2 scattering and leading order weak coupling perturbation interaction of

Sec. 2.2.4 the total cross section becomes

σ =
λ2

16πs
(2.24)

Particle collider experiments like the ATLAS Experiment try to identify and count

the number of events N with the outgoing particles from the scattering process of

interest. This is coupled to the total cross section via the definition

N = σ

∫
Ldt (2.25)

with L being the luminosity, the number of interactions between the incoming par-

ticles per unit of time. Additionally, one can count the number of events with a

certain kinematic variable value e.g. the number of events with a certain transverse
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momentum for one of the outgoing particles. These type of observables are known

as differential cross sections and are the focus of this thesis. An analysis approach

would be to compare measured cross sections with the cross sections predicted by

the weak coupling perturbation theory determined by the λ coupling parameter. In

practice, the quantum field theories that we test are more complicated and contain

many more parameters. However, the general approach of comparing measured cross

sections with predictions for different parameter values remains the same. The Stan-

dard Model is the current status quo when it comes to predictions in particle physics

and has a much larger set of fields, types of interactions and parameters. In the up-

coming sections we will show how gauge symmetries are used to introduce the terms

that define the Standard Model Lagrangian.

2.3 Gauge Symmetries

Noether’s theorem [20] states that if the Lagrangian of a system is invariant under

a transformation then such a symmetry corresponds to a conservation law. In this

section it is shown how the invariance of a Lagrangian under certain groups of trans-

formations results in the introduction of the fundamental interactions between various

fields.

2.3.1 Quantum Electrodynamics

Quantum Electrodynamics [18, 21, 22] was the first gauge theory constructed for the

description of particle physics. In this section it is used to show how a gauge symmetry

results in a gauge field that mediates a fundamental interaction, the electromagnetic

interaction. Quantum electrodynamics describes the interaction between charged

particles mediated by the gauge boson known as the photon. Let us define the

Lagrangian for a charged free spin-1
2

particle as
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L = iψ̄γµ∂µψ −mψ̄ψ. (2.26)

Here γµ are the gamma matrices [22] and ψ a four-component spinor field. Now let us

apply the simplest possible gauge transformation, a U(1) local gauge transformation,

on the spinor field,

ψ → ψ′ = eiqξ(x)ψ. (2.27)

Note that the dependence of the phase ξ(x) on arbitrary space-time coordinates makes

the gauge transformation local. This results in the transformed Lagrangian

L → L′ = ieiqξ(x)ψ̄γµ
[
eiqξ(x)∂µψ + iq(∂µξ(x))e−iqξ(x)ψ

]
−me−iqξ(x)ψ̄eiqξ(x)ψ. (2.28)

To restore the local gauge invariance the derivative needs to be replaced with the

covariant derivative,

∂µ → Dµ = ∂µ + iqAµ, (2.29)

where a new four-component gauge field Aµ is introduced. One can impose a gauge

field transformation

Aµ → A′µ = Aµ − ∂µξ(x). (2.30)

Only by introducing a new gauge field with very specific transformation properties

can the Lagrangian stay invariant under a local gauge transformation. The U(1) local

gauge invariant Lagrangian for a spin-1
2

fermion therefore reads,

L = ψ̄(iγµ∂µ −m)ψ − qψ̄γµAµψ (2.31)
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which shows that the result of imposing a local gauge invariance is an additional

interaction term between the fermionic fields ψ, ψ̄ and the gauge field Aµ. This

can be interpreted as two fermions interacting via the electromagnetic interaction

mediated by a photon. The final QED Lagrangian can be defined as

L = ψ̄(iγµ∂µ −m)ψ − qψ̄γµAµψ −
1

4
FµνF

µν (2.32)

with the field strength tensor

Fµν = ∂µAν − ∂νAµ. (2.33)

The introduced gauge field “predicts” a gauge boson which we now know as the

photon.

2.3.2 The Standard Model Gauge Theory

The Standard Model is described by a Lagrangian that is invariant under transfor-

mations from three different gauge groups.

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.34)

The SU(3)C and SU(2)L⊗U(1)Y group represents the strong and electroweak inter-

action, respectively. The subscripts refer to the colour charge (C), hyper charge (Y )

and left-handed fermions (L). The Standard Model Lagrangian is defined as,

LSM = LEW + LQCD + LHiggs, (2.35)

where each of the Lagrangians LEW , LQCD and LHiggs will be introduced in following

sections.
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2.3.3 Electroweak Interaction

The gauge group SU(2)L ⊗ U(1)Y is also known as the Glashow-Salam-Weinberg

model [23, 24, 25] of electroweak interactions and is the unified theory of the weak

and electromagnetic interaction. Again a local gauge transformation is applied, the

appropriate gauge fields are added by introducing a covariant derivative and spe-

cific transformations are imposed for the corresponding gauge fields to acquire new

interactions. A more general form for a local gauge transformation can be defined as

U(x) = eiAj(x)Bj (2.36)

where Aj(x) is the space-time coordinate dependent phase parameter and Bj the gen-

erator of the gauge group. A group is called abelian if the corresponding generators

commute and non-abelian if otherwise. SU(2)L is a non-abelian group associated to

the weak isospin (I3) with the Pauli matrices τ = (τ1, τ2, τ3) as generators. Fermions

with left-handed chirality have weak isospin I3 = ±1
2

and are SU(2)L doublets while

fermions with right-handed chirality have I3 = 0 and are SU(2)L singlets. This means

that the associated gauge fields W i
µ = (W 1

µ ,W
2
µ ,W

3
µ) only interact with left-handed

fermions. Hence the subscript L in the group notation.

The U(1)Y is an abelian group associated to the weak hypercharge YW with gen-

erator B = 1. It acts on fermions with all chiralities and generates a gauge field

Bµ. The weak hypercharge is linked to the electric charge Q and weak isospin I3

by the relation Q = I3 + YW
2

. In Table 2.1 gives an overview of all the fermions in

the Standard Model in the SU(2)L representation. See Appendix A.3 for the gauge

transformations, covariant derivatives, gauge fields and gauge field transformations

of the SU(2)L ⊗ U(1)Y -group. The electroweak Lagrangian for the SU(2)L ⊗ U(1)Y

group is defined as
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LEW =
∑
ψL

ψ̄Liγ
µDµψL +

∑
ψR

ψ̄Riγ
µDµψR −

1

4
W µν
i W i

µν −
1

4
BµνB

µν . (2.37)

1st gen. 2nd gen. 3rd gen. I3 YW Q

Quarks

(
uL
dL

) (
cL
sL

) (
tL
bL

) (
1
2

−1
2

) (
1
3
1
3

) (
2
3

−1
3

)

uR cR tR 0 4
3

2
3

dR sR bR 0 −2
3

−1
3

Leptons

(
νe,L
eL

) (
νµ,L
µL

) (
ντ,L
τL

) (
1
2

−1
2

) (
−1
−1

) (
0
−1

)

eR µR τR 0 −2 1

Table 2.1: Classification and properties of the Standard Model fermions in the
SU(2)L-representation

2.3.4 Strong Interaction

The SU(3)C group is the last part of the Standard Model gauge theory and describes

the strong interaction. The gauge group is non-abelian and is associated with the

colour charge (C) which can take either the value green, blue or red. The eight
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generators of this SU(3)C symmetry are called the Gell-Mann matrices λi [26],

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 , (2.38)

λ5 =


0 0 −i

0 0 0

0 0 i

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

(2.39)

Quarks are the only fermions with colour charge and can be described in the SU(3)C-

representation with a triplet,

ψ =


qg

qb

qr

 . (2.40)

The gauge fields Gi
µ do not interact with leptons as they do not carry any colour

charge. See Appendix A.4 for the gauge transformations, covariant derivatives, gauge

fields and gauge field transformations of the SU(3)C-group. The Quantum Chromo-

dynamic (QCD) Lagrangian is defined as

LQCD =
∑
i

q̄fi (iγµD
µ −mf )q

f
i −

1

4
Ga
µνG

µν
a . (2.41)

Again, the new gauge field “predicts” the existence of a gauge boson which we now

know as the gluon.
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2.4 Brout-Englert-Higgs Mechanism

The local gauge principle provides an elegant description of the interactions in the

Standard Model and have many high-precision measurements that agree with it. But

until recently this picture of the subatomic world was not yet complete and dealt with

some serious problems.

2.4.1 Particle Masses

The fundamental interactions require that the Standard Model is invariant under

transformations of any of the previously mentioned gauge groups. However, this

symmetry is broken when any mass terms are added to the Standard Model La-

grangian. Let us consider a fermionic field mass term −mf ψ̄ψ and decompose the

expression in helicity states.

−mf ψ̄ψ = −mf (ψ̄RψL + ψ̄LψR) (2.42)

However, Sec. 2.3.3 states that the helicity states behave differently under a SU(2)L⊗

U(1)Y transformation.

−mf (ψ̄RψL + ψ̄LψR)→ −mf (ψ̄Re
iαi(x)

τi
2 ψL + ψ̄Le

−iαi(x)
τi
2 ψR) 6= −mf ψ̄ψ (2.43)

The mass terms show that an arbitrary fermionic field breaks the electroweak gauge

invariance. This is a problem as it is experimentally proven that fermions such as

electrons or quarks have mass. A similar argument is made for the bosons. Con-

sider a boson field mass term 1
2
m2
γAµA

µ for the photon. The theory of Quantum

Electrodynamics required a local gauge invariance that imposed a specific gauge field

transformation.
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1

2
m2
γAµA

µ → 1

2
m2
γ(Aµ + ∂µξ(x))(Aµ + ∂µξ(x)) 6= 1

2
m2
γAµA

µ (2.44)

We know that the photon and gluon are massless which means we can just omit

these terms in the Lagrangian. However, this broken symmetry applies as well to the

Z- and W -boson and we know from experiment that they are massive. We need a

mechanism that introduces mass for the right fields.

2.4.2 Violating Unitarity

Violating unitarity refers to a scattering amplitude exceeding its unitary limit with

increasing energy that will result in probabilities larger than 1. This is the case for

longitudinal polarized weak bosons. When bosons are longitudinal polarized their

spin z-component is perpendicular to their moving vector. A polarization four vector

for longitudinal polarization can be defined as

εL =
1

mV



pz

0

0

E


. (2.45)

This can be used to describe the scattering amplitude of a W+
LW

+
L → W+

LW
+
L pro-

cess. In lowest order, this process will depend on three processes, the four-point

interaction and the t-channel γ/Z exchanges. The Feynman diagrams of the leading

order contributions to the scattering amplitude are shown in Fig. 2.3.

The scattering amplitude of the four-point interaction is proportional to

M∼ εLεLεLεL ∼ E4. (2.46)

The scattering amplitude diverges and would violate unitarity for increasing energy.
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Figure 2.3: The leading order contributions to the amplitude of the W±W∓ →
W±W∓. From [22].

2.4.3 Spontaneous Symmetry Breaking

A solution for the above mentioned problems is to spontaneously break the elec-

troweak symmetry through the Brout-Englert-Higgs mechanism [27, 28]. To describe

this procedure the Higgs Lagrangian is introduced.

LHiggs = LHG + LHF (2.47)

where LHG and LHF contain couplings of the Higgs boson to resp. the gauge bosons

and fermions, that will generate their masses and remove the violation of unitarity.

The derivation starts with an introduction of a complex scalar field in the SU(2)L

representation

Φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ3

 . (2.48)

of which φ0 represents a neutral scalar field and φ+ a charged scalar field. The

Lagrangian for this doublet of complex scalar fields can be written as,

LH = (∂µΦ)†(∂µΦ)− V (Φ) (2.49)

with the Higgs potential defined as

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.50)
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The λ-term describes the quartic self-interaction of the scalar field and is required to

be positive λ > 0 for vacuum stability. By minimising the potential the Higgs ground

state i. e. the vacuum expectation value (VEV) can be found. For µ2 > 0 the trivial

VEV of 〈Φ〉0 = 0 is obtained and the symmetry will remain unbroken. However, for

µ2 < 0 a non-zero VEV is obtained.

〈Φ〉0 =

√
−µ2

2λ
=

v√
2
. (2.51)

The minimum at the origin is no longer stable but is accompanied by an infinite set

of degenerate vacuum states. These states all satisfy

Φ†Φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) =

v2

2
. (2.52)

By choosing an arbitrary minimum, e.g. φ1 = φ2 = φ4 = 0 and φ3 = v, it is possible

to expand the field Φ around this minimum for small deviations h(x), i.e.

Φ(x) =
1√
2

 χ1(x) + iχ2(x)

v + h(x) + iχ3(x)

 . (2.53)

The spontaneously symmetry breaking introduced three massless Goldstone bosons χi

and one massive scalar boson h(x). By taking the scalar field Φ(x) in the appropriate

basis the Goldstone boson components χi can be set to zero. This is also known as

the unitary gauge and results in the scalar field

Φ(x) =
1√
2

 0

v + h(x)

 . (2.54)

As a result the Higgs to gauge couplings become,
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LHG =
1

2
(∂µh)(∂µh) +

g2

4
(v + h)2W+

µ W
−µ +

1

8

g2

cos2(θW )
(v + h)2ZµZ

µ

+
µ2

2
(v + h)2 − λ

4
(v + h)4.

(2.55)

The full procedure of “gauging-away” the Goldstone bosons and constructing the

above terms for the gauge bosons can be found in Appendix A.5. The new terms

introduce the W±- and Z0-bosons as superpositions of the W i
µ and Bµ fields. The

Higgs-Gauge Lagrangian generates the mass terms of the W and Z bosons with the

v2-factors but leaves the photon field (Aµ) massless. The new masses are defined as

mW =
vg

2
, mZ =

mW

cos(θW )
, mh =

√
−µ2. (2.56)

Similar to the Higgs to gauge couplings one can use the concepts of spontaneous

symmetry breaking to generate mass terms for the fermions. The Higgs to fermion

couplings can be written as

LHF = −
∑

u type

guQ̄LΦ̃uR −
∑

d type

gdQ̄LΦdR −
∑
l type

(
gνL̄LΦ̃νl,R + glL̄LΦlR

)
(2.57)

with gu, gd, gν and gl being the Yukawa couplings. By inserting the scalar field

definition of Eq. 2.54 we get both mass terms for the fermions and interaction terms

with the Higgs field,
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LHF =

mass terms︷ ︸︸ ︷
−
∑

u type

guv√
2

(
Q̄LuR − ūRQL

)
−
∑

d type

gdv√
2

(
Q̄LdR − d̄RQL

)
−
∑
l type

glv√
2

(
L̄LlR − l̄RLL

)
higgs interaction terms︷ ︸︸ ︷

−
∑

u type

gu√
2

(
Q̄LhuR − ūRhQL

)
−
∑

d type

gd√
2

(
Q̄Lh dR − d̄RhQL)

−
∑
l type

gl√
2

(
L̄Lh lR − l̄RhLL

)
,

(2.58)

with the fermion masses

mi = −giv√
2
, i = u, d, l. (2.59)

The introduction of the Higgs boson also solves the unitarity violation. Recall that

the scattering amplitude of longitudinally polarized W bosons is dependent on the

contribution of the 4-point interaction diagram. However, the Higgs boson introduces

a new scattering process with the Higgs as mediator which adds new terms to the

scattering amplitude. At large energies beyond the Higgs boson mass the result is,

MW +MH = g2 m
2
H

4m2
W

. (2.60)

The MW is the amplitude contribution of the 4-point interaction and MH of the

Higgs mediated interaction. The energy dependence has been canceled out by the

Higgs contribution and the unitarity requirement has been restored [29].
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2.5 Beyond the Standard Model

As accurate as the Standard Model might be in many cases, it still leaves many

questions open. Many adjustments or replacement QFTs have been proposed and

are also known as Beyond the Standard Model (BSM) theories. In this section a few

open issues of the Standard Model are given to illustrate the necessity of extensions

and thus motivate our measurements at the ATLAS experiment.

2.5.1 Dark Matter

One of the most prominent and obscure problems in particle physics is dark matter.

Dark matter is matter that has only been observed via gravitation effects but does

not seem to interact via the electromagnetic interaction. Many astrophysical and

cosmological observations support the idea of dark matter through observations in

rotation curves of galaxies [30, 31, 32, 33], the expansion of the universe [34] or gravi-

tational lensing [35]. Many physicists are therefore set on finding a candidate particle

that fits the dark matter profile. Some contemporary candidates are supersymmetric

particles [36] such as the neutralino, particles in the Little Higgs model [37], pyrgons

introduced by extra spatial dimensions such as in the Kaluza-Klein model [38] or ax-

ions introduced via the Peccei–Quinn mechanism [39]. However, none of the searches

have shown any significant signals thus far [40, 41]. Many of these models predict

new top quark pair production processes which can be tested or constrained with top

quark pair data [42, 43].

2.5.2 Naturalness

A natural theory is one where dimensionless ratios of the parameters of the theory

are of the order 1. This idea of naturalness can be seen as subjective and does not

give any mathematical inconsistencies. However, parameters differing by many orders
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often indicate that there are more advanced theories that would be an improvement.

Some examples of such naturalness problems are the differences in fermion masses

mν

mt

∼ 10−11 (2.61)

or between the gravitational and weak force constants

GN

GF

∼ 10−34 (2.62)

for a neutrino mass mν , the top quark mass mt, the gravitational force constant GN

and weak force constant GF constants. In more general terms, the Standard Model

will only be valid up until some energy scale Λ, generally believed to be the Planck

scale ΛP = 1.22×1019 GeV. This means that the Standard Model can be considered as

an effective field theory, a type of quantum field theory that will be further explained

in Sec. 2.6. The top quark is the only particle that has a coupling to the Higgs boson

of order one. This makes the top quark ideal for studying the issue of naturalness in

the SM.

2.5.3 Matter-Antimatter Asymmetry

Wherever we look, either here on earth or at far away stars and planets, we see that

everything is predominantly made out of protons, neutrons and electrons i.e. matter.

Some direct searches have looked for bodies of antimatter [44, 45, 46] in several regions

of space but no significant finds have been made. However, according to the model of

the Big Bang, equal amounts of matter and anti-matter were created from energy at

the beginning of the universe. In 1967, Sakharov proposed three conditions [47] that

are needed for the asymmetry:

1. Violation of baryon number
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2. Violation of charge conjugation(C) and charge conjugation-parity(CP) symme-

try

3. Departure from thermal equilibrium

The baryon number is defined as

B =
1

3
(nq − nq̄) (2.63)

with nq and nq̄ being the number of quarks and anti-quarks, respectively. Processes

that violate baryon number such as proton decay [48] and neutron-antineutron oscil-

lation [49] are needed for an imbalance in quarks and anti-quarks. However, searches

for such processes have been unsuccessful up until now. The second condition is

needed to avoid baryon violating processes with their anti-matter partners to bal-

ance out the increase in matter. However, CP -violation has only been discovered in

processes involving the weak interaction such as neutral kaon decay in 1964 [50] and

B-meson decay in 2001 [51, 52]. Departures from thermal equilibrium is necessary

to make sure that any process generating matter does not occur at the same rate in

the reverse direction. Top quark pair data can be used to investigate the matter-

antimatter asymmetry by measuring CP violation in top quark pair production and

decay processes [53, 54].

2.5.4 Unifying Forces

In Sec. 2.3.3 we saw how two seemingly separate forces, the electromagnetic and

weak, can be unified into one theory. The introduction of this new gauge theory

reduced the unknown parameters in the Standard Model, introduced the W and Z

gauge bosons and gave a picture more fitting with observations. Theories that unify

all forces, Grand Unified Theories (GUTs) for all forces excluding gravity and The-

ories of Everything (ToEs) including gravity, could therefore give a more complete
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and elegant picture of nature and pose solutions for the previous mentioned problems.

One of the simplest GUT theories is the Georgi-Glashow model [55] involving the

gauge group SU(5). However, limits set on proton life-times have ruled out the orig-

inal proposed model [56]. Other GUT examples such as supersymmetric theories

involving the SU(5) group [57, 58, 59] or E(6) [60] group have yet to be excluded.

Many of these theories can be tested or constrained with top quark data [61, 62].

Figure 2.4: The relative strengths of the four fundamental forces vary with distance
and, hence, energy is needed to probe small distances. From [63].

Gravity on larger scales is described by Einstein’s theory of general relativity [64].

However, for physical scenarios such as black holes and the Big Bang a quantum

mechanical description of gravity is needed [65] in which the Standard Model falls

short. Theories such as loop quantum gravity [66, 67] or large extra dimensions [68]

could be the needed extension of the Standard Model. Indirect searches of gravitons,

i.e. gravity gauge bosons, [69, 70] and a recently proposed laser table-top experiment

[71] continue the search for subtle signs of these theories. However, arguably the

leading candidate for a theory of anything is M-theory [72, 73]. More generally also
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known as String theory, this theory suggests that particles can be represented by tiny

energy strings and gives a framework from which all the five forces naturally emerge.

However, experimental setups have yet to find even subtle evidence [74, 75, 76] that

supports this ToE.

2.6 Effective Field Theory

Many of the discussed BSM theories predict particles or manifest themselves as other

measurable effects such as deviations of Standard Model parameters. The current

available experimental evidence, be it from experiments of the LHC or other physics

programmes, excluded many scenarios but does not point to one of these BSM theories

as the obvious successor [77, 78, 79]. Effective field theory (EFT) supplies a model-

independent framework that can be matched to many BSM theories. A single EFT

analysis can therefore cover many BSM scenarios instead of systematically excluding

phase-space one BSM theory at a time. Additionally, it can show effects of heavy

undiscovered particles in the low-energy regime of our current experimental setups. In

this section we will introduce the concept of an effective field theory and the Standard

Model Effective Field Theory, the EFT used in this thesis.

2.6.1 Basics of EFT

Lets define some energy scale Λ and a Lagrangian LUV describing physics at ener-

gies E � Λ. Recall from Sec. 2.2 that cross sections are calculated from n-point

correlation functions which depend on functionals. Here we redefine Eq. (2.18) as

[80, 81]

ZUV [Jφ, JH ] =

∫
DφDX exp

[
i/~
∫
d4x (LUV (φ,X) + Jφφ+ JXX)

]
(2.64)
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where the distinction is made between light fields φ and heavy fields X. Now let us

assume for now that X particles are not present in our physical process, e.g. because

they are to heavy to create with our probing energies, and thus we can ”integrate

out” X. From this we get the effective functional

ZEFT [Jφ] =

∫
Dφ exp

[
i/~
∫
d4x (LEFT (φ) + Jφφ)

]
. (2.65)

The non-trivial task is to find LEFT with the relevant degrees of freedom and field

content. In general, an effective lagrangian is an expansion in operator dimension D

LEFT = LD≤4 +
1

Λ
LD=5 +

1

Λ2
LD=6 +

1

Λ3
LD=7 +

1

Λ4
LD=8 + ... (2.66)

with Λ being the cut-off scale and the Lagrangian terms LD consisting of opera-

tors with dimension D constructed from the lighter fields φ. In Appendix A.6 it is

shown with a simple toy scalar theory how an effective Lagrangian can be a good

approximation for a full UV theory Lagrangian.

2.6.2 The Standard Model Effective Field Theory

The Standard Model Effective Field Theory (SMEFT) is a defined by an effective

Lagrangian containing the Standard Model Lagrangian but expands into higher di-

mensional operators constructed from SM fields. Following Eq. (2.66) we can define

the SMEFT Lagrangian as

LSMEFT = LSM+
1

Λ

∑
i

ciOD=5
i +

1

Λ2

∑
j

cjOD=6
j +

1

Λ3

∑
k

ckOD=7
k +

1

Λ4

∑
l

clOD=8
l +...

(2.67)

The operators are constructed from SM fields and are invariant under the same

SUC(3) × SUL(2) × UY (1) gauge symmetry. Operators of dimension D = 5 vio-
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late baryon and/or lepton number which does not align with current experimental

evidence and are therefore omitted [82, 83]. The set of all operators of dimension

D = 6 is very large but will contain many redundant operators. Operators are redun-

dant when their contribution to the matrix element construction cancel each other

out. Instead, the fields are redefined such that those terms already cancel out in the

Lagrangian [84].

A minimal non-redundant set of operators is also known as a basis. The first non-

redundant and most commonly used operator basis constructed for dimension D = 6

is the Warsaw basis [85] and amounts to 59 independent CP -even, B-conserving op-

erators, excluding their Hermitian conjugates. There are other D = 6 operators sets

which have been utilized such as the Strongly-Interacting Light Higgs (SILH) [86] or

Hagiware-Ishihara-Szalapski-Zeppenfeld (HISZ) operator set. However, these sets are

not bases as they are neither a complete nor a non-redundant set. The SMEFT model

implementation [87] that is used in this thesis further simplifies the operator set by

imposing a U(2)q × U(2)u × U(3)d flavour symmetry on the first two generations of

left-handed quark doublets, up-type right-handed singlets and three generations of

down-type right-handed singlets. This symmetry is suitable for this thesis because

top quark observables at the LHC are mostly invariant under changes between light

flavors with the same quantum numbers of the incoming quarks [88, 89, 90]. Chirality

flipping or charged currents involving light quarks are therefore forbidden. Similarly,

a U(1)l×U(1)e symmetry is enforced in the lepton sector. The CKM-matrix is taken

to be a unit matrix, i.e. diagrams with charged currents coupling different generations

of fermions do not contribute, and it forbids all fermion masses and Yukawa couplings

except for the top quark.
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2.6.3 SMEFT Top Quark Sector

The Standard Model Effective Field Theory can be used to interpret observations from

many different physics processes. However, in view of its largest Yukawa coupling and

mass it is believed that the top quark is closely connected to new physics [84, 91].

Studying the couplings of the top quark can therefore give unique insights on where

to look beyond the Standard Model. In this section we will discuss the operators

that affect the production of top quark pairs as produced at the LHC. Let us denote

left-handed quark SU(2) doublets with q and right-handed quark singlets of the up-

and down-type with u and b. As introduced in Sec. 2.3.3 and 2.3.4 we denote the

Pauli matrices with τ and T a = 1
2
λa with the Gell-mann matrices λa. Flavor indices

are denoted with i, j, k and l and the Higgs doublet is denoted by φ. Some additional

notations needed for the operator definitions are ε ≡ iτ 2, σµν = γµγν−γνγµ, φ̃ = εφ∗,

φ†iD̄µφ ≡ φ†(iDµφ)−(iDµφ
†)φ and φ†iD̄I

µφ ≡ φ†τ(iDµφ)−(iDµφ
†)τφ. The dimension

six SMEFT operators relevant for top quark processes at the LHC can be divided

into two groups; operators involving two quarks and bosons and operators involving

four quarks. The bosonic operators are defined as

‡O(ij)
uφ = q̄iujφ̃(φ†φ) ‡O(ij)

uW = (qiσ
µντuj)φ̃Wµν

O1(ij)
φq = (φ†iD̄µφ)(q̄iγ

µqj)
‡O(ij)

dW = (qiσ
µντuj)φWµν

O3(ij)
φq = (φ†iD̄I

µφ)(q̄iγ
µτqj)

‡O(ij)
uB = (qiσ

µνuj)φ̃Bµν

O(ij)
φu = (φ†iD̄µφ)(ūiγ

µuj)
‡O(ij)

uG = (qiσ
µνT auj)φ̃G

a
µν

‡O(ij)
φud = (φ̃†iDµφ)(ūiγ

µdj)

(2.68)

with Wµν , Bµν and Ga
µν being the electroweak and strong field-strength tensors in-

troduced in Sec. 2.3.3 and 2.3.4. The operators involving four quarks are defined

as
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O1(ijkl)
qq = (q̄iγ

µqj)(q̄kγµql)

O3(ijkl)
qq = (q̄iγ

µτqj)(q̄kγµτql)

O1(ijkl)
qu = (q̄iγ

µqj)(ūkγµul)

O8(ijkl)
qu = (q̄iγ

µT aqj)(ūkγµT
aul)

O1(ijkl)
qd = (q̄iγ

µqj)(d̄kγµdl)

O8(ijkl)
qd = (q̄iγ

µT aqj)(d̄kγµT
adl).

O(ijkl)
uu = (ūiγ

µuj)(ūkγµul)

O1(ijkl)
ud = (ūiγ

µuj)(d̄kγµdl)

O8(ijkl)
ud = (ūiγ

µT auj)(d̄kγµT
adl)

‡O1(ijkl)
quqd = (q̄iuj)ε(q̄kdl)

‡O8(ijkl)
quqd = (q̄iT

auj)ε(q̄kT
adl)

(2.69)

Each operator introduces a degree of freedom with similar notation i.e. O1(ijkl)
qq intro-

duces the Wilson coefficient C
1(ijkl)
qq . However, linear combinations of these Wilson

coefficients were introduced in [92] and since then adopted to reduce the number of

relevant parameters and reduce cancelling effects on LHC observables. The four-quark

Wilson coefficients can be redefined as

c1
QQ ≡ 2C1(3333)

qq − 2

3
C3(3333)
qq

c8
QQ ≡ 8C3(3333)

qq

c1
Qt ≡ C1(3333)

qu

c8
Qt ≡ C8(3333)

qu

c1
Qb ≡ C

1(3333)
qd

c8
Qb ≡ C

8(3333)
qd

c1
tt ≡ C1(3333)

uu

c1
tb ≡ C

1(3333)
ud

c8
tb ≡ C

8(3333)
ud

c1
QtQb ≡ Re{C1(3333)

quqd }

c8
QtQb ≡ Re{C8(3333)

quqd }

c1,1
Qq ≡ C1(ii33)

qq +
1

6
C1(i33i)
qq +

1

2
C3(i33i)
qq

c3,1
Qq ≡ C3(ii33)

qq +
1

6
(C1(i33i)

qq − C3(i33i)
qq )

c1,8
Qq ≡ C1(i33i)

qq + 3C3(i33i)
qq

c3,8
Qq ≡ C1(i33i)

qq − C3(i33i)
qq

c1
tu ≡ Cii33

uu +
1

3
Ci33i
uu

c8
tu ≡ 2Ci33i

uu

c1
td ≡ C

1(33ii)
ud

c8
td ≡ C

8(33ii)
ud

c1
tq ≡ C1(ii33)

qu

c1
Qu ≡ C1(33ii)

qu

c1
Qd ≡ C

1(33ii)
qd

c8
tq ≡ C8(ii33)

qu

c8
Qu ≡ C8(33ii)

qu

c8
Qd ≡ C

8(33ii)
qd

(2.70)
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with Q, t and b denoting coefficients involving the left-handed top-bottom doublet,

right-handed top singlet and right-handed bottom singlet, respectively. Note that the

imaginary parts of certain operators are not included as we will restrict ourselves to

CP-even scenarios from now on. The i is an index corresponding to one of the two

lighter quark generations. No distinction is made with the i index which is equivalent

to imposing the flavor symmetry U(2)q × U(2)u × U(3)d introduced in the previous

section. The Wilson coefficients involving the bosonic operators can also be redefined

as

ctφ ≡ Re{C(33)
uφ }

c−φQ ≡ C
1(33)
φq − C3(33)

φq

c+
φQ ≡ C

1(33)
φq + C

3(33)
φq

c3
φQ ≡ C

3(33)
φq

cφt ≡ C
(33)
φu

cφtb ≡ Re{C(33)
φud }

ctW ≡ Re{C(33)
uW }

ctZ ≡ Re{−sWC(33)
uB + cWC

(33)
uW }

ctA ≡ Re{cWC(33)
uB + sWC

(33)
uW }

cbW ≡ Re{C(33)
dW }

ctG ≡ Re{C(33)
uG }

(2.71)

with sW = sin θW and cW = cos θW and θW being the Weinberg angle. The redefined

four-quark and bosonic Wilson coefficients give a reduced number of degrees of free-

dom of 36 of which 34 are independent. The Wilson coefficients of each operator will

have an effect on tt̄ cross-sections, total and differential. Figure 2.5 gives an example

on how SMEFT Wilson coefficients can affect tt̄ differential cross sections quite dif-

ferently. The Wilson coefficients can have either a linear ci/Λ
2 or a quadratic cicj/Λ

4

contribution to cross sections. By comparing observed tt̄ events with SMEFT Monte

Carlo simulations we can put constraints on Wilson coefficients and further explore

possible BSM theories. The decay channel and differential cross section observables

will be further discussed in Ch. 6. The choice of the c8
tq and c8,1

Qq Wilson coefficients
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and its motivation will be further discussed in Ch. 7.

Figure 2.5: SMEFT predictions of tt̄ invariant mass differential cross sections. The
distributions show the linear O(Λ−2) SM-EFT interference effects of five four-quark
Wilson coefficients. The error bands represent the renormalization/factorization scale
uncertainty. From [87].

2.7 Top Quark Pair Production at the LHC

In this section we will discuss the theoretical framework used to make predictions of

pp → tt̄ production cross sections, total and differential, as produced at the LHC.

Additionally, we will include the software packages that implement parts of this frame-

work and are used in this thesis to generate Monte Carlo simulated data. Figure 2.9

gives a schematic view of the Monte Carlo simulation chain.

2.7.1 Hard Scatter Processes

Interactions between composite particles, such as protons, can not be described from

first principles. However, the factorization theorem [93, 94] states that we can fac-

torize the total production cross section σpp→tt̄ according to
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σpp→tt̄ =
∑
a,b

∫ 1

0

dx1 dx2

∫
fa(x1, µ

2
F )fb(x2, µ

2
F )dσ̂ab→tt̄(αs(µR), µF )

=
∑
a,b

∫ 1

0

dx1 dx2

∫
dΦ fa(x1, µ

2
F )fb(x2, µ

2
F )

1

2x1x2

√
s
|Mab→tt̄|2(Φ, αs(µR), µF )

(2.72)

where a is a parton of one of the protons, b is a parton of the other proton, x1 and x2

are the energy fractions of resp. parton a and b, µF is the factorisation scale and αs

is the coupling constant evaluated at the renormalisation scale µR and related to the

coupling constant g3 of the strong interaction via αs =
g2
3

4π
. The functions fa(x1, µ

2
F )

and fb(x2, µ
2
F ) are the parton distribution functions (PDF) of a proton, σ̂ab→tt̄ is the

partonic cross section and Mab→tt̄ is the matrix element for that partonic process

evaluated at a particular point in final-state phase space Φ. One can either obtain

the matrix element with a similar approach to Sec. 2.2.4 or use Feynman rules for

a specific Lagrangian. The latter requires one to identify all the Feynman diagrams

of the partonic process up to a fixed QCD order. At the LHC the partonic processes

for tt̄ production are gluon fusion gg → tt̄ and quark-antiquark annihilation qq̄ → tt̄.

Figure 2.6 and 2.7 show all the LO and some NLO Feynman diagrams of tt̄ partonic

production processes, respectively. At the LHC the gluon fusion channel constitutes

about 90% of the total tt̄ production.

Figure 2.6: LO Feynman diagrams for the qq̄ → tt̄ and gg → tt̄ partonic processes.
From [95].

The parton distribution functions give the probability to find a quark or gluon in

a proton with a particular energy fraction of the proton. The functions are process
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Figure 2.7: NLO Feynman diagrams with virtual one-loop corrections and real
gluon/quark emissions for the qq̄ → tt̄ and gg → tt̄ partonic processes. From [95].

Figure 2.8: Gluon and up quark distributions in the proton according to the CTEQ3M
[96] parton distribution set. From [97].

independent parameterizations fitted to experimental data of multiple scattering pro-

cesses measured by various experiments. Most Monte Carlo software packages have

several PDFs available from dedicated research projects like CT10 [98] and NNPDF

[99] or have an interface to the LHAPDF PDF library [100]. Figure 2.8 shows two

example PDFs published by the CTEQ collaboration [96].

Let us assume that we chose a PDF and calculated the matrix element. The last

step to obtain the total production cross section σpp→tt̄ is to perform the multi-

dimensional phase-space integral
∫ 1

0
dx1dx2

∫
dΦ. Often, these are too complicated

to approach analytically and are therefore calculated with Monte Carlo integration

methods [101, 102]. The result is a fully differential cross section that also can be

used to randomly generate events. Generator software packages used in this thesis to
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calculate cross sections and generate events are:

• Powheg-Box [103, 104, 105, 104]

• MadGraph5 aMCNLO [106]

• Sherpa [107]

• Comix [108]

• OpenLoops [109]

The input QFT models dictating the Feynman rules for the matrix element calcula-

tion are either available in libraries implemented in the generator software packages

directly or are linked to external libraries such as FeynRules [110]. Their QCD and

EW accuracy can vary alongside with the available scattering processes.

2.7.2 Underlying Event and Pile-up

In many collisions remaining partons of the incoming protons can result in secondary

hard or semi-hard scattering events. These are known as Underlying Events (UE)

and are characterized by both high (hard) and low (soft) pT transfer between the

scattering particles. The latter is where perturbative QCD breaks down and other

phenomenological models need to be deployed such as the Multiple Interaction (MI)

model first implemented in Pythia 6 [111] and now also in Pythia 8 [112]. These or

other phenomenological models are often but not exclusively tuned to Minimum Bias

events, events selected with a less stringent trigger such that more soft interactions

pass. Additional collisions than the collision of interest are noted as pile-up events

[113]. Here we distinguish between in-time and out-time pileup where the secondary

collisions originate from the same and different bunch crossings, respectively. Both
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types are commonly simulated with Pythia 8 [114] for an average number of interac-

tions per bunch crossing 〈µ〉 which depends on the luminosity and detector settings

of the data taking campaign one wants to simulate.

Figure 2.9: Schematic view of the physics implemented in standard multi-purpose
event generators for proton-proton collisions. The colours indicate the different parts
of the simulation chain. From [115].

2.7.3 Parton Shower and Hadronization

After events are generated on parton level the emerging constituents need to be con-

nected to a hadronization model that works at energy scales where perturbative QCD

no longer works. In this process high-energy partons can emit QCD radiation in the

form of gluons. Here we make the distinction between radiation before and after the

collision, also known as initial state (ISR) and final state radiation (FSR). Addition-
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ally, gluons can split in pairs of quark and anti-quarks. The cascade of emerging

quarks and gluons are known as parton showers and its evolution is dictated by the

DGLAP equations [116]. In general terms, DGLAP equations describe how parton

distribution functions and splitting kernel functions, i.e. functions that describe the

parton splitting dynamics, evolve from one energy scale to another.

Once the energy scale of a parton shower is down to 1 GeV the partons are modelled

to form hadrons, also known as hadronization. At these energies colour confinement

dictates that colour charged partons cannot be isolated and observed but need to

form colour neutral hadrons. Hadronization can be divided into cluster and string

models. Cluster models split gluons non-perturbatively into quark anti-quark pairs

and form singlet clusters which further decay into hadrons. String models assume

partons from the parton shower to be connected into a string-like configuration as-

suming a potential linearly increasing with distance. The string eventually breaks

up into quark anti-quark pairs that form hadrons. Softwares used in this thesis that

model parton showers and their hadronization are:

• Herwig 7 7 [117, 118]

• Pythia 8 [114]

• Sherpa [107, 119]
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Chapter 3

Experimental Setup

This chapter discusses the experimental setup of the measurement carried out in this

thesis which can be roughly divided into two parts. Section 3.1 and 3.2 describe the

Large Hadron Collider and the ATLAS detector which are a collective of systems

that acquire, filter and process pp collision data into a form that can be used for

comparison with theory. Both are hosted by the European Organization for Nuclear

Research (CERN), a research centre based in Geneva, Switzerland that houses 2660

staff members and 12,400 scientists from institutions in more than 70 countries [120].

Apart from the ATLAS experiment it has housed many other fruitful experiments

and has constantly pushed the boundaries in engineering, physics and international

collaboration since its founding in 1954.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular collider built in a 27 km long tunnel

located 100 meters underground and has been operational since 2008 [121]. The accel-

erator is constructed of two near-circular rings that accelerate either heavy ions, such

as lead (Pb) or xenon (Xe), or protons. The latter is the type of collisions used for

this thesis. Both rings accelerate the particles in opposite directions and are brought
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to intersect at several interaction points. Each of these points has one or multiple

detectors in place to collect the collision data. The ATLAS detector is one of these

experimental setups and the focus of this thesis.

The accelerated protons are created by stripping the electrons of hydrogen atoms with

an electric field. The protons are first injected in the linear accelerator 2 (LINAC2)

and then subsequently in the Booster, Proton Synchrotron (PS) and the Super Pro-

ton Synchrotron (SPS) to gradually ramp up to an energy of 450 GeV [122]. Protons

with these energies are injected into the LHC in bunches with a nominal number of

protons of 1.15 × 1011 per bunch. A beam is created by injecting the bunches 25 ns

apart and can hold up to 2808 bunches per beam [123]. Once injected the beams are

accelerated up to an energy of 7 TeV per beam with the use of linear accelerators [124].

This analysis uses data generated from beams with 6.5 TeV energy, i.e.
√
s = 13 TeV

center-of-mass energy. To bend and focus the beam the LHC is equipped with super-

conducting niobium-titanium magnets which create magnetic fields of up to 8.33 T

when cooled down to a temperature of 1.9 K with the use of liquid helium [125]. The

beams collide at one of the four interaction points where the following experiments

perform the data taking:

• ATLAS [126] is a general purpose detector that focuses on the discovery of new

particles, interactions beyond the Standard Model and precision measurements

in electroweak and QCD physics.

• CMS [127] is also a general purpose detector that focuses on scientific goals

similar to the ones of ATLAS.

• ALICE [128] is a detector designed for heavy-ion collisions to study the physics

of strongly interacting matter.

• LHCb [129] is a detector designed to investigate the difference between matter
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and antimatter and study the bottom quark.

Each detector has a unique design and consists out of many subsystems fine-tuned to

optimally perform for their specific physics program. In addition to these there is a

whole collection of smaller experiments located in the interaction point caverns or on

the above ground sites of CERN. After data taking the beam is safely dumped at one

of the dumping caverns. The beam dump absorber consists of a 7 m long segmented

carbon cylinder, water cooled and surrounded by tonnes of iron and concrete shielding

to safely stop the beam [130]. An overview of the Large Hadron Collider and CERN

complex is given in Fig. 3.1.

Figure 3.1: The CERN accelerator complex. From [131].
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Figure 3.2: Schematic of the ATLAS detector. From [132].
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Figure 3.3: Total integrated luminosity of pp collisions at a center-of-mass energy of√
s = 13 TeV during the 2015 to 2018 data taking period. From [133].
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Figure 3.3 shows that during the data taking period of 2015 to 2018 the Large Hadron

Collider has delivered an integrated luminosity of 159 fb−1 in pp collision data at a

center-of-mass energy of
√
s = 13 TeV. The data recorded at the ATLAS detector,

passing data quality criteria and used for this thesis amount to an integrated lumi-

nosity of 139 fb−1.

3.2 The ATLAS Detector

The ATLAS (A Toroidal LHC Apparatus) detector is a general purpose detector of

44 m long, 25 m in diameter and a weight of about 7.000.000 kg [134]. It is the largest

detector at the LHC and is mainly focused on physics at the TeV scale. The detector

has a cylindrical layer structure of subdetectors that each have their own specific task

in particle detection and identification. A schematic representation of the detector is

given in Fig. 3.2. The interaction point of the particle beams is the origin of both

the Cartesian and the cylindrical coordinate systems. The Cartesian z-coordinate

is aligned with the beam line with the positive direction pointing to Geneva, the

x-coordinate directed from the interaction point to the centre of the LHC ring and

the y-coordinate directed upwards. However, a cylindrical coordinate system is more

practical in many cases and is defined as:

• Parameter z - The z-coordinate is defined along the beam axis.

• Parameter θ - The polar angle, θ ∈ [0, π], is the angle from the beam axis.

• Parameter φ - The azimuthal angle, φ ∈ [0, 2π], is the angle around the beam

axis.

Other frequently occurring spacial metrics are the pseudorapidity η = − ln
[

tan( θ
2
)
]

instead of the polar angle θ and the distance coordinate ∆R =
√

∆η2 + ∆φ2. In the
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upcoming sections each subdetector is described starting from the most inner parts

to the outer side of the ATLAS detector.

3.2.1 Inner Detector

One of the most important characteristics of a collision event are the trajectories

and interaction points of the different particles that are created at the collision. The

purpose of the Inner Detector (ID) [135] is to reconstruct these trajectories and inter-

action points, also known as tracks and vertices. It is therefore located closest to the

interaction point of all the ATLAS subdetectors. A strong magnetic field is created

by the magnet system, further discussed in Sec. 3.2.4, such that the charged particles

experience a Lorentz force that curves the particle tracks. Knowing the magnetic

field and the curvature of a track one can calculate the tranverse momentum pT of

the traversing particle [136]. The Inner Detector has an outer radius of 115 cm, a

total length of 7 m and is divided into four systems of which each uses a different but

complementary technology. A schematic of the Inner Detector is given in Fig. 3.5.

Figure 3.4: The resolutions of the track reconstruction parameters d0 (left) and z0

(right) as a function of the transverse momentum pT with (Data 2015) and without
the IBL (Data 2012). From [137].
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Insertable B-layer

This Insertable B-layer (IBL) [138, 137] is the tracker layer that is the closest to

the interaction point with a radial extension of 31.0 < r < 40.0 mm and a length of

332 mm. The layer is made out of a grid of 12 million doped silicon cells, i.e. pixels,

each with a size of 50 × 250µm2. When charged particles traverse the active silicon

material, electron-hole pairs will be created and will create a current under an applied

bias voltage. It was added to the Inner Detector during Long Shutdown 1 (2013-2015)

to improve on radiation hardness and increased data rate foreseen with the increased

instantaneous luminosity of the LHC Run-2 data taking. The IBL also improved the

track reconstruction by reducing the resolution on important track reconstruction

parameters. Figure 3.4 shows how the inclusion of the IBL reduced the resolution

for the transverse impact parameter d0 and the longitudinal impact parameter z0.

Section 4.1 will further discuss what these parameters actually mean and how they

are used to reconstruct tracks and vertices.

Pixel Detector

The Pixel Detector (PD) [139] consists out of three concentric cylindrical layers and

three end-cap disks at each side and has a pseudo rapidity coverage of |η| < 2.5. The

layers are made of silicon cells that uses the same detection process as the IBL but

have a bigger size of 50× 400 µm×µm. Together with the IBL the Pixel Detector is

able to distinguish vertices with a spatial resolution of δrδφ ≈ 8µm and δz = 75µm

[140]. A schematic of the Pixel Detector is depicted in Fig. 3.6.

Semiconductor Tracker

The semiconductor tracker (SCT) [141] consists out of four concentric cylindrical

layers and two end-caps which also have a pseudo rapidity coverage of |η| < 2.5.

Instead of independent pixels the active silicon material has rectangular strips with
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Figure 3.5: Schematic of the Inner Detector. From [132].

a 80µm pitch mounted on them to read-out the charge signal.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) [142] consists of one barrel and one end-cap

on each side covering a pseudo-rapidity range of |η| < 2. Instead of silicon cells,

the barrel and end-caps consist of ∼ 300000 thin-walled straws drift tubes that have

a conductive outer coating, a golden plated tungsten sense wire in the centre and

filled with a gas mixture of xenon, carbon dioxide and oxygen. When a charged

particle passes they ionise the gas mixture which frees up electrons to move freely.

The outer wall of the straws are put under a negative voltage which will accelerate

the electrons and create a detectable charge current. Additionally, the TRT uses a
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Figure 3.6: Schematic of the Pixel Detector including the IBL. From [140].

phenomenon known as transition radiation for particle identification. When a charged

particle passes through the boundary between the outer straw and the gas mixture

a photon will be emitted, i.e. transition radiation, of which its energy ionizes the

gas in addition to the initial ionisation. Because different particles result in different

transition radiation energies the signal strength in the wire can be used to distinguish

between e.g. electrons and pions [143, 144].

3.2.2 Calorimeters

The goal of the calorimeter system of ATLAS is to measure the energy and direction

of an incoming particle by absorbing particle showers. The calorimeter system con-

sists out of electromagnetic and hadronic calorimeters, where the former focuses on

electromagnetic showers, initiated by particles such as the electron or photon, and the

latter on hadronic showers, initiated by particles such as charged pions or kaons. The

calorimeter system of ATLAS can be divided into the Liquid Argon (LAr) calorime-

ter and the Tile calorimeter which use different triggers and measurement techniques.

Both are sampling calorimeters i.e. calorimeters consisting out of alternating layers

of a passive and active mediums. The passive medium is a high density material to

trigger the particle showers and completely absorb the incoming particles while the

active medium creates a detectable signal related to the energy lost by the particle.
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A schematic of the calorimeter system is depicted in Fig. 3.7.

Liquid Argon Calorimeter

The Liquid Argon (LAr) calorimeter [145] is dedicated finding energy deposits of both

electromagnetic and hadronic particles. The electromagnetic calorimeter (ECAL)

consists of one barrel and an end-cap on either side covering a pseudo-rapidity range

of |η| < 3.2. Both the barrel and the end-caps have an accordion-like structure with

layers of electrodes to read-out the electric signal, layers of lead as passive material

and with the gaps in between filled with liquid argon to act as active material. This

specific geometry was chosen to avoid any cracks in the plates having any influence

on the measurements and to decrease the signal rise time i.e. the time for a signal

to rise past measurement threshold [145]. The ECAL is further segmented into cells

with varying size ∆η ×∆φ depending on its location in the calorimeter. See Fig. 3.9

for a sketch of the accordion structure.

The LAr calorimeter has also two hadronic end-caps (HEC) placed behind the ECAL

end-caps that cover a pseudo-rapidity range of 1.5 < |η| < 3.2. These end-caps are

constructed from parallel layers of copper and liquid argon instead of the accordion

structure of the previous calorimeters. Finally, each end is fitted with a forward

calorimeter (FCAL) [146] that covers a pseudo-rapidity range of 3.1 < |η| < 4.9.

Each end consists of three layers; one electromagnetic calorimeter of copper and liq-

uid argon and two hadronic calorimeters of tungsten and liquid argon. These have a

special design of anode rods in cathode tubes with the space in between filled with

liquid argon. These are placed in parallel to the beam line and held up by a matrix

of the passive material i.e. copper or tungsten. Figure 3.11 shows a sketch of the

cross-section of the FCAL.
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Figure 3.7: Schematic of the ATLAS calorimeter system. From [147].

Figure 3.8: Energy resolutions relative to the beam energy Ebeam for electrons in the
LAr barrel ECAL (Top) and for pions (Bottom left) and kaons (Bottom right) in
the Tile calorimeter. For the bottom plots the variables Rσraw

= σ
Ebeam

and ∆σraw =
σ

σMC
− 1 are defined. From [148, 149].
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Figure 3.9: Sketch of the accordion structure of the EM calorimeter. The depths are
expressed in both millimeters (mm) and material radiation length (X0). From [145].

Tile Calorimeter

The Tile Calorimeter [150] is one barrel that focusses on measuring the energy deposits

of hadronic particles. It can be subdivided into the central long barrel and the

extended long barrel that together cover a pseudo-rapidity range of |η| < 1.7. The

Tile Calorimeter is also a sampling calorimeter but uses scintillating plastic as active

and low-carbon steel as passive material. The barrels are constructed from 64 wedges

which each consist out of layers of plastic and steel tiles oriented along the rφ-plane.

Early Monte Carlo studies showed that this orientation, compared to the conventional

zφ-plane parallel to the beam line, does not affect the energy resolution [150]. This

design was made with practical and cost-saving considerations for the construction

and mounting of the Tile Calorimeter [151].
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Figure 3.10: Sketch of the cross section of the FCAL. From [146].

3.2.3 Muon Spectrometer

The Muon Spectrometer (MS) [152] is responsible for the identification of muons and

the measurement of their charge sign and momenta. In general, muons pass through

the Inner Detector and calorimeters undetected. However, muons are a crucial part of

many physics analyses which motivated the construction of the Muon Spectrometer.

It is the outermost and largest part of the ATLAS detector and consists of three

cylindrical layers, four vertical placed wheels on each side that function as end-cap and

covers a pseudo-rapidity range of |η| < 2.7. A schematic of the Muon Spectrometer

is given in Fig. 3.12. Figure 3.13 shows the relative momentum resolution and the

muon reconstruction efficiency of the Muon Spectrometer. The Muon Spectrometer

can be divided into four subsystems.
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Figure 3.11: Sketch of a barrel wedge of the Tile Calorimeter. From [153].

Monitored Drift Tube chambers

The Monitered Drift Tube (MDT) chambers are used for the precision measurement of

muon tracks in all the layers except for the most inner end-cap layer. The detection

technology uses an aluminium tube with a tungsten-rhenium (W-Re) wire in the

center and is filled with a argon-methane (Ar-CH4) gas mixture. At the ends of

the tubes there are oppositely charged electrodes that measure the drifting charges

created by an ionizing muon. The spatial resolution of the tracking is 80µm in the

rφ-plane and 35µm in the z-direction.
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Figure 3.12: Schematic of the Muon spectrometer. From [132].

Figure 3.13: The relative muon momentum resolution in the MS barrel region (Left)
and muon reconstruction efficiency (Right) both as a function of the muon momen-
tum. From [154, 155].
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Cathode Strip chambers

The Cathode Strip (CS) chambers are also used for muon tracking but are only present

in the end-cap layer closest to interaction point for pseudo-rapidities of 2 < |η| < 2.7.

The CS chambers are multi-wire proportional chambers with a cathode strip and

anode wire read-out of charges created by ionizing muons. The wire and gas material

is the same as in the MDT chambers. The spatial resolution of all the CS chambers

combined is 40µm in η-direction and 4 mm in the φ-direction.

Resistive Plate chambers

The Resistive Plate (RP) chambers are wireless gas-chambers filled with a mixture of

tetrafluoroethane (C2H2F4) and isobutane (C4H10) with metal plates on either side

for read-out. The RP chambers are only placed in the barrel with two on either side

of the middle MDT chamber layer and one on the outside of the outer MDT chamber

layer.

Thin Gap chambers

The Thin Gap (TG) chambers are only used in the end-cap and are all located near

the first and second end-cap layer. The TG chambers have a similar structure as

the Cathode Strip chambers but have a anode-wire pitch and anode-cathode distance

that are not the same and use a gas mixture of CO2 and n-pentane (n-C5H12).

3.2.4 Magnet System

A set of electromagnets are installed around the majority of the ATLAS detector to

exert a Lorentz force on the traversing charged particles. A precise known magnetic

field together with the curvature of the charged particle determined by the Inner De-

tector and Muon Spectrometer allows for a measurement of the particle’s momentum
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[136]. The magnet system consists out of the Barrel Toroid, Central Solenoid Magnet

and the End-cap Toroids. A schematic of the magnet system is given in Fig. 3.14.

Figure 3.14: Schematic of the magnet system of the ATLAS detector. From [156].

Barrel and End-cap Toroids

The Barrel [157] and End-cap Toroids [158] consist each out of 8 superconducting

coil magnets that provide a magnetic field for the Muon Spectrometer. The super-

conducting wires are made from a NbTi/Cu alloid that is cooled to a temperature of

4.5 K by a cryostat system with liquid helium. The magnetic system can deliver a

magnetic field of up to 4 T.

Central Solenoid Magnet

The Central Solenoid Magnet [159] is a 2.4 m diameter coil that provides a magnetic

field for the Inner Detector. The superconducting wires are made from NbTi/Cu with

a aluminium stabilizer to minimize the thickness of the solenoid for the calorimeter

system but keep electrical stability. Because of its vicinity to the ECAL it is integrated

with the LAr cryostat system to keep the solenoid at a temperature of 4.5 K. The

solenoid can deliver a magnetic field of up to 2 T.
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3.2.5 Trigger and Data Acquisition System

The ATLAS detector has been designed to observe 1.7× 109 pp collisions per second

which corresponds to 60 TB of data per second [160]. This does not only result in

unmanageable data flows but data on many events that will not be of interest for our

physics programs. The goal of the trigger system is to select the events of interest,

acquire the data of these events and discard the rest of the signals created in the sub

detectors. The ATLAS detector has a trigger system that contains two levels.

Level 1 Trigger

The Level 1 triggers [161, 162, 163] are hardware-based triggers of custom made elec-

tronics which reduce the event rate to at least 100 kHz. Signals from Calorimeters and

Muon Spectrometer are passed to front-end electronics (FEs) which digitise the sig-

nals. These signals are then passed with 1900 optical links to custom buffer hardware

that apply selection filters. If an event passes the filters the digitized signals of the

subdetectors, e.g. from the Pixel Detector, Calorimeters or Semiconductor Tracker,

are passed from the FEs to the Read-Out Drivers (RODs). A subset of these events

is passed to the HLT for further reduction. Additionally, the information from the

custom buffer hardware is used to identify Regions of Interest (RoIs) in the Calorime-

ter and Muon Spectrometer which is also passed to the HLT. This level acts on an

event in a decision time of 2.5µs. A overview of the data flow, storage and processing

nodes in the L1 and HL Trigger system is given in Fig. 3.15.

High-Level Trigger

The High-Level triggers [164] is a software-based trigger which takes the fragments of

the digitized signals from all the subdetector systems and applies more sophisticated

selection algorithms to reduce the event rate from 100 kHz to approximately 1 kHz.

These algorithms are run on a processor farms and take at most 1 s per event.
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Figure 3.15: Schematic of the trigger and data acquisition system. From [163].

The criteria that are imposed on the events in these trigger levels can vary from

kinematic thresholds to geometry or track selection. After the HLT the final selection

of events is sent to permanent digital storage by the Data Logger. The data is then

distributed across the Worldwide LHC Computing Grid (WLCG) [165], a global net-

work of storage and processing nodes facilitated and used by all the research institutes

and universities collaborating with CERN. The ATLAS data can then be pulled from

this network for further reconstruction and analysis.

3.2.6 Detector Simulation

Chapter 2 describes the theoretical principles behind the Monte Carlo simulations

of pp collisions up until hadronization where stable hadrons, leptons and photons

remain. These proceed further away from the interaction point and interact with the
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detector materials to induce measurement processes. The standard ATLAS detector

simulation is build with the Geant4 particle simulation toolkit [166] of which the

output file format can be chosen to be identical to the raw data format of the ATLAS

data acquisition system or in a different object-based format. The Geant4 (G4)

framework transports the generated particles through all the subdetector systems and

models their interaction with the material including the read-out signals. This frame-

work is the most complete and detailed model of the ATLAS detector and is therefore

often denoted as full simulation. However, after identifying certain simulation pro-

cesses that take the majority of computing time, e.g. 80% of the G4 simulation is

spend on simulating particle and calorimeter interaction, efforts have been made to

speed up certain parts. One of these efforts produced the AtlFast-II [167], a sim-

ulation of the ATLAS detector that uses the full Geant4 simulation for the inner

detector and muon system but uses FastCaloSim [168] for the calorimeter systems.

The latter is a model that uses geometrical simplifications and a parameterization of

the particle energy response to speed up the calorimeter simulations. Table 3.1 shows

the substantial improvement in computation times between the two. In this thesis

AtlFast-II was only used for preliminary studies. All Monte Carlo samples used in

the final measurement were passed through the Geant 4 simulation framework.

Sample Geant4 AtlFast-II
Minimum Bias 551 31.2
tt̄ 1990 101
Jets 2640 93.6
Photon and jets 2850 71.4
W± → e±νe 1150 57
W± → µ±νµ 1030 55.1
Heavy ion 56,000 3050

Table 3.1: Simulation times per event for the Geant 4 and the AtlFast-II sim-
ulation of the ATLAS detector [169]. The times were normalized to kSI2K seconds
i.e. the processing time the SpecInt2000 CPU benchmark system would need for the
simulation [170].
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Chapter 4

Object Reconstruction and

Identification

In the previous chapter it is discussed how particles created during pp collisions create

signals in the subdetectors which are then processed and saved on disks. However,

this raw ATLAS data still needs to be processed and further compressed offline into

useful information that can be used in physics analyses. The process of converting

these raw electrical signals into physics objects such as electrons, jets and photons

is called reconstruction and are saved in an Event Data Model (EDM) called an

Analysis Object Data (xAOD) [171]. This is a data file format based on the ROOT

library [172], a C++ open-source data analysis framework, and is used by physicists

as input for their analyses. The ATLAS raw data can be used to reconstruct almost

any particle. The physics objects of tt̄ production in the l+jets decay channel that

need to be reconstructed from detector signals are hadronic jets, electrons, muons

and neutrinos. The top quark can also decay into τ -leptons but these are excluded

from the analysis because they can decay hadronically, unlike electrons and muons.

The reconstruction of photons and τ -leptons is not discussed in this chapter as they

are not part of the l+jets decay channel.

64



4.1 Tracks and Vertices

One of the most important characteristics of a collision event are the tracks and in-

teraction points, i.e. vertices, of the charged particles emerging from the pp collisions.

These are crucial for the identification of the particles associated to the tracks and

the interactions they undergo. The reconstruction of tracks is done by a sequence

of algorithms [173, 174]. It starts of with an inside-out followed by an outside-in

approach. The inside-out approach starts with constructing track seeds from the hits

in the pixel detector and semiconductor tracker. A track seed is a set of points in sep-

arate layers which is set by default to three. Each track seed can be uniquely defined

by three parameters if one assumes a perfect helical track and a constant magnetic

field; the momentum pT , the transverse impact parameter d0 and the azimuthal angle

φ0.

Figure 4.1: Sketch of a perfect helical track used to estimate the momentum pT and
transverse impact parameter d0 of a track seed. From [173].
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The transverse momentum is calculated using

pT = ρ× 3 · 10−4 × q ×B (4.1)

with ρ being the radius of the track, q the charge of the particle and B the magnetic

field strength along the z-axis. The impact parameter is determined by

d0 =
√
c2
X + c2

Y − ρ (4.2)

with cX and cY being the distances from a reference point along the x- and y-axis,

respectively.

Track seeds passing minimum pT and maximum d0 criteria are passed on to a combi-

natorial Kalman Filter [175], an iterative procedure that forms track candidates by

adding hits moving towards the transition radiation tracker. These tracks are subject

to criteria such as each seed being part of only one track candidate or sufficient hits

per track candidate. The track candidates are then passed to an ambiguity solver

[173], an algorithm that firstly applies loose requirements on track candidate charac-

teristics such as momentum or holes, missing hits in layers, and then applies a track

scoring algorithm. A cut on the final score defines a set of tracks that is further

extended with segments from the transition radiation tracker. The second outside-

in approach starts off with seeds from energy deposit regions in the electromagnetic

calorimeter. These seeds are extended with segments from the TRT and unused hits

from the pixel detector and semiconductor tracker. Together with the inside-out ap-

proach these tracks result in the final set.

Using the tracks found in this procedure, primary vertices are reconstructed with

an iterative χ2-fit [173]. A primary vertices represent the interaction pionts (IP) of
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pp collisions. The z-position of the reconstructed tracks on the beamline are used

as seeds and the reconstructed vertices are required to be matched to at least two

tracks. In case multiple vertices of an event are associated with a pp collision the

vertex with the highest pT is chosen as the primary vertex. All other vertices rep-

resenting proton-proton interactions, either from the same or a different bunch of

protons, are considered as pile-up. Secondary vertices represent decay points of parti-

cles originating from the primary vertex. The reconstruction of secondary vertices is

of special importance for identifying b-quarks that come from a decaying top quark.

More on this will be discussed in Sec. 4.4.

4.2 Electrons

An electron signature is characterized by clusters of energy deposits in the electro-

magnetic calorimeter and a curved particle track. Cluster candidates are formed from

energy deposits by using a sliding-window algorithm [176]. As mentioned in Ch. 3

the electromagnetic calorimeter consists out of cells. A frame of 3 × 5 cells in the

η × φ plane scans both the η and φ direction for energy deposits exceeding 2.5 GeV.

In case of cluster candidates overlapping, i.e. if the frames are within a distance of

∆η × ∆φ = 5 × 9 cells, the cluster with the lowest transverse energy is discarded

if the energy difference is bigger than 10%. If the difference is less than 10% then

the cluster with the lowest transverse energy in the central tower is discarded. The

remaining seed clusters are then further reconstructed by extending the window to

η × φ = 3× 7 in the barrel region and η × φ = 5× 5 in the end caps. The extended

window clusters are then matched to a reconstructed track which is refit to take

brehmsstrahlung of the electron into account. Identification algorithms are then ap-

plied to the reconstructed electrons to distinguish between electrons originating from

the signal physics process, or prompt electrons, or from backgrounds such as photon
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conversion or hadron misidentification. A likelihood is constructed from probability

distribution functions of various variables from tracking and calorimeter information

[177]. This likelihood is fitted to data and Monte Carlo samples and used to construct

a discriminant optimal for identification of prompt electrons. Discriminant cut-offs

can be chosen based on their signal to background ratio. The working points Tight,

Medium and Loose correspond to a ratio of 80%, 88% and 93%, respectively.

Figure 4.2: A schematic illustration of the path of an electron through the detector.
From [177].

4.3 Muons

As mentioned in Ch. 3, muons will leave curved tracks in the inner detector but

are very unlikely to interact with the electromagnetic and hadronic calorimeter other

than creating ionization. Muons are therefore reconstructed and identified with addi-

tional information from the muon spectrometer. An additional track reconstruction

in the muon spectrometer starts by applying a Hough transform [178] on hits in the

MS. A Hough transform takes points in Cartesian space and transforms them into a
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line in line parameter space. Features of these lines are used to reconstruct lines from

the points in Cartesian space [179]. Track candidates are formed from the segments

by fitting a parabolic trajectory originating from the interaction point of that event.

A final χ2 fit finds a track that takes misalignments in the muon spectrometer and

interactions with the detector material into account. After removing holes and ambi-

guities, tracks from the inner detector and muon spectrometer are matched and used

in a combined track fit. If no matches can be found, the muon spectrometer segments

are extrapolated to the beamline. Another χ2 fit is perfomed using information of

the reconstructed muons to identify prompt muons from muons originating from pion

or kaon decays. Variables used in the fit are the χ2 value of the track fit, the pT

difference as measured in the inner detector and muon spectrometer and charge over

momentum ratio q/p [180, 181]. Loose, Medium and Tight working points are avail-

able to give analysis teams various prompt muon reconstruction efficiencies to choose

from.

4.4 Jets

The majority of particles produced at pp collisions at the LHC will be gluons and

quarks. When emerging these particles will hadronize because of colour confinement

and produce a spray of particles known as a jet. Topologically clustered calorimeter

cells, or topo-clusters [182], are used as inputs for jet reconstruction. Topo-clusters are

formed with the use of a growing-volume algorithm [182] that starts with collecting

seed cells that have an energy deposit 4 times bigger than the average cell noise.

Adjacent cells or other topo-clusters are merged if surpassing an energy 2 times bigger

than the average cell noise. Finally, all cells with an energy deposit bigger than zero

and on the perimeter of the topo-clusters are added as well. The topo-clusters are

used in the anti-kt algorithm [183] with distance parameter R = 0.4 to reconstruct
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small R jets and R = 1.0 for large R jets. Additionally, the Cambridge-Aachen (C/A)

algorithm [184] is used to reconstruct jets with R = 1.2. Figure 4.3 compares the

results of both algorithms for a Monte Carlo event. The final reconstructed jets are

then matched to tracks from the inner detector and muon spectrometer.

Figure 4.3: An illustration of calorimeter cells clustered with the anti-kt (Left) and
Cambridge-Aachen (Right) algorithm for R = 1.0. The inputs come from a Monte
Carlo event generated with Herwig. From [183].

To reduce the effects of pile-up on the jet reconstruction the jet-area [183] and jet-

vertex tagging [185] methods are used. The jet-area method draws cylinder shapes

around the particles that make up a jet and uses the bottom-view area to identify

jets originating from the interaction of interest or from a pile-up or Underlying Event.

The jet-vertex tagging (JVT) method uses track information from the tracks of the

particles used to construct the jet to distinguish between jets from the primary vertex

and pile-up vertices.

Identifying what type of particle initiated the jet is known as tagging. The top

quark decays before hadronization and almost always into a W boson and a b quark.

Identifying jets initiated by a b-quark is known as b-tagging and is vital for identifying

the tt̄ signal events. Jets initiated by u, d or s-quarks are labelled as light jets. The

DL1 algorithm [186] uses a deep neural network (DNN) to label a jet as coming from
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either a b, c or light-flavor quark. The DNN is trained with jets from simulated tt̄ and

Figure 4.4: Light-flavour and c-jets rejection as a function of b-tagging efficiency for
the DL1 algorithm compared with previous b-tagging algorithms (Top). Distribution
of the output discriminant of the DL1 b-tagging algorithms for b-jets, c-jets and
light-flavour jets on tt̄ simulated events (Bottom). From [187].
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Z ′ events to ensure good identification of jets over a wide range of jet pT . The input

variables are kinematic properties of the jets such as pT , η, vertex displacements or

invariant masses and gives as output three probabilities for a b, c and light-flavor jet.

The probabilities are used to define the single discriminant

DDL1 = ln
( pb
fc · pc + (1− fc) · plight

)
(4.3)

with pb, pc and plight the output probabilities for the jet being b, c or light flavored

and fc the c-jet fraction in the training sample. Figure 4.4 shows rejection rates of

light flavoured and c-jets and the DL1 discriminant outputs of the trained DNN for

a tt̄ sample. This discriminant is then used to define working points on either a 60%,

70%, 77% or 85% b-tagging efficiency.

4.5 Missing Transverse Energy

The missing transverse energy (MET) is an event quantity based on momentum

conservation and is used to identify particles that escape the detector without any

interaction in any of the subdetectors. In this thesis it is used to reconstruct neutrinos

(see Sec. 4.6). The MET is calculated from hard objects, such as reconstructed jets

or muons, and soft signals consisting of charged particle tracks not associated to any

reconstructed objects. It is defined as a 2D vector in the xy-plane, i.e.

Emiss
x(y) = −

∑
i∈hard objects

px(y),i −
∑

j∈soft signals

px(y),j. (4.4)

If all particles are accounted for in the both the hard objects and soft signals the

sum should amount to zero. Reconstructing MET is very challenging because of

the dependence on the performance of all the other measuring and reconstruction

procedures. The MET is therefore reconstructed with reconstructed objects subject
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to specific quality criteria and kinematic selections [42]. Figure 4.5 shows Emiss
x and

Emiss
y distributions for data and Monte Carlo simulated Z → µµ events.

Figure 4.5: Comparison of Emiss
x (Left) and Emiss

y (Right) distributions filled with
both data and Monte Carlo Z → µµ events. From [42].

4.6 Top Quark

The top quark has a very short lifetime and decays before hadronization occurs.

This means that the top quark decays before it reaches the detector and therefore

can not be directly be measured. Instead, the top quark is reconstructed from its

decay products using the pseudo-top algorithm [188]. A top quark decays almost

exclusively into a W boson and a b quark. The W boson can either decay into a

charged lepton and neutrino or two light flavor quarks (see Fig. 4.6). The pseudo-top

algorithm therefore defines a leptonic decaying and a hadronic decaying top. The

four-momentum of the leptonic top is reconstructed from the four-momenta vectors

of a b-tagged jet, a muon or electron and reconstructed neutrino. Unlike the muon

and electron can the τ lepton also decay hadronically. Because of the difficulty to

disentangle these hadrons from the ones of the W boson or other QCD backgrounds
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this decay mode is not included in the algorithm.

Figure 4.6: The leptonic and hadronic decay channels of a W boson.

The leptonic decaying top quark is reconstructed from a b-jet and W boson four-

momentum. The two b-jets with the highest pT are chosen as decay products of the

two top quarks. The one with the smallest ∆R =
√

∆φ2 + ∆η2 w.r.t. the lepton is

assigned to the leptonic top quark. The W boson is reconstructed from the lepton

and neutrino vector. However, the neutrino is not directly measured so needs to be

reconstructed from the MET and the invariant mass of the W boson. The transverse

momentum components of the neutrino px,ν and py,ν are taken from the reconstructed

MET. The z-component of neutrino uses the invariant mass definition

m2
W = (El + Eν)

2 − (px,ν + px,l)
2 − (py,ν + py,l)

2 − (pz,ν + pz,l)
2. (4.5)

This equation can be solved for pz,ν

pz,ν =
−b±

√
b2 − 4ac

2a
(4.6)

with

a = E2
l − p2

z,l, b = −2kpz,l, c = E2
l p

2
T,ν − k2 (4.7)

and
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Decay mode Branching Ratio (Γi/Γ) [%]
eνe 10.75± 0.13
µνµ 10.57± 0.15
τντ 11.25± 0.20

Hadronic 67.60± 0.27

Table 4.1: Branching ratios for W boson decay modes [189]. The remaining decay
modes with branching ratios < 1% are omitted.

k =
m2
W −m2

l

2
+ px,lpx,ν + py,lpy,ν . (4.8)

If both solutions to the quadratic equations are real the smallest pνz solution is used.

In case
√
b2 − 4ac < 0 then the z-component of the neutrino’s momentum is taken

to be pνz = −b/2a. The other W boson is reconstructed from the two remaining jets

with the highest pT and which should not be b-tagged. Together with the remaining

b-jet the four-momenta are used to reconstruct the hadronic top quark. Figure 4.7

shows a comparison between top quarks reconstructed with the pseudo-top algorithm

and parton level top quarks. The big absolute difference is caused by the jet and

single lepton selection. The ratio plot of the normalized distributions shows some

disagreements. However, the kinematic properties of the pseudo-top quark still carry

a lot of information on the top quark.

75



Figure 4.7: Transverse momentum distributions of simulated top quarks before parton
shower, i.e. on parton level (green), and top quarks reconstructed with the pseudo-
top algorithm, i.e. on particle level (blue). In both cases, the hadronically decaying
top-quark is chosen. The distributions are evaluated for the same event sample based
on POWHEG+PYTHIA at

√
s = 7 TeV. The ratio plots is of the normalized

distributions. From [188].
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Chapter 5

Unfolding Methods

In High Energy Physics (HEP) and in many other fields one often measures distri-

butions of quantities such as particle energies or other characteristics of observed

events. Because the experimental apparatus (the “detector”) inevitably has a limited

resolution, the measured (or “reconstructed”) value of the quantity in question will

differ in general from its true value. This results in a distortion or smearing of the

measured distribution relative to what would be obtained if the detector had per-

fect resolution. The statistical procedure of estimating the true distribution from the

directly measured one is usually called unfolding in HEP, or deconvolution in many

other fields. In case of this thesis, unfolding distributions of top quark observables is

a crucial step. Section 5.1 discusses the mathematics behind unfolding. Section 5.2

discusses the different unfolding algorithms used in this thesis as implemented in the

software package RooUnfold [190]. Section 5.3 discusses figures of merit that can be

used to optimize the regularization parameter. Section 5.4 presents a study compar-

ing different unfolding algorithms using some of these figures of merit. Section 5.5

and 5.6 present novel techniques to estimate the response matrix and the covariance

matrix, respectively. Section 5.7 finishes with some conclusions and discussion points.

77



5.1 Mathematical Formulation

Lets assume we have a variable of interest x following a true distribution h(x). In

practice we do not have direct access to the true distribution but only its measured

value y following a different distribution g(y). These two distributions are related

through the Fredholm integral equation of the first kind [191],

g(y) =

∫
K(y, x)h(x) dx, (5.1)

with K(y, x) being the kernel function encoding the measurement process. In prac-

tice, this kernel function is a very complicated function and is not known a priori.

However, we will see later on that it can be approximated with Monte Carlo simula-

tions under the assumption of some model h(x).

For experiments that count the number of observed events of interest, e.g. pp → tt̄

events, it makes more sense and to discuss the discretized case of histograms instead

of continuous distributions. In that case Eq. (5.1) changes into

νi =
M∑
j=1

Rijµj, (5.2)

where ν = (ν1, ..., νN) is known as the reconstructed histogram and µ = (µ1, ..., µM)

as the true histogram that we would like to estimate. They are related to Eq. (5.1)

via

νi = νtot

∫
bin i

g(y) dy, µj = µtot

∫
bin j

h(x) dx (5.3)

with νtot and µtot being the total number of true and reconstructed events, respectively.

78



The kernel function changes into the response matrix Rij which is defined as [192]

Rij =

∫
bin j

dx
∫

bin i
dy K(y, x)h(x)∫

bin j
dx h(x)

(5.4)

The response matrix can be interpreted as the probability an event will be found with

measured value y in bin i given that the true value x was in bin j,

Rij = P (measured in bin i|true in bin j). (5.5)

Note that the response matrix depends on the true distribution h(x). However, if the

bins of µ are small enough such that the kernel function K(y, x) is constant over each

bin in x the dependency will cancel out. One should also take into account that in

case of counting experiments the events of the signal process are often accompanied

by events of one or more irreducible background processes. The expected bin values

for the total reconstructed background are denoted by β = (β1, ..., βN) which changes

equation (5.2) into

νi =
M∑
j=1

Rijµj + βi. (5.6)

Now let us assume we have some set of measured values binned in a histogram n =

(n1, ..., nN) with the expected values E[n] = ν. The goal of unfolding is to estimate

the parameters µ from the measured histogram n = (n1, ..., nN). For now, let us also

assume we have determined the response matrix Rij with infinite precision. We will

discuss in upcoming sections how the response matrix can be estimated and how to

include uncertainties of the response matrix. The most obvious approach would be

invert the response matrix and multiply it with the background subtracted data:

µ̂ = R−1(n− β). (5.7)
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However, this will often give unsatisfactory results. The sample of measured events

used to fill the histogram n has a finite size and are subject to statistical fluctua-

tions. The response matrix R is often ill-conditioned, i.e. will have a large condition

number ||R|| ||R−1||, which means that even small statistical fluctuations in n can

result in large fluctuations in the estimator µ̂ [193]. These fluctuations and variances

are more apparent with response matrices with large off-diagonal elements or with

measured histograms n filled with a small number of statistics. A toy example of an

ill-conditioned response matrix and a matrix inversion solution using this response

matrix that shows large estimator fluctuations and variances is given in Fig. 5.2 and

Fig. 5.1, respectively.

Figure 5.1: An example of how statistical fluctuations in the n, an ill-conditioned
response matrix R and an estimator µ̂ constructed with matrix inversion can result
in large fluctuations in the estimator. The figure shows the measured data compared
with the simulated Monte Carlo distributions on reconstructed level (Left) and the
unfolded data and truth distributions (Right).

Often, each measured bin ni can be regarded as an independent Poisson variable i.e.

distributed according to a Poisson probability distribution function (p.d.f.) f(ni|νi)

with mean νi. However, we know that ν depends on µ according to Eq. (5.6) so we

can write f(ni|µ). By taking the product of the p.d.f.s f(ni|µ) we get the likelihood

function
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Figure 5.2: An example of an ill-conditioned response matrix as a result of detector
smearing. This response matrix is estimated using simulated Monte Carlo events.

L(µ) =
N∏
i=1

f(ni|µ) =
N∏
i=1

νnii
ni!

e−νi . (5.8)

Alternatively, one can treat ni as a continuous variable following a Gaussian p.d.f.

with mean νi and standard deviation σni . In this case the likelihood would be

L(µ) =
N∏
i=1

1√
2πσni

exp
[(ni − νi)2

σ2
ni

]
. (5.9)

Maximizing Eq. (5.8) or (5.9) w.r.t. µ will give the Maximum-Likelihood Estimators

(MLE) of the true histogram. If one sets the derivative of either likelihoods to zero

and solves for µ one gets the same solution as in Eq. (5.7). The matrix inversion is

equivalent to the ML estimators and are both known to be unbiased estimators with

minimum variance [192]. One should note that there are some situations where the

matrix inversion solution is still suitable, e.g. if the unfolded histogram and covariance

are used in a least-squares fit or with very little detector smearing. However, in

general one looks for estimators that reduce the (co-)variances by constraining the

possible solution space of µ̂ with some prior knowledge on what the estimators should

“look like”. Constraining the solution space µ̂ with prior knowledge is known as

regularization and inherently introduces bias. The subtle game of unfolding is finding

an ideal balance in this bias-variance trade-off. For purposes of the upcoming section
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we define the bias of an estimator µ̂i as

b[µ̂i] = E[µ̂i]− µi (5.10)

and the covariance between two estimators µ̂i and µ̂j as

U [µ̂i, µ̂j] = E[(µ̂i − E[µ̂i])((µ̂j − E[µ̂j])]. (5.11)

One way of explaining the large (anti-)correlations is by estimating the covariance

matrix of the ML estimators. Because the ML estimators are unbiased estimators

one can use the unbiased Cramer-Rao Bound (RCB) [194, 195], also known as the

Minimum Variance Bound (MVB), to calculate the covariance matrix. This bound

states that that the covariance between two estimators λ̂i and λ̂j has a lower bound

set by the following inequality

U [µ̂i, µ̂j] ≥
(

(I −B)I−1(I −B)T
)
ij

(5.12)

with I being the identity matrix and B being the bias gradient matrix with Bij =
∂bµ̂i
∂µj

.

The Fisher information matrix I is defined by

Iij = E

[
∂2 logL

∂µi∂µj

]
(5.13)

with L being the likelihood function. In the case of negligible bias we see that Eq.

(5.12) reduces to the unbiased RCB,

U [µ̂i, µ̂j] ≥
(
I−1
)
ij
. (5.14)

Under the large sample approximation the covariance is assumed to equal the zero-

bias RCB. If one can estimate the matrix of second derivatives of the log-likelihood,

also known as the Hessian matrix, one can take the inverse of this matrix as an
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estimate for the covariance. Under the large sample approximation one can also

assume the log-likelihood is parabolic shaped around its maximum. In this case one

can numerically approximate the second derivatives, e.g. with finite differences,

U [λ̂i, λ̂j] =

(
∂2 logL

∂λi∂λj

∣∣∣∣∣ ˆλ

)−1

. (5.15)

By taking the second derivative of Eq. (5.8) w.r.t. µ and solving for zero one can get

an expression for the covariance matrix [192],

U [µ̂i, µ̂j] = (H−1)ij =
N∑
k=1

(R−1)ik(R
−1)jkνk. (5.16)

We can see that the off-diagonal elements of the covariance matrix depend largely on

the off-diagonal elements of the response matrix R.

5.2 RooUnfold Unfolding Methods

This section gives an overview of the unfolding methods, i.e. how they construct

their estimators µ, as available in the software package RooUnfold [190] and how

they impose regularization on the estimators. The matrix inversion and maximum

likelihood (ML) estimators have been excluded as they are discussed in the previous

section.

5.2.1 Bin-by-bin

The bin-by-bin unfolding method applies correction factors and ignores the off-diagonal

elements of the response matrix. The estimator is found to be as

µ̂i = Ci(ni − βi) (5.17)

with the correction factor estimated with Monte Carlo simulated events,
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Ci =
µMC
i

νMC
i

. (5.18)

The covariance is defined as

U [µ̂i, µ̂j] = C2
i νiδij. (5.19)

5.2.2 Tikhonov

Instead of maximizing the likelihood L(µ) one can maximize a linear combination of

the likelihood and some regularization function S(µ). This regularization function

constrains µ-space according to some prior knowledge encoded in the function S(µ).

One can find the estimators µ̂ by maximizing the expression

Φ(µ) = L(µ) + τS(µ) (5.20)

with regularization parameter τ determining how strongly the analyst wants to con-

strain the solutions. For τ = 0 we retrieve the ML estimators with minimum bias

and maximum variance. For τ > 0 the estimators will have a larger bias but smaller

variance w.r.t. the ML estimators. Many choices for S(µ) are possible such as L1

(Lasso) [196, 197] and L2 (Ridge) [198, 199] regularization that constrain on abso-

lute sizes of µ. It is possible to adjust these regularization functions by taking the

differences between µ and some reference histogram µ0 instead of the absolute sizes

of µ. However, a very common choice in HEP is Tikhonov regularization [200] which

constraints the solution on its smoothness. The discretized Tikhonov regularization

function is

S(µ) = −
M−2∑
i=1

(−µi + 2µi+1 − µi+2)2. (5.21)

Note that this is for equal bin widths. An expression that works for both constant
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and variable bin widths can be written down as

S(µ) = −
M−2∑
i=1

(−µdens
i + 2µdens

i+1 − µdens
i+2 )2, µdens

i =
µi
δµi

(5.22)

with δµi being the bin width of bin i. The TUnfold [201] and TSVD [202] unfolding

algorithms available in RooUnfold both use Tikhonov regularization with Eq. (5.9)

as likelihood. They construct closed form solutions for µ by setting the derivative

of the likelihood including the regularization term to zero. However, both have their

own additional features to choose the regularization parameter τ . We will return to

this in the upcoming section.

5.2.3 Richardson-Lucy (Iterative Bayes)

The Richardson-Lucy algorithm [203, 204], or iterative bayes unfolding as described

by D’Agostini in [205], is an unfolding procedure that updates the estimator µ̂ with

each iteration. The estimator is defined as

µ̂r+1
j = µ̂rj

N∑
i=1

Rijni∑M
k=1Rikµ̂rk

(5.23)

for the j-th bin and r + 1 iterations. The regularization is introduced by setting

an initial truth distribution µ̂0. For a low number of iterations r the estimator µ̂r

will be very biased towards the initial truth distribution µ̂0 but have relatively low

covariances. In the limit of many iterations it is emperically shown that the estimator

will converge to the ML estimator with zero bias but large covariances.

5.2.4 Iterative Dynamically Stabilized

Iterative Dynamically Stabilized (IDS) unfolding is another iterative procedure as

proposed in [206]. Just like the Richardson-Lucy algorithm the IDS method starts
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from some initial truth distribution µ0 to construct an estimator which then is im-

proved with each iteration. The estimator is defined as

µ̂i = µ0
iC+∆βtrue

i +
N∑
j=1

(
f(∆ni, σ∆ni , λ)Rji∆ni−(1−f(∆ni, σ∆ni , λ))∆niδij

)
(5.24)

with a MC normalization coefficient C that corrects for differences in MC and data,

∆βtrue
i the expected number of truth events associated with fluctuations in the back-

ground subtracted from the data, ∆ni = ni−∆βreco
i −Cνi, σni being the uncertainty

on the measured data ni, Rji the response matrix and f(∆ni, σ∆ni , λ) a function with

a value between 0 and 1. With each iteration C, Rji and f(∆ni, σ∆ni , λ) are adjusted.

Again, similar to the Richardson-Lucy method, low iterations is equivalent to high

regularization and high iterations to low regularization.

5.2.5 Gaussian Process Unfolding

Gaussian Process (GP) Unfolding as proposed in [207] is a form of Bayesian regression

that defines the mode of a posterior distribution as an estimator. The posterior

distribution is constructed with Bayes’ theorem from a Gaussian likelihood and a

Gaussian Process prior. By maximizing the posterior a closed form solution can be

found,

µ̂ = K
[
K +R−1V (R−1)T

](
R−1n−m

)
+m (5.25)

with response matrix R, kernel matrix K defined by the kernel function and some

reference histogramm. In [207] it is shown that the choice ofm does not substantially

influence the mode of the posterior and can therefore be set to zero. Regularisation is

introduced via the kernel function of the GP defining K. Different choices of kernel

can be made such as the radial basis function (RBF) kernel,
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k(x,x′) = A exp

(
−||x− x′||2

2l2

)
(5.26)

with hyperparameters A and l, or the Gibbs function kernel,

k(x,x′) =
M∏
i=1

(
2li(x)li(x

′)

li(x)2 + l2i (x
′)2

) 1
2

exp

(
−

M∑
i=1

(xi − x′i)2

li(x)2 + l2i (x
′)2

)
. (5.27)

with its hyperparameters defined in the distance functions li(x). The kernel function

and hence its hyperparameters completely determine the amount of regularization.

There are various methods of choosing these hyperparameters of which some are

proposed in [207].

5.3 Determining the regularisation parameter

In the previous section we discussed various unfolding methods that construct an

estimator µ̂ in different ways. One thing they all have in common is that they have

one or more parameters that define the amount of regularization that defines the

bias-variance trade-off. A common misconception is that there is one value for each

regularization parameter that is the best in any unfolding scenario. However, in reality

does each new setting require a different value. This section defines several figures of

merit that can be used to not only to compare different unfolding methods but also

help determining the regularization parameters. In terms of statistical learning this

is known as hyperparameter optimization.

5.3.1 Mean Squared Error

Both variance and bias of can be seen as a form of error on an estimator. A well

known figure of merit that takes both into account is the mean squared error defined
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as

MSE =
1

M

M∑
i=1

(U(µ̂i, µ̂i) + b[µ̂i]
2) (5.28)

with variance U(µ̂i, µ̂i) and bias b[µ̂i]. An approach could be to choose a regularization

parameter that minimizes this quantity. Histograms were the bin entries differ by a

couple of scales, e.g. for an exponential distribution, will have the bins with the

highest entries have the largest weight in defining the regularization parameter. In

these cases one could redefine Eq. (5.28) to

MSE =
1

M

M∑
i=1

(Urel(µ̂i, µ̂i) + brel[µ̂i]
2)

Urel(µ̂i, µ̂i) =
U(µ̂i, µ̂i)

µ̂i

brel[µ̂i] =
b[µ̂i]

µ̂i

(5.29)

5.3.2 Coverage Probability

Another criterion one could base their choice of regularization parameter on is the

coverage probability of the confidence interval constructed for each bin, as proposed

in [208]. A 68% confidence interval can be constructed as [µ̂i − σµ̂i , µ̂i + σµ̂i ] with

standard deviation σµ̂i =
√
U(µ̂i, µ̂i) and estimator µ̂i for bin i. If one would repeat

many measurements and construct a confidence interval for each measurement n then

68.3% of these intervals will cover the true value µi. It is possible to estimate the

probability that the confidence interval will have 68% coverage of some true value µi.

Pcov =
1

M

M∑
i=1

P (µ̂i − σµ̂i < µi < µ̂i + σµ̂i |µi) (5.30)

In the limit of no regularization the coverage probability should converge to its nom-

inal value Pnom = 0.683. However, when bias is increased and variance reduced with
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increasing regularization the coverage probability will inevitably go down. One ap-

proach is to choose a regularization parameter that gives a minimum Pcov = Pnom− ε

defined by a tolerance parameter ε. One trades the ambiguous regularization param-

eter τ with an interpretable parameter ε that controls for a statistical property, i.e.

coverage, of the constructed estimator.

5.3.3 L-curve

The L-curve criterion, as proposed in [209], selects the regularization parameter τ

based on the curvature of the L-curve. The L-curve is a plot of the log-likelihood

logL(µ) and the regularization constraint term S(µ) for various regularization strengths(See

Fig. 5.3) after maximization. In case of τ → 0 the values of logL(µ) will be very

small, S(µ) very big and the variance will be large. However, for large τ it will be

the other way around and the bias will be very large. In previous studies[210, 211] it

is shown that the L-curve criterion will give a good bias-variance trade-off and would

result in a robust choice for τ . The TUnfold algorithm has a build-in feature that

scans the L-curve and returns the τ corresponding to the largest curvature.

5.3.4 Global Correlation Coefficient

Global correlation coefficients [201] estimate the correlation between an estimator µ̂i

and a linear combination of estimators of the remaining truth bins. In case of large

regularization the bins will be positively correlated because of the constraint on the

shape of the unfolded distribution. However, in the limit of τ → 0 the correlations will

become negative as is known of the ML estimator. A minimum average correlation

coefficient will be located in between these two scenarios and can be taken as a

quantity to choose an optimal regularization parameter τ .
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Figure 5.3: An example of an L-curve. From [209].

Average ρ =
1

N

N∑
i=1

√
1− ((U)ii(U)−1

ii )−1 (5.31)

5.3.5 χ2

The χ2 is used in many cases as a goodness-of-fit measure. The same can be done

here by defining

χ2/n.d.f. =
1

N
(µ̂− µ0)U−1(µ̂− µ0)T (5.32)

with U being the covariance matrix of the estimators µ̂ and µ0 some reference truth

distribution. One can choose τ that gives a χ2/n.d.f. that is closest to 1 that signifies

a good agreement w.r.t. the reference truth distribution.

All of the proposed figures of merit can be suitable for choosing a regularization

parameter. Additionally, one can optimize the regularization parameter w.r.t. your

chosen figure of merit with cross validation methods [212, 213, 214]. Cross validation
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methods can reduce the dependency of the regularization parameter on the training

data and give a more realistic validation of the unfolding estimator it constructs.

5.4 Comparison Study

In this section we present a comparison study [215] of the different RooUnfold unfold-

ing algorithms as described in Sec. 5.2. In this setup we use analytical expressions for

the physics process and detector response model. This gives a benchmark unfolding

problem that can be easily controlled but still maintains a realistic level of complex-

ity. A bimodal and exponential model is used which both have a different underlying

truth distribution and Gaussian smearing function.

5.4.1 Exponential Example

We define the model exponential model with an exponential decay distribution as

underlying truth distribution ftruth(x|ζ), smeared with a resolution function that is

loosely inspired on a calorimeter response:

f(x|ζ) = ftruth(xtrue|ζ) ∗ fdetector(xtrue, x)

= (ζ · exp(−ζ · xtrue)) ∗Gauss(x− xtrue, 7.5, 0.5 ·
√
xtrue + 2.5)

(5.33)

where ∗ denotes the convolution operator. The event generation is simulated by

sampling values for xtrue from the exponential distribution with parameter ζ. Here

we denote the ‘SM’ and ‘BSM’ distribution sampled from an exponential with ζ =

0.035 and ζ = 0.05, respectively. The detector response is subsequently simulated

by smearing the sampled values with an additive noise value sampled from a Gauss

function with mean 7.5 and a standard deviation of 0.5 · √xtrue + 2.5.

The response matrix is estimated under the assumption of the ‘SM’ scenario, as is
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Figure 5.4: Left: The true distributions for the SM and BSM models and the corre-
sponding smeared datasets. Right: the transfer matrix for the SM model, which is
populated by the same events as the SM true distribution shown. From [215].

normally done for unfolding frameworks in HEP. The response matrix is used to

unfold data generated with both the ‘SM’ and ‘BSM’ model. The ‘BSM’ model data

is to check that truth models deviating from the ‘SM’ case can still be retrieved with

‘SM’ assumptions in the unfolding framework. The following unfolding algorithms

from RooUnfold are compared:

• Richardson-Lucy (Iterative Bayes)

• Iterative Dynamically Stabilized (IDS)

• Singular Value Decomposition (TSVD)

• TUnfold

• Gaussian Processes (GP)

• Matrix Inversion

• Bin-by-bin

For each unfolding algorithm the bias, variance and coverage probability are estimated

for the constructed truth estimator µ̂. For both the ‘SM’ and the ‘BSM’ model we

have some truth histogram µ filled with the values generated with the before men-

tioned procedure. With this we can construct detector-level histogram by applying
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the ‘SM’ response matrix, i.e. ν = Rµ. Under the assumption that each observed bin

count ni is a random variable following a Poisson distribution with as mean νi one can

sample new values nk from the Poisson distributions. One sampled histogram nk is

known in HEP as a “toy MC” dataset. Here we use K = 1000 toy MCs which each is

unfolded with the chosen method to construct an estimator µ̂k. The set of estimators

is used to estimate the variance of the original estimator µ̂ with the sample variance,

U [µ̂i, µ̂i] =
1

K − 1

K∑
k=1

(µ̂i,k − ¯̂µi)
2, ¯̂µi =

1

K

K∑
k=1

µ̂i,k. (5.34)

The bias can be estimated with

b[µ̂i] =
1

K

K∑
k=1

(µ̂i,k)− µi. (5.35)

To estimate the coverage probability one could take one of the following two ap-

proaches. The first would be to construct many confidence intervals and take the

fraction of confidence intervals that contain the truth value µi as the coverage prob-

ability. The confidence intervals can be constructed for additional sampled n either

from the exponential distribution or via the toy MC approach. However, one can

define a closed form estimate for the coverage probability for bin i based on bias and

variance estimates,

Pcov,i = Φ

(
b[µ̂i]√
U(µ̂i, µ̂i)

+ 1

)
− Φ

(
b[µ̂i]√
U(µ̂i, µ̂i)

− 1

)
(5.36)

with Φ is the Standard Gaussian cumulative distribution function. This definition

holds under the assumptions that the estimators µ̂ are linear dependent on the data

n and that the data n follow a Gaussian distribution. The derivation and further

details can be found in [208].
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With the use of the bias, variance and coverage probability estimation methods one

can compare the performance of the unfolding methods with a ‘SM’ response matrix

on the ‘SM’ (See Fig. 5.5) and ‘BSM’ (See Fig. 5.6) data for varying regularization

parameters. The unfolded distributions are shown for a regularization parameter

that:

1. unconditionally minimizes the bin-averaged MSE (See Eq. (5.28))

2. conditionally minimizes the bin-averaged MSE with the requirement that the

bin-averaged coverage (See Eq. (5.30)) reaches a minimum of 0.683-ε with

ε = 0.01.

Additionally, the bin-averaged bias, variance and coverage probability is shown for a

large range of regularization parameters. The matrix inversion and bin-by-bin meth-

ods are unregularized and therefore only give one solution. The Gaussian Processes

method was used with a RBF kernel which has two tuneable regularization parame-

ters. Instead of scanning the 2D parameter space, a different data-driven method was

used to choose their optimal values known as marginalized likelihood maximization.

This method is implemented in RooUnfold as described in [207] and is used to find

one optimal set of regularization parameters. A more detailed and general description

of the method can be found in [216].

The plots in Fig. 5.5 show that for the SM case all the unfolding algorithms are able

to reasonably retrieve the truth distribution. However, when using the unconditional

minimized MSE unfolding solution many bins show a substantial undercoverage. Es-

pecially for the iterative methods (Bayes and IDS) it should be noted that the number

of iterations needed to get a coverage probability close to nominal coverage of 68.3% is

of the scale 102. This is substantially higher than some of the default values adopted

by certain parts of the HEP community. The Gaussian Processes method shows bad
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coverage and high bias in the low x-region which is caused by boundary effects. The

matrix inversion method shows perfect coverage as expected whilst the bin-by-bin

method has low bias but also low coverage. The coverage panels for the Bayes, IDS,

TSVD and TUnfold shows that the coverage can peak in certain regions. This is

because the bias to variance ratio is higher in that region relative to the other regions

(See Eq. (5.36)). Possible explanation for these peaks could be a slight bias in the

truth distribution used to calculate the bias relative to (See (5.10)). However, this

increase in the bias-variance ratio can also just be the behaviour of the constructed

estimator.

The plots in Fig. 5.6 show the unfolded results of observed data from a BSM model

but with a response matrix estimated with a SM model. As mentioned in the begin-

ning of this chapter the choice of the underlying model should not have an effect on

the response matrix if the binning is chosen carefully. However, when regularization

with a SM assumption is introduced the unfolded distribution can be heavily biased

towards the SM truth. We see that all algorithms reasonably retrieve the shape of

the BMS truth distribution. We see that some bins have a slight increase in bias and

again undercoverage for the unconditional minimized MSE unfolding distributions.

For the conditional minimized MSE we see a large increase in variance for many bins

in the IDS and Gaussian Processes unfolded distributions.

5.4.2 Bimodal Example

The bimodal example is used to investigate the response matrix model dependence

even further. This is done by unfolding data from models increasingly different from

the model used to estimate the response matrix. We define the bimodal model as
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f(x|ζ) = ftruth(xtrue|ζ) ∗ fdetector(xtrue, x)

= ((0.5fCB(xtrue|µ = 2.4, σ = 0.48, ζ, n = 1)+

(0.5fCB(xtrue|µ = 5.6, σ = 0.48, ζ, n = 1))

∗Gauss(x− xtrue|0, 0.4)

(5.37)

where fCB is the Crystal Ball probability density function which has a Gaussian core

determined by the parameters µ and σ and an additional power law tail controlled

by the parameters n and ζ. The data is sampled from a bimodal model with n =

1, ζ = [0.5, 1, 1.5, 2, 2.5, 3] and the response matrix is generated with n = 1 and

ζ = ∞ which reduces the Crystal Ball function to a Gaussian. Figure 5.7 shows

the truth distributions of the bimodal model for different ζ. Figure 5.8 shows the

comparison of bin-averaged bias for unfolded distributions of the Bayes, IDS, SVD

and TUnfold algorithms. The regularization parameters are chosen again such that

they unconditionially minimize the MSE and once for regularization parameters that

conditionally minimize the MSE with a minimal coverage of 0.683− ε with ε = 0.01.

Figure 5.9 shows the bin-averaged bias for Gaussian Processes, matrix inversion and

bin-by-bin unfolding
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Figure 5.7: The truth distributions of the bimodal model compared with the Crystal
Ball models for ζ = [0.5, 1, 1.5, 2, 2.5, 3]. From [215].
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(a) (b)

Figure 5.8: The bin-averaged bias for the unfolded distributions for varying α for the
TUnfold, SVD, Bayes and IDS method. The regularization parameters are chosen
such that they a) unconditionally minimize the MSE and b) conditionally minimize
the MSE with a minimal coverage of 0.683− ε with ε = 0.01. From [215].

Figure 5.9: The bin-averaged bias for the unfolded distributions for varying α for the
Gaussian Processes, matrix inversion and bin-by-bin method. From [215].

methods. Quite notable is the bin-averaged bias of the TUnfold, Gaussian Processes

and matrix inversion methods which indicate very little dependence on the α parame-

ter. This indicates that they are slightly more robust w.r.t. datasets originating from

models deviating from the model used to estimate response matrix. The other meth-

ods clearly show an increase in bias for lower α i.e. for bigger data model deviations.
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5.5 Response Matrix Estimation

Up until now we assumed that the response matrix R has been known. However, in

general this is not the case and we need to use Monte Carlo simulations with model

assumptions to estimate it. In this section we will firstly introduce the conventional

way of estimating the response matrix. After that we will introduce a novel method

to estimate the response matrix and compare it with the first. As example unfolding

setup we define the exponential model,

f(x|α) = ftruth(xtrue|α) ∗ fdetector(xtrue, x)

= (0.2 · exp(−0.2 · xtrue)) ∗Gauss(x− xtrue, µ = 0, σ = 2.5 + xtrue/25).

(5.38)

Figure 5.10: Truth and reconstructed histogram of the exponential model.

Note the big difference in number of events between the first and the last bins. These

differences are very common in HEP, i.e. like in the pT distributions of the top quark.

5.5.1 Normalizing the transfer matrix

Here we discuss the conventional approach to estimating a response matrix. We start

off by defining the binning of the truth (µ) and reconstructed (ν) histograms for
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some observable of interest. One can use these binnings to construct a 2D histogram

N commonly known as the transfer matrix. If one has a Monte Carlo simulated data

sample with the truth and reconstructed events one can fill the transfer matrix with

the truth and reconstructed value of the observable of interest on the x- and y-axis,

respectively. One can then estimate the response matrix by normalizing the filled

transfer matrix N .

Rij = P (measured in bin i|true in bin j) =
Nij∑M
k=1 Nik

(5.39)

It is also possible that certain truth events are not reconstructed because of recon-

struction efficiencies or kinematic selections. For such events one can use the under-

flow bins i.e. for a truth event in bin i one can add an entry in the underflow bin Ni0

and extend the sum in the denominator such that the underflow bins are included.

One should note that a sufficiently large sample is needed such that the statistical

uncertainties on each response matrix element estimate is negligible. Especially in

distributions such as exponentially decaying distributions one can have trouble popu-

lating certain bins e.g. at the end of the tail. Alternatively one could increase certain

bin sizes to increase the event population in the transfer matrix. Otherwise one would

have to propagate the uncertainties onto the unfolded distribution which will be fur-

ther discussed in Sec. 5.6. Figure 5.11 shows estimates of the response matrix by

normalizing the transfer matrix but with different numbers of generated events. We

can clearly see the deterioration of the estimates for lower numbers. Especially in the

high-x regions. Also, one should note that multidimensional distributions will need

even higher numbers to populate all the bins to get a reasonable response matrix

estimate.
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(a) (b)

(c)

Figure 5.11: Response matrices estimated with the conventional transfer matrix
method with a) N = 106, b) N = 105 and c) N = 104 simulated events.
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(a) (b)

Figure 5.12: Scatter plots of a) the truth and reconstructed values (xtrue, x) and b)
the truth and deviation between the truth and reconstructed value (xtrue, u).

5.5.2 Fitting a likelihood

Preferably one would like to have a “smooth” description of the response matrix that

does not depend so heavily on the number of generated events in you MC sample.

The following approach has been largely based on [217]. One could start by looking

at the deviation between the reconstructed and the true value of the observable of

interest,

u = x− xtrue. (5.40)

A xtrueu-scatter plot is shown in Fig. 5.12. From this one could reasonably assume that

u follows a Gaussian distribution with its mean centered around zero and standard

deviation only slowly varying with xtrue, e.g.

g(u|xtrue) =
1√
2πσ

exp

[
(u− µ)2

2σ2

]
(5.41)

with

µ = θ1 + θ2xtrue (5.42)

σ = θ3 + θ4xtrue + θ5x
2
true. (5.43)
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Here the parameters θ completely parameterize the detector response. According to

Bayes’ theorem one can define the joint probability density function of u and xtrue as

g(u, xtrue) = g(u|xtrue)g(xtrue) (5.44)

where g(xtrue) is the marginal probability distribution function of xtrue. We can use

this to construct a log-likelihood,

logL(θ) =
∑
i

log g(ui, xtrue,i|θ) =
∑
i

log g(ui|xtrue,i,θ) + C (5.45)

where (ui, xtrue,i) are the deviation and the true value of the observable of interest of

the i-th generated MC event. Note the last C term which depends on xtrue but is

constant in θ. Maximizing Eq. (5.45) w.r.t. θ will therefore not be affected by this

term. Let’s assume that we found the maximum-likelihood estimators θML. We can

transform the probability distribution function back from u to x,

f(x|xtrue,θML) = g(u(x)|xtrue,θML)
∣∣∣du
dx

∣∣∣ = g(x− xtrue|xtrue,θML). (5.46)

Now let us recall the definition of the response matrix,

Rij = P (measured in bin i|true in bin j) =
P (measured in bin i ∧ true in bin j)

P (true in bin j)

=

∫
bin i

dx
∫

bin j
dxtruef(x, xtrue|θML)∫

dx
∫

bin j
dxtruef(x, xtrue|θML)

=

∫
bin j

dxtruef(xtrue|θML)
∫

bin i
dxf(x|xtrue,θML)∫

bin j
dxtruef(xtrue|θML)

≈
∫

bin i

dxf(x|〈xtrue〉j,θML) =

∫
bin i

dxg(x− 〈xtrue〉j|〈xtrue〉j,θML)

(5.47)
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(a) (b)

(c)

Figure 5.13: Response matrices estimated with the conventional transfer matrix
method with a) N = 106, b) N = 105 and c) N = 104 simulated events.

with 〈xtrue〉j being the mean value of xtrue in bin j. Here we assume that f(x|xtrue,θML)

is constant in xtrue over bin j. So for sufficiently small bins we can evaluate g(x −

xtrue|xtrue,θML) for xtrue at the center of bin j and integrate over bin i to get an

estimate for Rij.

Figure 5.13 shows that for less MC events the response matrix estimate changes.

However, there are no missing elements or big jumps in value between neighbouring

matrix elements i.e. like with the conventional transfer matrix method. Lets ap-

ply the response matrix to quantify their quality even further. Recall the relation

ν = Rµ. Here we generate a test sample of 106 events to fill both a truth µ and

reconstructed histogram ν. If the response matrix is well estimated then it should

retrieve the reconstructed histogram when multiplied with the truth histogram. Lets
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note a response matrix estimated using the conventional transfer matrix procedure

of the previous section with R̂conv. and a response matrix using the likelihood fit with

R̂lik.. The reconstructed histograms, ν̂conv. = R̂conv.µ and ν̂ lik. = R̂lik.µ, are then both

compared to the histogram ν filled with the reconstructed events of the test sample.

One can find all three histograms in Fig. 5.14 and the corresponding ratio plots ν̂/ν

in Fig. 5.15. We can see in the ratio plots that for a relatively high number of esti-

mation events N = 106 the conventional method performs slightly better. We also

see that R̂lik. has a positive bias which means that the fitted probability distribution

functions g(x− 〈xtrue〉j|〈xtrue〉j,θML) does not model the data perfectly. One way to

improve this could be to change the probability distribution function in Eq. (5.41) or

the parameterization in Eq. (5.42) and Eq. (5.43). However, when going one or two

scales down in events shows a deterioration in the high x bins, i.e. the bins with low

counts, for the conventional method. Especially here the response matrices estimated

with the likelihood fit perform better. The low x bins, i.e. the high statistics bins,

both methods perform similar.

(a) (b) (c)

Figure 5.14: The reconstructed histograms ν̂conv. = R̂conv.µ, ν̂lik. = R̂lik.µ and ν. The
response matrices of both estimation methods are estimated with a) N = 106, b)
N = 105 and c) N = 104 simulated MC events.
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(a) (b) (c)

Figure 5.15: The reconstructed histogram ratio plots ν̂conv./ν and ν̂lik./ν. The re-
sponse matrices of both estimation methods are estimated with a) N = 106, b)
N = 105 and c) N = 104 simulated MC events.

5.6 Covariance Estimation

Estimating a true distribution will result in one or more estimators which have an un-

certainty and non-trivial correlations between them. Estimating these uncertainties

and correlations is an important part of any unfolding framework. Many unfolding

algorithms supply an estimator for statistical covariances (See Sec. 5.2) i.e. covari-

ances as a result of the stochastic nature of the data and the bin-to-bin migrations of

events. However, in HEP it is very common to also have systematic sources of error

which induce additional uncertainties and correlations. These systematic sources of

error originate from estimates or assumptions that enter the unfolding framework,

eg. energy resolution or reconstruction efficiencies, but have limited accuracy. The

goal is to include all statistical and systematic sources of error in unfolding covariance

estimation. A common approach within HEP is to model the sources of systematic

uncertainty with nuisance parameters.
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5.6.1 Nuisance parameters

In general, the response matrix R and backgrounds β depend on additional param-

eters θ = (θ1, ..., θK) introduced by properties of the detector response also known

as nuisance parameters. One influence this will have is that the increased likelihood

model flexibility will reduce the bias but increase the variance. One should therefore

take care when removing, also known as pruning, or introducing nuisance parameters

into the model.

Up until now, we assumed that these nuisance parameters, and therefore the response

matrix and background distribution, were known with negligible uncertainty. How-

ever, in practice this is not valid and one needs to propagate these into the uncertainty

on the unfolded distribution. By expressing the response matrix and background dis-

tribution as a function of θ one includes the nuisance parameters in the likelihood

function and thus incorporating systematic uncertainties in the model. Their corre-

lations with the parameters of interests µ will inflate the variance of the estimators

µ̂. Additionally, the best estimates θ̃k of θk are treated as an auxiliary measurement

which follow some probability distribution function g(θ̃k|θk) that assumes some value

θk. A common choice for these p.d.f.s is a Gaussian which will result in the extended

likelihood function

L(µ,θ) =
N∏
i=1

f(ni|µ,θ)
K∏
k=1

g(θ̃k|θk) =
N∏
i=1

νnii
ni!

e−νi
K∏
k=1

1

σθ̃k
√

2π
e
− 1

2

(θk−θ̃k)2

σ2
θ̃k . (5.48)

with νi now depending on both µ and θ. However, other choices such as a log-normal

or Student’s t distribution are also possible as p.d.f. for the auxiliary measurements.

One can construct a new linear combination of Eq. (5.48) and some regularization

function S(µ),
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Φ(µ,θ) = L(µ,θ) + τS(µ). (5.49)

In the rest of this section we will assume that we have constructed estimators µ̂ and

θ̂ by maximizing Eq. (5.49) with regularization function (5.21) w.r.t. µ and θ.

5.6.2 Inverse Hessian

In Sec. 5.2 we discussed the Cramer-Rao Bound (RCB), also known as the Minimum

Variance Bound (MVB). We can extend Eq. (5.12) to include estimators for both the

parameters of interest µ and the nuisance parameters θ,

U [λ̂i, λ̂j] ≥
(

(I −B)I−1(I −B)T
)
ij

(5.50)

where λ̂ denotes the estimators of all parameters, i.e. λ = (µ,θ). Under the large

sample approximation and for negligble bias the covariance is assumed to equal the

unbiased RCB. If one can estimate the matrix of second order derivatives of the log-

likelihood, also known as the Hessian matrix, one can take the inverse of this matrix

as an estimate for the covariance. Under the large sample approximation one can also

assume the log-likelihood is parabolic shaped around its maximum. In this case one

can numerically approximate the second derivatives with finite differences.

U [λ̂i, λ̂j] =

(
∂2 logL

∂λi∂λj

∣∣∣∣∣ ˆλ

)−1

(5.51)

However, this approach has two important caveats. Firstly, this method is only suit-

able for the special case of no regularization i.e. τ = 0. In general, regularization

is needed which introduces non-zero bias and thus calls for the non-trivial task of

estimating the bias gradient matrix B.

Secondly, a common misconception is assuming Eq. (5.49) can be treated as a likeli-
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hood and its Hessian matrix can be used as a covariance matrix estimate, i.e.,

U [λ̂i, λ̂j] 6=
(

∂2Φ

∂λi∂λj

∣∣∣∣∣ ˆλ

)−1

. (5.52)

Again, only in the special case of no regularization can Eq. (5.52) be used as a

covariance matrix estimate as it will reduce back to Eq. (5.51). In the upcoming

sections we will denote Eq. (5.52) as the inverse Hessian method and show when this

method can hold or break.

5.6.3 Frequentist Pseudo-Experiments

An alternative approach would be to use pseudo experiments, or toy MC, to estimate

the covariance. A similar method was described in Sec. 5.4. We assumed that the

measured bin values follow a Poisson distribution ni ∼ f(ni|µ,θ) and the auxiliary

measurements a Gaussian distribution θ̃k ∼ g(θ̃k|θk). One can set the p.d.f. parame-

ters to the estimates of µ̂ and θ̂ constructed with the observed data n i.e. f(ni|µ̂, θ̂)

and g(θ̃k|θ̂k). From these it is possible to sample new values nt and θ̃
t

for the data

and auxiliary measurements [218, 219, 220]. Each new sample is what is known as a

pseudo-experiment or toy MC. For each t-th pseudo-experiment one can then evaluate

Eq. (5.48) with the sampled values and construct new estimators λ̂
t

by maximizing

w.r.t µ and θ. For T pseudo-experiments one can use the set of many estimators to

estimate the covariance matrix

U [λ̂i, λ̂j] =
1

T − 1

T∑
t=1

(λ̂ti − ¯̂
λi)(λ̂

t
j − ¯̂

λj) (5.53)

with

¯̂
λi =

1

T

T∑
t=1

(λ̂ti) (5.54)
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This covariance estimation approach will work for both biased and unbiased estima-

tors even if the log-likelihood function is not parabolic.

5.6.4 Frequentist-Bayes Hybrid Pseudo-Experiments

For some unfolding algorithms an explicit definition of a likelihood is not obvious,

e.g. like for some iterative unfolding algorithms described in Sec. 5.2. This makes

the definition of nuisance parameters and thus the previous two covariance estimation

methods nonviable. In this section a covariance estimation method is presented that

includes both statistical and systematic effects but does not need an explicit likeli-

hood definition or an alteration of the chosen unfolding algorithm to include nuisance

parameters. The algorithm consists out of the following steps:

1. Sample new nuisance parameter values from a prior e.g. θk ∼ Gaus(θ̃k, σθ̃k).

2. Compute a new response matrix R(θ) and consequently new expected values

ν(θ).

3. Sample new data ni ∼ Pois(νi) with the newly calculated means ν(θ).

4. Repeat many times and use the set of evaluated estimators to calculate the

sample covariance.

Note that instead of sampling auxiliary measurements θ̃ one samples parameter values

θ from a prior which introduces the Bayesian aspect of this treatment. However, we

expect the methods proposed in Sec. 5.6.3 and 5.6.4 to be equivalent in certain

scenarios. Frequentist-Bayesian hybrid methods have been used before for upper

limit setting [221] but never within unfolding frameworks.

5.6.5 Bimodal Example

We divide a bimodal physics model into a two parts. The signal model is defined as
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f sig(x|θ1, θ2, θ3) = f sig
truth(xtrue) ∗ fdetector(xtrue, x|θ1, θ2, θ3)

= ((0.5 ·Gauss(xtrue|µ = 1.5, σ = 0.12)

+ (0.5 ·Gauss(xtrue|µ = −1.5, σ = 0.12))

∗ fdetector(xtrue, x|θ1, θ2, θ3).

(5.55)

The detector response function fdetector(xtrue, x|θ1, θ2, θ3) is Gaussian smearing func-

tion but has an additional dependency on the nuisance parameters θ = (θ1, θ2, θ3).

(a) (b)

Figure 5.16: A plot of a) the input distributions on reconstructed level and b) corre-
sponding response matrix of the bimodal model

These parameters are a scale factor applied to the reconstructed value x, a parameter

determining the smearing and a parameter determining the efficiency, respectively. A

background process is included modelled by uniform probability distribution function,

fbkg(x|θ1, θ2, θ3) = fbkg
truth(xtrue) ∗ fdetector(xtrue, x|θ1, θ2, θ3)

= Uniform(xtrue) ∗ fdetector(xtrue, x|θ1, θ2, θ3)

(5.56)

The filled truth and reconstructed histograms range between [−4, 4] and both have

constant bin size ∆x = 1.6. The sampled toy data that is to be unfolded contains
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Nsig = 5000 signal events and Nbkg = 500 background events. The sampled toy data

for all the nuisance parameter variations used to estimated the response matrices each

contain Nsig = 108.

5.6.6 Exponential Example

We divide also the exponential physics model into a two parts. The signal model is

defined as

f sig(x|α, θ1, θ2, θ3) = f sig
truth(xtrue|α) ∗ fdetector(xtrue, x|θ1, θ2, θ3)

= α exp[−αxtrue] ∗ fdetector(xtrue, x|θ1, θ2, θ3).

(5.57)

with α = 0.14.

(a) (b)

Figure 5.17: A plot of a) the input distributions on reconstructed level and b) corre-
sponding response matrix of the exponential model

The background distribution is defined by another exponential model defined as

fbkg(x|α, θ1, θ2, θ3) = fbkg
truth(xtrue|α) ∗ fdetector(xtrue, x|θ1, θ2, θ3)

= α exp[−αxtrue] ∗ fdetector(xtrue, x|θ1, θ2, θ3).

(5.58)
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with α = 0.15. The filled truth and reconstructed histograms range between [0, 60]

and variable bin widths with bin edges xtrue = {0, 2, 4, 6, 8, 10, 12, 14, 18, 25, 35, 60}

and x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 25, 30, 35, 45, 60}.

The sampled toy data that is to be unfolded contains Nsig = 10000 signal events and

Nbkg = 40000 background events. The sampled toy data for all the nuisance parameter

variations used to estimated the response matrices each contain Nsig = 108.

5.6.7 Covariance Estimates

The toy data is unfolded by maximizing the regularized full likelihood of Eq. (5.49)

w.r.t. µ and θ for different amounts of regularization τ ∈ {0, 10−6, 10−5, 5 × 10−5}.

For each unfolded distribution the covariance matrix was estimated once with each of

the three methods with 10000 pseudo-experiments for the frequentist and frequentist-

Bayes method. We would like to stress here that the inverse Hessian method is only

valid to use for τ = 0. The covariance matrix estimates for the bimodal and ex-

ponential model are plotted on Fig. 5.18 and 5.19, respectively. Additionally, the

relative differences between the inverse hessian and frequentist toys and between the

pseudo-hybrid and frequentist toys methods are shown in Fig. 5.20 and 5.21, respec-

tively. Covariance matrix estimates can be further compared with summary statistics

that are common in HEP such as the global correlation coefficient, the relative errors

on the unfolded distribution and χ2 as presented in Sec. 5.3. The data in each of

these summary statistics is the unfolded toy data. Their comparison at the differ-

ent regularisation strengths τ in Fig. 5.22, 5.23 and 5.24 make the (dis)agreements

more obvious. We observe that for the bimodal distribution with no regularization

all of the methods seem to agree reasonably. However, as expected, the inverse Hes-

sian method diverges when regularization is introduced. The covariance estimates

of the exponential distribution show a complete disagreement between the inverse

hessian method and the other two methods. The inverse Hessian method also shows
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a drop in covariance estimates for µ̂3 in the exponential example. This is because

of a low dependency of the likelihood on the parameter µ3. The frequentist-Bayes

hybrid pseudo-experiments method agrees well on all quantities with the frequentist

pseudo-experiments method.

(a) Frequentist τ = 0. (b) Hybrid τ = 0. (c) Hessian τ = 0.

(d) Frequentist τ = 10−6 (e) Hybrid τ = 10−6 (f) Hessian τ = 10−6

(g) Frequentist τ = 10−5 (h) Hybrid τ = 10−5 (i) Hessian τ = 10−5

(j) Frequentist τ = 5× 10−5 (k) Hybrid τ = 5× 10−5 (l) Hessian τ = 5× 10−5

Figure 5.18: Covariance matrix for the bimodal distribution estimated with the fre-
quentist pseudo-experiments, inverse hessian and frequentist-Bayes hybrid pseudo-
experiments method for various regularization strengths τ
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(a) Frequentist τ = 0. (b) Hybrid τ = 0. (c) Hessian τ = 0.

(d) Frequentist τ = 10−6 (e) Hybrid τ = 10−6 (f) Hessian τ = 10−6

(g) Frequentist τ = 10−5 (h) Hybrid τ = 10−5 (i) Hessian τ = 10−5

(j) Frequentist τ = 5× 10−5 (k) Hybrid τ = 5× 10−5 (l) Hessian τ = 5× 10−5

Figure 5.19: Covariance matrix for the exponential distribution estimated with the
frequentist pseudo-experiments, inverse hessian and frequentist-Bayes hybrid pseudo-
experiments method for various regularization strengths τ
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(a) Hybrid τ = 0. (b) Hessian τ = 0.

(c) Hybrid τ = 10−6 (d) Hessian τ = 10−6

(e) Hybrid τ = 10−5 (f) Hessian τ = 10−5

(g) Hybrid τ = 5× 10−5 (h) Hessian τ = 5× 10−5

Figure 5.20: Covariance matrix differences in percentage for the bimodal distribution
between the fully frequentist toy method and the inverse hessian method(1st column)
and hybrid toy method(2nd column) for various regularization strengths τ
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(a) Hybrid τ = 0. (b) Hessian τ = 0.

(c) Hybrid τ = 10−6 (d) Hessian τ = 10−6

(e) Hybrid τ = 10−5
(f) Hessian τ = 10−5

(g) Hybrid τ = 5× 10−5 (h) Hessian τ = 5× 10−5

Figure 5.21: Covariance matrix differences in percentage for the exponential distri-
bution between the fully frequentist toy method and the inverse hessian method(1st
column) and hybrid toy method(2nd column) for various regularization strengths τ
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(a) Double Gaussian distribution (b) Exponential distribution

Figure 5.22: Average relative unfolding errors for a) the double Gaussian and b) the
exponential distribution for all covariance estimation methods and various regular-
ization strengths τ

(a) Bimodal distribution (b) Exponential distribution

Figure 5.23: Average global correlation coefficient for a) the bimodal and b) the expo-
nential distribution for all covariance estimation methods and various regularization
strengths τ

(a) Bimodal distribution (b) Exponential distribution

Figure 5.24: χ2/n.d.f. for a) the bimodal and b) the exponential distribution for all
covariance estimation methods and various regularization strengths τ
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5.7 Discussion

There are many different unfolding algorithms available that provide a solution for

the discretized inverse problem of which various are implemented in the RooUnfold

software package. Many of them impose some form of regularization of which the

regularization parameters determine the bias-variance trade-off of the unfolded dis-

tribution. Section 5.1 presents several figures of merit that can help the analyst

to choose a regularization parameter that corresponds to an optimal bias-variance

trade-off. Section 5.4 shows that a regularization parameter that minimizes the mean

squared error can result in low coverage probabilities. One can increase the coverage

closer to nominal coverage by reducing the amount of regularization w.r.t. the amount

that minimizes the mean squared error. One should use these metrics not only to

compare regularization parameters but also different unfolding algorithms. Different

unfolding algorithms will introduce different forms of regularization and will therefore

result in estimators with different biases, variances and coverage probabilities. There

is not one solution that fits all unfolding scenarios which means that each analyst

should carefully compare all the different options available.

Section 5.5 shows that low Monte Carlo statistics can have a detrimental effect on

conventional response matrix estimation. An alternative likelihood-based estimation

can give a smoother description of the response matrix that is less reliant on the

Monte Carlo sample size. This can be very valuable for unfolding scenarios were

Monte Carlo simulation is computationally very expensive. Possible future studies

could involve exploring different distributions to construct the likelihood such as the

Poisson or Student-t distribution.

Section 5.6 presents a novel technique for estimating the covariance matrix of the

unfolded distribution including all statistical and systematic sources of error. The
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frequentist-Bayes hybrid toy method gives similar results to the frequentist toy method

for various amounts of regularization. The inverse hessian method deviates from

both methods quite substantially, especially in the high regularization regime. The

frequentist-Bayes hybrid toy method can be used with any of the RooUnfold unfold-

ing algorithms, i.e. not just the ones with an explicit likelihood definition. Possible

future studies could involve methods that estimate the covariances between separately

unfolded distributions. A “bootstrap method” has been applied in previous ATLAS

analyses [222, 223] in case one has access to each event of the measured dataset.

However, in many physics analyses the published results only constitute the unfolded

distribution and its covariance matrix. A first step in combining covariances would

be to report the covariance contribution for each nuisance parameter. One could then

estimate the covariances between the two unfolded distribution for each nuisance pa-

rameter to get a total covariance and sum each of these total covariances. However,

the mathematical justification is yet to be developed. Also, it would need to be com-

pared with covariances estimated with an unfolding framework that unfolds the two

distributions as one, i.e. with the distributions laid end to end, to test the accuracy

of the method.
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Chapter 6

Measurement of tt̄ Differential

Cross Sections in the l+jets Decay

Channel

In this chapter, the measurement of tt̄ production cross sections as a function of

kinematic variables such as mtt̄, H tt̄
T , ptt̄T and |ytt̄|, i.e. differential cross sections, is

presented. This analysis focuses on the lepton+jets decay channel and presents the

final results as differential cross sections in a fiducial phase space, i.e. fiducial differen-

tial cross sections, unfolded to particle level. Section 6.1 and 6.2 summarize the used

data and Monte Carlo samples. Section 6.3 discusses the data-driven estimation of

fake lepton background process. Section 6.4 discusses the object and event selection

applied on the data and Monte Carlo samples. Section 6.5 summarize the chosen

observables and Sec. 6.6 the agreement between data and Monte Carlo samples. Sec-

tion 6.7 presents the unfolding setup including the fiducial differential cross sections

unfolded to particle level. Section 6.9 closes with conclusions and some discussion

points.
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6.1 Data Samples

The data samples used in this measurement were collected by the ATLAS detector at

the LHC from pp collisions during the full Run-2 running period from 2015 to 2018.

The LHC operated at a centre-of-mass energy of
√
s = 13 TeV and the data amounts

to a total integrated luminosity of 139±2.4 fb−1 [224]. All data samples were acquired

as described in Ch. 3 and reconstructed as described in Ch. 4.

6.2 Monte Carlo Samples

Monte Carlo samples are needed to simulate both the tt̄ signal process as well as all

the background processes. The QFT and phenomenological principles used to define

input models for the Monte Carlo simulations are presented in Ch. 2. The detector

and detector simulation is described in Ch. 3. Here we simply list the samples, the

software used to produce them and important input parameters of the used models.

A summary of all samples is given in Table 6.1.

Pile-up events from the same and neighbouring bunch crossings were modelled with

Pythia 8.186 with its parameters set to the values of the ATLAS A3 [225] tune set

and the NNPDF2.3 LO PDF set [226].

6.2.1 tt̄ Signal Process

The signal sample comprises tt̄ events that where generated using matrix element

calculation at NLO QCD as implemented in Powheg-Box v2 with the NNPDF3.0NLO

PDF [227]. The parton shower, hadronization and underlying events were simulated

with Pythia 8.230 [114, 112] with the NNPDF23LO PDF [226] with parameters set

to the ATLAS A14 tune set [228]. The top quark mass mt and width were set to

172.5 GeV and 1.32 GeV [229], respectively. The sample was normalized with the
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cross section σtt̄ = 83220
−30 ± 35(PDF, αs) ± 23(mt) calculated with the Top++2.0

program [230] at NNLO QCD [229], including soft-gluon resummation to next-to-

next-to leading-log order (NNLL) [231]. This MC sample will be denoted from here

on as ’Pwg+Py8’.

6.2.2 Background Processes

There are several processes that can produce the same final state as the tt̄ in the l+jets

decay channel. The background contributions need to be estimated either with Monte

Carlo simulation or other data-driven methods. The background contributions can

then be subtracted from the observed data such that the signal process remains. Here

we will list the background processes estimated with Monte Carlo simulations.

Single Top

Single top events, as illustrated by Table 6.4, is the biggest background contribution

relative to tt̄ events and consists of three background processes: t-channel, s-channel

and W -associated production. Figure 6.1 shows leading order Feynman diagrams of

the single top processes.

Figure 6.1: Tree level diagrams of the electroweak single top quark production in the
t-channel(left), s-channel(centre) and the W -associated production(right), commonly
denoted as tW . From [232].

The matrix elements of the three background processes were calculated at NLO QCD

using Powheg-Box v2. The parton shower and hadronization were simulated with

Pythia 8.230 with parameters set to the A14 tune set with the NNPDF2.3 LO PDF
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set. The Feynman diagrams of tW at NLO QCD interfere with tt̄ diagrams i.e.

accurate simulation for both would include this contribution to the matrix element

calculations as well. Instead, because the two processes are simulated separately,

other modelling techniques need to be deployed. For these samples the Diagram

Removal approach is used to correct for this [233, 234]. A more detailed description

of the problem and other modelling approaches can be found in [235].

W+jets and Z+jets

The matrix element of a single W± or Z0 boson production in association with jets

was calculated at NLO QCD with Sherpa 2.2.1 for up to 2 jets and at LO QCD with

Comix and OpenLoops for up to 4 jets. The parton shower and hadronization was

modelled with Sherpa and the NNPDF3.0NNLO PDF set. The W+jets and Z+jets

samples were normalized with cross sections calculated at NNLO QCD [236, 237].

Diboson

The diboson background denotes the production of two W± or two Z0 bosons where

one of the bosons decays leptonically and the other hadronically. Their matrix el-

ements were calculated at NLO QCD with Sherpa 2.2.2 with the NNPDF3.0NNLO

PDF set. The parton shower and hadronization was modelled by Sherpa.

tt̄V

The tt̄V background comprises the production of tt̄ in association with a W± or Z0

boson. Figure 6.2 shows corresponding leading order diagrams. The matrix element

calculation was performed at NLO QCD with MadGraph5 aMCNLO 2.3.3 and

the NNPDF3.0NLO PDF set. The parton shower and hadronization is modelled with

Pythia 8.230 with parameters set to the A14 tune set and using the NNPDF2.3LO

PDF set.
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Figure 6.2: Feynman diagrams for the tt̄W (left) and tt̄Z(right) production processes.
From [92]

Physics Process ME + Event Generation ME PDF set PS + Hadr.
tt̄ Powheg-Box v2 NNPDF3.0NLO Pythia 8.230
Single Top Powheg-Box v2 NNPDF3.0NLO Pythia 8.230
W+jets and Z+jets Sherpa 2.2.1 + Comix + OpenLoops NNPDF3.0NNLO Sherpa
Diboson Sherpa 2.2.2 NNPDF3.0NNLO Sherpa
tt̄V MadGraph5 aMCNLO 2.3.3 NNPDF2.3LO Pythia 8.230

Table 6.1: Summary of the simulated Monte Carlo samples for all signal and back-
ground processes.

Other background processes such as tt̄tt̄, tZ, tt̄WW , tt̄WZ and tt̄H were considered

but their background to signal ratio were deemed negligible.

6.3 Fake Lepton Estimation

The fake lepton background, denoted as simply fakes, comprises events with non-

prompt leptons and jets or photons that “fake” a lepton. These various different

origins are hard to estimate with Monte Carlo simulations and are therefore instead

estimated with a data-driven method known as the matrix element method [238, 239].

The method starts of by taking a dataset where each event has exactly one lepton.

Events where the lepton pass the Tight likelihood-selection criterion, as introduced

in Ch. 4, are denoted with NT and events passing the Loose criterion with NL. With

these we can define the linear combinations

NL = NL
r +NL

f (6.1)
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NT = εrN
L
r + εfN

L
f (6.2)

where NL
r and NL

f are the leptons that pass the loose criterion and are in reality a

resp. real lepton or a non-prompt/fake lepton. The coefficients εr and εf denote the

fraction of events with leptons that pass the loose but also the tight criterion. The

quantity we want to estimate are the number of events that pass the tight criterion

but are fakes NT
f = εfN

L
f . One can solve the set of linear equations 6.1 and 6.2 to

get the estimator

NT
f =

εf
εr − εf

(εrN
L −NT ). (6.3)

From this an event weight is computed for each data event passing the tight selection

to correct for the number of fakes in the tight event selection,

wi =
εf

εr − εf
(εr − δi∈NT ). (6.4)

with δi∈NT being 1 if the event passes the tight criterion and otherwise 0. The lepton

efficiencies εr and εf can be estimated with data from control regions, i.e. regions

outside the signal region defined by the object and event selection. These regions

have either a large contribution of real leptons or non-prompt/fake leptons. The real

lepton efficiency εr is estimated with events containing Z → ll using a tag and probe

method. If one of the leptons passes the loose requirement (tag) then the other lepton

is subjected to the tight requirement (probe). The ratio of probes passing the tight

requirement and tags passing loose gives an estimate for εr. The fake efficiency εf is

estimated with events from a control region with many non-prompt/fake leptons. The

real leptons in this region are estimated with Monte Carlo simulation and subtracted.

The ratio between remaining events with a lepton passing the tight criterion and

remaining events with a lepton passing the loose criterion is used as an estimate for

εf . The final estimation of the non-prompt/fake lepton background in bin j is the
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sum of weights defined in Eq. 6.4 for the data events in bin j, i.e.

βfake,j =

events in bin j∑
i

wi (6.5)

6.4 Object and Event Selection

This section describes the object and event selection criteria constructed to increase

the yield of tt̄ to e/µ+jets events relative to the background processes in the measured

data. Here we define detector level and particle level object and event selection criteria

were the detector level criteria are imposed on the detector level Monte Carlo and

data samples. The trigger requirements of the samples are summarized in Table 6.2.

The particle level selection is imposed on the Monte Carlo samples that are produced

up until detector simulation. The selection on MC samples are applied such that the

data, both on detector level and after unfolding to particle level, can be compared

properly with theory.

6.4.1 Detector level

Here we summarize the object and event selection criteria applied to detector level

Monte Carlo and data samples.

• The vertex with at least 2 reconstructed tracks and the highest sum of
∑
pT

over those tracks with
∑
pT > 0.4 is chosen to be the primary vertex.

• The electrons must pass the Tight likelihood-criterion, as introduced in Ch. 4.

This ensures a 80% prompt electron identification efficiency.

• The electron must have a transverse momentum of pT > 27 GeV.

• The track of the electron must have a pseudo rapidity of |η| < 2.47 and 1.37 <

|η| < 1.52 were the latter is because of the gap between the barrel and end-cap
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calorimeters.

• The longitudinal impact parameter z0, the distance between the lepton track

and the beam spot in the longitudinal plane, has to satisfy |∆z0 sin θ| < 0.5 mm,

where θ is the polar angle of the track.

• The transverse impact parameter d0, as introduced in Ch. 4, of the lepton must

satisfy |d0/σ(d0)| < 5, with σd0 being the uncertainty on d0.

• The track of the muon must have a pseudo rapidity of |η| < 2.5 and correspond

to a transverse momentum of pT > 27 GeV.

• The FCTight isolation working points were used for both the muon and the

electron.

• The electron isolation requirements areET
topo(R = 0.2)/pT < 0.06 and pT ightTTV AT (R =

0.2)/pT < 0.06, where ET
topo is the energy of the calorimeter topo-cluster and

pT ightTTV AT the pile-up robust track isolation variable.

• The muon isolation requirements are ET
topo(R = 0.2)/pT < 0.15 and pT ightTTV AT (R =

0.2)/pT < 0.04.

• If a muon shares a track with an electron the electron is not selected.

• Jets are corrected for pile-up effects with the jet-area [183] method.

• The jet-vertex tagging [185] method, as described in Ch. 4, is applied to jets

satisfying pT < 60 GeV and |y| < 2.4 to reduce the number of jets originating

from pile-up.

• All jets must satisfy pT > 25 GeV and |y| < 2.5. The pT cut supresses the

non-tt̄ background and reduces the uncertainty of the JES.
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• For the b-tagging algorithm DL1r the working point of 70% was chosen, as

introduced in Ch. 4.

• Jets need to have sufficient distance from electrons i.e. ∆R(jet, e) ≥ 0.2 to

reduce the number of jets faking electrons.

• Jets need to have sufficient distance from muons, i.e. ∆R(jet, µ) ≥ 0.4. If not,

the jet is removed if it has less then three tracks and otherwise the muon is

removed. This is to reduce the number of jets faking a muon.

• Exactly one electron or muon passed the above requirements is required. This

is to exclude tt̄ production in the dilepton decay channel.

• At least 4 jets passing the above requirements is required, i.e. 2 jets from the

hadronically decaying top quark and 2 for each b quark from the decayed top

quarks.

• At least 2 of those jets need to be b-tagged.

6.4.2 Particle level

Here we summarize the object and event selection criteria applied to the particle level

Monte Carlo samples.

• Leptons (e or µ) are required not to originate from a hadron.

• The four-momenta of the bare lepton, i.e. after final state radiation, and all

photons within a cone of ∆R = 0.1 are summed to correct for bremsstrahlung.

The resulting four-momentum represents what is known as a dressed lepton.

• The dressed lepton must satisfy pT > 27 GeV and |η| < 2.5.
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• Particle level jets are also reconstructed with the anti-kt algorithm with R = 0.4

using particle level particles except for leptons and neutrinos not originating

from a hadron.

• A particle level jet is b-tagged if a hadron with pT > 5 GeV is matched to the

jet with the ghost matching technique [183].

• Electrons and muons within a distance of ∆R < 0.4 of jets are removed.

• Exactly one electron or muon passed the above requirements is required.

• At least 4 jets passing the above requirements is required.

• At least 2 of those jets need to be b-tagged.

Running Period 2015 2016 - 2018
Electrons HLT e24 lhmedium L1EM20VH HLT e26 lhtight nod0 ivarloose

.OR. HLT e60 lhmedium .OR. HLT e60 lhmedium nod0

.OR. HLT e120 lhloose .OR. HLT e140 lhloose nod0

Muons HLT mu20 iloose L1MU15 HLT mu26 ivarmedium
.OR. HLT mu50 .OR. HLT mu50

Table 6.2: Trigger configuration for the different running periods and type of lepton.
A logical OR of the configurations listed was used.

6.5 Observables

This section summarizes the chosen observables of which the differential cross sec-

tions are measured and unfolded to particle level. The observables were chosen based

on past top quark pair differential cross section measurements [240] and their sensi-

tivity to SMEFT Wilson coefficients. The four momentum of the top quark pair is

reconstructed by summing the four momenta of the hadronic and leptonic decaying

top quarks reconstructed with the pseudo-top quark algorithm. The invariant mass

is defined as
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m =
√
E2 − ||p||2 (6.6)

Observable Description

ptt̄T Transverse momentum of the tt̄ system
mtt̄ Invariant mass of the tt̄ system
|ytt̄| Absolute rapidity of the tt̄ system
H tt̄
T The scalar sum of the transverse momenta of the two top quarks

Table 6.3: Kinematic observables for which differential cross sections are measured.

1

10

210

3
10

410

5
10

6
10

710

8
10

9
10

E
ve

nt
s

tt
Single Top
W+jets
Z+jets
Diboson
t+X
Fakes
Data

Detector Level
-1 = 13 TeV, Full Run2 139 fbs

 decay channelµe+

0 100 200 300 400 500 600 700 800

 [GeV]tt

T
p

0.8
0.9

1
1.1
1.2
1.3
1.4

M
C

/D
at

a

(a) ptt̄T

1

10

210

3
10

410

5
10

6
10

710

8
10

9
10

E
ve

nt
s

tt
Single Top
W+jets
Z+jets
Diboson
t+X
Fakes
Data

Detector Level
-1 = 13 TeV, Full Run2 139 fbs

 decay channelµe+

400 600 800 1000 1200 1400 1600 1800 2000

 [GeV]ttm

0.8
0.9

1
1.1
1.2
1.3
1.4

M
C

/D
at

a

(b) mtt̄

1

10

210

3
10

410

5
10

6
10

710

8
10

9
10

E
ve

nt
s

tt
Single Top
W+jets
Z+jets
Diboson
t+X
Fakes
Data

Detector Level
-1 = 13 TeV, Full Run2 139 fbs

 decay channelµe+

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 [GeV]tt
TH

0.8
0.9

1
1.1
1.2
1.3
1.4

M
C

/D
at

a

(c) Htt̄
T

3
10

410

5
10

6
10

710

8
10

9
10

10
10

1110

E
ve

nt
s

tt
Single Top
W+jets
Z+jets
Diboson
t+X
Fakes
Data

Detector Level
-1 = 13 TeV, Full Run2 139 fbs

 decay channelµe+

0 0.5 1 1.5 2 2.5

|tt|y

0.8
0.9

1
1.1
1.2
1.3
1.4

M
C

/D
at

a

(d) |ytt̄|

Figure 6.3: The data and Monte Carlo agreement for the total rate, ptt̄T , H tt̄
T , mtt̄ and

|ytt̄|.
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6.6 Data-MC agreement

This section summarizes the agreement between data and Monte Carlo simulation on

detector level in the fiducial phase space defined by the kinematic cuts introduced

in Sec. 6.4. Figure 6.3 shows the events as a function of the kinematic observables

introduced in Sec. 6.5. Table 6.4 shows the total event yield of the data and Monte

Carlo for each physics process. We see a slight overestimation of the total rate of 1%

and the absolute rapidity |ytt̄|. The transverse momenta show a slight underestimation

in the low pT -region and an overestimation in the high pT -region.

Process Event Yield MC Ratio [%]
tt̄ 4095230 90.789
Single Top 193658 4.260
W+ jets 102069 2.262
Fakes 63908 1.455
Z+ jets 36338 0.812
t+X 14658 0.289
Diboson 5925 0.131
Total MC 4510710 100
Data 4451760 98.693

Table 6.4: The total event yield of the data and Monte Carlo on detector level in
fiducial phase space for each physics process together with their ratio w.r.t. the total
MC event yield.

6.7 Unfolded Results

In this section we summarize the unfolding framework setup used to unfold the data

distributions to particle level. This includes the unfolding algorithms used to unfold,

training and testing split in the Monte Carlo simulated tt̄ samples, response matrix

estimation, fine-tuning of regularization parameters based on MSE and coverage,

closure and stress test on Monte Carlo data and finally the unfolded data distributions

and covariances.
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6.7.1 Unfolding Setup

In this analysis four unfolding algorithms were used as implemented in RooUnfold

and discussed in Ch. 5. Here we introduce their short-hand notation used throughout

the rest of the section and some additional details:

• Invert - The unregularized matrix inversion method as introduced in Sec. 5.1.

• GP - The Gaussian Processes unfolding method with a radial kernel function

as introduced in Sec. 5.2.5. The kernel regularization parameters are optimized

by maximizing the marginal likelihood as proposed in [207].

• Poisson - Maximizing the linear combination of a likelihood and a Tikhonov

regularization function of Eq. 5.49 as introduced in Sec. 5.2.2. The likelihood is

constructed from Poisson probability distribution functions for each measured

bin and uses the discretized Tikhonov function of Eq. 5.22.

• Bayes - The Richardson-Lucy method also known as Iterative Bayes as intro-

duced in Sec. 5.2.3.

Only the latter two unfolding algorithms have tunable regularization parameters as

the first is unregularized and the second has an automated data-driven method that

sets its regularization parameters. The binning of detector-level and particle level

distributions were taken the same as in [240]. The efficiencies were included in the

response matrix estimation.

The signal sample of tt̄ events was split in two even-sized subsamples which, after

applying the object and event selection criterions introduced in the previous section,

each contain approximately 15×106 simulated events. One half, the training sample,

is used to estimate the response matrix. The other half, the testing sample, is used to

create a pseudo dataset to test the unfolding framework with. A dataset with values

set to their expactation values and with negligble statistical fluctuations is also known
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(a) ptt̄T (b) mtt̄

(c) Htt̄
T (d) |ytt̄|

Figure 6.4: Estimated response matrices for ptt̄T , H tt̄
T , mtt̄ and |ytt̄|.

as Asimov dataset. One could label the pseudo dataset as such as the largest relative

statistical error of all the observables is still below 1%. The truth events of the testing

subsample are also used to compare the unfolded pseudo data with.

The response matrices of all the observables were estimated using the conventional

method as discussed in Sec. 5.5.1. The reason for choosing this method over the novel

method is that the Monte Carlo simulated tt̄ sample used to estimate the response

matrix, i.e. the training sample, contains more than 15 × 106 simulated events.

However, any uncertainties introduced by the limited size of these MC samples are

accounted for as will be discussed in the upcoming sections. Figure 6.4 shows the

response matrix estimates for all the kinematic observables. Figure 6.5 shows the

response matrix elements for certain truth bin slices. Many of the slices have a

Gaussian-like shape as expected. However, the ptt̄T and mtt̄ show large non-Gaussian
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(a) ptt̄T (b) mtt̄

(c) Htt̄
T (d) |ytt̄|

Figure 6.5: Estimated response matrix elements for truth bin slices for ptt̄T , H tt̄
T , mtt̄

and |ytt̄|.

tails on the left side of the peaks for the slices of truth bins 10 and 15, respectively.

This should be taken into account if one would parameterize the response matrix with

probability distributions as proposed in Sec. 5.5.

6.7.2 Systematic Uncertainties

This section summarizes the sources of systematic uncertainty included in this the-

sis and how they are propagated onto the unfolded distribution. The covariances,

and therefore also the total errors on the unfolded distribution, are estimated with

the frequentist-Bayes hybrid pseudo-experiment method as introduced in Sec. 5.6.4.

Systematic uncertainties involving both signal and background processes were con-

sidered. Here we make the distinction between three types of nuisance parameters

137



that are used in modelling of the systematic uncertainties.

Detector

Detector nuisance parameters θ are defined as all parameters that would affect events

on detector level but not particle level. The nuisance parameters θ follow a Gaussian

probability distribution function θi ∼ Gaus(θ̃i, σθ̃i) with its mean θ̃i and standard

deviation σθ̃i) set to their best known values, e.g. supplied by experts or calibration

studies. Note that we are taking a Bayesian approach here instead of a more common

frequentist approach, i.e. we are sampling nuisance parameters θ instead of auxiliary

measurements θ̃, just as described in Sec. 5.6.4. These nuisance parameters also

model the systematic uncertainties from the background contributions. A summary

of all detector related nuisance parameters included in this thesis are given in Table

6.5.

Response Matrix MC Stat.

Each transfer matrix bin has a nuisance parameter γi assigned that follows a Poisson

probability distribution function γi ∼ Pois(γ̃i). The mean of the Poisson p.d.f. γ̃i is

set to Monte Carlo event count in that bin. One can sample new transfer and thus

response matrices from these p.d.f.s.

Theory

Theory nuisance parameters are defined as all parameters that would affect events

on particle level and therefore subsequently on detector level. No theory nuisance

parameters were included in this study. However, it is possible to model them in a

similar way as the detector nuisance parameters.
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Parameterizing the Response Matrix and Background

The procedure described in 5.6.4 depends on the parameterization of the response

matrix R and the background β in terms of θ and γ. Let us define the nuisance

parameters of all categories with the vector α = (θ,γ). Each bin is parameterized

by a piecewise linear interpolation function fitted to values estimated with Monte

Carlo simulation samples generated at varying points in nuisance parameter space.

A common approach is to generate one MC sample with all the nuisance parameters

set to their nominal value α = α̃ including two MC samples per nuisance parameter

with their parameter set to their up αi,up = α̃i+σα̃i and down value αi,down = α̃i−σα̃i .

For K nuisance parameters in θ and L nuisance parameters in γ the response matrix

and background piece-wise linear interpolation functions are defined as,

Rij(α) = Rij(αnom) +
K+L∑
l=1

Rijl(α) (6.7)

βi(θ) = βi(θnom) +
K∑
k=1

βi,k(θ) (6.8)

with

Rijl(α) =


α(Rij(α1,nom, ..., αl,up, ..., αK+L,nom)−Rij(αnom)), for αl ≥ αl,nom

α(Rij(αnom)−Rij(α1,nom, ..., αl,down, ..., αK+L,nom)), for αl < αl,nom

(6.9)

βik(θ) =


θ(βi(θ1,nom, ..., θk,up, ..., θK,nom)− βi(θnom)), for θk ≥ θk,nom

θ(βi(θnom)− βi(θ1,nom, ..., θk,down, ..., θK,nom)), for θk < θk,nom

(6.10)

Note that the statistical uncertainties of the background contributions are not in-

cluded. Lets assume we filled bin j of some background histogram with events with

each a weight wi. One can estimate the statistical uncertainty with the sum of the
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squares of the weights,

σ2
bin j =

events in bin j∑
i

w2
i . (6.11)

Even for the single top background, the largest background relative to the tt̄ signal,

the largest σbin j relative to the signal tt̄ contribution is below 1%. They are therefore

assumed negligible and not modelled with nuisance parameters. The parameteriza-

tions of the response matrix and backgrounds as described above are implemented

RooUnfold together with the frequentist-Bayes hybrid pseudo experiment method

described in Sec. 5.6.4. One only needs to supply the transfer matrices and the back-

ground MC estimates for the different points in nuisance parameter space. The MC

samples to fill the transfer matrices and backgrounds are generated with the same

Monte Carlo simulation setup as described in Sec. 6.2 with the exception that the

detector simulation has been performed with ATLFast-II.
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Category #NPs Description
B-tagging 19 Parameters from the DL1r b-tagging

algorithm as introduced in Sec. 4.4.
Their nominal values and standard de-
viations account for the disagreement
between simulation and data for b-, c-
and light-flavour jet tagging.

Jet Energy Scale & Resolu-
tion

38 Parameters from the jet energy scale
and resolution calibration performed
on test beam data and simulations.
This includes correcting for effects such
as pile-up and jet-flavour composition.

Missing Transverse Energy 3 Correction for miscalibration of soft-
track components of the missing trans-
verse energy.

Electron Energy Scale & Res-
olution

3 Parameters from the electron energy
scale and resolution calibration to cor-
rect for disagreement between simula-
tion and data.

Muon Energy Scale & Reso-
lution

5 Parameters from the muon energy scale
and resolution calibration to correct for
disagreement between simulation and
data.

Electron Reconstruction &
Identification

4 Parameters correcting for the disagree-
ment between simulation and data for
electron reconstruction, identification,
isolation and trigger performance.

Muon Reconstruction &
Identification

10 Parameters correcting for the disagree-
ment between simulation and data
for muon reconstruction, identification,
isolation and trigger performance.

Table 6.5: Summary of detector related θ nuisance parameters divided into categories
[241]. A full list of included nuisance parameters can be found in App. B.1.
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6.7.3 MSE & Coverage Scan

To choose the regularization parameter for the regularized unfolding methods, i.e.

Poisson and Bayes, the same approach is used as presented in Sec. 5.4. The MSE

is minimized but under the condition of sufficient coverage. The regularization pa-

rameters are the τ parameter in Eq. 5.49 for Poisson unfolding and the number

of iterations r in Eq. 5.23 for Bayes unfolding. The minimum coverage is set to

Pcov = Pnom − ε with Pnom being the nominal coverage probability of 0.683 and the

tolerance ε set to 0.002. The regularization parameter that satisfies this condition

and also minimizes the MSE is chosen as optimum [208, 215]. The estimated vari-

ance used to calculate the MSE uses the frequentist-Bayes hybrid pseudo experiment

method and includes all the above mentioned systematic uncertainties. Figure 6.6

and 6.7 shows the MSE including its decomposition in bias and variance and the cov-

erage probability for varying regularization parameters for all the observables. Notice

that high values for r result in no regularization whilst high values for τ result in

high regularized solutions. Table 6.6 gives the optimized regularization parameters

for both unfolding algorithms and all the observables.

Observable ropt. τopt.

ptt̄T 1 0.01
mtt̄ 11 5
H tt̄
T 100 10
|ytt̄| 5000 6× 10−13

Table 6.6: Regularization parameters optimized w.r.t. coverage and MSE for both
the Bayes(ropt.) and Poisson(τopt.) unfolding methods for all observables.
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(a) ptt̄T unfolded with Bayes (Left) and Poisson (Right).

(b) mtt̄ unfolded with Bayes (Left) and Poisson (Right).

Figure 6.6: The MSE and coverage of the unfolded ptt̄T andmtt̄ distributions for varying
regularization parameters. The vertical purple line in the bottom panel indicates the
optimized value of the regularization parameters. The top panels shows the b[µ̂i]

2

and the MSE = b[µ̂i]
2 + U [µ̂i, µ̂i] averaged over all bins. The bottom panels show

the coverage averaged over all the bins with the minimal coverage indicated with a
horizontal red line.
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(a) Htt̄
T unfolded with Bayes (Left) and Poisson (Right).

(b) |ytt̄| unfolded with Bayes (Left) and Poisson (Right).

Figure 6.7: The MSE and coverage of the unfolded H tt̄
T and |ytt̄| distributions for vary-

ing regularization parameters. The vertical purple line in the bottom panel indicates
the optimized value of the regularization parameters. The top panels shows the b[µ̂i]

2

and the MSE = b[µ̂i]
2 + U [µ̂i, µ̂i] averaged over all bins. The bottom panels show

the coverage averaged over all the bins with the minimal coverage indicated with a
horizontal red line.
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We see that for both unfolding methods the coverage probability converges to its

nominal value of 0.683 in the limit of no regularization and that it diminishes for

increased regularization. One can also see that the average coverage probability is

relatively high, i.e. compared to the same plots in Fig. 5.5 and 5.6. This can be

explained by the inclusion of systematic uncertainties which inflates the variance and

thus the coverage probability of the confidence interval set by that variance. Note

that for the same MSE-coverage requirement different observables can require a very

different regularization parameter. For example, the optimized number of iterations

for the Bayes unfolding method applied on the ptt̄T distribution is ropt. = 1 whilst the

|ytt̄| distribution needed ropt. = 5000 for the same MSE-coverage requirement. This

should fortify the argument against a single regularization parameter fits all approach

as mentioned earlier in Ch. 5. The differences in values for the τopt.-parameter can

be explained by the different shapes of the unfolded observables. For example, |ytt̄|

distribution is naturally smoother than the ptt̄T distribution and therefore will need

less regularization i.e. will have a lower regularization parameter τopt.. Figure 6.5

also shows that the ptt̄T and mtt̄ distributions, despite their wider binning w.r.t. the

|ytt̄| and H tt̄
T distributions, has wider and longer tails which indicate more smearing

i.e. they will require more regularization. We see that the unfolded distributions for

all the unfolding methods with all observables close nicely. We do see that the Bayes

method on mtt̄ and ptt̄T have a better agreement with the truth with a smaller total

uncertainty. However, the former is because of the relatively low number of iterations

(ropt. = 1 and ropt. = 11) which strong regularizes towards the truth distribution in the

Bayes algorithm that is statistically independent from the truth used for comparison

but is generated with the same underlying model. The latter is because the relatively

strong regularization reduces the variance in all bins.
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6.7.4 Closure Test

A closure test is unfolding pseudo data, often generated with Monte Carlo simulation,

and compare it with their corresponding truth. The unfolded pseudo data and their

total uncertainties should overlap the truth. The unfolded pseudo data is the same

testing or Asimov dataset used in the previous section to optimize the regularization

parameters.

(a) ptt̄T unfolded with Matrix Inversion (b) ptt̄T unfolded with Gaussian Processes

(c) ptt̄T unfolded with Bayes (d) ptt̄T unfolded with Poisson

Figure 6.8: Unfolded Asimov data for ptt̄T including all statistical and systematic
uncertainties compared with their corresponding truth distribution.
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(a) Htt̄
T unfolded with Matrix Inversion (b) Htt̄

T unfolded with Gaussian Processes

(c) Htt̄
T unfolded with Bayes (d) Htt̄

T unfolded with Poisson

Figure 6.9: Unfolded Asimov data for H tt̄
T including all statistical and systematic

uncertainties compared with their corresponding truth distribution.
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(a) mtt̄ unfolded with Matrix Inversion (b) mtt̄ unfolded with Gaussian Processes

(c) mtt̄ unfolded with Bayes (d) mtt̄ unfolded with Poisson

Figure 6.10: Unfolded Asimov data for mtt̄ including all statistical and systematic
uncertainties compared with their corresponding truth distribution.
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(a) |ytt̄| unfolded with Matrix Inversion (b) |ytt̄| unfolded with Gaussian Processes

(c) |ytt̄| unfolded with Bayes (d) |ytt̄| unfolded with Poisson

Figure 6.11: Unfolded Asimov data for |ytt̄| including all statistical and systematic
uncertainties compared with their corresponding truth distribution.
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6.7.5 Fiducial Differential Cross Sections

This section presents the final measurement of the fiducial differential cross sections

unfolded to particle level for the Full Run 2 dataset. The fiducial differential cross

section is calculated using the equation,

dσfid.

dXi

=
1

Lint.δXi

µ̂i (6.12)

with Lint. being the total integrated luminosity of the Full Run 2 data set, δXi the

bin width and µ̂i the estimated truth bin i.e. number of unfolded events in bin

i. Additionally, we include a χ2/n.d.f. from Eq. 5.32 in the plot to quantify the

agreement between data and prediction. The χ2 is a statistic that follows the χ2

probability density function with the number degrees of freedom as only parameter.

This probability density function is defined as

f(x|k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, Γ(k/2) =

∫ ∞
0

tk/2−1e−tdt (6.13)

with the number degrees of freedom here denoted with k and Γ(k/2) known as the

gamma function. For a measured χ2 and k = n.d.f. one can define the p-value as,

p =

∫ ∞
χ2

f(x|k)dx. (6.14)

The p-value therefore gives the probability to observe the measured χ2 or one more

extreme, i.e. larger in value, under the assumed prediction µ used to calculate the

χ2. Figure 6.12 shows that the fiducial differential cross sections and Figure 6.13

and 6.14 show the corresponding covariance matrix estimates used for the χ2. The

fiducial differential cross sections and covariance matrix estimates unfolded with the

GP, Bayes and Poisson methods can be found in Appendix B. The high-pT regions of

the ptt̄T and H tt̄
T observables show a substantial disagreement between the Powheg-
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Box V2+Pythia8 tt̄ signal MC sample and the data. The p-values of the mtt̄ and

|ytt̄| observables are still above the 5σ significance boundary of 3× 10−7. We see the

same MC/data ratio shapes as in the detector level data and Monte Carlo comparison

of Sec. 6.6. Either the signal tt̄ or one of the background Monte Carlo samples is

overestimating. One should also note that no theoretical uncertainties were taken

into account here. These will definitely decrease the χ2 and thus increase the low

p-values. However, significant disagreement can still remain after that. The unfolded

results using the matrix inversion are used as the nominal results in the rest of this

thesis. This is to avoid any dependence on regularization parameters.
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(a) (b)

(c) (d)

Figure 6.12: Measured fiducial differential cross sections with the Full Run 2 dataset
of 139 fb−1 unfolded to particle level with the matrix inversion method including all
statistical and systematic uncertainties. The unfolded data is compared with the
testing subsample of tt̄ events from the Powheg-Box v2+Pythia8 signal sample
described in Sec. 6.2 and includes a χ2 with corresponding p-value.
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(a)

(b)

Figure 6.13: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the ptt̄T and H tt̄

T unfolded with the matrix inversion method.
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(a)

(b)

Figure 6.14: Covariance matrix estimates corresponding to the measured fiducial
differential cross sections for the mtt̄ and |ytt̄| unfolded with the matrix inversion
method.
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6.8 Comparisons with Previous Measurements

In 2019 a similar analysis was published presenting as well top-quark pair differential

cross-sections in the l+jets decay channel using pp collisions at a centre-of-mass energy

of
√
s = 13 TeV using the ATLAS detector [240]. Differential cross sections of the ptt̄T ,

mtt̄ and H tt̄
T kinematic observables were presented here as well. However, this previous

analysis contains some differences with respect to the analysis presented in this thesis.

The measured data of this previous analysis was collected during the 2015 and 2016

LHC running periods and amounts to an integrated luminosity of 36 fb−1. This is less

than the 139 fb−1 of the 2015 to 2018 running period used in this analysis. The Monte

Carlo samples used in this thesis have also been produced with different or upgraded

versions of event generators, hadronization and parton shower software packages. For

example, this thesis used Pythia 8.230 and modelled the single top background with

Powheg-Box v2. The previous analysis used Pythia 6.428 or Pythia 8.186 and

modelled single top with Powheg-Box v1. Also, software packages for the detector

simulation, i.e. Geant 4 and AtlFast-II, and for the object reconstruction and

identification, i.e. Athena, have improved since this previous analysis.

The event and object selection has remained largely the same with the most no-

table difference being the change from the MV2c10 to the DL1r b-tagging method.

Additionally, the previous analysis used the Iterative Bayes unfolding algorithm with

r = 4 iterations for all differential cross sections in contrast to the several unfolding

algorithms with optimized regularization parameters used in this thesis. Lastly, less

sources of statistical and systematic sources of error were included and propagated

with a different statistical method in this thesis. Figure 6.15 and 6.16 show the data-

MC comparison and the unfolded fiducial differential cross sections as presented in

[240]. We can see that the ratio plots in Fig. 6.16 show the same disagreement be-
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tween data and the Powheg-Box v2+Pythia8 predictions for all variables.

When evaluating a difference between data and MC one could also argue that the

data taking at the ATLAS experiment introduces a bias in the tt̄ differential cross

section measurements. However, similar differences between data and MC have also

been observed at the CMS experiment. Figure 6.17 shows tt̄ differential cross sec-

tions in the l+jets decay channel with pp collisions recorded at a centre-of-mass energy

of
√
s = 13 TeV at the CMS experiment. Several pT variables are shown of which

Powheg-Box v2+Pythia8 predictions shows an overestimation w.r.t. CMS data

unfolded to particle level. However, one should take into account their detection

methods, data reconstruction and selection algorithms are different from the ones

presented in this thesis.
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Figure 7: Distributions of observables in the `+jets channel reconstructed with the pseudo-top algorithm in the
resolved topology at detector-level: (a) invariant mass, (b) transverse momentum and (c) absolute value of the rapidity
of the tt̄ system. Data distributions are compared with predictions, using P�����+P�����8 as the tt̄ signal model.
The hatched area represents the combined statistical and systematic uncertainties (described in Section 9) in the
total prediction, excluding systematic uncertainties related to the modelling of the tt̄ events. Underflow and overflow
events, if any, are included in the first and last bins. The lower panel shows the ratio of the data to the total prediction.

25

(a)

 [GeV]ttDetector-level m

Ev
en

ts
/G

eV

1

10

210

310

410

510
Data
tt
Single top
W+jets
Z+jets
Diboson
t+X
Multijet
Stat.+Syst. unc.

-1 = 13 TeV, 36.1 fbs
ATLAS

Resolved

 [GeV]ttDetector-level m

500 1000 1500 2000

Pr
ed

.
D

at
a

0.9
1

1.1

250

(a)

 [GeV]tt
T

Detector-level p

Ev
en

ts
/G

eV

1

10

210

310

410

510

610 Data
tt
Single top
W+jets
Z+jets
Diboson
t+X
Multijet
Stat.+Syst. unc.

-1 = 13 TeV, 36.1 fbs
ATLAS

Resolved

 [GeV]tt
T

Detector-level p
0 200 400 600 800

Pr
ed

.
D

at
a

0.8
0.9

1
1.1

(b)

|ttDetector-level |y

|y
|

Δ
Ev

en
ts

/

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
610×

Data
tt
Single top
W+jets
Z+jets
Diboson
t+X
Multijet
Stat.+Syst. unc.

-1 = 13 TeV, 36.1 fbs
ATLAS

Resolved

|ttDetector-level |y

0 0.5 1 1.5 2 2.5

Pr
ed

.
D

at
a

0.9
1

1.1

(c)

Figure 7: Distributions of observables in the `+jets channel reconstructed with the pseudo-top algorithm in the
resolved topology at detector-level: (a) invariant mass, (b) transverse momentum and (c) absolute value of the rapidity
of the tt̄ system. Data distributions are compared with predictions, using P�����+P�����8 as the tt̄ signal model.
The hatched area represents the combined statistical and systematic uncertainties (described in Section 9) in the
total prediction, excluding systematic uncertainties related to the modelling of the tt̄ events. Underflow and overflow
events, if any, are included in the first and last bins. The lower panel shows the ratio of the data to the total prediction.
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(d)

Figure 6.15: Data-MC comparison from a previous tt̄ differential cross section mea-
surement in the l+jets decay channel measured at the ATLAS detector. From [240].
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Figure 23: Particle-level normalised di�erential cross-sections as a function of the transverse momentum of (a) the
leading and (b) the subleading top quark in the resolved topology, compared with di�erent Monte Carlo predictions.
The bands represent the statistical and total uncertainty in the data. Data points are placed at the centre of each bin.
The lower panel shows the ratios of the simulations to data.
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Figure 24: Particle-level normalised di�erential cross-sections as a function of (a) the mass and (b) the transverse
momentum of the tt̄ system in the resolved topology, compared with di�erent Monte Carlo predictions. The bands
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panel shows the ratios of the simulations to data.
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Figure 25: Particle-level normalised di�erential cross-sections as a function of (a)
���pt,had

out

���, (b) |�� (t, t̄)|, (c) Ht t̄
T and

(d) additional jet multiplicity in the resolved topology, compared with di�erent Monte Carlo predictions. The bands
represent the statistical and total uncertainty in the data. Data points are placed at the centre of each bin. The lower
panel shows the ratios of the simulations to data.
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(c)

Figure 6.16: Unfolded distributions from a previous tt̄ differential cross section mea-
surement in the l+jets decay channel measured at the ATLAS detector. From [240].
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Figure 10: Absolute p`T (upper) and |h`| (lower) differential tt cross sections, compared to dif-
ferent tt simulations in the left plots, and compared to the POWHEG+PYTHIA simulation after
varying the shower scales, and hdamp parameter, within their uncertainties, in the right plots.
The vertical bars on the data represent the statistical and systematic uncertainties added in
quadrature. The bottom panels show the ratio of the predictions to the data.
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Figure 9: Absolute pmiss
T (upper) and pW

T (lower) differential tt cross sections, compared to
different tt simulations in the left plots, and compared to the POWHEG+PYTHIA simulation
after varying the shower scales, and hdamp parameter, within their uncertainties, in the right
plots. The vertical bars on the data represent the statistical and systematic uncertainties added
in quadrature. The bottom panels show the ratio of the predictions to the data.
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Figure 8: Absolute HT (upper) and ST (lower) differential tt cross sections, compared to dif-
ferent tt simulations in the left plots, and compared to the POWHEG+PYTHIA simulation after
varying the shower scales, and hdamp parameter, within their uncertainties, in the right plots.
The vertical bars on the data represent the statistical and systematic uncertainties added in
quadrature. The bottom panels show the ratio of the predictions to the data.
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Figure 8: Absolute HT (upper) and ST (lower) differential tt cross sections, compared to dif-
ferent tt simulations in the left plots, and compared to the POWHEG+PYTHIA simulation after
varying the shower scales, and hdamp parameter, within their uncertainties, in the right plots.
The vertical bars on the data represent the statistical and systematic uncertainties added in
quadrature. The bottom panels show the ratio of the predictions to the data.

(d)

Figure 6.17: Unfolded distributions from a tt̄ differential cross section measurement
in the l+jets decay channel measured at the CMS detector. Differential cross sections
are shown as a function of the pT of the lepton coming from the top quark (plT ), the
pT of the leptonically decaying W boson coming from the top quark (pWT ), the scalar
sum of the pT of all jets (HT ) and the scalar sum of the pT of all particles (ST ). From
[242].
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6.9 Discussion

The fiducial differential cross-sections for tt̄ production in the l+jets decay channel

are presented as a function of the ptt̄T , mtt̄, H tt̄
T and |ytt̄| kinematic variables. The

differential cross sections were unfolded to particle level including various sources of

statistical and systematic uncertainty and compared with a previous measurement

of tt̄ differential cross sections at the ATLAS experiment. The ptt̄T and H tt̄
T show a

disagreement with the Powheg-Box v2+Pythia8 prediction in the high pT region.

This is a known disagreement and is also seen in other analyses with both the ATLAS

[240] and the CMS experiment [242]. Future studies could entail investigating any of

the aspects of the Monte Carlo simulation. Also, there are many detector and theory

systematic uncertainties that could be added to the analysis that might cover the

discrepancies.

The measurement presented in [240] compares tt̄ predictions from multiple event

generators, hadronization and parton shower implementations. One of the possible

improvements to this analysis would be to compare the unfolded data to tt̄ predictions

from other event generators such as MadGraph5 aMCNLO or Sherpa in combi-

nation with different hadronization and parton showering implementations such as

Pythia or Herwig. Additionally, one could fine tune the parameters of these mod-

els to investigate their effects on tt̄ differential cross section predictions.

The highest QCD order at which events were generated for any of the MC samples

was at NLO with possibly a NNLO QCD scaling factor. However, an event generator

with parton showering at NNLO QCD could give a substantial improvement to this

analysis. Developments in this area are being made [243, 244, 245] and could improve

both the tt̄ particle level predictions and reduce theoretical uncertainties. Future

studies could explore these NNLO QCD implementations. Additionally, higher EW
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corrections could be included but one would expect these to have a lower impact on

a QCD dominated process such as tt̄ production [246].

Lastly, the inclusion of theoretical sources of uncertainty would also be an improve-

ment for the analysis presented in this thesis. This could include sources involving

parton distribution functions, QCD radiation effects, renormalization and factoriza-

tion scales. Some of these nuisance parameters are listed at the end of App. B.1. It

has been shown that each of these sources could contribute up to a few percent of

relative uncertainty in the final unfolded distribution [241, 240]. For example, final

state radiation effects can contribute a systematic uncertainty of up to 8% [240]. In

addition to these sources, one could also investigate new sources of uncertainty.
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Chapter 7

Constraining Effective Field

Theories

In this chapter, the measurements of the c8
tq and c8,1

Qq Wilson coefficients of the Stan-

dard Model Effective Field Theory, as introduced in Sec. 2.6.2, are presented. Fre-

quentist confidence bounds are set by comparing SMEFT predictions at particle level

with the unfolded fiducial differential cross sections presented in Ch. 6. The com-

parison of measured data with EFT theories is also known as EFT interpretation

and is considered by more and more analyses within ATLAS as a valuable addi-

tion to the measurement of cross sections. Some ATLAS analyses that included

this extra perspective can be found in Higgs [247, 248, 249, 250, 251], electroweak

[252, 253, 254, 255] and top physics [256, 257, 258, 259, 260]. The results presented

in this chapter contribute to this new paradigm in both methods and results. Some

points on EFT interpretation strategy are included that were developed in collabo-

ration with the ATLAS Top community to guide other analyses in their EFT inter-

pretation and prepare for any possible future efforts that will simultaneously fit more

Wilson coefficients to datasets from multiple analyses, also known as a global EFT

approach.
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7.1 Strategy

The Standard Model Effective Field Theory is a complex model of which the Wilson

coefficients can have a myriad of effects on physics processes and their observables.

From this it seems evident that one needs datasets collected by many experiments

looking at multiple physics processes and observables to truly know how SMEFT

manifests itself in nature. Additionally, estimates of Wilson coefficients will have

non-negligble correlations. A simultaneous fit involving all correlated Wilson coef-

ficients would make the number of parameters of interest quickly quite large. A

generally adopted approach within the ATLAS collaboration has therefore become

to focus each analysis on a small number of observables and a subset of Wilson co-

efficients and leave the results in such a way that they can be combined at a later

moment in a global fit. The goal of this measurement is therefore to use the available

phase-space spanned by the tt̄ l+jets fiducial differential cross sections presented in

the previous chapter, measure a subset of Wilson coefficients and prepare the results

for later combination.

As mentioned before, the comparison of SMEFT predictions with data can be done

either on detector, particle or parton level. Performing the EFT interpretation on

detector-level has advantages such as straightforward handling of systematic uncer-

tainties, inclusion of background dependencies or likelihood function and nuisance

parameter combination for a global EFT fit approach. However, a detector level ap-

proach does introduce a heavy dependence on the collaboration software from detector

simulation and reconstruction that is not available for physicists outside the collabo-

ration. On top of that, these software packages require large computing resources for

an already large set of Monte Carlo samples needed for an interpretation. It is for

these reasons that the gold standard within the ATLAS Top community has become

to compare SMEFT predictions with data unfolded to particle level. This level has a
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reduced detector dependency but does apply corrections that include model depen-

dent assumptions on hadronization and parton showering such is with unfolding to

parton level. The strategy for an EFT interpretation on particle level can be defined

in the following steps:

1. Unfold data to particle level, either with or without regularization, including

covariance estimation

2. Define a likelihood for the unfolded data, e.g. µ̂ ∼ Gaus(µ, U) with mean µ

and covariance U

3. Choose relevant operators

4. Parameterize the likelihood in terms of the Wilson coefficients, i.e. µ→ µ(c)

5. Set confidence bounds by maximizing and varying the likelihood w.r.t. the

Wilson coefficients

The first step has already been presented in Ch. 6. We will therefore dedicate this

chapter to the steps 2 to 5.

7.2 Statistical Framework

7.2.1 Likelihood & Confidence Intervals

The final results of an EFT interpretation are confidence bounds set by maximizing

and varying a likelihood function w.r.t. the Wilson coefficients. If we assume that

the unfolded data follow a multivariate Gaussian probability distribution then we can

define the log-likelihood as

logL(c) = −1

2
(µ̂− µ(c))TU−1(µ̂− µ(c)), (7.1)
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with the unfolded distribution µ̂, the corresponding covariance Uij = cov[µ̂i, µ̂j] in-

cluding all the statistical and systematic sources of error, as introduced in Ch. 5,

and the particle level model prediction µ(c) as a function of the Wilson coefficients

c. Note that the multivariate Gaussian probability distribution function is chosen to

ensure that all the correlations between the bins introduced in the unfolding are taken

into account. The large number of events in the fiducial phase space make it reason-

able to assume that the large sample limit holds and that the unfolded data follows

a Gaussian instead of a Poisson distribution. Even for low-event bins in the high-pT

region enough events are measured for this assumption to hold. Maximizing the log-

likelihood w.r.t. the Wilson coefficients will give their respective maximum-likelihood

estimators:

ĉMLE = arg max
c∈C

logL(c). (7.2)

In the large sample limit and in case of one or uncorrelated Wilson coefficients, one can

set the confidence interval [ĉi,MLE−Nσĉi , ĉi,MLE +Nσĉi ] for MLE ĉi,MLE by varying the

parameters c until the log-likelihood decreases by N2/2 in value from its maximized

value [192], i.e.

logL(ci +Nσci) = logLmax −
N2

2
, (7.3)

with Wilson coefficient ci with N ∈ N being a positive integer defining the confidence

level and error on the MLE σĉi . For example, N = 1 gives a 1σ confidence interval at a

confidence level of 68.3%. However, in cases of multiple correlated Wilson coefficients,

Eq. (7.3) changes into

logL(c) = logLmax −
Qα,n

2
(7.4)

with
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Qα,n

1− α n = 1 n = 2 n = 3
0.683 1 2.3 3.53
0.90 2.71 4.61 6.25
0.95 3.84 5.99 7.82
0.99 6.63 9.21 11.3

Table 7.1: Values for χ2 quantiles for various confidence levels 1 − α and number of
parameters (Wilson coefficients) n. [192]

Qα,n = F−1
χ2 (1− α, n) (7.5)

where F−1
χ2 (1 − α, n) are the quantiles of a χ2 distribution at confidence level 1 −

α for n degrees of freedom corresponding to Wilson coefficients [192]. Values of

these quantiles for various confidence levels and number of Wilson coefficients are

given in Table 7.1. The only thing needed for setting confidence intervals is the

parameterization of the truth distribution µ(c) in terms of Wilson coefficients.

7.2.2 Quadratic Regression

Recall from Eq. (2.67) that the Lagrangian of the Standard Model Effective Field

Theory follows a power series in D ≥ 4 operators. This allows for cross sections,

differential and total, to be written in quadratic form in terms of Wilson coefficients

of dimension 6 operators,

σSMEFT = σSM +

Ndim6∑
i

σi
ci
Λ2

+

Ndim6∑
i

Ndim6∑
j

σij
cicj
Λ4

, (7.6)

where σSM is the Standard Model prediction, ci the Wilson coeffient of the i-th di-

mension 6 operator, σi the linear contribution arising from EFT operators interfering

with the SM amplitude and σij is the quadratic contribution originating from the

squared amplitudes of the EFT operators. We can therefore define the multidimen-

sional quadratic function
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µk(c) = µSM,k +

Ndim6∑
i

aikci +

Ndim6∑
i

Ndim6∑
j

bijkcicj, (7.7)

where µk(c) is the SMEFT prediction for bin k of some observable at particle level

and µSM,k is the SM prediction for bin k of the same observable at particle level. Both

can be estimated with Monte Carlo simulation. By estimating µk(c) at various points

in c-space one can find values for the coefficients aik and bijk by minimizing residuals

of the function µk(c) and Monte Carlo estimates. Additionally, the Jacobians of the

residuals are estimated with the use of finite differences to estimate the covariances

and thus errors σaik and σbijk on the estimated parameters aik and bijk.

7.3 Monte Carlo simulation

Monte Carlo simulations were used to determine predictions of SMEFT for both

the tt̄ signal process as well as all the background processes. Almost all Monte Carlo

generators have some EFT implementations available but they are often only available

for a limited set of physics processes. More general SMEFT model implementations

with a large set of physics processes are available in UFO format [261] and can be

used in combination with MadGraph5 aMC@NLO. The UFO models available

that implement matrix calculation and event generation with SMEFT operators in

the Warsaw basis are:

• SMEFTsim3.0 [262, 263] - Possible choices of fermion flavor symmetries and elec-

troweak parameter value sets are available. Both CP violating and conserving

operators are implemented. Leading order QCD accuracy only. Depending on

the chosen flavor symmetry, this implementation has between 81 and 129 free

parameters.

• SMEFTatNLO [87] - The model implements a U(2)q×U(3)d×U(2)u symmetry in
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the quark sector and a U(1)l×U(1)e in the lepton sector. Only CP conserving

operators available. Wilson coefficients involving a b-quark are set to their

lighter generation down-type equivalent e.g. c8
Qb → c8

Qd or to zero if not present.

Accuracy up to Next-to-leading order QCD available. This implementation

contains 73 free parameters.

• dim6top [88] - The model implements a U(2)q×U(2)d×U(2)u quark flavor sym-

metry but also includes flavor-changing neutral current(FCNC) interactions.

Leading order QCD accuracy only. This implementation contains 122 free pa-

rameters.

The Monte Carlo SMEFT simulations of this thesis use the SMEFTatNLO UFO model

with MadGraph5 aMC@NLO v3.1 because of its available NLO QCD accuracy.

The parton shower and hadronization were simulated with Pythia 8.230 [114, 112]

with the NNPDF23LO PDF [226] and top quark mass mt = 172.5 GeV.

7.4 Choice of operators

As mentioned before, a set of operators need to be chosen to focus this measurement

on. The choice is based on an operator sensitivity check, a brief review of recent

global fits and differential distribution sensitivity check.

7.4.1 Operator contribution

It is possible to deduce per operator what type of physics processes it can affect

based on their field contents and imposed flavor symmetries. However, it is easier

to look at each physics process of the analysis and investigate to which operators

they are sensitive. It is possible to set all the Wilson coefficients to a non-zero value,

calculate the matrix element with MadGraph5 aMC@NLO and produce a list of
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all the operators included in that matrix calculation. In the physics process output

directory of the MadGraph5 aMC@NLO one can find the list in the file:

Source/MODEL/coupl.inc

The couplings are encoded but can be translated to their conventional notation by

comparing the codes to a model file in the Madgraph source directory:

models/SMEFTatNLO/couplings.py

models/SMEFTatNLO/CT_couplings.py

By generating the process on both Leading Order and Next-to-Leading Order QCD

one can see for a specific process at what accuracy which operators contribute. Fig-

ure 7.1 shows which bosonic, two-fermion and four-quark operators contribute to

which physics processes involved in this thesis. The used operator and Wilson coef-

ficient notation is defined for SMEFTatNLO in [264]. Notice that many operators only

contribute from NLO QCD. This should be a strong argument for the choice of the

SMEFTatNLO implementation as SMEFTsim3.0 and dim6top would miss these contri-

butions at LO QCD. A subset of operators can be defined from Fig. 7.1 that show

sensitivity to the tt̄ signal process:

{c8
Qt, c

1
tt, c

1
Qt, c

1
QQ, c

8
QQ, c

1
td, c

1
tu, c

1
Qd, c

1
tq, c

1
Qu, c

1,1
Qq, c

3,1
Qq, c

8
td, c

8
tu, c

8
Qd, c

8
tq, c

8
Qu, c

1,8
Qq, c

3,8
Qq, ctG}

(7.8)
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Figure 7.1: Wilson coefficients of SMEFTatNLO bosonic, two fermion and four-quark
dimension-6 operators and their contribution to several physics processes. The color
coding distinguishes between operators that contribute at LO and NLO QCD or
NLO-only. See [264] for all the operator and Wilson coefficient definitions.
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We see that most of the bosonic and two-fermion operators are not of interest for this

thesis. One should note that many of these operators also contribute to background

processes which could introduce a degeneracy in EFT effects. Luckily, figure 6.3 shows

that the background contributions in this analysis are small relative to the signal

process which makes it reasonable to assume that the contributions of these operators

to the backgrounds will be negligible. Figure 7.1 does not include decay processes

which would introduce sensitivity to more operators such as the OtW operator.

7.4.2 Correlations, Flat Directions and Confidence Bounds

In this section we will briefly discuss correlations between Wilson coefficients, flat

fit directions and set confidence intervals to motivate a choice in operators even fur-

ther. Recent results on these subjects can be found in the global fits presented in

[265, 92, 266].

Correlations are crucial to take into account when choosing a set of Wilson coef-

ficients to measure. If the correlation between two parameters is small to zero than

a simultaneous fit will not present any additional information w.r.t. an individual fit

i.e. the limits will be the same. An estimate of Pearson correlations between 34 Wil-

son coefficients is shown in Fig. 7.2. The correlation coefficient estimate uses pseudo

data and is defined as

ρ(ci, cj) =

1
Npseudo

∑Npseudo
k=1 ĉ

(k)
i ĉ

(k)
j − 〈ci〉〈cj〉

δciδcj
(7.9)

with Npseudo being the number of pseudo data samples, ĉ
(k)
i the Wilson coefficient

estimate for the k-th pseudo data sample, 〈ci〉 the average of all the estimates and δci

the estimated uncertainty. Note that most of the significant correlations are between

the four-quark Wilson coefficients. This makes four-quark operators good candidates
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for this thesis.

We know that certain directions in Wilson coefficient parameter space can result

in a net zero change in the observable µk. This will leave the likelihood in Eq. (7.1)

constant and consequently result in flat fit directions which leave the parameter space

unconstrained. One would like to choose operators with expected flat directions dif-

ferent from those of other analyses. This would benefit all analyses in a prospective

combined EFT effort. Flat fit directions are difficult to know a priori. However, the

relative contribution of four-quark operators to tt̄ production cross sections at lead-

ing order QCD has been identified for charge symmetric and asymmetric observables

[266]. Figure 7.3 shows how the combination of a these observable types for a par-

ticular subset of Wilson coefficients can be complementary. Another categorization

of observables can be made based on the physics processes they originate from. Fig-

ure 7.4 shows how tt̄ observables can be complementary to observables from boosted

tt̄, tt̄Z or Higgs production for certain Wilson coefficients.
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Figure 7.2: Estimates of the correlation coefficients between the 34 SMEFT Wilson
coefficients. From [92].
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Figure 7.3: 2D simultaneous fit of the c8
tq and c8,1

Qq Wilson coefficients to an tt̄ invari-
ant mass differential cross section (charge symmetric (M)) and charge asymmetry
measurement (AC). The solid and dashed line represent the 68% and 95% confidence
bounds, respectively. SMEFT predictions were estimated at LO QCD up to linear
Λ−2(left) and quadratic Λ−4(right) order. From [266].

Figure 7.4: 2D simultaneous fits of the c8,3
Qq and c8,1

Qq and the ctφ and ctG Wilson

coefficients. The c8,3
Qq-c

8,1
Qq fit is done with a tt̄ invariant mass differential cross section

and total rates of tt̄Z and tt̄W . The ctφ-ctG fit is done to many variables such as
signal strengths(SS), differential cross sections and total rates from Higgs, top and
diboson physics processes. The solid and dashed line in the left plot represent the
resp. 68% and 95% confidence bounds and the lines in the right plot represent the
95% confidence bounds. SMEFT predictions were estimated up to linear Λ−2 order
at LO(left) and NLO(right) QCD. From [266, 265].
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Figure 7.5: 95 % confidence intervals from a global fit on top, Higgs and diboson data
taken at the LHC using SMEFT predictions up to the linear Λ−2 order for LO and
NLO QCD. From [265].

Figure 7.6: 95 % confidence intervals from a global fit on top, Higgs and diboson data
taken at the LHC using SMEFT predictions up to the quadratic Λ−4 order for LO
and NLO QCD. From [265].
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A last way to motivate the choice of SMEFT operators is by reviewing recent pub-

lished confidence bounds set on SMEFT Wilson coefficients in global fits. Preferably

one would choose a set of Wilson coefficients that are not already heavily constrained

and to which the available observables can improve on. Two notable publications can

be found in [92, 266] which present global fits with top quark datasets taken at the

LHC. However, the global fit with the largest set of Wilson coefficients that also in-

cludes LHC Higgs and diboson datasets is presented in [265]. The confidence bounds

are shown in Fig. 7.5 and 7.6 and were set using different SMEFT predictions i.e.

EFT orders and QCD accuracy. One can see from the figures that the inclusion of

the quadratic Λ−4 EFT order substantially reduces the size of the confidence bounds

for most Wilson coefficients. Also notice that the inclusion of NLO QCD SMEFT

predictions can both increase and decrease the confidence bounds substantially in

some cases.

Based on the above considerations the c8
tq and c8,1

Qq Wilson coefficients were chosen.

Figure 7.1 and 7.2 showed that they both contribute to tt̄ production in a correlated

way. Additionally, EFT interpretation combination plans are being made within the

ATLAS Top community to improve constraints and explore methods needed for com-

binations. The c8
tq and c8,1

Qq Wilson coefficients could provide a good candidate com-

bination of tt̄ differential cross sections and charge asymmetries as is shown in 7.3.

This would be more feasible than a combination with other LHC physics groups (e.g.

Higgs or diboson) or experiments (e.g. CMS) as the ATLAS Top community charge

asymmetry and differential cross section analysts already work closely together. Also,

tt̄ differential cross sections and charge asymmetries use tt̄ events recorded with the

ATLAS detector which will result in many shared systematic uncertainty definitions.

This would make the proper handling of systematic uncertainties and correlations,

which is a non-trivial task, easier. Lastly, the global fit presented in Fig. 7.5 and 7.6
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show that these two Wilson coefficients are not already heavily constrained by other

datasets.

7.4.3 Parton level distributions

This section gives an indication of the sensitivity of tt̄ differential cross sections to

changes in the c8
tq and c8,1

Qq four-quark Wilson coefficients. One can generate events

with MadGraph5 aMC@NLO and analyze them with MadAnalysis5 [267, 268,

269, 270, 271, 272]. Not including parton shower and hadronization will provide

only a proxy for the EFT effects on particle level observables but for significant

reduced computing time. In combination with event reweighting [273] one could

easily explore the effects of many other Wilson coefficients on total cross sections and

the kinematics of generated events. Figures 7.7, 7.8 and 7.9 show comparisons of

histograms of the top quark transverse momentum filled with events generated with

SMEFT Monte Carlo setup presented in Sec. 7.3. The histograms denoted as “SM”

are SMEFT predictions with all Wilson coefficients set to zero. One notable feature

in all SMEFT predicitons is the increase of sensitivity for higher energies indicated

by the large EFT-SM ratios of the high-pT bins.

7.5 SMEFT Monte Carlo Samples

This section summarizes the particle level tt̄ Monte Carlo samples that were created

with the setup presented in Sec. 7.3. Events were generated, parton showered and

hadronized with Λ = 1 TeV−2 and different values for the c8
tq and c8,1

Qq Wilson coeffi-

cients (See Table 7.2). All SMEFT Monte Carlo samples were subsequently subjected

to the particle level object and event selection criteria presented in Sec. 6.4 using

Rivet 3.1 [274] and the validated Rivet analysis ATLAS 2019 I1750330 [275] of the

2019 tt̄ differential cross section measurements in the l+jets decay channel with an
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integrated luminosity of Lint. = 36 fb−1 at a center-of-mass energy of
√
s = 13 TeV

[276]. The analyzed events are used to fill histograms of the observables presented in

Ch. 6. These histograms are then used in the quadratic regression method of Sec.

7.2.2 to parameterize the particle level observables in terms of the Wilson coefficients.

Figure 7.10, 7.11 and 7.12 show some examples of the fitted functions and the SMEFT

predictions used in the fit.

c8
tq c8,1

Qq

1.0 0.0
0.0 1.0
-1.0 0.0
0.0 -1.0
0.5 0.5
-0.5 0.5
0.5 -0.5
-0.5 -0.5

Table 7.2: Points in Wilson coefficient parameter space at which SMEFT particle
level samples were created. All samples were created at both LO and NLO QCD
accuracy including both the linear Λ−2 and quadratic Λ−4 EFT order. Only the first
4 rows were also generated including the linear Λ−2 EFT order only.

Figure 7.7: Parton level distributions of SMEFT predictions at LO (left) and NLO
(right) QCD including both the linear Λ−2 and quadratic Λ−4 EFT order with the c8

tq

and c8,1
Qq four-quark Wilson coefficients set to 1.
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Figure 7.8: Parton level distributions of SMEFT predictions at LO (left) and NLO
(right) QCD comparing the inclusion of the linear Λ−2 EFT order only(Lin. EFT)
and with the inclusion of both the linear Λ−2 and quadratic Λ−4 EFT order(Quad.
EFT) with the c8,1

Qq four-quark Wilson coefficient set to 1.

Figure 7.9: Parton level distributions of SMEFT predictions at LO (left) and NLO
(right) QCD comparing the inclusion of the linear Λ−2 EFT order only(Lin. EFT)
and with the inclusion of both the linear Λ2 and quadratic Λ−4 EFT order(Quad.
EFT) with the c8

tq four-quark Wilson coefficient set to 1.

179



Figure 7.10: The particle level total rate predictions for various points in Wilson
coefficient parameter space and the fitted function with the parameters evaluated at
their best-fit and ±σ value. The predictions are generated at LO QCD with the linear
Λ−2 EFT order only (left) and NLO QCD with both the linear Λ−2 and quadratic
Λ−4 EFT order included (right).

Figure 7.11: The particle level H tt̄
T predictions for various points in Wilson coefficient

parameter space and the fitted function with the parameters evaluated at their best-fit
and ±σ value. The predictions are for the 12th bin (575 < H tt̄

T < 650 GeV) generated
at NLO QCD with both the linear Λ−2 and quadratic Λ−4 EFT order included (left)
and 3th bin (100 < H tt̄

T < 150 GeV) generated at LO QCD with the linear Λ−2 EFT
order only included (right).

Figure 7.12: The particle level |ytt̄| predictions for various points in Wilson coefficient
parameter space and the fitted function with the parameters evaluated at their best-
fit and ±σ value. The predictions are for the 9th bin (0.8 < H tt̄

T < 0.9) generated at
NLO QCD with the linear Λ−2 EFT order only included (left) and 15th bin (1.4 <
H tt̄
T < 1.65) generated at LO QCD with both the linear Λ−2 and quadratic Λ−4 EFT

order included (right).
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7.6 Regularization Effects

This section presents how the regularization of an unfolding framework can have ef-

fect on the Wilson coefficient confidence bounds. We use the SMEFT “SM” particle

level prediction of the ptt̄T , mtt̄ , H tt̄
T and |ytt̄| distributions instead of unfolded data

as input for the likelihood of Eq. (7.1) (µ̂ = µSM). The SMEFT “SM” particle

level prediction is SMEFT at NLO QCD including all EFT orders and all Wilson

coefficients set to 1× 10−5, as advised by the authors of the SMEFTatNLO model [277].

The covariance matrices are estimated with the same set of statistical and systematic

sources of uncertainty and the frequentist-bayes hybrid pseudo-experiment method

as introduced in Ch. 6. The unfolding for the covariance estimation is done with

the Richardson-Lucy (Bayes) and the Poisson-likelihood with Tikhonov regulariza-

tion (Poisson) algorithms for different values for the regularization parameters.

The covariance matrices and “SM” particle level prediction are used as input for

the likelihood of Eq. (7.1). This is to isolate the effects of the covariance matrix and

simulate an ideal unfolding scenario. The quadratic regression was done with NLO

QCD SMEFT predictions including all EFT orders. The likelihood is then maximized

w.r.t. the c8
tq and c8,1

Qq Wilson coefficients. One can use the maximum likelihood and

Eq. (7.1) to define ∆ logL = 2(logLmax− logL). By varying the values of the Wilson

coefficients one can find the values for ∆ logL that equate to confidence intervals for

the Wilson coefficients. Following Table 7.1 for n = 2 we can see that confidence

intervals at a confidence level of 95% can be found at values ∆ logL = 5.99.
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Figure 7.13: The log-likelihood difference ∆ logL with Lmax maximized w.r.t. the c8
tq

and c8,1
Qq Wilson coefficients simultaneously. The ∆ logL is scanned for values of c8

tq

with c8,1
Qq kept at its maximum-likelihood estimate. The likelihoods were evaluated

with Asimov H tt̄
T unfolded distributions and covariance estimates for various amounts

of regularization.

Figure 7.14: The log-likelihood difference ∆ logL with Lmax maximized w.r.t. the
c8
tq and c8,1

Qq Wilson coefficients simultaneously. The ∆ logL is scanned for values of

c8,1
Qq with c8

tq kept at its maximum-likelihood estimate. The likelihoods were evaluated

with Asimov |ytt̄| unfolded distributions and covariance estimates for various amounts
of regularization.
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Figure 7.13, 7.14 and 7.15 show clearly that with increasing regularization, i.e. r → 1

for Richardson-Lucy and τ →∞ for Poisson-likelihood with Tikhonov regularization,

the confidence intervals for the same confidence level become smaller. This can be

explained by the reduction of the variances that is characteristic for increased regu-

larization. The smaller variances will results in bigger changes in the logL for the

same change in the Wilson coefficients. This shows that one should be aware that

the size of confidence intervals set with unfolded data depends on the amount of

regularization introduced in the unfolding framework.

Figure 7.15: The confidence regions at a confidence level of 95% for the c8
tq and

c8,1
Qq Wilson coefficients. The likelihoods were evaluated with Asimov ptt̄T (Left) and

mtt̄(Right) unfolded distributions and covariance estimates for various amounts of
regularization.

7.7 Results

This section presents the estimates and confidence bounds set on the c8
tq and c8,1

Qq

Wilson coefficients using the Full Run-2 dataset corresponding to an integrated lumi-

nosity of L = 139 fb−1. The likelihoods were evaluated with data unfolded with the

matrix inversion method to avoid the confidence bounds having any regularization
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dependencies. The covariance matrices were estimated with the frequentist-bayes

hybrid pseudo-experiment method including all statistical and systematic sources of

error presented in Ch. 6. No theoretical uncertainties were included. Individual fits

vary only one Wilson coefficient whilst keeping the other at its SM value 0. Two-

parameter fits vary both Wilson coefficients simultaneously.

Figure 7.16 and 7.17 compares the unfolded data with several NLO QCD particle

level predictions including pre-fit (µSM) and post-fit (µ(ĉ8
tq, ĉ

8,1
Qq)) SMEFT predictions.

Figure 7.18 and 7.19 give confidence regions of the two-parameter fits. Table 7.4 and

Fig. 7.20 give the confidence bounds from the individual and two-parameter fits using

both LO and NLO QCD and linear and quadratic EFT order SMEFT predictions. A

clear correlation can be seen in all the two-parameter confidence regions. This also is

shown in Table 7.4 with confidence bounds of the two-parameter fit being larger than

the ones set by the individual fits. The H tt̄
T observable sets the most stringent con-

straints whilst the |ytt̄| observable leaves the Wilson coefficients the least constrained.

Lastly, one can see that inclusion of NLO QCD and quadratic Λ−4 EFT orders often

deflates the confidence bounds.

Observables
QCD ptt̄T H tt̄

T mtt̄ |ytt̄|
LO -0.342 -0.425 -0.562 -0.103

NLO -0.482 -0.614 -0.223 -0.098

Table 7.3: Correlation coefficient estimates ρ
[
ĉ8
tq, ĉ

8,1
Qq

]
from the two-parameter fits

using both LO and NLO QCD SMEFT predictions including both linear Λ−2 and
quadratic Λ−4 EFT orders.
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Figure 7.16: Comparison of the unfolded data including statistical and systematic un-
certainties, Powheg-Box v2 SM, MadGraph5 aMC@NLO SMEFT pre-fit and
MadGraph5 aMC@NLO SMEFT post-fit predictions for the ptt̄T and H tt̄

T observ-
able. The fit uses NLO QCD SMEFT predictions including both the linear and
quadratic EFT order.

Figure 7.17: Comparison of the unfolded data including statistical and systematic un-
certainties, Powheg-Box v2 SM, MadGraph5 aMC@NLO SMEFT pre-fit and
MadGraph5 aMC@NLO SMEFT post-fit predictions for the mtt̄ and |ytt̄| observ-
able. The fit uses NLO QCD SMEFT predictions including both the linear and
quadratic EFT order.
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Figure 7.18: The confidence regions at a confidence level of 95% for the c8
tq and c8,1

Qq

Wilson coefficients. The likelihoods were evaluated with the ptt̄T (Left) and H tt̄
T (Right)

unfolded distributions and covariance estimates using the matrix inversion method
and the Full Run-2 dataset. The parameterization of the likelihood is constructed
with the quadratic regression to either LO or NLO QCD SMEFT predictions.

Figure 7.19: The confidence regions at a confidence level of 95% for the c8
tq and c8,1

Qq

Wilson coefficients. The likelihoods were evaluated with the mtt̄(Left) and |ytt̄|(Right)
unfolded distributions and covariance estimates using the matrix inversion method
and the Full Run-2 dataset. The parameterization of the likelihood is constructed
with the quadratic regression to either LO or NLO QCD SMEFT predictions.
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Individual Two-parameter

O(Λ−2) EFT O(Λ−4) EFT O(Λ−4) EFT

Parameter QCD Observable MLE 95% CL Range MLE 95% CL Range MLE 95% CL Range

c8
tq

LO

ptt̄T 1.454 [-2.273,3.441] 0.012 [-0.687,0.919] 0.066 [-0.773,1.07]

H tt̄
T -0.848 [-1.377,0.799] -0.0312 [-0.61,0.473] 0.0493 [-0.747,0.73]

mtt̄ 1.981 [-3.112,5.44] 0.0109 [-0.584,0.679] -0.0702 [-0.988,1.057]

|ytt̄| -2.333 [-10.637,8.201] 0.021 [-1.558,1.455] -0.099 [-1.604,1.535]

NLO

ptt̄T 0.203 [-0.715,1.031] 0.0391 [-0.37,0.533] 0.0543 [-0.516,0.602]

H tt̄
T -0.936 [-1.436,0.801] 0.016 [-0.352,0.275] -0.0518 [-0.464,0.404]

mtt̄ 0.173 [-0.89,1.09] 0.0789 [-0.344,0.567] 0.146 [-0.395,0.602]

|ytt̄| -3.414 [-8.724,6.045] -0.0577 [-0.802,0.676] -0.0612 [-0.825,0.687]

c8,1
Qq

LO

ptt̄T 2.777 [-3.03,5.786] 0.022 [-0.399,0.552] 0.061 [-0.578,0.585]

H tt̄
T 0.359 [-0.311,1.621] -0.0155 [-0.286,0.319] 0.0628 [-0.425,0.413]

mtt̄ -0.514 [-1.51,0.907] 0.0107 [-0.519,0.366] -0.1781 [-0.978,0.546]

|ytt̄| 0.523 [-7.031,7.555] -0.0205 [-0.905,0.772] -0.0877 [-0.976,0.781]

NLO

ptt̄T 0.286 [-0.711,1.244] 0.002 [-0.486,0.393] -0.0898 [-0.566,0.459]

H tt̄
T -0.191 [-1.31,1.513] 0.0296 [-0.353,0.259] -0.048 [-0.466,0.326]

mtt̄ 0.267 [-0.947,0.609] 0.083 [-0.339,0.486] 0.0607 [-0.373,0.527]

|ytt̄| -2.654 [-5.099,3.193] -0.0513 [-0.79,0.686] -0.103 [-0.802,0.736]

Table 7.4: The maximum likelihood estimators (MLE) and confidence intervals at a confidence level
(CL) of 95% from individual and two-parameter fits using LO and NLO QCD SMEFT predictions
with up to linear Λ−2 or quadratic Λ−4 EFT order.

Global Fit Results
Wilson Coefficient Hartland et al.(2019) [92] Brivio et al.(2019) [278] Ethier et al.(2021) [265]

c8
tq [−3.7, 4.1] [−1.32, 0.44] [−0.687, 0.186]

c8,1
Qq [−4.7, 7.8] [−1.00, 0.52] [−0.555, 0.236]

Table 7.5: Recently published confidence intervals at a confidence level of 95% from global fits to top,
Higgs and diboson datasets collected at the LHC and LEP. All use NLO QCD SMEFT predictions
including both the linear O(Λ−2) and quadratic O(Λ−4) EFT order.
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Figure 7.20: The maximum likelihood estimators (MLE) and confidence intervals at
a confidence level (CL) of 95% from individual and two-parameter fits using LO and
NLO QCD SMEFT predictions with up to linear Λ−2 or quadratic Λ−4 EFT order.

7.8 Discussion

The confidence bounds set on the c8
tq and c8,1

Qq Wilson coefficients of the Standard

Model Effective Field Theory show no significant disagreement with the Standard

Model. When confidence bounds in Table 7.4 are compared with the global fit results

of Table 7.5 we can see that the sizes of the confidence bounds are comparable. How-

ever, one should note that all three global fits used considerably more observables,

188



included more parameters in the fit and included theoretical systematic uncertainties.

The results also show that the inclusion of NLO QCD and quadratic Λ−4 EFT or-

ders or the amount of regularization can have a significant impact on the confidence

bounds. However, there are still many prospects for future studies. Future efforts

should therefore try to include NLO QCD and quadratic Λ−4 EFT orders and avoid

regularization whenever they can.

EFT effects in background processes have been neglected which can be justified with

high signal-to-background ratios. However, many analyses or observables have much

more sizable background contributions for which this assumption does not hold. Fu-

ture studies should therefore explore the possibility of not subtracted the background

from data before unfolding and performing a combined process EFT interpretation

e.g. using tt̄+ tW differential cross section measurements to constrain EFT parame-

ter space. Another analysis adjustment for future EFT efforts should be closure tests

with detector simulated EFT samples with non-SM Wilson coefficient values. This

is to ensure that possible EFT effects in the data are not lost when applying object

and event selection or the unfolding corrections.

Another notable improvement for future efforts would be to explore particle level

MC sample reweighting techniques. Currently, MadGraph5 aMC@NLO supports

reweighting techniques [273] for parton level MC samples. However, parton showering

and hadronization need at least if not more computation time than matrix element

calculation and event generation. The latest version of the particle level MC sample

file format HepMC3 [279] contains event weights which should make it conceptually

possible. This would make the expansion of EFT efforts to higher-dimensional fits

significantly easier. Also notable should be the use of Rivet routines which make it

easy to reproduce particle level fiducial phase spaces for new particle level MC sam-
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ples possibly needed in future EFT efforts.

One of the important hurdles in future EFT combinations is the proper handling

of correlations between unfolded observables of different analyses. Recall that dif-

ferent analyses will have shared sources of error, e.g. ATLAS analyses will share

detector systematics, which means that unfolded bins of two different analyses will

be correlated. Combining the covariances of different analyses into one total covari-

ance for a combined fit that includes all these correlations is a non-trivial task. One

approach for this would be to estimate the covariance matrix contribution for each

source of error for each analysis, estimate the covariances between bins of different

analyses for each source of error and sum all the total covariances of each source of

error into one final total covariance for the combined fit. However, very little work

has been done that supports such an approach. Especially estimating covariances

between different analyses for even a single source of error without the full datasets

and ATLAS simulation machinery is not obvious and needs to be explored more.

Lastly, the estimates and confidence intervals of the c8
tq and c8,1

Qq SMEFT Wilson

coefficients are used to quantify deviations from the SM in a model-independent way.

However, one can use the constraints on a Wilson coefficient to constrain parameters

of specific BSM theories such as SUSY or 2HDM. The procedure of converting Wil-

son coefficient constraints into constraints on UV theory parameters is also known

as matching. It entails obtaining an effective theory of a specific UV theory by in-

tegrating out heavy fields, expressing the generated UV operators into the Warsaw

basis and matching the UV parameters to the SMEFT Wilson coefficients. A simple

toy scalar example of this process is given in A.6. However, in general, matching

to specific UV theories and excluding BSM scenarios is a non-trivial task. The ex-

perimental HEP community has mostly been focusing on publishing estimates and
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constraints on Wilson coefficients but should also eventually be able to include this

final interpretation step. Especially in the case of significant deviations from the SM.

Analyses are emerging that include or even solely dedicate to the matching of SMEFT

to specific UV theories [280, 281] and even tools are being developed that facilitate

this process [282, 283]. However, much more work on this final step of interpretation

is needed and is therefore left for future studies.
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Chapter 8

Conclusions

This thesis presented a study on novel unfolding algorithms, a top quark pair differen-

tial cross section measurement and a SMEFT interpretation including two Wilson co-

efficients. Most unfolding algorithms impose some form of regularization that reduces

the variance but increases the bias of the constructed estimators. Optimizing the

regularization parameters w.r.t. estimator characteristics such as the mean squared

error or coverage probability can help to find the optimal bias-variance trade-off and

compare different unfolding algorithms. This could be instructive for many analysis

teams and make the choice of the regularization parameters less arbitrary. Addition-

ally, novel statistical methods for estimating the response matrix and estimating the

covariances of the unfolded distribution including statistical and systematic sources

of error were presented. The former supplies a valid response matrix estimation

method for analyses for which Monte Carlo simulation is computationally expensive.

The frequentist-bayes hybrid pseudo experiment covariance estimation method shows

good agreement with the more conventional frequentist pseudo experiment estima-

tion method. However, the hybrid method can also be used by unfolding algorithms

lacking a clear likelihood definition such as the iterative bayes unfolding algorithms.

Some possible future studies could entail trying different likelihoods for the response
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matrix estimation or investigating methods to estimate covariances between unfolded

distributions after they have been unfolded separately.

Secondly, the measurement of tt̄ differential cross section in the l+jets decay channel

was presented. The differential cross sections were measured as a function of ptt̄T , mtt̄,

H tt̄
T and |ytt̄| and were unfolded to particle level. The covariances of the unfolded

distributions were estimated with the frequentist-bayes hybrid pseudo-experiment

method including various statistical and systematic sources of uncertainty. The SM

predictions of Powheg-Box v2+Pythia8 overestimated many of the high-pT dif-

ferential cross section bins w.r.t. the unfolded data. Other top quark pair differential

cross section measurements have seen this disagreement as well in roughly the same

shape and magnitude. This fortifies the motivation to revise our models, detectors,

reconstruction or analysis methods.

Finally, estimates and confidence intervals of the c8
tq and c8,1

Qq SMEFT Wilson co-

efficients were presented. The unfolded tt̄ differential cross sections and covariances

were used in a χ2-fit to obtain maximum likelihood estimators and set 95% confi-

dence intervals. The fit used both LO and NLO QCD SMEFT predictions including

either up to linear O(Λ−2) or up to quadratic O(Λ−4) EFT order. The confidence

intervals set on both were comparable in size with confidence intervals set in recently

published global fits and showed no significant deviation from the Standard Model.

Future studies could involve combining several top quark measurements, e.g. this one

and a charge asymmetry measurement, to perform a combined fit. Investigation in es-

timating covariances between these separately unfolded distributions is crucial. Also,

studies into reweighting techniques for Monte Carlo samples including hadronization

and parton showering would be very valuable for future combined fits.
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Appendix A

Theory Appendix

This appendix contains additional details and mathematics in support of Ch. 2.

A.1 Canonical Quantization

Quantization is a procedure of changing a classical theory to a quantum mechanical

one. The first quantization is the change of Newtonian classical mechanics to non-

relativistic quantum mechanics where a system is described by a quantum wave func-

tion |Ψ(t)〉 and their evolution is defined by time dependent Schrödingers equation[11].

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉 (A.1)

Additionally, one introduces quantum mechanical operators that correspond to a mea-

surable quantity of the system. In Eq. (A.1) Ĥ denotes the Hamiltonian operator

which generates the time evolution but also corresponds to the total energy of the

system. Similarly there are operators for the position x̂, momentum p̂ or spin Ŝz

that, when applied to the wave function |Ψ(t)〉, give all the possible values for the

corresponding observable. A measurement will result in the observable taking on one

of these possible outcomes[284, 285]. The second quantization is the procedure that
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expands the above to many-particle systems described by Fock states and quantum

operator valued fields.[286, 287]

The quantization procedures give a nice step-by-step transition from Newtonian me-

chanics to quantum field theory and is definitely crucial for a more general description

of quantum field theory. However, the path integral narrative fits better in the context

of this thesis as it couples easier to our observables such as the cross section.

A.2 n-point time-ordered correlation functions

With Eq. (2.10), Eq. (2.11) and Eq. (2.12) we can define a 2-point correlation

function as

〈0|T φ(x1)φ(x2)|0〉 =
1

i
∆(x2 − x′1) (A.2)

If we want to generalize to n > 2 then we need to Taylor expand Eq. (2.10)[288] to

get

Z0[J ] = 1 +
∞∑
n=1

1

n!

[
−i
2~

∫
d4xd4x′J(x)∆(x− x′)J(x′)

]n
(A.3)

For n = 3 we get

〈0|T φ(x1)φ(x2)φ(x3)|0〉 = 0 (A.4)

and for n = 4

〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉 =
1

i2

[
∆(x1 − x2)∆(x3 − x4)

+∆(x1 − x3)∆(x2 − x4)

+∆(x1 − x4)∆(x2 − x3)
] (A.5)
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For the correlation functions of Eq. (A.2) and A.5 we get resp. Fig. A.1 and A.2.

Figure A.1: Feynman diagram of a Feynman propagator representing correlation
function Eq. (A.2)

Figure A.2: Feynman diagrams representing correlation function Eq. (A.5)

Lets assume the weak perturbative lagrangian of Eq. (2.17) with the quartic self-

interaction of Eq. (2.19). We can rewrite Eq. (2.18) as

Z[J ] = exp

[
− iλ

~4!

∫
d4x

(
δ

δJ(x)

)4]∫
Dφ exp

[
i/~
∫
d4x(L0 + Jφ)

]

= exp

[
− iλ

~4!

∫
d4x

(
δ

δJ(x)

)4]
Z0[J ] + ...

(A.6)

with Z0[J ] being the free scalar field functional of Eq. (2.9). If we assume λ is small

and take Z0[J ] equal to Eq. (2.10) then we can Taylor expand Eq. (A.6) i.e. create
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a perturbation series as

Z[J ] =Z0[J ]− iλ

~4!

∫
d4x

(
δ

δJ(x)

)4∣∣∣∣∣
J=0

Z0[J ]

− 1

2

(
iλ

~4!

)2 ∫
d4xd4y

(
δ

δJ(x)

)4(
δ

δJ(y)

)4∣∣∣∣∣
J=0

Z0[J ] + ...

(A.7)

with the λ- and λ2-terms known as the leading order(LO) and next-to-leading or-

der(NLO) terms. Lets recall the definition of the n-point correlation function.

〈0|T φ(x1)φ(x2)...φ(xn)|0〉 =

(
1

i

)n
δ

δJ(x1)

δ

δJ(x2)
...

δ

δJ(xn)
Z[J ]

∣∣∣
J=0

(A.8)

Let’s use Eq. (A.7) and A.8 to define a 4-point correlation function for the φ4-

interaction.

〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉 =

(
1

i

)4
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)
Z0[J ]

∣∣∣
J=0

− iλ

~4!

∫
d4x

(
1

i

)4
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)

(
δ

δJ(x)

)4

Z0[J ]

∣∣∣∣∣
J=0

− 1

2

(
iλ

~4!

)2 ∫
d4xd4y

(
1

i

)4
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)

(
δ

δJ(x)

)4(
δ

δJ(y)

)4

Z0[J ]

∣∣∣∣∣
J=0

+ ...

(A.9)

Now recall the Taylor expansion of Z0[J ] of Eq. (A.3). This means that the 4-point

correlation function of Eq. (A.9) is determined by the expansion orders of Eq. (A.3)

and Eq. (A.7). Let’s just look at the leading order term of Eq. (A.7) and up to

4-th order of Eq. (A.3). The 4-th order is needed to avoid the functional derivatives

removing the interaction terms i.e. it is the minimum number of propagators ∆(x−y)
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needed for a 4-point interaction.

〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉 = 〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉0

− iλ

~

∫
d4x∆(x1 − x)∆(x2 − x)∆(x3 − x)∆(x4 − x) + ...

(A.10)

with 〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉0 being the free scalar 4-point correlation function

of Eq. (A.5). The new term of the correlation function can be represented by a

Feynman diagram as well i.e. one with 4 propagators starting at x1, x2, x3 and x4

and 1 interaction vertex at x(Fig. A.3).

Figure A.3: A Feynman diagram representing the first interaction term of the 4-point
correlation function in Eq. (A.10)

We can rewrite the interaction term of Eq. (A.10) by using Eq. (2.11).

〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉 = 〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉0

− iλ

~

∫
d4x

∫
d4k1

(2π)4

eik1(x1−x)

k2
1 +m2 − iε

∫
d4k2

(2π)4

eik2(x2−x)

k2
2 +m2 − iε∫

d4k3

(2π)4

eik3(x3−x)

k2
3 +m2 − iε

∫
d4k4

(2π)4

eik4(x4−x)

k2
4 +m2 − iε + ...

(A.11)

There are other additional leading order interaction terms corresponding to the differ-

ent combinations of the space points x1, x2, x3, x4 and x. However, these all contain

delta functions δ that require the incoming and outgoing momenta to be the same i.e.

represent ”no scattering” events like the free scalar amplitude 〈p1, p2|p3, p4〉0. These
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terms are all represented by disconnected vacuum diagrams like the one shown in Fig.

A.4.

Figure A.4: A disconnected Feynman diagram representing a 4-point correlation func-
tion term that doesn’t contribute the interaction amplitude.

A.3 SU(2)L Gauge Symmetry

Because the SU(2)L makes a distinction between right-handed ψR and left-handed

ψL fermion fields, two different gauge transformations need to be introduced.

ψR → e−iβ(x)
YW

2 ψR (A.12)

ψL → e−iαi(x)
τi
2
−iβ(x)

YW
2 ψL (A.13)

These transformation give rise to two different covariant derivatives defined as

Dµ = ∂µ + ig1
YW
2
Bµ (A.14)

Dµ = I(∂µ + g1
YW
2
Bµ) + ig2

τ

2
Wµ. (A.15)

The gauge constants g1 and g2 define the coupling strength of the introduced inter-

actions. We impose the following transformation on the new gauge fields

W i
µ → W i

µ + αj(x)εijkW k
µ +

1

g2

∂µα
i(x) (A.16)
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Bµ → Bµ +
1

g1

∂µβ(x) (A.17)

where εijk is the Levi-civita function and originates from the generator commutation

rules [σi, σj] = 2iεijkσk. The field strength tensors for the new gauge fields W i
µν and

Bµν are defined as

W i
µν = ∂µW

i
ν − ∂νW i

µ − g2ε
ijkW j

µW
k
ν (A.18)

Bµν = ∂µBν − ∂νBµ. (A.19)

A.4 SU(3)C Gauge Symmetry

The quarks are arranged in triplets in the SU(3)C representation and are transformed

in the following way.

ψ → ψe−iαa(x)λa
2 (A.20)

These transformations give rise to a new covariant derivative

Dµ = ∂µ + ig3
λa
2
Ga
µ (A.21)

where g3 is the strong coupling constant and the 8 gauge fields Gi
µ correspond to the

gluon gauge bosons. To reinstate the symmetry the following gauge field transforma-

tion is imposed.

Ga
µ → Ga

µ + αb(x)fabcGc
µ +

1

g3

∂µα
a(x) (A.22)

Here fabc are the structure constants of the SU(3)C group which originate from the

generator commutation rules [λa, λb] = 2ifabcλc. We define the field strength tensors

for the new gauge fields as
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Ga
µν = ∂µG

a
ν − ∂aν − g3f

abcGb
µG

c
ν (A.23)

A.5 Vector Boson Masses

The starting expression is the Higgs Lagrangian 2.49 with the potential 2.50.

LH = (∂µΦ)†(∂µΦ)− V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 (A.24)

Lets impose the left-handed doublet covariant derivative of the SU(2)L⊗U(1)Y gauge

symmetry stated in equation A.15 and include the complex scalar field in unitary

gauge stated in equation 2.54. The kinetic terms become

Dµ

 0

v + h(x)

 =
(
I(∂µ +

g1

2
Bµ) + ig2

τ

2
Wµ

=

 0

∂µh(x)

+ i
g2

2
(g1Bµ − g2W

3
µ)

v + h(x)

0

+ i
g2

2
(g1Bµ − g2W

3
µ)

(A.25)

and

(
Dµ

 0

v + h(x)

)† = (0, ∂µh(x))− ig2

2
(W 1

µ + iW 2
µ)(0, v + h(x))

−i g2

2
√

2
(W 1

µ − iW 2
µ)(0, v + h(x)).

(A.26)

Note that the following definition
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τ ·W µ =

 W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ W 3
µ

 =

W 3
µ W+

µ

W−
µ W 3

µ

 (A.27)

and

If equations A.25, A.26 and A.27 are plugged into equation A.24 the Higgs-Gauge

section is redefined as

LHG =
1

2
∂µh(x)∂µh(x)− µ2

2
(v + h(x))2 − λ

4
(v + h(x))4

+
g2

2

2
(v + h(x))2W+

µ W
µ− +

1

8
(g1B

µ − g2W
3µ)(g1Bµ − g2W

3
µ)(v + h(x))2.

(A.28)

Additionally it is possible to redefine the fields as

W 3
µ

Bµ

 =

 cosθW sinθW

−sinθW cosθW


Zµ
Aµ

 (A.29)

with

sinθW =
g1

(g2
2 + g2

1)1/2
. (A.30)

This gives the final expression with the mass terms for the W and Z bosons but

leaving the photon massless.

LHG =
1

2
(∂µh)(∂µh) +

g2
2

4
(v + h)2W+

µ W
−µ +

1

8

g2
2

cos2(θW )
(v + h)2ZµZ

µ

+
µ2

2
(v + h)2 − λ

4
(v + h)4.

(A.31)
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A.6 Toy Scalar Theory

Lets illustrate the construction and application of an effective lagrangian with a scalar

theory involving a light scalar field φ with mass mL and a heavy scalar field X with

mass M . Consider the lagrangian

LUV =
1

2
[(∂µφ)2 −m2φ2 + (∂µX)2 −M2X2]− λ0

4!
φ4 − λ1

2
Mφ2X. (A.32)

Now lets consider an on-shell 2 → 2 φ-scattering process. The tree-level scattering

amplitude given Eq. (A.32) consists out of a contribution from the φ4-contact inter-

action and the s-, t- and u-channel exchange of X. See Fig. A.5 for the corresponding

Feynman diagrams. The amplitude is given by

MUV = −λ0 − λ1M
2
[ 1

s+M2
+

1

t−M2
+

1

u−M2

]
(A.33)

with the Mandelstam variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2. In

case the mass of the heavy scalar M is much bigger than the transferred momenta,

i.e. M � s, t, u, we can approximate the terms of Eq. (A.33) in the brackets with a

Taylor expansion in M−2.

MUV ≈ −λ0 − 3λ2
1 − 4λ2

1

m2
L

M2
+O(M−4) (A.34)

Note the use of the definition 4m2
L = s + t + u. Now lets say we want to construct

an effective lagrangian valid for energies much lower than the mass scale, i.e. for

E �M , and that gives a similar result. According to Eq. (2.66) we can write down

an effective lagrangian as a power expansion of operators in terms of the light field φ

with a cut-off scale Λ = M .
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LEFT (φ) = LD≤4(φ) +
1

M
LD=5(φ) +

1

M2
LD=6(φ) + ... (A.35)

Assuming the effective field theory inherits a parity symmetry φ → −φ of the UV

theory odd operator dimensions are omitted eg. D = 5. A very straightforward choice

for an effective lagrangian would then be

LEFT =
1

2
[(∂µφ)2 −m2φ2]− c1

4!
φ4 − c2

6!M2
φ6. (A.36)

Note that we only included terms of the EFT expansion up until D = 6. Here we

also introduced the two Wilson coefficients c1 and c2. If we would use this effective

lagrangian to calculate the scattering amplitude again for the same 2→ 2 φ-scattering

process we get

MEFT = −c1. (A.37)

We see that the EFT and UV theory give the same results under the condition

c1 = λ0 + 3λ12− 4λ2
1

m2
L

M2
(A.38)

Constructing the effective lagrangian is in general not this straightforward and we

only considered a very simple scalar theory for simple scattering process on tree-level.

Also, starting with a UV theory in mind is also known as the top-down approach.

It is more common to adopt a bottom-up approach, i.e. constructing the effective

lagrangian first and matching it to UV theories later. However, this simple example

shows that with one single effective field theory one can infer values of parameters of

multiple higher energy UV theories.
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Figure A.5: Tree-level Feynman diagrams contributing to the 2 → 2 φ-scattering
process.
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Appendix B

Differential Cross Sections

Appendix

This appendix contains additional fiducial differential cross section and covariance

plots of Ch. 6.

B.1 List of nuisance parameters

This section includes all the nuisance parameters included in the analysis described

in Ch. 6 and as defined by the ATLAS analysis team.

The following nuisance parameters are included in the btagging category of systematic

uncertainty:

• bTagSF DL1r extrapolation

• bTagSF DL1r extrapolation from charm

• bTagSF DL1r eigenvars B1

• bTagSF DL1r eigenvars B2
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• bTagSF DL1r eigenvars B3

• bTagSF DL1r eigenvars B4

• bTagSF DL1r eigenvars B5

• bTagSF DL1r eigenvars B6

• bTagSF DL1r eigenvars B7

• bTagSF DL1r eigenvars B8

• bTagSF DL1r eigenvars B9

• bTagSF DL1r eigenvars C1

• bTagSF DL1r eigenvars C2

• bTagSF DL1r eigenvars C3

• bTagSF DL1r eigenvars C4

• bTagSF DL1r eigenvars Light1

• bTagSF DL1r eigenvars Light2

• bTagSF DL1r eigenvars Light3

• bTagSF DL1r eigenvars Light4

The following nuisance parameters are included in the detector category of systematic

uncertainty:

• CategoryReduction JET BJES Response

• CategoryReduction JET EffectiveNP Detector1

• CategoryReduction JET EffectiveNP Detector2
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• CategoryReduction JET EffectiveNP Mixed1

• CategoryReduction JET EffectiveNP Mixed2

• CategoryReduction JET EffectiveNP Mixed3

• CategoryReduction JET EffectiveNP Modelling1

• CategoryReduction JET EffectiveNP Modelling2

• CategoryReduction JET EffectiveNP Modelling3

• CategoryReduction JET EffectiveNP Modelling4

• CategoryReduction JET EffectiveNP Statistical1

• CategoryReduction JET EffectiveNP Statistical2

• CategoryReduction JET EffectiveNP Statistical3

• CategoryReduction JET EffectiveNP Statistical4

• CategoryReduction JET EffectiveNP Statistical5

• CategoryReduction JET EffectiveNP Statistical6

• CategoryReduction JET EtaIntercalibration Modelling

• CategoryReduction JET EtaIntercalibration NonClosure 2018data

• CategoryReduction JET EtaIntercalibration NonClosure highE

• CategoryReduction JET EtaIntercalibration NonClosure negEta

• CategoryReduction JET EtaIntercalibration NonClosure posEta

• CategoryReduction JET EtaIntercalibration TotalStat

• CategoryReduction JET Flavor Composition
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• CategoryReduction JET Flavor Response

• CategoryReduction JET JER DataVsMC MC16

• CategoryReduction JET JER EffectiveNP 1

• CategoryReduction JET JER EffectiveNP 2

• CategoryReduction JET JER EffectiveNP 3

• CategoryReduction JET JER EffectiveNP 4

• CategoryReduction JET JER EffectiveNP 5

• CategoryReduction JET JER EffectiveNP 6

• CategoryReduction JET JER EffectiveNP 7restTerm

• CategoryReduction JET Pileup OffsetMu

• CategoryReduction JET Pileup OffsetNPV

• CategoryReduction JET Pileup PtTerm

• CategoryReduction JET Pileup RhoTopology

• CategoryReduction JET PunchThrough MC16

• CategoryReduction JET SingleParticle HighPt

• EG RESOLUTION ALL

• EG SCALE AF2

• EG SCALE ALL

• MET SoftTrk ResoPara

• MET SoftTrk ResoPerp
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• MET SoftTrk Scale

• MUON ID

• MUON MS

• MUON SAGITTA RESBIAS

• MUON SAGITTA RHO

• MUON SCALE

The following nuisance parameters are included in the reconstruction category of

systematic uncertainty:

• pile-up

• leptonSF EL SF Trigger

• leptonSF EL SF Reco

• leptonSF EL SF ID

• leptonSF EL SF Isol

• leptonSF MU SF Trigger STAT

• leptonSF MU SF Trigger SYST

• leptonSF MU SF ID STAT

• leptonSF MU SF ID SYST

• leptonSF MU SF ID STAT LOWPT

• leptonSF MU SF ID SYST LOWPT

• leptonSF MU SF Isol STAT
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• leptonSF MU SF Isol SYST

• leptonSF MU SF TTVA STAT

• leptonSF MU SF TTVA SYST

• jvt

The following nuisance parameters model theory uncertainties from the top quark

pair signal process and several background processes. These source of uncertainty

have not been included in the analysis described in Ch. 6 but should be in any future

analyses.

• Single top (DR vs. DS)

• W+jets + Z+jets normalisation

• Diboson

• ttV

• Fakes normalisation

• Parton-shower and hadronisation models (Pwg+Hw7)

• Matching between ME parton-shower model (aMC@NLO+Py8)

• Hard gluon radiation (Pwg+Py8 hdamp)

• top quark mass

• higher-order corrections

• initial-state radiation

• final-state radiation

• PDFs
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B.2 Fiducial Differential Cross Sections

5−10

4−10

3−10

2−10

1−10

1

10

210
 [p

b/
G

eV
]

tt T
/d

p
fid

.
σd

Truth
Data
stat. only
stat.+sys.

-1= 13 TeV, 139 fbs

RooUnfold GP

/n.d.f.=234.422758/112χ
p=3.54685e-07

0 100 200 300 400 500 600 700 800
 [GeV]tt

T
p

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

M
C

/D
at

a

(a)

6−10

5−10

4−10

3−10

2−10

1−10

1

10

 [p
b/

G
eV

]
tt T

/d
H

fid
.

σd

Truth
Data
stat. only
stat.+sys.

-1= 13 TeV, 139 fbs

RooUnfold GP

/n.d.f.=149.037349/162χ
p=9.27446e-09

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 [GeV]tt
TH

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

M
C

/D
at

a

(b)

5−10

4−10

3−10

2−10

1−10

1

10

 [p
b/

G
eV

]
tt

/d
m

fid
.

σd

Truth
Data
stat. only
stat.+sys.

-1= 13 TeV, 139 fbs

RooUnfold GP

/n.d.f.=33.417565/162χ
p=0.006508

400 600 800 1000 1200 1400 1600 1800 2000

 [GeV]ttm

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

M
C

/D
at

a

(c)

2−10

1−10

1

10

210

310

410| [
pb

]
tt

/d
|y

fid
.

σd

Truth
Data
stat. only
stat.+sys.

-1= 13 TeV, 139 fbs

RooUnfold GP

/n.d.f.=24.931300/162χ
p=0.0710458

0 0.5 1 1.5 2 2.5

|tt|y

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1

M
C

/D
at

a

(d)

Figure B.1: Measured fiducial differential cross sections with the Full Run 2 dataset
of 139 fb−1 unfolded to particle level with the Gaussian Processes method including
all statistical and systematic uncertainties. The unfolded data is compared with the
testing subsample of tt̄ events from the Powheg-Box v2+Pythia8 signal sample
described in Sec. 6.2 and includes a χ2 with corresponding p-value.
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Figure B.2: Measured fiducial differential cross sections with the Full Run 2 dataset of
139 fb−1 unfolded to particle level with the Poisson method including all statistical and
systematic uncertainties. The unfolded data is compared with the testing subsample
of tt̄ events from the Powheg-Box v2+Pythia8 signal sample described in Sec.
6.2 and includes a χ2 with corresponding p-value.
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Figure B.3: Measured fiducial differential cross sections with the Full Run 2 dataset of
139 fb−1 unfolded to particle level with the Bayes method including all statistical and
systematic uncertainties. The unfolded data is compared with the testing subsample
of tt̄ events from the Powheg-Box v2+Pythia8 signal sample described in Sec.
6.2 and includes a χ2 with corresponding p-value.
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B.3 Covariances

(a)

(b)

Figure B.4: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the ptt̄T and H tt̄

T unfolded with the Gaussian Processes
method.
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(a)

(b)

Figure B.5: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the mtt̄ and |ytt̄| unfolded with the Gaussian Processes
method.
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(a)

(b)

Figure B.6: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the ptt̄T and H tt̄

T unfolded with the Poisson method.
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(a)

(b)

Figure B.7: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the mtt̄ and |ytt̄| unfolded with the Poisson method.
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(a)

(b)

Figure B.8: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the ptt̄T and H tt̄

T unfolded with the Bayes method.
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(a)

(b)

Figure B.9: Covariance matrix estimates corresponding to the measured fiducial dif-
ferential cross sections for the mtt̄ and |ytt̄| unfolded with the Bayes method.
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[202] A. Höcker and V. Kartvelishvili, “Svd approach to data unfolding,” Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment, vol. 372, p. 469–481, Apr 1996.

[203] L. B. Lucy, “An iterative technique for the rectification of observed distribu-

tions,” Astron. J., vol. 79, pp. 745–754, 1974.

[204] W. H. Richardson, “Bayesian-based iterative method of image restoration∗,” J.

Opt. Soc. Am., vol. 62, pp. 55–59, Jan 1972.

241



[205] G. D’Agostini, “A Multidimensional unfolding method based on Bayes’ theo-

rem,” Nucl. Instrum. Meth. A, vol. 362, pp. 487–498, 1995.

[206] B. Malaescu, “An iterative, dynamically stabilized (ids) method of data unfold-

ing,” pp. 271–275, 2011. arXiv:1106.3107.
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