
Perfect Forests in Graphs and Their Extensions

Gregory Gutin1 Anders Yeo2,3
1 Department of Computer Science

Royal Holloway, University of London
Egham, United Kingdom g.gutin@rhul.ac.uk

2 Department of Mathematics and Computer Science
University of Southern Denmark, Denmark andersyeo@gmail.com

3 Department of Pure and Applied Mathematics
University of Johannesburg, South Africa

February 4, 2022

Abstract

Let G be a graph on n vertices. For i ∈ {0, 1}, a spanning forest F of G is called an
i-perfect forest if every tree in F is an induced subgraph of G and exactly i vertices of F
have even degree (including zero). An i-perfect forest of G is proper if it has no vertices
of degree zero. Scott (2001) showed that every connected graph with an even number
of vertices contains a (proper) 0-perfect forest. We prove that one can find a 0-perfect
forest with minimum number of edges in polynomial time, but it is NP-hard to obtain
a 0-perfect forest with maximum number of edges. Moreover, we show that to decide
whether G has a 0-perfect forest with at least n/2 + k edges, where k is the parameter,
is W[1]-hard. We also prove that for a prescribed edge e of G, it is NP-hard to obtain
a 0-perfect forest containing e, but one can decide if there exists a 0-perfect forest not
containing e in polynomial time. It is easy to see that every connected graph with an odd
number of vertices has a 1-perfect forest. It is not the case for proper 1-perfect forests.
We give a characterization of when a connected graph has a proper 1-perfect forest.

1

1 Introduction

In this paper all graphs are finite, undirected, have no parallel edges or loops. We use standard
terminology and notation, see e.g. [8]. The number of vertices (edges, respectively) of a graph
G is called its order (size, respectively). The degree of a vertex x in a graph G is denoted by
dG(x). A vertex x of a graph G is a cut-vertex if G− x has more connected components than
G. A maximal connected subgraph of a graph G without a cut-vertex is called a block. Thus,
every block of G is either a maximal 2-connected subgraph or a bridge (including its vertices)
or an isolated vertex, implying that a block of odd order in a connected graph of order at
least 3, must be a maximal 2-connected subgraph.

A spanning forest F of G is called a semiperfect forest if every tree of F is an induced sub-
graph of G. Let G be a graph and let f : V (G)→ {0, 1} be a function such that

∑
v∈V (G) f(v) is

even (we will call such a function even-sum). A subgraph H in G where dH(x) ≡ f(x) (mod 2)
for all x ∈ V (G), is called an f -parity subgraph. Note that the requirement that f is even-sum
is necessary as otherwise an f -parity subgraph does not exist. An f -parity subgraph H of G
is called an f -parity perfect forest if H is a semiperfect forest.

For i ∈ {0, 1} and a graph G, an f -parity perfect forest is called an i-perfect forest if
f(x) = 1 for all vertices of G for i = 0, and for all vertices of G apart from one for i = 1. An
i-perfect forest of G is proper if it has no vertices of degree zero. Note that every 0-perfect
forest (called a perfect forest in [4, 12] and a pseudo-matching in [22]) is proper. For examples
of 0-perfect and 1-perfect forests, see Figures 1 and 2.

(a): G (b): A 0-perfect forest of G

Figure 1: A graph G is shown in (a) and a 0-perfect forest of G is shown in (b) (as all degrees
are odd and the trees are induced in G).

(a): H (b): A 1-perfect forest of H (c): A proper 1-perfect forest of H

Figure 2: The graph H is shown in (a), a (non-proper) 1-perfect forest of H is shown in (b),
and a proper 1-perfect forest of H is shown in (c).

Clearly, every connected graph with a 0-perfect forest is of even order. Scott [21] proved
that somewhat surprisingly the opposite implication is also true.

Theorem 1. Every connected graph of even order contains a 0-perfect forest.

The proof of Theorem 1 in [21] is graph-theoretical and relatively long. A short proof
using basic linear algebra is obtained in [12] and two short graph-theoretical proofs are given

2

in [4]. All the proofs of Theorem 1 are constructive and yield polynomial algorithms for
finding 0-perfect forests. Intuitively, it is clear that a 0-perfect forest can provide a useful
structure in a graph and, in particular, this notion was used by Sharan and Wigderson [22] to
prove that the perfect matching problem for bipartite cubic graphs belongs to the complexity
class NC. Semiperfect forests were used in the proofs of three theorems in [15]. Gutin and
Yeo [14] studied extensions of a 0-perfect forest to directed graphs.

Since a 0-perfect forest is a generalization of a matching, it is natural to study the following
two problems for a connected graph G of even order n:

(1) Find a 0-perfect forest of G of minimum size. (Clearly, the minimum size is n/2 if and
only if G has a perfect matching.)

(2) Find a 0-perfect forest of G of maximum size. (This is of interest in matching-like
edge-decompositions of G.)

The following theorem solves the first problem.

Theorem 2. Let G be a connected graph of order n and size m, where n is even. In time
O(mn6), we can find a 0-perfect forest in G of minimum size.

Theorem 2 follows immediately from the next theorem by letting f(x) = 1 for all x ∈ V (G).
Theorem 3 shows usefulness of extending Problem 1 to f -parity perfect forests. Theorem 3 is
proved in Section 2.

Theorem 3. Let G be a connected graph of order n and size m and let f : V (G)→ {0, 1} be
an even-sum function. In time O(mn6) we can find an f -parity perfect forest F in G, such
that |E(F)| is minimal.

As the following theorem shows, the second problem cannot be solved in polynomial time
unless P=NP.

Theorem 4. It is NP-hard to find a 0-perfect forest of maximum size.

Let n = |V (G)|. Theorem 4 follows from the next result proved in Section 3. Theorem 5 is
optimal in the following sense. The problem of finding a 0-perfect forest of size at least n− 1
is polynomial-time solvable because G has a 0-perfect forest of size at least n− 1 if and only
if G has a 0-perfect tree T . Since T must be an induced subgraph of G, G has a 0-perfect
forest of size at least n− 1 if and only if G is a tree in which every vertex is of odd degree.

Theorem 5. It is NP-hard to decide whether a connected graph contains a 0-perfect forest
with at least n− 2 edges.

It is easy to show that Theorem 5 holds if we replace n− 2 by n− k for any integer k ≥ 2.
Indeed, add two new vertices x and y to a graph G as well as two edges xy and yu, where
u is any vertex in G. The resulting graph is denoted by G′. Observe that there is a 0-perfect
forest of size |V (G)| − k in G if and only if there is a 0-perfect forest of size |V (G′)| − (k+ 1)
in G′.

Since the problem of finding a 0-perfect forest of maximum size is NP-hard,
it is natural to study parameterized complexity of the problem; we will provide a short

introduction to parameterized algorithms and complexity in Section 4, for excellent introduc-
tions to the area, see e.g. [7, 9, 10]. Since n/2 is a tight lower bound and n − 1 is a tight

3

upper bound for the maximum size, it is natural to consider below-tight-upper-bound and
above-tight-lower-bound parameterizations of the problem.1

Another well-known algorithmic approach to NP-hard problems is to study approximation
algorithms for them [1, 23]. Since, in polynomial time, we can find some 0-perfect forest (and
its size is at least n/2) and no 0-perfect forest can have size larger than n − 1, we have a
simple 2-approximation algorithm for finding a 0-perfect forest of maximum size. It would
interesting to design a c-approximation algorithm for the problem with a constant c < 2.

Here is another pair of natural problems on 0-perfect forests. They both are clearly
polynomial-time solvable when restricted to perfect matchings. For a graph G of even order
and an edge e in G,

(1′) find a 0-perfect forest containing e;
(2′) find a 0-perfect forest not containing e.

For Problem 1′, we prove the following result in Section 5.

Theorem 7. The following problem is NP-hard. Given a connected graph G and an edge
e ∈ E(G), decide whether G has a 0-perfect forest containing e.

For Problem 2′, we have the next result, which follows immediately from Theorem 9, by
letting f(x) = 1 for all x in G. Theorem 9 again demonstrates usefulness of f -parity perfect
forests. It is proved in Section 6.

Theorem 8. Given a connected graph G of even order n and size m and an edge e ∈ E(G),
in time O(mn+ n2) we can decide whether G has a 0-perfect forest not containing e.

Theorem 9. Let G be a connected graph of order n and size m, let e ∈ E(G), and let
f : V (G) → {0, 1} is an an even-sum function. Then we can decide in time O(mn + n2)
whether G has an f -parity perfect forest not containing e.

Since an odd order connected graph cannot have a 0-perfect forest, it is natural to ask
whether every connected graph of odd order has a 1-perfect forest (recall that a 1-perfect
forest has only one vertex of even degree). The answer is positive and the proof is trivial.
In fact, it is not hard to show the following strengthening of this observation, which will be
useful in the proof of Theorem 10.

Proposition 1. Let x be an arbitrary vertex of a connected graph G of odd order. Then G
has a 1-perfect forest F such that dF (x) is even.

1Such parameterizations were studied for many graph-theoretical and constraint satisfaction problems, see
e.g. [2, 6, 13, 17, 18]. In other words, we can ask whether there is a 0-perfect forest of size at least n − k
(n/2 + k, respectively), where k is the parameter. Theorem 5 shows that the parameterization n − k is para-
NP-complete. In the extended abstract [11] of this paper, we asked whether the parameterization n/2 + k is
fixed-parameter tractable. The following theorem proved in Section 4 implies that this is highly unlikely as
there are a number of reasons to believe that no W[1]-hard parameterized problem is fixed-parameter tractable
(see e.g. the discussion on the Exponential Time Hypothesis in Section 4). Henceforth we will call the problem
of deciding whether a connected graph G contains a 0-perfect forest with at least n/2 + k edges the Perfect
Forest Above Perfect Matching problem.

Theorem 6. Perfect Forest Above Perfect Matching is W[1]-hard.

4

Proof. Create a new graph H by adding a new vertex y to G and adding the edge xy. By
Theorem 1, H has a 0-perfect forest, FH . Deleting the vertex y from FH , results in the desired
1-perfect forest of G where x is the only vertex of even degree.

Note that not every connected graph of odd order has a proper 1-perfect forest. For
example, no complete graph of odd order has such a forest. Thus, a more interesting question
with a potentially more useful answer is when a connected graph of odd order has a proper
1-perfect forest? This question is answered in the following characterization proved in Section
7.

Theorem 10. Let B be the set of all connected graphs where every block is a complete graph
of odd order. If G is a connected graph of odd order n ≥ 3 then G contains a proper 1-perfect
forest if and only if G 6∈ B.

Using this theorem and a linear-time algorithm for computing biconnected components in
a graph [16], in polynomial time we can decide whether a connected graph G of odd order
contains a proper 1-perfect forest. If G 6∈ B, the proof by induction of Theorem 14 yields a
polynomial-time recursive algorithm to construct a proper 1-perfect forest.

Our proof of Theorem 10 is graph-theoretical and so are the proofs of Theorem 1 in [21]
and [4]. Recall that Gutin [12] gave a linear-algebraic proof of Theorem 1. It would interesting
to see whether Theorem 10 can be proved using a linear-algebraic approach, too.

2 Proof of Theorem 3

Lemma 1. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum function.
If H is an f -parity subgraph of G of minimum size, then H is an f -parity perfect forest.

Proof. Assume that H is an f -parity subgraph with minimum possible |E(H)|. Clearly H
contains no cycles, as removing the edges of a cycle would contradict the minimality of |E(H)|.
Assume that some tree T of H is not an induced tree in G. Let xy be an edge of G, not
belonging to T but with {x, y} ⊆ V (T). Remove the unique (x, y)-path in T from H and add
the edge xy to H. This decreases the number of edges in H without changing the parity of
the degree of any vertex, contradicting the minimality of |E(H)|. Therefore H is indeed an
f -parity perfect forest.

Lemma 1 implies the following:

Theorem 11. Let G be a connected graph and let f : V (G)→ {0, 1} be an even-sum function.
Then there exists an f -parity perfect forest F in G.

Proof. Let x1, x2, . . . , xk, y1, y2, . . . , yk be the vertices in G with f -value equal to one. If k = 0,
then the edgeless spanning subgraph of G is an f -parity perfect forest in G. Thus, we may
assume that k ≥ 1. Let Pi be any (xi, yi)-path in G for all i = 1, 2, . . . , k, which exists as G is
connected. Let H be the spanning subgraph of G such that an edge e ∈ E(G) belongs to H
if and only if e belongs to an odd number of paths in P1, P2, . . . , Pk. Let x ∈ V (G). Observe
that dH(x) is odd if and only if x is incident with an odd number of edges in ∪ki=1E(Pi), which
is if and only if x is the endpoint of one of the paths i.e. f(x) = 1. Thus, H is an f -parity
subgraph of G. Lemma 1 now implies that if H is the f -parity subgraph of G of minimum
size, then H is an f -parity perfect forest.

5

Note that Theorem 11 generalizes Theorem 1: set f(x) = 1 for all x ∈ V (G). Thus,
Theorem 11 provides an alternative proof of Theorem 1.

Theorem 3. Let G be a connected graph of order n and size m and let f : V (G)→ {0, 1} be
an even-sum function. In time O(mn6) we can find an f -parity perfect forest F in G, such
that |E(F)| is minimal.

Proof. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum function. Let
V (G) = {v1, v2, . . . , vn}. We will construct a weigthed auxillary graph H as follows. Let
V (H) = ∪ni=1Xi, where for every i ∈ [n], |Xi| ∈ {n− 1, n} and |Xi| ≡ f(vi) (mod 2). For all
1 ≤ i < j ≤ n and all u ∈ Xi and v ∈ Xj , we let uv ∈ E(H) if and only if vivj ∈ E(G).
Finally add a matching Mi = {ei1, ei2, . . . , eib|Xi|/2c} to Xi for all i ∈ [n]. Let the weight of all

the edges within each Xi (i.e. the edges in Mi) be zero and let all edges between different
Xi’s have weight one.

We first show that H contains a perfect matching. As
∑

v∈V (G) f(v) is even we may
assume that {v1, v2, . . . , v2k} are the vertices of G with an f -value of one for some integer k
with 0 ≤ k ≤ n/2. Assume that yi ∈ Xi is the unique vertex in Xi that is not saturated by
Mi for all i ∈ [2k] and start of by letting M be the matching containing all Mi’s.

Let Pi = vivpi1
vpi2
· · · vpili−1

vi+k be any path in G from vi to vi+k where i ∈ [k]. It is

not difficult to see that there exists an M -augmenting path, Qi, in H starting in yi and

ending in yi+k and containing exactly the edges e
pi1
i , e

pi2
i , ..., e

pili−1

i from M . Also observe
that Q1, Q2, . . . , Qk are vertex disjoint, which implies that we can use all Qi to increase the
matching M thereby obtaining a perfect matching in H.

We will now show the following claim. The size of a multiset S is the total number of
elements in S, where if an element e ∈ S is of multiplicity r, then e is counted r times.

Claim A: (a)If there exists a perfect matching in H with weight w∗ then there exists a
multiset of edges E∗ in G of size w∗, such that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G).

(b) Conversely if E∗ is a multiset of edges in G of size w∗, such that dE∗(x) ≡ f(x) (mod 2)
for all x ∈ V (G), then there exists a perfect matching in H with weight at most w∗.

Proof of Claim A: First assume that we have a multiset of edges E∗ in G of size w∗ ≤Wmax,
such that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G). Let M∗ = ∅. For every vivj ∈ E∗ we will
add edges between Xi and Xj to M∗ as follows: if vivj is of multiplicity r in E∗, then we add an
edge between Xi and Xj to M∗ if and only if r is odd. Since we will add 2ki+f(vi) edges that
are incident to Xi for each i ∈ [n] (where ki is some integer), we can add these edges such that
their endvertices are V (ei1)∪V (ei2)∪· · ·∪V (eiki) if f(vi) = 0 and {yi}∪V (ei1)∪V (ei2)∪· · ·∪V (eiki)

if f(vi) = 1 for each i ∈ [n], where V (eij) denotes the pair of endvertices of eij . We can now

extend M∗ to a perfect matching by adding Mi \ {ei1, ei2, . . . , eiki} for each i ∈ [n]. This gives
us a perfect matching in H with weight at most |E∗| as desired.

Conversely assume that there exists a perfect matching M∗ in H with weight w∗. Initially
let E∗ = ∅. For every xy ∈M∗ with weight one (i.e. x ∈ Xi and y ∈ Xj for some i 6= j), add
vivj to E∗. This gives us the desired multiset E∗, thereby completing the proof of Claim A.

We have proved that H has a perfect matching. Let Mmin be a minimum weight per-
fect matching in H which can be determined in polynomial time using Edmonds’ blossom
algorithm as a subroutine, see e.g. [19]. Let Wmin be the weight of Mmin. By Claim A(a),
using Mmin, in polynomial time we can find a multiset of edges E∗ in G of size Wmin , such

6

that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G). By Claim A(b), since Wmin is the minimum
weight of a perfect matching in H, Wmin is minimum size of a multiset of edges E∗∗, such
that dE∗∗(x) ≡ f(x) (mod 2) for all x ∈ V (G).

Note that no edge is in E∗ more than once, since if some edge, e, appears twice, then we
can delete two copies of e from E∗, thereby contradicting the minimality of |E∗|. Let F be
the spanning subgraph of G with edge set E∗. By Lemma 1 we note that F is an f -parity
perfect forest.

It remains to estimate the time complexity of finding F . Note that the time complexity
is dominated by the time to find a minimum weight perfect matching in H. Since the run-
ning time of Edmonds’ blossom algorithm is O(|E(H)| · |V (H)|2) [19], |V (H)| = O(n2) and
|E(H)| = O(mn2), we conclude that the time complexity is O(mn6).

3 Proof of Theorem 5

We will reduce from the not-all-equal 3-SAT problem, abbreviated to NAE-3-SAT, which
is the problem of determining whether an instance of 3-SAT has a truth assignment to its
variables such that every clause contains both a true and a false literal. If this is the case we
say that the instance is NAE-satisfied. NAE-3-SAT is known to be NP-hard to solve [20]. Let
I be an instance of NAE-3-SAT with clauses C1, C2, . . . , Cm and variables v1, v2, . . . , vn. We
will construct a graph G such that G contains a 0-perfect forest with at least n − 2 edges if
and only if I is NAE-satisfied.

We first create a gadget Hi for each i = 1, 2, . . . , n as follows. Let

V (Hi) = {xi1, zi1, yi1, xi2, zi2, yi2}

and add all possible edges to Hi, except xi1y
i
1 and xi2y

i
2. For all i = 1, 2, . . . , n − 1 we then

add all edges between {yi1, yi2} and {xi+1
1 , xi+1

2 }. Now add a pendent edge to each vertex in
V (Hi) \ {x11, x12, yn1 , yn2 } for all i = 1, 2, . . . , n. See Figure 3 for an illustration of this part of
G, which is denoted by Q. We will now complete our construction of G.

x11 z11 y11

x12 z12 y12

x21 z21 y21

x22 z22 y22

xn1 zn1 yn1

xn2 zn2 yn2

Figure 3: The gadgets H1, H2, . . . ,Hn and the edges connecting these. The resulting graph
is denoted by Q.

Let V (G) = V (Q) ∪ {c1, c2, . . . , cm} ∪ {c′1, c′2, . . . , c′m}. For each j = 1, 2, . . . ,m we will add
an edge from both cj and c′j to yi2 if and only if vi is a literal in the clause Cj . We will

furthermore add an edge from both cj and c′j to yi1 if and only vi is a literal in the clause Cj .
This completes the construction of G. See Figure 4 depicting G for I = (v1, v2, v3).

7

x11 z11 y11

x12 z12 y12

x21 z21 y21

x22 z22 y22

x31 z31 y31

x32 z32 y32

c1

c′1

Figure 4: The graph G if I = (v1, v2, v3).

We will now show that G contains a 0-perfect forest of size at least n − 2 if and only if
I is NAE-satisfied. First assume that I is NAE-satisfied and consider a truth assignment τ
NAE-satisfying I. We will construct two vertex-disjoint induced trees, T1 and T2, in G, such
that all degrees in the trees Ti are odd for i ∈ [2]. If vi is true in τ then add the vertices in
{xi1, zi1, yi1} to T1 and the vertices in {xi2, zi2, yi2} to T2. Conversely, if vi is false in τ then add
the vertices in {xi1, zi1, yi1} to T2 and the vertices in {xi2, zi2, yi2} to T1. We furthermore add
all vertices of degree one to the same tree as their neighbour. Note that the vertices we have
added so far to Ti (for i ∈ [2]) induce a tree in G, where every vertex has odd degree in Ti.

Finally as I is NAE-satisfied we note for j ∈ [m], each of cj and c′j has one edge into one
of the Ti’s and two edges into the other Ti. Add each of cj and c′j to the Ti with which it
is only connected by one edge. We note that after this operation the vertices we have added
so far to Ti (for i ∈ [2]) still induces a tree in G where every vertex has odd degree in Ti.
After doing the above operation for all j ∈ [m] we have obtained the desired trees T1 and T2
whose union form a 0-perfect forest in G with |V (G)| − 2 edges. See Figure 5 for the found
T1 and T2 if the instance of NAE-3-SAT is I = (v1, v2, v3) and the truth assignment is to set
all variables equal to true.

x11 z11 y11

x12 z12 y12

x21 z21 y21

x22 z22 y22

x31 z31 y31

x32 z32 y32

c1

c′1

Figure 5: The trees T1 and T2 if I = (v1, v2, v3) and v1 = v2 = v3 = true.

Conversely, assume that G contains a 0-perfect forest with at least |V (G)| − 2 edges. As
G is not a tree this implies that G contain two vertex-disjoint trees T1 and T2 such that each
Ti is an induced tree in G of order at least 2, all degrees in each Ti are odd, and V (T1) and
V (T2) partition V (G). We will now prove the following claims where Claim C completes the
proof of the theorem.

8

Claim A: For each i ∈ [n] one of the following cases hold.

A.1: {xi1, zi1, yi1} ∈ V (T1) and {xi2, zi2, yi2} ∈ V (T2).

A.2: {xi1, zi2, yi1} ∈ V (T1) and {xi2, zi1, yi2} ∈ V (T2).

A.3: {xi1, zi1, yi1} ∈ V (T2) and {xi2, zi2, yi2} ∈ V (T1).

A.4: {xi1, zi2, yi1} ∈ V (T2) and {xi2, zi1, yi2} ∈ V (T1).

Proof of Claim A: As the only two non-edges in Hi are xi1y
i
1 and xi2y

i
2 we note that there

exist a 4-cycle on every set of 4 vertices in Hi. Therefore |V (Tj) ∩ V (Hi)| ≥ 4 is not possible
for any j ∈ [2] and i ∈ [n]. So |V (Tj) ∩ V (Hi)| = 3 for j ∈ [2] and i ∈ [n].

As there is no 3-cycle in G[V (Tj)] for j ∈ [2] we note that xi1 and yi1 must belong to one
of the trees, say Tj , and xi2 and yi2 must belong to the other tree, T3−j . So if xi1 ∈ V (T1)
then yi1 ∈ V (T1) and {xi2, yi2} ⊆ V (T2) and we are in case A.1 or A.2. On the other hand
if xi1 ∈ V (T2) then yi1 ∈ V (T2) and {xi2, yi2} ⊆ V (T1) and we are in case A.3 or A.4. This
completes the proof of Claim A.

Claim B: For i = 1, 2, G[V (Q) ∩ V (Ti)] is a tree where all vertices have odd degree.

Proof of Claim B: Any vertex in G with degree one must belong to the same tree, Tj , as
its neighbour, as both T1 and T2 have order at least two. By Claim A, we therefore note that
G[V (Q) ∩ V (Ti)] is a path of length 3n with a pendent edge attached to each non-endpoint
of the path. This implies that G[V (Q) ∩ V (Ti)] is a tree where all vertices have odd degree
(as all degrees are either 1 or 3). This completes the proof of Claim B.

Claim C: The instance I is NAE-satisfiable.

Proof of Claim C: Assume that the vertex cj belongs to T1. First suppose that |NG(cj) ∩
V (T1)| = 0. In this case cj has no neighbours in T1, a contradiction, as T1 is a tree with order
at least two. So |NG(cj)∩V (T1)| ≥ 1. Assume that |NG(cj)∩V (T1)| ≥ 2. As T1 is an induced
tree in G, cj must have at least two neighbours, say x and y, in T1. However, by Claim B,
there exists a (x, y)-path in T1 using only vertices from V (Q), which implies that there is a
cycle in T1, a contradiction. Therefore |NG(cj) ∩ V (T1)| = 1.

Analogously, we can show that |NG(cj)∩V (T2)| = 1, whenever cj ∈ V (T2). So each clause
Cj (j ∈ [m]) has either exactly one literal that is false (if cj ∈ V (T1)) or exactly one literal
that is true (if cj ∈ V (T2)). This implies that I is NAE-satisfiable, which completes the proof
of Claim C and the theorem.

4 Basics of parameterized complexity and Proof of Theorem
6

In this section, we first provide necessary basic notions of parameterized complexity and then
prove Theorem 6.

4.1 Basics of parameterized complexity

An instance of a parameterized problem Π is a pair (I, k) where I is the main part and k
is the parameter; the latter is usually a non-negative integer. A parameterized problem is

9

fixed-parameter tractable (FPT) if there exists a computable function f such that instances
(I, k) can be solved in time O(f(k)|I|c) where |I| denotes the size of I and c is an absolute
constant. The class of all fixed-parameter tractable decision problems is called FPT.

Consider two parameterized problems Π and Π′. We say that Π has a parameterized
reduction to Π′ if there are functions k 7→ k′ and k 7→ k′′ from N to N and a function
(I, k) 7→ (I ′, k′) such that

1. (I, k) 7→ (I ′, k′) is computable in k′′(|I|+ k)O(1) time, and

2. (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π′.

While FPT is a parameterized complexity analog of P in classic complexity theory, there
are many parameterized hardness classes, forming a nested sequence of which FPT is the
first member: FPT⊆ W[1]⊆ W[2] ⊆ It is well known that if the Exponential Time
Hypothesis holds then FPT 6= W[1].2 Hence, W[1] is generally viewed as a parameterized
intractability class, which is an analog of NP in classical complexity. Consider the following
two parameterized problems. In the Independent Set problem parameterized by k, given
a graph G and a natural number k, we are to decide whether G has an independent set with
k vertices. In the Dominating Set problem parameterized by k, given a graph G = (V,E)
and a natural number k, we are to decide whether G has a set S of k vertices such that every
vertex in V \ S is adjacent to some vertex in S. A parameterized problem Π is in W[1] (W[2],
respectively) if there is parameterized reduction from Π to Independent Set (Dominating
Set, respectively). Thus, every W[1]-hard problem Π1 (W[2]-hard problem Π2, respectively)
is not ‘easier’ than Independent Set (Dominating Set, respectively), i.e., Independent
Set (Dominating Set, respectively) has a parameterized reduction to Π1 (Π2, respectively).

For more information on parameterized algorithms and complexity, see recent books [7, 9].

4.2 Proof of Theorem 6

Definition 1. Let k be an integer and G a graph of order n− 2. We now define G′, HG
1 , HG

2

and HG
3 as follows. (See Figure 6 for illustration.)

G′: G′ is obtained from G by adding to it two new isolated vertices. Let V (G′) = {v1, v2, . . . , vn}
such that v1 and vk are the two isolated vertices added to G in order to create G′.

HG
1 : Let G′i be a copy of G′, for i ∈ {1, 2}, where V (G′i) = {vi1, vi2, . . . , vin} and vij is the copy

of vj in G′. Let HG
1 be defined such that V (HG

1) = V (G′1) ∪ V (G′2) and NHG
1

[v1j] =

NHG
1

[v2j] = NG′1
[vj] ∪NG′2

[vj] for all j ∈ [n].

HG
2 : Create HG

2 from HG
1 as follows. For for all a, b ∈ [n] where v1av

2
b 6∈ E(HG

1) add the
vertex wa,b and the edges v1awa,b and v2bwa,b to HG

1 .

HG
3 : Recall that v1 and vk are isolated vertices in G′. Let HG

3 be the graph obtained from HG
2

by adding a pendent edge to all vertices in HG
2 except v11 and v2k. Denote these pendent

edges by EG
P .

2The Exponential Time Hypothesis is a conjecture that there is no algorithm solving 3-CNF Satisfiability
in time 2o(n), where n is the number of variables.

10

In the construction of HG
2 we could also add wa,b and the edges v1awa,b and v2bwa,b to HG

1

for all a, b ∈ [n] (without the condition that v1av
2
b 6∈ E(HG

1)) and the following theorem would
still hold. We, however, chose to only add wa,b when v1av

2
b 6∈ E(HG

1) as this decreases the
number of vertices and edges in HG

2 and HG
3 and also makes it easier to depict these graphs.

G G′

v2

v5

v3

v6

v1

v4

HG
1

v12

v15

v13

v16

v11

v14

v22

v25

v23

v26

v21

v24
HG

2 (where the thin
edges are subdivided)

v12

v15

v13

v16

v11

v14

v22

v25

v23

v26

v21

v24 HG
3 (where the thin

edges are subdivided,
and pendent edges are

added to the subdivision vertices)

v12

v13

v15

v16

v11

v14

v22

v25

v23

v26

v21

v24

Figure 6: An illustration of G, G′, HG
1 , HG

2 and HG
3 when G is a 4-cycle; k = 4.

Theorem 6 follows from the fact that Independent Set is W[1]-complete [7, 9] and that
the mapping of G with parameter k − 2 to HG

3 with parameter 3k − 3 is a parameterized
reduction from Independent Set to Perfect Forest Above Perfect Matching. The
proof of equivalence between (a) and (d) in the following theorem and the definition of HG

3

show that the mapping is indeed a parameterized reduction.
See furthermore Figure 7 for an example that illustrates the proof of Theorem 12.

Theorem 12. The following statements are equivalent.

(a) G contains an independent set of size k − 2.

(b) G′ contains an independent set of size k.

(c) HG
2 contains an induced (v11, v

2
k)-path in HG

2 of length 3k − 2.

(d) HG
3 contains a 0-perfect forest with at least

|V (HG
3 (a,b))|
2 + 3k − 3 edges.

Proof. Clearly (a) and (b) are equivalent as v1 and vk are isolated vertices in G′ and G =
G′ − {v1, vk}.

We will now show that (b) and (c) are equivalent. First assume that there is an inde-
pendent set of size k in G′. Without loss of generality we may assume that {v1, v2, . . . , vk}
is an independent set in G′ as any maximum independent set in G′ contains v1 and vk. The
following is an induced (v11, v

2
k)-path of length 3k − 2 in HG

2 .

v11 v
2
1 w2,1 v

1
2 v

2
2 w3,2 v

1
3 v

2
3 w4,3 · · · v2k−1 wk,k−1 v

1
k v

2
k

11

Conversely assume that P = p1p2p3 . . . p3k−2 is an induced (v11, v
2
k)-path in HG

2 of length
3k − 2. Let R be a maximum subset of V (P) ∩ V (HG

1) such that each pair of vertices in R
are non-adjacent in P and p1 ∈ R. As R ⊆ V (HG

1) we may name the vertices in R as follows
R = {vb1a1 , v

b1
a2 , . . . , v

br
ar}, where r = |R|. Let R∗ = {va1 , va2 , . . . , var}. As P is an induced path

and no adjacent vertices in P belong to R we note that R is an independent set in HG
2 and

therefore a1, a2, . . . , ar are r distinct indices and R∗ is an independent set in G′ of size r.
Let R = {pq1 , pq2 , . . . , pqr}, where 1 = q1 < q2 < · · · < qr. Note that q2 ≤ 4, as q2 = 3

if p3 ∈ V (HG
1) and q2 = 4 otherwise. Analogously q3 ≤ 7, q4 ≤ 10, etc.. This implies that

qi ≤ 3i − 2 for all i ∈ [r] and therefore r ≥ k (as qk ≤ 3k − 2). This implies that R∗ is an
independent set in G of size at least k, which implies that (b) and (c) are equivalent.

We will now show that (c) and (d) are equivalent. Assume that F is a 0-perfect forest in

HG
3 with at least

|V (HG
3)|

2 + 3k − 3 edges. Clearly all the pendent edges, EG
P , added to HG

2 in

order to create HG
3 belong to F . Note that |EG

P | =
|V (HG

3)|
2 − 1. Furthermore F − EG

P is an
induced forest in HG

2 where all vertices have even degree except v11 and v2k which both have
odd degree (as they are the only vertices not adjacent to a pendent edge from EG

P). This
implies that F − EG

P is an induced (v11, v
2
k)-path, P , and a number of isolated vertices. As

|E(F)| ≥ |V (HG
3)|

2 + 3k − 3 we note that |E(P)| = |E(F)| − |EQ
P | ≥ 3k − 2. Therefore if (d)

holds then (c) holds.
Conversely, assume that (c) holds and there exists an induced (v11, v

2
k)-path, P ′, in HG

2 of

length at least 3k − 2. Adding all pendent edges EQ
P to P ′ gives us a 0-perfect forest with

|V (HG
3)|

2 −1+ |E(P ′)| ≥ |V (HG
3)|

2 +3k−3 edges. Therefore if (c) holds then (d) holds. Therefore
(a), (b), (c) and (d) either all hold of none of them holds.

G from Figure 6; the dark vertices
form an independent set

An induced path of
length 10 in HG

2 .

w4,3

w2,1

w3,2

v12

v15

v13

v16

v11

v14

v22

v25

v23

v26

v21

v24
A 0-perfect forest in HG

3 , where
every vertex of the type wi,j not

shown is added to a pendent edge.

w4,3

w2,1

w3,2

v12

v15

v13

v16

v11

v14

v22

v25

v23

v26

v21

v24

Figure 7: An illustration of an independent set of size two in G, an induced (v11, v
2
4)-path in

HG
2 and a 0-perfect forest in HG

3 . Note that not all vertices in HG
3 are depicted and every

vertex of the type wi,j which is not in the picture is added to a pendent edge from EG
P .

However, these edges are, for the clarity of the picture, not shown.

12

5 Proof of Theorem 7

To prove Theorem 7, we will use the following result. The proof of Theorem 13 follows the
same approach as the proof that it is NP-hard to determine whether there is an induced cycle
of odd length through a prescribed vertex, given in [3] by Bienstock.

Theorem 13. It is NP-hard to determine whether a graph contains an induced cycle through
two given edges.

Proof. We will reduce from the well-known NP-hard 3-SAT problem. Let I be an instance of
3-SAT with variables v1, v2, . . . , vn and clauses C1, C2, . . . , Cm. We will construct a graph G
with two edges e1 and e2 such that G contains an induced cycle, C, with e1, e2 ∈ E(C) if and
only if I is satisfiable.

We first create a gadgetHi for each i = 1, 2, . . . , n as follows. Let V (Hi) = {xi1, wi
1, w

i
1, y

i
1, x

i
2, w

i
2, w

i
2, y

i
2}

and let E(Hi) be defined as follows (see Figure 8): E(Hi) = {xijwi
j , x

i
jw

i
j , w

i
jy

i
j , w

i
jy

i
j | j =

1, 2} ∪ {wi
1w

i
2, w

i
1w

i
2}.

xi1 yi1

wi
1

wi
1

xi2 yi2

wi
2

wi
2

xi1 yi1

wi
1

wi
1

xi2 yi2

wi
2

wi
2

Figure 8: Two different drawings of Hi.

Let Q1 be the graph with vertex set V (Q1) = ∪ni=1V (Hi) and the following edge set, where
e1 = x11x

1
2.

E(Q1) = {e1} ∪ {yi1xi+1
1 , yi2x

i+1
2 | i = 1, 2, . . . , n− 1} ∪ (∪ni=1E(Hi))

This is the part of the graph G representing the variables of I. We now create a gadget Ri for
each i = 1, 2, . . . ,m that will represent the clauses of I. Let V (Ri) = {ai, ci1, ci2, ci3, bi} and let
E(Ri) contain all edges between {ai, bi} and {ci1, ci2, ci3} (i.e. Ri is isomorphic to K2,3). Let
Q2 be the graph with vertex set V (Q2) = ∪mi=1V (Ri) and the following edge set.

E(Q1) = {biai+1 | i = 1, 2, . . . ,m− 1} ∪ (∪mi=1E(Ri))

We now createG by letting V (G) = V (Q1)∪V (Q2) and E(G) = E(Q1)∪E(Q2)∪{bmyn1 , yn2 a1}.
Recall that e1 = x11x

1
2 and let e2 = bmyn1 . Se Figure 9 for an illustration of G. We will now

show that G contains an induced cycle, C, with e1, e2 ∈ E(C) if and only if I is satisfiable.
First assume that I is satisfiable and we are given a truth assignment to all the variables

that satisfies I. If vi = true then we add the edges in the path xi1w
i
1y

i
1 and the path xi2w

i
2y

i
2

to our solution S. If vi = false then we add the edges in the path xi1w
i
1y

i
1 and the path

xi2w
i
2y

i
2 to S. We then add all edges of the form yi1x

i+1
1 and yi2x

i+1
2 to S, for i ∈ [n − 1]. We

13

x11 y11

w1
1

w1
1

x12 y12

w1
2

w1
2

x21 y21

w2
1

w2
1

x22 y22

w2
2

w2
2

x31 y31

w3
1

w3
1

x32 y32

w3
2

w3
2

x41 y41

w4
1

w4
1

x42 y42

w4
2

w4
2

e1

e2

a1

c11 c12 c13

b1 a2

c21 c22 c23

b2

Figure 9: The graph G if I = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3 ∨ v4).

then add the edges e1, e2, y
n
2 a

1 to S. For all j ∈ [m] we let kj ∈ [3] be defined such that the

kj ’th literal in Cj is satisfied, and we then add the edges in the path ajcjkjb
j to S. Finally we

add the edge bjaj+1 for j ∈ [m − 1] to S. We have now obtained an induced cycle, S, in G
containing both e1 and e2 (see Figure 10 for an illustration).

x11 y11

w1
1

w1
1

x12 y12

w1
2

w1
2

x21 y21

w2
1

w2
1

x22 y22

w2
2

w2
2

x31 y31

w3
1

w3
1

x32 y32

w3
2

w3
2

x41 y41

w4
1

w4
1

x42 y42

w4
2

w4
2

e1

e2

a1

c11 c12 c13

b1 a2

c21 c22 c23

b2

Figure 10: An induced cycle in G, containing e1 and e2, when considering the solution v1 =
v3 = v4 = true and v2 = false for I = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3 ∨ v4) (as literal v3 is true in
clause 1 and literal v2 is true in clause 2).

Conversely assume that there exists an induced cycle, C, in G, containing e1 and e2. We
will show that I must be satisfiable. We first prove Claim A below.

Claim A: One of the following two cases occur for all i ∈ [n].

Case 1: xi1w
i
1y

i
1 and xi2w

i
2y

i
2 are subpaths in C, or

Case 2: xi1w
i
1y

i
1 and xi2w

i
2y

i
2 are subpaths in C.

Proof of Claim A: The proof is by induction on i. Let i ∈ [n] be arbitrary and assume
that the above holds for all smaller values of i (the base case i = 0 holds vacuously). Let
P1 = C[x11, x

i
1] (if i = 1 V (P1) = {x11}) and let P2 = C[x12, x

i
2]. Note that, by induction, P1

14

and P2 both exist and they are both paths passing through H1, H2, . . . ,Hi−1. Note that wi
1

or wi
1 is a neighbour of xi1 on C, due to the existence of P1.

First consider the case when xi1w
i
1 ∈ E(C). If xi2w

i
2 ∈ E(C), then wi

1w
i
2 ∈ E(C) (as

otherwise wi
1w

i
2 would be a chord in C, a contradiction to C being induced), a contradiction

to e2 ∈ E(C) (as in this case V (C) = V (P1) ∪ V (P2) ∪ {wi
1, w

i
2}). Therefore xi2w

i
2 6∈ E(C),

which implies that xi2w
i
2 ∈ E(C).

For the sake of contradiction, assume that wi
1y

i
1 6∈ E(C), which implies that wi

1c
j
k ∈ E(C),

for some k ∈ [3] and j ∈ [m]. However we must now have cjkw
j
2 ∈ E(C) (as otherwise cjkw

j
2

would be a chord in C), a contradiction to e2 ∈ E(C) (as in this case V (C) = V (P1)∪V (P2)∪
{wi

1, w
i
2, c

j
k})). Therefore, wi

1y
i
1 ∈ E(C). Analogously, we can show that wi

2y
i
2 ∈ E(C). This

implies that we are in Case 1 above, whenever xi1w
i
1 ∈ E(C).

If xi1w
i
1 6∈ E(C) then we must have xi1w

i
1 ∈ E(C). In this case we can analogously to

above show that we are in Case 2, which completes the proof of Claim A.

We now return to the proof of the theorem. By Claim A we note that both C[x11, y
n
1] and

C[x12, y
n
2] pass through H1, H2, . . . ,Hn in that order. For each i we also note that V (C) ∩

{wi
1, w

i
2, w

i
1, w

i
2} is either {wi

1, w
i
2} or {wi

1, w
i
2}, as if we are in Case 1 in Claim A the vertices

wi
1, w

i
2 cannot belong to C (as C would then have a chord) and if we are in Case 2 then wi

1, w
i
2

cannot belong to C.
Clearly bmyn1 (= e2) and yn2 a

1 are both edges of C and C[a1, bm] is a path passing through
R1, R2, . . . , Rm in that order. So for each j ∈ [m] there exists exactly one kj ∈ [3] such that

cjkj ∈ V (C). If we let vi be true if and only if neither wi
1 or wi

2 belong to C, then we note that
the kj ’th literal in the j’th clause must be satisfied. So I is satisfiable, which completes the
proof.

Theorem 7. The following problem is NP-hard. Given a connected graph G and an edge
e ∈ E(G), decide whether G has a 0-perfect forest containing e.

Proof. Let G be a graph and let e1 = u1v1 and e2 = u2v2 be distinct edges of G. We will
construct an auxillary graph H with an edge e′2 ∈ E(H), such that H contains a 0-perfect
forest containing e′2 if and only if G contains an induced cycle, C, such that e1, e2 ∈ E(C).
This will complete the proof by Theorem 13.

Let H be obtained from G by adding a pendent edge to each vertex in V (G) \ {u1, v1}
and deleting the edge e1. Let EP denote the set of all the pendent edges we just added to G.
Let e′2 = u2v2 and note that e′2 ∈ E(H). This completes the construction of H.

Assume that there exists an induced cycle, C, in G such that e1, e2 ∈ E(C). Let E′ =
EP ∪E(C) \ e1. Note that the edges in E′ induce a 0-perfect forest in H containing the edge
e′2.

Conversely assume that there is a 0-perfect forest, F , in H containing e′2. Clearly F
contains all edges in Ep as each pendent edge is incident with a vertex of degree one. Let Q
be the subgraph of H induced by the edges in E(F) \ EP . Note that Q is a perfect forest
where u1 and v1 have odd degree and all other vertices have even degree. As Q is a perfect
forest all components are induced trees, and as u1 and v1 are the only vertices of odd degree,
this implies that Q is an induced path between u1 and v1. Adding the edge e1 to Q gives us
an induced cycle in G containing both e1 and e2 (as e′2 ∈ E(F)).

Therefore we have proven that H contains a 0-perfect forest containing e′2 if and only if
G contains an induced cycle, C, such that e1, e2 ∈ E(C), as desired.

15

6 Proof of Theorem 9

Let G be a connected graph of order n and size m and let e = uv be an edge of G. Let
f : V (G) → {0, 1} be an even-sum function. Our polynomial-time algorithm A will follow
from the three claims proved below. At the end of the proof, we will briefly discuss how the
claims are used in the algorithm and estimate its time complexity.

Claim A: Suppose that G contains a cut-vertex x, which may or may not belong to {u, v}.
Let C be the component in G− x intersecting {u, v} (there is exactly one such component as
uv ∈ E(G)) and let G′ = G[V (C) ∪ {x}]. Let f ′(w) = f(w) for all w ∈ V (C) and define
f ′(x) ∈ {0, 1} such that

∑
z∈V (G′) f

′(z) is even. Then G has an f -parity perfect forest not

containing e if and only if G′ has an f ′-parity perfect forest not containing e.

Proof of Claim A: Let G contain a cut-vertex x and let C1, C2, . . . , Ck be the components
in G − x. Without loss of generality, assume that C1 is the component intersecting {u, v}.
Let Gi = G[V (Ci) ∪ {x}] for all i ∈ [k].

For each i ∈ [k] we will let fi : V (Gi) → {0, 1} be defined such that fi(w) = f(w) for all
w ∈ V (Ci) and

∑
z∈V (Gi)

fi(z) is even (this defines the value of fi(x)). We will show that G
has an f -parity perfect forest not containing e if and only if G1 has an f1-parity perfect forest
not containing e, which will complete the proof of Claim A.

First assume that G1 has an f1-parity perfect forest F1 not containing e. By Theorem 11
there exists an fi-parity perfect forest, Fi, in Gi for all i = 2, 3, . . . , k. Now F1 ∪F2 ∪ · · · ∪Fk

is an f -parity perfect forest of G not containing e, as desired.
Conversely assume that G has an f -parity perfect forest F not containing e. If we restrict

F to V (G1), then we obtain an f1-parity perfect forest of G1 not containing e.

Claim B: If G is 2-connected and f(u) = 0 or f(v) = 0 then G has an f -parity perfect
forest not containing e.

Proof of Claim B: Assume without loss of generality that f(u) = 0. As G is 2-connected
G − u is connected and

∑
z∈V (G−u) f(z) is even. Therefore, by Theorem 11, there exists an

f -parity perfect forest in G − u, which is also an f -parity perfect forest in G not containing
the edge e.

Claim C: If G is 2-connected and f(u) = f(v) = 1 then G has a f -parity perfect forest if
and only if

∑
z∈V (G) f(z) ≥ 4.

Proof of Claim C: Let S =
∑

z∈V (G) f(z). As f is even-sum, S is even. Since f(u) =
f(v) = 1, we have S ≥ 2. If S = 2 and F is an f -parity perfect forest in G, then u and v
must be leaves of the same tree in F (as they are the only vertices with an f -value of one).
Therefore e ∈ E(F), as otherwise the tree containing u and v is not induced in G. So, if S = 2
then G has no f -parity perfect forest F in G with e 6∈ E(F).

We may therefore assume that S ≥ 4 and let w ∈ V (G) \ {u, v} have f(w) = 1. As G is 2-
connected there exists a (u, v)-path, P , in G with w ∈ V (P). (To see it, consider two internally
disjoint paths from w to w′ where w′ is a new vertex added to G such that N(w′) = {u, v}.)
We now create a spanning tree T in G, such that E(P) ⊆ E(T) and dT (w) = 2, as follows.
Initially let T = P . While V (T) 6= V (G) let q ∈ V (G) \ V (T) be arbitrary such that q has
an edge into V (T) \ {w} (which exists as G is 2-connected). Add q and an edge from q into
V (T) \ {w} to T . When V (T) becomes equal to V (G) we have our desired tree T .

Let T1 and T2 be the two trees in T−w (there are exactly two trees in T−w as dT (w) = 2).

16

Let S1 =
∑

z∈V (T1)
f(z) and let S2 =

∑
z∈V (T2)

f(z). As f(w) = 1 and V (T1) ∪ V (T2) =
V (G)\{w}, we note that S1 +S2 is odd. If Si is odd then add w to Ti (i ∈ [2]), using the edge
from w to V (Ti) in T . This results in two trees, say T ′1 and T ′2, where

∑
z∈V (T ′i)

f(z) is even

for i ∈ [2]. Furthermore, as w ∈ V (P) and E(P) ⊆ E(T), we note that u and v do not belong
to the same tree T ′i . By Theorem 11 there exists an f -parity perfect forest, F ′i , of G[V (T ′i)]
for i ∈ [2] (as T ′i is a spanning tree in G[V (T ′i)], G[V (T ′i)] is connected). Now F ′1 ∪ F ′2 is an
f -parity perfect forest of G not containing e. This completes the proof of Claim C.

It is easy to see that the following algorithm A is correct. Keep reducing the graph (see
Claim A) as long as there exists a cut-vertex and when there are no more cut-vertices then
the answer is ”no” if the endpoints of e have an f -value of one and all other vertices have an
f -value of zero and ”yes”, otherwise (see Claims B and C).

It remains to estimate the running time of A. Observe that the running time of A is
dominated by the time for finding cut-vertices in all iterations of the algorithm. We can find
a cut-vertex in G, if it exists, in time O(n + m) [5] and thus the total time to obtain all
cut-vertices is O(mn+ n2). Thus, the running time of A is O(mn+ n2).

See Figure 11 for an illustration of the algorithm.

1 0

1

1

01

0

e

G

Reduction due
to Claim A
⇒

0

1

01

0

e

G′

Figure 11: An illustration of the algorithm given in Theorem 9, where the values on the nodes
indicate the f -values. As in the final graph the endpoints of e have an f -value of one and all
other vertices have an f -value of zero there is no f -parity perfect forest in G′ avoiding the
edge e and therefore not in G either.

7 Proof of Theorem 10

Theorem 10 follows from Theorem 14 and Lemma 3 proved in this section. To prove Theorem
14, we will use the following:

Lemma 2. Let G be a connected graph of even order and let xy ∈ E(G) such that G−{x, y}
is connected. If G− x ∈ B and G− y ∈ B then N [x] = N [y].

Proof. Let G be a connected graph of even order and let xy ∈ E(G) be chosen such that
G − {x, y} is connected. Let Gy = G − x and let Gx = G − y and assume that Gy ∈ B and
Gx ∈ B. Let Cx

1 , C
x
2 , . . . , C

x
lx

be the blocks of Gx and without loss of generality assume that
x ∈ V (Cx

1). Analogously, let Cy
1 , C

y
2 , . . . C

y
ly

be the blocks of Gy and without loss of generality

assume that y ∈ V (Cy
1).

17

Claim A: NGx [x] = V (Cx
1) and Cx

1 is a complete graph of odd order and Cx
1 −x is a block

in G − {x, y}. Analogously, NGx [y] = V (Cy
1) and Cy

1 is a complete graph of odd order and
Cy
1 − y is a block in G− {x, y}.

Proof of Claim A: For the sake of contradiction assume that u1, u2 ∈ NGx(x) but u1 and
u2 belong to different blocks of Gx. In this case there is a cut-vertex in Gx separating u1 and
u2, which must be x (as u1xu2 is a path in Gx). However x does not separate u1 and u2 as
G− {x, y} is connected. This contradiction implies that all vertices in NGx(x) belong to the
same block of Gx.

Therefore, NGx [x] ⊆ V (Cx
1) as x is not a cut-vertex in Gx (as G−{x, y} is connected) and

hence x only belongs to one block of Gx. As Gx ∈ B we note that Cx
1 is a complete graph of

odd order. As |V (Cx
1)| ≥ 3 (as all blocks contain at least two vertices, and |V (Cx

1)| is odd)
and x is not a cut-vertex in Gx we note that Cx

1 − x is a block in G− {x, y}. This completes
the proof of Claim A.

We now return to the proof of the lemma. By Claim A we note that Cy
1 − y is a block in

G − {x, y} which furthermore is a complete graph of even order. If Cx
1 − x and Cy

1 − y are
different blocks in G− {x, y}, then Cy

1 − y is a block of even order in Gx, a contradiction to
Gx ∈ B. So, Cx

1 − x and Cy
1 − y are the same block in G− {x, y}. By Claim A, we have the

following chain of equalities, which completes the proof of the lemma.

NG[x] = V (Cx
1 − x) ∪ {x, y} = V (Cy

1 − y) ∪ {x, y} = NG[y]

Theorem 14. Every connected graph, G 6∈ B, of odd order n ≥ 3 contains a proper 1-perfect
forest.

Proof. The proof is by induction over odd integers n ≥ 3. For n = 3, we have G ∼= P3, the
path of order 3, which is a proper 1-perfect forest. Now we assume that G is a connected
graph of odd order n ≥ 5 such that G 6∈ B. Let us consider two cases.

Case 1: G is not 2-connected.

Assume that G has a cut-vertex x such that G − x has a component C1 of even order.
Let G1 = G[V (C1)∪ {x}] and let G2 = G− V (C1). Note that both G1 and G2 are connected
graphs of odd order. Furthermore the set of blocks of G is exactly the union of the blocks in
G1 and G2. As G 6∈ B (and therefore some block in G is not a complete graph of odd order)
we note that either G1 6∈ B or G2 6∈ B (or both).

Let i ∈ {1, 2} be defined such that Gi 6∈ B and let j = 3−i. By induction hypothesis, there
exists a proper 1-perfect forest Fi in Gi. By Theorem 1 there also exists a (not necessarily
proper) 1-perfect forest, Fj , in Gj , where x is the vertex of even degree in Fj . We now note
that Fi ∪ Fj is a proper 1-perfect forest of G, where the only vertex of even degree is the
vertex of even degree in Fi. Thus, we may assume that G has no cut-vertex x such that some
component in G− x is of even order.

Now assume that G contains a cut-vertex x. By the previous assumption, all components
in G − x are of odd order, and let C1 be a component of G − x. Let G1 = G[V (C1) ∪ {x}]
and let G2 = G− V (C1). Note that both G1 and G2 are connected graphs of even order. By
Theorem 1 there exists a 0-perfect forest F1 in G1 and a 0-perfect forest F2 in G2. Note that
F1 ∪ F2 is now a proper 1-perfect forest of G, where the only vertex of even degree is x.

18

Case 2: G is 2-connected.

Definition A As G 6∈ B and G has odd order, we note that G is not a complete graph.
Therefore there exists an induced path p1p2p3 in G (that is, p1p2, p2p3 ∈ E(G) and p1p3 6∈
E(G)). Let C1, C2, . . . , Cl be the components in G− {p2, p3}, such that p1 ∈ C1.

Assume first that |V (C1)| is odd. By Theorem 1 there exists a 1-perfect forest F1 in C1,
such that p1 (see Definition A) is the vertex of even degree in F1. Let G′ = G − V (C1) and
note that G′ is connected and of even order. Therefore, by Theorem 1, there exists a 0-perfect
forest, F ′, in G′.

If dF1(p1) > 0 then F1 ∪ F ′ is a proper 1-perfect forest in G. Now consider the case when
dF1(p1) = 0. As N(p1) ∩ V (G′) = {p2} (as p1p2p3 is an induced path in G) we note that
adding the edge p1p2 to F1 ∪ F ′ gives us a proper 1-perfect forest in G (where p2 is the only
vertex of even degree). Thus, in the rest of the proof, we may assume that |V (C1)| is even.

Let G′ = G[V (C1)∪{p2, p3}] and note that G is connected and of even order. Furthermore
G′ − {p2, p3} is connected (as G′ − {p2, p3} = C1). As p1 is adjacent to p2 but not to p3 we
note that NG′ [p2] 6= NG′ [p3]. By Lemma 2 we must therefore have G′−p2 6∈ B or G′−p3 6∈ B.
Let i ∈ {2, 3} be chosen such that G′ − pi 6∈ B, which by induction hypothesis implies that
there is a proper 1-perfect forest F1 in G′ − pi.

As G is 2-connected, we note that p5−i is not a cut-vertex of G. Therefore every component
in G−{p2, p3} has an edge to pi, which implies that G−V (F1) is connected and of even order
(as both G and F1 are of odd order). By Theorem 1 there exists a 0-perfect forest, F2, in
G− V (F1). Now F1 ∪ F2 is a proper 1-perfect forest in G. This completes the proof.

A semiperfect forest F of G is called a 2-perfect forest if exactly two vertices of F have
even degree.

Lemma 3. If G is a connected graph of odd order and G ∈ B then G does not contain a
proper 1-perfect forest.

Proof. Let G be a connected graph of odd order and let G ∈ B. We will prove that G contains
no proper 1-perfect forest. We will prove this using induction on the number of blocks in G.

If G contains only one block then G is a complete graph of odd order. In this case, any
forest where all trees are induced, can only contain trees of order 2 (and 1 if we allow isolated
vertices). This implies that G cannot contain a proper 1-perfect forest as G has odd order.
This completes the base case.

Now assume that G contains at least two blocks, which implies that G contains a cut-
vertex, x. Let C1, C2, . . . , Cl be the components in G − x and let Gi = G[V (Ci) ∪ {x}] for
i ∈ [l]. For the sake of contradiction suppose that G contains a proper 1-perfect forest F and
let Fi denote F restricted to Gi for i ∈ [l]. As F is a proper 1-perfect forest we note that
dF (x) ≥ 1. Without loss of generality, assume that dF1(x) ≥ 1. This implies that F1 is a
proper i-forest in G1 where i ∈ {0, 1, 2}. However as |V (G1)| is odd (as G ∈ B) this implies
that F1 is a proper 1-perfect forest in G1. This is a contradiction to G1 ∈ B (as G ∈ B).

Acknowledgements We are thankful to Siddharth Gupta for discussions of Perfect For-
est Above Perfect Matching. Gutin’s research was supported by the Leverhulme Trust
under grant number RPG-2018-161. Yeo’s research was supported by the Danish Research
Fundation under grant number DFF 7014-00037B.

19

References

[1] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1999.

[2] Jørgen Bang-Jensen, Eduard Eiben, Gregory Z. Gutin, Magnus Wahlström, and An-
ders Yeo. Component order connectivity in directed graphs. In Yixin Cao and Marcin
Pilipczuk, editors, 15th International Symposium on Parameterized and Exact Compu-
tation, IPEC 2020, volume 180 of LIPIcs, pages 2:1–2:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[3] Daniel Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Mathematics, 90(1):85–92, 1991.

[4] Yair Caro, Josef Lauri, and Christina Zarb. Two short proofs of the perfect forest
theorem. Theory and Applications of Graphs, 4(1), 2017. article 4.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, MIT
press, 2009.

[6] Robert Crowston, Mark Jones, and Matthias Mnich. Max-cut parameterized above the
Edwards-Erdős bound. Algorithmica, 72(3):734–757, 2015.

[7] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[8] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathe-
matics. Springer, 2012.

[9] R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

[10] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[11] Gregory Gutin and Anders Yeo. Perfect forests in graphs and their extensions. In Filippo
Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2021, volume 202 of LIPIcs, pages 54:1–54:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[12] Gregory Z. Gutin. Note on perfect forests. J. Graph Theory, 82(3):233–235, 2016.

[13] Gregory Z. Gutin and Anders Yeo. Constraint satisfaction problems parameterized above
or below tight bounds: A survey. In Hans L. Bodlaender, Rod Downey, Fedor V. Fomin,
and Dániel Marx, editors, The Multivariate Algorithmic Revolution and Beyond - Essays
Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of
Lecture Notes in Computer Science, pages 257–286. Springer, 2012.

[14] Gregory Z. Gutin and Anders Yeo. Note on perfect forests in digraphs. J. Graph Theory,
85(2):372–377, 2017.

20

[15] Gregory Z. Gutin and Anders Yeo. Lower bounds for maximum weighted cut. CoRR,
abs/2104.05536, 2021.

[16] John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation
[H] (algorithm 447). Communications of ACM, 16(6):372–378, 1973.

[17] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and
Saket Saurabh. Faster parameterized algorithms using linear programming. ACM Trans-
actions on Algorithms, 11(2):15:1–15:31, 2014.

[18] Daniel Lokshtanov, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Balanced
judicious bipartition is fixed-parameter tractable. SIAM J. Discrete Mathematics,
33(4):1878–1911, 2019.

[19] László Lovász and Michael D. Plummer. Matching Theory. Akadémiai Kiadó, 1986.

[20] Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton,
Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3,
1978, San Diego, California, USA, pages 216–226. ACM, 1978.

[21] Alex D. Scott. On induced subgraphs with all degrees odd. Graphs & Combinatorics,
17(3):539–553, 2001.

[22] Roded Sharan and Avi Wigderson. A new NC algorithm for perfect matching in bipartite
cubic graphs. In Fourth Israel Symposium on Theory of Computing and Systems, ISTCS
1996, Jerusalem, Israel, June 10-12, 1996, Proceedings, pages 202–207. IEEE Computer
Society, 1996.

[23] Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, Incorpo-
rated, 2010.

21

