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ABSTRACT

Role mining seeks to compute a set of roles R, a user-role authoriza-
tion relation UA and a permission-role authorization relation PA,
given a user-permission authorization relation UPA, and is there-
fore a core problem in the specification of role-based authorization
policies. Role mining is known to be hard in general and exact
solutions are often impossible to obtain, so there exists an extensive
literature on variants of the role mining problem that seek to find
approximate solutions and algorithms that use heuristics to find
reasonable solutions efficiently.

In this paper, we introduce the Generalized Noise Role Mining
problem (GNRM) - a generalization of the MINNoISE ROLE MINING
problem — which we believe has considerable practical relevance.
In particular, GNRM can produce “security-aware” or “availability-
aware” solutions. Extending work of Fomin et al., we show that
GNRM is fixed parameter tractable, with parameter r + k, where
r is the number of roles in the solution and k is the number of
discrepancies between UPA and the relation defined by the compo-
sition of UA and PA. We also introduce a further variant of GNRM
in which the accuracy of the solution is defined by the number of
users and permissions that are affected, rather than the number of
individual discrepancies k. We show that this variant of GNRM is
also fixed-parameter tractable.

We then report the results of our experimental work using
general-purpose solvers to solve instances of GNRM. Our key find-
ings are that security-aware role mining seems to be easier than
availability-aware role mining, based on reasonable assumptions
about UPA, and security-aware role mining introduces a similar
number of discrepancies to MinNoise role mining.
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1 INTRODUCTION

Role-based access control (RBAC) [16] is a mature, standardized [2]
and widely deployed means of enforcing authorization require-
ments in a multi-user computer system.

Authorization policies, in effect, specify which interactions are
authorized between users of and resources provided by a computer
system. Such policies are used by the system’s access control mech-
anism to control interactions between users and resources. RBAC
policies authorize users for roles and roles for resources (usually
referred to as “permissions” in the context of RBAC). RBAC can
significantly reduce the administrative burden of specifying and
maintaining authorization policies, provided the set of roles is small
compared to the number of users and permissions.

The problem of identifying a suitable set of roles for an RBAC
system has been studied extensively over the last 25 years. Role
engineering is a top-down approach that seeks to identify roles
by decomposing and analyzing business processes [15]. This ap-
proach does not generally scale well and requires substantial human
effort [12]. Role mining, the bottom-up approach, attempts to dis-
cover a set of roles from a given authorization policy that associates
users directly with permissions. More formally, the RoLE MINING
PRrROBLEM is defined as follows:

RoLE MINING PROBLEM (RMP)

Input: A set of users U, a set of permissions P, a user-permission
assignment relation UPA C U X P, and a natural number r.
Goal: Find a set R of at most 7 roles, a user-role relation UA C
UXR, arole-permission assignment relation PA C RXP such that
(u,p) € UPA if and only if there is p € R such that (u, p) € UA
and (p,p) € PA.

The value of r, for solutions that are of practical use, will be small
compared to the sizes of U and P. However, it may be impossible
to find a solution to RMP in which r is sufficiently small. Hence,
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approximate solutions are often sought, in which r is small and the
composition of UA and PA is close, in some suitable sense, to UPA.

A substantial literature now exists on role mining. The problem
is known to be hard in general and usually impossible to solve
exactly (assuming the number of roles must be small relative to the
number of users), so many approximate and heuristic techniques
have been developed (see the survey paper of Mitra et al. [12]).

Recent work by Fomin et al. [3] has shown that a particlar,
well-known variant of the role mining problem is fixed-parameter
tractable (FPT). Informally, this variant is NP-hard, like many role
mining problems, so any exact algorithm to solve the problem is
unlikely to be polynomial in the size of the problem’s input, unless
P = NP. However, there exists an algorithm (an FPT algorithm)
whose running time is exponential in some of the input parameters,
but polynomial in the others. Thus, this algorithm may well be
effective if the relevant parameters are small in instances of the
problem that arise in practice.

Informally, the problem considered by Fomin et al. takes a rela-
tion UPA C U X P and natural numbers r and k as input. The goal is
to find a set of roles R of cardinality less than or equal to 7, and rela-
tions UA C U X R and PA C R X P such that [UPAA (UAo PA)| < k
(where UA o PA denotes the composition of relations UA and PA and
A denotes symmetric set difference). In other words, the composi-
tion of UA and PA has to be similar (as defined by k) to UPA. The
assumption is that k and r will be small parameters. This problem
has been studied by the RBAC community and is usually known as
the MiNNoIsE RoLE MINING PROBLEM (MNRP) [12].

One potential problem with MNRP is that it doesn’t distinguish
between (a) an element that is in UPA but not in UA o PA (which
means some user is no longer authorized for some permission), and
(b) an element that is in UA o PA and not in UPA (which means
that some user is now incorrectly authorized for some permission).
We believe that in certain situations it will be important to insist
that no additional authorizations are introduced by role mining
(what we will refer to as security-aware role mining), while in other
situations we may require that no authorizations are lost by role
mining (availability-aware role mining).

In this paper, we introduce the GENNoise RoLE MINING (GNRM),
of which MNRP is a special case. Moreover, SECURITY-AWARE ROLE
MINING and AVAILABILITY-AWARE ROLE MINING are also special
cases. We extend the results of Fomin et al. by proving that GNRM
is also FPT with parameter k + r.

Our other theoretical contribution is to introduce a further vari-
ant of GNRM which may be useful in situations where no solution
exists for small values of r and k. Specifically, we replace k with
parameters k’ and k”’ and require that UA o PA is identical to UPA
except in at most k” rows and k”” columns.

The paper also includes results from our experimental work in
which we use general-purpose solvers to solve instances of GNRM.
These results show that it is often impossible to find solutions to
GNRM (unless k and r are relatively large, in which case running
times increase dramatically). The results also show that security-
aware role mining is more efficient than availability-aware and
MinNoise role mining, assuming UPA is relatively sparse. Moreover,
security-aware role mining has a similar degree of accuracy to
MinNoise role mining.

The remainder of this section contains essential background
material and defines GNRM.

1.1 Parameterized complexity

An instance of a parameterized problem II is a pair (I, x) where
I is the main part and « is the parameter; the latter is usually a
non-negative integer. A parameterized problem is fixed-parameter
tractable (FPT) if there exists a computable function f such that any
instance (I, k) can be solved in time O(f(x)|I|¢), where |I| denotes
the size of I and c is an absolute constant. An algorithm to solve
the problem with this running time is called an FPT algorithm. The
class of all fixed-parameter tractable decision problems is called FPT.
The function f(x) may grow exponentially as x increases, but the
running time may be acceptable if « is small for problem instances
that are of practical interest. We adopt the usual convention of
omitting the polynomial factor in O(f (x)|I|¢) and write O* (f (x))
instead.

1.2 Matrix decomposition and role mining

A Boolean matrix is a matrix in which all entries are either 0 or 1.
Let V and A denote the usual logical operators on the set {0, 1}. We
extend these operators to Boolean matrices in the natural way [8]:

(1) the sum A V B of Boolean matrices A and B is computed as
usual with addition replaced by V;

(2) the product A A B of Boolean matrices A and B is computed
as usual with multiplication replaced by A and addition by
V. Thus, if C = A A B then

n
Cij = \/ aip N bpj,
p=1
where n is the number of columns in A and the number of
rows in B.

Henceforth all matrices are Boolean, unless specified otherwise.

Any binary relation X C Y XZ may be represented by a matrix X
with rows indexed by Y and columns indexed by Z, where X;; = 1
iff (i, j) € X. Using matrices we can reformulate the RoLE MINING
ProBLEM (RMP) as follows. Given a matrix UPA and an integer
r, find a matrix UA with r columns and a matrix PA with r rows
such that UPA = UA A PA. Thus, role mining may be regarded as a
matrix decomposition problem.

1.3 Generalized Noise Role Mining

As previously noted, there is often no solution to RMP if 7 is small. In
such cases, it is helpful to consider an extension of RMP called No1se
ROLE MINING [1, 3, 4, 10, 17], where the input includes a natural
number k and our aim is to find a matrix UA with r columns and
a matrix UA with r rows such that dig(UPA, UA A PA) < k, where
diy(UPA,UA A PA) is the number of entries in which UPA and
UA A PA differ (i.e., the Hamming distance between them).

Noist RoLE MINING could be seen as a rather crude approach to
the problem of decomposing UPA, as it doesn’t distinguish between
zeroes in UPA being replaced with ones in UA A PA and ones
being replaced with zeroes. In the first case, a user is assigned to a
permission that they didn’t previously have — a potential security
problem. In the second case, a user no longer has a permission
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that they had been assigned, meaning the user may not be able to
perform some of their responsibilities — an availability problem.

Thus, it will be appropriate in many cases to find UA and PA
such that either security or availability, as specified by UPA is
preserved. Informally, a refinement of No1se ROLE MINING, then,
would be to define AVAILABILITY-PRESERVING ROLE MINING, where
we require UPA < UA APA, in the sense that every entry in UPA is
less than or equal to the corresponding entry in UA A PA. In other
words, every permission authorized by UPA is also authorized by
UA A PA. Similarly, we could define SECURITY-PRESERVING ROLE
MINING, where we require UPA > UA A PA.

An even more fine-grained problem - the topic of this paper - is
GENERALIZED NoOISE ROoLE MINING (GNRM), of which Noise RoLE
MINING, AVAILABILITY-PRESERVING ROLE MINING and SECURITY-
PRESERVING ROLE MINING are all special cases. In GNRM we specify
at the user level whether the decomposition into UA and PA is
security-preserving, availability-preserving, neither, or both.

We now introduce some notation to enable us to express GNRM
formally. For a positive integer ¢, let [t] = {1,2,...,t}. Let A and
B be m X n Boolean matrices and F be an m X n label matrix with
entries f;; € {T, L}. The matrix F is used to define a generalized
distance metric between A and B. For any (i,j) € [m] X [n] the
F-distance from entry a;; to entry b;; of matrices A and B is

fi; = L and a;; # by,
SdF(aij’bij):{oo ij an alj;é ij

lajj —bjj| otherwise

In other words, if we are not allowed to change a;; in order to obtain
bij (symbol 1) and a;j # b;; then the F-distance from aj; to b;j is
0. Otherwise, it is just |a;; — bjj.

We define sdr(A,B) = Y77, Z}'?:l sdr(ajj, bij). Thus, the dis-
tance from A to B is finite if and only if for every (i, j) € [m] X [n]
such that a;; # b;; we have f(a;j) = T.

We now define GENERALIZED NOISE ROLE MINING as a parame-
terized problem.

GENERALIZED NOISE ROLE MINING (GNRM)

Input: An m X n user-permission assignment matrix UPA, a
label matrix F, and nonnegative integers k and r.

Parameter: k + r

Goal: Is there an m X r user-role assignment matrix UA,
an r X n role-permission assignment matrix PA such that
sdp(UPA, UA A PA) < k? If the answer is yes, then return such
matrices UA and PA.

Note that GNRM is parameterized by the sum k + r. This is
because Noise ROLE MINING parameterized separately by either
k or r is intractable: in particular, for k = 0 we have EXACT ROLE
MiNING which is NP-hard [5]; and for r = 1, No1se ROLE MINING
is NP-hard [1, 4].

Note also that GNRM reduces to:

e Noise RoLe MINING if f;; = T for all (i, j) € [m] X [n];

¢ AVAILABILITY-PRESERVING ROLE MINING if f;; = T if and
only if UPA;; = 0; and

e SECURITY-PRESERVING ROLE MINING if f;; = T if and only if
UPAij =1.
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The rest of the paper is organized in the following way. In Sec-
tions 2 and 3 we describe our FPT algorithms for solving GNRM
and related problems. We describe and discuss our experimental
results in Section 4, and conclude the paper with a summary of our
contributions and ideas for future work.

2 AN FPT ALGORITHM FOR GNRM

Fomin et al. [3] proved that No1sE RoLE MINING parameterized by
k + r is FPT. We will extend this result to the GNRM by reducing
it to the GENERALIZED P-MATRIX APPROXIMATION problem. The
reduction is similar to the one used in [3]. However, Fomin et al. [3]
solved No1se ROLE MINING as a decision problem (i.e. a problem
where the aim is to decide whether the given instance is a yes- or
no-instance), whereas we solve GENERALIZED NOISE ROLE MINING
as a search problem (i.e. if the given instance is a yes-instance then
a solution is also returned).

We first define GENERALIZED P-MATRIX APPROXIMATION and
prove that it is FPT. We then explain how this problem is used to
establish that GNRM is FPT.

2.1 Generalized P-matrix approximation

Let P be a p X g matrix (sometimes called a pattern matrix). We say
that an m X n matrix B is a P-matrix if there is a partition {Ij, . . . Ip}
of [m] and a partition {1, ..., Jq} of [n] such that for every i € [p],
j € [ql,s € I, t € Jj, we have bs; = p;;. Note that, by definition,
every set in the partitions of [m] and [n] is non-empty. (Thus,p < m
and q < n.) In other words, B is a P-matrix if P can be obtained
from B by first permuting rows and columns, then partitioning the
resulting matrix into blocks such that in each block L all entries
are of the same value v(L) and finally replacing every block L by
one entry of value v(L).

1
1
both P-matrices: permuting columns 2 and 3 in each matrix, then
partitioning (into blocks of equal size for Q1, and between rows 1
and 2 and columns 2 and 3 for Q) and “contracting” gives us P.

For a example, let P = [ (1)] Then Qq and Q3 below are

1 0 1 0 0

Q2= |1
1

Q1 =

_ e e
==
_m e
==

GENERALIZED P-MATRIX APPROXIMATION

Input: An m X n matrix A, a label matrix F, a p X ¢ matrix P,
and a nonnegative integer k.

Goal: Is there an m X n P-matrix B such that sdg(A,B) < k? If
the answer is yes, then return such a matrix B.

Very informally, this problem asks whether there exists a matrix
B that is (almost) the same as A and contains the rows and columns
of P, and, if so, returns B. Fomin et al. [3] used the special case of
GENERALIZED P-MATRIX APPROXIMATION, where f;; = T for every
(i,j) € [m]x[n].Itis called the P-MATRIX APPROXIMATION problem.
We will use the following two results by Fomin et al. [3].
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Observation 2.1. Let P be a p X q matrix. Then, every P-matrix B
has at most p pairwise distinct rows and at most q pairwise distinct
columns.

Proposition 2.2. Given an m X n matrix A and a p X q matrixP,
there is an algorithm that runs in time 2P 10829184 (nm)O(1) gnq
correctly outputs whether A is a P-matrix.

If A has at most p — 1 rows or at most ¢ — 1 columns, then there
is no m X n matrix B that is a P-matrix and sdp(A, B) < k. In that
case, the instance is a no-instance. Let us now assume that A has
at least p rows and at least g columns.

The next lemma was proved in [3] for P-MATRIX APPROXIMATION.
Note that replacing T in f;; = T by L for some entries f;; will
only reduce the set of yes-instances of GENERALIZED P-MATRIX
APrPROXIMATION. Thus, the next lemma follows from its special case
in [3].

Lemma 2.3. IfA has at least p + k + 1 pairwise distinct rows or at
least q + k + 1 pairwise distinct columns, then output that (A,F, P, k)
is a no-instance of GENERALIZED P-MATRIX APPROXIMATION.

This lemma implies the following reduction/preprocessing rule.

Reduction Rule 1. Let A be a matrix. If A has at least p+k+1 pair-
wise distinct rows or at least q + k + 1 pairwise distinct columns, then
output that (A, F, P, k) is a no-instance of GENERALIZED P-MATRIX
APPROXIMATION.

To simplify an instance (A, F, P, k) of GENERALIZED P-MATRIX
APPROXIMATION, we can apply the following reduction rule exhaus-
tively. If a row a; is deleted by the reduction rule, the label matrix F
does not change for the other rows. This means that for the reduced
instance with matrix A’, the label matrix is F restricted to the rows
of A’ie. {aj,...,an}\{a;}. For simplicity of presentation, the label
matrix for A’ will still be denoted by F.

We define a second reduction rule that is used to delete superflu-
ous identical rows and columns.

Reduction Rule 2. IfA has at least max{p, k} + 2 identical rows,
then delete one of these identical rows. Similarly, if A has at least
max{q, k} + 2 identical columns, then delete one of these identical
columns.

We say two instances of GENERALIZED P-MATRIX APPROXIMA-
TION are equivalent if they are both either yes-instances or no-
instances. Fomin et al. proved that any application of Reduction
Rule 2 to an instance of P-MATRIX APPROXIMATION returns an equiv-
alent instance of the problem [3, Claim 7]. It is easy to verify that
the arguments in their proof of Claim 7 also apply to GENERALIZED
P-MATRIX APPROXIMATION.

Applications of the two reductions rules described above either
determine that the input instance is a no-instance or produce an
equivalent instance with the following properties.

Lemma2.4. Let(A,F,P, k) be an instance of GENERALIZED P-MATRIX
APPROXIMATION. Then, there exists a polynomial-time algorithm that
either returns “no-instance” or transforms (A, F, P, k) into an equiv-
alent instance (A’,F, P, k) of GENERALIZED P-MATRIX APPROXIMA-
TION. Moreover the following properties are satisfied.

(1) The matrix A’ has at least p rows, at least q columns, at most
(max{p, k}+1)(p+k) rows and at most (max{p, k} +1)(p+k)
columns.

(2) Given a P-matrixB’ such that sdp(A’,B’) < k, in polynomial
time we can compute a P-matrix B such that sdr(A,B) < k.

Proor. Let (A, P, k) be an input instance of GENERALIZED P-
MATRIX APPROXIMATION. As m > p and n > g, if A has at most
p — 1 rows or has at most ¢ — 1 columns, then there is nom X n
P-matrix B such that sdg(A, B) < k. In such a case, we return “no-
instance.” Next, we apply Reduction Rule 1 to check the number of
pairwise distinct rows as well as the number of pairwise distinct
columns in A. If A has p + k + 1 pairwise distinct rows or g + k + 1
pairwise distinct columns, then we return “no-instance”. After that,
we apply Reduction Rule 2 exhaustively and let A’ be the obtained
matrix. We also obtain a stack S which contains all deleted rows
and columns.

We return (A’,F,P, k) as the output instance. Clearly, A’ has
at most p + k pairwise distinct rows and at most g + k pairwise
distinct columns. Moreover, A’ has at least p rows and at least g
columns. Also, A’ can have at most max{p, k} + 1 pairwise identical
rows and at most max{q, k} + 1 pairwise identical columns. This
means that A’ has at most (max{p,k} + 1)(p + k) rows and at
most (max{q, k} + 1)(q + k) columns. This completes the proof that
property (1) holds.

Suppose that B’ is a P-matrix such that sdp(A’,B’) < k. Note
that at any intermediate stage, when a row r (a column c, respec-
tively) was deleted from A, there were at least (max{p, k} + 1)
additional rows identical to r (at least (max{q, k} + 1) additional
columns identical to c, respectively). Hence, in A’, if a row r or a
column ¢ was deleted by Reduction Rule 2, then there are exactly
max{p, k} + 1 rows identical to r (exactly max{g, k} + 1 columns
identical to c, respectively). Since sdp(A’, B”) < k, at most k entries
with label T identical to r (c, respectively) were modified in B’.
Thus, B’ must have at least one row identical to r (at least one
column identical to c, respectively) if r (c, respectively) was deleted
by Reduction Rule 2. Therefore, the deleted rows (columns, respec-
tively) are identical to some rows (columns, respectively) which are
the same in in A’ and B’. Thus, reinstating the deleted rows and
columns using stack S, we obtain matrices A and B such that B is a
P-matrix and sdp(A,B) < k. O

Theorem 2.5. GENERALIZED P-MATRIX APPROXIMATION can
be solved in time 2P1°8P*9189 (nm)OW) (max{p,k} + 1)(p +
k)(max{q, k} + 1)(q + k).

Proor. Let (A, F, P, k) be an instance of GENERALIZED P-MATRIX
APPROXIMATION. First, we invoke the polynomial-time algorithm
of Lemma 2.4 to either determine that the input instance is a
no-instance or generate an instance (A’,F, P, k) satisfying prop-
erties (1) and (2). Recall that the first property says that A” has at
most (max({p, k} +1)(p + k) rows, and at most (max{q, k} +1)(q+k)
columns. This means that A’ has at most (max{p,k} + 1)(p +
k)(max{gq, k}+1)(g+k) entries. We then consider all possible sets of
at most k entries. For every entry of such a set, if the label of an en-
try is T, we will modify it. This results in a modified matrix B’. We
then invoke Proposition 2.2 to check whether B’ is a P-matrix or not.
This checking takes 27 108791084 () O() _time. If B/ is a P-matrix,
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it is a solution to GENERALIZED P-MATRIX APPROXIMATION for the
instance (A’, F,B’, k) as sdp(A’, B’) < k (since we changed at most
k entries in A’). Then, we make use of property (2) to construct B
satisfying sdp(A, B) < k and return B as a solution of GENERALIZED
P-MATRIX APPROXIMATION for the instance (A, F, B, k). Recall that
this step takes polynomial time. Hence, the overall algorithm takes
2p 108 P*+a198 4 (nm) OO (max{p, k}+1) (p+k) (max{q, k}+1) (g+k))*
time. O

2.2 GNRMis FPT

We now explain how the algorithm for GENERALIZED P-MATRIX
APPROXIMATION is used to solve GNRM and thus show it is FPT. The
basic strategy is to consider all possible pairs of matrices whose
product P could provide the basis for a solution to GNRM. The
number of such pairs is bounded above by a function of r. For
each such P, we determine whether the GENERALIZED P-MATRIX
APPROXIMATION instance (UPA,F, P, k) has a solution, in which
case we can then compute a solution to the GNRM instance.

Lemma 2.6. Let P be a p X q matrix such thatP = X A'Y for a
pxr matrixX and an r X q¢ matrix Y. Furthermore, consider an m X n
matrix B which is a P-matrix. Then, we can in polynomial time obtain
an m X r matrix X*, and r X n matrix Y* such thatB = X* A Y*.

PrOOF. As B is a P-matrix, there are partitions {Iy,...,I} of
[m] and {J1,...,Jq} of [n] such that for every i € [p],j € [q],
seljte Ij, bs; = Pij-

We initialize X* = X and Y* = Y. Consider an entry p;;. Let x;
be the i’th row of X and y/ the j’th column of Y; then x; Ay/ = pPij-
Let c € [p] and d € [q] such thati € I and j € J;. Then, for any
s€l.and t € Jy, set bs; = pjj. Then, for any s € I and for any
t € I, we insert x; as the s’th row of X* and y/ as the #’th column
of Y*. O

The Boolean rank of a matrix A, denoted BRank(A), is the min-
imum natural number r such that A = B A C, where B and C
are matrices such that the number of columns in B and the num-
ber of rows in C is r. Thus, a matrix A has Boolean rank 1 if and
only if A = x Ay for some column-vectors x and y. In fact,
BRank(A) = r if and only if r is the minimum natural number such
that A = X v ... v X("), where matrices XV, ..., X" are of
Boolean rank 1 [8].

Theorem 2.7. GENERALIZED NOISE ROLE MINING admits an
O0*(200r2"+rk)y _time algorithm.

Proor. Let B be an m X n-matrix and let r be the Boolean rank
of B. Thus, there are r matrices B(l), . ,B(’), each of Boolean
rank 1, such that B = B® v ... v B("), where for each i € [r],
B = xi A (v")T for some column-vectors x! and y’. It can be
shown by induction on r that B has at most 2" distinct rows and at
most 2" distinct columns.! Therefore, B is of Boolean rank at most

IFor r = 1, since B =x! A (yl)T, B has at most two distinct TOwsS, y1 and the
all-zero row, and has at most two distinct columns, x! and the all-zero column. Now let
r > 2. By induction hypothesis, B = B v B(")| where B<"~") has at most 2"~
rows and columns and B(") at most two rows and columns. Since every row (column,
respectively) of B is the disjunction of the corresponding rows (columns, respectively)
of B(E"1 and B("), the number of distinct rows (columns, respectively) in B is at
most 2”71 -2 =27,
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r if and only if there is a p X g matrix P of Boolean rank at most r
for p = min{2", m} and g = min{2", n} such as B is a P-matrix.

Moreover, an m X n-matrix B is of rank r if r is the minimum
natural number such that B = C A D, where C is an m X r-matrix
and C is an r X n-matrix. Hence, GENERALIZED NOISE ROLE MINING
can be reformulated as follows: Decide whether there is a p X g-
pattern matrix P of Boolean rank r and an m X n P-matrix B such
that sdp(UPA, B) < k and if B does exist then find matrices UA and
PA of sizes m X r and r X n, respectively, such that B = UA A PA.

Thus, to solve GENERALIZED NoOISE ROLE MINING with input
(UPA, F, k), we can use the following algorithm:

1. Generate all pairs (X,Y) of matrices of sizes p X r and r X g,
respectively, and for each such pair compute P = X A Y;

2. For each P, solve GENERALIZED P-MATRIX APPROXIMATION
for the instance (UPA, F, P, k). If (UPA, F, P, k) is a yes-instance,
then using the algorithm of Lemma 2.6 return matrices UA
and PA of sizes m X r and r X n such that B = UA APA, where
B is the solution of the instance (UPA, F, P, k);

3. If all instances above are no-instances of GENERALIZED P-
MATRIX APPROXIMATION, return “no-instance.”

It remains to evaluate the running time of the above algorithm.
Since p < 2" and g < 27, there are at most 20(r2") pairs (X,Y), and
we can compute all matrices P in time 20(r2") Thus, the running
time of the algorithm is dominated by that of Step 2. The running
time of Step 2 is upper bounded by the number of matrices P (it is
equal to 290"2")) times the maximum running time of solving GEN-
ERALIZED P-MATRIX APPROXIMATION on an instance (UPA, F, P, k)
and computing UA and PA, if the instance is a yes-instance. By
Lemma 2.6, Theorem 2.5 and the bounds p < 2", q < 2", the maxi-
mum running time is upper bounded by 0* (20("?"+7k)) 1t remains
to observe that 20(r2") . 0* (20(r2"+rk)y = o*(20(r2"+rk)y, O

3 USER AND PERMISSION COVERING
NUMBERS

Unfortunately, instances of GNRM may not have a solution for
acceptable values of k and r (see our experimental results, for ex-
ample). We may, therefore, wish to limit the number of users and
permissions that are affected by a solution to a role mining instance
(but not limit the number of authorizations that are affected). This
may enable us to find an acceptable solution to the role mining
problem, except for a small number of users and/or permissions.
It may then be possible to tweak this solution for the users and
permissions whose authorizations do not satisfy the original user-
permission relation. We provide a small illustrative example later
in this section.

Accordingly we will introduce a new problem, related to GNRM,
where instead of UA and PA (with r rows and columns, respectively)
such that the Hamming distance between UPA and UA A PA is at
most k, our goal is to find UA and PA such that after making changes
restricted to entries in at most covy rows and cov p columns of UPA,
the modified UPA is equal to UA A PA. The parameters covy and
covp are called the user covering number and permission covering
number, respectively.
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GENERALIZED NOISE COVER ROLE MINING (GNRM-cov)

Input: An m X n user-permission assignment matrix UPA, a
label matrix F, and nonnegative integers r, covy and covp.
Parameter: r + covy + covp.

Goal: Is there an m X r user-role assignment matrix UA and
an r X n role-permission assignment matrix PA such that there
exists I C [m] and J C [n] where |I| < covy, |J| £ covp, and if
UPA;; # (UA A PA);j, then (1) f;; = T, and (2) either i € I or
Jj € J? If the answer is yes, then return such matrices UA and
PA.

Example 3.1. Consider an instance of SECURITY-PRESERVING ROLE
MINING with

UPA =

[ R

1 1 1
0 1 1
0 0 1
1 1 1 0

It is not hard to see that if k = 0 the minimum number of roles
is 4. If k = 1 then by flipping the entry (1,4) to 0, we reduce the
minimum number of roles to 3. For k = 2 we cannot reduce the
minimum number of roles to 2, but we can for k = 3, by flipping
the entries (1, 4), (2,1), (2, 3).

Now consider it as an instance of SECURITY-PRESERVING COVER
RoLE MINING. If cov = 2, we reduce the minimum number of
roles to 2 by flipping some entries in rows 1 and 2, namely the
entries (1, 4), (2,1), (2, 3), in contrast to SECURITY-PRESERVING ROLE
MINING, where the minimum number of roles is 3 for k = 2.

After Theorem 3.4, which shows that three important subprob-
lems of GNRM-cov are FPT, we will discuss how the FPT algorithm
of Theorem 3.4 can be used for variations of the subproblems of
GNRM-cov.

We show that the approach in Section 2 extends to an FPT algo-
rithm for the important subproblems of GNRM-cov as well. The
number of roles r is again a part of the parameter and Lemma 2.6
still applies. Hence it is natural to introduce the following problem.

GENERALIZED COVER P-MATRIX APPROXIMATION

Input: An m X n matrix A, a label matrix F, a p X g matrix P and
nonnegative integers covy and covp.

Goal: Is there an m X n P-matrix B such that there exists I C [m]
and J C [n] where |I| < covy, |J| < covp,andifa;; # b;j, then
(1) f;j = T, and (2) either i € I or j € J.If the answer is yes, then
return such a matrix B.

Lemma 3.2. IfA has at least covy + p - 2°°VP + 1 pairwise distinct
rows or at least covp + q - 2°°VU + 1 pairwise distinct columns, then
(A,F,P,covy, covp) is a no-instance of GENERALIZED COVER P-
MATRIX APPROXIMATION.

Il < covy, |J| < covp,andifa;; # b;j,theni € Torj € J.
Suppose that (A, F, P, covp, covy) is a yes-instance. Then such a
P-matrix B and sets I C [m] and J C [n] exist. Observe that B has
at most p pairwise distinct rows and at most g pairwise distinct
columns. Using this fact, we show that A has at most |I| + 2|]|p
pairwise distinct rows and at most |J| + 2l ‘q pairwise distinct
columns.

Proor. Let B be a P-matrix and I € [m],]J C [n] such that

Let i € [m]\I. Note that a;; = b;; whenever j € [n]\ J. Therefore
the i-th row of A, denoted a;, can differ from the i-th row of B,
denoted b;, only in the coordinates in J. Therefore, there exists
J' € Jsuch that a;j = 1 —b;; for all j € J’ and a;; = b;; for
all j € [n]\ J'. It follows that a; is one of the 21! many vectors
we obtain from b; by flipping the value of the entries in J C J.
Since there are only p many distinct rows in B, it follows that
for all i € [m] \ I, the row a; is one of the 2/!p many vectors.
Recall that |I| < covy and |J| < covp. It follows that A has at
most covy + p - 2°°VP pairwise distinct rows. Using an analogous
argument, we obtain that A has at most covp + q - 2°°VU pairwise
distinct columns. Since we started from an arbitrary solution, it
follows that if A has at least covy + p - 2°°VP + 1 pairwise distinct
rows or at least covp +q-2°°VU + 1 pairwise distinct columns, then
(A,F,P, covy, covp) is a no-instance. O

The above lemma implies the following reduction/preprocessing
rule.

Reduction Rule 3. Let A be a matrix. If A has at least covy +
p - 2€°VP + 1 pairwise distinct rows or at least covp + q - 2°°VU + 1
pairwise distinct columns, then output that (A, F,P, covy, covp) is
a no-instance of GENERALIZED COVER P-MATRIX APPROXIMATION.

Unfortunately, even when there are at least max{p, covy} + 2
identical rows (or max{q, covp} + 2 identical columns) that are
exactly the same in A, we may not be able to apply an equivalent
of Reduction Rule 2 to A. The reason is that we may still need to
change some entries of each of the rows (columns) to obtain the
P-matrix B. Namely, we are allowed only to change the entries in
at most covy many rows in some set I and at most covp many
columns in some set J, where I and ] depend on the matrix B.
Assume that we remove a row r such that there are still at least
max{p, covy } + 1 rows identical to r in the matrix A’ obtained from
A by removing r. Now assume that we have a P-matrix B’ such that
there exist I C [m] and J C [n], such that |I| < covy, |J| < covp,
and if a;j * bgj, then f;; = T and either i € I or j € J. Clearly there
is i € [n] \ I such that a;, the i-th row of A’, is identical to r. But,
b’ (the i-th row of B’) can still differ from a] at the entries in J.
Moreover f;; = T whenever a;j * b;j for some j € J. This might
not be true if we simply used b; as the replacement for r.

However, this problem disappears if the label matrix F is less
restrictive for the row r than any of the remaining max{p, covy } +1
identical rows. Indeed, if we are allowed to modify the permission
of a user in the max{p, covyy} + 1 identical rows to access some
resource (according to F), then we are also allowed to modify the
permission for the same resource for the user represented by the
row r. This leads to the following two reduction rules.

Reduction Rule 4. If there exists i € [m] and R C [m] such that
(1)i ¢ R, (2) |R| = max{p,covy} + 1, (3) for alli’ € R we have that
the row ay is identical to a;, and (4) for alli’ € R and all j € [n] we
have that fy; = T implies that f;; = T. Then delete the i-th row from
the matrix A.

Observe that following the discussion above it is rather easy to
see that we can obtain a solution for the instance (A, F, P, covy, covp)
from a solution B’ for (A’, F/, P, covys, covp) obtained by applying
Reduction Rule 4 once on the i-th row of A. Let I’ € [m — 1]
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and J/ C [n] be the sets witnessing that B’ is a solution. As
max{p, covy} + 1 > |I’|, one of max{p, covy} + 1 many rows in R
is not in I’. Hence its replacement in B’ differs from the original
only in the entries in J’. Since the i-th row in A is identical to this
row and the label matrix F is less restrictive for the i-th row, we
can use the same replacement for the i-th row as well.

Applying the same argument for columns, we get an analogous
reduction rule for removing columns together with a way to recon-
struct a solution from a solution for the reduced instance.

Reduction Rule 5. If there exists j € [n] and C C [n] such that
(1)j ¢ C, (2)|C| = max{q, covp} + 1, (3) for all j € C we have that
the j'-th column of A is identical to the j-th column, and (4) for all
j’ € Candalli € [m] we have that f;j = T implies that f;; = T.
Then delete the j-th column from the matrix A.

Note that in particular, if there are at least max{p, covy} + 2
identical rows (or max{g, covp} + 2 identical columns) that are
exactly the same in A and their corresponding rows (columns) in F
are also identical, then Reduction Rule 4 (Reduction Rule 5) applies.
In particular, in the cases when the label matrix F is availability-
preserving, security-preserving, or contains only T on all entries,
we get that if the two rows/columns are identical in A, then they
are identical in F. Using arguments similar to Lemma 2.4, one can
prove that in all these cases, we can always reduce the original
instance of the problem to an instance with at most (covy +p -
2€0VP) . (max({p, covy} + 1) many rows and at most (covp + q
2€0VU) . (max{q, covp} + 1) many columns and obtain the following
theorem by enumerating all possible solutions for such reduced
instance.

In the rest of this section, we restrict our attention to the fol-
lowing three important subproblems of GNRM-cov: Noise COVER
ROLE MINING , AVAILABILITY-PRESERVING COVER ROLE MINING and
SECURITY-PRESERVING COVER ROLE MINING. Recall that for the first
subproblem above f;; = T for all (i, j) € [m] X [n], for the second
one (the third one, respectively), f;; = T if and only if a;; = 0
(ajj = 1, respectively).

Theorem  3.3. NOISE/AVAILABILITY-PRESERVING/SECURITY-
PRESERVING COVER P-MATRIX APPROXIMATION parameterized by
p+q+covy + covp can be solved in FPT time.

Finally, similarly to the proof of Theorem 2.7, we can prove that
Theorem 3.3 in combination with Lemma 2.6 imply the following:

Theorem 3.4. NOISE/AVAILABILITY-PRESERVING/SECURITY-
PRESERVING COVER ROLE MINING parameterized by
p +q+ covy + covp admits an FPT algorithm.

Note that the FPT algorithm of Theorem 3.4 implies the exis-
tence of FPT algorithms for the three important subproblems of
the following variation of GNRM-cov. The problem is similar to
GNRM-cov, but where we have cov as a parameter instead of covyy
and covp. We can run the algorithm of Theorem 3.4 for every pair
covy and covp such that cov = covy + covp and stop when the
algorithm returns yes or returns no for all pairs covy and covp
such that cov = covy + covp.
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4 EXPERIMENTAL EVALUATION

In this section, we describe experiments in which we solve GNRM
expressed as a constraint satisfaction problem (CSP). Our experi-
ments were designed to provide insights into the following four
questions:

e How does the choice of F affect role mining, in terms of r, k
and running times?

e What values of k and r are required to obtained solutions
for a given UPA and F?

e How does the time required to solve GNRM vary with k and
r?

e Does a general-purpose solver using the CSP formulation of
GNRM exhibit FPT-like running times?

We first present our formulation of GNRM as a CSP. We then
describe the set-up for our experiments. In the remainder of the
section, we report the results of our experiments and discuss their
implications.

4.1 CSP formulation of GNRM

We present a CSP formulation of the GNRM in order to solve the
problem using a general-purpose solver. We could have imple-
mented a bespoke FPT algorithm to solve GNRM, based on our
results in the preceding sections. However, we believe using a
general-purpose solver is likely to be more useful in practice. First,
the formulation of the GNRM as a CSP is quite intuitive, and there-
fore easier to understand and maintain than a bespoke algorithm
that relies on some relatively complex theory. Second, general-
purpose solvers may perform well on instances of a hard problem
that is known to be FPT [7].

Our formulation consists of two matrices of Boolean variables
ua; ¢, i € [m], £ € [r], and pag ;. € € [r],j € [n]. We also use a
matrix of auxiliary Boolean variables d; j, i € [m], j € [n], repre-
senting the discrepancies between UA A PA and UPA. We use the
values 0 and 1 to represent the values L and T, respectively, in the
F matrix. Figure 1 describes the formulation in detail.

A naive formulation of the problem would include a matrix of
Boolean variables — to represent the product UA A PA - and link
these variables to the ua; ¢ and pa,, j variables. Then it would be
easy to formulate the constraints and link the decision variables to
variables d; j. However, knowing the values of upa; ; and f; j for a
specific pair (i, j), we can formulate the constraints more compactly.
Thus, the formulation described in Figure 1 defines the constraints
separately for each combination of values of upa; ; and f;, 2

4.2 Experimental Setup

We used synthetic data for our experiments because we wanted
to explore particular questions in a structured manner, which re-
quired using instances that satisfied certain criteria, as explained

2The compact formulation performed significantly better than the naive formulation
in our experiments, so we only report results for the compact configuration. Let 5
and tc denote, respectively, the running times of the solver when using the naive
and compact configurations. For instances that obviously have no solution (small
and small k), ¢tn and ¢¢ are similar. As k increases, it becomes more difficult for the
solver to determine whether the instance has a solution or not. Moreover ¢ increases
much more rapidly than ¢c. For example, when r = 3 and k = 3, our instance has no
solution and we have #n ~ 2tc, whereas for r = 3 and k = 12, the instance still has
no solution but tx = 12¢¢.
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For all i € [m] and j € [n] such that f; ; = 0 and upa; ; = 0: Since the discrepancy is not allowed, either ua; o or
ua; ¢ +pag ;<1 Ve € [r], 1) pag has to be zero for every ¢.

For all i € [m] and j € [n] such that f; ; = 0 and upa; ; = 1:

Jis Pai.j We need ua; o = pa, ; = 1 for some £. We enforce that
Xi ¢ < uajg Y € [r], (2) ’ »J . .
s ’ at least one of x; j 1..x;,j,r is 1 and also if x; j ¢ = 1
Xij,t < Pag,j vt elr], (3) then ua; o = pag; =1
Xije 21 Ve € [r], (4)
Ce(r]

Foralli € [m] and j € [n] such that f; ; = 1 and upa; ; = 0: If both ua; ¢ and pag, j are ones for some ¢ then this is
ua; p+pag; <1+dij Yee[r], (5) a discrepancy.

Forall i € [m] and j € [n] such that f; ; = 1 and upa; ; = 1: If either ua; ¢ = 0 or pay ; = 0 for every ¢, this is a
ua; ¢ = Xi j,¢ Ve e [r], (6) discrepancy. Auxiliary variable x; j ¢ is forced to 0 if
Pag ;= Xij¢ YL € [r], (7) either ua; p = 0 or pag j = 0. If x; j ¢ = 0 for every £

Xije=1-dij Ve € [r], (8) then we force d; ; = 1.
Celr]
Z dij <k, 9) The number of discrepancies is restricted by k.

i€[m] je[n]

xi,j,¢ €10,1} Vie[m], Vje[n], V€€ [r], (10) Auxiliary variables, see the cases where upa; ; = 1.

dij €{0,1} Vi e [m], ¥j € [n], (11) Indicates whether there is a discrepancy in the corre-

sponding element.

ua; j € {0,1} Vi e [m], Vj € [r], (12) Defines the UA matrix.

pa; ; €1{0,1} Vie [r], ¥j € [n]. (13) Defines the PA matrix.

Figure 1: CSP formulation of GNRM.

below. We used a pseudo-random instance generator used in earlier
experimental work by Vaidya et al. [18]. The generator produces
instances of UPA by creating random UA and PA matrices and mul-
tiplying them together. This means that we know an upper bound
on the number of roles we need to mine. We used the following
parameters in our generator:

o the number of roles per user was randomly chosen for each
user from the interval [0, 3];

e the number of permissions per role was randomly chosen
for each role from [0, [0.25n]]; and

o the total number of roles for generating the UA and PA
matrices was set to 10.

The selection of the parameters was based on typical values used
in the literature and to ensure that the authorization density (the
proportion of non-zero entries in the UPA matrix) was around
20%. (All but one of the real-world datasets commonly used in
role mining research have authorization densities less than 20% [13,
Table 1].) We study three different problems for each of the instances
we generate:

Security: fi j = upa; j;
Availability: fij =1— upa; ;;
Noise: f; j = 1for everyiandj.
To solve GNRM, we used the CP-SAT solver from Google’s OR-

Tools, version 9.2.9972. The experiments were conducted on a ma-
chine based on two Xeon E5-2630 v2 CPUs (2.60 GHz), with 32 GB

of RAM. Hyper-threading was enabled, and the solver was allowed
to use all the cores. The solver was controlled from a Python script.

4.3 Relationship between k and r

In our first experiment, we consider the relationship between k
and r. Specifically, we study how ki, — the minimum value of k
needed for the instance to have a solution — depends on the number
of roles r that we attempt to extract. For this experiment, we used
an instance of size m = 20 and n = 20, with 77 non-zero entries in
the UPA matrix.

Figure 2 shows how kp;, varies with r. As one would expect,
kmin decreases as r grows, for all three instance types. Moreover,
kmin for the Noise instance is no greater than ky,j, for the equivalent
Availability and Security instances. Finally, note that the Availability
instance requires the longest time to solve.

Observe that kmin is bounded by 3; 3’ upa; ;jin the Noise and
Security instances; however, it is bounded by nm — 3%; 3’ ; upa; ; in
the Availability instances. Since the UPA matrix is usually sparse,
kmin in the Availability instances is typically higher than in the
other instances. These are not profound insights, but they do sug-
gest that it is usually desirable to perform security-aware role min-
ing, rather than availability-aware role mining, at least in terms of
remaining close to the original UPA matrix and the time taken to
solve the instance.



Generalized Noise Role Mining

‘ I I
—e— Security
150 - —=— Availability | |
—— Noise
s 100| .
5
-~
50 - a
0 — —
| | | | |
2 4 6 8 10
r
(a) Full plot
—e— Security
20 —=— Availability ||
—— Noise
g
g
2

(b) Zoomed in version of Figure 2a

Figure 2: Relationship between ki, and r (n = m = 20)

4.4 Relationship between run-time, r and k

We now consider how the running times of the solver depend
on the values of k and r. The analysis is affected significantly by
the so-called phase transition phenomenon. Informally, the hardest
instances of a hard problem are at the boundary of satisfiable (there
exists a solution) and unsatisfiable (there is no solution), and small
changes in the inputs to such an instance may change whether it is
satisfiable or not.

In the context of GNRM, an instance with small values of k and r
is over-subscribed: i.e., the constraints are so tight that the instance
is trivially unsatisfiable. Conversely, an instance with large values of
k and r is under-subscribed: i.e., the constraints are so loose that the
instance is trivially satisfiable. The hard instances are in between,
where small changes to UPA, F, r or k may change an unsatisfiable
instance into a satisfiable one (and vice versa).

Figures 3 and 4 show how the running time of the solver changes
with k if the value of r is fixed at 4 and 6, respectively. Solid lines
connect the satisfiable instances and dotted lines the unsatisfiable
instances. As one would expect, the satisfiable instances occur for
smaller values of k in Figure 4. Otherwise, the figures are very
similar and clearly illustrate several points:
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e Security instances are by far the easiest, with running times
showing little variation and being less than one second for
all k;

e Noise and Availability instances are comparable in their
complexity;

e more discrepancies are required to find a solution for Avail-
ability instances;

e there is a clear phase transition pattern, where instances
change from easy to hard to easy again;

e unsatisfiable instances are generally harder, and the running
times are more predictable; and

e the running times in the satisfiable region are much more
variable, as the running time depends on the ‘luck’ of the
solver in finding a feasible solution.

Note that the phase transition for Noise and Security instances
occurs at the same value of k. Moreover, Security instances are
much quicker to solve. In other words, given an instance of GNRM,
it seems reasonable to solve the Security version of the problem.
Not only does this guarantee that no additional authorizations will
be granted by the role mining solution, we have evidence to suggest
that no better solution (in terms of the number of discrepancies
k between the solution and UPA) will be obtained by solving the
more complex Noise version.

We conclude this section by noting that we obtained plots similar
to Figures 3 and 4 for other values of r; space constraints prevent
the inclusion of those plots. However, we found that the value of
r significantly affects the difficulty of the instance. In particular,
unsatisfiable Noise and Availability instances in the phase transition
region take a significant amount of time to solve, as illustrated in
Figure 5.

For a given UPA and a fixed value of r, we have a collection of
instances using different values of k as input. For all values of k less
than kpi, the instances in the collection are unsatisfiable (and the
remaining instances are satisfiable), as can be seen in Figures 3 and 4.
Figure 5 reports the running time for the instance k = kyjn — 1,
corresponding to the hardest unsatisfiable instance for a given r.
Note the log scale on the y-axis, which indicates that hard Noise
and Availability instances take a considerable amount of time to
solve, whereas the time taken to solve Security instances remains
under a second in all cases.

4.5 Are run-times FPT-like?

In our last experiment, we test whether the solver based on our CSP
formulation behaves in practice as an FPT algorithm. A positive
outcome would be of practical importance, as it would mean off-
the-shelf solvers could solve GNRM, a hard problem in principle,
reasonably efficiently in practice.

Traditionally, such experiments involve fixing the parameter
value and varying the instance size; if the running time scales
polynomially with the instance size then the solver is considered
to demonstrate FPT-like running time [7]. Furthermore, to ensure
that the experiment is fair and the structures of test instances are
comparable, it is common to use only phase transition instances.

With GNRM, the natural way of obtaining a phase transition
instance of a given size would be to adjust r or k. This approach
was not available to us as r + k is the parameter used to obtain our
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Figure 4: Relationship between running time and k (r = 6, n = 20)

FPT result. Alternatively, one could consider changing the density
of the UPA matrix. However this would affect the properties of the
instance, making the instances incomparable. Our workaround is
to fix r + k, the FPT parameter. While this might not be the ideal
approach, it still provides some useful insights, and finesses some of
the difficulties associated with finding comparable phase transition
instances of GNRM.

In our experiments, we fixed r + k = 10 as we know that the
instance with r = 0 and k = 10 is unsatisfiable and the instance
with r = 10 and k = 0 is satisfiable (in fact, even r = 8 and k = 0 is
guaranteed to produce a satisfiable instance as the number of users

in this experiment is only 8). We considered values for n from 16 to
16, 384. Then, among all the allowed combinations of k and r we
pick the highest value of r that yields an unsatisfiable instance.
Figure 6 shows how the running times of the solver scale with
the problem size n. Both axes are logarithmic, hence any polynomial
function would appear as a straight line, whereas an exponential
function would look convex. The plots in Figure 6 are approxi-
mately straight lines, indicating polynomial running times. Based
on our computational results, we estimate that the running times
are approximately quadratic in n. Hence, we conclude that our so-
lution approach has FPT-like running times, even though we did
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Figure 6: Test for FPT-like behaviour of the solver (m = 8,
r+k =10)

not explicitly exploit the FPT structure of the problem in our CSP
formulation. Similar results have been obtained in the context of
the workflow satisfiability problem (WSP) [7], where the CSP-based
solver had FPT-like running time even though the CSP formulation
of WSP was conventional (and did not make use of the theoretical
FPT algorithm for WSP).

4.6 Discussion

We belive that GNRM and its special cases of security-aware and
availability-aware role mining are interesting additions to the family
of role mining problems. In particular, our experiments have shown
that there are significant practical benefits to considering security-
aware role mining, rather than MinNoise or availability-aware role
mining. The time taken to solve security-aware instances is typically
much smaller and the number of discrepancies it introduces is not
much different from MinNoise. Indeed, the time taken to solve
a security-aware instance for a fixed value of r and matrix UPA
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varies very little with k (as shown in Figure 2). And our experiments
reported in Section 4.4 found that ki, was the same for a given
instance irrespective of whether we used MinNoise or security-
aware role mining, for all r > 4. Moreover, security-aware role
mining has the significant advantage, from a security perspective,
of not introducing any additional authorizations.

Nevertheless, role mining remains a challenging problem for all
but the smallest instances. Our experiments on FPT-like running
times were able to find solutions for instances containing thousands
of permissions (see Figure 6), but there were very few users in those
instances. Further research is required to establish whether off-the-
shelf solvers and a CSP formulation of GNRM (perhaps, specifically,
the security-aware variant) can be used to solve real-world role
mining problems.

It should also be noted that the running times of methods for
solving role mining problems do not necessarily have to be partic-
ularly fast. Role mining does not generally have to be performed
in an on-line environment and does not have to be done repeat-
edly. (This is in contrast to algorithms to solve WSP, for example,
which must respond to user requests to execute workflow steps in
something approaching real time.)

Of course, we have to bear in mind that these experiments were
performed on synthetic data, although this approach is often taken
in research on role mining. It was important in the context of our
work to be able to control the structure of the problem instances,
and generating our own instances was the only viable approach.
However, in future work we intend to explore whether the conclu-
sions obtained from our work with synthetic instances, especially
on the value of security-aware role mining, also hold for real-world
instances.

5 RELATED WORK

Several papers have explored how matrix decomposition can be
used to solve role mining problems [3, 6, 10, 11]. Fomin et al. es-
tablished that MinNoise role mining (as a decision problem) is FPT
by reducing the problem to one of matrix decomposition [3]. Lu
et al. use matrix decomposition to develop greedy and heuristic
approaches for solving MinNoise and related role mining prob-
lems [10, 11]. Exact role mining (where UPA = UA A PA), with the
optimization goal of minimizing the number of roles in the solution,
has been expressed as a constraint satisfaction problem via matrix
decomposition, and then solved using an SMT solver [6]. While our
work uses a similar approach and tools, the problem we solve (that
of minimizing the discrepancies in the solution) is different. The
survey paper by Mitra et al. [12] provides an excellent overview of
the many other variants of the role mining problem and techniques
that have been used to solve them.

Our work extends existing work in two different ways. First,
we define a more general form of noisy role mining, in which
the solution may contain discrepancies of various types, defined
as part of the input to the problem. In particular, we are able to
specify security-aware and availability-aware role mining, which
we believe are novel and useful contributions. We also introduce
a new variant of noisy role mining, in which we allow arbitrary
discrepancies in the GNRM solution for a small number of users
and permissions. Second, we extend the work of Fomin et al. by
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showing that a search version of the matrix decomposition decision
problem they used is also FPT. This, in turn, allows us to establish
that our generalized noise role mining problem is FPT and will
return a solution (not simply a yes or no answer).

Lu et al. [9] studied the role mining problem in the context of
weighted rank-one binary matrix factorization. Particular choices of
weights lead to problem instances that are analogous to AVAILABILITY-
PRESERVING ROLE MINING and SECURITY-PRESERVING ROLE MINING.

6 CONCLUDING REMARKS

This paper introduces the GENERALIZED NOISE ROLE MINING prob-
lem (GNRM). We believe this is a useful contribution to the literature
on role mining, not least because it allows us to define security-
and availability-aware role mining problems. We have also defined
GNRM-cov, a variant of GNRM that allows for arbitrary discrepan-
cies between UPA and UA A PA, provided those discrepancies are
restricted to a small number of users and permissions. We believe
GNRM-cov may be useful in practice, given that many instances do
not have a solution, unless r or k (or both) is (unacceptably) large.
Restricting changes to a small number of users and permissions
may mean that solutions exist and may even help to identify mis-
allocations of users and permissions in the input data. (It is well
known that access control configurations may contain errors and
UPA may have been derived from legacy access control systems
with the intention of migrating to a role-based system [14].)

We have shown that GNRM and GNRM-cov are fixed-parameter
tractable, which means that they can be solved in a reasonable
amount of time, provided problem instances only require solutions
in which the sum of the number of roles and the number of discrep-
ancies from the input user-permission relation is small. Algorithms
for role mining do not need to be particularly fast, but they cannot
be exponentional in the size of the input, given the size of typ-
ical instances. Knowing that algorithms exist that do solve role
mining problems, subject to certain constraints on the solution,
provides grounds for cautious optimism about the feasibility of
solving real-world role mining problems.

Our experimental work provides further cause for optimism. In
particular, the results on security-aware role mining suggest that it
is possible to find solutions relatively quickly if we require those
solutions to preserve the security of the original configuration,
something that is generally desirable.

The work in this paper provides plenty of scope for future work.
In particular, we would like to explore whether our work on matrix
decomposition and FPT results can be extended to other variants of
role mining (see [12, Section 2]). We also intend to perform further
experimental work using real-world data sets (see [12, Section 5.2]).
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