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Recent work has shown that many problems of satisfiability and resiliency in workflows may be viewed as special cases of the
authorization policy existence problem (APEP), which returns an authorization policy if one exists and “No” otherwise. However, in
many practical settings it would be more useful to obtain a “least bad” policy than just a “No”, where “least bad” is characterized by
some numerical value indicating the extent to which the policy violates the base authorization relation and constraints. Accordingly, we
introduce the Valued APEP, which returns an authorization policy of minimum weight, where the (non-negative) weight is determined
by the constraints violated by the returned solution.

We then establish a number of results concerning the parameterized complexity of Valued APEP. We prove that the problem is
fixed-parameter tractable (FPT) if the set of constraints satisfies two restrictions, but is intractable if only one of these restrictions
holds. (Most constraints known to be of practical use satisfy both restrictions.)

We also introduce a new type of resiliency for workflow satisfiability problem, show how it can be addressed using Valued APEP
and use this to build a set of benchmark instances for Valued APEP. Following a set of computational experiments with two mixed
integer programming (MIP) formulations, we demonstrate that the Valued APEP formulation based on the user profile concept has
FPT-like running time and usually significantly outperforms a naive formulation.

CCS Concepts: • Security and privacy→ Formal methods and theory of security; • Theory of computation→ Fixed param-
eter tractability.
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1 INTRODUCTION

Access control is a fundamental aspect of the security of any multi-user computing system. Access control requirements
are typically enforced by specifying an authorization policy and implementing a system to enforce the policy. Such a
policy identifies which interactions between users and resources are to be allowed (and denied) by the access control
system.

Over the years, authorization policies have become more complex, not least because of the introduction of constraints
– often motivated by business requirements such as “Chinese walls” – which further refine an authorization policy. A
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separation-of-duty constraint (also known as the “two-man rule” or “four-eyes policy”) may, for example, require that
no single user is authorized for some particularly sensitive group of resources. Such a constraint is typically used to
prevent misuse of the system by a single user.

The use of authorization policies and constraints, by design, limits which users may access resources. Nevertheless,
the ability to perform one’s duties will usually require access to particular resources, and overly prescriptive policies
and constraints may mean that some resources are unavailable to users that need access to them. In other words, there
may be some conflict between authorization policies and operational demands: a policy that is insufficiently restrictive
may suit operational requirements but lead to security violations; conversely, too restrictive a policy may compromise
an organization’s ability to meet its business objectives.

Recent work on workflow satisfiability and access control resiliency recognized the importance of being able to
determine whether or not security policies prevent an organization from achieving its objectives [10, 11, 24, 26, 30].
Bergé et al. introduced the Authorization Policy Existence Problem (APEP) [2], which generalizes many of the
existing satisfiability and resiliency problems in access control. Informally, the APEP seeks to find an authorization
policy, subject to restrictions on individual authorizations (defined by a base authorization relation) and restrictions on
collective authorizations (defined by a set of authorization constraints).

APEP may be viewed as a decision or search problem. An algorithm to solve either version of the problem returns
“no” if no authorization policy exists, given the base authorization relation and the constraints that form part of the input
to the instance. Such a response is not particularly useful in practice: from an operational perspective, an administrator
would presumably find it more useful if an algorithm to solve APEP returned some policy, even if that policy could lead
to security violations, provided the risk of deploying that policy could be quantified in some way.

Hence, in this paper, we introduce a generalization of APEP, which we call Valued APEP, where every policy is
associated with a non-negative weight. A solution to Valued APEP is a policy of minimum weight; a policy of zero
weight satisfies the base authorization relation and all the constraints.

We establish the complexity of Valued APEP for certain types of constraints, using multi-variate complexity analysis.
We prove that APEP (and hence Valued APEP) is fixed-parameter intractable, even if all the constraints are user-
independent, a class of constraints for which theWorkflow Satisfiability Problem (WSP) – a special case of APEP –
is fixed-parameter tractable. However, we subsequently show that Valued APEP is fixed-parameter tractable when all
weighted constraints are user-independent and the set of constraints is t-weight-bounded (t-wbounded). Informally,
the identities of the users are irrelevant to the solution and there exists a solution (policy) containing no more than t

authorizations. We show that sets of user-independent constraints that contain only particular kinds of widely used
constraints are t-wbounded. Bergé et al. [2] introduced and used a notion of a bounded constraint. Bounded and
wbounded constraints have some similarities, but wbounded constraints are more refined and allow for more precise
complexity analysis. In particular, the notion of a bounded constraint cannot be used for Valued APEP and we are able
to derive improved complexity results for APEP using wbounded constraints.

A significant innovation of the paper is to introduce the notion of a user profile for a weighted constraint. Counting
user profiles provides a powerful means of analyzing the complexity of (Valued) APEP, somewhat analogous to the use
of patterns in the analysis of workflow satisfiability problems. This enables us to (i) derive the complexity of Valued
APEP when all constraints are t-wbounded and user-independent, (ii) establish the complexity of Valued APEP for
the most common types of user-independent constraints, and (iii) improve on existing results for the complexity of
APEP obtained by Bergé et al. [2]. We also prove that our result for the complexity of APEP with t-wbounded, user-
independent constraints cannot be improved, unless a well-known and widely accepted hypothesis in parameterized
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complexity theory is false. Finally, we show that certain sub-classes of Valued APEP can be reduced to the Valued
Workflow Satisfiability Problem (Valued WSP) [12] with user-independent constraints, thereby establishing that
these sub-classes are fixed-parameter tractable.

For the first time in the APEP literature, we conduct computational experiments based on an application of Valued
APEP in WSP. Specifically, we introduce a concept of τ -resiliency in WSP which seeks a solution that is resilient to
deleting up to τ arbitrary users. We build a set of Valued APEP benchmark instances that address τ -resiliency in WSP
and use it in computational experiments. To solve Valued APEP, we use two mixed integer programming formulations.
One is a ‘naive’ formulation of the problem whereas the other one exploits the user profile concept. We demonstrate
that the formulation based on the user profile concept has FPT-like solution times and usually outperforms the naive
formulation by a large margin. We also analyse and discuss the properties of τ -resiliency.

In the next section, we summarize relevant background material. We introduce the Valued APEP in Section 3 and
define weighted user-independent constraints. We also show that Valued WSP is a special case of Valued APEP and
describe particular types of weighted user-independent constraints for APEP. In Section 4, we introduce the notion
of a t-wbounded constraint and establish the complexity of Valued APEP when all constraints are t-wbounded. We
prove the problem is intractable for arbitrary sets of t-wbounded constraints or user-independent constraints, but
fixed-parameter tractable for t-wbounded, user-independent constraints. In the following two sections, we establish the
complexity of other sub-classes of Valued APEP. In Section 7 we explain how APEP can be used to address questions
of resiliency in workflows. In the following two sections we introduce two MIP formulations for Valued APEP and test
these formulations using the resiliency questions introduced in Section 7. In Section 10 we discuss how our contributions
improve and extend related work. We conclude the paper with a summary of our contributions and some ideas for
future work in Section 11.

2 BACKGROUND

APEP is defined in the context of a set of users U , a set of resources R, a base authorization relation Â ⊆ U × R, and a set
of constraints C . Informally, APEP asks whether it is possible to find an authorization relation A that satisfies all the
constraints and is a subset of Â.

For an arbitrary authorization relation A ⊆ U × R and an arbitrary resource r ∈ R, we write A(r ) to denote the set of
users authorized for resource r by A; more formally, A(r ) = {u ∈ U | (u, r ) ∈ A}. For a subset T ⊆ R, we define the set
of users authorized for some resource in T to be A(T ) =

⋃
r ∈T A(r ). For a user u, A(u) = {r ∈ R | (u, r ) ∈ A}; and for

V ⊆ U , A(V ) = {r ∈ R | (u, r ) ∈ A,u ∈ V }.
An authorization relation A ⊆ U × R is

• authorized (with respect to Â) if A ⊆ Â,
• complete if for all r ∈ R, A(r ) , ∅,
• eligible (with respect to C) if it satisfies all c ∈ C ,
• valid (with respect to Â and C) if A is authorized, complete, and eligible.

An instance of APEP is satisfiable if it admits a valid authorization relation A.

2.1 APEP constraints

In general, there are no restrictions on the constraints that can appear in an APEP instance, although the use of arbitrary
constraints has a significant impact on the computational complexity of APEP (see Section 2.3). Accordingly, Bergé et
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al. [2] defined several standard types of constraints for APEP, summarized in Table 1, generalizing existing constraints
in the access control literature.

Table 1. Standard APEP constraints: r, r ′ ∈ R , t ∈ N

Description Notation Satisfaction criterion Constraint family
Universal binding-of-duty (r , r ′,↔,∀) A(r ) = A(r ′) BoDU
Universal separation-of-duty (r , r ′, ↕,∀) A(r ) ∩A(r ′) = ∅ SoDU
Existential binding-of-duty (r , r ′,↔,∃) A(r ) ∩A(r ′) , ∅ BoDE
Existential separation-of-duty (r , r ′, ↕,∃) A(r ) , A(r ′) SoDE
Cardinality-Upper-Bound (r , ≤, t ) |A(r ) | ≤ t CardUB
Cardinality-Lower-Bound (r , ≥, t ) |A(r ) | ≥ t CardLB

2.2 WSP as a special case of APEP

Consider an instance of APEP which contains any of the constraints defined in Section 2.1, and includes the set of
cardinality constraints {(r , ≤, 1) | r ∈ R}. Any solution A to such an APEP instance requires |A(r ) | = 1 for all r ∈ R
(since completeness requires |A(r ) | > 0). Thus A may be regarded as a function A : R → U . Since |A(r ) | = 1, there is no
distinction between existential and universal constraints (whether they are separation-of-duty or binding-of-duty):
specifically, A satisfies the constraint (r , r ′, ◦,∃) iff A satisfies (r , r ′, ◦,∀) (for ◦ ∈ {↕,↔}).

In other words, an APEP instance of this form is equivalent to an instance of WSP [11, 30], with separation-of-duty,
binding-of-duty and cardinality constraints: resources correspond to workflow steps, the base authorization relation to
the authorization policy, and an APEP solution to a plan. Accordingly, strong connections exist between APEP and
WSP, not least because certain instances of APEP can be reduced to WSP [2]. In WSP, the set of resources is the set of
steps, denoted by S .

2.3 Complexity of WSP and APEP

In the context of WSP, the authorization policy (the base authorization relation in APEP) specifies which users are
authorized for which steps in the workflow. A solution to WSP is a plan π that assigns a single user to each step in the
workflow. In general, WSP is NP-complete [30].

Let k = |S | and n = |U |. Then there are nk plans, and the validity of each plan can be established in polynomial time
(in the size of the input). Thus WSP can be solved in polynomial time if k is constant. It is easy to establish that APEP is
harder than WSP in general.

Proposition 2.1. APEP is NP-complete even when there is a single resource.

We provide a polynomial time redution fromMonotone 1-in-3 SAT [29] problem. We formally state the problem
definition.

Monotone 1-in-3 SAT
Input: A 3-CNF formula ϕ such that no literal is a negated variable.
Question: Does ϕ have a satisfying assignment that assigns True to only one literal from every clause?

The proof uses a simple reduction fromMonotone 1-in-3 SAT [29] to an instance of APEP in which there is a single
resource r : the set of variables corresponds to the set of users; (x , r ) ∈ A corresponds to assigning the value True to
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variable x ; and every clause corresponds to a constraint comprising three “users”, which is satisfied provided exactly
one user is assigned to the resource.

Wang and Li [30] introduced parameterization1 of WSP by parameter k . This parameterization is natural because for
many practical instances ofWSP, k = |S | ≪ n = |U | and k is relatively small. Wang and Li proved thatWSP is intractable,
even from the parameterized point of view. However, Wang and Li proved that WSP becomes computationally tractable
from the parameterized point of view (i.e., fixed-parameter tractable) when the constraints are restricted to some
generalizations of binary separation-of-duty (SoD) and binding-of-duty (BoD) constraints.

Similarly, for APEP, we denote k = |R | and n = |U |. In the rest of the paper, we assume that k is relatively small and
thus consider it as the parameter. While the assumption that k is small is not necessarily correct in some applications,
our approach is useful where k is indeed small, for example in special cases such as WSP. Also, there are situations
where strict controls are placed on the utilization of and access to (some small subset of system) resources by users.

2.4 User-independent constraints

Wang and Li’s result has been extended to the much larger family of user-independent constraints, which includes
the aforementioned SoD and BoD constraints and most other constraints that arise in practice [7, 22]. Informally, a
constraint is called user-independent if its satisfaction does not depend on the identities of the users assigned to steps.
(For example, it is sufficient to assign steps in a separation of duty constraint to different users in order to satisfy the
constraint.)

The concept of a user-independent constraint for WSP can be extended formally to the APEP setting in the following
way [2]. Let σ : U → U be a permutation on the user set. Then, given an authorization relation A ⊆ U × R, we write
σ (A) = {(σ (u), r ) |(u, r ) ∈ A}. A constraint c is said to be user-independent if for every authorization relation A that
satisfies c and every permutation σ : U → U , σ (A) also satisfies c . It is not hard to see that the sets of constraints
defined in Section 2.1 are user-independent [2], since their satisfaction is independent of the specific users that belong
to A(r ) and A(r ′).

Bergé et al. established a number of FPT results for APEP (restricted to t-bounded, user-independent constraints). We
introduce a definition of user-independence and t-boundedness for weighted constraints in Sections 3 and 4, respectively,
and show that we can improve on existing complexity results.

2.5 Parameterized complexity

An instance of a parameterized problem Π is a pair (I ,κ) where I is the main part and κ is the parameter; the latter is
usually a non-negative integer. A parameterized problem is fixed-parameter tractable (FPT) if there exists a computable
function f such that any instance (I ,κ) can be solved in time O ( f (κ) |I |c ), where |I | denotes the size of I and c is an
absolute constant. The class of all fixed-parameter tractable decision problems is called FPT and algorithms which run
in the time specified above are called FPT algorithms. As in other literature on FPT algorithms, we will often omit the
polynomial factor in O ( f (κ) |I |c ) and write O∗ ( f (κ)) instead.

Consider two parameterized problems Π and Π′. We say that Π has a parameterized reduction to Π′ if there are
functions д and h from N to N and a function (I ,κ) 7→ (I ′,κ ′) from Π to Π′ such that

• there is an algorithm of running time h(κ) · ( |I | + κ)O (1) which for input (I ,κ) outputs (I ′,κ ′), where κ ′ ≤ д(κ);
and

1We provide a brief introduction to parameterized complexity in Section 2.5.
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• (I ,κ) is a yes-instance of Π if and only if (I ′,κ ′) is a yes-instance of Π′.

While FPT is a parameterized complexity analog of P in classical complexity theory, there are many parameterized
hardness classes, forming a nested sequence of which FPT is the first member: FPT⊆W[1]⊆W[2 ] ⊆ . . . . The Exponential
Time Hypothesis (ETH) is a well-known and plausible conjecture that there is no algorithm solving 3-CNF Satisfiability
in time 2o (n) , where n is the number of variables [19]. It is well known that if the ETH holds then FPT ,W[1]. Hence,
W[1] is generally viewed as a parameterized intractability class, which is an analog of NP in classical complexity.

A well-known example of aW[1]-complete problem is the Cliqe problem parameterized by κ: given a graphG and a
natural number κ, decide whetherG has a complete subgraph on κ vertices. A well-known example of aW[2]-complete
problem is the Dominating Set problem parameterized by κ: given a graph G = (V ,E) and a natural number κ, decide
whetherG has a set S of κ vertices such that every vertex inV \S is adjacent to some vertex in S . Thus, everyW[1]-hard
problem Π1 is at least as hard as Cliqe (i.e., Cliqe has a parameterized reduction to Π1); similarly, every W[2]-hard
problem Π2 is at least as hard as Dominating Set.

More information on parameterized algorithms and complexity can be found in recent books [14, 17].

3 VALUED APEP

As we noted in the introduction, we believe that it is more valuable, in practice, for APEP to return some authorization
relation, even if that relation is not valid (in the sense defined in Section 2). Clearly, the authorization relation that is
returned must be the best one, in some appropriate sense. Inspired by Valued WSP, we introduce Valued APEP, where
every authorization relation is associated with a “cost” (more formally, a weight) and the solution to a Valued APEP
instance is an authorization relation of minimum weight.

3.1 Problem definition

We first introduce the notions of a weighted constraint and a weighted user authorization function. Let A ⊆ U × R be an
authorization relation. A weighted constraint c is defined by a functionwc : 2U×R → N such thatwc (A) = 0 if and only
if A satisfies the constraint. Hence, we will use interchangeably c andwc as a notation for c . By definition,wc (A) > 0 if
the constraint is violated. The intuition is thatwc (A) represents the cost incurred by A, in terms of constraint violation.
For example, a weighted constraint wc such that wc (A) = 0 iff A(r ) ∩ A(r ′) = ∅ and wc (A) increases monotonically
with the size of A(r ) ∩A(r ′) encodes the usual APEP constraint (r , r ′, ↕,∀). (We describe other weighted constraints in
Section 3.2.)

A weighted user authorization function ω : U × 2R → N has the following properties:

ω (u,T ) = 0 if u is authorized for each resource in T (1)

T ′ ⊆ T implies ω (u,T ′) ≤ ω (u,T ). (2)

Then ω (u,T ) > 0 if u is not authorized for some resource in T and, vacuously, we have ω (u, ∅) = 0 for all u ∈ U . The
weighted user authorization function is used to represent the cost of assigning unauthorized users to resources.

6
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Then we define the weighted authorization function Ω : 2U×R → N, weighted constraint functionwC : 2U×R → N,
and weight functionw : 2U×R → N as follows:

Ω(A) =
∑
u ∈U

ω (u,A(u)), (3)

wC (A) =
∑
c ∈C

wc (A), (4)

w (A) = Ω(A) +wC (A). (5)

A relation A is optimal ifw (A) ≤ w (A′) for all A′ ⊆ U × R. We now formally define Valued APEP.

Valued APEP
Input: A set of resources R, a set of usersU , a set of weighted constraints C , a weighted user authorization
function ω

Parameter: |R | = k
Output: A complete, optimal authorization relation

Remark 3.1. A base authorization relation Â is implicitly defined in a Valued APEP instance: specifically, (u, r ) ∈ Â iff

ω (u, r ) = 0. An instance of Valued APEP is defined by a tuple (R,U ,C,ω), where C is a set of weighted constraints; we

may, when convenient, refer to Â, as defined by ω.

3.2 Valued APEP constraints

We now provide some examples of weighted constraints, extending the examples introduced in Section 2.1. First, let
fc : Z → N be a monotonically increasing function (i.e., fc (z) ≤ fc (z + 1) for all z ∈ Z), where fc (z) = 0 iff z ≤ 0,
and let ℓc be some constant. Define maxdiff (A, r , r ′) to be max{|A(r ) \A(r ′) |, |A(r ′) \A(r ) |}. Then the equations below
demonstrate how an unweighted APEP constraint c may be extended to a weighted constraintwc using fc .

Unweighted Weighted

(r , ≤, t ) wc (A) = fc ( |A(r ) | − t ) (6)

(r , ≥, t ) wc (A) = fc (t − |A(r ) |) (7)

(r , r ′, ↕,∀) wc (A) = fc ( |A(r ) ∩A(r
′) |) (8)

(r , r ′,↔,∀) wc (A) = fc (maxdiff (A, r , r ′)) (9)

(r , r ′, ↕,∃) wc (A) =



0 if A(r ) , A(r ′),

ℓc otherwise.
(10)

(r , r ′,↔,∃) wc (A) =



0 if A(r ) ∩A(r ′) , ∅,

ℓc otherwise.
(11)

For example, the weighted cardinality constraint (6) evaluates to 0 if A assigns no more than t users to r , and some
non-zero value determined by fc and |A(r ) | otherwise. Note that we may write fc (x ) = max{0,дc (x )} for some дc (x ).
The specific choice of function дc and the constant ℓc will vary, depending on the particular application and particular
constraint that is being encoded. For example, one may choose the following functions дc : дc (x ) = ⌈a log2 (1 + x )⌉,
дc (x ) = ax , дc (x ) = ax2 for some positive integer a. For a given constraint c , the choice among the three functions

7
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above and the value of a may depend on the degree of importance for c to be satisfied. For notational convenience, we
may refer to binding-of-duty and separation-of-duty constraints of the form (r , r ′, ↕,∀), (r , r ′,↔,∀), (r , r ′, ↕,∃) and
(r , r ′,↔,∃). However, when doing so, we mean the relevant weighted constraint as defined in equations (8), (9), (10)
and (11), respectively.

Given an authorization relation A ⊆ U × R, we say a weighted constraint wc is user-independent if, for every
permutation σ ofU ,wc (A) = wc (σ (A)). We have already observed that the APEP constraints in Section 2.1 are user-
independent. It is easy to see that the weighted constraints defined above for Valued APEP are also user-independent.

In the remaining sections of this paper, we consider the fixed-parameter tractability of Valued APEP. We will write,
for example, APEP⟨BoDE⟩ to denote the set of instances of APEP in which the set of constraints C contains only BoDE

constraints.

3.3 Valued APEP and Valued WSP

We have already observed that WSP is a special case of APEP for certain choices of APEP constraints. Bergé et al. also
proved that the complexity of some sub-classes of APEP can be reduced to WSP [2, Section 5].

The inputs to Valued WSP include a weighted authorization policy and weighted constraints, and the solution is a
plan of minimum weight [12]. Similar arguments to those presented in Section 2.2 can be used to show that Valued
WSP is a special case of Valued APEP. In this paper, we will show that some sub-classes of Valued APEP can be
reduced to Valued WSP, thereby establishing, via the following result [12, Theorem 1], that those sub-classes of Valued
APEP are FPT.

Theorem 3.2. Valued WSP, when all weighted constraints are user-independent, can be solved in time O∗ (2k logk ),

where k = |S |.

Following Bertolissi et al. [4] let us consider the following real-world instance of WSP. The goal of the Trip Request
Workflow (TRW) is to deal with trips for employees in an organization. TRW has three users u1,u2,u3 and five
tasks (steps): Trip request (t1), Car rental (t2), Hotel booking (t3), Flight reservation (t4), and Trip validation (t5). Let
T = {ti : i = 1, 2, 3, 4, 5}.We will impose the following simplifications not affecting our consideration of TRW: we
will assume that all tasks are necessary and we will ignore the order in which tasks are executed. TRW has five
SoD constraints: (t1, t2,,), (t1, t4,,), (t2, t3,,), (t2, t5,,), (t3, t5,,), where (ti , tj ,,) means that ti and tj should be
performed by different users. Let the cost (weight) of violation of any such constraint be 1. Following Bertolissi et al.
[4], we will use a modified authorization policy, but our modification is different: we assume that user u3 is unavailable.
Then the authorization policy is as follows: Â = {(u1, ti ), (u2, ti ) : i = 1, 2, 3, 5} ∪ {(u1, t4)}. Let the authorization
weights be as follows: ω (u1,T ′) = 0 for each T ′ ⊆ T , ω (u2,T ′′) = 0 for each T ′′ ⊆ T \ {t4} and ω (u2,T ′′′) = 1 for each
T ′′′ ⊆ T such that t4 ∈ T ′′′. Observe that this instance of Valued WSP is unsatisfiable as at least one of the three
SoD constraints involving t2, t3, t5 cannot be satisfied. Let us assign u1 to t2, t3, t4 and u2 to t1, t5. Observe that the
authorization policy is satisfied and only one constraint is violated. Thus, the weight of the above plan is 1 and so the
plan is optimal.

4 t-BOUNDED CONSTRAINTS

In this section we consider instances of Valued APEP having an optimal solution A∗ that is small; i.e., |A∗ | ≪ |U × R |.
We start by defining a natural restriction on weighted constraints that implies the existence of a small optimal solution
for instances containing only constraints satisfying the restriction. Moreover, checking whether a constraint satisfies
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the restriction is often easier than checking for the existence of a small optimal solution. This restriction roughly says
that if the size of an authorization relation is larger than t , then there are authorizations that are redundant, in the
sense that removing those authorizations does not increase the cost of the authorization relation.

Definition 4.1 (t-wbounded). A set of weighted constraintsC is t-wbounded if and only if for each complete authorization

relation A such that |A| > t there exists a complete authorization relation A′ such that A′ ⊆ A, |A′ | < |A|, andwC (A
′) ≤

wC (A). We say that a weighted constraintwc is t-wbounded if the set {wc } is t-wbounded.

We remark that Bergé et al. [2] introduced the notion of f (k,n)-bounded user-independent constraints for APEP.
While they introduced the notion only for the user-independent constraints it can be easily generalized for any APEP
constraint as follows. For an authorization relation A and a user u let us denote by A − u the authorization relation
obtained from A by removing all the pairs that include the user u (i.e., the relation A \ {(u, r ) | r ∈ R}).

Definition 4.2. Given a set of resources R and a set of users U , a constraint c is f (k,n)-bounded if for each complete

authorization relation A which satisfies c , there exists a setU ′ of size at most f (k,n) such that for each user u ∈ (U \U ′),

the authorization relation A − u is complete and satisfies c .

One way to generalize f (k,n)-bounded constraints to Valued APEP would be to say that a weighted constraint
wc is f (k,n)-bounded if for each complete authorization relations A there exists a setU ′ of at most f (k,n) users such
that for every user u ∈ U \U ′, the relation A − u is complete andwc (A

′) ≤ wc (A). Given this we can show that our
definition covers all constraints covered by Bergé et al.

Lemma 4.3. If a weighted constraintswc is f (k,n)-bounded, thenwc is f (k,n) · k-wbounded. Moreover, if every c ∈ C is

user-independent and f (k,n)-bounded then C is f (k,n) · 2k · k-wbounded.

Proof. Let us consider a complete relation A. If |A| > f (k,n) · k , then there are at least f (k,n) + 1 users authorized
by A. It follows that there exists a user u such that A(u) , ∅ and the authorization relation A′ = A − u is complete and
wc (A

′) ≤ wc (A). But A′ ⊆ A and |A′ | < |A|. Hence wc is ( f (k,n) · k )-wbounded. Now, if |A| > f (k,n) · 2k · k , then
for some T ⊆ R, T , ∅ there are at least f (k,n) + 1 users u such that A(u) = T . Since every c ∈ C is user-independent
and f (k,n)-bounded, it is not difficult to see that for a user u with A(u) = T the authorization relation A′ = A − u is
complete andwc (A

′) ≤ wc (A) for all c ∈ C . Therefore C is f (k,n) · 2k · k-wbounded. □

We can now show that if the set of all constraints in an input instance is t-wbounded, then the size of some optimal
solution is indeed bounded by t .

Lemma 4.4. Let I = (R,U ,C,ω) be an instance of Valued APEP such thatC is t-wbounded. Then there exists an optimal

solution A∗ of I such that |A∗ | ≤ t .

Proof. Let A be an optimal solution of I that minimizes |A|. If |A| ≤ t , then the result follows immediately. For
the sake of contradiction, let us assume that |A| > t . Since A is a solution, it is complete. Hence by the definition of
t-wboundedness, it follows that there exists a complete authorization relation A′ ⊆ A such that A′ ⊆ A, |A′ | < |A|, and
wC (A

′) ≤ wC (A). Since A′ is a complete authorization relation, it follows that A′ is also a solution. Because A′ ⊆ A,
it follows that for all u ∈ U we have A′(u) ⊆ A(u) and by the monotonicity condition on ω and the definition of the
function Ω, we have that Ω(A′) ≤ Ω(A). Finally it follows thatw (A′) ≤ w (A) and A′ is also an optimal solution. This
however contradicts the choice of the optimal solution A to be an optimal solution that minimizes |A|. □
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Recall that in WSP the solution is a plan that assigns each step to exactly one user. Hence, we can easily translate an
instance of WSP into an APEP instance such that each constraint can be satisfied only if each resource is authorized for
exactly one user. Let us call such constraints WSP constraints. It follows that if a relation A ⊆ U × R satisfies a WSP
constraint c , then |A| = k and there are at most k users authorized by A. It follows that in an instance of APEP obtained
by a straightforward reduction from WSP we have that every constraint is k-bounded and the set of all constraints is
k-wbounded. Therefore, the W[1]-hardness result for WSP established by Wang and Li [30] immediately translates to
W[1]-hardness of APEP (and hence also Valued APEP) parameterized by the number of resources k even when the set
of all constraints is k-wbounded.

Theorem 4.5. APEP is W[1]-hard even when restricted to the instances such thatC is k-wbounded and every constraint of

C is k-bounded.

Given the above hardness result, from now on we will consider only user-independent constraints. We first show that
the user-independent constraints defined in Section 3.2 are t-wbounded. The following lemma significantly improves
the existing bounds for Valued APEP⟨BoDU,BoDE, SoDE, SoDU,CardUB⟩ proved in [9].

Lemma 4.6. Let I = (R,U ,C,ω) be an input instance to Valued APEP⟨BoDU,BoDE, SoDE, SoDU,CardUB,CardLB⟩.

Then, C is 3τk
(k
2
)
-wbounded, where τ = max(r,≥,t )∈C t . Moreover, for any complete authorization relation A, there exists

a complete authorization relation A∗ ⊆ A such that A∗ has at most 3τ
(k
2
)
users andwC (A

∗) ≤ wC (A).

Proof. Let A be a complete authorization relation. If A has at most 3τ
(k
2
)
users, then |A| ≤ 3τk

(k
2
)
and we are

done. Suppose that A has more than 3τ
(k
2
)
users. We define an equivalence relation ≡ in R as follows: r ≡ r ′ if and

only if A(r ) = A(r ′). This equivalence relation yields a partition of R, R1 ⊎ . . . ⊎ Rp . Note that for any r ∈ Ri , we
have that A(Ri ) = A(r ). For any i, j ∈ [p] with i , j, we will consider A(Ri ) \A(Rj ),A(Rj ) \A(Ri ), and A(Ri ) ∩A(Rj ).
Since A(Ri ) , A(Rj ), either A(Ri ) \ A(Rj ) , ∅ or A(Rj ) \ A(Ri ) , ∅ or both. We mark some users from A as follows
to construct a new authorization relation A∗. If A(Ri ) \ A(Rj ) , ∅, we mark min(τ , |A(Ri ) \ A(Rj ) |) many users in
A(Ri ) \A(Rj ); in particular if |A(Ri ) \A(Rj ) | ≤ τ , then we mark all the users in A(Ri ) \A(Rj ). Similarly, for non-empty
A(Rj ) \A(Ri ) and A(Ri ) ∩A(Rj ). We repeat this process for all pairs i, j ∈ [p] with i , j. We delete all unmarked users
from A and output A∗ as the new authorization relation. Clearly, there are at most 3τ

(k
2
)
marked users in A∗. Thus,

|A∗ | ≤ 3τk
(k
2
)
. Observe that for any marked user u, A∗ (u) = A(u) and for any i ∈ [p], for any r , r ′ ∈ Ri , A∗ (r ) = A∗ (r ′).

We first argue that for two distinct i, j ∈ [p], A∗ (Ri ) ∩ A∗ (Rj ) , ∅ if and only if A(Ri ) ∩ A(Rj ) , ∅. As A∗ ⊆ A, if
there exists u ∈ A∗ (Ri ) ∩A∗ (Rj ), then the same user u ∈ A(Ri ) ∩A(Rj ). On the other hand, letA(Ri ) ∩A(Rj ) , ∅. Then,
there exists u ∈ A(Rj ) ∩A(Rj ) that we have marked using our marking scheme. So, A∗ (Ri ) ∩A∗ (Rj ) , ∅.

Next we argue that for two distinct i, j ∈ [p], A∗ (Ri ) , A∗ (Rj ). By the definition of R = R1 ⊎ . . . ⊎ Rp , we have
A(Ri ) , A(Rj ). Therefore, either there exists u ∈ A(Ri ) \A(Rj ) or there exists u ′ ∈ A(Rj ) \A(Ri ) or both. If there exists
u ∈ A(Ri ) \A(Rj ), then we have marked at least one such u. If there exists u ∈ A(Rj ) \A(Ri ), then we have marked at
least one such u. As for any marked user u, A∗ (u) = A(u), A∗ (Rj ) , A∗ (Ri ).

By the arguments above, we have the following:

• A∗ ⊆ A,
• A(r ) = A(r ′) if and only if A∗ (r ) = A∗ (r ′), and
• A(r ) ∩A(r ′) , ∅ if and only if A∗ (r ) ∩A∗ (r ′) , ∅.

Consider a constraint c = (r , r ′,↔,∀) ∈ C . By (9) in Section 3,wc (A) = fc (maxdiff (A, r, r′)), wheremaxdiff (A, r, r′) =
max{|A(r) \ A(r′) |, |A(r′) \ A(r) |}. Observe that maxdiff (A∗, r, r′) ≤ maxdiff (A, r, r′). Hence,wc (A

∗) ≤ wc (A).
10
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Consider a constraint c = (r , r ′,↔,∃) ∈ C . By (11) in Section 3, if A(r ) ∩ A(r ′) , ∅ then wc (A) = 0; otherwise,
wc (A) = ℓc > 0. As we have proved, A∗ (r ) ∩A∗ (r ′) , ∅ if and only if A(r ) ∩A(r ′) , ∅. Hence,wc (A) = wc (A

∗) = ℓc .
Consider a constraint c = (r , r ′, ↕,∀) ∈ C . By (8) in Section 3, wc (A) = fc ( |A(r ) ∩ A(r ′) |). We have shown that

A∗ (r ) ∩A∗ (r ′) = ∅ if and only if A(r ) ∩A(r ′) = ∅. Moreover, |A∗ (r ) ∩A∗ (r ′) | ≤ |A(r ) ∩A(r ′) |. Hence,wc (A
∗) ≤ wc (A).

Consider a constraint c = (r , r ′, ↕,∃) ∈ C . By (10) in Section 3, if A(r ) , A(r ′) then wc (A) = 0; otherwise
wc (A) = ℓc > 0. We have proved that A(r ) , A(r ′) if and only if A∗ (r ) , A∗ (r ′). It implies thatwc (A

∗) = wc (A) = ℓc .
Consider a constraint c = (r , ≤, t ). By (6) in Section 3, wc (A) = fc ( |A(r ) | − t ). Observe that A∗ (r ) ⊆ A(r ). Hence,

wc (A
∗) ≤ wc (A).

Finally, consider a constraint c = (r , ≥, t ) ∈ C . By (7) in Section 3,wc (A) = fc (t − |A(r ) |). Note that t ≤ τ . Let i, j ∈ [p]
be such that r ∈ Ri and j , i . Notice thatA(r ) = (A(Ri ) \A(Rj ))∪ (A(Ri )∩A(Rj )) and we markedmin(τ , |A(Ri ) \A(Rj ) |)
users in A(Ri ) \A(Rj ) and min(τ , |A(Ri ) ∩A(Rj ) |) users in A(Ri ) ∩A(Rj ). Therefore, if |A(r ) | ≤ τ , then A∗ (r ) = A(r )

andwc (A
∗) = wc (A). Otherwise |A(r ) | ≥ τ implying |A∗ (r ) | ≥ τ ≥ t andwc (A

∗) = wc (A) = 0.
Thus, we conclude thatwC (A

∗) ≤ wC (A). □

By definition, if we have user-independent constraints, then we do not need to know which particular users are
assigned to resources in order to determine the constraint weight of some authorization relation A. Instead, it suffices
to know for each set T ⊂ R how many users u are authorized by A precisely for the set T , i.e., the size of the set
{u ∈ U | A(u) = T }. This leads us to the following definition of the user profile of an authorization relation. Lemma 4.8
confirms the intuition behind the definition: if we have a user-independent constraint, then two authorization relations
with the same user profile yield the same constraint weight.

Definition 4.7 (user profile). For a set of resources R, a set of users U , and an authorization relation A ⊆ U × R, the user
profile of the authorization relation A is the function usrA : 2R → N, where usrA (T ) is defined to be |{u ∈ U | A(u) = T }|.

Note that usrA (T ) is not the same as |A(T ) |. The integer usrA (T ) is the number of all users that are authorized for all
resources in T and nothing else, while A(T ) is the set of users that are authorized for at least one resource in T .

An example of a user profile is given in Figure 1b. Here R = {r1, r2, r3, r4} and U = {u1,u2,u3,u4,u5}. Let A
be an authorization relation, shown in Figure 1a in the form of a bipartite graph, such that A(r1) = {u1,u2,u3},
A(r2) = {u2,u3,u4}, A(r3) = {u4} and A(r4) = {u4}. Then Figure 1b shows the user profile of A.

Lemma 4.8. LetU be a set of users, R a set of resources, (c,wc ) a user-independent weighted constraint andA1,A2 ⊆ U ×R

two authorization relations such that usrA1 (T ) = usrA2 (T ) for all T ⊆ R. Thenwc (A1) = wc (A2).

Proof. We will define a permutation σ : U → U such that σ (A1) = A2. The lemma then immediately follows from
the definition of user-independence. For i ∈ {1, 2} andT ⊆ R, letU i

T be the set of users that are assigned by Ai precisely
to the resources in T and nothing else. That is U i

T = {u ∈ U | Ai (u) = T }. Now, let us fix for each U i
T an arbitrary

ordering of the users in U i
T and let uiT , j for j ∈ [|U i

T |] denote the j-th user in U i
T . Note that for all T ⊆ R, we have

usrA1 (T ) = usrA2 (T ) by the assumptions of the lemma and hence |U 1
T | = |U

2
T |. Moreover, each user in U is assigned

exactly one (possibly empty) subset of resources in each of the authorization relations A1 and A2. Hence the sets⋃
T ⊆R {U

1
T } and

⋃
T ⊆R {U

2
T } are both partitions ofU . We are now ready to define the permutation σ as σ (u1T , j ) = u

2
T , j

for all T ⊆ R, j ∈ [|U 1
T |]. It remains to show that σ (A1) = A2. By the definition of the users u1T , j and u

2
T , j , we get that

for all T ⊆ R, all j ∈ [|U 1
T |], and all r ∈ R we have (u1T , j , r ) ∈ A1 if and only if r ∈ T if and only if (u2T , j , r ) ∈ A2 and the

lemma follows. □

11
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r1

r2

r3

r4

u1

u2

u3

u4

u5

(a) Authorization relation

T usrA (T )

{r1} 1
{r1, r2} 2
{r2, r3, r4} 1
∅ 1
Other T ⊆ R 0

(b) User profile

Fig. 1. An example of an authorization relation and the corresponding user profile.

Lemma 4.9. Let I = (R,U ,C,ω) be an instance of Valued APEP such that all constraints in C are user-independent and

let usr : 2R → N be a user profile. Then there exists an algorithm that finds a relation A which minimizesw (A) among all

relations with user profile usr.

Proof. It follows from Lemma 4.8 and the fact that all constraints in C are user-independent that wC (A) only
depends on the user profile ofA and hence we only need to find an authorization relationAwith user profile usrA = usr
such that Ω(A) is minimized.

Note that if
∑
T ⊆R usr(T ) , |U |, then there is no authorization relation with given user profile. This is because for

every authorization relation A and every user u, the set A(u) is defined as is a (possibly empty) subset of R. Hence from
now on we assume that

∑
T ⊆R usr(T ) = |U |. We start by creating a weighted complete bipartite graphG = (V1 ∪V2,E),

with parts V1,V2 such that V1 = U and V2 contains for each T ⊆ R a set of usr(T ) vertices; let us denote these vertices
{vT1 ,v

T
2 , . . . ,v

T
usr(T )

}. For a user u ∈ U and a vertex vTi , the weight of the edge uv
T
i is defined as w (uvTi ) = ω (u,T ).

Since
∑
T ⊆R usr(T ) = |U |, it follows that |V1 | = |V2 |. We show that there is a correspondence between perfect matchings

of the graph G and authorization relations with user profile usr.
First, let A be an authorization relation such that usrA = usr. Then, we can get a perfect matchingMA ofG of weight

Ω(A) as follows. Because, usrA = usr, we have that for everyT ⊆ R there are exactly usr(T ) many users u ∈ U such that
A(u) = T . Hence for everyT ⊆ R there is a perfect matchingMT

A between these users and vertices {vT1 ,v
T
2 , . . . ,v

T
usr(T )

}.
Moreover, the cost of an edge between a user u ∈ U such that A(u) = T and a vertex vTj , j ∈ usr(T ), is ω (u,T ) which is
precisely the contribution of the user u to Ω(A). Hence the cost of the matchingMA =

⋃
T ⊆R MT

A is precisely Ω(A).
On the other hand ifM is a perfect matching inG , then we can define an authorization relation AM as (u, r ) ∈ AM , if

and only if u is matched to a vertex vTi with r ∈ T . Clearly, every user u is then matched byM to a vertex vTi such that
AM (u) = T and weight of the edge inM incident to u is precisely ω (u,AM (u)), which is the contribution of u to Ω(A).

It follows that G has a perfect matching of costW if and only if there is an authorization relation A with user profile
usr and Ω(A) =W and given a perfect matching of G, we can easily find such an authorization relation. Therefore, to
finish the proof of the lemma we only need to compute a minimum cost perfect matching in the weighted bipartite
graph G, which can be done using the well-known Hungarian method in O (mn) time [23], where n is the number of
vertices andm is the number of edges in G. □
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The next ingredient required to prove our main result (Theorem 4.14) is the fact that the number of all possible user
profiles for all authorization relations of size at most t is small and can be efficiently enumerated. Let I = (R,U ,C,ω)

be an instance of Valued APEP and A ⊆ U × R an authorization relation. Then for the user profile usrA of A we have
that
∑
T ⊆R |T | · usrA (T ) = |A| and

∑
T ⊆R usrA (T ) = |U |. Moreover, if A is complete, then t ≥ k . Note that the number

of users in an optimal solution for a t-wbounded set of weighted constraints is at most t by Lemma 4.4. However,
sometimes we are able to show that the number of users in an optimal solution is actually significantly smaller than the
bound t such that the set of weighted constraints C is t-wbounded (see, e.g., Lemma 4.6). Moreover, if usrA is a user
profile of an authorization relation with at most ℓ users, then

∑
T ⊆R,T,∅ usrA (T ) ≤ ℓ. The following lemma will be

useful because we are only interested in complete authorization relations of size at most t that use at most ℓ ≤ t users.

Lemma 4.10. Let I = (R,U ,C,ω) be an instance of Valued APEP such that |R | = k and let ℓ ∈ N. Then the number of

possible user profiles, usr : 2R → N, such that

∑
T ⊆R,T,∅ usr(T ) ≤ ℓ is

(
ℓ+2k−1

ℓ

)
. Moreover, we can enumerate all such

functions in time O∗ (
(
ℓ+2k−1

ℓ

)
).

Proof. It is well known that the number of weak compositions of a natural numberq intop parts (the number of ways
we can assign non-negative integers to the variables x1,x2, . . . ,xp such that

∑p
i=1 xi = q) is precisely

(p+q−1
q−1
)
=
(p+q−1
p−1
)

(see, e.g., [20]). Note that because
∑
T ⊆R usr(T ) = |U |, each user profile usr is determined by assigning usr(T ) for

all T , ∅. It is not difficult to see that the number of ways in which we can assign usr(T ) for all T , ∅ such that∑
T ⊆R,T,∅ usr(T ) ≤ ℓ is the same as the number of weak partitions of ℓ into 2k parts - each of the first 2k − 1 parts is

identified with one of 2k − 1 setsT ⊆ R such thatT , ∅. The last part is then a “slack” part that allows
∑
T ⊆R,T,∅ usr(T )

to be also smaller than ℓ. It follows that the number of possible user profiles is at most
(
ℓ+2k−1

ℓ

)
. To enumerate them in

O∗ (
(
ℓ+2k−1

ℓ

)
) time we can do the following branching algorithm: We fix some orderT1,T2, . . . ,T2k−1 of the non-empty

subsets of R. We first branch on ℓ + 1 possibilities for usr(T1), then we branch on ℓ + 1− usr(T1) possibilities for usr(T2),
and so on, until we branch on ℓ+ 1−

∑
i ∈[2k−2] usr(Ti ) possibilities for usr(T2k−1). Afterwards, we compute usr(∅) from∑

T ⊆R usr(T ) = |U |. Each leaf of the branching tree gives us a different possible user profile and we spend polynomial
time in each branch. Hence the running time of the enumeration algorithm is O∗ (

(
ℓ+2k−1

ℓ

)
). □

Because the number of possible user profiles that authorize at most ℓ users appears in the running time of our
algorithms, it will be useful to keep in mind the following two simple observations about the combinatorial number(
ℓ+2k−1

ℓ

)
.

Observation 4.11.
(
ℓ+2k−1

ℓ

)
≤ 2ℓ+2

k−1 ≤ 4max(ℓ,2k−1)
.

Observation 4.12. If ℓ ≥ 4, then
(
ℓ+2k−1

ℓ

)
≤ min(2ℓk , ℓ2

k−1) + 1.

Proof. If k = 0, then
(
ℓ+2k−1

ℓ

)
=
(
ℓ
ℓ

)
= 1 ≤ min(2ℓ ·0, ℓ2

0−1)+1. If k = 1, then
(
ℓ+2k−1

ℓ

)
= ℓ+1 ≤ min(2ℓ ·1, ℓ2

1−1)+1.

If k = 2, then
(
ℓ+2k−1

ℓ

)
=
(
ℓ+3
3
)
= ℓ3+6ℓ2+11ℓ+1

6 and since ℓ ≥ 4, it follows that
(
ℓ+3
3
)
≤ ℓ3 ≤ 22ℓ . From now on, let us

assume that k ≥ 3 and ℓ ≥ 4. We distinguish between two cases depending on whether ℓ < 2k or ℓ ≥ 2k . Let us first

consider ℓ ≥ 2k . Note that in this case ℓ2
k−1 ≤ 2ℓk and because k ≥ 2 we have

(
ℓ+2k−1

ℓ

)
=
(
ℓ+2k−1
2k−1

)
≤

(ℓ+2k−1)2k −1
(2k−1)! ≤

22k −1
(2k−1)! · ℓ

2k−1 ≤ ℓ2
k−1. On the other hand, let us now assume ℓ ≤ 2k − 1. Note that, because k ≥ 2 and ℓ ≥ 3, it holds

that (2k − 1)ℓ ≤ ℓ2
k−1. Furthermore, (2k − 1)ℓ < 2ℓk . Then

(
ℓ+2k−1

ℓ

)
≤

(ℓ+2k−1)ℓ
ℓ! ≤ 2ℓ

ℓ! · (2
k − 1)ℓ ≤ (2k − 1)ℓ . □
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We are now ready to state and prove the main lemma of this section, which establishes that there exists an FPT
algorithm that finds the best solution among all solutions that authorize at most ℓ users. In particular, this algorithm
finds an optimal solution for the case of user-independent t-wbounded constraints.

Lemma 4.13. Let I = (R,U ,C,ω) be an instance of Valued APEP such that all weighted constraints in C are user-

independent and let ℓ ∈ N. Then there exists an algorithm that in time O∗ (
(
ℓ+2k−1

ℓ

)
) computes a complete authorization

relation A such thatw (A) ≤ w (A′) for every complete authorization relation A′ ⊆ U × R that authorizes at most ℓ users

for some resource in R.

Proof. Note that it suffices to compute such an authorization relation A that also authorizes at most ℓ users. Let A∗

be one such complete authorization relation that satisfies the statement of the theorem. Let usrA∗ : 2R → N be the user
profile of A∗. Observe that

∑
T ⊆R,T,∅ usrA∗ (T ) ≤ ℓ. Moreover, observe that

∑
T ⊆R usrA∗ (T ) = |U |, as every user inU is

assigned to precisely one subset of resources by A∗. Furthermore, notice that since A∗ is complete, for all r ∈ R we have
that
∑
{r }⊆T ⊆R usrA∗ (T ) ≥ 1 and we may restrict our attention to user profiles that also satisfy

∑
{r }⊆T ⊆R usrA∗ (T ) ≥ 1

for all r ∈ R. By Lemma 4.10, there exist
(
ℓ+2k−1

ℓ

)
different functions (possible user profiles) usr : 2R → N such that∑

T ⊆R,T,∅ usr(T ) ≤ ℓ and
∑
T ⊆R usr(T ) = |U |. Moreover, we can enumerate all of them in time O∗ (

(
ℓ+2k−1

ℓ

)
).

Now, letP be the set of all such possible user profiles obtained by Lemma 4.10 that also satisfy
∑
{r }⊆T ⊆R usrA∗ (T ) ≥ 1

for all r ∈ R. Since P is a subset of functions computed by Lemma 4.10, it follows that |P | ≤
(
ℓ+2k−1

ℓ

)
. Moreover, it

is easy to see that usrA∗ ∈ P. The algorithm then branches on all possible profiles in P and for a profile usri ∈ P,
i ∈ [|P |], it computes an authorization relation Ai such that usrAi = usri andw (Ai ) is minimized, which can be done
in polynomial time by Lemma 4.9. Finally, the algorithm outputs the authorization relation Ai for the user profile usri
that minimizesw (Ai ) among all usri ∈ P. The running time of the whole algorithm is O∗ (

(
ℓ+2k−1

ℓ

)
).

To establish correctness, first notice that for all i ∈ [|P |] we have
∑
{r }⊆T ⊆R usri (T ) ≥ 1 for all r ∈ R, so the

authorization relation Ai is complete. Furthermore, recall that usrA∗ ∈ P. For i ∈ [|P |] such that usri = usrA∗ , we have
that w (Ai ) ≤ w (A∗) ≤ w (A′) for all complete authorization relations A′ ⊆ U × R that authorizes at most ℓ users for
some resource in R. □

Note that it follows from Lemma 4.4 that given an instance I = (R,U ,C,ω) of Valued APEP such that all weighted
constraints in C are user-independent and C is t-wbounded there exists an optimal solution A∗ of I such that |A∗ | ≤
t . Moreover, |A∗ | ≤ t implies that A∗ authorizes at most t users for some resource. Hence, in combination with
Observation 4.12, we immediately obtain the main result of this section as a corollary, which establishes that there
exists an FPT algorithm for the case of user-independent t-wbounded constraints.

Theorem 4.14. Let I = (R,U ,C,ω) be an instance of Valued APEP such that all weighted constraints in C are user-

independent andC is t-wbounded. Then there exists an algorithm solving I in time O∗ (
(t+2k−1

t

)
) = O∗ (min(2tk , t2

k−1)) =

O∗ (2min(kt, (2k−1) log t ) ).

Using Theorem 4.14 and Lemma 4.6, we have the following:

Corollary 4.15. Let τ = max(r,≥,t )∈C t . Then Valued APEP⟨BoDU,BoDE, SoDE, SoDU,CardUB,CardLB⟩ can be solved

in O∗ (8τk
2 (k2 ) ) time. Thus, Valued APEP⟨BoDU,BoDE, SoDE, SoDU,CardUB,CardLB⟩ parameterized by k + τ is FPT.

Proof. As t ≤ τ3k
(k
2
)
, we have 2kt ≤ 8k

2 (k2 ) completing the proof. □
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In Sections 5 and 6 we develop more specialized algorithms that solve Valued APEP more efficiently for instances
where all constraints are from some specific subset of the above constraints. We conclude this section by showing that
restricting attention to user-independent constraints is not sufficient to obtain an FPT algorithm parameterized by
the number of resources k even for APEP. Because all weighted constraints are necessarily (k · |U |)-wbounded, as a
corollary of our conditional lower-bound, we will also show that, unless the Exponential Time Hypothesis (ETH) fails,
the algorithm in Theorem 4.14 is, in a sense, the best that we can hope for from an algorithm that can solve Valued
APEP with arbitrary user-independent t-wbounded weighted constraints.

Because all the constraints we saw so far were 2k -wbounded, we will need to introduce new, more restrictive,
constraints to obtain our W[2]-hardness and ETH lower-bound. As we consider only user-independent constraints, it is
natural for a constraint c to be a function of the user profile of A. To this end, we define a new type of user-independent
constraint c = (τ ,X ,

∨
), where τ ⊆ 2R and X ⊆ N. The constraint (τ ,X ,

∨
) is satisfied if and only if there exist T ∈ τ

and x ∈ X such that usrA (T ) = x . Less formally, c is satisfied if and only if some specified number of users (in X ) is
authorized for some specified set of resources (in τ ). To obtain our ETH lower-bound we make use of the following
well-known result in parameterized complexity:

Theorem 4.16 ([25]). Assuming ETH, there is no f (k )no (k )-time algorithm for Dominating Set, where n is the number

of the vertices of the input graph, k is the size of the output set, and f is an arbitrary computable function.

Given the above theorem, we are ready to prove the main negative result of this section.

Theorem 4.17. APEP is W[2]-hard and, assuming ETH, there is no f ( |R |) · |I |o (2
|R | )

-time algorithm solving APEP even

when all constraints are user-independent and the base authorization relation isU × R.

Henceforth, we will write [k] to denote {1, . . . ,k }. For a graphG = (E,V ) and vertex x ∈ V ,NG (x ) = {y ∈ V | xy ∈ E}

is the set of vertices adjacent to x in G; for a set S ⊆ V (G ), N (S ) =
⋃
x ∈S NG (x ) \ S .

Proof. To prove the theorem we give a reduction from the Dominating Set problem. Let (G,k ) be an instance of
the Dominating Set problem. Let |V (G ) | = n and let V (G ) = {v1,v2, . . . ,vn }; that is we fix some arbitrary ordering of
the vertices inG and each vertex ofG is uniquely identified by its position in this ordering (index of the vertex). For a
vertex vi ∈ V (G ) we let the set Xi = {i} ∪ {j | vj ∈ NG (vi )}. In other words, for a vertex vi ∈ V (G ), the set Xi is the set
of indices of the vertices in the closed neighbourhood of vi . The aim of the Dominating Set problem is then to decide
whether G has a set S of at most k vertices such that for all i ∈ [n] the set Xi contains an index of some vertex in S .

Let I = (U ,R, Â,C ) be an instance of APEP such that

• R = {r1, . . . , rℓ } such that 2ℓ−1 ≤ k < 2ℓ ,
• |U | = k · n,
• C =

⋃
i ∈[n]{(τ ,Xi ,

∨
)}, where τ ⊂ 2R such that ∅ < τ and |τ | = k , and

• Â = U × R.

We prove that (G,k ) is a YES-instance of Dominating Set if and only if I is a YES-instance of APEP. Let τ =
{T1,T2, . . . ,Tk }. Observe that because 2ℓ−1 ≤ k and Ti , Tj for i , j, it follows that every resource appears in Ti for
some i ∈ [k].

Let S = {vq1 ,vq2 , . . . ,vqk } be a dominating set ofG of size k (note that if we have a dominating set of size at most k ,
then we have a dominating set of size exactly k). Let A be an authorization relation such that usrA (Ti ) = qi . Because
|U | = k ·n and 1 ≤ qi ≤ n for all i ∈ [k], it is easy to construct such an authorization relation. For each i ∈ [k] we simply
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select qi many fresh users u such that A(u) = Ti and leave the remaining users not assigned to any resources (A(u) = ∅).
Because 2ℓ−1 ≤ k and for all Ti ∈ τ we have usrA (Ti ) ≥ 1, it is easy to see that A is a complete authorization relation.
Since Â = U × R, A is authorized. It remains to show that A is eligible w.r.t. C . Consider the constraint ci = (τ ,Xi ,

∨
).

Since S is a dominating set, the closed neighbourhood of vi contains a vertex vqj ∈ S . But then qj ∈ Xi , Tj ∈ τ , and
usrA (Tj ) = qj , hence ci is satisfied.

On the other hand let A be valid w.r.t. Â. We obtain a dominating set ofG of size at most k as follows. Without loss
of generality, let as assume that if i < j, then usrA (Ti ) ≥ usrA (Tj ) and let k ′ ∈ [k] be such that usrA (Tk ′ ) ≥ 1 and
usrA (Tk ′+1) = 0 (note that if usrA (Tk ) ≥ 1, then k ′ = k). We let S =

⋃
i ∈[k ′]{vusrA (Ti ) }. We claim that S is a dominating

set (clearly |S | = k ′ ≤ k). Let vi be arbitrary vertex in V (G ) \ S . Consider the constraint ci = (τ ,Xi ,
∨
). Clearly ci is

satisfied and there existsTj ∈ τ and x ∈ Xi such that usrA (Tj ) = x . But by definition of Xi , x ≥ 1 and vx is a neighbour
of vi . Moreover, by the definition of S , we have vx = vusrA (Tj ) ∈ S . It follows that S is a dominating set.

Now for each i ∈ [n], the set Xi has size at most n and τ has size k ≤ n, so the size of the instance I is polynomial in
n. Moreover 2ℓ−1 ≤ k < 2ℓ , hence APEP is W[2]-hard parameterized by |R | and an f ( |R |) · |I |o (2

|R | ) time algorithm for
APEP yields an f (k )no (k ) time algorithm for Dominating Set, and the result follows from Theorem 4.16. □

The set C is trivially ( |R | · |U |)-wbounded for every Valued APEP instance I = (R,U ,C,ω), so we obtain the
following result, which asserts that the lower bound asymptotically matches the running time of the algorithm from
Theorem 4.14.

Corollary 4.18. Assuming ETH, there is no to (2
|R | ) · nO (1) time algorithm that given an instance I = (R,U ,C,ω) of

Valued APEP such that all constraints in C are user-independent and C is t-wbounded computes an optimal solution for I.

5 SoDU AND BoDU CONSTRAINTS

In this section, we will consider Valued APEP, where all constraints are only BoDU and SoDU. We will show how
to reduce it to Valued WSP with user-independent constraints, with the number of steps equal to the number k of
resources in Valued APEP. As a result, we will be able to obtain an algorithm for Valued APEP with only BoDU and
SoDU constraints of running time O∗ (2k logk ).

Let us start with Valued APEP⟨SoDU⟩. Recall that the weighted version of an SoDU constraint (r , r ′, ↕,∀) iswc (A) =

fc ( |A(r ) ∩A(r
′) |) for some monotonically increasing function fc .

The weight of a binary SoD constraint c = (s ′, s ′′,,) in Valued WSP is 0 if and only if steps s ′ and s ′′ are assigned
to different users. Valued WSP using only SoD constraints of this form will be denoted by Valued WSP(,).

Lemma 5.1. Let I = (R,U ,C,ω) be an instance of Valued APEP⟨SoDU⟩ and let A
∗
be an optimal solution of I. Let A′

be arbitrary authorization relation such that A′ ⊆ A∗ and |A′(r ) | = 1 for every r ∈ R. Then A′ is an optimal solution of I.

Moreover, in polynomial time I can be reduced to an instance I ′ of Valued WSP(,) such that the weights of optimal

solutions of I and I ′ are equal.

Proof. LetA′ be an arbitrary relation such thatA′ ⊆ A∗ and |A′(r ) | = 1 for every r ∈ R. By definition,A′ is complete.
By (2) and (3), A′ ⊆ A∗ implies Ω(A′) ≤ Ω(A∗). Let c = (r , r ′, ↕,∀) ∈ C . Since A′(r ) ∩A′(r ′) ⊆ A∗ (r ) ∩A∗ (r ′),wc (A) =

fc ( |A(r ) ∩ A(r ′) |) and fc is non-decreasing, we have wc (A
′) ≤ wc (A

∗). Thus, Ω(A′) + wC (A
′) ≤ Ω(A∗) + wC (A

∗).

Since A∗ is optimal, A′ is optimal, too.
Define an instance I ′ of Valued WSP(,) as follows: the set of steps is R, the set of users is U , and (r , r ′,,) is a

constraint of I ′ if (r , r ′, ↕,∀) is a constraint of I. The weight of (r , r ′,,) equalswc (A
′) = fc (1) (recall that |A′(r ) | = 1

16



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Valued Authorization Policy Existence Problem: Theory and Experiments Woodstock ’18, June 03–05, 2018, Woodstock, NY

for all r ) and the weights of (u,T ), u ∈ U ,T ⊆ R, in both I and I ′ are equal. Observe that π : R → U defined by
π (r ) = A′(r ) is an optimal plan of I ′. Thus, the optimal solution of I has the same weight as that of I ′. □

We next consider Valued APEP⟨BoDU, SoDU⟩. Recall that the weighted version of a BoDU constraint (r , r ′,↔,∀) is
given by fc (max{|A(r ) \A(r ′) |, |A(r ′) \A(r ) |}) for some monotonically increasing function fc .

The weight of binary BoD constraint c = (s ′, s ′′,=) in Valued WSP is 0 if and only if steps s ′ and s ′′ are assigned
the same user. Valued WSP(=) denotes Valued WSP containing only BoD constraints; Valued WSP(=,,) denotes
Valued WSP containing only SoD and BoD constraints. In fact, Valued WSP(=) is already NP-hard which follows from
Theorem 6.4 of [8]. This theorem, in particular, shows that Valued WSP(=) is NP-hard even if the weights are restricted
as follows:wc (π ) = 1 if a plan π falsifies a constraint c , ω (u, r ) = ∞ if (u, r ) < Â.

Lemma 5.2. Let I = (R,U ,C,ω) be an instance of Valued APEP⟨BoDU, SoDU⟩ and let A
∗
be an optimal solution of I.

There is an optimal solution A′ of I such that A′ ⊆ A∗ and |A′(r ) | = 1 for every r ∈ R. Moreover, in polynomial time I

can be reduced to an instance I ′ of Valued WSP(=,,).

Proof. Consider an optimal solution A∗ of I and define A′ as follows. We first define an equivalence relation � on
R, where r � r ′ if and only if A∗ (r ) = A∗ (r ′). This gives a partition R = R1 ⊎ . . . ⊎ Rp such that p ≤ k . For each Ri , we
choose ui ∈ A∗ (r ), where r ∈ Ri . Then A′ = ∪

p
i=1{(ui , r ) : r ∈ Ri }.

By definition, A′ is complete. By (2) and (3), A′ ⊆ A∗ implies Ω(A′) ≤ Ω(A∗). Let c = (r , r ′,↔,∀) ∈ C . If A∗ satisfies
c then A′ also satisfies c . If c is falsified by A∗ then

max{|A∗ (r ) \A∗ (r ′) |, |A∗ (r ′) \A∗ (r ) |} ≥ 1

but max{|A′(r ) \ A′(r ′) |, |A′(r ′) \ A′(r ) |} = 1. Hence, wc (A
∗) ≥ fc (1) = wc (A

′). Now let c = (r , r ′, ↕,∀) ∈ C . By the
proof of Lemma 5.1, we havewc (A

∗) ≥ wc (A
′).

Thus, Ω(A′) +wC (A
′) ≤ Ω(A∗) +wC (A

∗). Since A∗ is optimal, A′ is optimal, too.
An instance of I ′ of Valued WSP(=,,) is defined as in Lemma 5.1, but the constraints (r , r ′,=) correspond to

constraints (r , r ′,↔,∀) in C . It is easy to see that the optimal solution of I has the same weight as that of I ′. □

We are now able to state the main result of this section. The result improves considerably on the running time for an
algorithm that solves Valued APEP for arbitrary weighted t-bounded user-independent constraints (established in
Theorem 4.14).

Theorem 5.3. Valued APEP⟨BoDU, SoDU⟩ is FPT and can be solved in time O∗ (2k logk ).

Proof. Let I be an instance of Valued APEP⟨BoDU, SoDU⟩. By Lemma 5.2, I can be reduced to an instance I ′ of
Valued WSP(=,,). It remains to observe that I ′ can be solved in time O∗ (2k logk ) using the algorithm of Theorem 3.2,
as (r , r ′,=) and (r , r ′,,) are user-independent constraints. □

6 BoDE AND SoDU CONSTRAINTS

In this section, we consider Valued APEP⟨BoDE, SoDU⟩. We provide a construction that enables us to reduce an instance
I of Valued APEP⟨BoDE, SoDU⟩ with k resources to an instance I ′ of Valued WSP with only user-independent
constraints containing at most k (k − 1) steps. Moreover, the construction yields a Valued WSP instance in which the
weight of an optimal plan is equal to the weight of an optimal solution for the Valued APEP instance. Finally, we show
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that it is possible to construct the optimal solution for the Valued APEP instance from an optimal plan for the Valued
WSP instance.

Let I = (R,U ,C,ω) be an instance of Valued APEP⟨BoDE, SoDU⟩. (The weights of these types of constraints are
defined by equations (11) and (8) in Section 2.1.) Let R = {r1, . . . , rk }. Then we construct an instance I ′ = (S ′,U ′,C ′,ω ′)

of Valued WSP as follows.

• SetU ′ = U .
• For every i ∈ [k], first initialize a set Γ(ri ) = ∅. Then, for every BoDE constraint (ri , r j ,↔,∃) ∈ C , add r j to Γ(ri )

and ri to Γ(r j ).
• For each resource ri ∈ R, we create a set of steps S ′ =

⋃k
i=1 S

i where

Si =



{si } if Γ(ri ) = ∅,

{sij | r j ∈ Γ(ri )} otherwise.

Observe that |S ′ | ≤ k (k − 1). Given a plan π : S ′ → U ′, we write π (Si ) to denote {π (s ) | s ∈ Si }. Let Π be the set of all
possible complete plans from S ′ toU ′.

We define the set of constraints C ′ and their weightsw ′c ′ : Π → N as follows.

• For each c = (ri , r j ,↔,∃) ∈ C , we add constraint c ′ = (sij , s
j
i ,=) to C

′, and define

w ′c ′ (π ) =



0 if π (sij ) = π (s
j
i ),

ℓc otherwise.

Note that c ′ is user-independent.
• For each c = (ri , r j , ↕,∀) ∈ C , we add constraint c ′ = (Si , S j , ∅), where c ′ is satisfied iff π (Si ) ∩ π (S j ) = ∅. Then
definew ′c ′ (π ) = fc ( |π (S

i )∩π (S j ) |), where fc is the function associated with the weighted constraint (ri , r j , ↕,∀).
Observe that (Si , S j , ∅) is a user-independent constraint.
• Let C ′ denote the set of all constraints in I ′ and define

w ′C ′ (π ) =
∑
c ′∈C ′

w ′c ′ (π ).

We then define authorization weight function ω ′ : U ′ × 2S
′

→ N as follows. Initialize ω ′(u, ∅) = 0. We set
ω ′(u, Si ) = ω (u, {ri }). For a subset T ⊆ S ′, let RT = {ri ∈ R | T ∩ Si , ∅}. We set ω ′(u,T ) = ω (u,RT ). Given a plan
π : S ′ → U ′, we denote

∑
u ∈U ′ ω

′(u,π−1 (u)) by Ω′(π ). Finally, define the weight of π to be Ω′(π ) + w ′C ′ (π ). See
Example 2 for an illustration.

Based on the construction described above, we have the following lemma:

Lemma 6.1. Let I be a Valued APEP⟨BoDE, SoDU⟩ instance and I
′
be the Valued WSP instance obtained from I using

the construction above. Then OPT(I) = OPT(I ′), where OPT(I) and OPT(I ′) denote the weights of optimal solutions of

I and I ′ respectively. Furthermore, given an optimal plan for I ′, we can construct an optimal authorization relation for I

in polynomial time.

Proof. We first prove that OPT(I) ≤ OPT(I ′). Let π : S ′ → U ′ be an optimal plan for the instance I ′. We construct
A for the instance I as follows. For all i ∈ [k], if u ∈ π (Si ), then we put (u, ri ) intoA. This completes the construction of
A from π . Since π is complete, A is also complete. This can be implemented in polynomial time. Observe that ri ∈ A(u)
if and only if there exists s ∈ Si such that s ∈ π−1 (u). Equivalently, suppose that T = π−1 (u). Then, RT = A(u). It
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(a) Valued APEP instance
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(b) Valued APEP instance

Fig. 2. An example illustrating the construction. Note that R = {r1, r2, r3, r4 } and S ′ = S1 ∪ S2 ∪ S3 ∪ S4.

implies that ω ′(u,π−1 (u)) = ω (u,A(u)). Hence, we have

Ω′(π ) =
∑
u ∈U ′

ω ′(u,π−1 (u)) =
∑
u ∈U

ω (u,A(u)) = Ω(A)

We now prove that wC (A) ≤ w ′C ′ (π ). Consider a BoDE constraint c = (ri , r j ,↔,∃) ∈ C . Then, r j ∈ Γ(ri ), and
ri ∈ Γ(r j ), and the corresponding constraint in I ′ is c ′ = (sij , s

j
i ,=). By construction if π (sij ) = π (s

j
i ), then there exists

u ∈ A(ri ) ∩ A(r j ). Hence, wc (A) ≤ w ′c ′ (π ). Now consider an SoDU constraint c = (ri , r j , ↕,∀). The corresponding
constraint in I ′ is c ′ = (Si , S j , ∅). Observe that by construction, if π (Si ) ∩ π (S j ) = ∅, then A(ri ) ∩A(r j ) = ∅. Otherwise,
if |π (Si ) ∩ π (S j ) | = t > 0, then by construction |A(ri ) ∩A(r j ) | = t . Hence,w ′c ′ (π ) = wc (A). We obtain an authorization
relation A in polynomial time such thatwC (A) + Ω(A) ≤ w ′C ′ (π ) + Ω′(π ) = OPT(I ′). Therefore, OPT(I) ≤ OPT(I ′).

To complete the proof we prove that OPT(I) ≥ OPT(I ′). Let A be an optimal authorization relation for I. We
construct π : S ′ → U ′ as follows. If Γ(ri ) = ∅, we choose an arbitrary u ∈ A(ri ) and set π (si ) = u. Otherwise, Γ(ri ) , ∅,
and two cases may arise.

• For r j ∈ Γ(ri ), (ri , r j ,↔,∃) is satisfied by A. Then, we choose an arbitrary u ∈ A(ri ) ∩ A(r j ) and set π (sij ) =

π (s
j
i ) = u.

• For r j ∈ Γ(ri ), (ri , r j ,↔,∃) is not satisfied by A. Then, we just choose arbitrary u ∈ A(ri ),v ∈ A(r j ) and set
π (sij ) = u, and π (s

j
i ) = v .

This completes the construction of π . Note that π is complete.
Let T = π−1 (u). Observe that by construction, if u ∈ π (Si ), then u ∈ A(ri ). Equivalently, if there exists i ∈ [k]

such that π−1 (u) ∩ Si , ∅, then ri ∈ A(u). Therefore, RT ⊆ A(u). Using the monotonicity property of ω, we have that
ω (u,RT ) ≤ ω (u,A(u)). This means that ω ′(u,π−1 (u)) = ω (u,RT ) ≤ ω (u,A(u)). Therefore, we have the following:

Ω′(π ) =
∑
u ∈U ′

ω ′(u,π−1 (u)) ≤
∑
u ∈U

ω (u,A(u)) = Ω(A)

Hence, Ω′(π ) ≤ Ω(A).
Consider a BoDE constraint c = (ri , r j ,↔,∃) ∈ C . By construction, c is satisfied by A if and only if c ′ = (sij , s

j
i ,=)

is satisfied by π . Hence, wc ′ (π ) = wc (A). On the other hand, consider an SoDU constraint c = (ri , r j , ↕,∀) ∈ C .
If c is satisfied by A, then by construction c ′ = (Si , S j , ∅) is also satisfied by A. Finally, if c is violated by A, then
let t = |A(ri ) ∩ A(r j ) | > 0. By construction, π (Si ) ∩ π (S j ) ⊆ A(ri ) ∩ A(r j ). Hence, w ′c ′ (π ) ≤ wc (A), implying
w ′C ′ (π ) ≤ wC (A). Therefore, OPT(I ′) ≤ OPT(I). □

Example 2. We illustrate the construction of a Valued WSP instance from a Valued APEP instance, and the proof
of Lemma 6.1 using Figure 2. In addition, given an optimal solution for the corresponding Valued WSP instance, we
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illustrate how to construct an optimal solution of the Valued APEP instance as described in Lemma 6.1. As per the
figure, there are three BoDE constraints (c1 = (r1, r2,↔,∃), c2 = (r1, r3,↔,∃), and c3 = (r3, r4,↔,∃)) and two SoDU

constraints (c4 = (r1, r4, ↕,∀), and c5 = (r2, r4, ↕,∀)). We define their weights as follows. For an authorization relation
A ⊆ U × R and i ∈ {1, 2, 3}, we setwci (A) = 0 if A satisfies ci , andwci (A) = 1, otherwise. Letwc4 (A) = 0 if A satisfies
c4; otherwise,wc4 (A) = |A(r1) ∩A(r4) |. Similarly,wc5 (A) = 0 if A satisfies c5; otherwise,wc5 (A) = |A(r2) ∩A(r4) |. For
every ∅ , T ⊆ R and u ∈ U , let ω (u,T ) =

∑
r ∈T ω (u, {r }).

Observe that in this example there is no authorization relation A such thatwC (A) + Ω(A) = 0. It means that if we
look for an authorization relation A such that wC (A) = 0, then we will have Ω(A) > 0. Consider an authorization
relation A∗ such that A∗ (r1) = {u1,u2},A∗ (r2) = {u1,u3},A∗ (r3) = u2, and A∗ (r4) = {u4}. Observe thatwC (A

∗) = 0 but
Ω(A∗) = 1. Conversely, if we look for an authorization relation A such that Ω(A) = 0, then we will havewC (A) > 0.

Consider the Valued WSP instance constructed in this example. Based on the construction, c ′1 = (s12 , s
2
1 ,=), c

′
2 =

(s13 , s
3
1 ,=), c

′
3 = (s34 , s

4
3 ,=), c

′
4 = (S1, S4, ∅), and c ′5 = (S2, S4, ∅). Observe that for a given plan π : S ′ → U ′, we have the

following:

• wc ′1
(π ) = 0 if π satisfies c ′1 andwc ′1

(π ) = 1 otherwise,
• wc ′2

(π ) = 0 if π satisfies c ′2 andwc ′2
(π ) = 1 otherwise,

• wc ′3
(π ) = 0 if π satisfies c ′3 andwc ′3

(π ) = 1 otherwise,
• wc ′4

(π ) = 0 if π satisfies c ′4 andwc ′4
(π ) = |π (S1) ∩ π (S4) | otherwise, and

• wc ′5
(π ) = 0 if π satisfies c ′5 andwc ′5

(π ) = |π (S2) ∩ π (S4) | otherwise.

Consider an optimal plan π : S ′ → U ′ defined as follows: π (s12 ) = u1, π (s13 ) = u2, π (s21 ) = u1, π (s31 ) = u2,
π (s34 ) = u4, and π (s43 ) = u4. Observe that w ′C ′ (π ) = 0 as all constraints c ′1, c

′
2, c
′
3, c
′
4, and c ′5 are satisfied. Then,

Ω′(u1, {s12 , s
2
1 }) = Ω(u1, {r1, r2}) = 0, Ω′(u2, {s13 , s

3
1 }) = Ω(u2, {r1, r3}) = 0, and Ω′(u4, {s34 , s

4
3 }) = Ω(u4, {r3, r4}) = 1.

Finally, Ω′(u3, ∅) = 0. Thus, Ω′(π ) = 1.
We constructA from π as in the first part of the the proof of Lemma 6.1:A(r1) = {u1,u2},A(r2) = {u1},A(r3) = {u2,u4},

and A(r4) = {u4}. Observe thatwC (A) = 0 as all constraints c1, . . . , c5 are satisfied by A and Ω(A) = 1.
We can now state the main result of this section.

Theorem 6.2. Valued APEP⟨BoDE, SoDU⟩ is fixed-parameter tractable and can be solved in O∗ (4k
2 logk ) time.

Proof. Let I = (R,U ,C,ω) be an instance of Valued APEP⟨BoDE, SoDU⟩. We construct an instance I ′ =
(S ′,U ,C ′,ω ′) of Valued WSP in polynomial time. We then invoke Theorem 3.2 to obtain an optimal plan π : S ′ → U ′.
Finally, we invoke Lemma 6.1 to construct an optimal authorization relationA for I such that Ω(A)+wC (A) = OPT(I ′).
The algorithm described in Theorem 3.2 runs in O∗ (2 |S

′ | log |S ′ | ) time. Since |S ′ | ≤ k (k − 1), the running time of this
algorithm to solve Valued APEP⟨BoDE, SoDU⟩ is O∗ (4k

2 logk ). □

7 USING VALUED APEP TO ADDRESS RESILIENCY IN WORKFLOWS

Resiliency, in the context of access control, is a generic term for the ability of an organization to continue to conduct
business operations even when some authorized users are unavailable [24]. Resiliency is particularly interesting when
an organization specifies authorization policies and separation of duty constraints, as is common in workflow systems,
as separation of duty constraints become harder to satisfy when fewer (authorized) users are available.

Early work by Wang and Li showed that determining whether a workflow specification is resilient is a hard
problem [24]. More recent work has established the precise complexity of determining static resiliency [18], and that
the problem is FPT, provided all constraints in the workflow specification are user-independent [13].
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We introduce the idea of an extended plan for a workflow specification and define resiliency in the context of an
extended plan. We then explain how Valued APEP can be used to compute extended plans of minimal cost. In Section 8,
we provide two MIP formulations for Valued APEP. Then in Section 9 we discuss our experimental framework and
results making use of these two formulations.

Suppose we are given a workflow specification (defined by a set of workflow steps S , a set of usersU , an authorization
relation Â ⊆ U × S and a set of constraints C) and an integer τ ≥ 0. We call a function Π : S → 2U an extended plan;
we say Π is valid if there exists a valid plan π : S → U such that π (s ) ∈ Π(s ) for all s ∈ S and π is valid. We say Π is
τ -resilient if for any subset of τ users T ⊆ U , there exists a valid plan π ′ : S → (U \T ) such that π ′(s ) ∈ Π(s ) for all
s ∈ S . Wang and Li introduced an alternative notion of resiliency in workflows [30], where a workflow specification
is said to be statically t-resilient if for all U ′ ⊆ U such that |U | − |U ′ | ≤ t , (S,U ′,C, Â′), where Â′ = Â ∩ (S ×U ′), is
satisfiable.

The two notions of resiliency are rather different. Our notion requires an extended plan to be resilient, so that having
committed to an extended plan for a workflow we know the instance can complete even if τ users are unavailable.
In contrast, Wang and Li require that the workflow specification itself is resilient. Crampton, Gutin, Karapetyan and
Watrigant showed that determining whether a workflow is statically t-resilient is FPT [13] for WSP with UI constraints
only.

It is not obvious that the methods used by Crampton et al. can be adapted to determine whether there exists a
τ -resilient extended plan. Nor is it obvious whether the problem of deciding if there exists a τ -resilient extended plan
can be framed as an instance of APEP.

APEP, however, can be used to produce an extended plan that is τ -resilient. Moreover, Valued APEP can be used to
solve the softer problem of finding an extended plan that aims to be τ -resilient (but may not be) and that also minimises
the number of users involved.

To generate a τ -resilient extended plan for a WSP instance (S,U ,C, Â) with SoD constraints, we can produce the
following APEP instance (R′,U ′,C ′, Â′):

• Let R′ = S ,U ′ = U and Â′ = Â.
• Let C ′ = ∅. For every c ∈ C , add a corresponding SoDU to C ′ (recall that we consider WSP with SoD constraints
only).
• Add Cardinality-Lower-Bound constraints (r , ≥,τ + 1) for every r ∈ R.

Any authorization relation A that satisfies such an APEP instance is a τ -resilient extended plan in the original WSP
instance. (Note that it is sufficient for an extended plan Π to be a solution of an APEP instance, however it is not
necessary; some τ -resilient extended plans may not be solutions for an APEP instance.)

The requirement to have at least τ + 1 users assigned to each resource may lead to solutions that involve too many
users. In practice, we may want to keep the number of users involved in Π as small as possible. Also, where an instance
is not τ -resilient, we may want to accept solutions that are not completely τ -resilient, i.e. solutions where excluding τ
users may render the extended plan invalid to some (acceptably limited) extent.

To meet the above requirements, we can use the Valued APEP to model τ -resiliency in WSP. Let pSoD and pCard be
penalties for violation of the corresponding constraints. Let pA be a penalty for assigning a user to a resource for which
this user is not authorized. Compose a APEP instance (R,U ,C, Â) as described above and replace each constraint with
the following weighted constraints:
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• For every SoDU constraint c = (r1, r2, ↕,∀), let wc (A) = pSoD · |A(r1) ∩ A(r2) |; i.e., there is a pSoD penalty for
every user assigned to both resources in the scope.
• For every cardinality-lower-bound constraint c = (r , ≥,τ + 1), letwc = max{0, pCard · (τ + 1 − |A(r ) |)}.
• Finally, we add a constraint c , which we call User Count Constraint, with the scope R such thatwc = fΠ ( |A(R) |),
where fΠ (·) is a monotonically growing function. Specifically, we usewc = |A(R) |

2.

Also let ω (u,T ) = pA · ℓ, where ℓ is the number of resources r ∈ T such that (r ,u) < Â. In other words, there is a pA
penalty for each unauthorized assignment of a user to a resource.

Assuming pA, pSoD and pCard are positive numbers and the original APEP instance is satisfiable, a solution to this
Valued APEP instance will be a τ -resilient extended plan with at least τ + 1 users assigned to each resource, with all the
SoDU constraints and authorizations satisfied and with the number of users involved in the extended plan minimized.

8 MIXED INTEGER FORMULATIONS OF VALUED APEP

While it is common to implement bespoke algorithms to exploit the FPT properties of a problem, it was noted recently
that off-the-shelf solvers may also be efficient on such problems given appropriate formulations [21, 22]. In this section
we give two mixed integer programming (MIP) formulations of the Valued APEP. The formulation given in Section 8.1
is a straightforward interpretation of the problem; it uses binary variables to define an assignment of users to resources.
The formulation given in Section 8.2, however, makes use of the concept of user profiles, used earlier to prove FPT results.
While both formulations are generic enough to support any Valued APEP constraints, we focus on the constraints
used to model τ -resiliency of WSP extended plans, see Section 7.

8.1 Naive formulation

The Naive formulation of a Valued APEP instance (R,U ,C,ω) is based on binary variables xr,u linking resources to
users; xr,u = 1 if and only if user u is assigned to resource r .

The core of the formulation is as follows:

minimize
∑
c ∈C

pc + pA ·
∑

(r,u )<Â

xr,u (12)

subject to

xr,u ∈ {0, 1} ∀r ∈ R, ∀u ∈ U , (13)

pc ∈ [0,∞] ∀c ∈ C . (14)

The encodings of the Valued APEP constraints linking the solution to variables pc are discussed below.
The User Count constraint c is encoded as follows:

pc = fΠ (z), (15)

z =
∑
u ∈U

yu , (16)

yu ≥ xr,u ∀r ∈ R, ∀u ∈ U , (17)

yu ∈ [0, 1] ∀u ∈ U , (18)

z ∈ [0,n]. (19)
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Variable z is introduced to count the number |A(R) | of users generated by the solution. The formulation depends on the
function fΠ ; for fΠ (z) = z2, we use the following encoding as a discretization of a parabola:

pc ≥ fi (z) ∀i ∈ {1, 2, . . . ,n − 1}, (20)

where fi (z) = (2i + 1)z − (i + 1)i . An illustration of how it enforces pc ≥ z2 is given in Figure 3. Note that z2 ≥ fi (z)

for every integer z and i .

0 0.5 1 1.5 2

0

2

4

z

Pe
na
lty

z2

f0 (z)
f1 (z)

Fig. 3. Illustration of how equations (20) enforce pc ≥ z2.

Each Cardinality-Lower-Bound constraint c = (r , ≥,τ + 1) is encoded as follows:

pc ≥ pCard ·

(τ + 1) −

∑
u ∈U

xr,u


. (21)

Each SoD constraint c = (r1, r2, ↕,∀) is encoded as follows:

pc = pSoD ·
∑
u ∈U

yu , (22)

yu >= xr1,u + xr2,u − 1 ∀u ∈ U , (23)

yu ∈ {0, 1} ∀u ∈ U . (24)

8.2 User-Profile formulation

The User-Profile (UP) formulation is based on the concept of user profiles making it an FPT-aware formulation. Let T
be the power set of R. The UP formulation defines a binary variable xT ,u for every T ∈ T and u ∈ U . We then require
that each user u is assigned exactly one T ∈ T .
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The core of the formulation is as follows:

minimize
∑
c ∈C

pc + pA ·
∑
T ∈T

∑
u ∈U

xT ,u · |{r ∈ T : (r ,u) < Â}| (25)

subject to

xT ,u ∈ {0, 1} ∀T ∈ T , ∀u ∈ U , (26)

pc ∈ [0,∞] ∀c ∈ C . (27)

The encodings of the Valued APEP constraints linking the solution to variables pc are discussed below.
The encoding of the User Count constraint c is very similar to its implementation in the Naive formulation:

pc = fΠ (z), (28)

z =
∑
u ∈U

yu , (29)

yu ≥ xT ,u ∀T ∈ T \ {∅}, ∀u ∈ U , (30)

yu ∈ [0, 1] ∀u ∈ U , (31)

z ∈ [0,n]. (32)

Specifically, we use fΠ (z) = z2, which we encode as follows (see (20) for details):

pc ≥ fi (z) ∀i ∈ {1, 2, . . . ,n − 1}. (33)

Each Cardinality-Lower-Bound constraint c = (r , ≥,τ + 1) is encoded as follows:

pc ≥ pCard ·


(τ + 1) −

∑
T ∈T , r ∈T

∑
u ∈U

xT ,u


. (34)

Each SoD constraint c = (r1, r2, ↕,∀) is encoded as follows:

pc = pSoD ·
∑

T ∈T , r1,r2∈T

∑
u ∈U

xT ,u . (35)

9 COMPUTATIONAL EXPERIMENTS

The aims of our computational study are to:

(1) design an instance generator, to support future experimental studies of the Valued APEP and enable fair
comparison of Valued APEP solution methods;

(2) give a new approach to address resiliency in WSP;
(3) compare the performance of the two formulations discussed in Section 8;
(4) test if either of the formulations has FPT-like running times, i.e. scales polynomially with the instance size given

that the small parameter is fixed;
(5) analyse the structure of optimal solutions and how it depends on the instance generator inputs; and
(6) make the instance generator and the solvers based on the two formulations publicly available.
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9.1 Benchmark instances

For our computational experiments, we built a pseudo-random instance generator for the Valued APEP. It is designed
around the concept of τ -resiliency of WSP, see Section 7. The inputs of the instance generator are detailed in Table 2.

Input Description Default value

n the number of users, also referred to as the size of the problem –
k the number of WSP steps ⌊0.1n⌋
τ the desired degree of τ -resiliency, i.e. the number of users that can be

excluded from the extended plan
⌊0.05n⌋

α an input enabling us to adjust the balance between the penalties associated
with workflow and resiliency violations

1

Table 2. The instance generator inputs and their default values.

While inputs n and k define the size of the instance and τ is an inherent input of τ -resiliency, α is an artifact of
the experimental set-up, introduced to control the weight of the workflow constraints and authorizations relative to
resiliency. Varying the value of α enables us to investigate the effects of emphasizing the importance of satisfying
workflow constraints (over resiliency) and vice versa. The greater the value of α , the greater the penalties for violating
workflow constraints and authorizations, meaning that satisfying resiliency becomes correspondingly less significant.

The instance generator first creates a WSP instance (S,U ,C, Â) and then converts that instance into a Valued APEP
instance (R,U ,C ′,ω), as described in Section 7. The constraint penalties are set as following: pSoD = 10α , pCard = 10
and pA = α . The WSP instance is generated in the following way:

(1) create steps S = {s1, s2, . . . , sk } and usersU = {u1,u2, . . . ,un };
(2) the authorizations are created in the same way as in the WSP instance generator, see [22]: for each user u ∈ U ,

select randomly and uniformly from [1, ⌊0.5 · (k − 1)⌋] the number of steps for which u is authorized, and then
randomly select which steps they are authorized to; and

(3) produces qSoD constraints SoD, selecting the scope of each of them randomly and independently (the generator
may produce several SoD constraints with the same scope).

9.2 t-wboundness of the User Count constraint

It is a trivial observation that the User Count constraint is 0-wbounded. However, we can also establish the t-wboundness
of a set of constraints C , where C includes a User Count constraint.

Proposition 9.1. Let CSoD be a set of SoDU constraints. Let C
Card

be a set of Cardinality-Lower-Bound constraints with

the penalty functionwc (A) = max{0, p
Card
· (ℓ − |A(r ) |)} for some ℓ. Let cΠ be a User Count constraint with the penalty

functionwcΠ (A) = |A(R) |
2
. Let C = CSoD ∪CCard

∪ {cΠ }. Then C is 0.5k · ( |C
Card
| · p

Card
+ 1)-bounded.

Proof. Let us assume thatA is an authorization relation that minimizeswC (A) and that |A| > 0.5k · ( |CCard | ·pCard+1).
Observe that |A(R) | > 0.5 · ( |CCard | · pCard + 1). We will show a contradiction by constructing an authorization relation
A′ such thatwC (A

′) < wC (A) and |A′(R) | = |A(R) | − 1.
Select an arbitrary user u ∈ U such that A(u) , ∅. Let A′ be an authorization relation such that A′(u ′) = A(u ′) for

u ′ ∈ U \ {u} and A′(u) = ∅. (Effectively, we exclude one user involved in the authorization relation.) Note that
25



1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

Woodstock ’18, June 03–05, 2018, Woodstock, NY Crampton et al.

(1) wc (A
′) −wc (A) ≤ 0 for every c ∈ CSoD as excluding a user cannot increase the SoD penalty.

(2) wc (A
′) − wc (A) ≤ pCard as the penalty of a Cardinality-Lower-Bound constraint can only increase by pCard

following an exclusion of a single user.
(3) wcΠ (A

′) −wcΠ (A) = |A
′(R) |2 − |A(R) |2 = ( |A(R) | − 1)2 − |A(R) |2 = −2|A(R) | + 1.

Hence,wC (A
′) −wC (A) ≤ |CCard | · pCard − 2|A(R) | + 1. Since |A(R) | > 0.5 · ( |CCard | · pCard + 1),

wC (A
′) −wC (A) < |CCard | · pCard − 2 · 0.5 · ( |CCard | · pCard + 1) + 1 = 0.

In other words,wC (A
′) < wC (A) which is a contradiction to the assumption thatAminimizeswC (A). Hence, an optimal

authorization relation A cannot be of size greater than 0.5k · ( |CCard | · pCard − 1), i.e. C is 0.5k · ( |CCard | · pCard + 1)-
wbounded. □

Proposition 9.1 is important because it shows that the instances produced by our instance generator are t-wbounded
and that t does not depend on α , τ or n. Hence, an FPT algorithm is expected to scale polynomially with n if k is fixed,
even though τ is a function of n. We will use this as a test for FPT-like running times.

9.3 Computational results

We used IBM CPLEX 20.1 to solve the MIP formulations. The formulations were generated using Python 3.8.8 scripts
available at doi.org/10.17639/nott.7124. The experiments were conducted on a Dell XPS 15 9570 with Intel i7-8750H
CPU (2.20 GHz) and 32 GB of RAM. CPLEX was allowed to use all the CPU cores. Only one instance of CPLEX would
run at any point in time. Each experiment was repeated 10 times for 10 different instances produced with different
random number generator seed values. The results reported in this section are the averages over the 10 runs.

9.3.1 Scaling. In our first set of experiments we adjust the instance size n and analyse how this affects the solution
time and the optimal solution properties. This is particularly important to understand the limitations of the methods in
terms of the instance size that they can handle, as well as study the structure of solutions to large instances. In Figure 4a,
we change both k and n (and all the associated instance generator inputs), to test how the runtime of the solvers scale.
However, as the problem is FPT, we also tested in Figure 4b how the solution time and the optimal solution properties
change if the value of the small parameter k is fixed while the problem size n changes.

We notice that the UP solver generally outperforms the Naive solver by a large margin; in fact, it scales much
better, hence the gap between the solvers increases with the instance size. The running time of the UP solver seems
to be exponential only in k and linear in n; i.e., it has FPT-like running time. It is hard to determine how the Naive
solver’s running time scales as we could only obtain a few data points but it appears that its running time scales
super-polynomially even if k is fixed meaning that its running time is not FPT-like. In other words, we believe that the
UP solver efficiently exploits the FPT structure of the problem whereas the Naive solver fails to do so.

When we scale both k and n (Figure 4a), the number of users |A(R) | in the optimal solutions grows linearly. However
when we fix k (Figure 4b), there seems to be an upper bound on |A(R) |. This is consistent with our expectations;
according to Proposition 9.1, the number of users is expected to be bounded by 0.5( |CCard | · pCard + 1) = 0.5(10k + 1).
For k = 10, this gives us an upper bound of around 50. The discrepancy with the practice is due to the influence of the
SoD constraints and authorizations, both generating pressure to keep the number of users small.

As long as k is comparable to n, the User Count constraint is the main cause of the penalty. However, as n gets
bigger relative to k , the cardinality constraints penalty begins to dominate. This is due to the relation between n and
τ ; while the number of users stays unchanged as we increase n, the value of τ grows as does the penalty caused by
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Fig. 4. Scaling of the solution time, number |A(R ) | of users involved in the solution and the penalties as the instance size changes. In
all instances, α = 1 and τ = ⌊0.05n ⌋.

violations of the cardinality constraints. With a few minor exceptions, all the SoD constraints are satisfied in all the
experiments, whereas authorizations are often violated to a small extent. This imbalance is due to the 10-fold difference
in the corresponding penalties.

9.3.2 Sensitivity to α and τ . The second set of experiments is designed to analyse the impact of the instance generator
inputs α and τ on the instances, optimal solutions and the running times of the solvers. The results are presented in
Figure 5.

These experiments reveal that the values of α and τ have little effect on the running time of UP. In fact, the running
time is consistently proportional to the size of the formulationO (n · 2k ). Also, the composition of the formulation takes
about half of the running time. In other words, CPLEX solves this formulation in time linear in its size but the size of
the formulation is exponential in k putting a limit on how far this method can be scaled.

Thus, the Naive solver outperforms the UP solver in some extreme cases; when the instances are easy, the Naive
formulation can exploit their special structure whereas the UP formulation remains large and as a result slow. For
example, when α is large, breaking the SoD constraints and authorizations becomes prohibitively expensive which
significantly reduces the search space for the Naive solver.
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Fig. 5. Analysis of the solution time, number |A(R ) | of users involved in the solution and the penalties as the instance generator
inputs change. In all instances, k = 8 and n = 80.

However, when α is close to 1 and τ is small, the instances are particularly challenging as the optimal solutions tend
to balance the penalties of all types, and this is where UP is particularly effective compared to Naive.

9.3.3 Experiment conclusions. For an organization that implements a workflow management system and has strict
business continuity requirements, it will be important to find a trade-off between satisfying authorization policies and
constraints and ensuring that workflow instances can complete when users are unavailable.We believe these experiments
provide some useful insights into the interplay between authorization policies, separation of duty constraints and
resiliency, and form a basis from which costs of violating policies and resiliency can be balanced.

The trade-offs between authorization and resiliency requirements are evident in Figure 5a. For very small values
of α (when penalties for violating authorization requirements are low) the penalties in Valued APEP solutions are
dominated by |A(R) |, the number of users assigned to the extended plan. As α increases, the penalties associated with
violations of authorization and constraints begin to dominate, and, as α increases further (meaning that authorizations
and constraints become increasingly expensive to violate) the penalties associated with breaking resiliency and |A(R) |
dominate. We also see that |A(R) | reaches a maximum value when α equals around 10, at which point the penalties
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associated with violating authorization requirements are negligible compared to those associated with resiliency and
|A(R) |.

From Figure 5b we see that for τ ≤ 4 resiliency requirements are always satisfied. For τ > 4, unsurprisingly, τ -resilient
extended plans would have to be a large proportion of the user population and the penalties associated with such plans
begin to dominate. For very large values of τ we find that |A(R) | drops below the value of τ , meaning the extended plans
cannot be τ -resilient and the penalties for such plans are mainly associated with resiliency and the size of the solution.

Finally, we note that the concept of user profiles, used to prove theoretical results about Valued APEP, also enables
us to derive a MIP formulation that can be solved by CPLEX in FPT-like time and that is efficient across all our test
instances. In contrast, the straightforward (Naive) formulation of the problem scales super-polynomially with the size
of the problem even if the small parameter is fixed. This demonstrates the importance of FPT algorithms even if the
researcher intends to use general-purpose solvers to address the problem.

10 RELATEDWORK AND DISCUSSION

Valued APEP builds on a number of different strands of recent research in access control, including workflow satisfia-
bility, workflow resiliency and risk-aware access control. Workflow satisfiability is concerned with finding an allocation
of users to workflow steps such that every user is authorized for the steps to which they are assigned and all workflow
constraints are satisfied. Work in this area began with the seminal paper by Bertino et al. [3]. Wang and Li initiated the
use of parameterized complexity analysis to better understand workflow satisfiability [30], subsequently extended to
include user-independent constraints [7].

Crampton et al. introduced Valued WSP [12] and Bi-objective WSP [13] in order to find plans for unsatisfiable
instances of WSP: a cost is assigned to each constraint and assignment; the goal is to find a plan that minimizes the
total cost of breaking constraints and authorizations. Inspired by [12, 13], Bertolissi et al. [5] studied Bi-objective
Ordered Execution WSP, solutions for which also specify an ordering on the steps in the plan. While we use an
MIP solver, Bertolissi et al. used Optimization Modulo Theories solvers. As we have seen APEP can be used to encode
workflow satisfiability problems.

Basin et al. [1] consider the Optimal Workflow-Aware Authorization Administration Problem (OWA) – the
problem of finding an optimal (minimal cost) authorization relation, given a workflow specification and a function that
determines the (administrative cost) of changing the existing authorization relation to a different one. OWA could be
used to solve simplified instances of ValuedWSP, in the sense that it would be possible to use the returned authorization
relation to find a valid plan. However, this approach does not allow for any breaking of constraints. Conversely, Valued
WSP cannot directly solve OWA, as a solution for Valued WSP is a plan of minimal cost. Nor is it obvious that OWA
could be treated as an instance of APEP: in particular, the objective in Valued APEP is to minimize the cost of policy
violations (in OWA the objective is to minimize the cost of modifying one authorization relation to another); and it is
not clear what the base authorization relation should be.

The papers [4, 16] consider the problem of computing what could informally be called potential plans for a workflow
specification in which the sets of steps and constraints are given, but not the set of users or the authorization relation.
Users are symbolic and all possible plans for this set of symbolic users are pre-computed. The idea is that the workflow
specification will be used by many different customers who will use the pre-computed plans to determine whether
there is a way of associating authorized users with symbolic users, given a customer’s particular instantiation of the
authorization relation. The customers may use symbolic model checking to find a valid plan. The techniques used to
develop FPT algorithms for WSP [7, 10] could be used to construct similar graphs to those used in [4, 16].
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Workflow resiliency is concerned with ensuring business continuity in the event that some (authorized) users are
unavailable to perform steps in a workflow [18, 24, 26, 31]. Bergé et al. showed that APEP can be used to encode certain
kinds of resiliency policies [2, Section 6]. In this paper, we introduce the notion of an extended plan and what it means
for such a plan to be resilient. We believe this is a useful alternative to prior definitions of resiliency, in that there is no
requirement for the workflow specification itself to be resilient. Thus, when an organization is aware of potential staff
shortages, for example, it can require that a particular instance of a workflow is resilient. Moreover, Valued APEP
allows the organization to trade the costs of resiliency and worfklow satisfaction when it is not possible to find a fully
resilient extended plan. Researchers in access control have recognized that it may be necessary to violate access control
policies in certain, exceptional circumstances [27, 28], provided that those violations are controlled appropriately. One
means of controlling violations is by assigning a cost to policy violations, usually defined in terms of risk [6, 15]. Thus,
the formalization of problems such as Valued WSP and Valued APEP and the development of algorithms to solve
these problems may be of use in developing risk-aware access control systems.

Thus, we believe that APEP and Valued APEP are interesting and relevant problems, and understanding the
complexity of these problems and developing the most efficient algorithms possible to solve them is important. A
considerable amount of work has been done on the complexity of WSP, showing that the problem is FPT for many
important classes of constraints [7, 11, 22]. It is also known that Valued WSP is FPT and, for user-independent
constraints, the complexity of the problem is identical to that for WSP (when polynomial terms in the sizes of the
user set and constraint set are disregarded in the running time) [12]. Roughly speaking, this is because (weighted)
user-independent constraints in the context of workflow satisfiability allow us to restrict our attention to partitions
of the set of steps when searching for solutions, giving rise to the exponential term 2k logk in the running time of an
algorithm to solve (Valued) WSP.

APEP, unsurprisingly, is known to be a more complex problem [2]. The complexity of APEP differs fromWSP because
it is not sufficient to consider partitions of the set of resources, in part because an arbitrary relation A is not a function.
The results in this paper provide the first complexity results for Valued APEP, showing (in Corollary 4.15) that it is no
more difficult than APEP for constraints in BoDU, BoDE, SoDU and SoDE (disregarding polynomial terms).

We believe the concept of a user profile and Theorem 4.14 are important contributions to the study of APEP as well as
Valued APEP, providing a generic way of establishing complexity results for different classes of constraints. In particular,
Corollary 4.15 of Theorem 4.14 actually shows how to improve existing results for APEP⟨BoDU,BoDE, SoDE, SoDU⟩

due to Bergé et al. [2]. Moreover, when an APEP instance is equivalent to a WSP instance (i.e, it contains a cardinality
constraint (r , ≤, 1) for each r ∈ R) then the instance is k-bounded, and a user profile is the characteristic function
of some partition of R. Thus we essentially recover the known FPT result for Valued WSP, which is based on the
enumeration of partitions of the set of workflow steps.

11 CONCLUDING REMARKS

We believe this paper makes three significant contributions. First, we introduce Valued APEP, a generalization of APEP,
which, unlike APEP, always returns some authorization relation. Thus a solution to Valued APEP is more useful than
that provided by APEP: if there exists a valid authorization relation Valued APEP will return it; if not, Valued APEP
returns a solution of minimum weight. This allows an administrator, for example, to decide whether to implement the
solution for an instance of Valued APEP or adjust the base authorization relation and/or the constraints in the input in
an attempt to find a more appropriate solution.
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The second contribution is to advance the techniques available for solving APEP as well as Valued APEP. Specifically,
the notion of a user profile plays a similar role in the development of algorithms to solve (Valued) APEP as patterns do
in solving (Valued) WSP. The enumeration of user profiles is a powerful technique for analyzing the complexity of
Valued APEP, yielding general results for the complexity of the problem (which are optimal assuming the Exponential
Time Hypothesis holds) and improved results for APEP.

The third contribution is the experimental study that involves a new set of realistic benchmark instances, two mixed
integer programming formulations of Valued APEP and extensive analysis of the computational results. Apart from
the conclusions related to the new concept of τ -resiliency in workflows, we demonstrate that a general-purpose solver
can solve an FPT problem in FPT-like time if the formulation is ‘FPT-aware’: i.e., if it exploits our understanding of the
FPT properties of the problem, and that such an ‘FPT-aware’ formulation significantly outperforms a naive formulation.
This is particularly significant for practitioners who often prefer to use general purpose solvers to address complex
problems, as they can now benefit from theoretical results in parameterized computational complexity.

There are several opportunities for further work. We intend to investigate other (weighted) user-independent
constraints for (Valued) APEP. First, we are interested in what other problems in access control can be encoded as APEP
instances, apart from workflow satisfiability and resiliency problems. Second, we would like to consider appropriate
weight functions for such encodings, which would have the effect of providing more useful (weighted) solutions
for the original problems (rather a binary yes/no solution). Our work also paves the way for work on quantifying
the trade-offs associated with violating security and resiliency requirements when it is impossible to satisfy both
simultaneously. A better understanding of these trade-offs together with tools for computing optimal solutions would
seem to have considerable value to commercial organizations, enabling them to manage conflicting security and business
requirements in an informed manner.
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