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Abstract

This paper describes new, simple, recursive methods of construction
for orientable sequences, i.e. periodic binary sequences in which any
n-tuple occurs at most once in a period in either direction. As has
been previously described, such sequences have potential applications
in automatic position-location systems, where the sequence is encoded
onto a surface and a reader needs only examine n consecutive encoded
bits to determine its location and orientation on the surface. The
only previously described method of construction (due to Dai et al.)
is somewhat complex, whereas the new techniques are simple to both
describe and implement. The methods of construction cover both the
standard ‘infinite periodic’ case, and also the aperiodic, finite sequence,
case. Both the new methods build on the Lempel homomorphism, first
introduced as a means of recursively generating de Bruijn sequences.

1 Introduction

In this paper we are concerned with binary sequences with the property
that any n-tuple of consecutive bits occurs either just once in a period, in
the case of a periodic infinite sequence, or just once in a finite sequence
(the aperiodic case). One important special case of such sequences are the
de Bruijn sequences — see, for example, [11]. These sequences, sometimes
referred to as shift register sequences (see Golomb, [12]), have been very
widely studied and have a range of applications in coding and cryptography.
One application which is of particular relevance to this paper, is that of
position location, i.e. use of an encoding of an n-window sequence onto a
surface that allows the location of any point on the surface by examining
just n consecutive entries of the sequence (see, for example, Burns and
Mitchell [3, 4] and Petriu [17]).

We are particularly interested in the special case of orientable sequences
i.e. where, for given order n, any n-tuple of consecutive values occurs just
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once in a period in either direction, in the case of an infinite sequence,
or just once in either direction in a finite sequence (the aperiodic case).
These sequences have position-location applications in the case where the
reader of such a sequence wishes to determine both its position and its
direction of travel. Such sequences were introduced some 30 years ago —
see Burns and Mitchell [4] and Dai et al. [8]. More recent work on the
use of sequences for position location includes that of Szentandrási et al.
[19], Bruckstein et al. [2], Berkowitz and Kopparty [1], and Chee et al.
[5, 6]. However, none of this more recent work provides any methods for
constructing orientable sequences. Observe that orientable sequences are a
particular type of universal cycle — see Chung et al. [7] and Jackson et al.
[14].

Observe that no periodic orientable sequence exists for n < 5. A simple ex-
ample of a periodic orientable sequence of order 5 is provided by the sequence
of period m = 6 with generating cycle [001101], which has optimally long
period (see Table 1). Sawada 1 provides examples of orders 6 and 7 of periods
16 and 36 respectively,[00101011100000] and [0011011110011010100111010010],
which were shown to be optimally long by exhaustive search.

As previously mentioned, Dai et al. [8] give a method of construction for
orientable sequences for every n ≥ 5; they also provide an upper bound on
the period of such sequences. Whilst the method of construction is shown
to generate sequences of asymptotically optimal periods, i.e. the ratio of the
period of a generated sequence with the upper bound tends to 1 as n→∞,
the method itself is somewhat complex. For a given order n, it involves
working with the set of cycles of length n that are orientable. These cycles
can be divided into pairs made up of a cycle and its reverse. Using a graph-
theoretic argument that is existential rather than constructive, Dai et al.
show how one of every pair of the cycles can be joined to give an orientable
sequence of order n.

A key motivation for this paper is to work towards addressing the following
problem posed by Dai et al. [8].

It is an open problem as to whether a more practical procedure
exists for the construction of orientable sequences that have this
asymptotically optimal period.

It seems likely that the reference to ‘practical’ here means a direct method of
construction rather than one based on an existence proof. We present below
a recursive construction method that is much simpler, and can also generate
sequences that are within a fixed factor of asymptotically optimal period.
The fixed factor depends on the period of the ‘starter sequence’, but (us-
ing an example given at http://debruijnsequence.org/db/orientable)

1See http://debruijnsequence.org/db/orientable
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sequences can be constructed with periods at least 63% of the maximum
possible. Of course the sequences have period shorter than those due to Dai
et al. [8], which as noted above are of asymptotically optimal period.

We also examine here the aperiodic case, i.e. where the sequence is of finite
length. Whilst this case was briefly examined by Burns and Mitchell [4], the
only previously known method of construction was a trivial derivation from
the periodic case (see [4] Lemma 1, and also as outlined in Section 4 below).
Analogously to the periodic case, we give below a simple, recursive method
of constructing such sequences of close to asymptotically optimal length;
00010111 and 00001101001111 are examples of (optimally long) aperiodic
orientable sequences of orders 4 and 5, respectively.

The remainder of this paper is structured as follows. In Section 2, the
terminology used throughout the paper is introduced, together with a range
of fundamental results. The Lempel homomorphism and its application
are reviewed in Section 3. A method for constructing orientable sequences
using the Lempel homomorphism is described in Section 4; this is followed
in Section 5 by an approach to the construction of aperiodic orientable
sequences. The paper concludes in Section 6.

2 Terminology and fundamental results

2.1 Periodic binary sequences with a tuple property

We are concerned here with periodic binary sequences S = (si), where si ∈
B = {0, 1}, and where the period m of such a sequence is the smallest
positive m such that si+m = si for all i. We are particularly interested in
finite sub-strings of such sequences (n-tuples), and for n > 0 we write

sn(i) = (si, si+1, . . . , si+n−1)

for the n-tuple appearing at position i in S. We are also interested in the
weight of (one period of) a periodic sequence S = (si), and we write:

w(S) =

m−1∑
i=0

si

where m is the period of S.

To simplify certain discussions below, we also introduce the notion of a
generating cycle. If S = (si) is a periodic binary sequence of period m,
then the sequence of m values s0, s1, . . . , sm−1 forms the generating cycle of
S, and clearly the generating cycle defines the entire sequence. Following
Lempel [15], we write S = [s0, s1, . . . , sm−1].
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We define an n-window sequence S = (si) (see, for example, [16]) to be
a periodic binary sequence of period m with the property that no n-tuple
appears more than once in a period of the sequence, i.e. with the property
that if sn(i) = sn(j) for some i, j, then i ≡ j (mod m).

A de Bruijn sequence of order n [9] is then simply an n-window sequence of
period 2n (i.e. of maximal period), and has the property that every possible
n-tuple appears once in a period.

Since we are interested in tuples occurring either forwards or backwards
in a sequence we also introduce the notion of a reversed tuple, so that
if u = (u0, u1, . . . , un−1) is a binary n-tuple, i.e. if u ∈ Bn, then uR =
(un−1, un−2, . . . , u0) is its reverse. If a tuple u satisfies u = uR then we say
it is symmetric.

The complement (or what Lempel [15] refers to as the dual) of a tuple in-
volves switching every 0 to a 1 and vice versa, and if u = (u0, u1, . . . , un−1) ∈
Bn we write ū = (u0⊕1, u1⊕1, . . . , un−1⊕1), where here, as throughout, ⊕
denotes exclusive-or (or, equivalently, modulo 2 addition). In a similar way,
we refer to sequences being complementary if one can be obtained from the
other by switching every 1 to a 0 and vice versa.

Following Lempel [15], we define the conjugate of an n-tuple to be the tuple
obtained by switching the first bit, i.e. if u = (u0, u1, . . . , un−1) ∈ Bn, then
the conjugate û of u is the n-tuple (u0 ⊕ 1, u1, . . . , un−1).

Two n-window sequences S = (si) and T = (ti) are said to be disjoint if
they do not share an n-tuple, i.e. if sn(i) 6= tn(j) for every i, j. An n-window
sequence is said to be primitive if it is disjoint from its complement.

We next give a well known result (closely related to Theorem 2 of Lempel
[15]) showing how two disjoint n-window sequences can be ‘joined’ to create
a single n-window sequence, if they contain conjugate n-tuples; see also
Lemma 3 of Sawada et al. [18].

Theorem 2.1 Suppose S = (si) and T = (ti) are disjoint n-window se-
quences of orders ` and m respectively. Moreover suppose S and T contain
the conjugate n-tuples u and v at positions i and j, respectively (i.e. u = v̂).
Then

[so, s1, . . . , si+n−1, tj+n, tj+n+1, . . . , tm−1, t0, . . . , tj+n−1, si+n, si+n+1, . . . , s`−1]

is a generating cycle for an n-window sequence of period `+m.

We also introduce a graph of fundamental importance to the study of n-
window sequences.

Definition 2.2 The de Bruijn-Good graph Gn [13] is a directed graph with
vertex set Bn, where for u,v ∈ Bn (where u = (u0, u1, . . . , un−1) and v =
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(v0, v1, . . . , vn−1)) there is a directed edge u → v if and only if ui+1 = vi,
0 ≤ i ≤ n− 1.

It should be clear that every vertex in Gn has two incoming edges and two
outgoing edges. It should also be clear that an (n + 1)-window sequence
defines a (directed) cycle in Gn, (where every (n + 1)-tuple maps to an
edge), and, using the same mapping, a de Bruijn sequence of order n + 1
is equivalent to an Eulerian cycle in Gn. This latter remark immediately
establishes the existence of de Bruijn sequences for every n (given every node
has degree 2). It is also straightforward to see that a de Bruijn sequence of
order n defines an Hamiltonian cycle in Gn, this time using the rather more
obvious mapping of n-tuples to nodes.

2.2 Orientable sequences

The main focus of this paper is on n-window sequences with the property
that an n-tuple cannot occur twice within a period in either direction. To
this end we give the following definitions, following Dai et al. [8].

Definition 2.3 An n-window sequence S = (si) of period m is said to be an
orientable sequence of order n (an OS(n)) if, for any i, j, sn(i) 6= sn(j)R.

We also need the following related concept.

Definition 2.4 A pair of disjoint orientable sequences of order n, S = (si)
and S′ = (s′i), are said to be orientable-disjoint (or simply o-disjoint) if, for
any i, j, sn(i) 6= s′n(j)R.

As noted in Section 1, Dai et al. [8] give an upper bound on the period of
orientable sequences.

Theorem 2.5 (Dai et al. [8]) Suppose S is an OS(n) (n ≥ 5). Then the
period of S is at most:

2n−1 − 41/9× 2n/2−1 + n/3 + 16/9 if n ≡ 0 (mod 4)

2n−1 − 31/9× 2(n−1)/2 + n/3 + 19/9 if n ≡ 1 (mod 4)

2n−1 − 41/9× 2n/2−1 + n/6 + 20/9 if n ≡ 2 (mod 4)

2n−1 − 31/9× 2(n−1)/2 + n/6 + 43/18 if n ≡ 3 (mod 4)

The values arising from Theorem 2.5 for 5 ≤ n ≤ 9 are given in Table 1.

Observe that the bound of Theorem 2.5 does not appear to be sharp for n >
5; as noted in the introduction, Sawada (see http://debruijnsequence.

org/db/orientable) has shown that the maximum periods of an OS(6) and
OS(7) are 16 and 36 respectively.
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Table 1: Bounding the period of an OS(n) (from Theorem 2.5)

Order (n) Maximum period m for an OS(n)

5 6
6 17
7 40
8 96
9 206

3 The Lempel homomorphism

3.1 The homomorphism

The construction method we introduce later in this paper is an application
of the homomorphism D, due to Lempel, [15].

Definition 3.1 (Lempel [15]) The mapping D : Bn → Bn−1 is as follows.
If u = (u0, u1, . . . , un−1) ∈ Bn then

D(u) = (u0 ⊕ u1, u1 ⊕ u2, . . . , un−2 ⊕ un−1) ∈ Bn−1.

The Lempel homomorphism has the following properties [15].

� D is onto, i.e. D(Bn) = Bn−1 ([15], Lemma 1).

� If u,v ∈ Bn then D(u) = D(v) if and only if u = v or u = v̄ ([15],
Lemma 2).

� D is a graph homomorphism of Gn onto Gn−1 ([15], Theorem 4).

We extend the notation to allow D to be applied to periodic binary sequences
in the natural way. That is, D is a map from the set of periodic binary
sequences to itself; the image of a sequence of period m will clearly have
period dividing m. (See also Etzion [10] for a discussion of other properties
of D). In the natural way we can define D−1 to be the ‘inverse’ of D, i.e. if S
is a periodic binary sequence than D−1(S) is the set of all binary sequences
T with the property that D(T ) = S.

3.2 Constructing de Bruijn sequences

We next observe how the Lempel homomorphism can be used to construct
a de Bruijn sequence of order n + 1 from a de Bruijn sequence of order n.
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Although these results are well-known, we briefly give them here using our
terminology, since they are of key importance for the orientable sequence
construction given below. We first need the following result.

Theorem 3.2 Suppose S = (si) is an n-window sequence of period m.
Then:

� if w(S) is even then D−1(S) consists of a disjoint pair of complemen-
tary primitive (n+ 1)-window sequences of period m, and

� if w(S) is odd then D−1(S) consists of two different shifts of a single
(n+ 1)-window sequence of period 2m and weight m.

Proof Suppose T = (ti) ∈ D−1(S). It follows from the definition of D that

ti = t0 ⊕
i−1⊕
j=0

sj .

We consider the two cases separately.

� Suppose w(S) is even. Then it follows immediately that tm+i = ti
for all i, i.e. D−1(S) consists of a pair of sequences of period m. It
also immediately follows that the two sequences are complementary.
Next suppose that tn+1(i) = tn+1(j) for some i,j. Hence D(tn+1(i)) =
D(tn+1(j)), i.e., by definition of D we know that sn(i) = sn(j). Since
S is an n-window sequence of period m, it follows that i ≡ j (mod m),
and hence T is an (n+ 1)-window sequence.

To establish primitivity, suppose the opposite, i.e. suppose tn+1(i) =
t̄n+1(j) for some i,j. ThenD(tn+1(i)) = D(t̄n+1(j)), i.e. sn(i) = sn(j).
As previously this implies i ≡ j (mod m), but since we know T has
period m this immediately gives a contradiction since we assumed
tn+1(i) 6= tn+1(j).

� Now suppose w(S) is odd. Then it follows immediately that tm+i =
ti⊕1 for all i, and hence t2m+i = ti for all i, i.e. T has period 2m. The
fact that D−1(S) contains two possible shifts of the same sequence
follows by considering that t0 can be either 0 or 1. The fact that T
is an (n+ 1)-window sequence follows by precisely the same argument
as for the even weight case. Finally, it has weight precisely half the
period since if u is an (n+ 1)-tuple occurring in T , then ū also occurs
in T .

We next give two simple examples of the operation of D−1.
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Example 3.3 First suppose S = [101] (of even weight); then D−1(S) =
{[011], [100]}. Alternatively suppose S = [100] (of odd weight); then D−1(S) =
{[100011]}.

Since the weight of a binary de Bruijn sequence of order n > 1 is always
even, the above theorem immediately gives as a corollary the following result
due to Lempel [15].

Corollary 3.4 Suppose S = (si) is a de Bruijn sequence of order n > 1.
Then D−1(S) consists of a disjoint pair of complementary disjoint (n+ 1)-
window sequences of period 2n.

To complete the construction we need the following simple lemma (in essence
given in a discussion in §IV.A of Lempel [15]).

Lemma 3.5 Suppose S = (si) is a de Bruijn sequence of order n > 1, and
let D−1(S) = {T, T ′}, where (from Corollary 3.4) T and T ′ are a disjoint
pair of complementary disjoint (n+1)-window sequences of period 2n. Then
T and T ′ contain conjugate (n+ 1)-tuples.

Proof Consider the two (n + 1)-tuples consisting of alternating bits, i.e.
u = (1010 . . .) and v = (0101 . . .). They are clearly complementary and so
one occurs in T and the other in T ′ — they must both occur in one or other
of T and T ′ since by an obvious numerical argument T and T ′ between them
contain all (n + 1)-tuples. Suppose, without loss of generality, u occurs at
position i in T = (ti); then ti−1 = 1 since if ti−1 = 1 then v occurs at
position i − 1 in T , contradicting the disjointness of T and T ′. Hence the
conjugate to v occurs at position i− 1 in T , giving the desired result.

It follows immediately that, combining Corollary 3.4 with Theorem 2.1 and
Lemma 3.5, it is simple to construct a de Bruijn sequence of order n + 1
from one of order n by applying the inverse Lempel homomorphism and
then ‘joining’ the two resulting sequences.

4 Constructing orientable sequences

4.1 Applying the Lempel homomorphism

We next show that a similar approach to that described above can be used
to construct orientable sequences of order n+ 1 from one of order n.

Theorem 4.1 Suppose S = (si) is an orientable sequence of order n and
period m. Then:
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� if w(S) is even then D−1(S) consists of an o-disjoint pair of primitive
complementary orientable sequences of order n+ 1 and period m, and

� if w(S) is odd then D−1(S) consists of two different shifts of a single
orientable sequence of order n+ 1, period 2m and weight m.

Proof As previously we consider two cases.

� If w(S) is even then Theorem 3.2 shows that D−1(S) consists of an
disjoint pair of primitive complementary (n+ 1)-window sequences of
order n + 1 and period m. It therefore remains to show that the two
sequences are themselves orientable, and also that they are o-disjoint.

First suppose that T = (ti) ∈ D−1(S) is not orientable. i.e. tn+1(i) =
tn+1(j)

R for some i, j. Then D(tn+1(i)) = D(tn+1(j)
R), i.e. sn(i) =

sn(j)R, contradicting the assumption that S is orientable.

Next suppose that T, T ′ ∈ D−1(S) are not o-disjoint (where T =
(ti) and T ′ = (t′i)). We know they are disjoint (from Theorem 3.2),
and hence it must hold that tn+1(i) = t′n+1(j)

R. Then D(tn+1(i)) =
D(t′n+1(j)

R), i.e. sn(i) = sn(j)R, again contradicting the assumption
that S is orientable.

� If w(S) is odd then Theorem 3.2 again almost establishes the result.
It remains to show that the (n+ 1)-window sequence of period 2m is
orientable. However, this follows by precisely the same argument as
used in the previous case.

Clearly this result is not enough on its own to enable construction of ‘long’
orientable sequences, since, even if S has odd weight and period m, then
T ∈ D−1(S) will have weight m, i.e. it will have odd weight if and only if m
is odd. Moreover, even if S has odd weight and odd period, then T ∈ D−1(S)
will have period 2m, and hence U ∈ D−1(T ) will have even weight. This is
shown by the simple case in Example 4.2.

Example 4.2 Let S be the OS(5) of period m = 6 with generating cycle
[001101], mentioned in Section 2.2. S has weight 3 (odd) and hence Theo-
rem 4.1 tells us that D−1(S) contains a single OS(6) of period 12, namely:
[000100111011]. However, this has weight 6 (even) so that another applica-
tion of D−1 will yield a complementary pair of OS(7)s of period 12, namely
[000011101001] and [111100010110].

To achieve ‘period doubling’ for multiple iterations of the above construc-
tion, two ‘obvious’ possibilities present themselves:
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� find a sequence S with the property that when applying the construc-
tion method iteratively, the output complementary pair of sequences
contains a conjugate pair of tuples (thereby enabling the two sequences
to be joined to create a single ‘double length’ sequence — see Theo-
rem 2.1);

� find a sequence S (with odd weight) with the property that it is pos-
sible to modify the double length output sequence T ∈ D−1(S) to
ensure that it too has odd weight.

In the next section we exhibit an approach of the second type.

4.2 An approach to maintaining odd weight

We first define a method of ‘extending’ orientable sequences of a special
type.

Definition 4.3 Suppose S = (si) is an orientable sequence of order n and
period m with the property that there is there is exactly one occurrence of
1n−4 in a period (and hence it contains no longer runs of 1s); suppose the
generating cycle of S is [s0, s1, . . . , sm−1] where sr = sr+1 = · · · = sr+n−5 =
1 for some r. Define the function E (with domain and range the set of
periodic binary sequences) as follows. If S has odd weight then set E(S) = S,
and if S has even weight then define E(S) to be the sequence with generating
cycle

[s0, s1, sr−1, 1, sr, sr+1, ...sm−1]

i.e. where the single occurrence of 1n−4 is replaced with 1n−3.

Remark 4.4 Note that, as discussed in Dai et al. [8], it is simple to see
that any orientable sequence can contain at most one occurrence of 1n−3 in
a period.

We can now state a key result.

Lemma 4.5 Suppose S = (si) is an orientable sequence of order n and
period m with the property that there is exactly one occurrence of 1n−4 in a
period. Then E(S) is an orientable sequence of order n, period m or m+ 1
(depending on whether w(S) is odd or even) and odd weight.

Proof The result clearly holds if S has odd weight, and we thus suppose
S has even weight. The fact that E(S) has odd weight follows immediately
from the definition. Again by definition the period of E(S) divides m+1, and
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is precisely m + 1 because [s0, s1, sr−1, 1, sr, sr+1, ...sm−1] contains exactly
one occurrence of 1n−3.

It remains to show that E(S) is an OS(n). We only need to examine the
n-tuples which include the inserted 1. Inserting this single 1 means that the
following three n-tuples that occur in S (where the subscripts are computed
modulo m+ 1):

u0 = (sr−3, sr−2, sr−1, 1
n−4, sr+n−4),

u1 = (sr−2, sr−1, 1
n−4, sr+n−4, sr+n−3),

u2 = (sr−1, 1
n−4, sr+n−4, sr+n−3, sr+n−2)

are replaced in E(S) by the following four n-tuples:

v0 = (sr−3, sr−2, sr−1, 1
n−3),

v1 = (sr−2, sr−1, 1
n−3, sr+n+4),

v2 = (sr−1, 1
n−3, sr+n−4, sr+n−3),

v3 = (1n−3, sr+n−4, sr+n−3, sr+n−2).

Now all four of the vi tuples contain 1n−3, and hence they are all distinct
and cannot occur in S (or SR). The only remaining task is to show that
v0 6= vR3 and v1 6= vR2 . However, if v0 = vR3 or v1 = vR2 then it immediately
follows that u1 is symmetric, which contradicts the assumption that S is
orientable.

This then enables us to give a means to recursively generate ‘long’ orientable
sequences. We first define a special class of sequence.

Definition 4.6 An OS(n) with the property that there is exactly one oc-
currence of 0n−4 in a period is said to be good.

Theorem 4.7 Suppose S = (si) is a good OS(n) of odd weight and period
m. If T ∈ D−1(S) then E(T ) is a good OS(n+ 1) of odd weight, and period
either 2m (if m is odd) or 2m+ 1 (if m is even).

Proof The fact that T is an OS(n + 1) of period 2m follows immediately
from Theorem 4.1; we also know the weight of T is m. Since 0n−4 oc-
curs exactly once in S, both 0n−3 and 1n−3 occur exactly once in T , as
D−1(0n−4) = {0n−3, 1n−3}. This means that T is good and also the condi-
tions of Lemma 4.5 apply. This in turn means that E(T ) is an orientable
sequence of order n+ 1 and odd weight. The fact that E(T ) is good follows
from observing that applying E cannot affect the number of occurrences of
0n−3. Finally, E(T ) has period either 2m (if m is odd) or 2m + 1 (if m is
even), since T has weight m.

11



This immediately gives the following result.

Corollary 4.8 Suppose Sn is a good OS(n) of period mn. Recursively de-
fine the sequences Si+1 = E(D−1(Si)) for i ≥ n, and suppose Si has period
mi (i > n). Then, Si is a good OS(i) for every i, and for every j ≥ 0:

� if mn is odd, mn+2j+1 = 2mn+2j and mn+2j+2 = 2mn+2j+1 + 1;

� if mn is even, mn+2j+1 = 2mn+2j + 1 and mn+2j+2 = 2mn+2j+1.

Proof If mi is odd for any i ≥ m, then D−1(Si) will have odd weight
and hence Si+1 = D−1(Si); that is, Si+1 will have even period (2mi). By
similar reasoning, Si+2 will have odd period (2mi+1 + 1 = 4mi + 1). This
immediately yields the result.

Simple numerical calculations give the following.

Corollary 4.9 Suppose the sequences (Si) are defined as in Corollary 4.8.
Then

� if mn is odd, mn+2j = 22jmn + (22j − 1)/3 and mn+2j+1 = 22j+1mn +
(22j+1 − 2)/3;

� if mn is even, mn+2j = 22jmn+(22j+1−2)/3 and mn+2j+1 = 22j+1mn+
(22j+2 − 1)/3.

We conclude by giving a simple example of how the above process can be
used to generate an infinite family of orientable sequences.

Example 4.10 [001010111] is the generating cycle of an OS(6) of period
9, which is good since it contains exactly one instance of 02. It also has odd
weight. So it can be used as S6 for the first application of D−1. This results
in a good OS(7) of period 18 with generating cycle: [000110010111001101].
This has weight 9 (which is odd), i.e. E(D−1(S6)) = D−1(S6), and so S7 =
[000110010111001101]. We next have

D−1(S7) = [000010001101000100111101110010111011]

which has even weight and hence we need to insert an extra 1 after the unique
sequence of four 1s, i.e.

S8 = [0000100011010001001111101110010111011].

Continuing in this way we obtain sequences with the periods listed in Table 2.
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Table 2: A family of orientable sequences

Order (n) Period (mn) Remarks

6 9
7 18 No need to insert an extra 1 as the weight

is odd since [001010111] has odd period
8 37 After adding the extra 1
9 74 No need to insert an extra 1
10 149
· · · · · ·

6 + 2j 9(22j) + (22j − 1)/3
6 + 2j + 1 9(22j+1) + (22j+1 − 2)/3

For the sequences in Example 4.10 we thus have mn > 9×2n−6 and from Dai
et al. [8] we know that mn < 2n−1 for any orientable sequence of order n.
That is, even for this simple example, the sequences obtained have periods
at least 9/32 of the optimal values. Clearly sequences with periods closer
to the optimal values can be obtained if the ‘starter sequence’ has period
larger than the value given in the table2, although the generated sequences
will never by asymptotically optimal in length (unlike the sequences of Dai
et al. [8]). The sequence of period 9 was found by hand, and in the absence
of a systematic search it is not clear whether a good OS(6) of period greater
than 9 exists.

5 The aperiodic case

5.1 Introduction and definitions

Up to this point we have only considered periodic sequences, i.e. infinite
binary sequences which repeat after a finite period. However, many of the
ideas we have thus far discussed also apply to the aperiodic case, i.e. where
we are dealing with a single finite sequence. If S = (s0, s1, . . . , s`−1) is a
binary sequence of length `, i.e. si ∈ B for 0 ≤ i < `, then S is an aperiodic
orientable sequence of order n (an AOS(n)) if and only if the collection of
2`− 2n+ 2 n-tuples sn(i) and sn(i)R (0 ≤ i ≤ `− n) are all distinct.

As noted in Section 1, sequences of both periodic and aperiodic type have
potential applications in position-location applications where the sequence is

2An example of a good OS(8) of period 80 has been found by Sawada — see http:

//debruijnsequence.org/db/orientable — yielding sequences of length at least 63% of
the longest possible such sequence.
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encoded onto a surface which may be read in either direction, and reading n
digits reveals the location of the reader and the direction of travel. Whether
the periodic or aperiodic sequences are more appropriate depends on whether
the surface on which the sequence is encoded forms a closed loop, e.g. when
the surface is a cylinder, or not.

This case was briefly considered by Burns and Mitchell [4], who give some
simple results on the lengths of the longest such sequences, obtained from
computer searches — see Table 3, where it is claimed that the for 4 ≤ n ≤
7 the length given is the length of the longest such sequence. Note that
such sequences are referred to there as binary aperiodic 2-orientable window
sequences.

Table 3: Existence of aperiodic orientable sequences

Order (n) Sequence length (`)

4 8
5 14
6 26
7 48
8 108
9 210
10 440
11 872
12 1860
13 3710
14 7400
15 15467
16 31766

It follows immediately from the definitions that if S = (si) is an OS(n) of
period m, then (s0, s1 . . . , sn+m−2) is an AOS(n) of length m + n − 1 (see
also [4]).

Finally, analogously to the periodic case, we define:

� a pair of AOS(n)s to be disjoint if they do not share an n-tuple;

� a pair of AOS(n)s to be o-disjoint if they do not share an n-tuple in
either direction; and

� an aperiodic sequence to be primitive if it is disjoint from its comple-
ment.
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5.2 Applying the Lempel homomorphism

The Lempel homomorphism applies equally in the aperiodic case, and the
following result analogous to Theorem 4.1 holds. As the operator D acts in
the same way on (n+ 1)-windows in the aperiodic case as the periodic case
the proof follows using precisely the same arguments as in Theorems 3.2 and
4.1.

Theorem 5.1 Suppose S = (si) is an AOS(n) of length `. Then D−1(S)
consists of an o-disjoint pair of primitive complementary AOS(n + 1)s of
length `+ 1.

Of course, this result does not enable us to generate long aperiodic orientable
sequences. As in the periodic case, we need to find a way to combine the pair
of sequences output from the inverse Lempel homomorphism. Fortunately,
as we show below, if you start the iterative process with a sequence with
very special properties then this can be achieved.

5.3 A special case

We start by considering a very special type of AOS(n). We first need the
following.

Definition 5.2 If S = (si) is an AOS(n), n > 1, of length ` with the
property that the first n − 1 bits are 0s and the last n − 1 bits are 1s, i.e.
S = 0n−1 · · · 1n−1, then we say S is ideal.

We can now state the following simple result, which follows immediately
from Theorem 5.1 and the definition of D.

Lemma 5.3 Suppose S = (si) is an ideal AOS(n). Then:

D−1(S) = {(0n · · · an), (1n · · · ān)}

where an is a subsequence consisting of n alternating bits (whether it starts
with a 0 or a 1 is immaterial).

This then leads to the following main result.

Theorem 5.4 Suppose S = (si) is an ideal AOS(n) of length `, and let
D−1(S) = {T, T̄} where T = (0n · · · an) as in Lemma 5.3. Let U = T̄R.
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� If n is even, let V be the sequence of length 2` − n + 2 consisting of
the `+ 1 bits of T followed by the final `−n+ 1 bits of U (i.e. U with
the first n bits omitted).

� If n is odd, let V be the sequence of length 2`− n+ 3 consisting of the
`+ 1 bits of T followed by the final `−n+ 2 bits of U (i.e. U with the
first n− 1 bits omitted).

In both cases V is an ideal AOS(n+ 1).

Proof Without loss of generality we suppose throughout that an starts with
a 0 (and hence ends with a 0/1 if n is odd/even).

First suppose that n is even. Then, since T̄ = 1n · · · ān, U = ān · · · 1n, the
first n bits of U match the final n bits of T . It follows that the merging
of the two sequences to create V does not introduce any additional ‘new’
(n+ 1)-tuples, i.e. the set of (n+ 1)-tuples in V is equal to those appearing
in T and U . Hence, since U = T̄R, and T and T̄ are an o-disjoint pair of
primitive complementary AOS(n+ 1)s (from Theorem 5.1), it follows that
V is an AOS(n+ 1). The fact that it is ideal follows immediately from its
method of construction, and its length is equal to the sum of the lengths of T
and U minus n, the number of ‘overlapped’ bits, i.e. 2(`+1)−n = 2`−n+2.

Now suppose that n is odd. In this case U = ān · · · 1n, and so the final
n − 1 bits of U match the first n − 1 bits of T . The ‘merging’ of T and U
to create V introduces a single additional ‘new’ (n+ 1)-tuple in V , namely
the (n+ 1)-bit alternating tuple starting with a 0 — all other tuples occur
in T or U ; similarly, the only additional ‘new’ (n + 1)-tuple in V R is the
(n+ 1)-bit alternating tuple starting with a 1 (since n+ 1 is even). Neither
of these tuples could appear in T or U (or their reverses) since the image
under D of these (n + 1)-tuples is 1n, which cannot appear in S since it is
symmetric. It thus again follows that V is an ideal AOS(n + 1), in this
case of length equal to the sum of the lengths of T and U minus n− 1, the
number of ‘overlapped’ bits, i.e. 2(`+ 1)− (n− 1) = 2`− n+ 3.

The above construction clearly gives an iterative method of computing an
AOS(n) for arbitrary n, given an ideal AOS to act as a ‘starter’ in the
construction. The length of the sequences obtained is given by the following
lemma.

Lemma 5.5 Suppose Sn is an ideal AOS(n) of length `n, and moreover
suppose that Sm+n is an ideal AOS(m + n) of length `m+n obtained from
Sn using m iterations of the approach given in Theorem 5.4. Then

`m+n = 2m(`n − n+ 1) + xm/3 +m+ n− 1.
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where xm is one of 2m − 1 (n even, m even), 2m − 2 (n even, m odd),
2m+1 − 2 (n odd, m even), or 2m+1 − 1 (n odd, m odd).

Proof For any sequence Sr (r ≥ n) we consider the value νr, i.e. the number
of r-tuples appearing in Sr. Clearly νr = `r − r+ 1. From Theorem 5.4, we
immediately have that νn+1 = 2νn if n is even, and νn+1 = 2νn + 1 if n is
odd. The result then follows from some simple calculations.

We now give a simple example of the use of the above iterative construction,
yielding an infinite family of aperiodic orientable sequences.

Example 5.6 We start by observing that S2 = 01 is an ideal AOS(2) of
length 2. This is clearly optimally long. Now D−1(S) = {001, 110}, i.e.
T = 001 and U = 011. Since 2 is even, we overlap the sequences by n = 2
positions to obtain S3 = 0011. Note that S3 is also of optimal length since
there are only four asymmetric 3-tuples, two of which appear.

Repeating the construction, applying D−1 to 0011 gives T = 00010 and U =
10111. Overlapping them by 2(= n− 3) bit-positions we get S4 = 00010111
of length 8. This involves adding the extra 4-tuple 0101, which could not
appear in either T or U as its image under D is 111, which is symmetric.
S4 is also optimally long according to Table 3.

We next obtain S5 = 00001101001111 of length 14. Continuing this process
gives sequences of the lengths in Table 4.

Table 4: A family of aperiodic orientable sequences

Order (n) Sequence length (`)

2 2
3 4
4 8
5 14
6 26
7 48
8 92
9 178
10 350
· · · · · ·
2r 22r−2 + (22r−2 − 1)/3 + 2r − 1

2r + 1 22r−1 + (22r−1 − 2)/3 + 2r

Inspection of Table 4 reveals that for n ≤ 7 the sequences are optimally long
(according to Table 3), but for larger values of n they are not. However,
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they are very simple to construct, and from Lemma 5.5 (see also Table 4)
the length of the sequence Sn is greater than 2n/3. A simple upper bound
(see Lemma 15 of [4]) means that the length of any AOS(n) is at most
2n−1 − 2b(n−1)/2c + n− 1; that is, the sequences generated by this approach
have lengths at least 2/3 of the optimal values.

6 Conclusions and possible future work

We have described how the Lempel homomorphism can be applied to recur-
sively generate infinite families of both periodic and aperiodic orientable se-
quences. We have given examples of infinite families of orientable sequences,
both periodic and aperiodic, generated using the construction methods and
having, in both cases, close to optimal period/length — the periodic se-
quences have period at least 63% of the optimal value, and the aperiodic
sequences have length at least 2/3 of optimal. Moreover, sequences with
greater period/length can be obtained should longer ‘starter’ sequences for
the recursions be chosen. The method of construction in both cases is direct
very simple, partially answering the question posed by Dai et al. [8] and
quoted in Section 1. They only partially answer the question since the peri-
ods/lengths of the sequences produced are not asymptotically optimal. The
methods are also of low complexity in terms of time — they are trivially
linear in the sequence length; however, the storage complexity is high since
the entire sequence needs to be available to perform the recursion operation.

Since in both cases the sequences are generated using a simple recursive
approach, it may well be possible to devise simple encoding and decoding
methods, i.e. algorithms that, for an OS(n) or an AOS(n), enable a position
value to be converted into the n-tuple that occurs in that position in the
sequence or its reverse (encoding) or vice versa (decoding). Such algorithms
are clearly of value in potential position-location applications of orientable
sequences — see, for example, [4, 16].

Devising such algorithms is left for future work. Other possible directions
for future research include generalising the construction methods given in
this paper, both to arbitrary size alphabets and to the multi-dimensional
case.
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