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Abstract. 

Automatic sound classification attracts increasing research attention owing to its vast applications, such as 

robot navigation, environmental sensing, musical instrument classification, medical diagnosis, and 

surveillance. In this research, we propose an ensemble convolutional bidirectional Long Short-Term Memory 

(CBiLSTM) network with optimal hyper-parameter selection for undertaking sound classification. We first 

transform each audio signal into a spectrogram representation using the Short-time Fourier transform (STFT). 

A Particle Swarm Optimization (PSO) variant is subsequently proposed to optimize the learning rate, weight 

decay, numbers of filters and hidden units in the convolutional and BiLSTM layers, respectively, in order to 

extract effective spatial-temporal characteristics from the spectrogram inputs. To tackle the issue of 

stagnation in optimization, the proposed algorithm incorporates local exploitation using secant and Newton-

Raphson methods, promising leader generation using regular and irregular super-ellipse formulae, and three-

dimensional spherical search coefficients. Moreover, it takes into account multiple fused elite signals in 

conjunction with numerical analysis based exploitation to balance between diversification and intensification. 

A variety of CBiLSTM networks with distinctive optimized settings are devised. An ensemble model is then 

constructed by incorporating a set of three yielded networks based on a majority voting scheme. Evaluated 

using several audio data sets, our ensemble CBiLSTM networks outperform those with default and optimal 

settings identified by other search methods, existing deep architectures and state-of-the-art related studies. In 

addition to sound classification tasks, the proposed PSO algorithm also outperforms a number of classical 

and advanced search methods for solving diverse unimodal and multimodal benchmark functions with 

statistical significance. 

 

Keywords: Sound Classification, Evolutionary Algorithm, Deep Convolutional Bidirectional Long Short-

Term Memory Network and Ensemble Classifier. 

1. INTRODUCTION 

Automatic sound classification has been widely adopted in a variety of real-life applications [1-5], such as 

health monitoring, security surveillance, environmental sensing, robot navigation, disaster identification and 

voice activity recognition. Sound classification tasks involve the extraction of acoustic characteristics from 



the audio signals and the subsequent identification of different sound classes. The broad range of sound 

classification deployments can be categorized into several disciplines, which include speech recognition, 

music instrument identification, environmental sound classification and abnormal sound identification for 

disease diagnosis. In comparison with speech and music sounds which possess proper high-level structures, 

the categories of diagnostic (such as respiratory and heart) sounds and environmental audio signals tend to be 

unstructured, which contain various clinical and natural acoustic noise. Furthermore, because of different 

sound production mechanisms (e.g. different body recording locations and equipment), sound classification 

with medical and environmental audio clips stands as a challenging problem [1-5]. 

 

It is thus important to generate effective audio representations to capture important discriminative 

characteristics and environmental acoustic cues to inform audio classification. In this respect, deep neural 

networks have demonstrated superior performances for signal processing tasks owing to their significant 

feature learning capabilities. Moreover, the hybridization of Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN) has gained increasing popularity because of the significant capabilities in 

spatial-temporal feature extraction [6, 7, 8]. In this research, we propose a convolutional bidirectional Long 

Short-Term Memory (CBiLSTM) network for sound classification, in view of the enhanced capabilities in 

audio representation. Since network structures and learning hyper-parameters play crucial roles in generating 

effective spatial-temporal features, we propose a new Particle Swarm Optimization (PSO) variant to optimize 

the learning parameters and configurations, which include the learning rate, weight decay, and convolutional 

and BiLSTM layer topologies, for performance enhancement.    

 

Specifically, in this research, we propose evolving ensemble deep CBiLSTM networks with optimal hyper-

parameter selection for undertaking sound classification. Firstly, the Short-time Fourier transform (STFT) is 

used to transform audio signals into spectrograms. In order to extract effective spatial-temporal dependencies 

from spectrogram inputs, a new PSO variant is devised to identify the optimal settings of the learning rate, 

weight decay, numbers of filters and hidden units in the convolutional and BiLSTM layers, respectively. The 

proposed PSO algorithm incorporates secant and Newton-Raphson algorithms for swarm leader 

enhancement, elite signal generation using regular and irregular super-ellipse adaptive operators, and three-

dimensional (3D) spherical search coefficients. It exploits diverse hybrid elite indicators and numerical 

analysis based intensification to overcome stagnation. A set of optimized CBiLSTM networks with different 

layer structures and learning settings is produced using the proposed algorithm. An ensemble model is 

subsequently constructed by integrating three such optimized networks using a majority voting mechanism. 

Because of numerical analysis based intensification, elite signal generation operators, and parametric search 

coefficients, the proposed model shows great superiority in devising efficient hyper-parameter settings for 

yielding effective spatial-temporal dynamics. Our ensemble networks outperform those with optimal settings 

identified through classical and advanced search methods in diverse sound classification tasks. Figure 1 

illustrates the system architecture. 

 

 

 

                

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

            

Figure 1 The overall system architecture 

 

The contributions of this research are summarized as follows. 

1. We propose evolving ensemble CBiLSTM networks with optimal hyper-parameter selection using a 

PSO variant for undertaking sound classification. The proposed PSO model is used to optimize the 

associated network and learning configurations, such as the learning rate, weight decay, numbers of 

filters and hidden neurons in the convolutional and BiLSTM layers, respectively, in order to capture 

effective spatial and sequential cues of the spectrogram inputs. The yielded optimized networks with 

distinctive layer topologies and learning settings are able to equip the respective ensemble models 

with great diversity and complementary characteristics for enhancing classification performance.  

2. The proposed PSO model incorporates secant and Newton-Raphson algorithms for swarm leader 

enhancement, regular and irregular elliptical formulae oriented crossover operators for hybrid 
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indicator generation, and diverse spherical search coefficients, to overcome stagnation. Firstly, after 

initializing the swarm, the secant and Newton-Raphson methods are used to enhance the global best 

solution. In comparison with stochastic random walk strategies such as Gaussian, Cauchy and Levy 

distributions for leader enhancement [9, 10], these root-finding numerical analysis algorithms 

provide guided local exploitation of promising solutions to overcome stagnation and accelerate 

convergence. 

 

Secondly, to better balance the search between exploitation and exploration, a hybrid leader 

generation mechanism with adaptive weightings is proposed. Specifically, hybrid elite leader signals 

are devised using crossover operators based on regular and irregular adaptive super-ellipse 

formulae. In comparison with single-leader based search processes [11-20] as well as search 

operations led by multiple leaders with equal weightings [21-24], we leverage adaptive weighting 

factors yielded by super-ellipse formulae for hybrid signal generation to better balance between 

diversification and intensification. The enhanced swarm leader and the second-best solution are 

integrated using adaptive (increasing and decreasing) weights produced by regular and irregular 2D 

elliptical formulae. Such adaptive factors enable the search process to focus on global exploration 

by assigning a higher weighting to the second-best leader at the beginning of the search process, and 

gradually switch to local exploitation by emphasizing the impact of the global best solution towards 

the end of search iterations. 

 

Thirdly, spherical parametric surfaces are exploited to produce search coefficients. Owing to the 

generation of distinctive spherical shapes in comparison with chaotic maps [16, 17] or Gaussian 

distribution [12] oriented search coefficients, the proposed spherical surfaces equip each particle 

with distinctive search scales, directions and trajectories in both social and cognitive components, in 

order to increase the chances of finding global optimality. 

 

In short, the proposed model employs a variety of fused elite signals with diverse search trajectories 

as well as numerical-based intensification to overcome local optimum traps. The yielded elite 

leaders enable the search process to focus on local and global promising regions adaptively 

throughout the iterations. The empirical results indicate that our model shows superior efficiency in 

devising efficient layer structures and learning settings in CBiLSTM networks for generating 

effective spatial-temporal patterns to enhance performance. 

 

3. Evaluated using challenging respiratory, heart and environmental sound data sets, i.e. ICBHI 2017 

[25], the PhysioNet Computing in Cardiology Challenge 2016 (PhysioNet/CinC Challenge 2016) 

[26], and ESC-10 [27], the proposed ensemble CBiLSTM models outperform those with default and 

optimal settings identified by other search methods, existing deep networks and state-of-the-art 

related studies, significantly. In addition to sound classification tasks, the proposed PSO algorithm 

shows statistically significant superiority over a number of classical and advanced search methods 

for solving diverse unimodal and multimodal artificial landscapes. 

 

The paper is organized as follows. In Section 2, we discuss a variety of related studies on sound classification 

for medical diagnosis and environmental sensing, as well as diverse recently proposed PSO variants. The 

proposed model with elite indicator generation and numerical analysis based exploitation is introduced in 

Section 3. Section 4 explains spectrogram generation and ensemble CBiLSTM networks with hyper-

parameter selection. We present a comprehensive evaluation and introduce future directions in Sections 5 and 

6, respectively. 

 

2. RELATED WORK 
In this section, we discuss state-of-the-art studies on respiratory, heart and environmental sound 

classification, as well as a variety of PSO variants and other search methods for solving diverse optimization 

problems. 

 

2.1 Respiratory, Heart and Environmental Sound Classification 
Automatic sound classification attracts significant research attention, in view of its broad range of real-life 

applications, such as autonomous navigation, environmental surveillance, and medical diagnosis. There are a 

variety of recent studies in the literature pertaining to heart and respiratory disease diagnosis using sound 

recordings [3, 28, 29, 30]. As an example, Wu et al. [29] proposed an ensemble CNN model with a Savitzky-

Golay filter for heart sound anomaly detection. Their work first employed the Savitzky-Golay filter to 

denoise audio signals. STFT was subsequently used to transform the denoised audios into spectrograms. 



Audio features such as mel-spectrograms and mel-frequency cepstral coefficients (MFCCs) were also 

extracted from on the spectrograms. The resulting features, i.e. spectrograms, mel-spectrograms and MFCCs, 

were used to train three VGG networks. An ensemble model was constructed based on these trained networks 

using a majority voting mechanism. Evaluated using the benchmark PhysioNet/CinC Challenge 2016 data 

set, their ensemble model outperformed several existing methods for abnormal heart sound classification. 

Zhang et al. [30] employed spectrogram and tensor decomposition for heart sound classification. After noise 

elimination, the heart cycles were estimated and segmented. STFT was used to transform each segmented 

cycle into a spectrogram. A bilinear interpolation method was used to rescale the spectrogram into a fixed 

size. Feature selection was then performed using a tensor decomposition method to extract the most 

significant structural pathological information from the spectrograms. A Support Vector Machine (SVM) 

classifier was used for heart abnormality identification. Evaluated using several heart sound data sets (e.g. the 

PASCAL challenge and PhysioNet/CinC Challenge 2016), their model achieved superior performances for 

abnormal heart signal detection.  

 

Xiao et al. [31] conducted heart sound classification using a light-weight CNN model with an attention 

mechanism. Their proposed CNN architecture consisted of both clique and transition blocks. The transition 

block comprised batch normalization (BN), ReLu, an attention mechanism and an average pooling layer. The 

clique block adopted composite layers to connect feature maps bidirectionally. Instead of using the standard 

convolution, a separable convolution with the inverted bottleneck topology was used for feature extraction. 

Multi-scale feature fusion was also conducted by concatenating feature maps from different clique blocks. In 

comparison with related studies, their model illustrated superior capabilities in extracting discriminative 

features to enhance performance, along with a significant reduction on the number of model parameters.   

Kiranyaz et al. [32] conducted anomaly detection from heart sound signals using a 1D CNN model. A data 

purification scheme was incorporated in the back-propagation (BP) training stage with the intention to reduce 

the bias caused by the potential occurrence of normal heart beats embedded in the abnormal streams. 

Specifically, each heart beat was first segmented from the overall sound signal and subsequently normalized. 

Then the 1D CNN was used to classify each normalized beat as a normal or abnormal case. The majority 

voting rule was adopted to determine the final class label of the entire signal. In particular, during the training 

stage, their BP learning mechanism only considered beats classified as abnormal cases in the abnormal signal 

with a sufficient confidence level. Such a training scheme aimed to avoid the influence and distraction of the 

normal beats in the abnormal stream in the BP process. Their model achieved superior performance in 

comparison with those of existing methods. 

 

Shuvo et al. [33] proposed a Convolutional Recurrent Neural Network (CRNN) model, namely CardioXNet, 

for classification of heart anomalies, including aortic stenosis, mitral stenosis, mitral regurgitation, and mitral 

valve prolapse. Three CNN streams were incorporated within their proposed network for hybrid feature 

learning, while BiLSTM layers were employed for extracting temporal dynamics. The three CNN 

components were frequency feature extractor (FFE), adaptive feature extractor (AFE), and pattern extractor 

(PE). The FFE and PE CNN modules both contained four 1D convolutional layers and two max-pooling 

layers for frequency and appearance pattern extraction, while the AFE CNN structure included 2D 

convolutional layers and squeeze-expansion layers for spatial feature extraction. The extracted features from 

these three CNN components were concatenated as the inputs for the BiLSTM layers. Moreover, the 

temporal information extracted by the BiLSTM component was also concatenated with the features extracted 

from the three CNN streams via a skip connection for final abnormality detection. Evaluated using the 

Github PCG and PhysioNet/CinC Challenge data sets, their CRNN model achieved promising performance. 

 

There are also various recent studies for respiratory sound anomaly detection. Perna and Tagarelli [28] 

performed respiratory sound anomaly detection using LSTM networks. Using a benchmark ICBHI 

respiratory data set, the model detected the presence of crackles and/or wheezes in each respiratory cycle, as 

well as healthy, chronic and non-chronic lung conditions in each recording. Pre-processing procedures, such 

as respiratory cycle segmentation, MFCC feature extraction and Min-Max and Z-score normalization, were 

applied to yield the audio representations. The LSTM network in combination with seven window 

configurations (e.g. non-overlapping partitioning and 50% overlapping between consecutive windows) was 

used for anomaly detection. Their models achieved superior performance for crackle and/or wheeze detection 

as well as healthy/chronic/non-chronic signal classification. García-Ordás et al. [34] proposed the use of 

CNN in conjunction with variational autoencoders (VAE) for respiratory pathology classification. Mel-

spectrograms were used to represent the audio signals. A CNN model was used for not only classifying 

healthy/chronic/non-chronic cases, but also identifying six specific pathology conditions (e.g. pneumonia, 

Chronic Obstructive Pulmonary Disease (COPD) and bronchiolitis). To tackle the class imbalance issues, 

several oversampling techniques, such as VAE, Synthetic Minority Oversampling Technique (SMOTE) and 



Adaptive Synthetic Sampling Method (ASSM), were exploited to yield new labelled data for the minority 

classes in both classification tasks. The empirical results indicated that CNN with the VAE-based data 

augmentation method outperformed other oversampling techniques.  

 

Zhao et al. [35] proposed a bidirectional gated recurrent unit (BiGRU)-Attention Network with XGBoost for 

respiratory sound classification. Their work first employed the time domain (e.g. short-term average energy 

and short-term average zero-crossing rate) and spectral features (e.g. spectral centroid, slope and contrast) for 

signal representations. Then, feature selection using the Gradient Boosting Decision Tree (GBDT) algorithm 

was conducted. The BiGRU-Attention model was used to extract temporal dependencies from the obtained 

optimal features. The ensemble classification XGBoost model was used to detect the presence of wheezes 

and crackles. Data augmentation techniques such as Griffifin-Lim and WORLD Vocoder were also employed 

to tackle the class imbalance problem. Their model (BiGRU-Attention-XGBoost with data augmentation) 

showed better performances than those of BiLSTM, BiGRU, BiLSTM-Attention, and BiGRU-Attention, for 

respiratory anomaly classification. Chen et al. [36] employed optimized S-transform (OST) and ResNets for 

identification of wheeze, crackle, and normal sounds, while Oletic and Bilas [37] performed wheezing 

detection from compressive sensing reconstructed spectra.  

 

On the other hand, environmental sound classification has also attracted increasing research attention. 

Esmaeilpour et al. [38] proposed a Weighted Cycle-Consistent Generative Adversarial Network (WCCGAN) 

and unsupervised feature learning for environmental sound classification. Firstly, a discrete wavelet 

transform (DWT) was used to convert the audio clips into spectrogram representations. Motivated by the 

Cycle-Consistent Generative Adversarial Network (CCGAN), a Weighted CCGAN (WCCGAN) variant was 

proposed for high-level data augmentation of the extracted spectrograms. The WCCGAN model incorporated 

not only two identity mapping functions but also different architectures for both generator and discriminator 

with the intention to increase inter- and intra-class variations. The speeded up robust feature (SURF) (a 

variant of the scale invariant feature transform (SIFT)) descriptors and the spherical K-Means++ algorithm 

were used for feature extraction and feature clustering, respectively. A Random Forest (RF) classifier was 

adopted for classification of the audio clips. Evaluated using several environmental sound data sets, their 

model outperformed AlexNet and GoogLeNet as well as other related studies significantly. Zhang et al. [39] 

proposed a CRNN with an attention mechanism for environmental sound classification. Their CRNN model 

consisted of eight convolutional and two BiGRU layers. STFT was used to generate spectrograms. The 

obtained spectrograms were subsequently processed by a 128-band gammatone filter bank. The log 

gammatone spectrograms were obtained by converting the above outputs into the logarithmic scale. The delta 

information of the spectrograms was also derived, which was concatenated with the log gammatone 

spectrograms. These final concatenated features were used as the CRNN inputs. In addition, a sigmoid based 

attention mechanism was applied to the CNN and RNN layers, respectively. Data augmentation by mixing up 

spectrograms was also performed to enhance performance. Their work illustrated superior performance over 

those of existing studies when evaluated using several environmental sound data sets. 

 

Medhat et al. [40] proposed a ConditionaL Neural Network (CLNN) and a Masked CLNN (MCLNN) 

pertaining to time-frequency spectrogram representations for sound classification. The CLNN model 

captured the temporal inter-frame relationships by using conditional connections as well as taking both the 

preceding and succeeding frames into account in the inference process. In order to better describe the spatial 

patterns from the time-frequency representation, the CLNN was extended into MCLNN, which employed a 

filter bank-like pattern to enable the exploration of different feature combinations. Their work showed 

impressive performances for the evaluation of music and environmental sound data sets. Besides 

environmental sound classification, other audio recognition tasks were available in the literature. As an 

example, Kuang et al. [41] conducted affective acoustic signal classification using an improved AlexNet with 

MFCC, STFT, and simplified inverse filter tracked features. Evaluated using emotional speech data sets, their 

work produced an impressive performance for identification of several basic emotion categories from 

affective acoustic signals. 

 

2.2 Evolutionary and Swarm Intelligence Algorithms 
Evolutionary algorithms offer effective search capabilities in solving a variety of optimization problems [42-

46]. As one of the popular swarm intelligence algorithms, PSO [11] has been widely adopted in tackling 

discriminative feature selection, hyper-parameter fine-tuning, shallow and deep network generation, job 

scheduling and benchmark optimization. As indicated in Equations (1)-(2), the PSO algorithm employs the 

swarm leader 𝑔𝑏𝑒𝑠𝑡 and the personal best experience 𝑝𝑖  to lead the search process.  

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1     (1) 



𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑

𝑡 )  (2) 

 

where 𝑥𝑖𝑑
𝑡+1  and 𝑣𝑖𝑑

𝑡+1  denote the position and velocity for particle 𝑖  in the (𝑡 + 1)𝑡ℎ  iteration and the 𝑑𝑡ℎ 

dimension, respectively. The inertia weight, 𝑤, determines the impact of the previous velocity for generating 

the new velocity. The acceleration coefficients are denoted as 𝑐1 and 𝑐2, which are used to adjust the search 

steps in the cognitive and social components, respectively. In addition, 𝑟1 and 𝑟2 represent random vectors, 

where each element is uniformly distributed within [0, 1] in its respective dimension.  

 

As illustrated in Equations (1)-(2), owing to the guidance of single global best solution, the search process of 

the PSO algorithm is likely to be trapped in local optima [47-50]. Diverse variants of the PSO model have 

been proposed in recent years to overcome the limitations. As an example, Li et al. [51] proposed an 

improved sticky binary PSO (ISBPSO) algorithm with new initialization and search space reduction 

strategies for discriminative feature selection. Their PSO variant initialized the swarm using feature 

weighting information provided by the entropy-based mutual information method to increase swarm quality. 

A masking strategy was also proposed to dynamically reduce the search space. A particular feature would be 

eliminated when it failed to be included in any personal best solution after a specified number of iterations.   

Such mask information was updated after a sufficient number of iterations to ensure an adequate exploration 

of the preceding feature space. Genetic operations (e.g. crossover and mutation operations) were also used to 

fine-tune and enhance the personal and global best solutions with the attempt to overcome stagnation. 

Evaluated using 12 UCI data sets, their model achieved improved performance with smaller selected feature 

subsets in most test cases, as compared with those from the sequential forward and backward selection 

strategies and six baseline PSO-based feature selection methods. Zhang et al. [52] proposed a PSO variant, 

namely Bayesian comprehensive learning PSO (BCLPSO), for solving diverse benchmark functions. Instead 

of relying on the swarm leader, their model produced a new exemplar using the Bayesian posterior 

probability to guide the search process. Specifically, a Bayesian iteration method was used for exemplar 

selection based on posterior probability. The historical prior information of particle swarm was used for 

posterior probability calculation. Evaluated using the CEC2017 test suite and practical quality control 

engineering optimization problems, their model achieved better performance than those of other advanced 

search methods. Xie et al. [53] developed a PSO variant for discriminative feature selection. The model 

incorporated an adaptive exemplar breeding mechanism, search coefficients yielded using trigonometric 

functions, and exponential exploitation and dispatching schemes for swarm leader and worse solution 

enhancement, respectively. A Logistic map was exploited to initialize the swarm. Multiple local and global 

best solutions were aggregated through adaptive weights with respect to exemplar generation. Nonlinear 

search parameters were produced using four formulae embedding sine, cosine, and hyperbolic tangent 

functions. Randomly selected personal best solutions as well as stochastic distributions were used to enhance 

three worst solutions in the swarm. An adaptive exponential function was also adopted for swarm leader 

enhancement. Evaluated using a total of 13 data sets, the model illustrated superior performance in 

comparison with those of other state-of-the-art PSO methods. Kılıç et al. [54] proposed a multi-population 

based PSO (MPPSO) algorithm for feature selection. Two swarms were initialized in the MPPSO model.  

One was randomly generated, while the other was yielded using the Relieff feature ranking method. 

Evaluated using 26 UCI and another 3 data sets from the feature selection repository of Arizona State 

University, their model identified the smallest feature subsets while achieving enhanced performance.  

 

Molaei et al. [55] proposed a modified PSO algorithm with an enhanced Learning strategy and Crossover 

operator (PSOLC) for solving mathematically generated landscapes. To increase search diversity, the 

personal best experiences of all the particles were taken into account in the cognitive component for velocity 

updating. Besides employing an adaptively decreasing inertia weight factor, the cognitive acceleration 

coefficient was formulated as a proportion to the inverse of the fitness score pertaining to the personal best 

experience of the current particle. The largest cognitive search parameter among all the particles was also 

assigned as the social acceleration coefficient in each iteration. A crossover operator was used to diversify 

the swarm by applying a proportion of a randomly selected particle to the current particle. Evaluated using 29 

benchmark functions, PSOLC outperformed the original and advanced PSO algorithms. Kan et al. [56] 

developed an adaptive PSO algorithm (APSO) for hyper-parameter identification in a 1D CNN model. An 

adaptive inertia weight scheme was proposed. The inertia weight was yielded based on the mean and 

minimum fitness scores of the overall population and that of the current particle. APSO was used to identify 

optimal settings of a set of 10 hyper-parameters with respect to network layer structure and learning 

configurations. Their devised CNN model outperformed a SVM classifier and deep networks with manual 

settings for Internet-of-Things (IoT) network intrusion detection, significantly. Li et al. [57] proposed a 

multipopulation cooperative PSO (MPCPSO) model with a mixed mutation strategy for solving diverse 

benchmark functions. The model divided the swarm into two populations in each iteration, i.e. elitist and 



general populations. For each particle in the general population, its dimension was split into several sub-

sections by using a dynamic segment-based mean learning strategy (DSMLS). Exemplars were generated for 

each sub-section using particles from the elitist population via tournament selection. On the other hand, a 

multidimensional comprehensive learning strategy (MDCLS) was proposed to guide the search process of 

particles in the elitist population. A differential mutation operator was also used to increase search diversity. 

Evaluation using diverse benchmark functions, their model showed significant superiority over other 

methods in terms of performance and convergence speed.  

 

Lawrence et al. [58] developed a modified PSO algorithm for evolving CNN architecture generation. A 

group-based encoding strategy was proposed to ensure that the frequency and position of the pooling 

operations could be adjusted in accordance with the image size. A new velocity updating scheme was also 

proposed by identifying the key network layer configuration variations between particles. The partial velocity 

was taken into account for position updating. Evaluated using eight well-known benchmark data sets (e.g. 

Rectangles, MNIST, and several MNIST variant data sets), their model outperformed several state-of-the-art 

deep architecture generation methods, such as psoCNN, in terms of accuracy and computational cost. Phung 

and Ha [59] proposed a spherical vector-based PSO model for navigating unmanned aerial vehicles (UAVs) 

in real-world complex environments, while a fuzzy hierarchical surrogate assisted probabilistic PSO was 

proposed by Chu et al. [60] for solving high-dimensional expensive optimization problems. Other PSO 

variants proposed in recent years include, e.g. a bi-objective PSO for incremental classifier generation in 

crime prediction [61], a micro-GA embedded PSO feature selection technique for facial expression 

recognition [47], a Bare-bones PSO variant for discriminative feature selection in lymphoblastic leukaemia 

diagnosis [21], a PSO variant with exemplar generation using sine, cosine and tanh formulae for deep 

ensemble network generation pertaining to video action classification [49], an adaptive learning PSO 

(ALPSO) model for hyper-parameter fine-tuning for skin lesion segmentation [62], a PSO variant with cosine 

oriented search coefficients for deep network generation with residual connections and dense connectivity 

[63], and a quantum behaved PSO algorithm with binary encoding for devising deep CNN architectures 

pertaining to image classification [64].  

 

Besides PSO methods, Grey Wolf Optimizer (GWO) [22-24] and its variants have been used in solving 

diverse optimization problems. As an example, Martin et al. [65] proposed a mixed GWO (mixedGWO) 

algorithm for joint denoising and unmixing of real-world multispectral images. The mixedGWO model was 

formed by combining an improved discrete GWO and a global continuous GWO, which was capable of 

searching parameter settings in both discrete and continuous search spaces. Firstly, an improved discrete 

GWO was proposed, where the position updating was conducted by randomly selecting a leader among a 

candidate group comprising three best wolf leaders and two randomly recruited individuals from the swarm.  

One out of these five candidate solutions was randomly selected as the elite signal to guide the search process 

during global exploration, while one out of the three global best leaders was randomly recruited to lead the 

swarm during local exploitation. Secondly, a global continuous GWO algorithm was devised, where the 

mean position of the aforementioned five candidate signals, i.e. three best wolf leaders and two randomly 

recruited individuals, was used to guide global exploration. In addition, the average position of the three best 

wolf leaders was adopted to lead intensification. The resulting search strategies in mixedGWO therefore can 

be used for discrete or continuous type of parameters. An adaptive variant of mixedGWO, i.e. amixedGWO, 

was also developed by implementing the exploration rate with higher power settings [65]. Evaluated using 

diverse continuous, discrete or mixed optimization tasks and real-world problems of simultaneous denoising 

and unmixing of multispectral images, the developed models showed enhanced performances as compared 

with those of the baseline methods. 

3. THE PROPOSED PSO MODEL 

In this research, we propose an ensemble CBiLSTM network with optimal hyper-parameter identification for 

undertaking audio classification. A new PSO algorithm is proposed to optimize the learning rate, weight 

decay, number of filters and hidden neurons in the convolutional and BiLSTM layers, respectively. The 

proposed PSO algorithm incorporates the secant and Newton-Raphson methods, crossover operators based 

on regular and irregular adaptive super-ellipse formulae, and spherical search coefficients to diversify the 

search process. Algorithm 1 illustrates the pseudo-code of the proposed algorithm. 

 

Algorithm 1: Pseudo-Code of the Proposed PSO Algorithm 

1. Start 

2. Randomly initialize a particle swarm; 

3. Conduct fitness evaluation of the population; 



4. Rank the particles based on the fitness scores and identify 𝑔𝐵𝑒𝑠𝑡 and the second-best 

solution; 

5. While (Stopping criterion is not satisfied) 

6. { 

7. Randomly select one of the following two operations for swarm leader enhancement; 

8. {//1. Enhance 𝑔𝐵𝑒𝑠𝑡 using the secant method; 

9. Assign 𝑔𝐵𝑒𝑠𝑡 and the second-best solution as the initial seeds for the secant method; 

10. Generate an offspring solution using Equation (3); 

11. Update 𝑔𝐵𝑒𝑠𝑡 if the new solution is fitter; 

12. Update the two seed solutions and repeat lines 10-11 until the termination criterion is 

met; 

13. //2. Enhance 𝑔𝐵𝑒𝑠𝑡 using the Newton’s method; 

14. Assign 𝑔𝐵𝑒𝑠𝑡 as the initial seed for the Newton’s method; 

15. Generate an offspring solution using Equation (4); 

16. Update 𝑔𝐵𝑒𝑠𝑡 if the new solution is fitter; 

17. Update the seed solution and repeat lines 15-16 until the termination criterion is met; 

18. } 

19. Sort the swarm and identify the second swarm leader; 

20. Produce the hybrid leader 1 as defined in Equations (5)-(8) using 𝑔𝐵𝑒𝑠𝑡 and the second 

swarm leader; 

21. Produce the hybrid leader 2 as defined in Equation (5) & (11)-(13) using 𝑔𝐵𝑒𝑠𝑡 and the 

second swarm leader; 

22. Produce the hybrid leader 3 as defined in Equation (5) & (14)-(16) using 𝑔𝐵𝑒𝑠𝑡 and the 

second swarm leader; 

23. Randomly select one of the above hybrid leaders for the following operation; 

24. For each individual in the overall swarm do { 

25. Generate the spherical search coefficient 𝜕1 using Equations (18)-(22); 

26. Generate the spherical search coefficient 𝜕2 using Equations (23)-(27); 

27. Conduct position updating as defined in Equations (1) and (17) using one of the 

randomly selected newly yielded hybrid leaders; 

28. Update 𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡; 
29.         } End For 

30. Sort the overall swarm based on the fitness values and update 𝑔𝐵𝑒𝑠𝑡; 

31. } Until (Stagnation) 

32. Output 𝑔𝐵𝑒𝑠𝑡; 
33. End 

 

Referring to Algorithm 1, we first initialize a swarm randomly and rank the particles based on their fitness 

scores to identify 𝑔𝑏𝑒𝑠𝑡. We adopt either the secant algorithm or the Newton’s method to further enhance the 

swarm leader. Specifically, we randomly select one of these numerical analysis methods for generating the 

offspring solutions of the swarm leader to increase search intensification. We assign 𝑔𝑏𝑒𝑠𝑡 as the initial seed 

for the Newton’s method. Both 𝑔𝑏𝑒𝑠𝑡 and the second swarm leader are used as the seeds for the secant 

method for offspring solution generation. Both methods perform linear approximation to the global optima of 

the hyper-parameter optimization problems, and terminate when the pre-defined criterion (e.g. a precision 

score) is reached. Each of the new offspring solutions generated by either the Newton’s or the secant methods 

is used to replace 𝑔𝑏𝑒𝑠𝑡 if it is fitter.  

 

After obtaining the improved 𝑔𝑏𝑒𝑠𝑡 solution using one of the numerical analysis methods, the second swarm 

leader is identified. We generate enhanced offspring leaders using several distinctive crossover operators 

with 𝑔𝑏𝑒𝑠𝑡 and the second swarm leader as the parent chromosomes. To be specific, we produce three hybrid 

leader signals using crossover factors defined by three sets of adaptive regular and irregular elliptical 

functions. Such adaptive formulae assign larger weights to the second-best leader and smaller ones to 𝑔𝑏𝑒𝑠𝑡 

at the beginning stage of the search process, in order to increase diversification. As the search progresses, 

smaller weights are produced for the second leader, while larger ones go to 𝑔𝑏𝑒𝑠𝑡  for increasing 

intensification. We then randomly select one of the resulting hybrid leaders for position updating. To equip 

the search process with different search scales and trajectories, two distinctive spherical outline surfaces are 

used to produce cognitive and social search coefficients, respectively. The proposed model incorporates a 

versatile search process with diverse hybrid leader indicators and distinctive elliptical search coefficients to 

overcome stagnation. The overall algorithm iterates until the termination criterion (i.e. the maximum number 

of function evaluations) is reached. We introduce each key search mechanism comprehensively in the 

following sub-sections. 

 

3.1 Swarm Leader Enhancement Using the Secant Method 



After initializing the swarm, we identify the swarm leader based on the ranking of the fitness scores. In order 

to increase local exploitation and avoid stagnation, we apply two root-finding algorithms, i.e. the secant and 

Newton-Raphson methods, to enhance the global best solution. In comparison with other stochastic processes 

such as Gaussian, Cauchy and Levy distributions based on random walks, these root-finding numerical 

analysis algorithms provide guided local exploitation of promising solutions during the course of finding 

global optimality.  

 

We first introduce the secant method [66, 67] for swarm leader enhancement. It employs a succession of 

roots of secant lines to estimate the root of a specific function 𝑓. Equation (3) defines the operation. 

 

𝑥𝑛 =
𝑥𝑛−2𝑓(𝑥𝑛−1)−𝑥𝑛−1𝑓(𝑥𝑛−2)

𝑓(𝑥𝑛−1)−𝑓(𝑥𝑛−2)
                                                            (3) 

 

where 𝑥𝑛−1 and 𝑥𝑛−2 represent two initial seed values which are assumed to be sufficiently close to the root, 

while 𝑥𝑛  denotes the yielded better approximation of the root. Firstly a line is constructed using the two 

points, i.e. (𝑥𝑛−2, 𝑓(𝑥𝑛−2)) and (𝑥𝑛−1, 𝑓(𝑥𝑛−1)). The new approximation of the root, 𝑥𝑛 , is calculated as the 

intersection of the x-axis and this newly formed line. We then use 𝑥𝑛−1 and 𝑥𝑛 as the subsequent seed values 

for the calculation of another new estimated root.  

 

In this research, we assign the global best solution and the second swarm leader as the initial seed values, i.e. 

𝑥𝑛−1  and 𝑥𝑛−2 , and use their fitness scores as 𝑓(𝑥𝑛−1)  and 𝑓(𝑥𝑛−2),  respectively. The newly generated 

offspring solution 𝑥𝑛  is evaluated and used to replace 𝑔𝑏𝑒𝑠𝑡  if it is fitter. This process iterates until the 

maximum number of trials or the sufficient level of precision (i.e. a small difference between 𝑥𝑛−1 and 𝑥𝑛) is 

reached.  

 

3.2 Swarm Leader Enhancement Using the Newton-Raphson Method 
Besides the secant method, the Newton-Raphson method (referred as Newton’s method) [66, 67] is also 

employed to improve the 𝑔𝑏𝑒𝑠𝑡  solution. It employs one initial seed value to yield successive better 

approximations to the root of a specific function, assuming that the initial seed is sufficiently competent (i.e. 

close to the root). Equation (4) illustrates the operation. 

 

𝑥𝑛 = 𝑥𝑛−1 −
𝑓(𝑥𝑛−1)

𝑓′(𝑥𝑛−1)
                                                                     (4) 

 

where 𝑥𝑛−1 is the initial seed value for the root of function 𝑓, while 𝑥𝑛 represents a better estimation of the 

root with 𝑓′ referring to the derivative of 𝑓. As defined in Equation (4), the algorithm calculates the improved 

guess 𝑥𝑛 as the intersection of the x-axis and the tangent of the graph of 𝑓 at (𝑥𝑛−1, 𝑓(𝑥𝑛−1)). In this research, 

we assign 𝑥𝑛−1 and 𝑓(𝑥𝑛−1) as the global best solution and its fitness score, respectively. The new solution 

𝑥𝑛 is subsequently evaluated and used to replace the global best solution if it is fitter. The process iterates 

until the maximum number of trials or a sufficient precision score is reached.  

 

Overall, the secant and the Newton’s methods increase exploitation to overcome stagnation. We employ the 

improved 𝑔𝑏𝑒𝑠𝑡  solution produced by either of these numerical analysis methods for hybrid leader 

generation.  

 

3.3 Hybrid Leader Generation Mechanisms 

Motivated by GWO where three wolf leaders are used to guide the search process [22-24], in this research, 

we propose hybrid leader generation based on multiple leaders to overcome stagnation. Specifically, after 

determining the new 𝑔𝑏𝑒𝑠𝑡 solution using the secant or the Newton’s algorithm, we sort the swarm and 

extract the second-best leader. Instead of using purely the 𝑔𝑏𝑒𝑠𝑡 solution to guide the search process, we 

propose an adaptive hybrid leader generation mechanism based on two swarm leaders, as defined in Equation 

(5), to avoid stagnation. 

 

ℎ𝑑
𝑡+1 = 𝛼 × 𝑔𝑏𝑒𝑠𝑡𝑑

𝑡 + 𝛽 × 𝑠𝑏𝑒𝑠𝑡𝑑
𝑡                                                              (5) 

 

where 𝛼 and 𝛽 represent the incremental and decremental coefficients for the swarm leader 𝑔𝑏𝑒𝑠𝑡 and the 

second-best solution 𝑠𝑏𝑒𝑠𝑡, respectively, with ℎ denoting the generated hybrid leader. Owing to the adoption 

of increasing (𝛼 ) and decreasing (𝛽) coefficients with respect to generating the hybrid leader ℎ, the impact of 

the second leader is comparatively more dominating at the beginning of the search process. As the search 



process iterates, the influence of the second leader is gradually reduced, while the guidance of the global best 

solution gains increasing effects.  

 

In comparison with single leader-based search processes [11-20], hybrid leaders incorporating multiple elite 

signals are used in the proposed scheme to overcome stagnation. Moreover, in comparison with GWO [22-

24] and a Bare-Bones PSO (BBPSO) variant [21] where multiple leaders with equal weightings are used to 

guide the search process, we adopt adaptive weighting factors yielded by super-ellipse formulae for hybrid 

signal generation to better balance between diversification and intensification. Therefore, the proposed hybrid 

leader generation mechanism offers enhanced capabilities in overcoming stagnation by emphasizing local 

and global optimal signals adaptively while following the optimal solutions simultaneously. 

 

We elaborate the generation of adaptive parameters 𝛼 and 𝛽  as follows. In particular, to increase search 

diversity, three sets of regular and irregular elliptical 2D nonlinear formulae are used to produce adaptive 

coefficients 𝛼 and 𝛽.  

 

3.3.1 The first hybrid leader generation strategy 
For the first crossover coefficient generation mechanism, a regular 2D elliptical curve [68] defined in 

Equations (6)-(8) for adaptive crossover factor generation is proposed, i.e.,  

 

𝜑(𝜎) = | 𝑐𝑜𝑠 (
𝜎

2
) | + | 𝑠𝑖𝑛 (

𝜎

2
) |               𝜎 = [0: 0.001: 𝜋]                              (6) 

𝑥 = 𝜑 × 𝑐𝑜𝑠 (𝜎)                                                                                 (7) 

𝑦 = 𝜑 × 𝑠𝑖𝑛 (𝜎)                                                                                 (8) 

 

where 𝜑 and 𝜎 denote the radius and angle, and 𝑥 and 𝑦 represent the coordinates of the generated points in 𝑥 

and 𝑦  axes, respectively. Figure 2 illustrates the yielded elliptical curve using the above equations. An 

increasing elliptical sub-graph (denoted as the blue line) is generated when 𝜎 is assigned with values from 

𝜋/2 to 𝜋 with a step size of 0.001. On the other hand, a decreasing sub-graph (denoted as the orange line) is 

produced when 𝜎 is assigned with values from 0 to 𝜋/2 with a step size of 0.001. Each of the sub-curves 

consists of 1,571 unique points. These sub-curves are used to generate adaptive coefficients 𝛼 and 𝛽, as 

defined in Equations (9) and (10).  

 

𝛼 = 𝑦[1,571 ×
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
]        𝜎 = [𝜋/2: 0.001: 𝜋]      (i.e. the blue line in Figure 2)              (9) 

    𝛽 = 𝑦[1,571 ×
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
]       𝜎 = [0: 0.001: 𝜋/2]      (i.e. the orange line in Figure 2)         (10) 

 

where 𝑡 and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 indicate the current and maximum numbers of iterations, respectively. 

 

As defined in Equations (9)-(10), we select 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  number of values in an increasing order from the y-

axis in the blue sub-graph with a step of 1,571/𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . Similarly, we select 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  number of 

values in a decreasing order from the y-axis in the orange sub-graph with a step of 1,571/
𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . Then we assign these two sets of increasing and decreasing values to 𝛼 and 𝛽, respectively. In 

other words, as the iteration number 𝑡  increases, both adaptive coefficients 𝛼  and 𝛽  are generated by 

assigning the increasing and decreasing values from the y-axis in the blue and orange elliptical sub-curves, 

respectively, with a step of 1,571/𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 .  

 

 
 



Figure 2 The elliptical curve generated using Equations (6)-(8) where the increasing (blue line) and 

decreasing (orange line) sub-graphs are used for the generation of adaptive coefficients 𝛼 and 𝛽, respectively 

 

Such increasing and decreasing crossover factors, 𝛼  and 𝛽,  are exploited to generate hybrid leaders, as 

defined in Equation (5). The resulting hybrid leaders in the early iterations are thus able to focus on global 

exploration by assigning larger values to 𝛽 and smaller values to 𝛼. Then, local exploitation is gradually 

emphasized by assigning smaller values to 𝛽 and larger values to 𝛼, towards the final iterations. Such a fused 

evolving leader signal is able to achieve a better balance between exploitation and exploration to overcome 

stagnation. 

 

3.3.2 The second hybrid leader generation strategy 
In comparison with the aforementioned regular elliptical function, a formula representing an irregular curve 

[68] is proposed as the second strategy for adaptive coefficient generation, as defined in Equations (11)-(13).  

 

𝜔(𝜎) = (|
𝑐𝑜𝑠(22×𝜎)

300
| + |

𝑠𝑖𝑛 (16×𝜎)

300
|)

1

20       𝜎 = [0: 0.001: 𝜋]                                  (11)                                                                                     

𝑥 = 𝜔 × 𝑐𝑜𝑠 (𝜎)                                                                                 (12) 

𝑦 = 𝜔 × 𝑠𝑖𝑛 (𝜎)                                                                                 (13) 

 

where 𝜔 and 𝜎 denote the radius and angle, respectively. Figure 3 illustrates the elliptical graph produced 

using this new set of equations. The increasing (denoted by the blue line) and decreasing (denoted by the 

orange line) sub-graphs are generated with 𝜎 = [𝜋/2: 0.001: 𝜋] and 𝜎 = [0: 0.001: 𝜋/2] respectively. There 

are 1,571 points in each sub-graph. We subsequently generate adaptive coefficients by assigning two sets of 

increasing and decreasing values extracted from the y-axis from the blue and orange sub-curves, respectively, 

with a step size of 1,571/𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . Therefore, two sets of 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 number of values in increasing 

and decreasing orders are assigned to 𝛼 and 𝛽, respectivetly. Besides following the general increasing and 

decreasing trends, the sub-curves yielded by the above functions embed many micro irregularities, which 

facilitate the generation of more distinctive hybrid leaders, in comparison with those produced using the 

aforementioned regular formulae, to increase search diversity. 

 

 
 

Figure 3 The elliptical curve generated using Equations (11)-(13) where the increasing (blue line) and 

decreasing (orange line) sub-graphs are used for the generation of adaptive coefficients 𝛼 and 𝛽, respectively 

 

3.3.3 The third hybrid leader generation strategy 
Instead of using the formulae in Sections 3.3.1 and 3.3.2 separately, a combined scheme is proposed by 

applying the regular and irregular functions jointly for adaptive coefficient generation. Equation (14) defines 

this hybrid strategy for crossover factor generation.  

 

𝛾(𝜎) = {
|𝑐𝑜𝑠 (

𝜎

2
)| + |𝑠𝑖𝑛 (

𝜎

2
)| ,          𝑟𝑎𝑛𝑑 > 0.5

(|
𝑐𝑜𝑠(22×𝜎)

300
| + |

𝑠𝑖𝑛 (16×𝜎)

300
|)

1

20, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (14) 

𝑥 = 𝛾 × 𝑐𝑜𝑠 (𝜎)                                                                                 (15) 

𝑦 = 𝛾 × 𝑠𝑖𝑛 (𝜎)                                                                                 (16) 

 



where 𝛾 and 𝜎 = [0: 0.001: 𝜋] denote the radius and angle, respectively. In Equation (14), the upper formula 

is the same as that introduced in Equation (6). On top of it, we embed the lower formula defined in Equation 

(11) to diversify the production of weight factors. Figure 4 illustrates the resulting super-ellipse curves 

defined in Equation (14). The regular graph (the same as that illustrated in Figure 2) is produced using the 

first function, while the irregular contour (the same as that shown in Figure 3) is generated using the second 

formula. In each iteration, these regular and irregular formulae are used alternatively to generate the adaptive 

crossover factors 𝛼 and 𝛽. Specifically, if a randomly assigned value is more than a threshold of 0.5, the first 

(regular) function is used for adaptive factor generation, otherwise the second (irregular) formula is applied 

to produce the adaptive coefficients.  

 

As introduced previously, each of these regular and irregular ellipse graphs defined in Equation (14) consists 

of both increasing and decreasing sub-graphs, when 𝜎 = [𝜋/2: 0.001: 𝜋 ] and 𝜎 = [0: 0.001: 𝜋/2 ], 

respectively. Therefore, by taking both formulae into account, there are two alternative sub-graphs with 

different shapes that can be used for generating each adaptive coefficient (i.e. the selection among 2 ×

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  number of increasing or decreasing values for generating 𝛼  or 𝛽 ). In short, this new joint 

crossover generation mechanism is able to produce more diversified hybrid elite leaders, in comparison with 

those yielded using purely either the regular or irregular function, to overcome stagnation.    

 

 
 

Figure 4 The two curves generated using Equation (14) where the regular graph (the same as that shown in 

Figure 2) is produced using the upper formula, while the irregular one (the same as that illustrated in Figure 

3) is yielded using the lower formula 

 

The aforementioned three leader generation operations using regular, irregular and combined formulae 

discussed in Sections 3.3.1-3.3.3 are randomly selected during the search process for producing diverse 

distinctive hybrid leaders. The aim is to avoid the search process from being trapped in local optima and 

mitigate premature convergence. 

 

3.4 The Proposed PSO Operation 
We now explain the proposed search operation for position updating. Equation (17) defines the new PSO 

action, where the generated hybrid leader is used to guide the search process.   

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝜕1 × 𝑟1 × (ℎ𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝜕2 × 𝑟2 × (𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )   (17) 

 

where ℎ𝑑
𝑡  represents the hybrid swarm leader produced using Equation (5), while 𝜕1  and 𝜕2  denote the 

dynamic search steps oriented from two spherical surfaces.  

 

To increase search diversity, two distinctive geometrical surfaces are proposed for generating both social and 

cognitive coefficients, 𝜕1 and 𝜕2. We define the first spherical parametric surface in Equations (18)-(22) [68], 

with Figure 5 illustrating the yielded graph. 

 

 𝑞(𝜗) = (|𝑐𝑜𝑠 (
𝜗

2
)|15 + |𝑠𝑖𝑛 (

𝜗

2
)|32)−

1

10     𝜗 = [−𝜋: 0.05: 𝜋]                             (18)                                                                                     

𝜇(𝛿) = (|𝑐𝑜𝑠 (
𝛿

2
)|15 + |𝑠𝑖𝑛 (

𝛿

2
)|32)−

1

10    𝛿 = [−𝜋/2: 0.05: 𝜋/2]                           (19)     

𝑥 = 1.5 × 𝑞 × 𝑐𝑜𝑠(𝜗) × 𝜇 × 𝑐𝑜𝑠(𝛿)                                                  (20) 

𝑦 = 1.5 × 𝑞 × 𝑠𝑖𝑛(𝜗) × 𝜇 × 𝑐𝑜𝑠(𝛿)                                                  (21) 

𝑧 = 1.5 × 𝜇 × 𝑠𝑖𝑛 (𝛿)                                                                         (22) 



 

where 𝜗 and 𝛿 represent the longitude and latitude with value within [−𝜋, 𝜋] and [−𝜋/2, 𝜋/2], while 𝑥, 𝑦 

and 𝑧 denote the 3D coordinates of the generated points in 𝑥, 𝑦 and 𝑧 axes, respectively.  

 

During each iteration of the search process, for each particle, a three-dimensional point is randomly selected 

from the generated spherical surface illustrated in Figure 5. The largest value among the absolute scores of 

𝑥, 𝑦 and 𝑧 coordinates of this randomly selected point is selected as the search parameter 𝜕1 in Equation (17). 

As shown in Figure 5, the generated spherical surface has a wide coverage of the three-dimensional space. 

Therefore the proposed search operation provides each particle with distinctive social search behaviours and 

large search steps to follow the hybrid elite signal.  

 

 
 

Figure 5 The spherical surface produced using Equations (18)-(22) for the production of the search 

coefficient 𝜕1 in Equation (17) 

 

Another geometrical curve is also proposed for generating the search coefficient 𝜕2 in the modified PSO 

operation. Equations (23)-(27) define this new spherical parametric shape [68], with Figure 6 representing the 

generated contour. Similarly, in each iteration, for each particle, the maximum absolute value of the three 

coordinates of a randomly selected point is assigned as the search coefficient 𝜕2 in Equation (17).  

 

𝑙(𝜗) = (|𝑐𝑜𝑠 (𝜗)|
1

2 + |𝑠𝑖𝑛 (𝜗)|4)−2     𝜗 = [−𝜋: 0.05: 𝜋]                                   (23)                                                                                     

𝑘(𝛿) = (|𝑐𝑜𝑠 (𝛿)|
1

2 + |𝑠𝑖𝑛 (𝛿)|4)−2    𝛿 = [−𝜋/2: 0.05: 𝜋/2]                            (24)  

𝑥 = 3 × 𝑙 × 𝑐𝑜𝑠(𝜗) × 𝑘 × 𝑐𝑜𝑠(𝛿)                                                  (25) 

𝑦 = 3 × 𝑙 × 𝑠𝑖𝑛(𝜗) × 𝑘 × 𝑐𝑜𝑠(𝛿)                                                  (26) 

𝑧 = 3 × 𝑘 × 𝑠𝑖𝑛 (𝛿)                                                                         (27) 

 

Owing to the generation of a distinctive spherical shape in comparison with that defined in Equations (18)-

(22), different search behaviours are defined in the cognitive search operation. In comparison with the 

geometrical surface shown in Figure 5 with a comparatively wider coverage of the three-dimensional space, 

the newly yielded spherical contour in Figure 6 occupies principally the middle regions for coefficient 

generation. Therefore, the proposed search action enables each particle to follow the personal best solutions 

with comparatively smaller but more persistent search steps. 

 

Overall, the two proposed spherical surfaces shown in Figures 5 and 6 equip each particle with distinctive 

search scales, directions and trajectories in the social and cognitive components, in order to increase the 

chances of finding global optimality.  

 

In short, the proposed local and global search mechanisms, i.e. the secant and Newton’s numerical analysis 

algorithms, adaptive crossover operators with weighting probabilities extracted from regular and irregular 

elliptical functions, and parametric spherical search coefficients, allow the search process to have a better 

trade-off between intensification and diversification to overcome premature convergence. We use the 

proposed model to optimize the hyper-parameters of the CBiLSTM network for the identification of heart 

and lung anomalies as well as environmental events using audio clips. We discuss hyper-parameter 

optimization in deep networks in detail in the next section.   

 



 
 Figure 6 The spherical surface yielded using Equations (23)-(27) for the production of the search coefficient 

𝜕2 in Equation (17) 

 

4. GENERATION OF EVOLVING DEEP CONVOLUTIONAL BILSTM NETWORKS 
As a combination of multiple spectrums, spectrogram is used to describe changes in amplitude and frequency 

over a series of discrete times. In the pre-processing stage, we employ STFT for spectrogram generation, as 

defined in Equation (28). 

 

STFT{𝑠(𝑡)}(𝜏, 𝑚) = 𝑋(𝜏, 𝑚) = ∫ 𝑠(𝑡)𝑤𝑓(𝑡 − 𝜏)𝑒−𝑗𝑚𝑡∞

−∞
𝑑𝑡                                 (28) 

 

where 𝑠(𝑡) denotes the audio signal, and 𝑤𝑓(𝜏) represents the window function. Parameter 𝑚 refers to the 

frequency, while 𝜏 indicates the time index which is considered as ‘slow’ time with 𝑡 representing the high 

resolution time. In addition, 𝑋(𝜏, 𝑚) is the Fourier transform of 𝑠(𝑡)𝑤𝑓(𝑡 − 𝜏), a function representing the 

phase and magnitude of the signal over time and frequency. The squared magnitude of the STFT produces 

the spectrogram representation of the function, as defined in Equation (29). 

 

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚{𝑠(𝑡)}(𝜏, 𝑚) = |𝑋(𝜏, 𝑚)|2                                             (29) 

 

The resulting spectrogram is used as the inputs to the CBiLSTM network. Existing studies [38, 39, 69] 

indicate that deep networks (e.g. AlexNet and GoogLeNet) based on such spectrogram inputs are able to 

outperform models that use 1D signal inputs. 
 

The CBiLSTM network used for audio classification consists of three convolutional blocks, two BiLSTM 

layers, and one dense block. Each convolutional block contains one 2D convolutional layer, which is 

succeeded by a batch normalization layer (i.e. a ReLU layer), a max pooling layer and a dropout layer. A 

kernel size of 3×3 is used in the convolutional layers. As discussed earlier, we employ a 2D representation of 

audio signals, i.e. STFT spectrograms, as the network input. Such 2D spectrograms can be treated as images. 

Therefore, as recommended by existing studies [38, 39, 69], the 2D convolution is adopted in this research 

for feature extraction, where the kernel in the convolutional layer slides over the 2D spectrogram input data, 

and performs an elementwise multiplication for feature extraction. 

 

In addition, two BiLSTM layers are subsequently attached after the convolutional layers. Each BiLSTM layer 

is composed of two hidden LSTM layers of opposite directions. It learns bidirectional long-term 

dependencies between time steps in time series data. It employs the information from past (backwards) and 

future (forward) states simultaneously to inform the output layer. Specifically, in comparison with 

unidirectional LSTM where the future input information is not reachable from the current state, the BiLSTM 

layer adopts inputs from both forward and backwards directions to increase the contextual information 

available to the network. Existing studies also indicate the superior performance of BiLSTM networks over 

unidirectional LSTM models in time series forecasting [70, 71]. In this research, the BiLSTM layers 

embedded in the proposed network are used to extract temporal sequential cues from the spectrogram 

features yielded by the convolutional layers. Finally, an additional dense block is appended to the network 

which embeds a dropout layer, a batch normalization layer, and a linear layer. Figure 7 illustrates the detailed 

network architecture. We also provide the detailed architecture and parameter settings of the proposed 

CBiLSTM network as follows. 

 



 Convolutional Block 1 – The first convolutional block is embedded with a 2D convolutional layer 

with a kernel size of 3×3 and a stride of 1. To effectively extract discriminative spatial features, the 

number of filters in this convolutional layer is optimized by the proposed PSO algorithm. A batch 

normalization layer (i.e. a ReLU layer) is subsequently attached to accelerate network training as 

well as reduce network sensitivity to initialization. This is followed by a max pooling layer with a 

kernel size of 3×3 and a stride of 3 to reduce the dimensions of feature maps. A dropout layer with a 

dropout probability of 0.1 is also used to avoid overfitting. 

 Convolutional Blocks 2 & 3 – We set the numbers of filters in the second and third convolutional 

layers in these two subsequent stacked blocks to twice the size of the optimized number of filters in 

the first convolutional layer. A kernel size of 3×3 and a stride of 1 are used in these convolutional 

layers. A ReLU layer is subsequently attached after each convolutional layer to speed up the training 

process. The extracted spatial features are then down-sampled by a max pooling layer with a kernel 

size of 4×4 and a stride of 4, while a dropout layer with a dropout probability of 0.1 is appended in 

each block. 

 BiLSTM Layers – Two BiLSTM layers are inserted to the network. Each BiLSTM layer is used to 

capture bidirectional temporal dependencies from the spatial spectrogram features by learning from 

both forward and backward states simultaneously at each time step. We optimize the number of 

hidden neurons in each BiLSTM layer with the proposed PSO algorithm. The optimized number of 

hidden units leads to an effective preservation of bidirectional discriminative sequential patterns to 

avoid overfitting and underfitting issues. 

 A Dense Block – The final dense block comprises a dropout layer, a batch normalization layer and a 

linear layer. Specifically, it overcomes overfitting by using the dropout layer with a dropout 

probability of 0.3. The linear layer is assigned with the number of neurons equivalent to the number 

of target classes, which is used to produce the final network output. 

 

In order to extract effective audio representations, as mentioned earlier, the proposed PSO algorithm is used 

to optimize the learning hyper-parameters, i.e. the learning rate and weight decay, as well as the network 

layer topologies, i.e. the numbers of filters in the three convolutional layers and the numbers of hidden 

neurons in the two BiLSTM layers.    
 
                             
             

               

  

Figure 7 The proposed CBiLSTM network 

The optimized learning and model settings play significant roles in affecting the network performance. 

Specifically, the numbers of filters in the convolutional layers determine spatial feature learning capabilities 

of the network. Filters act as feature detectors. Each filter generates a feature map, which learns the 

explanatory factors within the image. A sufficient number of filters offers the network competitive 

capabilities in capturing complex spatial details. In contrast, an inadequate number of filters discards 

important spatial patterns, while an exaggerated setting memorizes the exact details of input images. On the 

other hand, the numbers of hidden neurons in the BiLSTM layers define the network capabilities in 

extracting temporal dynamics from spatial features. A significantly large number of hidden neurons is likely 

to extract redundant temporal relationships. The BiLSTM layers with considerably small neuron settings 

result in constrained efficiency in discovering manifold sequential patterns. Moreover, the inclusion of a 

regularization term in the loss function is an effective way to reduce overfitting. The weight decay (i.e. the 

regularization factor) is important for determining the effects of this additional regularization term in the loss 

function, thus affecting convergence speed and model diversity. In addition, the learning rate setting 

determines the distinctive network learning behaviours. Overall, the combination of these learning 

parameters and the convolutional and BiLSTM layer settings greatly affects model performance. Therefore, 

we employ the proposed PSO algorithm to optimize these key elements for audio classification. Table 1 

shows the detailed optimized hyper-parameters. Specifically, we optimize four hyper-parameters, i.e. the 

learning rate, weight decay, the number of filters in the first convolutional layer and the number of hidden 
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neurons in each BiLSTM layer. As mentioned above, we generate the numbers of filters in the second and 

third convolutional layers by multiplying the optimized number of filters in the first convolutional layer by 2. 

 

The optimal hyper-parameter selection is conducted as follows. A particle swarm is randomly initialized with 

each dimension of the particle positions in the range of [0, 1]. Each dimension of the particle represents one 

optimized factor. The proposed search actions, such as secant and Newton’s methods for leader enhancement 

and the position updating operation with adaptive hybrid signals and spherical coefficients, are used to guide 

the search process. Each particle moves around in the search space with each dimension assigned with a 

continuous value. During fitness evaluation, each particle position is decoded into a set of network and 

learning configurations, which are used to construct a CBiLSTM network. This resulting network is trained 

with the training set, while the performance of the validation set is used as the fitness score for each particle. 

 

Specifically, the Adam optimizer is used for training each devised CBiLSTM network. The negative log 

likelihood loss (provided by the PyTorch library) is adopted as the loss function. A batch size of 8 is 

employed. The network shuffles the training and validation data sets before each training and validation 

cycle. In addition, the learning rate is updated every 10 epochs by multiplying with a drop factor of 0.5. A 

smaller number of epochs of 5 is used for the hyper-parameter search during training. The most optimal 

settings encoded in the global best solution are employed to construct the output network, which is trained 

with the combined training and validation data sets and a comparatively larger number of epochs, i.e., 100. 

The resulting model is evaluated with the unseen test set for performance comparison.     

 

In order to avoid overfitting, we conduct two types of data augmentation. Firstly, audio data augmentation is 

conducted during the training stage. We apply pitch and time shifting as well as noise addition for audio 

augmentation. As an example, we employ the pitch shifting range of [-2, 2] semitones, time shifting range of 

[-0.3, 0.3] seconds, and noise addition SNR range of [-20, 40] dB for generating new signals. Such 

augmentation setting provides a reasonable trade-off between performance and computational cost. Secondly, 

spectrogram augmentation at the image level, i.e., random flipping and image translation and rotation, is also 

conducted, to avoid overfitting.  

 

According to Esmaeilpour et al. [38] and Zhang et al. [39], the above audio and image augmentation 

operations mainly focus on low-level transformation. As discussed earlier, the audio signals (such as 

respiratory, heart and environmental sounds) used in this research are unstructured with unpredictable factors 

in comparison with other speech or music signals. As an example, the audio signals sometimes consist of 

transient (e.g. person sneeze) and intermittent (e.g. baby cry and dog bark) data, resulting in discriminative 

salient features to be distributed in a few frames only. As such, when the signals and converted spectrograms 

do not embed many active areas or properties (e.g. a large number of silent periods or noisy frames) or 

contain complex temporal characteristics, the linear nature of low-level augmentation techniques may not be 

sufficient enough to cause a high impact on the classifier decision boundaries, despite their efficiency in 

tackling other image classification tasks using normal images. This observation is indicated in our 

experimental study and existing literature [34, 72]. Therefore, motivated by existing studies such as Wu et al. 

[29], besides data augmentation procedures, we employ data duplication to further strengthen the signals 

from minority classes. Detailed data duplication and augmentation processes are discussed in the evaluation 

section. 

 

Table 1 The selected optimized hyper-parameters 

 
Optimized hyper-parameters Search ranges 

Learning rate [5e-4, 6e-3] 
Weight decay [0.01, 0.05] 

No. of filters in the 1st convolutional layer [24, 64] 

No. of filters in the 2nd and 3rd convolutional layers [48, 128] (multiplying the optimized number 
of filters in the 1st convolutional layer by 2) 

No. of hidden units in each BiLSTM layer [48, 128] 

 

After obtaining a set of optimized CBiLSTM networks with different model and learning settings, we embed 

these optimized networks in a number of ensemble models. The majority voting mechanism is used for 

combining the outputs. Owing to the identified distinctive topologies, the optimized CBiLSTM networks 

illustrate superior discriminative and complementary characteristics to enhance the ensemble model 

performance.  

 



Besides the optimized networks, a default CBiLSTM model with manually assigned configurations is 

employed for performance comparison. The default network uses 64 filters in the first convolutional layer, 

and 128 in the subsequent two convolutional layers, with 128 numbers of hidden units in each of the 

BiLSTM layers. We also use the default learning rate and weight decay of 0.002 and 0.01, respectively.  

 

Several additional baseline deep learning models are employed for performance comparison, i.e. CNN, 

GoogLeNet, and ResNet18. These models produce competitive performances in diverse audio and image 

classification tasks. In our experiments, a variety of training and feature learning strategies are embedded into 

these baseline networks. Firstly, a CNN with a VGGNet architecture is used as the baseline method. It 

consists of 8 convolutional layers, with each convolutional layer succeeded by a batch normalization layer, a 

ReLU layer, an optional max or average pooling layer. We denote this CNN model as VGG8. This VGG8 

network is trained from scratch in our experiments. 

 

In addition, ImageNet pre-trained GoogLeNet and ResNet18 models are used for performance comparison. 

Specifically, we apply transfer learning to GoogLeNet for fine-tuning the network to tackle audio 

classification. In contrast, we extract deep spatial features directly from the global pooling layer (i.e. pool5) 

of ResNet18 without any training process, in order to take advantage of the representational power of the pre-

trained networks. Such high-level features extracted from the deep layers in ResNet18 embed sufficient 

descriptive characteristics of the spectrograms. They are subsequently used to train a multiclass SVM 

classifier for audio classification. This baseline model is denoted as ResNet18+SVM in the result 

presentation. We elaborate the experimental details in the next section.    

 

5. EXPERIMENTAL STUDIES 
Three audio data sets, i.e. ICBHI 2017 [25], PhysioNet Challenge 2016 [26], and ESC-10 [27], are used in 

our experimental studies. The ICBHI 2017 data set contains a total of 920 audio clips with 6,898 respiratory 

cycles from 126 subjects. In addition, each recording contains several respiratory cycles, and has a length 

between 10 and 90 seconds. There are two types of annotations provided in ICBHI, i.e. (1) with respect to 

each respiratory cycle, whether or not crackles and/or wheezes are present, and (2) with respect to each 

subject, whether or not a particular disease condition is present. In this research, we focus on the latter, i.e. 

the identification of a particular disease condition for each subject using the entire audio signal, owing to the 

fact that it is a comparatively more challenging task. Moreover, in ICBHI, the audio clips are annotated with 

the following labels, i.e. healthy, asthma, Chronic Obstructive Pulmonary Disease (COPD), Lower 

Respiratory Tract Infection (LRTI), Upper Respiratory Tract Infection (URTI), bronchiectasis, pneumonia, 

and bronchiolitis. Owing to a severe imbalanced ratio of data samples in each class, we follow the existing 

studies [28, 34] to categorize all non-healthy cases into two groups, i.e. COPD, bronchiectasis, and asthma as 

chronic cases and URTI, LRTI, pneumonia, and bronchiolitis as non-chronic cases. Therefore we conduct 3-

class classification at the pathology level to detect healthy, chronic and non-chronic conditions using this 

respiratory sound data set. In addition, owing to the collection of respiratory sound recordings using various 

devices at different chest locations as well as environmental noise, this respiratory sound data set presents 

very challenging characteristics for sound classification tasks.  

 

A heart sound data set, i.e. PhysioNet/CinC Challenge 2016, is also employed to test model efficiency. It 

consists of five databases with a total of 3,240 heart sound clips, collected from clinical and non-clinical 

environments. There are 2,575 normal (denoted as -1) and 665 abnormal (denoted as 1) instances in the data 

set. They are contributed by both healthy subjects and pathological patients, with each subject donating 1-6 

recordings. Each heart sound clip is resampled to 2,000 Hz, and has a length between 5 and 120 seconds. 

This data set is the largest public collection of phonocardiogram (PCG) recordings. Owing to the inclusion of 

samples recorded in a variety of uncontrolled environments, the data set embeds various challenging factors 

for sound classification.  

 

A third data set containing environmental sound data samples is also used to evaluate the optimized 

CBiLSTM networks, i.e. ESC-10. It  contains 400 environmental recordings from 10 classes (i.e. sea waves, 

baby cry, dog bark, rain, person sneeze, clock tick, chainsaw, rooster, helicopter, and fire crackling), with 

each class containing 40 samples. Each sound clip has a length of 5 seconds with 44.1 kHz sampling 

frequency. Owing to the overlap of different sound sources and various natural environmental noise, the data 

set poses great challenges to many sound classification methods. 

 

Several baseline search methods are employed for performance comparison, i.e. the original PSO algorithm, 

a modified PSO (MPSO) [14] with an adaptive inertia weight factor and linear acceleration coefficients, and 

a PSO variant (PSOVA) [73] with dynamic coefficients and DE-based leader enhancement. Motivated by 



CPSO [74], a PSO model with sine search coefficients (SPSO) is also implemented for performance 

comparison. We follow the parameter settings of these baseline methods from their original studies. We 

adopt adaptive 2D and 3D super-ellipse formulae for adaptive crossover factor and search coefficient 

generation, respectively, for the proposed PSO algorithm. Table 2 shows the detailed parameter settings of 

each search method. 

 

Besides the above classical and advanced search methods, several deep learning methods are also employed 

for comparison, i.e. GoogLeNet (transfer learning), VGG8 (training from scratch), and ResNet18-based 

spatial feature extraction with SVM-based classification.  

 

To evaluate the efficiency of the proposed PSO algorithm, the following optimization tasks are experimented, 

i.e. (1) optimal hyper-parameter selection in CBiLSTM networks, and (2) numerical optimization using 

unimodal and multimodal benchmark functions. The first optimization task combines both deep learning and 

evolutionary computation domains with the attempt to generate optimal deep networks for sound 

classification. The second optimization task is dedicated to solving diverse challenging artificial landscape 

functions to test model convergence speed and capabilities in attaining global optimality for high-

dimensional optimization problems. In this experimental study, owing to complexities of the problem 

domains, different experimental settings have been employed.  

 

In the first optimization task, i.e., optimal hyper-parameter selection, since there are four key hyper-

parameters (i.e., the learning rate, weight decay, the number of filters in the first convolutional layer, and the 

number of hidden units in each BiLSTM layer) to be optimized, we set dimension=4. To ensure a fair 

comparison, all the search methods terminate when the maximum number of function evaluations, i.e., 15 

(population) × 20 (the maximum number of iterations), is reached. We perform 30 trials for each search 

method in each experiment. The resulting 30 optimized networks are used to construct 10 ensemble models 

for performance comparison, where each ensemble classifier incorporates three optimized networks using a 

majority voting scheme.  

 

To further assess model efficiency in solving high-dimensional optimization problems, in the second 

optimization task, two sets of benchmark functions are employed, i.e. (i) a set of 11 basic benchmark 

functions, and (ii) a suite of 13 artificial landscapes widely adopted in the literature [22, 65, 75-77]. We set 

dimension=30 and trial=30 in the experiments. Comparatively larger numbers of function evaluations are 

adopted owing to variations and complexities of the test functions, i.e., maximum number of function 

evaluations=population (30) × iterations (2000) and maximum number of function evaluations=population 

(30) × iterations (3000) for the numerical problems, respectively. Each search method terminates when these 

maximum numbers of function evaluations are reached. We discuss the details of the experimental studies in 

the following sub-sections.  

 

Table 2 Parameter settings of each search method 
 

Models 

 

Parameter settings 

Prop. PSO maximum velocity=0.6, inertia weight=0.6, using 2D 
adaptive super-ellipse coefficients as crossover factors for 

hybrid leader generation, and 3D super-ellipse coefficients 
as search parameters 

PSOVA [73] maximum velocity=0.6, inertia weight=0.6, adaptive 

acceleration coefficients generated using nonlinear functions 
MPSO [14] an adaptive inertia weight factor and linear acceleration 

coefficients 

PSO [11] maximum velocity=0.6, inertia weight=0.5, acceleration 

constants 𝑐1= 𝑐2= 1.5 

SPSO adaptive acceleration coefficients generated using sine 
annealing functions 

 

5.1 Evaluation Using the ICBHI Data Set 
We first evaluate the proposed ensemble CBiLSTM networks using the ICBHI data set. As mentioned 

earlier, it has a total of 920 audio recordings [25]. We conduct the 3-class classification, i.e. healthy, chronic 

and non-chronic cases, for this respiratory sound data set. Each search method is used to optimize the 

learning rate, weight decay, the number of filters in the first convolutional layer and the number of hidden 

neurons in each BiLSTM layer. We employ a ratio of 80-20 for splitting the training and test sets. Each class 

is split consistently using this aspect ratio. 

 



Since nearly 88% of the training samples belong to the chronic cases (648), we conduct data augmentation of 

the healthy (28) and non-chronic (60) instances, in order to ensure all the three class signals are balanced in 

the training set. Motivated by Wu et al. [29], we duplicate each healthy audio clip 23 times and each non-

chronic signal 10 times, producing additional 644 healthy and 600 non-chronic samples. By adding these 

generated samples into the original training set, we have 648 chronic, 660 non-chronic and 672 healthy cases 

altogether. These samples are divided into training and validation sets using a ratio of 80-20 for hyper-

parameter selection.  

 

Besides duplicating the audio samples, standard audio augmentation procedures, such as pitch and time 

shifting and noise addition, are also conducted. Specifically, we employ the pitch shifting range of [-2, 2] 

semitones, time shifting range of [-0.3, 0.3] seconds, and noise addition SNR range of [-20, 40] dB, for 

generating the new signals. Moreover, spectrogram augmentation at the image level, i.e., random flipping and 

image translation and rotation, has also been conducted, to avoid overfitting. The most optimal learning 

configurations and model structures identified by each search method are subsequently decoded to construct 

the output CBiLSTM network. We then train this optimized network using the combined training and 

validation sets and a larger number (i.e. 100) of training epochs. Each trained network is then evaluated using 

the unseen audio clips in the test set. Note that we only conduct data duplication and augmentation processes 

at the training stage, and do not apply such processes to the test set. 

 

To avoid accidental factors, we conduct 30 runs for hyper-parameter search. An ensemble model is 

subsequently constructed by incorporating three optimized CBiLSTM networks where the majority voting 

method is used to yield the final prediction. The average accuracy rate of the 10 ensemble models is used in 

performance comparison. In order to compare with related studies and better tackle class imbalance issues, 

we employ the mean score of sensitivity and specificity (also referred as a modified accuracy score), for 

performance comparison. The detailed evaluation metrics are defined in Equations (30)-(32).  

 

𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

2
                                                       (30) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑐ℎ𝑟𝑜𝑛𝑖𝑐+ 𝐶𝑛𝑜𝑛−𝑐ℎ𝑟𝑜𝑛𝑖𝑐

𝑁𝑐ℎ𝑟𝑜𝑛𝑖𝑐+ 𝑁𝑛𝑜𝑛−𝑐ℎ𝑟𝑜𝑛𝑖𝑐
                                                  (31) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐶ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝑁ℎ𝑒𝑎𝑙𝑡ℎ𝑦
                                                             (32) 

   

where 𝐶 and 𝑁 represent the correctly classified and total numbers of samples with respect to a particular 

class. 

 

All the search methods terminate when the maximum number of function evaluations, i.e. 15 (population) × 

20 (maximum number of iterations), is reached. Table 3 illustrates the mean score of each search method 

over 30 runs. 

 

Table 3 The mean evaluation result of each search method over a set of 30 runs for the ICBHI data set 
              
Models 

 
Methodologies 

 

Sensitivity 

 

Specificity 

 

Mean score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.9605 1 0.9803  

PSOVA-based Ensemble PSOVA + ensemble CBiLSTM 0.9266 0.7143 0.8205 
SPSO-based Ensemble SPSO + ensemble CBiLSTM 0.9435 0.7143 0.8289  

MPSO-based Ensemble MPSO + ensemble CBiLSTM 0.9209 0.7143 0.8176 

PSO-based Ensemble PSO + ensemble CBiLSTM 0.9209 1 0.9605  
Ensemble model with default 

settings 

Ensemble CBiLSTM with default 

settings 0.9153 0.7143 0.8148 

 

As indicated in Table 3, the optimized ensemble models devised by the proposed PSO algorithm achieve a 

mean score of 98.03% and illustrate great superiority over the ensemble networks formed by the baseline 

search methods. The proposed search strategies, which include elite signal generation with regular and 

irregular adaptive weighting, diversified spherical coefficients, and secant and Newton’s methods for leader 

enhancement, allow the search process to better balance between diversification and intensification and to 

overcome stagnation. In addition, the ensemble networks identified by the original PSO model achieve 

impressive performance with a mean score of 96.05%. Our proposed models and PSO-based deep networks 

show superior capabilities and robustness in identifying both the diseased and healthy cases, as indicated by 

the sensitivity and specificity results. The SPSO-based ensemble models with a mean score of 82.89% 

outperform PSOVA and MPSO-based ensemble networks. While these PSO-based networks are useful in 



classifying the chronic and non-chronic cases, they show less capabilities in identifying the healthy cases.  

The ensemble model with default base classifier settings illustrates limited diversity capabilities, in view of 

its lower performance as compared with those of ensemble networks formed by all the search methods. 

 

Table 4 The identified mean optimal hyper-parameters for each search method over a set of 30 runs for the 

ICBHI data set  

 Score Learning rate Weight decay No. of filters No. of hidden 

units 

Prop. PSO 0.9803 0.003815 0.02759 37.67 85.33 

PSO  0.9605 0.003638 0.02533 33.5 83.5 

PSOVA 0.8205 0.002870 0.01859 44 112.75 
SPSO 0.8289 0.003902 0.02413 32.5 96.5 

MPSO 0.8176 0.004001 0.03473 40.67 106.67 

 

Table 4 shows the identified mean optimal hyper-parameters for each search method over 30 runs. The 

proposed PSO model identifies comparatively moderate learning rates and weight decays, as well as 

moderate numbers of filters and hidden neurons, in comparison with those yielded by other search methods. 

Such moderate model and learning settings equip the networks with superior capabilities in extracting 

efficient discriminative spatial-temporal cues as well as prevent them from memorizing the exact details of 

the training images and sequential dynamics. The ensemble CBiLSTM models identified by the PSO 

algorithm show similar characteristics as those obtained by the proposed model, but with smaller numbers of 

filters and hidden units, which can potentially omit certain important descriptive indicators for spectrogram 

analysis. In contrast, the networks constructed by PSOVA and MPSO possess larger numbers of filters and 

hidden neurons. Therefore, they are more likely to suffer from overfitting by excessive extraction of spatial-

temporal dependencies. The models formulated by SPSO have smaller mean numbers of filters but larger 

numbers of hidden units. Thus, they are likely to discard important spatial information, while over learning 

the sequential details. 

 

We compare our optimized ensemble models with other deep networks in Table 5. The augmented data sets 

from our approach are used for training the baseline deep learning methods. As illustrated in Table 5, the 

proposed ensemble models with optimal hyper-parameter selection outperform all the baseline deep 

networks, i.e. VGG8, GoogLeNet with transfer learning and ResNet18-based deep feature extraction with 

SVM-based classification. Instead of purely extracting spatial features as in these baseline CNN-based 

methods, each of our optimized CBiLSTM networks takes both spatial and temporal dynamics into account 

for respiratory sound classification. Owing to the adoption of diverse optimized model structures, the 

proposed networks possess distinctive learning behaviours and significant diversity to enhance the 

performance. The confusion matrix of our ensemble networks is provided in Table 6. 

 

Table 5 Performance comparison with other baseline deep networks for the ICBHI data set 
 

 
Models 

 
 

Methodologies 

 

 
Sensitivity 

 

 
Specificity 

 

 
Mean score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.9605 1 0.9803 
CNN CNN with 8 convolutional layers 0.9096 0.7143 0.8120  

GoogLeNet Transfer learning 0.9266 0.7143 0.8205 

ResNet18+SVM Features extracted from deep layers+SVM 0.8531 0.4286 0.6409 

 

Table 6 The confusion matrix of the proposed ensemble network for the ICBHI data set 

 
 Non-chronic Chronic Healthy 

Non-chronic 10 4 1 

Chronic 2 160 0 

Healthy 0 0  7 

 
To indicate model efficiency, Table 7 shows a performance comparison between our yielded ensemble model 

and several existing studies. Since different evaluation strategies have been used, Table 7 depicts a rough 

estimation of model performance. In comparison with the existing studies using various CNN and LSTM 

networks in combination with a variety of data augmentation techniques, the proposed PSO-based ensemble 

network shows superior performance, which appears to be the top performer for respiratory anomaly  

detection.  

 



Table 7 Comparison with existing studies for the ICBHI data set 
 

Relate studies 

 

Methodologies 

 

Evaluation 

strategy 

 

Sensitivity 

 

Specificity 

 

Score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 80-20 split 0.9605 1 0.9803 
Perna [72] CNN  80-20 split 0.89 0.76 0.83 

Perna and Tagarelli [28] LSTM with frame composition (50% 

overlapping between consecutive 
windows) 

80-20 split 0.98 0.82 0.9 

Perna and Tagarelli [28] LSTM with non-overlapping 

partitioning 

80-20 split 0.98 0.80 0.89 

García-Ordás et al. [34] CNN + Synthetic Minority 

Oversampling Technique 

10-fold 0.950 0.167 0.558 

García-Ordás et al. [34] CNN + Adaptive Synthetic Sampling 
Method 

10-fold 0.965 0.857 0.911 

García-Ordás et al. [34] CNN + dataset weighted 10-fold 0.953 0 0.476 

García-Ordás et al. [34] CNN + dataset unbalanced 10-fold 0.941 0 0.471 
García-Ordás et al. [34] CNN + VAE 10-fold 0.985 0.990 0.988 

 

5.2 Evaluation Using the PhysioNet/CinC Challenge 2016 Data Set 
The proposed ensemble CBiLSTM networks are evaluated using a heart sound data set, i.e. PhysioNet/CinC 

Challenge 2016. The data set has a total of 3,240 sound clips. A 5-fold cross validation is used, which is the 

same as in some existing studies [26, 78]. Specifically, a total of 2,592 audio samples (from randomly 

selected four folds) are used for training with the remaining fold of 648 unseen instances for testing. Such a 

process is performed 5 times so that all the 3,240 samples can be used as test data. For each validation (i.e. 

the evaluation of each fold), there are 532 positive and 2,060 negative instances in the training set. To 

balance the training set, as recommended by Wu et al. [29], we duplicate each training signal in the positive 

class three times. The generated signals are added into the pool of original positive recordings to produce a 

total of 2,128 positive instances. The updated training set thus consists of 2,128 abnormal and 2,060 normal 

signals. 

 

We further split this augmented training set into training and validation sets with a ratio of 80-20 for optimal 

hyper-parameter selection. The performance of the validation set is used as the fitness score. Besides 

duplicating the audio samples, standard audio augmentation procedures, such as pitch and time shifting and 

noise addition, as well as spectrogram augmentation at the image level, such as random flipping and image 

translation and rotation, have also been conducted, to avoid overfitting. The identified optimal settings are 

then used to construct a CBiLSTM network, which is subsequently trained using the combined training and 

validation sets with a larger number (i.e. 100) of epochs. The performance of the unseen test set (i.e. the 

remaining fold) is used for comparison. Note that the aforementioned data duplication and signal and image 

augmentation procedures are only conducted for the training set in each validation, without implementing 

them in the test set.  

 

For each fold, we conduct 30 trials. Therefore a set of 30 optimized base classifiers is obtained, which are 

used to construct 10 ensemble models. The mean score of the 10 ensemble classifiers is produced for each 

fold. Such a process is conducted five times for 5 test folds where hyper-parameter search is performed 30 

runs for each fold. 

 

According to PhysioNet 2016, the modified accuracy score, i.e. the mean of sensitivity and specificity as 

defined in Equation (30), is employed for performance comparison. The new definitions of sensitivity and 

specificity with respect to the PhysioNet data set are provided below, i.e. sensitivity refers to the percentage 

of abnormal signals that are correctly classified as abnormal cases, as shown in Equation (33), while 

specificity indicates the percentage of normal phonocardiograms that are correctly identified as normal cases, 

as in Equation (34). Then a mean score of sensitivity and specificity is calculated using Equation (30).  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙

𝑁𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙
                                                            (33) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐶𝑛𝑜𝑟𝑚𝑎𝑙

𝑁𝑛𝑜𝑟𝑚𝑎𝑙
                                                             (34) 

  

where 𝐶 and 𝑁 denote the correctly classified and total numbers of samples with respect to a specific class. 

 

Table 8 presents the mean result of 5-fold cross validation for each search method, where hyper-parameter 

search is conducted 30 trials in each fold. 



 

Table 8 The mean evaluation results of the 5-fold cross validation for the PhysioNet data set with 30 trials in 

each fold 
              
Models 

 
Methodologies 

 
Sensitivity 

 

Specificity 
 

Mean score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.9158 0.9227 0.9193 

PSOVA-based Ensemble  PSOVA + ensemble CBiLSTM 0.8707 0.9060 0.8883 

SPSO-based Ensemble SPSO + ensemble CBiLSTM 0.8241 0.9364 0.8803 
MPSO-based Ensemble MPSO + ensemble CBiLSTM 0.8511 0.9273 0.8892 

PSO-based Ensemble PSO + ensemble CBiLSTM 0.8616 0.9122 0.8869 

Ensemble model with default 
settings 

Ensemble CBiLSTM with default 
settings 0.8236 0.9327 0.8782 

 

As illustrated in Table 8, our optimized ensemble networks outperform those devised by the baseline 

methods, with mean accuracy score of 91.93%. Owing to the guidance of the secant and Newton’s methods 

and diverse super-elliptical search courses for exploitation and exploration, the proposed PSO model is 

efficient in overcoming local optima traps for hyper-parameter selection. The sensitivity and specificity 

results indicate that our ensemble CBiLSTM networks illustrate competitive performance for classification of 

both positive and negative cases. MPSO, PSOVA and PSO-based ensemble networks obtain promising 

accuracy scores of 88.92%, 88.83% and 88.69%, respectively, with SPSO-based ensemble models obtaining 

a lower performance of 88.03%. As shown in Table 8, the ensemble networks devised by these PSO variants 

illustrate promising performance in identifying the healthy recordings, but with less competence in 

classifying the abnormal heart sound signals. The ensemble models yielded by all the search methods possess 

sufficient robustness and show better accuracy scores than those of the ensemble model with default settings. 

 

Table 9 The identified mean optimal hyper-parameters for an example fold over a set of 30 runs for the 

PhysioNet data set  
 

 Mean score Learning rate Weight decay No. of filters No. of hidden 
units 

Prop. model 0.9193 0.003222 0.03238 45.5 95 

PSOVA 0.8883 0.002419 0.01649 50 126 
PSO 0.8869 0.003953 0.02559 47 81.67 

MPSO 0.8892 0.003144 0.01827 42.33 116.33 
SPSO 0.8803 0.004943 0.04108 33 90 

 

Table 9 illustrates the identified mean optimal hyper-parameters for a particular fold over 30 runs. In 

comparison with those yielded by the baseline search methods, the proposed model identifies moderate 

settings of the learning rate and weight decay, moderate numbers of filters and hidden neurons. Such 

moderate settings of the optimized CBiLSTM networks are beneficial for extracting discriminative spatial-

temporal information from the spectrogram inputs, leading to superior performance for classification of both 

positive and negative cases. On the other hand, PSOVA and MPSO identify comparatively larger numbers of 

hidden units in the BiLSTM layers, with larger and smaller numbers of filters in the convolutional layers, 

respectively. Therefore, they are more likely to capture excessive details of the sequential dependencies. The 

PSOVA-based networks potentially extract redundant spatial features. Moreover, PSO selects comparatively 

smaller numbers of hidden units and larger numbers of filters. Therefore they are capable of describing 

complex spatial patterns but have a constrained storage of the temporal relationships. SPSO extracts both 

comparatively smaller numbers of filters and hidden units. The resulting networks show limited capabilities 

in capturing complex spatial-temporal dynamics, thus a lower performance.  

 

The moderate learning rates and weight decays from our proposed approach equip the networks with a good 

balance between diversity and convergence. Comparatively, PSO and SPSO obtain larger learning rates, 

which cause the networks to converge quickly to a suboptimal solution. MPSO and PSOVA yield smaller 

learning rates, resulting in slow convergence. With respect to the evaluation of other test folds, the devised 

hyper-parameter settings of our model show similar characteristics, i.e. moderate learning rates and weight 

decays and moderate numbers of filters and hidden units. 

 

Table 10 shows a comparison between our devised ensemble models and other deep networks. A 5-fold cross 

validation is used to evaluate each baseline method. The baseline networks are trained using the augmented 

data set in each validation as those used in our experiment. As illustrated in Table 10, our optimized 

ensemble models outperform the baseline deep networks, i.e. VGG8, GoogLeNet with transfer learning and 

ResNet18-based spatial feature extraction with SVM-based classification, significantly. Among the baseline 

methods, GoogLeNet with transfer learning obtains a better performance, owing to its significant feature 



learning capabilities produced by both pre-training using ImageNet and transfer learning using the new 

spectrogram data set. Our devised ensemble CBiLSTM models incorporate a variety of networks with 

distinctive topologies, and show superior robustness in discriminative spatial-temporal feature extraction, 

therefore yielding a better performance. Table 11 illustrates the confusion matrix of our ensemble networks. 

 

Table 10 Performance comparison with other baseline deep networks for the PhysioNet data set 
 

Models 
 

Methodologies 
 

Sensitivity 
 

Specificity 
 

Mean score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.9158 0.9227 0.9193 
CNN CNN with 8 convolutional layers 0.7639 0.9351 0.8496 

GoogLeNet Transfer learning 0.8481 0.9122 0.8802 

ResNet18+SVM Features extracted from deep layers+SVM 0.7925 0.9076 0.85 

 

Table 11 The confusion matrix of the proposed ensemble network for the PhysioNet data set 

 
 Abnormal Normal 

Abnormal 609 56 

Normal 199 2376 

 
Table 12 illustrates a comparison between our devised ensemble model and existing studies. Since different 

evaluation strategies and sample sizes have been used in different publications, Table 12 serves as a rough 

performance comparison. Comparing with the existing methods, our obtained ensemble CBiLSTM network 

achieves superior performances for classification of both normal and abnormal cases. Therefore, our 

proposed model offers an alternative solution for abnormal heart sound classification. 

 

Table 12 Comparison with existing studies for the PhysioNet data set 
 
Relate studies 

 
Methodologies 

 
Evaluation 

strategy 

 
Sample 

size 

 
Sensitivity 

 
Specificity 

 
Score 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 5-fold 3,240 0.9158 0.9227 0.9193 
Wu et al. [29] Ensemble VGGNet with Savitzky-Golay 

filter 

80-20 split 3,240 0.8646 0.8563 0.8604 

Wu et al. [29] Ensemble VGGNet with Savitzky-Golay 
filter 

10-fold 3,240 0.9173 0.8791 0.8981 

Li et al. [78] CNN  5-fold 3,153  0.87 0.866 0.868  
Zhang et al. [30] Scaled spectrogram and tensor 

decomposition  
10-fold 3,240 0.88 0.92 0.9 

Zhang et al. [30] Scaled spectrogram and partial least squares 
regression 

10-fold 3,240 0.82 0.95 0.88 

Thomae and Dominik [79] Deep gated RNN with a convolutional front 

end 

85-15 split 3,153 0.96 0.83 0.89 

Her and Chiu [80] Time-frequency features 304 test 

samples 

3,240 0.844 0.869 0.857 

Potes et al. [81] Ensemble of feature-based and deep 
learning-based classifiers 

80-20 split 3,240 0.88 0.82 0.85 

Homsi et al. [82] A nested set of ensemble algorithms 10-fold 3,240 - - 0.884 

Xiao et al. [31] 1D CNN  10-fold 3,153  0.86 0.95 0.905 

 

5.3 Evaluation Using the ESC-10 Data Set 
The proposed ensemble networks are evaluated with a multi-class environmental sound data set, i.e. ESC-10 

[27]. A total of 400 audio signals from 10 classes are available in the ESC-10 data set, where each class is 

composed of 40 instances. Following the guideline of the ESC-10 data set, we employ a 5-fold cross 

validation in our experiments. In each validation, we randomly select 320 samples (i.e. four folds) for hyper-

parameter selection with the remaining 80 signals for testing. Owing to balanced sample sizes in each class, 

we do not duplicate any training instances, but only conduct standard signal and spectrogram augmentation 

procedures at the training stage in this evaluation.  

 

We conduct 30 evaluations in each fold. Specifically, we divide the training set (i.e. randomly selected four 

folds) into training and validation sets with a ratio of 80-20. They are subsequently used for hyper-parameter 

selection where the validation set is used for fitness evaluation. The identified optimal CBiLSTM network 

from each search method is trained using the combined training and validation sets (i.e. all the data from the 

selected four folds) with a significantly larger number (i.e. 100) of epochs. The average result of the diagonal 

accuracy rates of the confusion matrix is used for performance comparison.  

 



For each fold, as mentioned earlier, we conduct 30 trials. Therefore, a set of 30 optimized base classifiers is 

obtained for constructing 10 ensemble models. The mean result of the 10 ensemble models is recorded in 

each fold, which is used to compute the average result of 5-fold cross validation. Table 13 presents the 

detailed results for performance comparison. 

 

Table 13 The mean evaluation results of 5-fold cross validation for the ESC-10 data set with 30 trials in each 

fold 
 
Models 

 
Methodologies 

 
Mean accuracy 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.93 
PSOVA-based Ensemble PSOVA + ensemble CBiLSTM 0.9023 

SPSO-based Ensemble SPSO + ensemble CBiLSTM 0.8967 

MPSO-based Ensemble MPSO + ensemble CBiLSTM 0.8984 
PSO-based Ensemble PSO + ensemble CBiLSTM 0.9142 

Ensemble model with default settings Ensemble CBiLSTM with default settings 0.8931 
 

As indicated in Table 13, our ensemble networks achieve the highest mean accuracy rate of 93%, 

outperforming those ensemble networks devised by the original and other baseline PSO algorithms, 

significantly. PSO and PSOVA-based networks obtain competitive performances with mean accuracy rates 

of 91.42% and 90.23%, respectively. The ensemble networks yielded by all the search methods comprise 

base models with distinctive topologies and configurations, therefore illustrating better complementary and 

boosting characteristics than that of the ensemble network with default settings. 

 

Table 14 The identified mean optimal hyper-parameters for an example fold over a set of 30 runs for the 

ESC-10 data set  

 Accuracy Learning rate Weight decay No. of filters No. of hidden 

units 

Prop. PSO 0.93 0.002624 0.02021 40.25 64.75 
PSOVA 0.9023 0.003340 0.02610 47 57.67 

MPSO 0.8984 0.003455 0.01786 45 48.33 

PSO 0.9142 0.002005 0.03460 51.67 70.67 
SPSO 0.8967 0.003895 0.03101 35.67 81.33 

 

Table 14 illustrates the identified mean hyper-parameter settings for a specific fold over 30 runs for each 

search method. The proposed model identifies moderate settings of the learning rate and weight decay, as 

well as moderate numbers of filters and the hidden units, in comparison with those discovered by the baseline 

methods. Such network and learning configurations illustrate competitive robustness in extracting manifold 

discriminative spatial features as well as abundant temporal relationships. In addition, the original PSO 

model identifies comparatively larger mean numbers of filters and hidden units. The resulting model is 

susceptible to learning redundant spatial-temporal details, which affect its performance. In contrast, PSOVA 

and MPSO obtain larger numbers of filters and smaller numbers of hidden neurons. Such model settings have 

limited learning capabilities in discovering elaborated temporal relationships, despite the extraction of 

enriched spatial features. SPSO identifies a comparatively smaller mean number of filters and a significantly 

larger mean number of hidden units. This configuration results in the omission of some important 

discriminative spatial characteristics as well as an exaggerated storage of the sequential dynamics. In 

comparison with the moderate learning rates devised by the original and the proposed PSO algorithms, larger 

learning rates are identified by other PSO variants, which result in fast convergence to suboptimal solutions.  

 

The empirical results also reveal that for the evaluation of other test folds, the identified optimized hyper-

parameters illustrate similar characteristics. Clearly, the proposed PSO model is able to identify moderate 

learning rates and weight decays, as well as moderate numbers of filters and hidden units. 

 

The theoretical justification pertaining to the proposed PSO variant and the baseline search methods is as 

follows. SPSO and MPSO employ adaptive sine and linear functions for search coefficient generation to 

adaptively adjust the search process. PSOVA adopts dynamic search coefficients, DE-based leader 

enhancement, and global optimal signals such as average and random leaders as well as 𝑔𝑏𝑒𝑠𝑡  to overcome 

stagnation. However, all these baseline PSO variants (MPSO, SPSO and PSOVA) and the original PSO 

algorithm do not generate any hybrid leader signals and purely rely on one leader at a time to lead the search 

process, therefore less search diversity. On the other hand, the proposed PSO model first employs the secant 

and Newton’s methods for swarm leader enhancement. It integrates the enhanced leader and the second-best 

solution using adaptive weights produced by regular, irregular and combined 2D elliptical formulae. Such 



improved leader signals in conjunction with diverse 3D spherical coefficients are used to balance the search 

between diversification and intensification. The proposed mechanisms offer the search process a variety of 

search directions and scales to mitigate premature convergence. Therefore, our yielded ensemble networks 

outperform those constructed by the baseline search methods for undertaking diverse sound classification 

tasks that possess various challenging factors. 

 

Table 15 depicts a comparison between our optimized ensemble models and other deep networks. A 5-fold 

cross validation is applied with standard audio and image augmentation processes as used in our experiments. 

As illustrated in Table 15, the proposed ensemble models with optimal hyper-parameter selection outperform 

all the baseline deep networks, i.e. VGG8, GoogLeNet with transfer learning and ResNet18-based deep 

feature extraction with SVM-based classification. These baseline CNN-based models are prone to extracting 

spatial information with fixed learning and network settings. Comparatively, our CBiLSTM networks take 

spatial-temporal dependencies into account, and are equipped with diverse optimized network topologies 

with enhanced feature learning capabilities. The confusion matrix of our devised ensemble networks is 

illustrated in Figure 8. 

 

Table 15 Performance comparison with other baseline deep networks for ESC-10 data set 
 

Models 
 

Methodologies 
 

Mean accuracy 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.93  

CNN CNN with 8 convolutional layers 0.885  
GoogLeNet Transfer learning 0.86  

ResNet18+SVM Features extracted from deep 
layers+SVM 0.85  

 

 
Figure 8 The confusion matrix of the proposed ensemble network for the ESC-10 data set where BC, Ch, CT, 

DB, FC, He, PS, Ra, Ro and SW denote baby cry, chainsaw, clock tick, dog bark, fire crackling, helicopter, 

person sneeze, rain, rooster, and sea waves, respectively. 

 

Table 16 depicts a comparison between our ensemble CBiLSTM network and several state-of-the-art models.   

All the reported studies employed a 5-fold cross validation. As shown in Table 16, our evolving ensemble 

deep network with optimal hyper-parameter selection illustrates impressive performance, which is the top 

performer in this environmental sound classification problem. 

 

Table 16 Comparison with existing studies for the ESC-10 data set 
 

Relate studies 
 

Methodologies 
 

Mean accuracy 

Prop. PSO-based Ensemble Prop. PSO + ensemble CBiLSTM 0.93 
Medhat et al. [40] MCLNN 0.855 

Esmaeilpour et al. [38] Unsupervised feature learning and WCCGAN 

+ RF as the classifier 
0.87 

Zhang et al. [39] CRNN (8 convolutional layers+2 BiGRU 
layers) 

0.93 

Zhang et al. [69] CNN + augmentation + mixed sound 0.917 

Boddapati et al. [83] GoogLeNet and AlexNet 0.86 
Aytar et al. [84] SoundNet 0.823 

Su et al. [85] A two-stream CNN 0.72 

Piczak [86] PiczakConvNets 0.805 



daSilva et al. [87] ANN, KNN + features cascading + 

optimization 

0.78 

Khamparia et al. [88] CNN and tensor deep stacking network 0.56 
Salamon and Bello [89] CNN (3 conv layers + 2 fully connected layers) 0.77 

 

5.4 Evaluation Using Benchmark Functions 
To further evaluate the proposed PSO algorithm, we employ a set of 11 benchmark functions for 

performance assessment. They include multimodal functions, i.e. Ackley, Griewank, Rastrigin, and Powell, 

and unimodal artificial landscapes, i.e. Dixon-Price, Rotated Hyper-Ellipsoid (denoted as Rothyp), 

Rosenbrock, Sphere, Sum of Different Powers (denoted as Sumpow), Sum Squares (denoted as Sumsqu) and 

Zakharov. The unimodal benchmark functions have a single global minimum, while the multimodal 

landscapes illustrate multiple local optima. As indicated in [50, 90, 91], these mathematical functions 

constitute a challenging test suite with varied difficulties to test model efficiency.  

 

In addition to the baseline methods, a set of additional classical and advanced search algorithms is employed 

for evaluation. These algorithms have shown significant superiority in solving diverse benchmark functions, 

i.e. FA [12], Genetic PSO (GPSO) [13], Dynamic Neighbourhood Learning PSO (DNLPSO) [15], ALPSO 

[62], Enhanced Leader PSO (ELPSO) [9], chaotic FA with Logistic map as random search parameters 

(CLFA) [16], chaotic FA with Gauss map as the attractiveness coefficients (CGFA) [17], FA with variable 

step sizes (VSSFA) [18], a modified FA (MFA) [19], and FA with neighbourhood attraction (NaFA) [20]. 

Besides the abovementioned PSO and FA-based methods, we employ ten other classical and advanced search 

methods for performance comparison, i.e. Moth-Flame Optimization (MFO) [75], Ant Lion Optimizer (ALO) 

[76], Dragonfly Algorithm (DA) [77], Cuckoo Search (CS) [92], Artificial Bee Colony (ABC) [93], Bat 

Algorithm (BA) [94], Whale Optimization Algorithm (WOA) [95], PSOGSA (the combination of PSO and 

Gravitational Search Algorithm (GSA)) [96], GWO [22] and amixedGWO [65]. 

 

Table 17 illustrates the experimental settings of these baseline methods, which are obtained from their 

original studies.  

 

Table 17 Parameter settings of additional baseline methods 

 
Methods Parameter settings 

MFO [75] adaptive parameter settings 

GPSO [13] search coefficients 𝑐1 = 2.6, 𝑐2 = 1.5, inertia weight=0.9, maximum velocity=0.6. 

DNLPSO [15] refreshing gap=3, regrouping period=5, 𝑐1 = 𝑐2 =1.49445, inertia 
weight=0.9−(0.9−0.4)×(j−1)/(MaxGeneration−1), where j and MaxGeneration represent 

the current and maximum iteration numbers, respectively. 

ALPSO [62] random helix coefficients as the search parameters, maximum velocity=0.6, inertia 

weight=0.6. 

ELPSO [9] 𝑐1 = 𝑐2 =2, standard deviation of Gaussian mutation=1, scale parameter of Cauchy 

mutation=2, scale factor of DE-based mutation=1.2, inertia 
weight=0.9−(0.9−0.4)×(j−1)/(MaxGeneration−1). 

FA [12] Levy’s index=1.5, randomization parameter=0.5, initial attractiveness=1.0, absorption 

coefficient=1.0. 

CLFA [16] Levy’s index=1.5, randomization parameter=Logistic map, initial attractiveness=1.0, 

absorption coefficient=1.0. 

CGFA [17] attractiveness=Gauss map, absorption coefficient=1.0, Levy’s index=1.5, randomization 
parameter=0.5. 

VSSFA [18] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, randomization 

parameter=0.4/(1+exp(0.015*(j-MaxGeneration)/3)). 

MFA [19] Levy’s index=1.5, randomization parameter=0.5, initial attractiveness=1.0, absorption 

coefficient=1.0. 

NaFA [20] absorption coefficient=1.0, Levy’s index=1.5, and randomization parameter 𝛼(𝑗 + 1) =

(
1

9000
)

1

𝑗
× 𝛼(𝑗) where 𝑗 is the current iteration. 

GWO [22] step size 𝐴 = (2 × 𝑟𝑎𝑛𝑑 − 1) × 𝑎, where 𝑎 linearly decreases from 2 to 0, 𝑟𝑎𝑛𝑑 ∈
(0, 1), search parameter 𝐶 = 2 × 𝑟𝑎𝑛𝑑. 

amixedGWO [65] adopting parameter settings as in the vanilla GWO [22], and 𝜂 = 3 

ALO [76] 𝐼 = 10𝑤 ×
𝑗

MaxGeneration
, where 𝑤 = 2 when 𝑗 > 0.1 × MaxGeneration, 𝑤 = 3 when 

𝑗 > 0.5 × MaxGeneration, 𝑤 = 4 when 𝑗 > 0.75 × MaxGeneration, 𝑤 = 5 when 

 𝑗 > 0.9 × MaxGeneration, and 𝑤 = 6 when 𝑗 > 0.95 × MaxGeneration 

DA [77] separation weight = 0.1, alignment weight = 0.1, cohesion weight = 0.7, food factor = 1, 

enemy factor = 1, and inertia weight=0.9 – j×((0.9-0.4)/ MaxGeneration) 

CS [92] discovery probability = 0.25 

ABC [93] limit=dimension×population 

BA [94] loudness = 0.5, pulse rate = 0.5 

WOA [95] step size 𝐴 = (2 × 𝑟𝑎𝑛𝑑 − 1) × 𝑎, where 𝑎 linearly decreases from 2 to 0, 𝑟𝑎𝑛𝑑 ∈



(0, 1), search parameter 𝐶 = 2 × 𝑟𝑎𝑛𝑑, 𝑏 = 1, and 𝑙 = (𝑎2 − 1) × 𝑟𝑎𝑛𝑑 + 1, where 

𝑎2 linearly decreases from -1 to -2. 

PSOGSA [96] inertia weight = 𝑟𝑎𝑛𝑑, acceleration constants 𝑐1=0.5, 𝑐2=1.5, initial gravitational 

constant 𝐺0 = 1, and descending coefficient α = 20.  

  

The following settings are used in our experiments, i.e. dimension=30, trial=30, and maximum number of 

function evaluations=population (30) × iterations (2000). The search process terminates when the maximum 

number of function evaluations is reached. Table 18 illustrates the mean, minimum, maximum, and standard 

deviation results over 30 runs for each search method. The best results are highlighted in bold. As indicated 

in Table 18, the proposed PSO algorithm achieves superior performance for solving diverse unimodal and 

multimodal benchmark functions. It outperforms 24 baseline methods in most test cases, except for the 

Ackley and Dixon-Price functions, where ALPSO and ABC achieve the best results, respectively. The 

proposed model achieves the best global minima (i.e., 0) for two multimodal functions, i.e. Griewank and 

Rastrigin, and five unimodal functions, i.e. Rotated Hyper-Ellipsoid, Sphere, Zakharov, Sum of Different 

Powers and Sum Squares. ALPSO, WOA, GWO and amixedGWO attain the global minimum solution for 

Griewank, while WOA and GWO also obtain the best minimum solution for both Rastrigin and Sum of 

Different Powers. ALPSO and WOA obtain the global minimum solution for Ackley and Zakharov, 

respectively.  

 

Table 18 Evaluation results for benchmark functions with dimension=30 over a set of 30 runs 

 
  Prop. PSO PSOVA SPSO MPSO ALPSO GPSO DNLPSO ELPSO CLFA CGFA VSSFA MFA NaFA 

Ackley mean 8.88E-16 1.76E+01 1.14E+01 1.69E+01 0.00E+00 1.77E+01 2.19E+00 1.51E+01 1.60E+01 1.46E+01 1.07E+01 2.03E+01 4.48E-03 

 min 8.88E-16 1.62E+01 9.91E+00 1.46E+01 0.00E+00 1.69E+01 1.10E-03 1.40E+01 1.50E+01 1.39E+01 9.62E+00 2.03E+01 3.71E-03 

 max 8.88E-16 1.87E+01 1.26E+01 1.92E+01 0.00E+00 1.83E+01 8.96E+00 1.58E+01 1.65E+01 1.51E+01 1.15E+01 2.03E+01 5.00E-03 

 std 0.00E+00 7.33E-01 6.65E-01 1.22E+00 0.00E+00 4.65E-01 3.11E+00 5.82E-01 4.27E-01 3.77E-01 6.10E-01 0.00E+00 3.97E-04 

Dixon mean 2.49E-01 2.32E+05 1.39E+04 4.95E+05 2.84E+00 7.01E+05 3.96E+00 1.29E+05 1.50E+05 1.09E+05 1.28E+04 1.62E+06 7.07E-01 

 min 2.49E-01 8.17E+04 8.63E+03 8.93E+03 7.06E-01 4.42E+05 6.67E-01 8.27E+01 1.04E+05 5.19E+04 7.40E+03 1.62E+06 6.67E-01 

 max 2.49E-01 4.47E+05 1.96E+04 1.82E+06 6.00E+00 1.14E+06 1.17E+01 1.83E+05 1.97E+05 1.42E+05 1.56E+04 1.62E+06 8.65E-01 

 std 1.87E-04 1.48E+05 3.51E+03 4.78E+05 1.51E+00 2.12E+05 3.54E+00 5.67E+04 2.97E+04 2.77E+04 2.45E+03 1.74E-10 7.75E-02 

Griewank mean 0.00E+00 1.66E+02 4.80E+01 1.90E+02 0.00E+00 3.15E+02 6.62E-01 1.68E+02 1.75E+02 1.51E+02 4.94E+01 6.08E+02 4.77E-03 

 min 0.00E+00 8.85E+01 3.36E+01 3.94E+01 0.00E+00 1.67E+02 1.29E-02 1.17E+02 1.44E+02 1.14E+02 4.37E+01 6.08E+02 1.25E-03 

 max 0.00E+00 3.38E+02 6.41E+01 3.85E+02 0.00E+00 3.60E+02 1.51E+00 2.18E+02 1.96E+02 1.70E+02 5.82E+01 6.08E+02 1.39E-02 

 std 0.00E+00 7.18E+01 7.83E+00 1.04E+02 0.00E+00 5.47E+01 6.85E-01 3.67E+01 1.46E+01 1.60E+01 4.09E+00 1.20E-13 5.27E-03 

Rastrigin mean 0.00E+00 2.68E+02 2.18E+02 2.70E+02 1.82E+02 3.61E+02 7.63E+01 2.77E+02 2.61E+02 2.64E+02 2.22E+02 4.29E+02 5.14E+01 

 min 0.00E+00 1.88E+02 1.81E+02 1.91E+02 1.26E+02 3.20E+02 3.99E+01 2.21E+02 2.22E+02 2.47E+02 2.04E+02 4.29E+02 3.08E+01 

 max 0.00E+00 3.22E+02 2.52E+02 3.49E+02 2.12E+02 4.22E+02 1.33E+02 3.02E+02 2.84E+02 2.74E+02 2.40E+02 4.29E+02 9.05E+01 

 std 0.00E+00 3.99E+01 1.57E+01 4.08E+01 1.95E+01 2.90E+01 3.07E+01 2.67E+01 1.81E+01 7.83E+00 1.23E+01 5.68E-14 1.66E+01 

Rothyp mean 0.00E+00 3.83E+04 3.15E+04 2.36E+05 9.30E+04 2.57E+05 8.93E+02 1.79E+02 9.85E+04 1.08E+05 3.23E+04 4.38E+05 1.67E-02 

 min 0.00E+00 3.83E+04 1.84E+04 2.36E+05 6.75E+04 2.57E+05 4.74E-01 1.79E+02 9.85E+04 1.08E+05 2.84E+04 4.38E+05 4.31E-03 

 max 0.00E+00 3.83E+04 4.79E+04 2.36E+05 1.34E+05 2.57E+05 3.60E+03 1.79E+02 9.85E+04 1.08E+05 3.70E+04 4.38E+05 3.20E-02 

 std 0.00E+00 7.67E-12 6.07E+03 0.00E+00 1.51E+04 0.00E+00 1.35E+03 3.00E-14 1.53E-11 1.53E-11 3.28E+03 1.94E-11 1.06E-02 

Rosenbrock mean 5.11E-04 1.82E+05 1.50E+04 3.23E+05 1.42E+01 4.66E+05 6.64E+01 1.58E+05 1.34E+05 6.17E+04 8.87E+03 3.36E+06 5.71E+01 

 min 1.73E-09 4.77E+04 5.50E+03 6.26E+04 3.14E-01 3.01E+05 2.25E+01 5.33E+04 9.81E+04 2.71E+04 6.04E+03 3.36E+06 2.44E+01 

 max 3.00E-03 3.39E+05 2.30E+04 7.27E+05 7.09E+01 5.70E+05 3.02E+02 2.56E+05 1.75E+05 8.58E+04 1.14E+04 3.36E+06 2.10E+02 

 std 7.76E-04 9.30E+04 4.34E+03 1.63E+05 1.89E+01 7.62E+04 8.53E+01 5.37E+04 2.62E+04 1.84E+04 1.84E+03 4.66E-10 6.26E+01 

Sphere mean 0.00E+00 4.92E+01 1.49E+01 4.92E+01 6.41E-01 9.11E+01 3.62E-01 4.48E+01 4.86E+01 4.14E+01 1.38E+01 1.77E+02 1.86E-06 

 min 0.00E+00 2.36E+01 1.05E+01 8.87E+00 0.00E+00 6.93E+01 1.34E-10 3.46E+01 3.86E+01 2.52E+01 9.76E+00 1.77E+02 1.52E-06 

 max 0.00E+00 8.55E+01 1.85E+01 1.09E+02 1.62E+00 1.20E+02 3.19E+00 5.98E+01 5.56E+01 4.90E+01 1.69E+01 1.77E+02 2.27E-06 

 std 0.00E+00 2.10E+01 2.20E+00 2.41E+01 6.21E-01 1.72E+01 9.97E-01 6.71E+00 5.88E+00 6.79E+00 2.14E+00 3.42E-14 2.28E-07 

Sumpow mean 0.00E+00 1.70E-03 1.60E-04 3.67E-01 1.31E-03 2.60E-01 6.95E-10 2.79E-02 6.28E-03 4.63E-03 3.15E-04 5.82E-01 1.77E-08 

 min 0.00E+00 1.05E-04 3.17E-05 4.58E-06 0.00E+00 6.11E-02 1.07E-74 1.22E-02 3.03E-03 1.31E-03 9.54E-05 5.82E-01 5.04E-09 

 max 0.00E+00 7.37E-03 4.62E-04 2.00E+00 1.73E-02 5.74E-01 2.38E-09 6.49E-02 1.05E-02 1.14E-02 8.00E-04 5.82E-01 3.23E-08 

 std 0.00E+00 2.33E-03 1.12E-04 5.56E-01 4.28E-03 1.79E-01 9.07E-10 1.48E-02 2.58E-03 3.05E-03 2.39E-04 1.33E-16 8.28E-09 

Zakharov mean 0.00E+00 4.70E+02 2.82E+02 3.52E+02 9.64E+01 4.60E+02 7.69E+01 3.61E+02 3.91E+02 3.18E+02 2.53E+02 9.34E+02 4.92E+01 

 min 0.00E+00 3.87E+02 2.49E+02 2.57E+02 0.00E+00 4.25E+02 3.87E+01 3.24E+02 3.71E+02 2.93E+02 2.39E+02 9.34E+02 3.28E+01 

 max 0.00E+00 5.67E+02 3.27E+02 5.46E+02 4.42E+02 4.82E+02 1.54E+02 3.95E+02 4.10E+02 3.41E+02 2.69E+02 9.34E+02 6.77E+01 

 std 0.00E+00 6.52E+01 2.26E+01 6.97E+01 1.78E+02 1.81E+01 3.47E+01 2.54E+01 1.25E+01 1.62E+01 1.01E+01 6.56E-14 1.31E+01 

Sumsqu mean 0.00E+00 6.93E+02 1.83E+02 8.92E+02 4.07E-01 1.39E+03 6.17E-01 6.65E+02 6.40E+02 5.79E+02 1.90E+02 2.77E+03 1.34E-04 

 min 0.00E+00 2.21E+02 1.08E+02 1.01E+02 2.25E-02 1.04E+03 2.85E-16 5.35E+02 5.26E+02 4.43E+02 1.56E+02 2.77E+03 3.37E-05 

 max 0.00E+00 1.43E+03 2.41E+02 2.20E+03 1.38E+00 1.80E+03 5.58E+00 7.80E+02 7.42E+02 6.61E+02 2.30E+02 2.77E+03 3.26E-04 

 std 0.00E+00 3.77E+02 2.91E+01 5.70E+02 3.59E-01 2.39E+02 1.75E+00 7.78E+01 7.35E+01 6.19E+01 2.30E+01 4.55E-13 1.05E-04 

Powell mean 1.19E-270 1.83E+03 2.73E+02 5.49E+03 1.14E+00 4.13E+03 1.56E+00 2.81E+03 1.61E+03 1.17E+03 3.59E+02 8.55E+03 3.42E-02 

 min 0.00E+00 1.83E+03 1.60E+02 4.13E+02 2.30E-01 2.93E+03 4.65E-02 2.81E+03 1.01E+03 7.15E+02 2.54E+02 8.55E+03 1.38E-02 

 max 3.57E-269 1.83E+03 3.98E+02 1.56E+04 2.49E+00 5.51E+03 7.89E+00 2.81E+03 2.15E+03 1.71E+03 5.21E+02 8.55E+03 5.50E-02 

 std 0.00E+00 0.00E+00 6.28E+01 4.00E+03 6.04E-01 9.25E+02 2.40E+00 0.00E+00 3.61E+02 3.00E+02 7.85E+01 6.06E-13 1.52E-02 

 
  Prop. PSO PSO MFO FA ALO DA CS ABC BA WOA PSOGSA GWO amixedGWO 

Ackley mean 8.88E-16 8.30E+00 1.40E+01 6.08E-03 1.90E+01 1.97E+01 9.56E-02 6.10E-06 1.86E+01 4.44E-15 1.34E+00 8.70E-15 8.88E-16 

 min 8.88E-16 3.93E+00 8.83E+00 5.07E-03 1.90E+01 1.97E+01 3.39E-05 6.10E-06 1.74E+01 4.44E-15 1.34E+00 7.99E-15 8.88E-16 

 max 8.88E-16 1.36E+01 1.80E+01 7.51E-03 1.90E+01 1.97E+01 9.51E-01 6.10E-06 1.98E+01 4.44E-15 1.34E+00 1.51E-14 8.88E-16 

 std 0.00E+00 2.06E+00 3.08E+00 8.74E-04 0.00E+00 3.74E-15 2.86E-01 0.00E+00 9.03E-01 0.00E+00 2.34E-16 2.25E-15 0.00E+00 

Dixon mean 2.49E-01 1.10E+00 6.72E+04 9.89E-01 1.56E+06 3.29E+04 6.67E-01 2.07E-03 1.25E+02 6.67E-01 6.67E-01 6.67E-01 6.67E-01 

 min 2.49E-01 6.67E-01 6.67E-01 6.67E-01 1.36E+06 3.29E+04 6.67E-01 2.07E-03 6.67E-01 6.67E-01 6.67E-01 6.67E-01 6.67E-01 

 max 2.49E-01 7.40E+00 5.98E+05 1.64E+00 1.58E+06 3.29E+04 6.67E-01 2.07E-03 9.16E+02 6.67E-01 6.67E-01 6.67E-01 6.67E-01 



 std 1.87E-04 1.32E+00 1.88E+05 3.60E-01 6.99E+04 7.67E-12 1.04E-04 4.57E-19 2.00E+02 1.17E-16 0.00E+00 8.69E-08 0.00E+00 

Griewank mean 0.00E+00 1.40E-01 9.07E+00 2.72E-03 6.22E+02 6.62E+00 1.40E-04 1.07E-09 5.76E+02 0.00E+00 9.03E+01 0.00E+00 0.00E+00 

 min 0.00E+00 8.21E-09 4.99E-12 1.96E-03 5.11E+02 6.62E+00 2.20E-08 1.07E-09 3.42E+02 0.00E+00 9.03E+01 0.00E+00 0.00E+00 

 max 0.00E+00 1.22E+00 9.02E+01 3.47E-03 6.35E+02 6.62E+00 2.34E-03 1.07E-09 6.87E+02 0.00E+00 9.03E+01 0.00E+00 0.00E+00 

 std 0.00E+00 2.24E-01 2.85E+01 5.14E-04 3.92E+01 1.87E-15 4.38E-04 0.00E+00 8.04E+01 0.00E+00 1.50E-14 0.00E+00 0.00E+00 

Rastrigin mean 0.00E+00 6.09E+01 1.47E+02 3.39E+01 4.24E+02 1.14E+02 5.70E+01 2.42E-07 1.95E+02 0.00E+00 7.86E+01 0.00E+00 2.77E+01 

 min 0.00E+00 3.58E+01 8.66E+01 1.59E+01 4.19E+02 1.14E+02 3.52E+01 2.42E-07 1.20E+02 0.00E+00 7.86E+01 0.00E+00 2.77E+01 

 max 0.00E+00 8.86E+01 2.28E+02 4.97E+01 4.61E+02 1.14E+02 7.26E+01 2.42E-07 2.72E+02 0.00E+00 7.86E+01 0.00E+00 2.77E+01 

 std 0.00E+00 1.33E+01 4.10E+01 1.22E+01 1.31E+01 1.50E-14 9.78E+00 0.00E+00 3.49E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Rothyp mean 0.00E+00 3.99E-01 1.61E+04 4.88E-02 4.10E+05 7.05E+03 2.63E-09 4.40E-16 2.78E+05 3.28E-313 1.88E-18 1.19E-122 3.93E-65 

 min 0.00E+00 2.05E-11 3.20E-13 2.50E-02 4.06E+05 7.05E+03 2.36E-10 4.40E-16 1.95E+05 3.28E-313 1.88E-18 2.76E-123 3.93E-65 

 max 0.00E+00 1.07E+01 8.87E+04 9.31E-02 4.50E+05 7.05E+03 5.98E-09 4.40E-16 3.41E+05 3.28E-313 1.88E-18 1.29E-122 3.93E-65 

 std 0.00E+00 1.95E+00 2.72E+04 2.07E-02 1.40E+04 0.00E+00 1.50E-09 5.20E-32 4.19E+04 0.00E+00 4.06E-34 3.20E-123 8.89E-81 

Rosenbrock mean 5.11E-04 1.06E+02 8.70E+04 2.81E+01 1.91E+06 3.41E+02 1.73E+01 2.11E+00 9.47E+01 2.61E+01 2.48E+01 2.62E+01 2.67E+01 

 min 1.73E-09 5.46E+00 4.22E+00 2.73E+01 1.86E+06 3.41E+02 1.86E-01 2.11E+00 2.29E+01 2.61E+01 2.48E+01 2.62E+01 2.67E+01 

 max 3.00E-03 1.00E+03 2.91E+05 2.92E+01 1.92E+06 3.41E+02 7.50E+01 2.11E+00 4.61E+02 2.61E+01 2.48E+01 2.62E+01 2.67E+01 

 std 7.76E-04 1.81E+02 8.28E+04 7.27E-01 1.74E+04 0.00E+00 1.76E+01 4.68E-16 9.69E+01 3.74E-15 3.74E-15 1.51E-02 3.74E-15 

Sphere mean 0.00E+00 2.06E-06 5.24E+00 3.39E-06 1.93E+02 1.90E+00 1.10E-12 6.88E-15 6.36E-54 2.59E-319 1.02E-19 2.62E-124 1.23E-69 

 min 0.00E+00 1.41E-17 6.34E-18 2.03E-06 1.71E+02 1.90E+00 9.09E-14 6.88E-15 4.24E-54 2.59E-319 1.02E-19 2.32E-127 1.23E-69 

 max 0.00E+00 2.91E-05 2.62E+01 4.93E-06 1.95E+02 1.90E+00 2.94E-12 6.88E-15 8.57E-54 2.59E-319 1.02E-19 2.91E-124 1.23E-69 

 std 0.00E+00 6.90E-06 1.11E+01 8.35E-07 7.63E+00 0.00E+00 7.88E-13 8.32E-31 1.19E-54 0.00E+00 1.27E-35 9.21E-125 2.71E-85 

Sumpow mean 0.00E+00 1.72E-84 3.82E-35 2.78E-08 9.04E-01 3.41E-06 4.18E-24 3.57E-17 2.74E-07 0.00E+00 6.43E-14 0.00E+00 8.35E-214 

 min 0.00E+00 2.79E-113 1.12E-42 1.46E-08 8.60E-01 3.41E-06 3.17E-34 3.57E-17 8.85E-08 0.00E+00 6.43E-14 0.00E+00 8.35E-214 

 max 0.00E+00 5.10E-83 2.47E-34 5.26E-08 1.30E+00 3.41E-06 1.24E-22 3.57E-17 5.53E-07 0.00E+00 6.43E-14 0.00E+00 8.35E-214 

 std 0.00E+00 9.31E-84 7.99E-35 1.17E-08 1.39E-01 4.46E-22 2.26E-23 0.00E+00 9.42E-08 0.00E+00 1.33E-29 0.00E+00 0.00E+00 

Zakharov mean 0.00E+00 1.40E+02 2.38E+02 3.13E+01 7.45E+02 3.25E+02 7.12E+01 8.04E-08 4.52E+02 0.00E+00 1.32E+02 5.12E-14 4.86E+00 

 min 0.00E+00 9.55E+01 1.64E+02 1.99E+01 6.97E+02 3.25E+02 5.64E+01 8.04E-08 2.23E+02 0.00E+00 1.32E+02 0.00E+00 4.86E+00 

 max 0.00E+00 1.86E+02 2.85E+02 6.47E+01 7.50E+02 3.25E+02 8.96E+01 8.04E-08 6.17E+02 0.00E+00 1.32E+02 5.68E-14 4.86E+00 

 std 0.00E+00 2.84E+01 4.28E+01 1.34E+01 1.67E+01 5.99E-14 8.76E+00 0.00E+00 9.53E+01 0.00E+00 3.00E-14 1.80E-14 0.00E+00 

Sumsqu mean 0.00E+00 4.21E-05 9.70E+01 9.63E-03 2.62E+03 9.93E+00 1.77E-11 3.99E-12 7.60E-52 1.08E-321 3.43E-18 2.72E-125 1.32E-67 

 min 0.00E+00 3.09E-15 1.02E-15 2.59E-04 2.60E+03 9.93E+00 4.61E-12 3.99E-12 3.93E-52 1.08E-321 3.43E-18 2.47E-125 1.32E-67 

 max 0.00E+00 5.84E-04 3.15E+02 6.00E-02 2.75E+03 9.93E+00 5.73E-11 3.99E-12 1.24E-51 1.08E-321 3.43E-18 2.74E-125 1.32E-67 

 std 0.00E+00 1.19E-04 1.03E+02 1.83E-02 4.63E+01 1.87E-15 1.36E-11 8.51E-28 2.27E-52 0.00E+00 4.06E-34 8.58E-127 1.74E-83 

Powell mean 1.19E-270 1.47E-01 6.37E+02 2.42E-01 1.03E+04 2.04E+01 1.08E-03 1.18E-02 2.16E-01 3.61E-27 1.78E-04 2.17E-08 4.70E-05 

 min 0.00E+00 2.04E-03 2.23E-03 1.12E-01 1.03E+04 2.04E+01 1.48E-04 1.18E-02 3.23E-02 3.61E-27 1.78E-04 1.44E-08 4.70E-05 

 max 3.57E-269 2.27E+00 3.57E+03 4.19E-01 1.08E+04 2.04E+01 5.06E-03 1.18E-02 8.14E-01 3.61E-27 1.78E-04 8.68E-08 4.70E-05 

 std 0.00E+00 4.31E-01 1.14E+03 1.01E-01 1.53E+02 3.74E-15 9.92E-04 0.00E+00 2.07E-01 0.00E+00 0.00E+00 2.29E-08 7.14E-21 

 

To further ascertain the results, the Wilcoxon rank sum test is conducted. Table 19 depicts the detailed 

statistical results. Since nearly all the p-values are lower than 0.05, the proposed model is statistically better 

than all baseline methods in nearly all the test cases. The exceptions are for Ackley and Dixon-Price, where 

ALPSO and ABC outperform the proposed model statistically. The proposed model and amixedGWO also 

show similar result distributions for Ackley. In addition, since the proposed model and some of the baseline 

methods, i.e. ALPSO, WOA, GWO and amixedGWO, achieve the global optimal solution (i.e. 0) for several 

test functions such as Griewank (ALPSO, WOA, GWO, and amixedGWO), Rastrigin (WOA and GWO), 

Sum of Different Powers (WOA and GWO) and Zakharov (WOA), our results achieve similar distributions 

to those of these methods in the respective test cases. 

 

Table 19 The Wilcoxon rank sum test results for the test functions    

 
 PSOVA SPSO MPSO ALPSO GPSO DNLPSO ELPSO CLFA CGFA VSSFA MFA NaFA 

Ackley 1.13E-11 1.21E-12 1.21E-12 1.69E-14 1.13E-11 1.13E-11 1.13E-11 1.13E-11 1.13E-11 1.13E-11 3.92E-12 1.13E-11 

Dixon 3.12E-12 3.02E-11 3.02E-11 3.02E-11 3.13E-12 3.13E-12 3.13E-12 3.13E-12 3.12E-12 3.13E-12 1.07E-12 3.13E-12 

Griewank 1.20E-12 1.21E-12 1.21E-12 1.00E+00 1.19E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 3.37E-13 1.20E-12 

Rastrigin 1.20E-12 1.21E-12 1.21E-12 1.21E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 2.01E-13 1.20E-12 

Rothyp 1.20E-12 2.37E-12 2.37E-12 2.37E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 3.50E-13 1.20E-12 

Rosenbrock 3.00E-11 3.02E-11 3.02E-11 3.02E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 1.17E-11 3.00E-11 

Sphere 1.20E-12 2.37E-12 2.37E-12 1.20E-12 1.19E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 3.50E-13 1.20E-12 

Sumpow 3.12E-12 1.21E-12 1.21E-12 3.12E-12 3.14E-12 3.14E-12 3.14E-12 3.13E-12 3.14E-12 3.13E-12 2.10E-12 3.14E-12 

Zakharov 1.20E-12 1.21E-12 1.21E-12 1.21E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 7.67E-13 1.20E-12 

Sumsqu 1.20E-12 1.72E-12 1.72E-12 1.72E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 1.20E-12 3.50E-13 1.20E-12 

Powell 1.71E-12 1.72E-12 1.72E-12 1.72E-12 1.71E-12 1.70E-12 1.70E-12 1.71E-12 1.71E-12 1.70E-12 4.29E-14 1.70E-12 

 
 PSO MFO FA ALO DA CS ABC BA WOA PSOGSA GWO amixedGWO 

Ackley 1.21E-12 1.12E-11 1.07E-11 3.92E-12 3.92E-12 1.21E-12 3.92E-12 1.21E-12 3.92E-12 3.92E-12 5.28E-12 1.00E+00 

Dixon 3.02E-11 3.12E-12 3.13E-12 1.34E-12 9.62E-13 3.02E-11 5.28E-12 3.02E-11 5.28E-12 5.28E-12 7.06E-12 5.28E-12 

Griewank 1.21E-12 1.20E-12 1.20E-12 4.82E-13 3.37E-13 1.21E-12 3.37E-13 1.21E-12 1.00E+00 3.37E-13 1.00E+00 1.00E+00 

Rastrigin 1.21E-12 1.20E-12 1.20E-12 4.82E-13 3.37E-13 1.21E-12 3.37E-13 1.21E-12 1.00E+00 3.37E-13 1.00E+00 3.37E-13 

Rothyp 1.21E-12 1.14E-12 1.20E-12 4.81E-13 3.37E-13 1.72E-12 3.37E-13 2.37E-12 1.69E-14 3.37E-13 4.82E-13 3.37E-13 

Rosenbrock 3.02E-11 3.00E-11 3.00E-11 1.49E-11 1.14E-11 3.02E-11 1.14E-11 3.02E-11 1.14E-11 1.14E-11 1.49E-11 1.14E-11 

Sphere 1.72E-12 1.17E-12 1.20E-12 4.82E-13 3.37E-13 1.72E-12 3.37E-13 3.16E-12 1.69E-14 3.37E-13 4.82E-13 3.37E-13 

Sumpow 1.21E-12 3.14E-12 3.14E-12 1.35E-12 9.65E-13 2.37E-12 9.65E-13 2.37E-12 1.00E+00 9.65E-13 1.00E+00 2.75E-11 

Zakharov 1.21E-12 1.20E-12 1.20E-12 6.13E-14 3.37E-13 1.21E-12 3.37E-13 1.21E-12 1.00E+00 3.37E-13 2.53E-11 3.37E-13 

Sumsqu 1.21E-12 1.19E-12 1.20E-12 4.82E-13 3.37E-13 1.21E-12 3.37E-13 1.72E-12 1.69E-14 1.69E-14 4.82E-13 3.37E-13 

Powell 1.72E-12 1.71E-12 1.71E-12 2.71E-14 4.95E-13 1.72E-12 8.84E-13 1.21E-12 8.84E-13 8.84E-13 1.26E-12 8.84E-13 

 



 

 
 

Figure 9 Convergence curves of the Rotated Hyper-Ellipsoid function over a set of 30 runs (Top row – 200 

iterations, bottom row – 2000 iterations) 

 

Figure 9 illustrates the convergence curves for both 200 (top row) and 2000 (bottom row) iterations 

pertaining to the Rotated Hyper-Ellipsoid function over a set of 30 runs. The proposed model depicts 

significantly faster convergence rates in comparison with those of the PSO variants and other search 

methods. It is able to achieve global minimum solution, i.e. 0, with a comparatively smaller number of 

iterations. As indicated in Figure 9 (top row), among the baseline methods, amixedGWO, GWO, WOA and 

PSO illustrate drastically faster convergence rates at the beginning of the search process, which are followed 

by those of PSOGSA, CS and ABC. In addition, ELPSO, PSOVA, NaFA and DNLPSO show faster 

convergence rates among the PSO and FA variants. Moreover, as indicated in Figure 9 (bottom row), as the 

iteration escalates, DA, MFO, FA, VSSFA, SPSO and ALPSO produce significant improvements. 

 

 
 



 
 
Figure 10 Convergence curves of the Powell function over a set of 30 runs (Top row – 200 iterations, bottom 

row – 2000 iterations) 

 

In addition, the convergence curves of all search methods for both 200 (top row) and 2000 (bottom row) 

iterations pertaining to the multimodal function, i.e., Powell, over a set of 30 runs, are provided in Figure 10. 

Again, the proposed model yields the fastest convergence rates in comparison with those of all baseline 

methods throughout the search process. As indicated in Figure 10 (top row), among the baseline methods, 

WOA, GWO, amixedGWO, PSOGSA and PSO produce faster convergence speeds. This is followed by ABC 

and BA. NaFA and ALPSO show better convergence rates in comparison with those of other PSO and FA 

variants. As the search progresses, as shown in Figure 10 (bottom row), CS, FA, DA, DNLPSO, SPSO and 

VSSFA converge faster and produce significantly enhanced performances.  

 

      
 

     
Figure 11 Convergence curves of the Powell function in the log scale over a set of 30 runs (Top row – 2000 

iterations, bottom row – the last 100 iterations) 



To further determine efficiency of the proposed PSO algorithm, we convert the convergence curves of the 

Powell function to the log scale with a base of 10. As illustrated in Figure 11, the top row shows the 

convergence curves for the overall 2000 iterations and the bottom row illustrates the last 100 iterations. The 

plots in Figure 11 depict a significantly faster convergence speed against those of all compared methods, 

therefore further ascertaining efficiency of the proposed algorithm. WOA and GWO show the fastest 

convergence rates among the baseline methods, while NaFA and ALPSO converge comparatively faster in 

comparison with those of other PSO and FA variants.  

 

Moreover, the empirical results indicate that convergence curves of the proposed model for other test 

functions show similar characteristics and depict the fastest convergence rates in most test cases. 

 

5.5 Evaluation Using Other Benchmark Functions 
To further test model efficiency, we employ another suite of benchmark test functions widely adopted in 

existing studies [22, 65, 75-77] for performance comparison. It includes seven unimodal (𝐹1-𝐹7) and six 

multimodal ( 𝐹8 - 𝐹13)  functions, as defined in Tables 20-21, respectively. These benchmark functions 

represent a variety of challenging mathematical artificial landscapes with varied difficulties. 

 

Table 20 Unimodal benchmark functions used in existing studies [22, 65, 75-77] 

 

Function Dimension Range 𝒇𝒎𝒊𝒏 

𝑭𝟏(𝒙) =  ∑ 𝒙𝒊
𝟐

𝒏

𝒊=𝟏

 
30 [-100, 100] 0 

𝑭𝟐(𝒙) = ∑ |𝒙𝒊|

𝒏

𝒊=𝟏

+ ∏ |𝒙𝒊|

𝒏

𝒊=𝟏

 
30 [-10, 10] 0 

𝑭𝟑(𝒙) =  ∑(∑ 𝒙𝒋

𝒊

𝒋=𝟏

)𝟐

𝒏

𝒊=𝟏

 

30 [-100, 100] 0 

𝑭𝟒(𝒙) = 𝒎𝒂𝒙
𝒊

{|𝒙𝒊|, 𝟏 ≤ 𝒊 ≤ 𝒏}   

 

30 [-100, 100] 0 

𝑭𝟓(𝒙) =  ∑ [𝟏𝟎𝟎 (𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)𝟐𝒏−𝟏

𝒊=𝟏  + (𝒙𝒊 − 𝟏)𝟐] 
 

30 [-30, 30] 0 

𝑭𝟔(𝒙) =  ∑([𝒙𝒊 + 𝟎. 𝟓])𝟐

𝒏

𝒊=𝟏

 
30 [-100, 100] 0 

𝑭𝟕(𝒙) =  ∑ 𝒊𝒙𝒊
𝟒

𝒏

𝒊=𝟏

+ 𝒓𝒂𝒏𝒅𝒐𝒎[𝟎, 𝟏) 
30  [-1.28, 1.28] 0 

 

Table 21 Multimodal benchmark functions used in existing studies [22, 65, 75-77] 

 

Function Dimension Range 𝒇𝒎𝒊𝒏 

𝑭𝟖(𝒙) =  ∑ −𝒙𝒊𝒔𝒊𝒏 (√|𝒙𝒊|
𝒏
𝒊=𝟏  ) 30 [-500, 500] −418.9829 × 𝐷𝑖𝑚 

𝑭𝟗(𝒙) =  ∑[𝒙𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

𝒏

𝒊=𝟏

 

 

30 [-5.12, 5.12] 0 

𝑭𝟏𝟎(𝒙) =  −𝟐𝟎 𝒆𝒙𝒑 (−𝟎. 𝟐√
𝟏

𝒏
∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

)

− 𝒆𝒙𝒑 (
𝟏

𝒏
∑ 𝐜𝐨𝐬(𝟐𝝅𝒙𝐢)

𝒏

𝒊=𝟏

) + 𝟐𝟎 + 𝒆 

30 [-32, 32] 0 

𝑭𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

 − ∏ 𝒄𝒐𝒔 (
𝒙𝒊

√𝒊
)

𝒏

𝒊=𝟏

+ 𝟏 
30 [-600, 600] 0 

𝑭𝟏𝟐(𝒙) =
𝝅

𝒏
{𝟏𝟎𝒔𝒊𝒏(𝝅𝒚

𝟏)

+ ∑(𝒚
𝒊

− 𝟏)
𝟐

[𝟏 + 𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒚
𝒊+𝟏)

𝒏−𝟏

𝒊=𝟏

]

+ (𝒚
𝒏

− 𝟏)
𝟐

} + ∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)

𝒏

𝒊=𝟏

 

𝒚𝒊 = 𝟏 +
𝒙𝒊 + 𝟏

𝟒
 

30 [-50, 50] 0 



𝒖(𝒙𝒊, 𝒂, 𝒌, 𝒎) = {

𝒌(𝒙𝒊 − 𝒂)𝒎            𝒙𝒊 > 𝒂
𝟎                   − 𝒂 < 𝒙𝒊 < 𝒂
𝒌(−𝒙𝒊 − 𝒂)𝒎        𝒙𝒊 < −𝒂

 

𝑭𝟏𝟑(𝒙) = 𝟎. 𝟏{𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝟏)

+ ∑(𝒙𝒊 − 𝟏)𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝒊 + 𝟏)

𝒏

𝒊=𝟏

]

+ (𝒙𝒏 − 𝟏)𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟐𝝅𝒙𝒏)]}

+  ∑ 𝒖(𝒙𝒊, 𝟓, 𝟏𝟎𝟎, 𝟒)

𝒏

𝒊=𝟏

 

 

30 [-50, 50] 0 

 

Owing to complexities of the test functions and model convergence rates, a comparatively larger 

experimental setting is used, i.e. maximum number of function evaluations=population (30) × iterations 

(3000), with dimension=30. All the search methods terminate when the maximum number of function 

evaluations is reached. The aforementioned 24 baseline search methods are employed for performance 

comparison. A set of 30 trials is conducted for each search method to eliminate bias and facilitate a statistical 

hypothesis test in performance comparison. Table 22 illustrates the detailed evaluation results. As shown in 

Table 22, the proposed PSO algorithm outperforms classical search methods and advanced PSO and FA 

variants in most test cases. The exceptions are 𝐹7 and 𝐹10, where ALPSO outperforms the proposed model, as 

well as 𝐹6 , 𝐹12  and 𝐹13 , where MFO, ABC and PSOGSA obtain the best results, respectively. ABC and 

PSOGSA also show better performances for 𝐹6. Moreover, WOA, GWO and amixedGWO also illustrate 

impressive performances among the baseline methods. As an example, the proposed model, GWO and WOA 

achieve the global minimum solution (i.e. 0) for multimodal functions of 𝐹9 and 𝐹11. ABC also attains global 

optimum solution for 𝐹9. Besides the above, the proposed model and WOA obtain the best minimum solution 

for 𝐹1, while the proposed model and ALPSO attain the global optimum solution for 𝐹11.  

 

Table 23 shows the statistical test results for all test functions over a set of 30 runs. Since most of the p-

values are lower than 0.05, they indicate that the proposed model outperforms baseline methods statistically 

in most test cases. The exceptions are as follows. ALPSO outperforms the proposed model statistically for 𝐹7 

and 𝐹10. MFO, ABC and PSOGSA show statistical better results than those of the proposed model for 𝐹6, 

while ABC and PSOGSA obtain significantly better result distributions for 𝐹13. In addition, ABC achieves 

statistically better results for 𝐹12. Moreover, our model and some baseline methods, i.e. ALPSO, ABC, WOA, 

GWO and amixedGWO, achieve the global optimum solution (i.e. 0) or the same results for several test 

functions such as 𝐹1 (WOA), 𝐹9 (ABC, WOA and GWO), 𝐹10 (amixedGWO) and 𝐹11 (ALPSO, WOA and 

GWO), similar distributions are produced by the proposed model and these baseline methods in such test 

cases. In short, for all test functions 𝐹1-𝐹13, the proposed model shows statistically significant superiority 

over all baseline methods in most test cases. 

 

Table 22 Evaluation results for the benchmark functions 𝐹1-𝐹13 with dimension=30 over a set of 30 runs 

 
  Prop. PSO PSOVA SPSO MPSO ALPSO GPSO DNLPSO ELPSO CLFA CGFA VSSFA MFA NaFA 

𝐹1 mean 0.00E+00 7.65E+03 5.06E+03 1.95E+04 1.92E+04 4.19E+04 1.00E+00 1.93E+04 1.53E+04 1.48E+04 5.92E+03 6.75E+04 7.76E-04 

 min 0.00E+00 6.47E+03 3.77E+03 2.26E+03 1.05E+04 4.18E+04 5.54E-02 1.47E+04 1.52E+04 1.48E+04 5.13E+03 6.75E+04 5.25E-04 

 max 0.00E+00 1.82E+04 5.88E+03 6.16E+04 2.71E+04 4.26E+04 9.55E+00 1.98E+04 1.65E+04 1.55E+04 6.01E+03 6.75E+04 8.04E-04 

 std 0.00E+00 3.71E+03 7.82E+02 1.95E+04 4.66E+03 2.40E+02 3.00E+00 1.63E+03 4.11E+02 2.40E+02 2.78E+02 1.53E-11 8.82E-05 

𝐹2 mean 1.30E-322 1.12E+02 3.08E+01 9.08E+01 7.40E+00 5.47E+05 2.19E-01 5.33E+01 6.59E+01 6.00E+01 2.78E+01 1.52E+14 1.05E-02 

 min 1.20E-322 7.31E+01 2.88E+01 3.79E+01 0.00E+00 1.49E+05 1.66E-01 4.82E+01 6.35E+01 5.91E+01 2.70E+01 1.52E+14 1.04E-02 

 max 2.37E-322 1.16E+02 3.34E+01 1.47E+02 1.89E+01 4.13E+06 6.94E-01 5.39E+01 8.72E+01 6.74E+01 3.50E+01 1.52E+14 1.07E-02 

 std 0.00E+00 1.37E+01 1.74E+00 3.08E+01 8.10E+00 1.26E+06 1.67E-01 1.79E+00 7.47E+00 2.60E+00 2.56E+00 2.31E-01 9.25E-05 

𝐹3 mean 0.00E+00 6.70E+04 1.05E+04 7.93E+04 1.80E+04 7.39E+04 6.78E+02 5.23E+04 2.28E+04 2.37E+04 1.53E+04 2.22E+05 7.40E-03 

 min 0.00E+00 6.70E+04 7.27E+03 5.27E+04 1.10E+04 7.39E+04 7.38E+00 5.23E+04 2.25E+04 2.37E+04 1.31E+04 2.22E+05 7.40E-03 

 max 0.00E+00 6.70E+04 1.51E+04 1.54E+05 2.34E+04 7.39E+04 7.52E+02 5.23E+04 2.54E+04 2.37E+04 1.56E+04 2.22E+05 7.40E-03 

 std 0.00E+00 1.53E-11 2.35E+03 3.07E+04 3.73E+03 1.53E-11 2.36E+02 7.67E-12 9.18E+02 0.00E+00 8.04E+02 0.00E+00 1.83E-18 

𝐹4 mean 2.00E-323 7.18E+01 2.89E+01 4.51E+01 5.36E-296 8.42E+01 3.12E-01 5.11E+01 7.89E+01 5.01E+01 2.47E+01 8.38E+01 1.29E-02 

 min 1.00E-323 7.17E+01 2.71E+01 3.75E+01 0.00E+00 7.73E+01 1.21E-01 5.04E+01 6.94E+01 4.39E+01 2.43E+01 8.38E+01 1.25E-02 

 max 2.00E-323 7.32E+01 3.10E+01 5.65E+01 5.36E-295 8.49E+01 2.03E+00 5.75E+01 8.00E+01 5.08E+01 2.81E+01 8.38E+01 1.61E-02 

 std 0.00E+00 4.89E-01 1.20E+00 5.78E+00 0.00E+00 2.41E+00 6.03E-01 2.23E+00 3.35E+00 2.19E+00 1.19E+00 0.00E+00 1.13E-03 

𝐹5 mean 7.37E-04 7.29E+07 1.77E+06 7.33E+07 1.17E+02 9.74E+07 4.34E+02 2.90E+07 1.53E+07 1.75E+07 1.97E+06 2.19E+08 2.83E+01 

 min 1.47E-08 1.29E+07 1.37E+06 1.10E+06 4.89E+00 6.10E+07 4.24E+02 1.82E+07 1.52E+07 1.67E+07 1.75E+06 2.19E+08 2.64E+01 

 max 8.18E-04 7.95E+07 2.68E+06 1.61E+08 2.09E+02 1.01E+08 5.23E+02 3.02E+07 1.66E+07 1.76E+07 1.99E+06 2.19E+08 2.85E+01 

 std 2.59E-04 2.11E+07 3.68E+05 5.87E+07 6.35E+01 1.28E+07 3.14E+01 3.79E+06 4.57E+05 2.66E+05 7.58E+04 0.00E+00 6.71E-01 

𝐹6 mean 6.28E-06 2.86E+04 4.94E+03 2.67E+04 1.79E+04 2.00E+04 3.79E+03 1.64E+03 1.86E+04 1.57E+04 5.32E+03 6.79E+04 6.14E-04 

 min 7.69E-08 1.93E+04 3.58E+03 1.22E+04 1.17E+04 1.92E+04 3.78E-03 2.30E+02 1.69E+04 1.56E+04 5.31E+03 6.79E+04 5.98E-04 

 max 1.98E-05 2.97E+04 6.31E+03 4.31E+04 2.36E+04 2.64E+04 4.21E+03 1.43E+04 1.87E+04 1.65E+04 5.43E+03 6.79E+04 7.54E-04 

 std 6.86E-06 3.27E+03 9.33E+02 9.50E+03 3.54E+03 2.27E+03 1.33E+03 4.45E+03 5.82E+02 2.75E+02 3.83E+01 1.53E-11 4.92E-05 

𝐹7 mean 9.08E-06 8.69E+00 1.04E+00 1.98E+01 0.00E+00 6.43E+01 9.28E-03 1.38E+01 5.41E+00 7.95E+00 1.60E+00 1.18E+02 2.53E-02 

 min 8.45E-06 7.48E+00 7.00E-01 6.93E-01 0.00E+00 3.28E+01 7.57E-03 1.37E+01 5.28E+00 6.59E+00 1.06E+00 1.18E+02 1.59E-02 



 max 1.47E-05 1.95E+01 1.47E+00 6.86E+01 0.00E+00 6.78E+01 9.47E-03 1.46E+01 6.60E+00 8.10E+00 1.66E+00 1.18E+02 1.10E-01 

 std 1.99E-06 3.81E+00 2.05E-01 1.98E+01 0.00E+00 1.11E+01 6.00E-04 2.83E-01 4.19E-01 4.78E-01 1.91E-01 7.72E-03 2.97E-02 

𝐹8 mean -6.48E+09 -5.73E+03 -7.66E+03 -5.35E+03 -5.57E+03 -6.53E+03 -2.17E+04 -4.71E+03 -3.99E+03 -3.80E+03 -3.79E+03 -1.59E+03 -7.20E+03 

 min -6.47E+10 -6.73E+03 -8.46E+03 -6.00E+03 -6.36E+03 -6.72E+03 -2.32E+04 -4.78E+03 -4.04E+03 -3.95E+03 -3.81E+03 -1.59E+03 -7.40E+03 

 max -1.11E+04 -5.62E+03 -6.76E+03 -4.20E+03 -4.78E+03 -6.51E+03 -2.16E+04 -4.15E+03 -3.98E+03 -3.78E+03 -3.62E+03 -1.59E+03 -5.46E+03 

 std 2.05E+10 3.49E+02 6.11E+02 5.94E+02 4.98E+02 6.64E+01 5.08E+02 1.99E+02 1.69E+01 5.43E+01 6.08E+01 2.40E-13 6.13E+02 

𝐹9 mean 0.00E+00 2.63E+02 2.18E+02 3.15E+02 1.88E+02 2.91E+02 5.00E+01 2.43E+02 2.43E+02 2.48E+02 2.23E+02 4.29E+02 4.58E+01 

 min 0.00E+00 2.63E+02 2.18E+02 3.15E+02 1.59E+02 2.91E+02 5.00E+01 2.43E+02 2.43E+02 2.48E+02 2.23E+02 4.29E+02 4.58E+01 

 max 0.00E+00 2.63E+02 2.18E+02 3.15E+02 2.26E+02 2.91E+02 5.00E+01 2.43E+02 2.43E+02 2.48E+02 2.23E+02 4.29E+02 4.58E+01 

 std 0.00E+00 5.99E-14 3.00E-14 5.99E-14 2.00E+01 5.99E-14 7.49E-15 0.00E+00 3.00E-14 0.00E+00 5.99E-14 5.99E-14 7.49E-15 

𝐹10 mean 8.88E-16 2.01E+01 1.29E+01 1.75E+01 0.00E+00 1.94E+01 1.98E-01 1.69E+01 1.62E+01 1.65E+01 1.32E+01 2.06E+01 6.43E-03 

 min 8.88E-16 1.90E+01 1.21E+01 9.90E+00 0.00E+00 1.94E+01 1.20E-01 1.64E+01 1.61E+01 1.65E+01 1.31E+01 2.06E+01 6.41E-03 

 max 8.88E-16 2.02E+01 1.40E+01 2.01E+01 0.00E+00 1.99E+01 2.07E-01 1.70E+01 1.72E+01 1.72E+01 1.32E+01 2.06E+01 6.43E-03 

 std 0.00E+00 3.78E-01 6.56E-01 4.01E+00 0.00E+00 1.77E-01 2.76E-02 1.73E-01 3.33E-01 2.20E-01 2.31E-02 0.00E+00 9.27E-06 

𝐹11 mean 0.00E+00 8.52E+01 4.84E+01 1.90E+02 0.00E+00 3.03E+02 1.34E-01 1.82E+02 1.40E+02 1.49E+02 4.36E+01 6.08E+02 1.14E-03 

 min 0.00E+00 7.39E+01 3.39E+01 3.24E+01 0.00E+00 2.61E+02 7.34E-02 1.37E+02 1.36E+02 1.40E+02 4.23E+01 6.08E+02 1.12E-03 

 max 0.00E+00 1.87E+02 5.91E+01 3.06E+02 0.00E+00 3.08E+02 6.80E-01 1.87E+02 1.70E+02 1.50E+02 5.58E+01 6.08E+02 1.33E-03 

 std 0.00E+00 3.58E+01 6.54E+00 1.05E+02 0.00E+00 1.49E+01 1.92E-01 1.59E+01 1.06E+01 3.31E+00 4.27E+00 1.20E-13 6.72E-05 

𝐹12 mean 5.46E-07 4.34E+07 4.22E+04 1.03E+08 9.32E+03 1.11E+08 1.54E-01 3.52E+07 1.38E+07 9.41E+06 1.30E+04 4.25E+08 1.65E-06 

 min 3.81E-10 3.90E+07 1.46E+03 4.45E+03 0.00E+00 7.18E+07 2.31E-04 3.37E+07 1.04E+07 9.14E+06 8.44E+03 4.25E+08 1.25E-06 

 max 1.87E-06 8.35E+07 1.63E+05 5.12E+08 9.32E+04 1.15E+08 1.53E+00 3.53E+07 1.42E+07 1.18E+07 1.35E+04 4.25E+08 1.69E-06 

 std 5.66E-07 1.41E+07 5.06E+04 1.79E+08 2.95E+04 1.37E+07 4.85E-01 5.16E+05 1.18E+06 8.42E+05 1.59E+03 0.00E+00 1.40E-07 

𝐹13 mean 1.44E-06 3.68E+07 2.24E+06 2.47E+08 3.12E+05 4.85E+08 1.14E+04 6.41E+07 6.17E+07 3.78E+07 1.51E+06 9.10E+08 2.91E-05 

 min 1.51E-07 3.25E+07 7.97E+05 5.45E+05 0.00E+00 4.13E+08 2.58E+00 5.51E+07 6.04E+07 3.70E+07 1.17E+06 9.10E+08 2.83E-05 

 max 1.58E-06 3.73E+07 4.76E+06 8.23E+08 8.72E+05 4.93E+08 1.14E+05 1.45E+08 7.31E+07 3.79E+07 1.55E+06 9.10E+08 3.64E-05 

 std 4.52E-07 1.51E+06 1.14E+06 3.46E+08 2.77E+05 2.53E+07 3.60E+04 2.86E+07 4.02E+06 2.76E+05 1.18E+05 1.19E-07 2.57E-06 

 

 
  Prop. PSO PSO MFO FA ALO DA CS ABC BA WOA PSOGSA GWO amixedGWO 

𝐹1 mean 0.00E+00 3.15E-01 2.12E-21 9.59E-04 6.96E+04 5.68E+02 1.08E-06 9.19E-16 5.49E+04 0.00E+00 1.52E-19 6.24E-185 3.23E-100 

 min 0.00E+00 2.30E-01 2.10E-22 9.59E-04 5.50E+04 1.07E+02 3.56E-07 9.19E-16 4.77E+04 0.00E+00 1.52E-19 9.04E-190 4.19E-102 

 max 0.00E+00 1.08E+00 2.33E-21 9.59E-04 7.69E+04 1.83E+03 3.85E-06 9.19E-16 6.16E+04 0.00E+00 1.52E-19 5.63E-184 1.54E-99 

 std 0.00E+00 2.68E-01 6.70E-22 2.29E-19 6.51E+03 5.40E+02 7.22E-07 0.00E+00 4.67E+03 0.00E+00 2.54E-35 0.00E+00 6.34E-100 

𝐹2 mean 1.30E-322 7.52E+00 5.60E+01 1.98E-02 2.62E+12 1.61E+01 7.15E-03 1.38E-10 1.23E+02 6.48E-317 1.49E-09 8.22E-107 6.33E-56 

 min 1.20E-322 3.66E+00 2.00E+01 1.98E-02 3.51E+06 0.00E+00 2.26E-03 1.38E-10 9.76E+01 4.7E-322 1.49E-09 2.92E-108 1.24E-57 

 max 2.37E-322 7.95E+00 6.00E+01 1.98E-02 7.54E+12 4.07E+01 1.89E-02 1.38E-10 1.48E+02 6.48E-316 1.49E-09 2.59E-106 1.46E-55 

 std 0.00E+00 1.35E+00 1.26E+01 0.00E+00 2.92E+12 1.33E+01 3.93E-03 2.72E-26 1.92E+01 0.00E+00 2.18E-25 7.47E-107 4.67E-56 

𝐹3 mean 0.00E+00 8.04E+02 1.50E+04 3.71E-01 2.14E+05 1.65E+04 1.23E+00 4.33E+03 8.93E+04 2.58E+02 1.50E+04 3.35E-61 1.27E-28 

 min 0.00E+00 8.04E+02 1.50E+04 3.71E-01 1.44E+05 1.65E+04 1.23E+00 4.33E+03 8.93E+04 2.58E+02 1.50E+04 3.35E-61 6.48E-41 

 max 0.00E+00 8.04E+02 1.50E+04 3.71E-01 2.21E+05 1.65E+04 1.23E+00 4.33E+03 8.93E+04 2.58E+02 1.50E+04 3.35E-61 8.49E-28 

 std 0.00E+00 0.00E+00 1.92E-12 5.85E-17 2.46E+04 3.83E-12 2.34E-16 9.59E-13 0.00E+00 0.00E+00 1.92E-12 0.00E+00 2.86E-28 

𝐹4 mean 2.00E-323 1.73E+01 6.58E+01 3.87E-02 8.93E+01 1.12E+01 3.44E+00 1.02E+01 7.81E+01 2.26E+01 1.43E+01 2.19E-45 2.22E-10 

 min 1.00E-323 6.62E+00 5.96E+01 3.87E-02 8.56E+01 1.34E-01 1.03E+00 1.02E+01 6.82E+01 7.92E-02 1.43E+01 1.13E-47 2.34E-11 

 max 2.00E-323 1.85E+01 6.65E+01 3.87E-02 9.23E+01 2.26E+01 5.38E+00 1.02E+01 8.24E+01 7.58E+01 1.43E+01 1.22E-44 7.31E-10 

 std 0.00E+00 3.76E+00 2.19E+00 7.31E-18 1.94E+00 7.40E+00 1.15E+00 0.00E+00 4.43E+00 2.21E+01 3.74E-15 3.91E-45 2.68E-10 

𝐹5 mean 7.37E-04 5.58E+01 6.79E+01 2.92E+01 2.69E+08 5.40E+04 3.31E+01 1.73E-02 3.49E+07 2.58E+01 2.42E+01 2.62E+01 2.67E+01 

 min 1.47E-08 2.89E+01 2.82E+01 2.92E+01 1.62E+08 3.63E+02 2.00E+01 1.73E-02 1.83E+07 2.54E+01 2.42E+01 2.52E+01 2.52E+01 

 max 8.18E-04 2.98E+02 7.23E+01 2.92E+01 3.23E+08 1.55E+05 8.40E+01 1.73E-02 4.56E+07 2.62E+01 2.42E+01 2.72E+01 2.88E+01 

 std 2.59E-04 8.52E+01 1.39E+01 0.00E+00 4.92E+07 5.02E+04 1.97E+01 3.66E-18 9.13E+06 1.95E-01 3.74E-15 7.58E-01 1.09E+00 

𝐹6 mean 6.28E-06 3.49E-05 1.97E-22 6.54E-04 6.81E+04 5.45E+02 9.32E-06 7.18E-16 5.16E+04 6.68E-04 1.08E-19 5.26E-01 1.83E+00 

 min 7.69E-08 4.26E-13 1.08E-23 6.54E-04 5.10E+04 1.55E+02 9.22E-06 7.18E-16 3.22E+04 4.45E-04 1.08E-19 2.32E-06 1.01E+00 

 max 1.98E-05 3.46E-04 2.18E-22 6.54E-04 7.60E+04 1.00E+03 1.02E-05 7.18E-16 5.78E+04 9.15E-04 1.08E-19 1.24E+00 2.65E+00 

 std 6.86E-06 1.09E-04 6.55E-23 1.14E-19 7.79E+03 2.96E+02 3.07E-07 0.00E+00 7.25E+03 1.93E-04 0.00E+00 3.61E-01 5.11E-01 

𝐹7 mean 9.08E-06 6.38E-01 8.04E-02 3.22E-02 1.24E+02 1.82E-01 3.88E-02 3.46E-02 1.18E-01 9.38E-04 1.76E-02 2.28E-04 9.89E-04 

 min 8.45E-06 5.39E-01 4.20E-02 3.22E-02 9.48E+01 1.42E-02 1.64E-02 3.46E-02 7.12E-02 7.99E-06 1.76E-02 6.03E-05 4.94E-04 

 max 1.47E-05 6.49E-01 8.46E-02 3.22E-02 1.59E+02 4.79E-01 1.28E-01 3.46E-02 1.92E-01 4.24E-03 1.76E-02 4.11E-04 1.54E-03 

 std 1.99E-06 3.49E-02 1.35E-02 7.31E-18 1.99E+01 1.34E-01 2.19E-02 7.31E-18 3.29E-02 1.24E-03 3.66E-18 1.20E-04 3.73E-04 

𝐹8 mean -6.48E+09 -6.82E+03 -8.49E+03 -6.53E+03 -5.42E+03 -5.44E+03 -9.01E+03 -1.26E+04 -3.11E+03 -1.24E+04 -6.84E+03 -6.13E+03 -5.35E+03 

 min -6.47E+10 -7.00E+03 -8.60E+03 -6.53E+03 -5.42E+03 -6.22E+03 -9.92E+03 -1.26E+04 -3.47E+03 -1.26E+04 -6.84E+03 -7.18E+03 -6.44E+03 

 max -1.11E+04 -5.14E+03 -7.43E+03 -6.53E+03 -5.42E+03 -3.98E+03 -8.38E+03 -1.26E+04 -2.51E+03 -1.12E+04 -6.84E+03 -4.74E+03 -3.21E+03 

 std 2.05E+10 5.87E+02 3.72E+02 9.59E-13 9.59E-13 6.81E+02 3.25E+02 0.00E+00 2.71E+02 4.41E+02 0.00E+00 6.85E+02 9.99E+02 

𝐹9 mean 0.00E+00 7.46E+01 1.25E+02 5.27E+01 4.58E+02 1.16E+02 1.51E+01 0.00E+00 1.88E+02 0.00E+00 1.34E+02 0.00E+00 9.30E+00 

 min 0.00E+00 3.18E+01 1.25E+02 5.27E+01 4.14E+02 1.16E+02 1.51E+01 0.00E+00 1.88E+02 0.00E+00 1.34E+02 0.00E+00 9.30E+00 

 max 0.00E+00 1.15E+02 1.25E+02 5.27E+01 4.63E+02 1.16E+02 1.51E+01 0.00E+00 1.88E+02 0.00E+00 1.34E+02 0.00E+00 9.30E+00 

 std 0.00E+00 2.25E+01 3.00E-14 1.50E-14 1.54E+01 3.00E-14 0.00E+00 0.00E+00 3.00E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝐹10 mean 8.88E-16 7.09E+00 1.98E+01 7.60E-03 2.00E+01 1.94E+01 1.44E+00 3.22E-09 2.00E+01 4.09E-15 1.91E+01 7.99E-15 8.88E-16 

 min 8.88E-16 7.06E+00 1.84E+01 7.60E-03 2.00E+01 1.93E+01 5.88E-03 3.22E-09 2.00E+01 8.88E-16 1.91E+01 7.99E-15 8.88E-16 

 max 8.88E-16 7.34E+00 1.99E+01 7.60E-03 2.00E+01 1.96E+01 5.15E+00 3.22E-09 2.00E+01 7.99E-15 1.91E+01 7.99E-15 8.88E-16 

 std 0.00E+00 8.90E-02 4.78E-01 0.00E+00 0.00E+00 1.04E-01 1.09E+00 0.00E+00 1.44E-03 2.62E-15 3.74E-15 0.00E+00 0.00E+00 

𝐹11 mean 0.00E+00 6.44E-02 1.75E-02 2.30E-03 5.89E+02 5.04E+00 1.80E-03 2.22E-16 5.78E+02 0.00E+00 1.48E-02 0.00E+00 1.89E-03 

 min 0.00E+00 4.02E-13 1.23E-02 2.30E-03 5.26E+02 0.00E+00 1.34E-06 2.22E-16 4.56E+02 0.00E+00 1.48E-02 0.00E+00 0.00E+00 

 max 0.00E+00 1.62E-01 6.37E-02 2.30E-03 7.20E+02 1.15E+01 9.40E-03 2.22E-16 6.56E+02 0.00E+00 1.48E-02 0.00E+00 1.08E-02 

 std 0.00E+00 5.13E-02 1.63E-02 0.00E+00 6.21E+01 3.51E+00 2.33E-03 0.00E+00 7.32E+01 0.00E+00 0.00E+00 0.00E+00 4.03E-03 

𝐹12 mean 5.46E-07 8.27E+00 8.95E-01 3.53E-06 6.19E+08 4.05E+04 6.99E-01 7.16E-16 1.12E+08 8.22E-05 1.53E+01 3.30E-02 1.20E-01 

 min 3.81E-10 7.75E+00 4.15E-01 3.53E-06 5.19E+08 8.18E-01 1.77E-03 7.16E-16 4.10E+07 5.11E-05 1.53E+01 1.29E-02 4.04E-02 

 max 1.87E-06 1.30E+01 5.22E+00 3.53E-06 7.41E+08 4.05E+05 1.78E+00 7.16E-16 1.54E+08 1.19E-04 1.53E+01 8.54E-02 2.11E-01 

 std 5.66E-07 1.65E+00 1.52E+00 0.00E+00 7.37E+07 1.28E+05 5.50E-01 0.00E+00 3.36E+07 2.12E-05 0.00E+00 2.08E-02 5.94E-02 

𝐹13 mean 1.44E-06 2.45E+01 4.39E-03 5.00E-05 1.16E+09 1.40E+05 8.05E-04 6.39E-16 2.51E+08 1.64E-02 1.62E-20 4.81E-01 1.28E+00 

 min 1.51E-07 2.39E+01 2.40E-21 5.00E-05 7.65E+08 1.51E+01 5.49E-06 6.39E-16 1.17E+08 5.16E-04 1.62E-20 2.75E-01 8.11E-01 

 max 1.58E-06 3.01E+01 4.39E-02 5.00E-05 1.47E+09 9.61E+05 8.83E-03 6.39E-16 4.04E+08 1.22E-01 1.62E-20 8.03E-01 1.66E+00 

 std 4.52E-07 1.98E+00 1.39E-02 1.43E-20 2.18E+08 3.06E+05 1.66E-03 1.04E-31 1.03E+08 3.74E-02 3.17E-36 1.84E-01 2.97E-01 

 

Table 23 The Wilcoxon rank sum test results for 𝐹1-𝐹13    



 
 PSOVA SPSO MPSO ALPSO GPSO DNLPSO ELPSO CLFA CGFA VSSFA MFA NaFA 

𝐹1 4.82E-13 1.20E-12 1.20E-12 1.20E-12 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 3.37E-13 6.13E-14 

𝐹2 1.34E-12 3.11E-12 3.13E-12 3.13E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 9.99E-13 1.34E-12 

𝐹3 4.82E-13 1.20E-12 1.20E-12 1.20E-12 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 3.37E-13 4.82E-13 

𝐹4 1.34E-12 3.13E-12 3.13E-12 7.57E-07 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 9.62E-13 1.34E-12 

𝐹5 7.06E-12 3.13E-12 3.13E-12 2.98E-11 7.06E-12 7.06E-12 7.06E-12 7.06E-12 1.34E-12 7.06E-12 5.28E-12 7.06E-12 

𝐹6 7.06E-12 2.95E-11 2.97E-11 2.98E-11 7.06E-12 1.34E-12 7.06E-12 7.06E-12 7.06E-12 7.06E-12 5.28E-12 7.06E-12 

𝐹7 1.34E-12 3.12E-12 3.13E-12 1.20E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 1.34E-12 

𝐹8 7.06E-12 2.98E-11 2.98E-11 2.98E-11 7.06E-12 4.17E-08 7.06E-12 7.06E-12 7.06E-12 7.06E-12 5.28E-12 1.34E-12 

𝐹9 4.82E-13 1.20E-12 1.20E-12 1.20E-12 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 3.37E-13 6.13E-14 

𝐹10 5.28E-12 1.13E-11 1.10E-11 3.37E-13 5.28E-12 5.28E-12 5.28E-12 5.28E-12 9.62E-13 5.28E-12 3.92E-12 5.28E-12 

𝐹11 4.82E-13 1.20E-12 1.20E-12 1.00E+00 4.81E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 4.82E-13 3.37E-13 4.82E-13 

𝐹12 7.06E-12 2.97E-11 2.98E-11 2.47E-08 7.06E-12 7.06E-12 7.06E-12 7.06E-12 7.06E-12 7.06E-12 5.28E-12 7.06E-12 

𝐹13 7.06E-12 2.97E-11 2.98E-11 1.06E-07 7.06E-12 7.06E-12 7.06E-12 1.34E-12 7.06E-12 7.06E-12 7.02E-13 7.06E-12 

 
 PSO MFO FA ALO DA CS ABC BA WOA PSOGSA GWO amixedGWO 

𝐹1 4.82E-13 4.82E-13 3.37E-13 1.20E-12 1.20E-12 1.21E-12 3.37E-13 1.20E-12 1.00E+00 3.37E-13 1.20E-12 1.20E-12 

𝐹2 1.34E-12 2.00E-13 9.62E-13 3.12E-12 1.34E-12 3.02E-11 9.62E-13 3.13E-12 3.06E-12 6.12E-14 3.13E-12 3.13E-12 

𝐹3 3.37E-13 3.37E-13 3.37E-13 4.82E-13 1.69E-14 3.37E-13 3.37E-13 3.37E-13 3.37E-13 3.37E-13 3.37E-13 3.37E-13 

𝐹4 1.34E-12 2.00E-13 9.62E-13 3.13E-12 3.13E-12 2.55E-11 9.62E-13 3.12E-12 3.12E-12 9.62E-13 3.12E-12 3.13E-12 

𝐹5 7.04E-12 1.34E-12 4.82E-13 3.00E-11 3.00E-11 3.02E-11 5.28E-12 3.12E-12 3.00E-11 5.28E-12 3.00E-11 3.00E-11 

𝐹6 7.06E-12 7.06E-12 5.28E-12 3.00E-11 3.00E-11 3.99E-04 5.28E-12 2.97E-11 3.00E-11 5.28E-12 1.84E-08 3.00E-11 

𝐹7 1.34E-12 1.34E-12 6.13E-14 3.00E-11 3.00E-11 3.02E-11 9.65E-13 3.13E-12 1.69E-09 9.65E-13 3.00E-11 3.00E-11 

𝐹8 7.04E-12 1.34E-12 5.28E-12 1.11E-11 2.92E-11 2.98E-11 3.45E-08 2.98E-11 1.05E-07 5.28E-12 2.93E-11 2.92E-11 

𝐹9 4.82E-13 4.82E-13 3.37E-13 1.20E-12 1.20E-12 1.21E-12 1.00E+00 1.20E-12 1.00E+00 3.37E-13 1.00E+00 1.20E-12 
𝐹10 5.28E-12 5.28E-12 3.92E-12 3.37E-13 1.12E-12 1.21E-12 3.37E-13 1.12E-11 1.71E-09 3.92E-12 3.37E-13 1.00E+00 

𝐹11 4.82E-13 4.82E-13 3.37E-13 1.20E-12 5.73E-11 1.21E-12 3.37E-13 1.20E-12 1.00E+00 3.37E-13 1.00E+00 8.82E-07 

𝐹12 7.06E-12 7.06E-12 5.28E-12 3.00E-11 3.00E-11 3.02E-11 5.28E-12 2.97E-11 3.00E-11 5.28E-12 3.00E-11 3.00E-11 

𝐹13 7.04E-12 4.17E-08 5.28E-12 3.00E-11 3.00E-11 3.02E-11 5.28E-12 2.98E-11 3.00E-11 5.28E-12 3.00E-11 3.00E-11 

 

 

 
Figure 12 Convergence curves of 𝐹3 over a set of 30 runs (Top row – 200 iterations, bottom row – 3000 

iterations) 

 

To indicate model convergence speed, Figure 12 illustrates the convergence curves for both 200 (top row) 

and 3000 (bottom row) iterations for the unimodal function, 𝐹3, over a set of 30 runs. The proposed algorithm 

achieves significantly faster convergence rates in comparison with those of PSO variants and other search 



methods. As indicated in Figure 12 (top row), PSO, amixedGWO, GWO, CS and FA illustrate faster 

convergence rates among the baseline methods and achieve impressive performance with smaller numbers of 

iterations. NaFA and DNLPSO also show drastic improvements over smaller numbers of iterations in 

comparison with other PSO and FA variants. As the search intensifies, as shown in Figure 12 (bottom row), 

WOA, ABC, DA, SPSO, VSSFA and ALPSO are able to achieve improved convergence. 

 

 
Figure 13 Convergence curves of 𝐹3 in the log scale over a set of 30 runs 

 

We also convert the convergence curves of 𝐹3 to the log scale with a base of 10, as depicted in Figure 13. Our 

model achieves the global minimum, i.e. 0, after 2250 iterations, based on the mean average over 30 runs. 

Since 𝑙𝑜𝑔10(0) = −∞ (which cannot be displayed as a specific value), the convergence curve of our model 

in the log scale is illustrated until 2249 iterations, providing a clear overview of the model convergence 

speed. As shown in Figure 13, the proposed algorithm illustrates a significantly faster convergence rate than 

those of all compared methods. GWO and amixedGWO converge comparatively faster against all other 

baseline search methods, while NaFA illustrates the fastest convergence rate among the PSO and FA 

variants. 

 

 
 



 
Figure 14 Convergence curves of 𝐹9 over a set of 30 runs (Top row – 200 iterations, bottom row – 3000 

iterations) 

 

Figure 14 illustrate the convergence curves for both 200 (top row) and 3000 (bottom row) iterations for 

multimodal function 𝐹9 over a set of 30 runs. The proposed model achieves the global minimum solution, i.e. 

0, in a comparatively smallest number of iterations against those of all baseline methods. In addition, as 

illustrated in Figure 14 (top row), WOA, PSO, GWO, amixedGWO, ABC, and ALPSO show faster 

convergence rates in comparison with those of other baseline methods and achieve impressive performance 

with smaller numbers of iterations. As the search progresses, as shown in Figure 14 (bottom row), CS, FA, 

NaFA and DNLPSO yield drastic improvements. The convergence analysis using other benchmark functions 

depicts similar characteristics, where the proposed model illustrates the fastest convergence rates in most test 

cases. 

 

Since the majority of these classical and advanced search methods employ single leaders at a time to guide 

the search process, they are more likely to be trapped in local optima. GWO employs multiple leaders to 

guide its search process. However, since equal weightings are assigned to the leader signals, its search 

capability in local exploitation and global exploration is compromised. The proposed PSO algorithm 

incorporates hybrid leaders generated by adaptive weightings based on regular and irregular adaptive 

crossover operators to better balance between diversification and intensification in search. Such enhanced 

elite signals in conjunction with the secant and Newton-Raphson-based intensification and spherical 

parametric search coefficients are useful to guide the search process to overcome local optimum traps and 

achieve global optimality. It outperforms all baseline search methods statistically in most evaluations in 

solving diverse unimodal and multimodal functions. The proposed PSO algorithm is also capable of devising 

efficient hyper-parameters in the CBiLSTM networks to achieve superior performance in sound 

classification. 

  

6. CONCLUSIONS 
In this research, we have proposed an ensemble CBiLSTM network with optimal hyper-parameter selection 

using the proposed PSO algorithm for undertaking audio classification tasks. To effectively overcome the 

stagnation problem, the proposed model incorporates secant and Newton’s methods, spherical search 

coefficients, and regular and irregular adaptive elliptical formulae for generating hybrid leaders. It employs 

multiple elite fused signals in conjunction with diversified search steps and trajectories to overcome the 

limitations of the original PSO algorithm. The empirical results indicate its superiority in identifying 

effective network settings and yielding efficient spatial-temporal dynamics to improve sound classification 

performance. Evaluated using diverse sound data sets, the proposed ensemble CBiLSTM models outperform 

counterparts with optimal settings identified by other search methods, as well as several existing deep 

networks and state-of-the-art methods, significantly. The proposed PSO algorithm also produces statistically 

better results as compared with those from 24 classical and advanced search methods for solving diverse 

unimodal and multimodal benchmark functions. The empirical results clearly support the effectiveness of the 

formulated strategies, which include hybrid elite signal generation, numerical analysis based leader 

enhancement and super-elliptical curves and surfaces oriented search coefficients, in yielding significant 

superiority of the proposed model.  

 

In future work, we will incorporate other strategies (e.g. Muller’s method) [67, 97] for leader enhancement. 

In comparison with the secant and Newton’s methods, such strategies are able to approximate the function 



quadratically to increase search diversity. Other oversampling techniques (such as autoencoder) will also be 

employed to tackle the class imbalance problem. We will further evaluate the proposed PSO algorithm for 

generating deep learning models  [43, 58, 63] with respect to other signal and vision processing tasks such as 

voice activity detection [98], speech emotion recognition [41], visual saliency detection [19, 62], and image 

description generation [6, 7, 8, 99]. 
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