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ROYAL HOLLOWAY UNIVERSITY OF LONDON

Abstract
Department of Psychology

Doctor of Philosophy

Explaining Human Oversampling Biases on Full Information Optimal
Stopping Problems: a Behavioural, Computational and Neuroimaging

Investigation

by Sahira VAN DE WOUW

An optimal stopping problem can be defined as a situation in which a decision-
maker has to choose a time to take a given action. Within this thesis I look at
a specific type of optimal stopping problem called the full information prob-
lem on which contrasting human behaviour has been reported. In full infor-
mation problems, the decision-maker first learns the probability distribution
that will generate the decision options, after which option values from this
generating distribution are presented in sequence, and the decision-maker
has to decide when to stop sampling and choose an option, under the condi-
tion that rejected options cannot be returned to later. The decision-makers’
sampling rate is then compared to that of an optimal model to determine any
sampling biases (undersampling or oversampling). My novel contribution
to the literature is to show that human oversampling biases on these kinds
of full information problems extend from the mate choice domain to other
decision-making domains including image-based domains such as trustwor-
thiness, foods and holiday destinations, as well as number-based domains
such as smartphone prices. Furthermore, I describe how the moments of the
generating distribution influence both the decision-makers’ and the optimal
model’s sampling rate, and show that a correct specification of the generat-
ing distribution is crucial for correctly identifying sampling biases. Finally, I
present neuroimaging evidence indicating that similar areas in the so-called
decision network are activated when a decision-maker samples too few or
too many options on a full information problem.
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Chapter 1

Introduction

Ever since their mysterious appearance in the mid-twentieth century, optimal
stopping problems have been a popular field of study amongst scholars. To
illustrate, a literature search in 2017 identified over 2,000 papers published
on the classical secretary problem alone (Goldstein et al., 2017) (different
variants are discussed later in this chapter). The topic has even made its
way to the general public: an entire chapter was dedicated to optimal stop-
ping problems in the popular science book “Algorithms to live by: The com-
puter science of human decisions” (Christian & Griffiths, 2016) and multiple
TED talks have been dedicated to optimal stopping scenarios (e.g., Fry, 2014;
Griffiths, 2017). The popularity of optimal stopping problems is not entirely
surprising. It has long been recognised that the type of sequential decision
making involved in the class of optimal stopping problems this thesis focuses
on is representative of many real-life decisions (Rapoport & Tversky, 1970).
Accept a job offer or keep looking? Pick a parking spot or keep driving? Go
on a date with your Tinder match or keep swiping right? For these kinds of
decisions, we can ask ourselves: when is the optimal time to stop evaluating
new information and commit to a decision?

The aim of this thesis is to understand sampling biases on full in-
formation optimal stopping problems. A sampling bias occurs when par-
ticipants’ sampling rate (i.e., how many options they sample before making
a decision) differs from the optimal sampling rate. A distinction is made
between oversampling biases (participants sample too many options) and
undersampling biases (participants sample too few options). Note that sam-
pling biases are relative to optimality. In other words, an increase in par-
ticipants’ sampling rate does not automatically mean that participants also
oversample - the optimal sampling rate could have increased as well.



2 Chapter 1. Introduction

To understand sampling biases on full information problems, I take
a holistic approach to decision-making by directly studying human behaviour
as well as the neural network underlying decision-making. Additionally,
I thoroughly examine the methodological approaches for studying optimal
stopping problems, with the majority of chapters within this thesis investi-
gating (amongst others) task features that could impact sampling biases. As
such, a historical overview of the task designs used in previous research to
study optimal stopping problems, as well as how they relate to the stud-
ies included in this thesis, falls within the scope of this Introduction. The
Methodology chapter (Chapter 2) further builds upon this information and
aims to clarify some of the methodological decisions made specifically for
my studies.

Within this Introduction chapter I will first cover the theoretical
background of optimal stopping problems, through which I will define the
scope of this thesis (Section 1.1). Next, I will focus on human behaviour on
optimal stopping tasks, and discuss sampling biases in Section 1.2. Different
explanations for these observed sampling biases are explored in Section 1.3
and Section 1.4. In Section 1.5, I will discuss the neural correlates of decision-
making, particularly on optimal stopping problems. At the end of each sec-
tion, a paragraph is provided outlining how the information described in
that particular section relates to the studies in this thesis (’Relevance’). The
outline of the thesis and a summary of my research questions is provided in
Section 1.6.

1.1 Types of optimal stopping problems

1.1.1 Classical secretary problem

The classical optimal stopping problem originated as a recreational mathe-
matics problem called the secretary problem (for a summary of the historical
background, see Ferguson, 1989; Freeman, 1983). The classical secretary prob-
lem is defined as follows: suppose your goal is to pick the highest ranking
option from a set of options (e.g., the best candidate from a set of job ap-
plicants). The options are presented in series, one at a time, and the total
number of options is known by the decision maker. The main constraint
is that an option can only be chosen by the decision maker at the moment
it is presented; it is not possible to go back to a past option (Chow et al.,
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1964; Rapoport & Tversky, 1970). The decision maker has no prior knowl-
edge about what makes a good option or a bad option; they only know how
the options compare to each other, that is, the relative ranks. This is why this
classical example of the optimal stopping task is also referred to as the clas-
sic rank order version or the no information problem (Freeman, 1983; Gilbert &
Mosteller, 1966; Petruccelli, 1980).

For mathematicians, solving the classical secretary problem meant
proving that an optimal stopping rule existed (Chow & Robbins, 1963; De-
Groot, 1968; Gilbert & Mosteller, 1966; Kahan et al., 1967; Shepp, 1969; Sieg-
mund, 1967). Optimal stopping rules describe how individuals should make
decisions on optimal stopping tasks in order to choose the best outcome. For
the classical secretary problem, the optimal stopping rule can be described as

Z =
N
e

(1.1)

with Z being the cutoff point, N the number of options, and e the base of the
natural logarithm (equivalent to 2.71828. . . ) (Kahan et al., 1967). The opti-
mal strategy for the classical secretary problem is to keep sampling options,
without choosing any, until Z is reached. During this time, some information
about the distribution of option values can be accessed. The maximum value
up until the cutoff point Z is remembered. After Z is reached, the next op-
tion that exceeds the remembered maximum is chosen as the optimal value.
In practice, this converges to seeing at least 1/e = 37% of the total number
of options before making a decision. As such, this optimal stopping rule is
often referred to in later literature as the 37% rule (Ferguson, 1989). The suc-
cess rate of the 37% rule, the number of times it results in choosing the best
option, is also 37%.

1.1.2 Generalised secretary problem

The assumptions of the classical secretary problem described in Section 1.1.1
are rather restrictive, thus limiting its applicability to real-life decision mak-
ing scenarios. Especially the assumption that only the highest ranking op-
tion yields a positive payoff is considered unrealistic. For many real-life de-
cisions, alternatives other than the highest ranking option may still yield a
positive payoff (Bearden et al., 2006). For example, hiring the second-best
candidate from a set of job applicants still ensures that the position is filled
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and the job is done - a result that is generally considered as a positive out-
come. The variant of the classical secretary problem that implements this
adjustment is called the generalised secretary problem.

The generalised secretary problem is closely related to the classical
secretary problem, but is less restrictive in the sense that participants can
always expect a payoff, relative to the rank of the chosen option (Bearden &
Connolly, 2007; Bearden & Murphy, 2007). Because the generalised secretary
problem is considered to resemble real-life decision-making more closely, as
decision makers do not only receive a payoff for choosing the best option
but also for the second-best option, the third best option, etc., this variant is
often preferred above the classical secretary problem. Bearden and Murphy
(2007, p. 188) define the less restrictive condition as follows: "the [decision
maker] earns a payoff of π(a) for selecting an applicant with absolute rank
a where π(1) ≥ ... ≥ π(n)". In this case, n is the number of options in the
sequence. The optimal stopping rule remains the same as for the classical
secretary problem, i.e., sample roughly 37% and then choose the next option
which exceeds everything seen so far.

Another less restrictive version of the classical secretary problem,
which closely resembles the generalised secretary problem, is the secretary
problem with cardinal payoffs (Bearden, 2006). In the secretary problem with
cardinal payoffs the decision maker receives a payoff equal to the option’s
underlying ‘true’ objective value (Bearden, 2006), rather than its relative rank
as implemented in the generalised secretary problem (Bearden & Connolly,
2007; Bearden & Murphy, 2007). The optimal stopping rule for the secretary
problem with cardinal payoffs is to skip the first

√
n− 1 options, after which

the next option which exceeds everything seen so far should be chosen (Bear-
den, 2006).

Besides the generalised secretary problem and the secretary prob-
lem with cardinal payoffs, there are even more different variations of the
classical secretary problem that have emerged over the years, all with dif-
ferent rules and assumptions (Freeman, 1983). Two of these variants - the
partial information problem and the full information problem - will now be
discussed in more detail.
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1.1.3 Partial information problem

The term partial information problem captures a number of intermediate vari-
ants that fall between classical secretary (i.e., no information) problems and
full information problems (Samuels, 2004). Before delving into what these
variants are, I will first explain which characteristics of optimal stopping
problems can be modified. Foremost, there is the distribution that gener-
ates the values of the options in a sequence. In other words, each option
value in a sequence is drawn from a distribution of option values, also called
the generating distribution. A common distribution on which optimal stop-
ping tasks in previous experimental studies operate is a normal generating
distribution, but there are some exceptions which I further discuss in Section
1.4.1. Key characteristics that can be modified in partial information prob-
lems are whether the participants know (or have learned) the mean value
of the generating distribution, and whether the participants know (or have
learned) the shape of the generating distribution (e.g., normally distributed).
The following list includes examples of what could be called a partial infor-
mation problem. Logically, a different optimal stopping rule is required for
each variant, but to discuss them all would be beyond the scope of this thesis.

• Known generating distribution shape, unknown generating distribu-
tion mean (Sakaguchi, 1961).

• Known generating distribution shape, unknown number of options (Hill,
2009; Stewart, 1978).

• Known number of options, known generating distribution mean, un-
known generating distribution shape (Hill, 2009).

1.1.4 Full information problem

One of the first to recognise the full information problem were Gilbert and
Mosteller (1966). In full information problems, like (some) partial informa-
tion problems but unlike secretary problems, the actual values of the options
are presented rather than their relative ranks (Guan et al., 2014; Lee, 2006;
Palley & Kremer, 2014; Shu, 2008). Also, there could be any number of map-
pings of rewards to ranks (which would be known to the participants) in-
cluding, for example, a payoff relative to the rank of the chosen option, or
equal to the option value itself. Furthermore, contrary to the classical no in-
formation secretary problem, the generating distribution of probabilities and
values of all potential future options are known (Abdelaziz & Krichen, 2006;
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Hill, 2009). Whereas in the classical secretary problem only the number of
options was known, the full information problem also provides information
about the continuous cumulative distribution. After each sample, the deci-
sion maker (who is familiar with the generating distribution and the number
of options) is informed of the option value, and from this value can infer
the probability of drawing any of the remaining values in future samples
(Gilbert & Mosteller, 1966). This technique of inferring the probability of
future values from previously drawn samples is called backward induction
(see Sidebar 1; Hill, 2009), an idea stemming from game theory (Aumann,
1995).

Sidebar 1: Backward induction. In finite sequential search problems,
like the full information problem, a participant who has arrived at the
final option in a sequence can only take this option. Because of this
property, it is possible to calculate the utility of every previous op-
tion by working backwards (i.e., using backward induction), starting
with the final option using conditional probabilities (Costa & Averbeck,
2015). The decision threshold for taking the final option is ∞ because
once a participant reaches the final option in a sequence, this option be-
comes their choice by default. Therefore, the utility of the final option
is the participants’ expectation of utility based on the known generat-
ing distribution (Baumann et al., 2020). This means that the decision
threshold for the penultimate option is the expected utility of the fi-
nal option. The utility for taking the penultimate option can then be
calculated by multiplying the expected utility for this option with its
probability plus the expected utility of the final option multiplied with
its probability (Baumann et al., 2020). The utilities and decision thresh-
olds for the remaining options can be calculated in the same way.

The optimal rule for decision making on full information problems
is based on the idea of a variable threshold that is calculated for each posi-
tion in the sequence (Gilbert & Mosteller, 1966). If an option value exceeds
the threshold for that particular position in the sequence, the option is cho-
sen. Because the decision maker is familiar with the generating distribution,
they do not need the 37% rule to gather information about the distribution.
As Gilbert and Mosteller (1966, p. 52) comment: “no buildup of experience is
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needed to set a standard, and a profitable choice can sometimes be made im-
mediately”. The trade-off between taking and declining an option on full in-
formation problems can be modeled using a Markov decision process (MDP).
MDPs are an extension of the stochastic Markov chain model which describes
a sequence of possible events. The difference is that MDPs not only model
the utility (u) of a state (s) at sample (t), they also take into account actions
and reward (Costa & Averbeck, 2015). As such, an MDP with only one avail-
able action and only one possible reward is in fact a Markov chain. MDPs
can be applied to different variants of optimisation problems, including fi-
nite horizon, infinite horizon discounted, and infinite horizon average cost
(Papadimitriou & Tsitsiklis, 1987). For full information problems, the util-
ity of declining an option is effectively the decision threshold, as calculated
using backward induction (see Sidebar 1).

1.1.5 Relevance

Section 1.1 describes four different types of optimal stopping problems: the
classical secretary problem, the generalised secretary problem, the partial in-
formation problem, and the full information problem. The studies described
within this thesis can all be classified as the latter. One of the reasons for
this is that full information problems better resemble real-life optimal stop-
ping scenarios than other versions of optimal stopping problems, because
the assumptions are more realistic. For example, someone looking to buy a
house will have some knowledge of the current market (i.e., familiarity with
the underlying distribution from which options are sampled) and is likely
to receive some payoff even if the house they end up buying was not the
best they had seen (i.e., relative payoff). This application of full informa-
tion problems to real-life decision-making situations has been demonstrated
before, for instance for economic decision-making scenarios (e.g., "you are
renting an apartment", "you are buying an ice cream sundae"; Cardinale et
al., 2021; Costa & Averbeck, 2015), and even for a social mate choice scenario
(Furl et al., 2019). As outlined in Section 1.1.4, full information problems are
computationally particularly difficult to solve, which, combined with the ap-
plication to real-life scenarios, makes it especially interesting and important
to understand how participants solve such problems.
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1.2 Decision biases

Having focused primarily on the theoretical background of optimal stopping
problems in Section 1.1, I will now move on to human sampling behaviour
on different optimal stopping tasks. As previously explained, there is an
optimal solution to each task, which makes it possible to compare human
performance to models of optimality. While the majority of early research on
optimal stopping problems was mainly theoretical, Kahan et al. (1967) was
one of the pioneers who investigated differences between human behaviour
and mathematical optimality. In their study, 88 students were told to choose
the highest number from a deck of 200 cards, which represented an offer for
some stocks the participant was to sell. The results indicated that in this nu-
merical version of the optimal stopping task, participants stopped sampling
too early (undersampling), thus making suboptimal decisions.

At present, human undersampling biases are pervasive in the opti-
mal stopping literature. This finding has been reported for different optimal
stopping tasks, including the secretary problem (Bearden et al., 2006; Seale &
Rapoport, 1997), numerical tasks (Guan et al., 2014; Kahan et al., 1967), the
beads task (see Sidebar 2; Furl & Averbeck, 2011; Hauser et al., 2017; Hauser
et al., 2018; Van der Leer et al., 2015), and tasks with different economic sce-
narios (Cardinale et al., 2021; Costa & Averbeck, 2015). Nevertheless, despite
the overwhelming evidence for humans showing an undersampling bias,
there are some conflicting findings. One recent paper by Furl et al. (2019),
for example, showed consistent evidence for an oversampling bias in a mate
choice scenario, which will be further discussed in Section 1.3. Several cog-
nitive theories have been proposed in the literature that attempt to explain
human sampling behaviour on optimal stopping tasks, a number of which
are discussed below.

Sidebar 2: The beads task. An optimal stopping task that is closely
related to the full information problem which I focus on, is the beads
task (Furl & Averbeck, 2011; Van der Leer et al., 2015). The beads task is
also known in the literature as the ‘information sampling task’ (Hauser
et al., 2017; Hauser et al., 2018) or the ‘probabilistic inference task’ (Huq
et al., 1988), but I will use the term beads task and describe it as such. In
the beads task, participants are presented with sequences of coloured
beads drawn from a hidden urn. The goal is to correctly guess the
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majority bead colour of the urn. After each bead, participants have
two options: either to draw another bead, or to attempt to guess the
urn’s contents. The beads task relates to the full information prob-
lem in that participants are presented with a similar decision-making
scenario, namely, either to continue sampling or to stop sampling and
make a decision. Furthermore, participants are often informed of the
proportion of bead colours in the urn prior to the task (e.g., 60/40; Furl
& Averbeck, 2011), and there is a finite number of beads in each se-
quence (e.g., 25; Hauser et al., 2017). Research on the beads task gener-
ally reports that participants sample too few options compared to mod-
els of optimality (Furl & Averbeck, 2011; Hauser et al., 2017; Hauser et
al., 2018; Van der Leer et al., 2015). Mathematically, the optimal model
for the beads task is very similar to the optimal model that can be used
to solve full information problems (Cardinale et al., 2021; Costa & Aver-
beck, 2015), in that the model uses Bayes’ rule (see Section 2.1.1) and
backwards induction techniques (see Sidebar 1).

1.2.1 Overestimation of positive payoffs

Bearden et al. (2006) studied the generalised secretary problem and described
two experiments in their paper. After finding in their first experiment that
participants terminated their search too early, Bearden et al. (2006) conducted
a second experiment to answer the question of why participants undersam-
ple. Thirty participants completed a generalised secretary task where only
relative ranks were shown and payoffs decreased linearly as the quality of
the selected applicant decreased. Recall that this means that participants get
paid for selecting any option, not just for selecting the best (classical secre-
tary problem). After the secretary task, participants completed a probability
estimation task on which they were asked to estimate the probability that an
applicant’s absolute rank was the same as the applicant’s relative rank (for
an example, see Table 1.1). Participants provided responses using a slider
from 0 to 100, and completed a total of 72 probability estimates. The results
of this second experiment revealed that participants tend to overestimate the
true probabilities. In other words, they believe the absolute rank, and thus
their payoff, is greater than it actually is based on the relative ranks they saw.
Therefore, Bearden et al. (2006) hypothesise that the undersampling bias on
rank-based optimal stopping tasks is a result of participants overestimating
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the quality of options. One limitation of this study is that the results cannot
be applied to variants of optimal stopping tasks that display the actual value
of an option or the absolute rank, rather than an option’s relative rank (i.e.,
full information problems). The reason for this is that in these kinds of full
information problems, participants can infer their payoff directly from the
observed option value rather than having to estimate their payoff from the
options’ relative ranks, leaving little room for the overestimation of positive
payoffs.

TABLE 1.1: A visualisation of absolute ranks and relative ranks
in a sequence with five options.

Position in the sequence 1 2 3 4 5
Absolute rank 2 5 3 1 4
Relative rank 1 2 2 1 4

The principle on which Bearden et al. (2006)’s hypothesis is based,
however, finds support in other sequential search tasks. Mantonakis et al.
(2009), for example, described the primacy effect, or first-impression effect,
which was found to influence performance on a sequential search task. The
primacy effect describes how options early in a sequence leave a bigger im-
pression than options later on in a sequence, thus giving early options an
advantage. It should be noted that Mantonakis and colleagues used a se-
quential search task where a single choice of the best option was made at
the end of the sequence. As such, this was not strictly an optimal stopping
problem. Nevertheless, the primacy effect is in line with the hypothesis pro-
posed by Bearden et al. (2006), and could explain how early options on an
optimal stopping task seem over-proportionately better compared to later
options causing participants to terminate their search too early.

1.2.2 Learning effects

Another factor that could potentially influence human sampling rate on opti-
mal stopping tasks is learning, in the sense of participants using knowledge
of sampled values from preceding sequences to make decisions on subse-
quent sequences. Goldstein et al. (2020), for example, reported that if the
underlying distribution is unknown, participants can correct an initial under-
sampling or oversampling bias with repeated play. On this classical secretary
problem, fast and steep learning effects were observed. However, contrast-
ing results have been found for full information problems. Campbell and Lee
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(2006), for example, investigated whether people improve over repeated tri-
als of a full information problem, but concluded that there was no evidence
of learning. Similarly, Lee (2006) observed a lack of learning on another full
information problem, and concluded that models of human behaviour do
not need to incorporate learning.

To verify that learning indeed does not have an effect on full infor-
mation problems, I examined learning effects in two of my studies (Study 1
and Study 2 as described in Chapter 4). Participants’ sampling rate is plot-
ted as a function of sequence number (Figures 1.1 and 1.2). As expected,
sequence number appears to have a minimal effect on participants’ sampling
rate. From this I conclude that learning effects are unlikely to have an influ-
ence on the findings presented in this thesis.

FIGURE 1.1: Participants’ sampling rate plotted as a function
of sequence number. Study 1 as described in Chapter 4 in-
cludes three decision-making domains, which are depicted here
(Faces, Food and Holiday Destinations). Minimal learning ef-

fects can be observed across all three domains.

1.2.3 Relevance

Neither overestimation of positive payoffs nor learning effects are expected
to affect the studies included in this thesis. Overestimation of positive pay-
offs is limited to studies that display options’ relative ranks, and none of
the studies included here can be classified as such because they are all full
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FIGURE 1.2: Participants’ sampling rate plotted as a function
of sequence number. Study 2 as described in Chapter 4 in-
cludes three decision-making domains, which are depicted here
(Faces, Food and Holiday Destinations). Minimal learning ef-

fects can be observed across all three domains.

information problems. Learning effects have not been observed in full infor-
mation problems either, a finding which I have confirmed using my data of
Chapter 4.

1.3 Decision-making domain

In Section 1.2, I briefly mention the oversampling bias reported by Furl et
al. (2019). Furl et al. (2019) studied mate choice decisions on a full informa-
tion problem dubbed the facial attractiveness task. In phase 1 of the facial
attractiveness task, participants were instructed to rate images of faces (of
their preferred partner’s sex) on their attractiveness. In phase 2, participants
encountered multiple sequences in which they attempted to maximise the at-
tractiveness of their date. Furl et al. (2019) conducted three separate studies,
varying the number of sequences (from 5 to 28) and the length of the se-
quences (8 or 12), but found similar results: participants sampled more and
ended up with lower-ranked faces compared to a model of optimality. In
other words, humans show an oversampling bias on the facial attractiveness
task. The authors propose that the oversampling bias might be specific to the
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mate choice domain (Furl et al., 2019).

Furl et al. (2019) hypothesised that the design of the task was suf-
ficient to instigate mate choice predispositions, i.e., the tendency to set high
thresholds and continue searching for a high quality partner. Upon closer
inspection, participants in Furl et al. (2019) were observed to keep their de-
cision thresholds too high throughout the sequences. This could have led to
the observed oversampling bias on this particular full information problem.
These kind of mate choice predispositions are not limited to humans, but
have been observed in the animal literature as well, e.g., in crickets (Ivy &
Sakaluk, 2007), fiddler crabs (Backwell & Passmore, 1996), and sticklebacks
(Milinski & Bakker, 1992).

Traditional mathematical treatments of optimal stopping problems
have anecdotally described the problem in mate choice terms such as ‘fi-
ance’ or ‘dowry’ problem (Gilbert & Mosteller, 1966). Yet the problem was
not framed as mate choice in an empirical study in humans until Furl et al.
(2019), who have created a contemporary paradigm that captures the essence
of an online dating scenario (e.g., Tinder). This differs from other mate choice
paradigms that have attempted to incorporate ‘real-life’ elements such as re-
jection (Miller & Todd, 1998), interaction (Eriksson & Strimling, 2009) and
self-perceived attractiveness (Beckage et al., 2009) in their tasks. Regardless
of whether the facial attractiveness paradigm embodies every element that
can occur in real-life dating, it is still possible that the mate choice domain
was instrumental in changing participants’ search strategies from undersam-
pling to oversampling.

1.3.1 Relevance

Before this thesis, there was no conclusive evidence that could explain the
oversampling bias reported on the facial attractiveness task (Furl et al., 2019).
The leading hypothesis was that the decision-making domain has influenced
participants’ sampling behaviour. Whether oversampling biases are indeed
specific to the mate choice domain is one of the questions I aim to address
in the first two experimental chapters of this thesis (Chapters 3 and 4), thus
marking the start of my exploration into what causes participants’ sampling
biases on full information optimal stopping tasks.

As announced in Section 1.1, all studies described in this thesis can
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be classified as full information problems. The reason for this is that one of
the main aims of this thesis is to understand why Furl et al. (2019) found
oversampling biases on their full information facial attractiveness task. Real-
life mate choice decisions could include many elements of full information
problems, and because of this realistic aspect, full information problems are
especially worthy of study. To be able to compare my findings to those of
previous research (Furl et al., 2019), I too employ full information tasks, and
define my scope as such to only include full information problems.

1.4 Task features

Thus far I have discussed cognitive theories that are thought to affect sam-
pling biases, and I have discussed literature that suggests that the decision-
making domain can influence participants’ sampling behaviour. The final
piece of information to understand sampling biases on optimal stopping
problems might be the most extensively researched one: the effect of task fea-
tures. As Goldstein et al. (2020) observed, minor differences in instructions
to participants can have major effects on the results. Within this section, I
will discuss a selection of task features that have been found to influence
participants’ sampling rate.

1.4.1 Varying generating distributions

Guan et al. (2014) investigated the effect of varying the nature of the gen-
erating distribution of option values on participants’ choice thresholds, in
a partial information problem where participants knew the number of op-
tions, but not the shape or mean of the generating distribution. The only
way the generating distribution could be learned, was through sampling.
Fifty-six participants were evenly divided between two conditions. Condi-
tion one was a scarce environment, meaning that the generating distribution
consisted mainly of low values. Condition two was a plentiful environment,
meaning that the generating distribution consisted mainly of high values.
The optimal threshold in the plentiful environment is higher than the optimal
threshold in the scarce environment. Guan et al. (2014) define two variables
of interest: correspondence and coherence. Correspondence refers to how of-
ten participants choose the best value in a sequence. Coherence refers to how
often participants make decisions that are the same as the optimal model.
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Additionally, participants’ thresholds were computed using Bayesian meth-
ods to fit threshold models to all of the individual participants. Guan et al.
(2014) found that participants updated their thresholds in accordance with
the distributional properties of their environment, and participants’ perfor-
mance (i.e., correspondence and coherence) was relatively good.

The aim of Guan et al. (2014) to investigate the effect of varying
generating distributions on sampling behaviour is not a novel one. Kahan
et al. (1967) already hypothesised that distributions differing in variance and
skewness might lead to differences in sampling behaviour. Three distribu-
tions with the same mean but different standard deviations were compared:
a positively skewed triangular distribution (A), a negatively skewed trian-
gular distribution (B), and a rectangular distribution (C). Participants could
only learn these distributions through sampling, like in Guan et al. (2014),
therefore the paradigm of Kahan et al. (1967) could be classified as a partial
information problem too. Kahan et al. (1967), however, found insufficient ev-
idence to support their hypothesis, as participants’ mean number of samples
did not differ significantly between the three distributions A, B, and C. Both
in Guan et al. (2014) and Kahan et al. (1967), the tendency to stop sampling
too early was maintained in all environments.

A more recent paper by Baumann et al. (2020) examined the effect of
varying generating distributions of option values on a full information prob-
lem. The second experiment in Baumann et al. (2020) investigates human
behaviour in three different task environments: a scarce environment (left-
skewed distribution), a normal environment (normal distribution), and a
plentiful environment (right-skewed distribution). The experiment included
a learning phase, where participants learned from which distribution options
were sampled (through descriptions using statistical terminology and graphs
of the probability densities of statistical distributions), and a testing phase,
where participants had to choose the lowest-priced ticket from a sequence of
10 ticket prices. The results showed that the mean number of samples for par-
ticipants decreased from the left-skewed environment to the right-skewed
environment, thus indicating that participants’ sampling rates are affected
by the skewness of the generating distribution (Baumann et al., 2020). This
is in contrast with the findings of Kahan et al. (1967) who did not report a
difference in sampling rate. However, Kahan et al. (1967) employed a par-
tial information problem and Baumann et al. (2020)’s paradigm was a full
information problem. Also, I note that the generating distributions used by
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Baumann et al. (2020) to populate their scarce and plentiful environments
did not just differ in skewness, but in mean as well. This highlights the need
for further research into how the moments of the generating distribution (i.e.,
mean, skewness, kurtosis and variance) affect human sampling behaviour: a
question I will address in Chapter 4.

1.4.2 Time cost

In Sections 1.2 and 1.4.1 I have discussed the study by Kahan et al. (1967),
who reported undersampling on a task where participants had to choose the
highest number from a deck of cards. Interestingly, the same participants
tended to sample too much when tested in groups, rejecting options that,
based on the optimal model, should have been accepted. The hypothesis
proposed by Kahan and colleagues prior to the experiment was that the time
participants have to invest in the experiment is a variable factor that deter-
mines how costly it is for participants to keep sampling options. Henceforth,
I will refer to this particular cost-to-sample as time cost. Logically, if the time
cost is high, participants will sample less, and if the time cost is low, par-
ticipants will feel free to sample more. When participants were tested indi-
vidually, they were free to leave once they finished the experiment. In other
words, the time cost is relatively high when tested individually, as partici-
pants have to invest their free time to sample more. In the group condition,
participants had to stay until the slowest member of the group had finished.
Therefore, the time cost is lower when tested as a group because the partici-
pants did not lose any time sampling more options. The undersampling and
oversampling biases reported by Kahan et al. (1967) for participants in the in-
dividual and group conditions, respectively, seems to support the hypothesis
that time cost can limit how much participants sample.

Three decades after the study by Kahan et al. (1967) was published,
Seale and Rapoport (1997) replicated Kahan et al. (1967)’s undersampling
findings in a classical secretary problem. Recall that the optimal stopping
rule for classical secretary problems is the 37% rule, which describes the opti-
mal cutoff point after which the next option that exceeds the maximum value
seen so far is chosen. In line with Kahan et al. (1967), Seale and Rapoport
(1997) hypothesised that the undersampling bias observed in participants
could be attributed to the existence of an endogenous time cost. Using com-
puter simulations, Seale and Rapoport (1997) were able to show that intro-
ducing a search cost as low as 0.002 effectively reduces the optimal cutoff
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point. This means that if participants factored time cost in their sampling
behaviour, it would result in earlier termination of searches.

A study that looked at endogenous search costs in a full information
problem is Costa and Averbeck (2015). In Costa and Averbeck (2015), cost-to-
sample was a free parameter in their optimal model which could be adjusted
to maximise the fit of the optimal model to participants’ data. Costa and
Averbeck (2015) reported that a positive cost-to-sample value significantly
improved the optimal model’s predictions of human behaviour, as it effec-
tively decreased the value of future samples for the model, leading to earlier
termination of searches. In the absence of any extrinsic costs associated with
the task, this result suggests that participants made decisions with an en-
dogenous search cost, i.e., time cost, in mind.

The research discussed in this section suggests that time cost could
explain human undersampling biases on classical secretary problems (Seale
& Rapoport, 1997), partial information problems (Kahan et al., 1967), and
full information problems (Costa & Averbeck, 2015). This evidence raises
the question, if a positive cost-to-sample can explain undersampling, could
a negative cost-to-sample explain oversampling? This question has been in-
vestigated by Furl et al. (2019), who compared participants’ sampling rate
to that of a Bayesian computation model (see Chapter 2) with a negative
cost-to-sample parameter, that is, the model assigned a reward value to sam-
pling more options. This is effectively the opposite of implementing a time
cost (i.e., a positive cost-to-sample) to explain undersampling biases (Costa
& Averbeck, 2015). Yet, Furl et al. (2019) found that the choice thresholds pro-
duced by the ‘sample reward model’ did not match participants’ thresholds.
This suggests that oversampling biases cannot be explained by an endoge-
nous reward for sampling.

1.4.3 Monetary cost

The facial attractiveness task (as discussed in Section 1.3) may have been
unique, but Furl et al. (2019) were not the only researchers to report that
participants show an oversampling bias on an optimal stopping task. On a
generalised secretary problem (see Section 1.1) where recall of previously re-
jected options was allowed (see Sidebar 3), Zwick et al. (2003) reported that
participants oversampled when there was a fixed monetary cost-to-sample.
To avoid confusion with the previously defined cost-to-sample (time cost, see
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Section 1.4.2), I will henceforth refer to a monetary cost-to-sample as mone-
tary cost. The task employed by Zwick et al. (2003) was framed as an eco-
nomic scenario where participants attempted to select the best apartment to
rent. Compared to a condition without a monetary cost, participants sam-
pled less in the condition with a monetary cost. In other words, participants’
sampling rate decreased when a monetary cost was added. However, the op-
timal model decreased its sampling more than participants in the monetary
cost condition, resulting in participants showing an oversampling bias. In
this thesis, I consider only the influence of time cost on sampling biases (see
Section 1.4.2), and not monetary cost, as none of the studies presented here
include such an extrinsic cost-to-sample.

Sidebar 3: Recall. The classical secretary problem does not allow for
participants to go back and choose a previously rejected option (i.e.,
recall). However, there are certainly situations in everyday life where
recall is an option. A typical example in the field of optimal stopping
problems of a case where recall was possible is the story of how famous
astronomer Johannes Kepler (1571-1630) set out to find his second wife
(Ferguson, 1989). After interviewing eleven candidates and rejecting
all, he returned to candidate number five, won her over, and married
her. The possibility of recall was recognised early on, amongst others
by DeGroot (1968). DeGroot reasoned that sampling with recall only
extends an additional advantage on partial information problems, and
not on full information problems. If a certain option on a full informa-
tion problem was not considered good enough the first time around,
i.e., it did not pass the fixed threshold, it is never going to be good
enough and should therefore never be recalled. The fact that the possi-
bility of recall should not have an effect on sampling behaviour on the
full information problem does not mean that it has no effect. Indeed,
Kogut (1990) reported that if a monetary cost-to-sample is added to the
full information problem, recall increases to 42.6% of the time, com-
pared to 11% of the time when there is no monetary cost-to-sample,
despite the irrelevance of the recall option in both variants (monetary
cost/no monetary cost). On a partial information problem, however,
where sampling is needed to learn more about the true state of the
environment, options that seemed insufficient at an early stage could
become acceptable at a later stage if the true state of the environment is
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not as favourable as the decision maker thought it was (DeGroot, 1968).

1.4.4 Reward structure

There are conflicting findings regarding the effect of reward structure on
sampling behaviour. With the term ‘reward structure’ I refer to the way par-
ticipants are compensated for their participation in a study, including any
additional (extrinsic) rewards that may be obtained by participants along the
way (e.g., bonus payments). A study by Hsiao and Kemp (2020), described
the effect of different reward structures on search behaviour in two secre-
tary problems. The results indicated that when participants were rewarded
only for obtaining the best option in the sequence (one of the assumptions
of the classical secretary problem), they searched longer in both paradigms
compared to the ‘commission base’ and ‘flat fee’ reward structures. Further-
more, participants in the ‘best only’ group more frequently obtained the best
option, indicating that their search behaviour was more optimal.

A study by Campbell and Lee (2006), however, found that on a full
information problem, financial reward by itself did not impact performance.
The two possible reward structures in Campbell and Lee (2006) were ‘no ex-
trinsic reward’ and a ‘quota-piece rate scheme’ where participants were re-
warded for high performance. In the latter, participants were rewarded an
additional $5 after every 12 correct responses, on top of a $5 flat fee, with
a ceiling of $30. However, Campbell and Lee (2006) did not look at the ef-
fects on sampling rates, but rather on learning (improvement over trials) and
overall performance (proportion of correct decisions). Neither was found to
be affected by financial reward.

The majority of the studies included in this thesis compensate par-
ticipants for their time with a flat fee, and do not incorporate any additional
reward structures that might affect performance. Participants who are paid
a flat fee are nevertheless instructed to try to obtain certain options, e.g., as
attractive an option as possible. In obtaining these, participants presumably
experience some kind of intrinsic reward, in line with performing as they are
instructed, that motivates the strategies they use. Chapter 5 makes a hum-
ble contribution to the literature on reward structures by comparing a flat
fee reward structure to a reward structure where participants receive bonus
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payments on top of a flat fee for obtaining the best, second best, or third best
option in the sequence (as implemented in Costa & Averbeck, 2015).

1.4.5 Previous values

Lee (2006) investigated whether a participant’s choice to stop sampling on
a full information problem is sensitive to previous options that were seen.
However, the results showed that there was no such relationship between
rejected options and the chosen option. Neither the immediately preceding
option nor any other preceding options were predictive of whether or not
an option would be chosen. Therefore, Lee (2006) concludes that models
of human behaviour on optimal stopping tasks do not need to be sensitive
to previous values in a sequence to explain performance. This finding was
later confirmed in Guan et al. (2014) and Guan and Lee (2018), who found
that participants’ choice thresholds were independent of the preceding value
in a particular sequence, meaning that participants did not make decisions
based on the context provided by earlier options. Similar results have been
observed on a classical secretary problem. Seale and Rapoport (2000) inves-
tigated two models where the agent keeps count of either high-ranked or
low-ranked options, and only makes a decision after a certain number of
high-ranked or low-ranked options has been seen. However, neither model
was found to be a good description of human decision-making with the ma-
jority of participants (84%) adhering to a threshold model instead (the cutoff
model; see Chapter 2, Section 2.1.3 for a more detailed description). Follow-
ing the evidence presented here that previous values in a sequence do not
significantly affect whether the next option is chosen, I will not further touch
upon this topic in this thesis.

1.4.6 Relevance

To summarise, in this thesis I will further discuss the effect of varying gener-
ating distributions. Specifically, Chapter 4 includes a thorough investigation
of the moments of the generating distribution and their influence on partici-
pants’ sampling rate. Furthermore, Chapter 5 contributes to the research on
reward structure by examining whether awarding bonus payments for the
three highest ranking options could affect participants’ sampling rate. Also
addressed in Chapter 5 is time cost. Specifically, I compare an optimal stop-
ping task with fixed timings to a self-paced optimal stopping task to see if
this has an effect on participants’ sampling bias. Time cost is not further
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addressed in any of my other experimental chapters as they aim to explain
human oversampling biases on full information problems. Previously re-
search has found that time cost was only able to explain undersampling bi-
ases (Costa & Averbeck, 2015; Kahan et al., 1967; Seale & Rapoport, 1997),
which logically makes sense. If participants sample with an endogenous cost
of search in mind, sampling more options than optimal would reduce the
participants’ payoff per unit time (Seale & Rapoport, 2000). As mentioned
before in Section 1.4.3, none of the studies presented in this thesis include
an extrinsic monetary cost-to-sample which is why I will not further discuss
this task feature, nor will I focus on previous values as these cannot explain
participants’ performance (Lee, 2006).

1.5 Neural correlates of decision-making on opti-

mal stopping tasks

Fundamental to understanding sampling biases on optimal stopping prob-
lems is to delineate the underlying neural correlates of decision-making on
these kind of tasks. Optimal stopping tasks require participants to make
prospective decisions where they weigh current rewards against prospec-
tive probability of future reward. In other words, participants must either
take the current option or decline it with prospective expectations of a better
future option. Previous research has linked several areas to prospective de-
cision making, including the dorsal anterior cingulate cortex (dACC), dorso-
lateral prefrontal cortex (DLPFC), posterior cingulate cortex and perigenual
anterior cingulate cortex (pgACC) (Kolling et al., 2016a; Kolling et al., 2018;
Kolling et al., 2016b). However, these studies do not incorporate evidence
seeking (i.e., sampling of options to gain information) in their task design.
For optimal stopping tasks, evidence seeking can be considered its principal
feature (Kolling et al., 2018).

One of the key papers that discusses the neural correlates of prospec-
tive decision-making on optimal stopping problems is Costa and Averbeck
(2015). In their study, participants made decisions on an economic optimal
stopping task (e.g., ‘find a car with the lowest mileage’) and were rewarded
for picking one of top three highest ranking options. Option lists were drawn
from 14 different categories (e.g., buying a subway ticket, a television, or rent-
ing an apartment), and sequences comprised either 8 or 12 options. Partici-
pants’ sampling behaviour was compared to that of a Bayesian ideal observer
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model, and results showed that participants sampled too little compared to
the optimal model (Costa & Averbeck, 2015). More interestingly, when exam-
ining the contrast between choices to take an option versus choices to decline
an option, a robustly activated set of areas was revealed:

• Anterior insula bilaterally
• Dorsal anterior cingulate cortex
• Ventral striatum
• Parietal-frontal areas - specifically left lateralised dorsal parietal cortex

and left lateralised prefrontal cortex

The reason Costa and Averbeck (2015) looked specifically at the con-
trast between take versus decline choices was because this particular con-
trast resembles the crossing of the choice threshold (see Section 1.1.4). A
contrast between take versus decline choices (take > decline) should be in-
terpreted as the blood oxygenation level-dependent (BOLD) response that is
unique for choices to take the current option. The take versus decline contrast
is achieved by subtracting the BOLD response for decline choices from the
BOLD response for take choices (take - decline). Costa and Averbeck (2015)
also examined the opposite contrast, decline versus take choices (decline >

take), but found no significant clusters of voxels for this contrast.

The areas listed above are largely in alignment with other studies
investigating the neural correlates of take versus decline decisions, as imple-
mented in optimal stopping problems. Furl and Averbeck (2011), for exam-
ple, looked at similar prospective decisions in a related paradigm called the
beads task (see Sidebar 2). In both Costa and Averbeck (2015) and Furl and
Averbeck (2011), the contrast compares the choice to take an option (and stop
sampling) versus the choice to decline an option (and continue sampling).
Like Costa and Averbeck (2015), Furl and Averbeck (2011) reported activa-
tion in the anterior insula, anterior cingulate, ventral striatum, and parietal
cortex. Background information on the function(s) of the regions related to
prospective decision-making is provided below.

1.5.1 Anterior insula

The anterior insula is a bilateral cortical region that has many different func-
tions, including in decision-making (Furl & Averbeck, 2011; Loued-Khenissi
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et al., 2020). For example, previous research has found that the insula is in-
volved in processes like conscious error perception (Klein et al., 2013), un-
certainty (Huettel et al., 2005; Loued-Khenissi et al., 2020), and evaluating
stimulus significance (Thielscher & Pessoa, 2007). In the context of optimal
stopping problems (the beads task), activation in the insula was found to
be modulated by potential losses and expected gain (Furl & Averbeck, 2011).
This means that the size of the BOLD response in the insula covaried with the
action value Q (i.e., the expected gain), which corresponds to the action (take
or decline) chosen by the participant for each option. As such, the anterior
insula is thought to relate to the value of the current option, thus contributing
to the termination of evidence seeking, along with other areas as discussed
below (Furl & Averbeck, 2011).

1.5.2 Anterior cingulate cortex

Research in macaque monkeys has demonstrated that the ACC plays a vital
role in learning and maintaining the ongoing value of actions (Kennerley et
al., 2006). One of the ways in which the ACC is thought to compute action
values is through an integration of decision variables including action and
reward history, risk, and expected payoff (Kennerley et al., 2006). This is rel-
evant to optimal stopping problems, as calculating the value of either taking
or declining an option in a sequence is central to optimal decision making.
There is a robust body of research in humans supporting these findings. For
example, results on a patch foraging paradigm - a related decision-making
task - reported that humans retain the values of past choices as well as the
prediction of future choice values in the dACC (Wittmann et al., 2016). More-
over, not only does the dACC hold past and future choice values, it encodes
the value of explorations, i.e., search values, as well (Kolling et al., 2016b). All
in all, the ACC appears to play a crucial role in evaluating potential future
actions (Schuck et al., 2015; Wittmann et al., 2016), which is a key compo-
nent of optimal stopping tasks. In addition to its role in computing action
values, the ACC has also been found to have a function in response conflict
(Knutson et al., 2007; Ridderinkhof et al., 2004) and reward (Haber & Knut-
son, 2010). Kuhnen and Knutson (2005), for example, found activation in the
ACC related to gain outcomes on a financial decision-making task, particu-
larly under conditions of increased response conflict.
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1.5.3 Ventral striatum

The ventral striatum is a key structure that responds to reward (Haber &
Knutson, 2010). Specifically, activation in the ventral striatum is associated
with the anticipation of rewards, i.e., monetary gain (Haber & Knutson, 2010;
Jauhar et al., 2021; Knutson et al., 2001a; Knutson et al., 2001b). This role of
the ventral striatum in reward on optimal stopping tasks has been confirmed
by Costa and Averbeck (2015), who reported that neural responses in the
ventral striatum were parametrically modulated by the size of the reward
outcome. An alternative hypothesis might be that activation in the ventral
striatum could be related to the anticipation of the reward feedback screen
in the take versus decline contrast. In Costa and Averbeck (2015), when a
decision maker has decided to take an option, they are directed to a reward
feedback screen showing them whether they had won $5, $3, or $1 (or noth-
ing). It is possible that the ventral striatum played a role in the anticipation
of this reward feedback screen after an option had been chosen.

1.5.4 Parietal cortex

For take versus decline choices, both Costa and Averbeck (2015) and Furl
and Averbeck (2011) report peak activation in the inferior parietal lobule.
However, the parietal cortex comprises many other sub-regions. Aside from
the inferior parietal lobule, I here also discuss the posterior parietal cortex as
this sub-region seems involved in processes relevant to prospective decision-
making.

The parietal cortex plays an important role in selective attention
(Kastner & Ungerleider, 2000) and decision making. Studies in macaque
monkeys, for example, have shown that planning movements to make a free
choice between targets activated the parietal cortex as well as the frontal cor-
tex (Pesaran et al., 2008; Platt & Glimcher, 1999). Furthermore, Platt and
Glimcher (1999) found that the gain expected from each possible action (i.e.,
the action values) correlated with activation of posterior parietal neurons,
which is in line with research suggesting that the parietal cortex is involved
in the integration of evidence as it is collected (Kiani & Shadlen, 2009). In
fact, there is considerable support for the parietal cortex, and particularly
the lateral intraparietal cortex, to be involved in evidence accumulation in
monkeys (Beck et al., 2008; Shadlen & Newsome, 1996). Despite the role of
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the posterior parietal cortex in evidence accumulation, this area has not been
previously linked to decision-making on optimal stopping tasks.

Instead, Furl and Averbeck (2011) found that on the beads task, acti-
vation in the inferior parietal lobule was associated with decision thresholds
and sampling rate. Specifically, Furl and Averbeck (2011) reported that for
take > decline decisions, the size of the BOLD response in the parietal cor-
tex showed a significant linear relationship with individual differences in the
participants’ mean number of samples, with parietal responses being greater
for participants’ who sampled more options. Furthermore, an electroen-
cephalogram (EEG) study by Kopp et al. (2016) on the beads task showed
that manipulations of prior probabilities and likelihoods (i.e., Bayesian infer-
ence) were associated with amplitude variations in event-related potentials
(ERPs) in the frontal cortex and parietal cortex, respectively. Not only does
this study demonstrate the capability of the human brain for Bayesian infer-
ence, it highlights the role of the parietal cortex as well as the frontal cortex in
decision-making on the beads task (which, as we know, is a type of optimal
stopping problem).

1.5.5 Prefrontal cortex

Like the parietal cortex, the prefrontal cortex comprises a large region con-
sisting of many sub-regions. Costa and Averbeck (2015) report activity in the
DLPFC as well as the ventromedial prefrontal cortex (VMPFC), and these are
therefore the two sub-regions I will focus on here.

The previous section already highlighted that the prefrontal cortex
is co-activated with the parietal cortex in a decision-making task in mon-
keys (Pesaran et al., 2008), as well as in the computation of prior probabili-
ties and likelihoods on the beads task in humans (Kopp et al., 2016). How-
ever, this area has many more functions in cognitive control and decision-
making (Domenech & Koechlin, 2015; Ridderinkhof et al., 2004). Teuchies
et al. (2016), for example, found evidence that activity in the DLPFC was re-
lated to intentional choice in humans. Furthermore, Lin et al. (2020) found
that the DLPFC played a role in value computation during decision making
in macaque monkeys, and Philiastides et al. (2011) found that the DLPFC
is involved in evidence accumulation during perceptual decision making in
humans. Quite telling is for example the study by Banca et al. (2016), which
looked at evidence accumulation (a measure of impulsivity) on the beads
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task in both binge drinkers and healthy volunteers, and the relationship with
brain volume using voxel-based morphometry. The results showed that less
evidence accumulation on the beads task was related to smaller DLPFC and
interior parietal volumes (Banca et al., 2016). These results are in line with the
findings of Furl and Averbeck (2011), who reported that for take > decline
decisions, the size of the BOLD response in the DLPFC showed a signifi-
cant linear relationship with individual differences in the participants’ mean
number of samples, with DLPFC responses being greater for participants’
who sampled more options.

Another study that investigated evidence accumulation on a type
of optimal stopping task is Gluth et al. (2012). In Gluth et al. (2012)’s task,
participants were presented with a stock of an unknown value, and they had
to decide whether to buy or reject the stock offer. If a participant chose to
reject an offer, they were presented with either a positive or a negative rating
of the stock (generated randomly), thus providing an indication of its value.
There was, however, a fixed monetary cost-to-sample. If a participant chose
to buy the stock, they could earn additional bonus payments depending on
the value of the stock. There were 32 trials of six stock offers. On this task,
activation in the caudate nucleus and anterior insula was associated with
evidence accumulation, while activation in the VMPFC, orbitofrontal cortex
and ventral striatum was related to the updating of value information (Gluth
et al., 2012). Research in the field of neuroeconomics, and specifically on
value-based decision-making, extends these findings by identifying that it is
the subjective value associated with a stimulus that is encoded in the VMPFC
(Brosch & Sander, 2013; Levy & Glimcher, 2012). On the facial attractiveness
task (Furl et al., 2019), it is an individual’s subjective value of a face that leads
to the decision of whether that face will be chosen. As such, the VMPFC
is likely to be an important brain area for decision making on the optimal
stopping tasks described in this thesis.

To sum up, the prefrontal cortex is involved in many aspects of
decision-making on optimal stopping tasks, including, for example, evidence
accumulation (Banca et al., 2016; Furl & Averbeck, 2011; Philiastides et al.,
2011) and value computation (Gluth et al., 2012; Lin et al., 2020).
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1.5.6 Relevance

As outlined in Section 1.2, humans have been observed to display different
sampling biases. In the context of optimal stopping problems, the neural
correlates of prospective decision-making as listed above have thus far only
been described for tasks where humans show an undersampling bias (Costa
& Averbeck, 2015; Furl & Averbeck, 2011). Hence, the question remains
whether activation in the same areas is correlated with take versus decline
decisions on optimal stopping tasks where humans are known to show an
oversampling bias. Evidence for this is needed to be able to draw compelling
conclusions about the underlying neural correlates of decision making on op-
timal stopping problems. The functional magnetic resonance imaging (fMRI)
study described in Chapter 6 of this thesis addresses this query.

1.6 Research questions and thesis outline

The main aim of this thesis is to understand human sampling biases on full
information optimal stopping problems. In other words, to compare human
sampling rates to those of an optimal model, and to determine whether hu-
mans oversample, undersample, or perhaps sample optimally. Previous liter-
ature has found evidence for both undersampling and oversampling biases,
which, together with the evidence presented in Sections 1.3, 1.4 and 1.5, led
me to my sub-questions:

1. Are sampling biases dependent on the decision-making domain?
2. Can certain task features explain sampling biases?
3. Which brain areas correlate with prospective decision-making on opti-

mal stopping tasks?

1.6.1 Thesis outline

Aside from the introduction, this thesis comprises a methodology chapter,
four experimental chapters, and a discussion. A reference list is provided
at the end of each chapter. What follows in this section is an outline of the
content covered in each chapter. Note that the full rationale for each of my
experimental chapters can be found within the chapter itself and will not be
presented here.
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Chapter 2 focuses on the methodology of this thesis. Within this
chapter, I clarify some of the design and methodological decisions I have
made. This information is complementary to the methods sections in each
individual chapter. Topics covered in Chapter 2 include a critical analysis
of the Bayesian ideal observer model, a justification for the choice of online
methods, the results of a pilot study, and details regarding my fMRI study.

In Chapter 3 I discuss two studies which together address one of
the key questions that emerged from the literature (Section 1.3): are oversam-
pling biases an intrinsic feature of personal mate choice decisions? To answer
this question, I investigate sampling decisions when participants choose at-
tractive dates on a client’s behalf (Study 1) and when participants evaluate
the trustworthiness of faces rather than attractiveness (Study 2). Addition-
ally, I provide a computational model comparison of different models of hu-
man behaviour in the Supplementary Materials of Chapter 3.

Following on from the results of Chapter 3, I investigate three dis-
tinct image-based decision-making domains in Chapter 4 using different sets
of images. Within Chapter 4, I cover two studies aimed at convergent re-
sults. The main aim of the chapter is to test whether sampling rates across
different decision-making domains depend on a) different over- or under-
sampling biases, or b) the moments of the generating distributions (as shown
for economic-number based tasks, see Section 1.4.1).

As described, the studies reported in Chapters 3 and 4 all employed
an image-based optimal stopping task. The three studies discussed in Chap-
ter 5, however, use economic number-based paradigms. The aim of the first
two studies described in Chapter 5 is to determine whether the type of stim-
ulus is linked to over- or undersampling biases. The third study takes it one
step further and investigates additional task features, as well as the optimal
model’s generating distribution, and their effects on participants’ sampling
rate.

The fMRI study detailed in Chapter 6 looks into the neural corre-
lates of evidence seeking, specifically on an optimal stopping task where
oversampling biases have been reported in the past (Furl et al., 2019). The
aim of this chapter is to determine whether the decision network involved in
the decision to stop sampling on economic optimal stopping tasks (where
participants sample too few options, see Section 1.5), is also involved in
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prospective social decisions on a mate choice optimal stopping task.

In the final chapter of this thesis, Chapter 7, I provide a summary
of the experimental findings and discuss implications for the field. Further-
more, I provide a critical evaluation of the work, after which I highlight the
theoretical contribution of this thesis. I end Chapter 7 with a conclusion,
which draws together the research described within the main body of this
thesis.
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Chapter 2

Methodology

Within this chapter, I summarise the key methodology used within this the-
sis to address my main aim of explaining human oversampling biases on
full information optimal stopping problems. As discussed in Chapter 1, the
rationale for this research aim is the oversampling bias reported by Furl et
al. (2019), which was in contrast with the majority of previous research on
full information problems, which reported undersampling instead (e.g., Bau-
mann et al., 2020; Cardinale et al., 2021; Costa & Averbeck, 2015). To identify
human biases, participants’ behaviour must be compared to a model of op-
timality. For the studies included in this thesis, I have chosen to compare
participants’ sampling behaviour to that of a Bayesian ideal observer model.
In Section 2.1, I present a critical evaluation of this model as well as alter-
native approaches, thereby justifying my choice for the Bayesian model. A
second choice I have made is to conduct some studies in the lab and some on-
line. In Section 2.2, I explain why this thesis does not only include traditional
lab-based behavioural studies, but includes online studies as well that utilise
novel technologies. Also described in this section are the results of a pilot
study which I conducted to determine the reliability of using online methods
for full information optimal stopping problems. I note that a complete de-
scription of the methodology used for each of my studies can be found in the
methods section of the chapter concerned.

2.1 Bayesian models versus heuristics models

In this section, I provide a critical evaluation of the Bayesian ideal observer
model to which I compare participants’ behaviour in my studies, showing
why it is the most suitable for answering my research questions. First, I
will briefly describe the assumptions of Bayesian modelling in general, after
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which I focus specifically on my model specification. Finally, I will discuss
an alternative non-optimal framework of heuristics models.

2.1.1 Bayesian modelling

Bayesian models are often used for developing computational models of hu-
man behaviour (Chambers & Kording, 2018). The foundation for Bayesian
models lies in probability theory and particularly Bayes’ theorem, which de-
scribes the probability of an outcome, based on prior knowledge and beliefs
(hypothesis h). Bayes’ theorem then updates its prior to posterior probabili-
ties, based on the data encountered (d) (Tenenbaum et al., 2011). Mathemati-
cally, Bayes’ theorem is stated as

P(h | d) =
P(d | h)P(h)

P(d)
(2.1)

with P(h | d) being the posterior probability, P(h) and P(d) being the prior
probabilities of h and d, and P(d | h) being the likelihood of h given d.

Throughout my thesis, I employ a model of optimality know as
the Bayesian ideal observer model. The term ideal observer refers to what is
known in the literature as the mathematical solution. The mathematical solu-
tion stands for the characterisation of the problem people are solving and
its ideal solution (Griffiths et al., 2012; Marr, 1982) (i.e., Equation 2.1). This
means that the Bayesian ideal observer model does not imply that people are
actually computing the optimal solution through Bayes’ theorem (Griffiths
et al., 2012). Instead, it simply characterises the problem people are solving,
rather than the mechanism by which they might be solving it (Griffiths et al.,
2012).

In the Supplementary Materials of Chapter 3, I compare partici-
pants’ behaviour not only to the Bayesian ideal observer model, but to three
additional Bayesian computational models of human behaviour (see Sidebar
4). These computation models appeal to the so-called algorithmic procedure
(Griffiths et al., 2012; Marr, 1982; Shi et al., 2010), which refers to the cognitive
processes underlying decision-making (Griffiths et al., 2012). In other words,
the computational models specify the computational mechanisms that hu-
mans might be using to solve a task. These models of decision-making bi-
ases can be viewed as hypotheses about cognitive processes. As Al-Shawaf
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and Buss (2011) state, Bayesian models could assist in the endeavor to eluci-
date computational mechanisms underlying human behaviour. The benefit
of using Bayesian models for the purpose of identifying the cognitive pro-
cesses that may underlie sampling biases on optimal stopping tasks is that
they clarify the bias that is being approximated and the nature of the bias
approximation (Griffiths et al., 2012). In my case, I parameterise the optimal
model to formulate hypotheses about where in its otherwise optimal work-
flow this parameterised bias might exert its influence. Another advantage of
using Bayesian models is that Bayesian models allow for the explicit integra-
tion of a prior hypothesis h with new data d (Heit & Erickson, 2011). This
incorporation of a prior hypothesis resembles a crucial element of human
decision making, which is often based on prior knowledge and experience
(Heit & Erickson, 2011).

Sidebar 4: Bayesian theoretical models. The Bayesian ideal observer
model can be adapted to become a theoretical model of human be-
haviour instead of an optimal model by altering the input and/or
model values. In this way, the cognitive processes underlying sam-
pling biases can be approximated. Consider, for example, the cost-to-
sample parameter. By treating the cost-to-sample parameter as a free
parameter, it can be optimised to resemble human sampling behaviour.
Optimisation of free parameters can be achieved in several ways. For
example, one could select a value for the parameter that produces sam-
pling rates equal to that of the mean participant (Furl et al., 2019), or
one could employ methods used in the machine learning literature and
minimise the negative log likelihood. The result is a theoretical model
with a cost-to-sample parameter that is either positive or negative. If
after optimisation the cost-to-sample parameter is positive, it could be
the case that participants make decisions with an intrinsic time cost in
mind which leads to undersampling (see Section 1.4.2). On the other
hand, if after optimisation the cost-to-sample parameter is negative,
participants could find sampling intrinsically rewarding, and conse-
quently oversample. I consider this and other such parameterisations
in the Supplementary Materials of Chapter 3.

There is an ongoing debate in the literature regarding the contribu-
tion of Bayesian models to cognitive theory (e.g., Al-Shawaf & Buss, 2011;
Bowers & Davis, 2012; Griffiths et al., 2012; Heit & Erickson, 2011; Jones
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& Love, 2011). Jones and Love (2011) argue that before Bayesian models
can be used to understand the cognitive processes underlying human be-
haviour, more clarity is needed regarding what can be claimed from the
findings. In other words, it should be made clear whether the Bayesian
model appeals to the mathematical solution or the algorithmic procedure.
As mentioned above, the Bayesian computational models described in the
Supplementary Materials of Chapter 3 appeal to the algorithmic procedure,
while the Bayesian ideal observer model, as implemented everywhere else
throughout this thesis, appeals to the mathematical procedure.

2.1.2 Bayesian ideal observer model

As discussed in Chapter 1, some of the first to propose an optimal solution to
full information optimal stopping problems are Gilbert and Mosteller (1966).
Since in full information problems the actual value of an option is presented,
rather than its relative rank, a decision maker can decide on a threshold for
each position in the sequence at which they will choose an option. When a
value exceeds the threshold for that position in the sequence, it is chosen by
the decision maker (Lee et al., 2005). The Bayesian ideal observer model is the
same as Gilbert and Mosteller (1966) in that it computes the expected values
of future options under the assumed-to-be normal generating distribution 1

via a backwards induction technique (see Sidebar 1). The original model by
Gilbert and Mosteller (1966) knows the mean and variance of the generat-
ing distribution for all sequence options, and that the reward values of the
sequence ranks are equal to the option values. The Bayesian ideal observer
model extends this framework by adding to it 1) a generating distribution
that is initialised with a prior distribution which is then updated after each
new sample using Bayes’ rule, 2) a cost-to-sample parameter, and 3) function-
ality for the researcher to apply any arbitrary reward function to the choice
outcomes. Theoretically, at each position in the sequence, the ideal observer
model computes the respective values for choosing the option and declining
the option, and chooses the one with the highest value. The value for declin-
ing an option can be considered the choice threshold, as no option is chosen
unless the value for choosing an option exceeds the value for declining an
option. The choice threshold is dynamic, and can change depending on the
position in the sequence.

1Recall that the generating distribution refers to the distribution that generates the values
of the options in a sequence.
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The Gilbert and Mosteller model (Gilbert & Mosteller, 1966) has his-
torically been regarded in the optimal stopping literature as the optimal solu-
tion to full information problems (e.g., Baumann et al., 2020; Guan et al., 2015;
Lee et al., 2005; Samuel-Cahn, 1996). The Bayesian ideal observer model,
which is an advanced version of the Gilbert and Mosteller model, has also
gained some attention in recent years, with previous research employing the
model on full information problems including number-based tasks (Cardi-
nale et al., 2021; Costa & Averbeck, 2015), the facial attractiveness task (Furl
et al., 2019), and the beads task (Furl & Averbeck, 2011). I will now outline
my reasons for choosing the Bayesian ideal observer model as the model of
optimality for the studies within this thesis.

Bayesian approaches have been successful in modelling human be-
haviour in a plethora of complex domains including, for example, language
(Griffiths et al., 2007), reasoning (Kemp & Tenenbaum, 2009), categorisation
(Anderson, 1991), and magnitude estimation (Petzschner et al., 2015). Like
the Bayesian ideal observer model, most of these Bayesian cognitive models
appeal to the mathematical solution as described in Section 2.1 (Sanborn &
Chater, 2016). This shows that the use of Bayesian (optimal) models finds
wide support within the behavioural science literature, even extending to
other fields including neuroscience, economics and philosophy (Chater et al.,
2020). Because of this wide implementation of Bayesian approaches, the the-
oretical contributions of this thesis could potentially apply to a wider range
of domains (Griffiths et al., 2012).

Furthermore, the facial attractiveness task and its irregular findings
of oversampling form the outset of this thesis. To further investigate the over-
sampling bias reported by Furl et al. (2019), I chose to use the same model of
optimality as these authors. This means that not only do I use the Bayesian
ideal observer model, the model parameters (i.e., the mean and variance of
the prior distribution, the reward function and the cost-to-sample parameter)
were also specified in the same way as Furl et al. (2019). As mentioned before,
the Bayesian ideal observer model is an advanced version of the Gilbert and
Mosteller model (Gilbert & Mosteller, 1966) which is historically used in the
literature for full information problems. The added functionalities, particu-
larly the implementation of Bayes’ rule and the reward function, are suited
to model the task features as implemented in the facial attractiveness task,
as Furl et al. (2019) have demonstrated by using the Bayesian ideal observer
model for their studies.
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Having provided a justification for my choice for the Bayesian ideal
observer model as the model of optimality in my studies, I will now discuss
a set of alternative models of human behaviour which can be characterised
as heuristics models and explain why they are not suited to answering my
research questions.

2.1.3 Heuristics models

As discussed in Chapter 1, the optimal stopping problem originated as a
mathematics problem. Optimal stopping rules, such as the 37% rule for
the classical secretary problem, are therefore mathematically optimal solu-
tions to the problem. The development that followed was that researchers
started comparing human behaviour to these models of optimality. When
they found that humans did not (always) follow the optimal rule, they started
describing human sampling on optimal stopping tasks in terms of heuristics
models. Heuristics are matched to a particular environment and describe a
decision mechanism that people can use to make good decisions within in-
ternal (cognitive) and external (environmental) bounds (Todd & Gigerenzer,
2003). They do not represent the optimal solution to an optimal stopping
problem. In fact, some researchers that focus on heuristics models appear to
reject the usefulness of models of optimality due to their psychological im-
plausibility (Todd & Gigerenzer, 2003). Within this section I discuss some of
the benefits and limitation of heuristics models and demonstrate why heuris-
tics models are unsuitable for answering my research questions.

Todd and Gigerenzer (2001) argue that it is unnecessary for researchers
to compute the optimal solution and to use it to compare human behaviour
on optimal stopping tasks, because heuristics are able to describe human de-
cision making on these tasks. It is true that experimental studies have found
evidence for heuristics models fitting well with participants’ sampling be-
haviour on, for example, the classical secretary problem (Seale & Rapoport,
1997) and the secretary problem with cardinal payoffs (Todd & Miller, 1999).
However, these rules can quickly break down when the environment, i.e.,
the task design, is changed (Todd & Gigerenzer, 2003). The fact that heuris-
tics models require ad hoc specification of heuristic devices (Lee, 2006) has
led to a wide diversity in heuristics models in the optimal stopping litera-
ture. I illustrate this point here by describing several heuristics that have
been proposed for mate choice paradigms (e.g., paradigms like Furl et al.,
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2019, who investigated human sampling biases on the full information facial
attractiveness task).

• Best-of-N rule: sampling a certain number of options, after which the
best of those seen is chosen (Todd & Miller, 1999; Valone et al., 1996).
This heuristic is limited to paradigms where recall is permitted, and has
been found to explain not only human mate choice behaviour, but that
of animals as well (Seeley & Buhrman, 2001).

• Take-the-next-best rule: refrain from making any decisions for a fixed
proportion of options in the sequence, after the next top-ranked option
should be chosen (Beckage et al., 2009; Todd & Miller, 1999). In the
context of the classical secretary problem this heuristic is also known
as the cutoff model (Dudey & Todd, 2001; Sang et al., 2020; Seale &
Rapoport, 1997, 2000).

• Reservation rule: stop sampling if an option is presented that is of suf-
ficiently high value, i.e., exceeds a pre-set threshold or aspiration level
(Hey, 1987; Todd & Miller, 1999).

• Threshold rule: comprises a number of heuristics including the take-
the-next-best rule and reservation rule. An option has to exceed a cer-
tain value threshold for it to be chosen (Guan et al., 2014; Todd & Miller,
1999). Variations of this heuristic exist that describe situations where
humans change their threshold over time, for example as a result of
feedback (Beckage et al., 2009; Todd & Miller, 1999) or because they
are approaching the end of the sequence (the ‘prettier-at-closing-time
effect’, Eriksson & Strimling, 2009).

The list above illustrates both the diversity of heuristics models in
the optimal stopping literature, as well as the dependency of some of these
heuristics on specific task features. For example, Lee et al. (2005) reported
that the cutoff model, which was found to perform well on classical secretary
problems, was not a suitable model of human decision making on a full infor-
mation problem. Instead, on full information problems (non)linear threshold
models have been found to capture human sequential decision-making (Bau-
mann et al., 2020; Thomas et al., 2021). However, like most heuristics mod-
els, these (non)linear threshold models make a number of strong theoretical
assumptions including that "a participant uses the same thresholds for each
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problem, and there is no learning, adaptation, or self-regulation of the thresh-
olds after the practice problems have been completed." (p. 347, Guan & Lee,
2018). Therefore, while heuristics can provide accurate ecologically-valid de-
scriptions of human behaviour, their application is limited. Bayesian mod-
els, on the other hand, can be used as powerful, robust yet flexible tools for
modelling human behaviour. As Griffiths et al. (2012) points out, Bayesian
models can be modified to represent hypotheses about the cognitive process
that underlie human behaviour. The benefit of using Bayesian models to de-
scribe human behaviour is that they are less task-dependent than heuristics
models because they stem directly from the optimal solution, rather than the
ad hoc solutions implemented in heuristics models. As a proof of concept,
in the Supplementary Materials of Chapter 3 I demonstrate that Bayesian
computational models of human behaviour better fit participants’ data than
a heuristics model.

To summarise, I have claimed above that Bayesian models show the
most potential, as heuristics models do not generalise well to problems out-
side their narrow domains and may therefore not be able to provide the stan-
dardisation needed to compare the optimal stopping literature. As outlined
in the Introduction, sampling behaviour on optimal stopping tasks is heavily
task-dependent. Without a standard measure (i.e., an optimality benchmark)
against which to compare human sampling rates, it becomes nearly impossi-
ble to explain differences in sampling biases, and consequently, nearly im-
possible to explain human oversampling biases on full information prob-
lems. Heuristics models could potentially be used to describe the cognitive
processes underlying sampling biases, but the Bayesian ideal observer model
can be modified to achieve the same goal. This thesis preeminently focuses
on comparisons between human behaviour and optimality benchmarks, for
which heuristics are by definition sub-optimal. However, one sub-element of
this thesis (Supplementary Materials of Chapter 3) does compare Bayesian
theoretical models to human behaviour. In this model comparison, I also
compare these models against the most prominent heuristic for modelling
optimal stopping problems; the cutoff model (Dudey & Todd, 2001; Sang et
al., 2020; Seale & Rapoport, 1997, 2000).
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2.2 Online methods for behavioural studies

Some behavioural studies described in this thesis follow a more traditional
lab-based protocol, while others are designed and executed using online meth-
ods. Within this section, I will provide further clarification for why I chose to
use online methods, how I mitigated some of the concerns regarding online
methods, and I report the results of a pilot study.

2.2.1 Benefits

Some of the benefits of online methods include ease-of-use, low cost, and
quick collection of large, representative samples (Anwyl-Irvine et al., 2020b;
Casler et al., 2013; Craig et al., 2013; Hauser et al., 2018; Palan & Schitter,
2018; Sheehan, 2018). The latter especially has been identified as a desidera-
tum. Peterson (2001) for example, concluded from their large second-order
meta-analysis that the effects observed in a typical student population can-
not simply be extended to a non-student (adult) population. Therefore, all
online studies described in this thesis include a random sample of partici-
pants, consisting of both students and non-students.

Additionally, online methods have been identified as a promising
tool to improve the replicability of scientific research. A variety of traditional
laboratory findings have been replicated in online versions, ranging from
studies on cognition and cognitive psychology (Carpenter et al., 2019; Crump
et al., 2013; Kochari, 2019) to judgement and decision-making (Paolacci et al.,
2010) and learning (Casler et al., 2013).

There are myriads of online recruitment platforms available, with
the two biggest and most popular being Amazon Mechanical Turk (MTurk)
and Prolific. For my behavioural studies, I have chosen to use Prolific, as this
service has been found to have high internal reliability, high transparency (to-
wards both participants and researchers), good reproducibility, and a lower
level of dishonesty, compared to other platforms (Palan & Schitter, 2018; Peer
et al., 2017).

2.2.2 Concerns

Some researchers have raised concerns regarding the use of online recruit-
ment platforms. Ford (2017), for example, noted that a sample obtained
through the MTurk platform may contain ‘speeders’ and ‘cheaters’. Speeders
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are participants who do not pay attention to the task and whose primary goal
is to finish as quickly as possible. Cheaters are participants who provide in-
correct information about themselves in order to be included in more studies
so they can make more money (Ford, 2017). Kees et al. (2017b) note that the
concerns raised by Ford (2017) are applicable to most online data sources. To
mitigate these concerns and to improve data quality, researchers have sought
to provide guidelines for online data collection (Hauser et al., 2018; Kees et
al., 2017a; Sheehan, 2018). Here, I summarise some of these guidelines in-
cluding how I implement them in my online behavioural studies.

• Ensuring attentiveness (Hauser et al., 2018; Kees et al., 2017a; Sheehan,
2018): including attention checks to ensure attentiveness is generally
considered good practice, and it is encouraged by Prolific. I included
attention checks in the majority of my studies, unless the study was
very short (∼10min or less), in which case including attention checks
is deemed unnecessary. Participants who do not pass > 75% of the
attention checks are excluded from the data analysis.

• Language comprehension (Hauser et al., 2018): as participants may
be recruited from anywhere in the world, it is important to set certain
prerequisites to ensure language comprehension. Hauser et al. (2018)
suggest to include "only those in the geographic regions that are likely
to speak the language of the survey fluently" (p. 18). I implement this
suggestion in the online study described in Chapter 4. For the studies
described in Chapter 5, I use one of Prolific’s pre-screening questions
to only include participants who had indicated they were fluent in the
English language.

• Minimizing non-naivete (Hauser et al., 2018): there is some evidence
that repeated exposure to optimal stopping problems can lead to learn-
ing and improved task performance (Goldstein et al., 2017). Therefore,
following the recommendations made by Hauser et al. (2018), I have
made every possible attempt to prevent participants from completing
more than one of my studies, including the use of Prolific’s exclusion
criteria.

In the context of this thesis, one limitation of using online methods
is that online studies are more limited in the duration that participants can
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be asked to be attentive for. Therefore, in this thesis, online studies will be re-
served for assessing sampling bias only. That is, I will compare participants’
sampling rates from online studies only to the Bayesian ideal observer model
described above (Section 2.1.2). Theoretical modelling of the cognitive pro-
cesses underlying decision-making, as implemented in Study 2 of Furl et al.
(2019), involves a model fitting procedure that is likely to be more effective
with more trials per participant. Because it takes at least an hour to obtain the
amount of data needed to facilitate model fitting, which exceeds the duration
of an ordinary online study, the computational model comparisons as imple-
mented in the Supplementary Materials of Chapter 3 (which require model
fitting) are performed on longer, lab-based studies.

2.2.3 Pilot study

I conducted a pilot study to determine whether online methods can reliably
be used to investigate sampling biases on optimal stopping problems. I chose
to pre-test the facial attractiveness paradigm (described in Chapter 1, Section
1.3) as this paradigm is of particular importance to answering my research
questions, and it allows for a direct comparison with previous research (Furl
et al., 2019). If the results replicate the oversampling bias reported in lab stud-
ies (Furl et al., 2019), the pilot study is considered successful. Additionally,
lab studies found that participants on average ended up with lower-ranked
options compared to the optimal model, which I investigate here as well.

Participants

The pilot study was approved by Royal Holloway, University of London’s
ethics board. Informed consent was obtained from all participants before the
start of the study, in accordance with the Declaration of Helsinki. The sample
size (N = 20) was based on power analyses derived from Furl et al. (2019).
Gorilla Experiment Builder (Anwyl-Irvine et al., 2020a) was used to create
and host the pilot study, and participants were recruited through the on-
line recruitment service Prolific (Prolific, 2014). Two participant prerequisites
were set, the first being age (between 18 and 35), as this roughly matched the
age range of the faces shown in the study. The second prerequisite was na-
tionality (either United Kingdom (UK), Ireland, United States (US), Canada,
Australia or New Zealand), which was set under the assumption that partic-
ipants with these nationalities would have a good command of the English
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language, and would therefore be able to sufficiently understand the instruc-
tions and informed consent form. One participant exceeded the time limit set
on the Gorilla (2x estimated completion time), which is why data from only
19 participants was saved on Gorilla’s server (14 female participants, 15 UK
nationals, Mage = 25.0 years, SDage = 3.25 years).

Materials and methods

The methods for the pilot study were broadly taken from the methods used
across the three studies described in Furl et al. (2019). After presenting the in-
struction sheet and consent form, participants were asked to choose whether
they would like to rate (and date) males or females. Based on their answers,
each was shown either male or female faces throughout the study.

In phase one of the study, participants rated 180 faces in total (90
unique faces, all rated twice) using a slider scale ranging from very unattrac-
tive (value 1) to very attractive (value 100), with the initial marker position
set to the middle of the slider. Final attractiveness ratings were computed
from the mean of the two ratings. Face images were randomly selected from
a larger set of 426 images as used by Furl et al. (2019). An attention check2

was added to phase one to compensate for the unsupervised nature of online
data collection, which was passed by all participants.

In the second phase of the study, participants were shown six se-
quences of eight faces each. Faces were randomly sampled from the entire
distribution of faces that had been rated in phase one. Participants attempted
to choose the most attractive person in the sequence as their date, with the
restriction that they could not return to a previously rejected date. The num-
ber of options remaining was shown at the top of the screen, and the rejected
‘dates’ were shown at the bottom of the screen. When a participant made
a choice, they had to advance through a series of grey squares that replaced
the remaining faces. This ensured that participants could not finish the study
early by choosing an early option. The entire study was self-paced - partici-
pants advanced by using their mouse to click on the buttons on the screen. If
the last face in the sequence was reached, that person became their ‘date’ by
default. After finishing a sequence, participants were directed to a feedback
screen displaying the participant’s chosen face and the text: "Here is your

2For a full description of the attention check see the Supplementary Materials of either
Chapter 4 (Section S1), or Chapter 5 (Text A).
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new date! How rewarding is your choice?". Like Furl et al. (2019), partic-
ipants rated the reward value of their choice on a 9-point scale. Responses
to the feedback screen were analysed as a sanity check, but were otherwise
irrelevant to the goal of the pilot study.

The two dependent variables of interest are the position of the cho-
sen image in the sequence (i.e., number of samples), and the rank of the cho-
sen image (out of the images in the sequence). Both variables are a mean
value over six sequences for each participant, and can be compared to the
results of Furl et al. (2019).

Data analysis

Participants’ sampling behaviour was compared to the Bayesian ideal ob-
server model (Furl et al., 2019), where performance is Bayesian optimal and
the cost-to-sample parameter was fixed to zero (see Section 2.1.2). For a
mathematical description of the model, see, for example, Chapter 4, Section
2.2.3. Like the model implementation used in Furl et al. (2019), the Bayesian
ideal observer model received as input for each participant the subjective
values (final attractiveness ratings) of the sequence options as presented to
the participant in phase two. To approximate normality, ratings were log
transformed for each participant before being put into the model. The com-
parison of participants’ sampling behaviour to the ideal observer model was
done using MATLAB version 2015b (MATLAB, 2015). A p value of < .05 was
considered significant.

Results

Using standardised Cronbach’s alpha, I found a good internal consistency
between participants’ mean attractiveness rating and the self-reported re-
ward value of a chosen face (α = .854). This supports the validity of the ex-
perimental paradigm and indicates that participants’ subjective ratings cor-
respond well to endogenous reward values. Furthermore, as a sanity check, I
examined whether there was a relationship between participants’ self-reported
reward value and the position of the chosen face in the sequence. Expected
is a negative correlation between reward values and sequence position, as
faces at the last position in the sequence get chosen by default, whilst faces at
earlier positions get chosen because they are (supposedly) sufficiently attrac-
tive. Indeed, using Spearman’s rho, I found a negative correlation between
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the self-reported reward value and the position of the chosen face in the se-
quence (rs = -.74, p < .001).

The main results of the pilot study indicated that, compared to a
Bayesian ideal observer model, participants oversampled (t(18) = 5.9, p <

.001) and ended up with lower-ranked faces (t(18) = -2.7, p = .014) (Figure
2.1).

FIGURE 2.1: Distributions of the mean number of samples and
the mean rank for participants versus the Bayesian ideal ob-
server model. The red dots represent the mean, horizontal
black lines represent the median, boxes show the 25% and 75%
quantiles, and the whiskers represent the 95% confidence inter-

vals.

Conclusion

With a sample size of only 19 participants, the pilot study replicated the find-
ings of previous lab-based research (Furl et al., 2019). This highlights the
robustness of the facial attractiveness paradigm, and indicates that online
methods (specifically Gorilla and Prolific) may provide a reliable alternative
to traditional methods in optimal stopping research. Furthermore, I inter-
preted the results of the sanity check as indicating that participants behaved
rationally and in line with the expectations of how they should interact with
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the task. The good internal consistency between participants’ mean attrac-
tiveness rating and the self-reported reward value of a chosen face is sugges-
tive that there are no changes in subjective ratings before and after complet-
ing the optimal stopping task. This is consistent with previous research that
has varied the number of attractiveness ratings before the optimal stopping
task, but found no differences in participants’ sampling behaviours (three
ratings in Studies 1 and 2 and two ratings in Study 3; Furl et al., 2019. How-
ever, my analysis of the self-reported reward value of the chosen face might
be biased by the fact that only self-reported reward values are available for
options that were chosen by the participant, and not available for the other
competing options in the sequences. Additionally, the question to capture
the participants’ ratings was phrased differently before and after the optimal
stopping task ("Rate this face on its attractiveness" versus "How rewarding is
your choice"). The high reliability of different ratings of the same face within
phase 1, the replicated oversampling despite different numbers of phase 1
ratings per face in different studies, and the concordance of phase 1 ratings
with self-reported reward values of chosen faces in this pilot study are all
suggestive that perceived attractiveness of a given face is stable over time.
However, a more direct and less biased approach to explore whether individ-
ual differences in rating (in)consistency relate to sampling behaviour, which
future research could address, might be to repeat the rating phase completely
after the optimal stopping task.

Of note is that I set the time limit for my pilot study to twice the
estimated completion time, following the rule of thumb proposed by Shee-
han (2018) (2-3 times the length of time it should take to complete the study).
However, this time limit was found to be too strict as data from one partici-
pant was not saved on Gorilla’s server as a result of this. Hence, for all studies
described in the experimental chapters, I utilise Prolific’s automated ‘Maxi-
mum Time Allowed’ feature which is based on the estimated study duration
set by the researcher. This successfully prevented loss of data as observed
for the pilot study. Additionally, I have addressed concerns regarding online
data collection (Hauser et al., 2018; Kees et al., 2017a; Sheehan, 2018) in my
pilot study by implementing an attention check and ensuring language com-
prehension. Similar methods to those described above have been applied in
Chapters 4 and 5 where I implement online methods.



54 Chapter 2. Methodology

2.3 Summary

I have now laid out the rationale regarding the key methodology employed
within this thesis, including a critical analysis of those methods. I have com-
pared my choice for the Bayesian ideal observer model to alternative heuris-
tics models and I have detailed the considerations made regarding the use of
online methods including proof of concept in the form of a pilot study. What
follows next are four experimental chapters which employ the methodology
outlined in this chapter.
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Chapter 3

Humans oversample in multiple
decision-making domains

Abstract

Real-life sequential search problems such as finding a good parking spot re-
quire us to decide when to stop searching and accept the option currently
available. Most studies on straightforward optimal stopping problems show
that humans tend to terminate such searches too early compared to compu-
tational models of optimality. However, there are recent reports of search
domains in which participants search too long instead, including our own
findings using a facial attractiveness paradigm. Here, we explore whether
such oversampling biases are an intrinsic feature of personal mate choice
decisions, by investigating sampling decisions when participants choose at-
tractive dates on a client’s behalf (Study 1) and when they evaluate trustwor-
thiness rather than attractiveness (Study 2). In both studies we replicated
oversampling, again contradicting the consensus that undersampling biases
are the norm. Furthermore, our results counter previous work that claims
that oversampling biases arise because of the personal mate choice domain.
We conclude that oversampling is not exclusively a feature of personal mate
choice, but is a more general feature of decision making. Just how general
remains to be determined, and more research is necessary to determine in
which decision domains participants oversample or undersample and why.

3.1 Introduction

Decisions that require optimal stopping are remarkably common in everyday
life. Individuals may encounter such sequentially presented search problems
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when choosing an apartment (Zwick et al., 2003), a parking space (Todd &
Gigerenzer, 2012), or even a romantic partner (Furl et al., 2019). For decades,
optimal stopping problems have been a popular field of study. To illustrate,
a literature search in 2017 identified over 2000 papers published on the stan-
dard variant (the secretary problem, as defined by Ferguson, 1989) alone
(Goldstein et al., 2017). The general consensus in the field of optimal stop-
ping problems is that humans perform suboptimally compared to various
models of optimality. More specifically, in a search for an option with the
highest value when there is no explicit cost-to-sample, humans tend to ter-
minate their searches too early. This observation will henceforth be referred
to as undersampling. Undersampling has been reported on different optimal
stopping tasks, including the secretary problem (Bearden et al., 2006; Seale &
Rapoport, 1997), the beads task (Furl & Averbeck, 2011; Van der Leer et al.,
2015), a numerical task (Guan et al., 2014), and full information tasks with
different economic scenarios (Baumann et al., 2020; Cardinale et al., 2021;
Costa & Averbeck, 2015).

Despite the evidence that humans show an undersampling bias on
optimal stopping problems compared to models of optimality, there are re-
cent reports of search domains in which participants search too long. A
paper by Furl et al. (2019), for example, showed consistent evidence for an
oversampling bias in a full information mate choice scenario called the facial
attractiveness task. Like other full information problems described in the
literature, the prior distribution was familiar to participants, there was no
cost-to-sample, and outcomes were rewarded by their values (Abdelaziz &
Krichen, 2006; Gilbert & Mosteller, 1966; Guan et al., 2014; Hill, 2009; Lee,
2006; Shu, 2008). However, the facial attractiveness task is different from
the full information optimal stopping tasks that showed undersampling in
at least three respects; 1) it investigates a different decision domain: mate
choice, 2) it uses naturalistic image stimuli instead of abstract stimuli, and
3) participants themselves generate the prior distribution of option values,
meaning that the value of a certain option is not set beforehand by the re-
searcher and can differ between participants. More specifically, in the facial
attractiveness task participants are instructed to make choices about whom
to date. They do this by first rating the attractiveness of a pool of images, and
then attempting to choose the most attractive face from a series of faces (each
drawn from the initial pool) as their date.

Traditional mathematical treatments of optimal stopping problems
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have anecdotally described the problem in mate choice terms such as ‘fiance’
or ‘dowry’ problem (Gilbert & Mosteller, 1966). Yet the problem was not
framed as mate choice in an empirical study in humans until Furl et al. (2019),
who have created a contemporary paradigm that captures the essence of an
online dating scenario (e.g., Tinder). This diverges from other mate choice
paradigms that have attempted to incorporate ‘real-life’ elements such as re-
jection (Miller & Todd, 1998) and interaction (Eriksson & Strimling, 2009) in
their tasks. Regardless of whether the facial attractiveness paradigm embod-
ies every element that can occur in real-life dating, it is still possible that the
mate choice domain was instrumental in changing participants’ search strate-
gies from undersampling to oversampling. Particularly, Furl et al. (2019)
suggest that the design of the facial attractiveness task is sufficient to insti-
gate mate choice predispositions. This mate choice bias, where individu-
als set high thresholds and continue searching for high-quality partners, has
been observed across species including crickets (Ivy & Sakaluk, 2007), fid-
dler crabs (Backwell & Passmore, 1996), and sticklebacks (Milinski & Bakker,
1992). Participants in Furl et al. (2019) were observed to keep their thresh-
olds too high throughout sequences, which consequently led to oversam-
pling behaviour. However, if oversampling extends beyond the personal
mate choice domain, then Furl et al. (2019)’s prediction that the facial attrac-
tiveness task instigates mate choice predispositions and their interpretation
of participants’ high thresholds in terms of mate choice is wrong.

Here, we report two novel studies of decision biases on full informa-
tion optimal stopping tasks. The aim of both studies is to investigate whether
oversampling biases are linked to the personal mate choice domain. Addi-
tionally, in our Supplementary Materials, we compare participants’ sampling
behaviour to four proposed computational models of sampling biases. In the
first study (matchmaker), participants imagine that they are successful match-
makers. They are not making dating decisions for themselves, but for an
imaginary ‘client’. Because participants are not choosing their own mates,
this design will allow us to explore whether oversampling extends to facial
attractiveness in a broader sense. If oversampling is exclusively linked to the
personal mate choice domain, participants in the matchmaker paradigm may
abandon their irrational thresholds and make more objective and logical de-
cisions when choosing attractive faces for a client. Consequently, participants
may revert to optimal sampling or even the undersampling that is observed
in economic domains. In contrast, if oversampling instead persists in this
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domain, then oversampling is not instigated specifically by personal mate
choice, but arises from a more broadly operating mechanism. Finding this
result would overturn Furl et al. (2019)’s explanation regarding participants’
high thresholds, and instead would be in line with the literature proposing
that the psychological mechanisms underlying facial attractiveness judge-
ments are highly resistant adaptations that have evolved to identify informa-
tion regarding an individual’s health and mate quality in the general sense
- not just for personal mate choice (Fink & Penton-Voak, 2002; Thornhill &
Gangestad, 1999).

In the second study (trustworthiness), participants are asked to make
decisions about the trustworthiness of the faces presented, rather than their
attractiveness. If we discover in Study 1 that oversampling extends beyond
the personal mate choice domain, then it is possible that oversampling ex-
tends even further into the domain of trustworthiness as well. However,
while trustworthiness and attractiveness ratings have been found to be posi-
tively correlated (Bzdok et al., 2011; Todorov et al., 2008), they do not always
uniformly affect decision-making (Ert et al., 2016; Jaeger et al., 2019). The lit-
erature suggests that attractiveness and trustworthiness are not interchange-
able judgements and that the relationship between them is complex (Sofer
et al., 2015; Stirrat & Perrett, 2010; Wilson & Eckel, 2006).

3.2 Materials and methods

3.2.1 Participants

Informed consent was obtained from all participants before the start of our
studies, in accordance with the Declaration of Helsinki. Undergraduate stu-
dents were recruited through the online Psychology Experiment Manage-
ment System, as used by Royal Holloway, University of London. All par-
ticipants received the same number of course credits for their participation,
regardless of the time spent on the task. In line with the previously calcu-
lated effect size1 for the facial attractiveness task (Furl et al., 2019), twenty
undergraduate students aged 16-23 were enrolled in Study 1 (10 male partic-
ipants and 10 female), and another twenty were enrolled in Study 2 (2 male
participants and 18 female). Both studies were conducted in the lab at Royal

1Power analysis of Study 1 in Furl et al. (2019) suggested that fewer than 20 participants
would be sufficient for 95% power.
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Holloway, University of London, and ethical approval was granted by our
institution.

3.2.2 Study 1: Matchmaker

The original design of the full information facial attractiveness task as de-
scribed by Furl et al. (2019) was mostly maintained for the matchmaker paradigm,
except for the instructions given to participants. Instead of making mate
choice decisions for themselves, participants were instructed to imagine that
they were successful matchmakers making mate choice decisions for a client
(a friend, relative, or random person of the same sex). Participants were in-
structed that their attractiveness ratings and mate choice decisions should
reflect the preferences of the imagined client, and not their own preferences.

Before starting the experiment, participants chose whether they wanted
to rate male or female faces on their clients’ behalf. In phase one, participants
were asked to rate 426 unique faces on a scale from 1 (very unattractive, not
someone your client would want to date) to 9 (very attractive, someone your
client would want to date). The set of images used in this study was the same
as the set used in Study 2 of Furl et al. (2019). The images were in colour and
showed youthful individuals roughly between 18 and 30 years of age. Each
face was rated three times, allowing for a final attractiveness rating for each
face to be computed from the mean of these ratings. The reason for using
each participant’s own ratings to ultimately assess decision performance is
that it eliminates the possibility of individual differences influencing the re-
sults, as both the participants and their corresponding computational models
have the same prior of attractiveness ratings going into the sequence phase.
In other words, phase one exposed both the participants and the model to
the self-generated prior distribution of attractiveness values, from which the
sequences in phase two are drawn (Furl et al., 2019).

Phase two of the study was the optimal stopping task. Participants
were told that the faces they would encounter were randomly sampled from
the pool of faces that were rated in phase one. In other words, for each indi-
vidual participant, phase two faces were generated from a random subset of
phase one faces, allowing for variable distributions of attractiveness values
between sequences. Participants were not given any explicit information re-
garding the attractiveness distribution that generated the sequences, except
that the sequence options would be drawn from the faces rated during phase
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one. Participants were shown 28 sequences of 8 faces and reminded to think
like their client - which face would their client think is the most attractive
and would they like to go on a date with? The conditions of the task were
that they could not return to a previously rejected option, and that it was
impossible to know for certain the value of the upcoming option(s) in any
given sequence. The number of options remaining was shown at the top of
the screen, and the rejected options were shown at the bottom of the screen.
When a participant made a choice, they had to advance through a series of
grey squares that replaced the remaining faces. This ensured that partici-
pants could not finish the study early by choosing an early option. Adding
grey squares does not alter participants’ sampling behaviour: Furl et al., 2019
found the same results on the facial attractiveness paradigm with the imple-
mentation of grey squares (Studies 2 and 3) and without (Study 1). The en-
tire study was self-paced. When a participant reached the end of a sequence
without having made a choice, the last option in the sequence became their
client’s date by default. The two key dependent variables of interest are the
number of samples before choice (i.e., the position of the chosen image in the
sequence), and the rank of the chosen option. Ranks were computed for ev-
ery sequence according to each participant’s own attractiveness ratings, with
rank 1 corresponding to the lowest rated face and rank 8 corresponding to
the highest rated face in that sequence. Both key variables are a mean value
over the sequences for each participant.

3.2.3 Study 2: Trustworthiness

The trustworthiness paradigm was very similar to both the facial attractive-
ness task described by Furl et al. (2019) and the matchmaker paradigm de-
scribed in Section 3.2.2. Here, we will only highlight the differences between
the trustworthiness paradigm and the matchmaker paradigm.

In phase one of the trustworthiness paradigm, participants rated
faces on their perceived trustworthiness. Participants rated on a scale from
one to nine, with one indicating very untrustworthy and nine indicating very
trustworthy. The same set of faces was used as previously in the matchmaker
paradigm.

Next, participants commenced with the sequence part of the study
in which they were presented with 28 sequences of eight faces. The goal
was to pick as trustworthy a face as possible in each sequence under the
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conditions that it was impossible to go back to a previously shown face, and
it was impossible to know the value of the face(s) yet to come.

3.2.4 Data analysis

We examined participants’ sampling biases by comparing their sampling
behaviour to that of a Bayesian ideal observer model (Costa & Averbeck,
2015) where performance is Bayesian optimal, using MATLAB version 2015b
(MATLAB, 2015). The Bayesian ideal observer model extends the framework
for full information problems described by Gilbert and Mosteller (1966), which
computes the expected values of future options under a standard normal dis-
tribution via a backwards induction technique. The original model by Gilbert
and Mosteller (1966) knows for all sequence options the mean and variance
of the distribution of option values from which each option value in a se-
quence is drawn (i.e., the generating distribution), and that the reward values
of the sequence ranks are equal to the option values. The Bayesian nature of
the ideal observer model further allows the mean and variance of the (prior)
distribution to be updated and learned as sequences progress, based on the
newly sampled option values in the sequences. Moreover, it adds a cost-
to-sample parameter and allows outcome ranks to be weighted by a reward
function. We did not use monetary incentivisation in our task and instead,
assumed that participants followed our instructions by maximising the ranks
of their choices. We therefore used a reward function similar to that tradition-
ally used in Gilbert and Mosteller (1966)’s version of the model, in which the
ideal observer agent is rewarded proportional to the value of the chosen op-
tions. Because there was no extrinsic sample cost in our paradigm, we fixed
the cost-to-sample parameter to zero, while other model values were fixed
to the values assigned by Furl et al. (2019). The ideal observer model re-
ceived as input for each participant the same option values of the sequences
as presented to the participant in phase two, with the participant’s individ-
ual rating of each option (averaged over the three ratings provided) as the
sequence values. To ensure normality, ratings were log transformed for each
participant before being entered into the model.

Statistical tests were performed using RStudio (RStudioTeam, 2020).
For all analyses, a p value of < .05 was considered significant. Additionally,
to provide a compelling answer to our research question, we show the Bayes
factor for statistical tests of the mean number of samples and mean rank as
well. A particular advantage of reporting Bayes factor is that it allows us to
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make a statement about the strength of the evidence in favour of either the
null hypothesis or the alternative hypothesis (Jarosz & Wiley, 2014). Bayesian
t-tests comparing participants and the ideal observer model were calculated
using the BayesFactor package (Morey & Rouder, 2018), within the R envi-
ronment (RStudioTeam, 2020).

3.3 Results

3.3.1 Oversampling bias in Study 1 and Study 2

Initial evaluation of the data revealed that one participant in Study 2 had not
sufficiently engaged with the task, as they had failed to make a choice on any
of the sequences and always sampled until the final option, which they were
then forced to choose. This participant was therefore excluded from further
analysis.

First, we tested for effects of faces’ sex, as chosen by participants.
For Study 1, a one-way ANOVA showed no effect of chosen sex on the num-
ber of samples (F(1, 18) = 0.050, p = .826), nor on the ranks of the chosen faces
(F(1, 18) = 0.546, p = .470). Fourteen participants rated male faces in Study
1, and six participants rated female faces. For Study 2, a one-way ANOVA
showed no effect of chosen sex on the number of samples (F(1, 17) = 1.697,
p = .210), nor on the ranks of the chosen faces (F(1, 17) = 0.735, p = .403).
Five participants rated male faces in Study 2, and fourteen participants rated
female faces.

Participants in both studies showed an oversampling bias (M1 =
5.31, SD1 = 0.84, M2 = 5.60, SD2 = 0.66) compared to the Bayesian ideal ob-
server model (M1 = 3.73, SD1 = 0.54, M2 = 3.53, SD2 = 0.54). Two-tailed t-tests
pairing participants with their corresponding ideal observer models, indi-
cated that participants sampled more and ended up with lower-ranked op-
tions than the optimal model (Table 3.1). For Study 2, the non-parametric
Wilcoxon Signed-Rank test was used to compute the differences in mean
rank as this variable was not normally distributed for participants. We note
that the matchmaker and trustworthiness paradigms yielded similar results.
Bayes factors for the mean number of samples and mean rank are shown in
Table 3.2.
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TABLE 3.1: Pairwise two-tailed t-tests for differences between
participants and the ideal observer model for mean number of
samples and mean rank of the chosen option. For Study 2, a
Wilcoxon Signed-Rank test was used to compute the differences

in mean rank. Also reported are Cohen’s d effect sizes.

Ideal Observer
Mean number of samples Mean rank

Participants

Study 1
d = -1.70
t(19) = -7.60
p <.001

d = 1.57
t(19) = 7.03
p <.001

Study 2
d = -2.43
t(17) = -10.32
p <.001

d = 1.32
Z = 166
p <.001

TABLE 3.2: Bayes factor (BF10) describing the relative likeli-
hood of a difference between participants and the ideal ob-
server model for mean number of samples and mean rank of
the chosen option. BF10 > 100 can be interpreted as extreme or
decisive evidence for the alternative hypothesis (Jarosz & Wi-
ley, 2014; Wagenmakers et al., 2018), i.e., there is a difference

between participants and the ideal observer model.

Ideal Observer
Mean number of samples Mean rank

Participants Study 1 BF10 = 4.589e4 ±0% BF10 = 1.678e4 ±0%
Study 2 BF10 = 1.259e6 ±0% BF10 = 7.977e2 ±0%

3.3.2 Comparison of rating values in Study 1 and Study 2

Having confirmed that participants showed an equivalent oversampling bias
in Study 1 and Study 2, we wanted to investigate whether participants judged
attractiveness and trustworthiness in a similar way. However, even though
methodologically there is little difference between the matchmaker paradigm
and the trustworthiness paradigm other than the instructions given to partic-
ipants, a remarkable disparity was observed in the subjective rating values.
When a density plot was used to visualise the distributions of participants’
ratings (i.e., the generating distribution of option values), we noticed a clear
difference between attractiveness and trustworthiness ratings (Figure 3.1).
As stated in the methods section, participants rated the same set of faces in
both studies. Nevertheless, the distribution of attractiveness ratings appears
to have a lower mean and a more positive skew, while trustworthiness rat-
ings appear more normally distributed with a higher mean. The apparent
difference between the matchmaker and trustworthiness distributions was
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confirmed with a Kolmogorov-Smirnov test: D(426) = 0.75, p < .001 (Bonfer-
roni corrected for the three distributions, as shown below).

To explore whether participants’ ratings in our Study 1 and Study
2 resembled participants’ attractiveness ratings in Furl et al. (2019)’s facial
attractiveness task, we also plotted in Figure 3.1 the distribution of rating
values for Study 2 of Furl et al. (2019) (a more detailed description of this
study can be found in our Supplementary Materials). We observe that the
personal mate choice ratings as recorded by Furl et al. (2019) best resembled
our matchmaker task, particularly in terms of the mean of the distribution,
but differences in the shape of the distribution can nonetheless be perceived
(e.g., skewness). We confirmed this difference between the matchmaker and
attractiveness distributions with a Kolmogorov-Smirnov test: D(426) = 0.16,
p < .001 (Bonferroni corrected for the three distributions). This finding, in
combination with our observations of Figure 3.1, is compelling evidence that
the three studies plotted here capture three different sets of judgements of
the same set of faces, but nevertheless oversampling biases are observed in
each study.

FIGURE 3.1: Density plot with overlaying histogram show-
ing the distributions of participants’ matchmaker attractiveness
ratings (Matchmaker) and trustworthiness ratings (Trustwor-
thiness), as well as facial attractiveness ratings (Attractiveness)

as collected in Furl et al. (2019), Study 2.
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3.4 Discussion

Previous literature on optimal stopping problems has repeatedly reported an
undersampling bias in human participants compared to mathematical defi-
nitions of optimality (Baumann et al., 2020; Bearden et al., 2006; Cardinale
et al., 2021; Costa & Averbeck, 2015; Furl & Averbeck, 2011; Guan et al.,
2014; Seale & Rapoport, 1997). The aim of the studies reported in this pa-
per was to further investigate the contradictory oversampling bias found by
Furl et al. (2019) in a mate choice scenario by looking at variations of the
full information facial attractiveness task. The first study utilised a match-
maker paradigm. Participants who were tasked to find the perfect date for a
hypothetical client sampled more and ended up with lower-ranked options
compared to a Bayesian ideal observer model of optimality. This indicated
that oversampling is not a function of personal mate choice specifically, but
perhaps is associated with facial attractiveness more generally. Our second
study – which utilised a trustworthiness paradigm – suggests an even wider
scope: participants also oversampled when making decisions about the trust-
worthiness of faces. That is, compared to a Bayesian ideal observer model,
participants sampled more and ended up with lower-ranked options. Based
on the results of our Bayes Factor analysis we can state that there is better ev-
idence for our alternative hypothesis (participants’ sampling behaviour dif-
fers from that of a Bayesian ideal observer model) than the null hypothesis (of
no difference in sampling behaviour between participants and the Bayesian
ideal observer model) (Jarosz & Wiley, 2014; Wagenmakers et al., 2018).

An explanation for the oversampling found in Study 1 could be that
the matchmaker paradigm is not a sufficiently different task from the facial
attractiveness task in Furl et al. (2019). Indeed, to the extent that partici-
pants used their own preferences as a proxy for their fictional client, it is
conceivable that personal mate choice might still introduce some oversam-
pling. Although not all participants chose to rate faces of the opposite sex,
participants’ sexual preferences were not collected so we cannot draw any
conclusions regarding whether participants made decisions congruent with
their own personal mate choice. However, this explanation remains inad-
equate because we also found oversampling in Study 2, and trustworthi-
ness decisions are even less likely to instigate mate choice predispositions
than matchmaker decisions. Some literature suggests that characteristics in-
cluding warmth and potential trustworthiness are criteria for mate selection
(Fletcher et al., 1999; Fletcher et al., 2004; Valentine et al., 2020). However,
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our trustworthiness paradigm did not mention the words ‘date’ or ‘dating’,
and as such made no suggestion towards any form of mate selection, unlike
the facial attractiveness task. Therefore, it seems unlikely that participants
implicitly connected rating faces on trustworthiness to finding a potential ro-
mantic partner. Furthermore, a clear disparity could be observed between
the distribution of attractiveness ratings in Study 1 and the distribution of
trustworthiness ratings in Study 2 (Figure 3.1), which implies that partici-
pants used at least some different visual information to judge trustworthi-
ness than to judge what another person might find attractive. This argument
is supported by literature on face typicality, which has shown that the typical
face is perceived as the most trustworthy, but not the most attractive (Sofer
et al., 2015). These findings are in line with our participants’ rating distribu-
tions (Figure 3.1). From this, we infer that the trustworthiness paradigm did
not instigate mate choice predisposition, and consequently that mate choice
cannot explain oversampling biases.

Our findings contradict one of the principal conclusions of Furl et
al. (2019), by indicating that the mate choice domain is not the regulating
factor for the conflicting oversampling bias observed on the facial attractive-
ness task. Instead, our results suggest that the tendency to sample more than
is optimal spans different decision-making domains, including trustworthi-
ness. This also sheds new light on the high threshold theory proposed by
Furl et al. (2019) as an explanation for oversampling. The high threshold
theory stems from the behavioural ecology literature on mate choice, where
individuals set high thresholds and continue searching for high-quality part-
ners (Backwell & Passmore, 1996; Ivy & Sakaluk, 2007; Milinski & Bakker,
1992). As our findings indicate that oversampling extends beyond the mate
choice domain, the oversampling bias observed on the facial attractiveness
task must not have been for this reason, and Furl et al. (2019)’s conclusions
should now be reevaluated (for a computational model comparison, see Sup-
plementary Materials).

In contrast to the tasks that have yielded undersampling, both the
original facial attractiveness task and the present adaptations of it used natu-
ralistic image stimuli instead of abstract stimuli (i.e., numbers, text). Consid-
ering that so many real-world decisions depend on searching through natu-
ral images, it is important for future research to investigate whether the type
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of stimuli (images or otherwise) used in an optimal stopping task is predic-
tive of the sampling bias shown by participants. Ultimately, more decision-
making domains, including image-based ones, remain to be tested before a
conclusive answer regarding sampling biases on optimal stopping problems
can be obtained.

To conclude, our findings are an important corrective to the consen-
sus view that humans undersample on (full information) optimal stopping
tasks. They are also an important corrective to Furl et al. (2019)’s conclusion
that personal mate choice has a special ability to lead to oversampling bi-
ases. Instead, we show that oversampling can arise across different decision-
making domains, thus revealing that oversampling is a much more general
phenomenon than previously believed. Just how general remains to be de-
termined, and more research is necessary to determine in which decision do-
mains participants oversample or undersample and why.
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Supplementary materials

S1 Background

Furl et al. (2019) found that the oversampling bias on the facial attractiveness
task was best described by the biased values model (BV): a model of human
behaviour which gives less weighting to low-quality options to explain the
lack of substantial threshold decline. The biased values model was moti-
vated by high threshold theories from behavioural ecology, as outlined in
the Introduction of our main manuscript (Backwell & Passmore, 1996; Ivy &
Sakaluk, 2007; Milinski & Bakker, 1992). Furl et al. (2019)’s conclusion that
the mate choice domain should selectively lead to oversampling is, in part,
based on the success of the biased values model in their model comparison.
However, our studies show that oversampling is not limited to the personal
mate choice domain, and as such, it is worth revisiting the model comparison
for our new datasets to see whether there is equally strong evidence for the
biased values model.

Other bias models considered by Furl et al. (2019) to explain participants’
oversampling behaviour were the sample reward model (SR) and the attrac-
tive prior model (AP). The sample reward model implements an intrinsic re-
ward for sampling, while the attractive prior model implements a maladap-
tively high mean value for the prior distribution. Although the biased values
model correlated best with participants’ pattern of choices, both the sample
reward model and the attractive prior model resembled participants’ data in
the sense that they oversampled, compared to the Bayesian ideal observer
model (Furl et al., 2019). As such, the sample reward model and attractive
prior model were at least better correlated with participants’ sampling be-
haviour than the optimal model, and could explain participants’ oversam-
pling biases in Furl et al. (2019) to some degree.

Another contending model of human decision-making proposed in the op-
timal stopping literature is the cutoff model (CO) (Dudey & Todd, 2001; Sang
et al., 2020; Seale & Rapoport, 1997). This model, first suggested by Kahan
et al. (1967), samples a certain number of options (the cutoff proportion), de-
termines what the best option was in this sample, and sets this as the cutoff
threshold. It then continues sampling until an option is encountered that
exceeds the cutoff threshold, or until the end of the sequence is reached in
which case the last option is chosen. The cutoff model does not use a reward
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function, but instead assumes that the agent is only interested in choosing
the top-ranked value and there is no cost-to-sample. However, despite this
assumption, the model is also accurate in practice at maximising the aver-
age rank of the chosen option, and therefore, is at least somewhat robust
to relaxations of that assumption (Todd & Gigerenzer, 2003; Todd & Miller,
1999). The cutoff model was found to best describe participants’ sampling be-
haviour on a classic optimal stopping task: the standard ‘Secretary Problem’
(Seale & Rapoport, 1997). Dudey and Todd (2001) replicated these findings
in a simulation study and showed that the cutoff model outperformed other
models. Furthermore, the cutoff model was found to generalise to some ex-
tent to other decision-making scenarios. On an explore/exploit trade-off task
where both situations (exploration and exploitation) were rewarding, Sang et
al. (2020) found that the cutoff model was the second best fitting model (after
the ‘linear decreasing threshold model’), describing decision-making in 20%
of participants. However, other authors have found no support for the cutoff
model, rejecting its usefulness for describing human behaviour and declar-
ing it suitable only for the simplest of optimal stopping paradigms (Baumann
et al., 2020; Lee et al., 2005).

In these supplementary analyses we further investigate the three models of
human decision-making biases proposed by Furl and colleagues (2019), as
well as the cutoff model. All models are considered here to be viable can-
didates for explaining human sampling behaviour. Whilst previous research
on the facial attractiveness task has favoured the biased values model (Furl et
al., 2019), this could be due to the biased values model embodying inherent
mate choice predispositions that may not extend to different decision making
domains. By including the cutoff model in our analysis, we aim to contribute
to the debate regarding the cutoff model as a model of human decision mak-
ing on optimal stopping tasks. We include the Bayesian ideal observer model
(IO) as well in our comparison, although based on our main results we do
not expect this model to be a good fit for describing human sampling be-
haviour.

S2 Data analysis

For each study, we fitted hypothetical models to participants’ sampling be-
haviour, relying on procedures described in Furl et al. (2019), Costa and Aver-
beck (2015), Cardinale et al. (2021) and Furl and Averbeck (2011). The key
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computation for each model was utility (equation 3.1), which depends on
conditional probabilities and reward values (equation 3.2), which are based
on how each option ranks relative to the other options in its sequence. Mod-
els use backwards induction to derive utilities that could result from further
sampling (equation 3.3).

ut (st) = max
a∈Ast

{
rt (st, a) +

∫
s

pt (j | st, a) ut+1(j)dj

}
(3.1)

The utility u of the state s at sample t is the value of the best action a, which
depends on reward value r, the cost-to-sample Cs, and the probabilities of
outcomes j of subsequent states, weighted by their utilities.

rt (st, a = accept) =
N

∑
i=1

p (rank = i) ∗ R (i + (h− 1))

rt (st, a = decline) = Cs

(3.2)

Because we are interested in how participants make decisions on the ba-
sis of intrinsic social reward values (and not extrinsic economic ones), we
did not provide extrinsic monetary incentivisation for choosing highly rated
options. Instead, we instructed participants to choose the option with the
highest-ranked value possible. As with most non-incentivised tasks used
in behavioural studies, participants were clearly able to achieve quite accu-
rate performance based on their own intrinsic reward functions, without the
need for additional extrinsic incentives. We formalised participants’ intrin-
sic reward functions by simply assuming they followed instructions and at-
tempted to maximise the rank of the option chosen. We therefore assigned
to outcome reward r the relative rank h for each option i in a sequence, as
well as the cost-to-sample Cs. When considering final sequence position N,
the model computes final utilities as:

uN (sN) = r (sN) for all sN ∈ N (3.3)

and working backwards from N, we use equation 3.1 to compute utilities at
every sequence position t.

To calculate the value of either choosing or declining an option in a sequence
we compute the action value Q as:
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Qt (st, a = take) = rt (st, a)

Qt (st, a = decline) =
∫

s
pt (j | st, a) ut+1(j)dj

(3.4)

We used a softmax transformation (equation 3.5) to normalise the computa-
tional models’ action values to probabilities, and we fit the softmax sensitiv-
ity parameter β as an additional free parameter in all models, with smaller β

values producing more stochasticity (Baumann et al., 2020). The individual
models described in the next section were all fit in this way. The softmax
equation with the action values for taking an option Qtake, and the action
values for declining an option Qdecline is defined as:

So f tmax(Qt) =

[
eQtake

∑ eQdecline

]
(3.5)

To create the biased computational models, the input and/or model values of
the ideal observer model were altered, in an effort to have the ideal observer
model reproduce participants’ biases. We will describe these computational
models in more detail in the next paragraph. It is expected that the compu-
tational models that include free parameters to explain bias provide a better
match to participants’ behaviour than the ideal observer model. To compute
these free parameters, we used an optimisation search algorithm.

Our first computational model, the biased values model, transforms attrac-
tiveness values using a logistic utility function that effectively limits the in-
fluence of lower-rated faces on sampling behaviour, thus raising the choice
threshold of the model. The biased values model resembles participants who
make decisions using Bayesian optimal computations, except that their com-
putations operate on ‘misperceived’ option values. Hence, mathematically,
the biased values model is the same as the ideal observer model described
above. The free parameters for the biased values model are the slope and
midpoint of the logistic utility function, as well as the β value mentioned
above. The mean and the standard deviation of the estimated parameter val-
ues for all five of our computational models, across our three datasets, are
shown in Table S1.

Our second computational model is the sample reward model. As explained
in our main manuscript, the cost-to-sample parameter Cs was set to zero for
the ideal observer model. In contrast, we optimised the cost-to-sample pa-
rameter in the sample reward model, thus introducing an intrinsic aversion
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TABLE S1: Mean and standard deviation of the estimated pa-
rameter values for the biased values model (BV), sample re-
ward model (SR), attractive prior model (AP), cutoff model
(CO), and ideal observer model (IO), across our three datasets:

matchmaker, trustworthiness and attractiveness.

Model Parameters Matchmaker Trustworthiness Attractiveness

BV
Slope M = 1.319, SD = 0.785 M = 0.884, SD = 0.618 M = 1.001, SD = 0.108
Midpoint M = 4.701, SD = 3.637 M = 14.647, SD = 10.142 M = 10.592, SD = 5.693
β M = 2.828, SD = 2.626 M = 1.577, SD = 0.401 M = 1.568, SD = 0.311

SR Cost-to-sample M = -0.021, SD = 0.084 M = -0.072, SD = 0.289 M = -0.026, SD = 0.068
β M = 5.047, SD = 5.247 M = 11.597, SD = 15.353 M = 7.643, SD = 4.098

AP Constant M = 0.526, SD = 0.234 M = 0.428, SD = 0.194 M = 0.373, SD = 0.297
β M = 5.324, SD = 6.884 M = 7.121, SD = 4.023 M = 7.825, SD = 3.961

CO Cutoff M = 3.571, SD = 0.866 M = 3.341, SD = 0.819 M = 3.649, SD = 0.705
β M = 0.818, SD = 0.545 M = 1.179, SD = 0.537 M = 1.234, SD = 0.263

IO β M = 0.000, SD = 0.000 M = 0.000, SD = 0.000 M = 0.000, SD = 0.000

(positive cost-to-sample value) or attraction (negative cost-to-sample value)
to sampling. Also added as a free parameter to the sample reward model
is the β value. Mathematically, the sample reward model is the same as the
ideal observer model described above.

Thirdly, for the attractive prior model, we optimised a constant which was
added to the prior mean, with the expectation that it would turn out posi-
tive because this would result in oversampling. Namely, by adding a posi-
tive constant to the prior mean, a maladaptively high mean value is created
which leads to a holding-out effect. The attractive prior model thus resem-
bles optimism biases in the distribution of prior beliefs. Also added as a
free parameter to the attractive prior model is the β value. Mathematically,
the attractive prior model is the same as the ideal observer model described
above.

For the ideal observer model, from which the biased values, sample reward
and attractive prior models are derived, the only free parameter is the β

value.

Finally, recall that the cutoff model samples a certain number of options dur-
ing a ’learning period’ after which the next option is chosen that exceeds the
cutoff threshold (i.e., the value of the best option seen during the learning pe-
riod). The length of the learning period is the cutoff parameter. Also added
as a free parameter to the cutoff model is the β value. Mathematically, the
cutoff model can be described by two integers (r, s), where r is the number of
options seen so far, and s is the rank of the rth, last presented option (Seale &
Rapoport, 1997). After the next option has been presented, the new state of
the cutoff model will be (r + 1, s’), where s’ is equally likely to be any one of
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the integers 1, 2, ..., r + 1. The probability that an option is the best of all the
n options is r/n. The equation for the maximum probability of choosing the
best option is

ar = 1/r + 1/(r + 1) + ... + 1/(n− 1) (3.6)

The cutoff model then rejects the first r - 1 options after which it chooses the
next top-ranked option (Seale & Rapoport, 1997).

We optimised the free parameters of each model to minimise the negative log
likelihood (i.e., best model fit). As starting values for the parameters we used
1/e = 0.368 (the optimal cutoff proportion, Gilbert & Mosteller, 1966; Seale
& Rapoport, 1997) for the cutoff model and, for the Bayesian models, we
used starting values taken from the previous analysis of facial attractiveness
described in Furl et al. (2019). Next, the Akaike Information Criterion (AIC)
was used to estimate how well each model fitted the data, while correcting
for the number of free parameters. Note that the AIC score is minimised, i.e.,
a lower AIC score means a better fit of the model to the data. The ‘best’ model
(a possible theory of human behaviour) should not only yield the best model
evidence (AIC) but should also successfully simulate participants’ sampling
behaviour.

To facilitate comparisons between studies, we reanalysed the published find-
ings on the facial attractiveness task using the optimisation method used
here. Study 2 as described in Furl et al. (2019) resembled our studies in many
ways, including sample size (N = 20), and was therefore chosen to be re-
analysed. The only difference between Furl et al. (2019)’s Study 2 and our
matchmaker and trustworthiness studies was the decision domain, and thus
the instructions given to participants. Henceforth we will refer to this ear-
lier dataset as facial attractiveness. Behavioural results from the facial attrac-
tiveness dataset were in line with those of matchmaker and trustworthiness;
participants oversampled compared to the ideal observer model (t(33.01) =
-11.10, p < .001) and ended up with lower-ranked options (t(29.78) = 5.84, p
< .001).

The comparison of participants’ sampling behaviour to the computational
models was done using fminsearch.m in MATLAB version 2015b (MATLAB,
2015). After the models were generated, the output was exported and further
analysed (pairwise t-tests, Bayesian t-tests) as well as visualised in RStudio
(RStudioTeam, 2020).
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S3 Computational model comparison

A formal model comparison of the log likelihood was performed, however,
we are reluctant to draw any conclusions based directly on only the log like-
lihood as this was uncorrected for the number of parameters (Figure S1a).
When comparing the AIC scores, we found no significant difference in all
three datasets between the sample reward, biased values, and attractive prior
models, using paired t-tests Bonferroni corrected for all pairs of models (Fig-
ure S1b). All three of these Bayesian models of bias outperformed the cutoff
model in every dataset and outperformed the ideal observer model in the fa-
cial attractiveness and trustworthiness datasets. Finally, we counted for each
model the number of times it came out as the best fitting model for an indi-
vidual participant. Here, the biased values model appears to be the winner in
the facial attractiveness and trustworthiness datasets, but ties with the ideal
observer model in the matchmaker dataset (Figure S1c). In the latter, the
biased values and ideal observer models differed from the sample reward
model by only one participant.

S4 Models correlated with participants’ behaviour

The best fitting models identified in the formal model comparison were the
sample reward model, the biased values model, and the attractive prior model.
In this section, we explore whether the sampling behaviour of the computa-
tional models also reliably covaried with participants’ sampling data. Code
and data for this section are available on the OSF platform2.

We started with the matchmaker paradigm. Shapiro-Wilk tests of normality
indicated that the mean number of samples was normally distributed for all
models except the cutoff model (W = 0.90, p = .047). As such, a Spearman’s
rank correlation was used for the cutoff model, instead of a Pearson correla-
tion. The correlation data validated both the sample reward model and the
biased values model (Figure S2).

Next, we performed the same correlation analysis on the trustworthiness
data. As above, Shapiro-Wilk tests of normality indicated that the mean
number of samples was normally distributed for all models except the cutoff
model (W = 0.87, p = .017). As such, a Spearman’s rank correlation was used

2https://tinyurl.com/yjqy35hd
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FIGURE S1: Formal model comparison. Top (a): log likelihood
for each of the models: sample reward (SR), biased values (BV),
ideal observer (IO), attractive prior (AP) and cutoff (CO). Note
that a smaller log likelihood indicates a better model fit. Mid-
dle (b): AIC scores for each of the same models. Note that a
smaller AIC score indicates a better model fit. Black lines de-
note significant differences between models, calculated using
paired t-tests Bonferroni corrected for all pairs of models. Bot-
tom (c): Frequency of participants best-fitting to each model. N

= 20 per dataset.
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for the cutoff model, instead of a Pearson correlation. A significant correla-
tion was found for the sample reward model, but not for any of the other
models (Figure S3).

Finally, we looked at the facial attractiveness dataset. Shapiro-Wilk tests of
normality indicated that the mean number of samples was normally dis-
tributed for all models. The correlation data validated the sample reward,
attractive prior and biased values models (Figure S4).

In addition to the more traditional frequentist analyses, we present the Bayes
Factors for each of the correlations below in Table S2. In accordance with
Wagenmakers et al. (2018), we interpret Bayes Factors as follows: BF10 > 100
= extreme evidence for H1, BF10 30-100 = very strong evidence for H1, BF10

10-30 = strong evidence for H1, BF10 3-10 = moderate evidence for H1, BF10

1-3 = anecdotal evidence for H1 and BF10 1/3-1 = anecdotal evidence for H0.
From our Bayes Factor analysis, we can conclude that there is very strong to
extreme evidence for a correlation between participants’ sampling and that
of the sample reward model across all three studies (H1). Furthermore, al-
though there is strong evidence that the sampling rates of the biased values
and attractive prior models correlate with participants’ sampling rate in the
facial attractiveness dataset, the models don’t seem to generalise as well to
the other two datasets where there is no more than moderate evidence for the
biased values model and even anecdotal evidence that there is no correlation
(H0) for the attractive prior model.

TABLE S2: Bayes Factors (BF10) for correlations between
participants and five different computational models for the
mean number of samples before choice, across three different
datasets. *** denotes extreme or very strong evidence for H1, **
denotes strong or moderate evidence for H1, * denotes anecdo-

tal evidence for H1.

Participants
Matchmaker Trustworthiness Facial attractiveness

SR 88.536 ±0% *** 222.847 ±0% *** 552.268 ±0% ***
BV 3.366 ±0% ** 1.706 ±0% * 13.121 ±0% **
IO 0.557 ±0% 0.489 ±0% 0.870 ±0%
AP 0.493 ±0% 0.572 ±0% 21.115 ±0% **
CO 0.535 ±0% 0.692 ±0% 0.859 ±0%

Based on the results of our correlation analyses, we can conclude that the
models identified in the formal model comparison as providing a good fit to
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participants’ data, remain good contenders in predicting participants’ sam-
pling behaviour. As such, we cannot draw an unequivocal conclusion about
any one model, although the evidence for the sample reward model is very
strong.

FIGURE S2: Matchmaker. Correlations between participants and
five different computational models for the mean number of
samples before choice. Models are abbreviated as sample re-
ward (SR), biased values (BV), ideal observer (IO), attractive
prior (AP) and cutoff (CO). R indicates the correlation coeffi-

cient. Shaded areas represent the 95% confidence interval.

S5 Discussion

Our formal model comparison of the sample reward, biased values, ideal ob-
server, attractive prior, and cutoff models show strikingly similar patterns
between the three datasets (matchmaker, trustworthiness and facial attrac-
tiveness). This indicates that sampling biases across the three datasets may
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FIGURE S3: Trustworthiness. Correlations between participants
and five different computational models for the mean number
of samples before choice. Models are abbreviated as sample
reward (SR), biased values (BV), ideal observer (IO), attractive
prior (AP) and cutoff (CO). R indicates the correlation coeffi-

cient. Shaded areas represent the 95% confidence interval.

be explained in a similar way. Our results regarding the cutoff model were in
agreement with Lee et al. (2005) in that we did not find support for the cut-
off model being a suitable model of human decision making on this type of
full information optimal stopping task. This conclusion is based on the fact
that the cutoff model explained none of the individual subjects’ sampling
behaviour, it had one of the highest AIC scores, and the model seemed to
correlate poorly with participants’ mean number of samples across all three
datasets. The main contending models based on the AIC (Figure S1b) and the
proportion of participants best explained by each model (Figure S1c) seem to
be the sample reward model, the biased values model, and the attractive
prior model. The biased values model was the ‘winning’ model in the most
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FIGURE S4: Facial attractiveness. Correlations between partic-
ipants and five different computational models for the mean
number of samples before choice. Models are abbreviated as
sample reward (SR), biased values (BV), ideal observer (IO), at-
tractive prior (AP) and cutoff (CO). R indicates the correlation
coefficient. Shaded areas represent the 95% confidence interval.

participants in all three datasets (see Figure S1c), although the ideal observer
model tied with the biased values model in the matchmaker dataset. While
it might be the case that the ideal observer model was the best-fitting model
in these specific participants, the ideal observer model is not likely to con-
tribute to the average oversampling effect observed in the aggregate sample.
Looking at the correlations with participants’ sampling behaviour, the sam-
ple reward, biased values, and attractive prior models presented a good fit
to participants’ data, with the sample reward model showing the most con-
sistent correlation with human oversampling biases. Indeed, after calculat-
ing the Bayes Factor for each of the correlations, very strong evidence across
all three datasets was found for the sample reward model correlating with
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participants. The biased values and attractive prior models did not seem to
generalise well to all three datasets, and anecdotal evidence for the null hy-
pothesis was found across the board for the ideal observer and cutoff models.

From these exploratory analyses, we can conclude that the causes of over-
sampling may be heterogeneous strategies across participants rather than
simply overweighting of the most attractive values when making a decision
(biased values). The sample reward, biased values and attractive prior mod-
els all showed oversampling compared to the ideal observer model, and their
sampling rates were not significantly different from participants in either one
or both of our studies. To investigate whether oversampling biases are best
explained by different models in different participants, we recommend fu-
ture research should increase the sample size. To demonstrate sampling bi-
ases, twenty participants was sufficient both here and in previous studies
(Furl et al., 2019). However, comparisons between bias models and the inves-
tigation of individual differences could be facilitated by either larger samples
or longer experiments with more trials.
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Chapter 4

Explaining human sampling rates
across different decision domains

Abstract

Undersampling biases are common in the optimal stopping literature, espe-
cially for economic full choice problems. Among these kinds of number-
based studies, the moments of the distribution of values that generates the
options (i.e., the generating distribution) seem to influence participants’ sam-
pling rate. However, a recent study reported an oversampling bias on a
different kind of optimal stopping task: where participants chose poten-
tial romantic partners from images of faces. The authors hypothesised that
this oversampling bias might be specific to mate choice. We preregistered
this hypothesis and so, here, we test whether sampling rates across differ-
ent image-based decision-making domains a) reflect different over- or un-
dersampling biases, or b) depend on the moments of the generating distri-
butions (as shown for economic number-based tasks). In two studies (N
= 208 and N = 96), we found evidence against the preregistered hypoth-
esis. Participants oversampled to the same degree across domains (com-
pared to a Bayesian ideal observer model), while their sampling rates de-
pended on the generating distribution mean and skewness in a similar way
as number-based paradigms. Moreover, optimal model sampling to some ex-
tent depended on the the skewness of the generating distribution in a similar
way to participants. We conclude that oversampling is not instigated by the
mate choice domain and that sampling rate in image-based paradigms, like
number-based paradigms, depends on the generating distribution.
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domains

1 Introduction

An optimal stopping problem can be defined as a situation in which a de-
cision maker has to choose when to stop searching for more information
and take a given action. Optimal stopping problems have long held the fas-
cination of scholars, particularly mathematicians, who were determined to
prove that optimal solutions to these kinds of problems exist (for historical
reviews, see Ferguson, 1989; Freeman, 1983). Within this paper we focus
on a specific and simple version of the so-called full information problem,
where the actual values of the options are presented, the distributions that
generate the option values (i.e., the generating distributions) are familiar to
participants, there is no extrinsic cost-to-sample, there is no recall of rejected
options, and decision outcomes provide a reward equal to their value (Ab-
delaziz & Krichen, 2006; Gilbert & Mosteller, 1966; Guan et al., 2014; Hill,
2009; Lee, 2006; Shu, 2008). These full information decision problems are
solved computationally using a backwards induction algorithm (see Chapter
1, Sidebar 1), which predicts the values of future options based on a known
distribution that generates the option values (Cardinale et al., 2021; Costa &
Averbeck, 2015; Furl et al., 2019; Gilbert & Mosteller, 1966). These models
of optimality are programmed by researchers with the mean and variance of
the assumed-to-be-normal generating distribution (or the prior of this dis-
tribution), which the researchers assume the participants are using (Costa &
Averbeck, 2015; Gilbert & Mosteller, 1966). Other types of optimal stopping
problems exist that require somewhat different computational solutions, but
those are outside the scope of this paper (e.g., Goldstein et al., 2020; Van der
Leer et al., 2015; Zwick et al., 2003).

Previous research has found evidence that participants commonly
undersample compared to optimality in our focus case of full information
problems (Baumann et al., 2020; Cardinale et al., 2021; Costa & Averbeck,
2015). This undersampling bias has also been found in multiple closely re-
lated optimal stopping problems that go beyond our focus, including the
classic secretary task (Bearden et al., 2006; Seale & Rapoport, 1997), numeri-
cal optimal stopping tasks (Guan & Lee, 2018; Guan et al., 2014; Kahan et al.,
1967; Shapira & Venezia, 1981), and even the beads task (Furl & Averbeck,
2011; Hauser et al., 2017; Hauser et al., 2018; Van der Leer et al., 2015). In
addition to undersampling biases, human sampling rates can be affected by
other factors such as sequence length (Cardinale et al., 2021; Costa & Aver-
beck, 2015; Goldstein et al., 2020), cost-to-sample (Costa & Averbeck, 2015;
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Zwick et al., 2003), or the moments of the distribution that generates the op-
tion values (i.e., many high/low value options; Baumann et al., 2020; Guan
& Lee, 2018; Guan et al., 2014; Guan & Stokes, 2020). The latter factor - mo-
ments of the generating distribution - is a focus of the current paper.

However, a recent study reported an oversampling bias in a dif-
ferent decision-making domain within the same full information modelling
framework. In a mate choice decision scenario, participants searched for the
most attractive date from a series of faces (Furl et al., 2019). Furl et al. (2019)
hypothesised that the oversampling bias on this non-economic, image-based
task might be specific to the mate choice decision-making domain. Their
hypothesis was based on behavioural ecology research which suggests that
animals use high thresholds for mate choice (Backwell & Passmore, 1996; Ivy
& Sakaluk, 2007; Milinski & Bakker, 1992). Furthermore, Furl et al. (2019) re-
ported that a computational model that incorporated such a high-threshold
bias best described participants’ sampling behaviour.

Here, we continue to examine influences on human sampling rate
in image-based optimal stopping tasks with two main hypotheses. The first
is pre-registered and based on Furl et al. (2019)’s proposal that mate choice
selectively leads to oversampling. This account predicts that image-based
domains other than facial attractiveness should not lead to oversampling bi-
ases. The second hypothesis is based on previous studies of the number-
based full information task which show that a more positively skewed gen-
erating distribution can increase sampling rate (Baumann et al., 2020). To
date, this hypothesis has been tested in number-based domains only, and
has yet to be tested in image-based domains. For the two purposes outlined
above, we have chosen three image-based decision-making domains: faces
(replication), food, and holiday destinations.

2 Materials and methods

We conducted two studies aimed at convergent results; one online (Study
1) and one in a classroom setting (Study 2). The data analysis plan for our
online study was preregistered before data collection, and is openly avail-
able on the AsPredicted pre-registration website.1 Our classroom study was
not separately pre-registered but followed the same data analysis protocol

1https://aspredicted.org/sr5fv.pdf
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as pre-registered for Study 1. Methods for Study 1 and Study 2 were nearly
identical, as outlined below.

2.1 Study 1

Participants

Both studies were approved by Royal Holloway, University of London’s Ethics
Board. Informed consent was obtained from all participants before the start
of the study, in accordance with the Declaration of Helsinki. For our first
study, 225 participants were recruited through the online recruitment service
Prolific (Prolific, 2014). Two participant prerequisites were set, the first be-
ing age (between 18 and 35), as this roughly matched the age range of the
faces shown in the study. The second prerequisite was nationality (either
United Kingdom (UK), Ireland, United States (US), Canada, Australia, or
New Zealand), which was set under the assumption that participants with
these nationalities would have a good command of the English language,
and would therefore be able to sufficiently understand the instructions and
the informed consent form. Each participant was randomly assigned to one
of three conditions (N = 75 each), with each condition corresponding to a dif-
ferent decision domain. Participants received a flat fee as compensation for
completing the study, with the entire study lasting about 15 minutes.

Paradigm

Gorilla Experiment Builder (Anwyl-Irvine et al., 2020) was used to create and
host our studies. The paradigm for all three domains (faces, food and holiday
destinations) was very similar, and inspired by the methods used across the
three studies described in Furl et al. (2019). The paradigm consisted of two
phases; a rating phase and a sequence phase (i.e., the optimal stopping task).
Before commencing the study, participants in the faces domain were asked
to choose whether they would like to rate (and date) males or females. Based
on their answers, each was shown either male or female faces throughout the
study.

In phase one of the study, participants rated 180 images in total
(90 unique images, all rated twice) using a slider scale ranging from very
unattractive (value 1) to very attractive (value 100). Consistent with pre-
vious studies of full information problems (Cardinale et al., 2021; Costa &
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Averbeck, 2015), the prior of the option-generating distribution was config-
ured with the mean and variance of the generating distribution. In our case,
as in Furl et al. (2019), this means the distribution of subjective values (at-
tractiveness ratings). Using personalised ratings ensures that the likelihood
of an image being chosen is not influenced by individual differences in at-
tractiveness preferences (Furl et al., 2019), as the same prior distribution of
values was available for learning to both agents, that is, the participants and
the optimality model against which we compare the participants (see Sec-
tion 2.3). Sliders were made invisible until first click to reduce slider biases
(Matejka et al., 2016), and the slider’s current selected value was shown for
increased precision. A progress bar was shown at the bottom of the screen to
visualise participants’ progression. An attention check was included in phase
one to compensate for the unsupervised nature of online data collection (see
Supplementary Materials, Section S1). Final attractiveness ratings were com-
puted from the mean of the two ratings, which previous work has found to
be sufficient for detecting oversampling on the facial attractiveness paradigm
(Furl et al., 2019, Study 3) and which shortened the duration of our study to
suit online presentation. Internal consistency between the two ratings, mea-
sured using Cronbach’s alpha, was acceptable (Taber, 2018), confirming that
participants were consistent in their ratings of images (female faces: α = .848,
male faces: α = .882, food: α = .954, holiday destinations: α = .926).

For the faces domain, 90 faces were randomly selected from a larger
set of 426 images, the same set used in Study 2 of Furl et al. (2019). The set
of 90 food images was randomly selected from a larger set of 1314 images
(Blechert et al., 2019). The image numbers corresponding to the food images
that were used in this study can be found in the Supplementary Materials
(Section S2). The set of holiday destination images was randomly selected
from a royalty-free image database (www.shutterstock.com). Search terms that
were used included, for example, ‘holiday destination’, ‘holiday’, ‘travel des-
tination’, ‘travelling’, and ‘European city’. Stimulus dimensions of the three
stimulus sets were kept as homogeneous as possible. For example, all images
were cropped to the same size (1200 pixels) and the same shape (square).
Other stimulus dimensions such as hue and saturation were not further con-
trolled for, as differences can be expected both within and between domains.

In the second phase, participants were shown six sequences of eight
images each. Images were randomly sampled from the entire distribution of
images that had been rated in phase one. Participants attempted to choose
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the most attractive option from the sequence as they could, with the restric-
tion that they could not return to a previously rejected option. The number
of options remaining was shown at the top of the screen, and the rejected
options were shown at the bottom of the screen. When a participant made
a choice, they had to advance through a series of grey squares that replaced
the remaining images. This ensured that participants could not finish the ex-
periment early by choosing an early option. Adding grey squares does not
alter participants’ sampling behaviour: Furl et al. (2019) found the same re-
sults on the facial attractiveness paradigm with the implementation of grey
squares (Studies 2 and 3) and without (Study 1). The entire study was self-
paced - participants advanced by using their mouse to click on the buttons
on the screen. If the last option in the sequence was reached, that option be-
came their choice by default. After finishing a sequence, participants were
directed to a feedback screen displaying the participant’s chosen image, and
the text: “Here is your [new date / next meal / next holiday destination]!
How rewarding is your choice?”. Participants responded to this question us-
ing a slider scale ranging from not rewarding (value 1) to very rewarding
(value 100). The feedback screen was included to provide feedback about the
quality of the participants’ choice by asking them to reflect upon its reward
value before moving onto the next sequence, and responses were not further
analysed. Next, participants were directed to a screen asking them: “Ready
for the next sequence?”. Participants responded by clicking a button saying:
“I’m ready!”.

The two key dependent variables of interest are the position of the
chosen image in the sequence (i.e., number of samples), and the rank of the
chosen image (out of the images in the sequence). Both variables are a mean
value over six sequences for each participant.

2.2 Study 2

A second study was conducted in a laboratory setting to replicate the re-
sults of Study 1 (which was conducted online) and thus bolster our findings.
Opportunity sampling was used to recruit 96 participants during an Open
Day at Royal Holloway, University of London. This sample size was suffi-
ciently large, as a power analysis based on the outcomes of Study 1 indicated
that for Study 2, a total sample size of 70 participants was sufficient for 95%
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power.2 Participants were randomly allocated to one of three domains, with
final numbers being 32 in faces, 28 in food, and 36 in holiday destinations.
Participants did not receive any monetary compensation for their participa-
tion.

Paradigm

Study 2 used a shortened, but otherwise identical version of the paradigm
described in Section 2.1. The reason why it was shortened was because of
time constraints related to the recruitment format (during a University Open
Day). As such, the two key differences between Study 2 and Study 1 are
1) participants in Study 2 rated every image only once, and 2) the attention
check was removed in Study 2 as the study was conducted in a more con-
trolled setting. The shortened version of the paradigm might introduce more
noise in the data, which could reduce our ability to detect a result. Despite
this, we found no differences in the results due to the shortened format.

2.3 Optimal model

Participants’ sampling behaviour was compared to a Bayesian ideal observer
model (Costa & Averbeck, 2015), where performance is Bayesian optimal and
the cost-to-sample parameter was fixed to zero. This model has previously
been used by e.g., Costa and Averbeck (2015), Furl et al. (2019) and Cardi-
nale et al. (2021), and is the same as the model of Gilbert and Mosteller (1966)
in that both assume that options are sampled from a normal option generat-
ing distribution with known mean and variance, and both use a backwards
induction algorithm to compute the value of sampling again, which is com-
pared to the value of the current option. The Bayesian optimality model
enhances the original Gilbert and Mosteller model by adding to it 1) a gen-
erating distribution that is initialised with a prior distribution which is then
updated after each new sample using Bayes’ rule, 2) a cost-to-sample param-
eter (here set to zero), and 3) functionality for the researcher to apply any
arbitrary reward function to the choice outcomes. Mathematically, the model
is based on a discrete time Markov decision process with continuous states.
Theoretically, at each position in the sequence, the optimal model computes

2The smallest effect size measured in Study 1 was f = 0.484 (for the comparison between
the conditions faces, food, and holiday destinations), which for an "ANOVA fixed effects,
special, main effects and interactions" statistical test, which we used to analyse Study 1 and
as such is suited for our analysis of Study 2, leads to a sample size of 70 participants for
95.3% power, as calculated in G*Power (Faul et al., 2009).
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the respective values for choosing the option and declining the option, and
chooses the one with the highest value. To calculate the value of either taking
or declining an option in a sequence the model computes the action value Q
as:

Qt (st, a = take) = rt (st, a)

Qt (st, a = decline) =
∫

s
pt (j | st, a) ut+1(j)dj

(4.1)

The key computations for the optimal model, as seen in equation
4.1, are utility (equation 4.2) and reward values (equation 4.3). The model
uses backwards induction to derive utilities that could result from further
sampling (equation 4.4).

ut (st) = max
a∈Ast

{
rt (st, a) +

∫
s

pt (j | st, a) ut+1(j)dj

}
(4.2)

The utility u of the state s at sample t is the value of the best action
a, which depends on reward value r, the cost-to-sample Cs, and the probabil-
ities of outcomes j of subsequent states, weighted by their utilities. i repre-
sents each option in a sequence.

rt (st, a = accept) =
N

∑
i=1

p (rank = i) ∗ R (i + (h− 1))

rt (st, a = decline) = Cs

(4.3)

Our optimal model adds to the Gilbert and Mosteller model a func-
tion R, which maps the rank of each option to the amount of reward gained
when choosing an option of that rank. We assumed that participants fol-
lowed our instructions and tried to choose the option with the highest sub-
jective value possible. The corresponding model, if it followed these instruc-
tions, would therefore gain a reward commensurate with the subjective value
(rating) of the chosen option. That is, we assigned to R(1) the rating of the
highest ranked option, R(2) the rating of the second highest ranked item,
and so on. This reward function resembles the classic Gilbert and Mosteller
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model, which also attempts to maximise the option value of its choices. h
represents the relative rank of the current option. When considering final
sequence position N, the model computes final utilities as:

uN (sN) = r (sN) for all sN ∈ N (4.4)

and working backwards from N, we use equation 4.2 to compute utilities at
every sequence position t.

The value for declining an option can be considered the choice thresh-
old, as no option is chosen unless the value for choosing an option exceeds
the value for declining an option. The choice threshold is dynamic, and can
change depending on the position in the sequence. The model received as
input for each participant the values of the sequence options as presented to
the participant in phase two, with each sequence value comprising the par-
ticipant’s individual rating of the option. To approximate normality, ratings
were log transformed for each participant before being put into the model.
Input and parameter settings for the optimal model described here apply to
all analyses in this paper.

2.4 Data analysis

The comparison of participants’ sampling behaviour to the optimal model
was done using MATLAB version 2015b (MATLAB, 2015). Statistical tests
were performed using RStudio (RStudioTeam, 2020). For all analyses, a p
value of < .05 was considered significant. Additionally, to allow evidence
for the null hypothesis to be quantified, we show the Bayes factors for mean
number of samples and mean rank as well. Bayesian t-tests were calculated
using the BayesFactor package (Morey & Rouder, 2018), within the R envi-
ronment. We follow guidelines provided by Wagenmakers et al. (2018) to
interpret Bayes factors, with BF10 > 100 being interpreted as extreme or de-
cisive evidence for the alternative hypothesis, and BF10 < .01 being decisive
evidence in favour of the null model (no differences between means).
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3 Results

3.1 Study 1

After the removal of any outliers (see Supplementary Materials, Section S3),
the final number of participants in each domain was 68 for faces, 72 for food,
and 68 for holiday destinations (for demographic statistics, see Table S1 in the
Supplementary Materials). In the facial attractiveness domain, the majority
of participants chose to rate faces of the opposite sex (89.7%).

Because we were interested in testing the hypothesis proposed by
Furl et al. (2019) that oversampling bias is specific to the mate choice do-
main, we pre-registered the hypothesis that there would be a significant do-
main*agent interaction. We therefore implemented a 3x2 factorial ANOVA
to compare the differential effects of our two agents (participants and model)
across the three domains. We found that the domain*agent interactions for
the mean number of samples and the mean rank of the chosen option did
not reach significance (Table 4.1), so there was no evidence of a difference in
sampling bias between domains. This is confirmed by the Bayes factor anal-
ysis, which showed that there was no evidence that the full model (domain +
agent + domain*agent) was better than just the domain + agent model (BF10

= 0.260). In fact, there was extreme evidence for the domain + agent model
(BF10 = 6.790e49 ±1.08%). This Bayesian analysis, therefore, provides positive
evidence for the absence of our pre-registered domain*agent interaction.

Because the domain*agent interaction effect was not significant, this
meant that, on average, the sampling rates of the two agents (participants
and model) varied in the same way across domains. Indeed, when looking at
sampling biases, we found evidence that despite variations in sampling rate
for both agents across the domains (Figure 4.1), participants oversampled in
each of our three domains when tested separately (Table 4.2), and achieved
lower ranks than the optimal model (Figure 4.2, Table 4.2). Bayes factor t-tests
supported this finding, showing extreme evidence for a difference between
participants and the optimal model for the mean number of samples as well
as the mean rank for each of the three domains (Table 4.3). Collapsing over
agents, agents on average sampled more and achieved higher ranks in the
faces domain than in either of the other two domains. Furthermore, agents on
average sampled more in the food domain than in the holiday destinations
domain (Table 4.4).
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We also tested for the effect of self-reported participant sex on the
two dependent variables, mean number of samples and mean rank of the
chosen option, but did not find significant results (F(1, 73) = 1.279, p = .262
and F(1, 73) = 1.814, p = .182, respectively).

TABLE 4.1: 3x2 factorial ANOVA describing the main effects
and interaction effects for the mean number of samples and the
mean rank of the chosen option, in both Study 1 and Study 2.

Degrees of freedom is abbreviated as DF.

Study 1 Study 2
DF F p DF F p

Number of samples
Agent (1, 406) 240.75 <.001 (1, 185) 159.27 <.001
Domain (2, 406) 46.83 <.001 (2, 185) 27.81 <.001
Agent*Domain (2, 406) 1.77 0.171 (2, 185) 3.70 0.023
Rank
Agent (1, 408) 232.53 <.001 (1, 186) 18.57 <.001
Domain (2, 408) 7.43 <.001 (2, 186) 1.76 0.175
Agent*Domain (2, 408) 0.97 0.382 (2, 186) 6.94 0.001

TABLE 4.2: Post hoc Friedman’s tests (Bonferroni corrected for
the three domains) to test for differences between agents in each

individual domain, in both Study 1 and Study 2.

Study 1 Study 2
Number of samples
Faces < .001 < .001
Food < .001 < .001
Holidays < .001 < .001
Rank
Faces < .001 < .001
Food < .001 .450
Holidays < .001 .304

3.2 Study 2

Removed outliers and demographic statistics for Study 2 can be found in the
Supplementary Materials (Section S4 and Table S2). In the facial attractive-
ness domain, 78.1% of participants chose to rate faces of the opposite sex.

Unlike Study 1, Study 2 achieved a significant interaction between
agent and domain for both the mean number of samples and the mean rank
of the chosen image (Table 4.1). Upon visual inspection of Figure 4.1, we hy-
pothesised that these interactions arose as a result of the magnitude of the
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FIGURE 4.1: Box plots and raw jittered data points for the mean
number of samples for participants versus the optimal model,
grouped by domain. The red dots represent the mean, horizon-
tal black lines represent the median, boxes show the 25% and
75% quantiles, and the whiskers represent the 95% confidence

intervals.

oversampling bias varying per condition. That is, the difference between
the mean sampling rate of participants and the model is 2.16 options in the
face condition, 1.82 options in the food condition, and 2.99 options in the
holiday destinations condition. The difference between agents is significant
in all conditions (see post hoc results in Table 4.2). The fact that we found
that participants varied in sampling rate from domain to domain is in line
with our findings of Study 1. Nevertheless, oversampling is generally main-
tained because the model most of the time adjusts from domain to domain
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FIGURE 4.2: Box plots and raw jittered data points for the mean
rank of the chosen option for participants versus the optimal
model, grouped by domain. The red dots represent the mean,
horizontal black lines represent the median, boxes show the
25% and 75% quantiles, and the whiskers represent the 95%

confidence intervals.

the same as participants. Indeed, we found evidence that participants over-
sampled relative to the optimal model in each of our three domains (Tables
4.2 and 4.3). Collapsing over agents, agents on average sampled more in the
faces domain than in the other two domains. Furthermore, agents on average
sampled more in the holiday destinations domain than in the food domain
(Figure 4.1, Table 4.4). We did not find any significant differences in the mean
rank between the three domains (Figure 4.2, Table 4.4).
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TABLE 4.3: Bayes factor (BF10) describing the difference be-
tween agents for the mean number of samples and the mean

rank of the chosen option, for each of the three domains.

Study 1 Study 2
Number of samples
Faces 4.006e9 ±0% 1.408e5 ±0%
Food 1.790e14 ±0% 8.753e4 ±0%
Holidays 8.345e7 ±0% 5.395e7 ±0%
Rank
Faces 6.098e16 ±0% 7.273e4 ±0%
Food 1.478e9 ±0% 0.460 ±0.03%
Holidays 1.841e8 ±0% 0.201 ±0%

TABLE 4.4: Post hoc pairwise t-tests describing the main effects
of domain (averaged over agents) on the mean number of sam-
ples and the mean rank of the chosen option, in both Study 1
and Study 2. p values are corrected using Fisher’s Least Signif-

icant Differences.

Study 1 Study 2
Faces Food Holidays Faces Food Holidays

Number of samples
Faces
Food <.001 <.001
Holidays <.001 .047 <.001 .002
Rank
Faces
Food <.001 .479
Holidays <.001 .394 .065 .289

4 Generating distribution moments can predict the

number of samples

The results of our two studies provide convergent evidence that participants
oversample across all three domains, indicating that qualitatively different
biases do not explain sampling rates in different domains, as we pre-registered
and as hypothesised by Furl et al. (2019). Yet it remains possible that the mo-
ments of the generating distribution might explain the variations in sampling
rate across these different image-based domains, as they do for economic
number-based tasks (Baumann et al., 2020; Guan & Lee, 2018). Presently it is
unknown whether the moments of the generating distributions for different
domains can explain the differential sampling rates among those domains
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and it remains to be tested whether the same effects of generating distribu-
tion moments seen on economic number-based tasks also hold for the facial
attractiveness or other image-based domains. These questions we further
examine in the following exploratory analyses.

Figure 4.3 shows the kernel densities of the generating distributions
in Study 1 and Study 2. It should be noted that within the facial attractive-
ness domain, there were essentially two sets of mutually exclusive images:
male and female faces, which are here plotted separately. Visual inspection
of the density plots potentially suggests marked differences among the four
domains in the mean, variance, skewness and kurtosis of the distributions
of attractiveness ratings. For example, both studies show a pattern where
facial attractiveness ratings appear to have lower means and to be more pos-
itively skewed. By contrast, the food domain appears to have a higher mean
and to be more negatively skewed. Both studies appear to show the same
patterns of distribution shapes, indicating that these distributions are not en-
tirely idiosyncratic from participant to participant, but systematically vary
on average over participants too. Additionally, Figure 4.3 shows that our
manipulation of the stimulus domain is effectively also an experimental ma-
nipulation of the shape of the prior distribution.

FIGURE 4.3: Density plots for both Study 1 and Study 2 visual-
ising the generating distribution of option values for each do-

main, with male and female faces plotted separately.

If generating distribution moments affect sampling rates in the dif-
ferent image-based domains in the same way as in economic number-based
tasks utilised by for example Guan and Lee (2018) and Baumann et al. (2020),
then we would expect greater sampling for more positively skewed (i.e.,



16
Chapter 4. Explaining human sampling rates across different decision

domains

scarce) environments, like the faces domain. First, we plotted for each partic-
ipant the mean (Figure 4.4a), variance (Figure 4.4b), skewness (Figure 4.4c),
and kurtosis (Figure 4.4d) of their rating distribution. Parallel independent
findings were obtained for both Study 1 and Study 2. Participants and data
points that were identified as outliers (see Sections S3 and S4 in the Supple-
mentary Materials) remained excluded from the analysis. Additionally, we
observed two extreme outliers for kurtosis (65.19 and 26.66), so these two
participants were removed from the analysis as well (one in faces and one
in holiday destinations). From Figure 4.4 we can observe that the domains
male, female, food, and holiday destinations have robustly increasing mean
values and decreasing skewness values, consistent with our visual interpre-
tation of the densities in Figure 4.3.

FIGURE 4.4: Generating distribution moments plotted for each
of the four domains male faces (purple), female faces (cyan),
food (green), and holiday destinations (red), for Study 1 and
Study 2. Black horizontal lines denote significant differences
between domains at p < .05 Bonferroni-corrected for all pairs.

Next, we investigated whether generating distribution moments could
predict sampling behaviour using a multiple linear regression model (Figure
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4.5). We note that there was multicollinearity between the mean and skew-
ness values of the distributions in both Study 1 (VIF = 3.56 and VIF = 3.83
respectively, r = -0.84) and Study 2 (VIF = 7.84 and VIF = 9.72 respectively,
r = -0.92). This means that it is impossible to empirically untangle whether
mean and skewness have separate effects on sampling rates. However, as
multicollinearity does not affect the predictions, precision of the predictions,
and the goodness-of-fit statistics, we continued with a single predictor re-
gression analysis as detailed below. Reported p values should be interpreted
with caution.

We found that the mean value was able to predict sampling rate in
both Study 1 (β = -0.030, t(201) = -4.926, p < .001) and Study 2 (β = -0.024,
t(94) = -2.923, p = .004). In Study 1, the mean of the generating distribution
explained 10.8% of variation in participants’ mean number of samples, while
in Study 2 the mean value explained 8.3% of variance. We also found that
the skewness of the generating distribution predicted sampling rate in both
Study 1 (β = 0.523, t(201) = 4.332, p < .001) and Study 2 (β = 0.542, t(94) =
3.191, p = .002). In Study 1, the skewness explained 8.5% of variation in par-
ticipants’ mean number of samples, while in Study 2, the skewness explained
9.8% of variance. These effects are in line with previous findings from full in-
formation problems using number-based tasks showing greater sampling in
scarce environments (i.e., option generating distributions with lower means
and/or more positive skew) (Baumann et al., 2020; Guan & Lee, 2018; Guan
et al., 2014). We did not find any significant results for the moments variance
(Study 1: β = -0.0005, t(201) = -1.668, p = .097; Study 2: β = -0.0008, t(94) =
-1.761, p = .081) and kurtosis (Study 1: β = -0.054, t(201) = -0.818, p = .414;
Study 2: β = 0.068, t(94) = 1.029, p = .306).

As we observed participants and the optimal model to both sam-
ple more in the faces domain than the other two domains, it is possible that
the moments of the generating distribution affected the model in the same
way as they did the participants. Single predictor regression analysis of the
model’s sampling rate and generating distribution moments showed similar
effects to participants (Table 4.5, Figure 4.6). Our finding that both partici-
pants and the optimal model are sensitive to the moments of the generating
distribution could explain the heightened sampling rate in the faces domain,
compared to the food and holiday destination domains.
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FIGURE 4.5: Scatterplots of generating distribution moments
and the mean number of samples for each participant, for Study
1 and Study 2, separated by domain: male faces (purple), fe-
male faces (cyan), food (green), and holiday destinations (red).

The black line is the regression line.

5 Discussion

The two studies described here addressed our pre-registered hypothesis, de-
rived from Furl et al. (2019), that mate choice is a special decision-making
domain that provokes an oversampling bias on optimal stopping tasks, and
that this oversampling bias cannot be observed in other domains (e.g., food,
holiday destinations). However, contrary to our a priori expectations, we
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TABLE 4.5: Single predictor regression analysis of the optimal
model’s sampling rate and generating distribution moments.

*** p < .001, ** p < .01, * p < .05.

Study Moment Coefficients % variance
explained

Study 1

Mean β = -0.014, t(201) = -3.557 *** 5.9%
Variance β = -0.001, t(201) = -8.153 *** 24.9%
Skewness β = 0.360, t(201) = 4.793 *** 10.3%
Kurtosis β = 0.129, t(201) = 3.178 ** 4.8%

Study 2

Mean β = -0.012, t(94) = -3.004 ** 8.8%
Variance β = -0.001, t(94) = -4.131 *** 15.4%
Skewness β = 0.367, t(94) = 4.623 *** 18.5%
Kurtosis β = 0.099, t(94) = 3.194 ** 9.8%

found in both studies that oversampling generalised to all three image-based
decision-making domains. Furthermore, our results were consistent with our
second hypothesis, by which participants might oversample across many di-
verse image-based domains.

Specifically, we found that while different domains did not lead to
qualitatively different biases, sampling rates in these domains were increased
for positively skewed (i.e., scarce) option generating distributions, consis-
tent with other work using number-based full information tasks (Baumann
et al., 2020). What led to this conclusion was the observation that there were
modulations in sampling rate for both agents (participants and model) from
domain to domain. For example, both participants and the optimal model
sampled more in the faces domain (compared to the food and holiday desti-
nation domains), while the faces domain also had the lowest mean and most
positively skewed generating distribution (Figures 4.1 and 4.3). As such, we
suggest that the mean and skewness of the generating distribution could sta-
tistically explain sampling behaviour. This is further supported by our find-
ing that the optimal model’s sampling rate also correlated with the moments
in a similar way to participants. In other words, the moments of the generat-
ing distribution lead to the same domain-related variations in sampling rates
for both participants and the model.

One of the novel aspects of our study is that we go beyond artificial
experimental environments and show that natural image domains for real-
istic decision problems have variations in distribution shape that can affect
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FIGURE 4.6: Scatterplots of generating distribution moments
and the mean number of samples for the optimal model, for
Study 1 and Study 2, separated by domain: male faces (pur-
ple), female faces (cyan), food (green), and holiday destinations

(red). The black line is the regression line.

sampling rate. Our findings also go beyond those of previous studies which
have mainly focused on altering the skewness of the generating distribution
and neglected to investigate other distribution moments. In fact, upon closer
investigation of the distributions used by Baumann et al. (2020) in Experi-
ment 2 we found that the distributions did not just differ in skewness, but in
mean, variance and kurtosis as well. As we found that participants’ sampling
rate could be predicted by both the mean and skewness of the generating
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distribution, we believe that no conclusive claims can be made solely regard-
ing the relationship between the skewness of the generating distribution and
sampling behaviour.

At this point, one might speculate that there might exist an un-
known individual difference which could dispose some individuals who tend
to evaluate options in a positively skewed way, to sample more as well. Al-
though as yet there is no evidence for such a disposition, and we cannot
know at this time what this disposition would be, the discovery of such a
disposition would have important implications for predicting real-world de-
cisions. That is, participants’ decision patterns should be predictable from
how they subjectively evaluate options. Although this explanation might be
tempting, it is more likely that the link between the moments of the gener-
ating distribution and participants’ sampling rate arises because of compu-
tational mechanisms involved inherently in solving optimal stopping prob-
lems. Indeed, we found that moment values produced similar sampling ef-
fects in our optimal model (Figure 4.6) as they did for the participants (Figure
4.5), even though the model has no individual disposition to sample more
or less, and merely computes the solution to the optimal stopping problem.
Moreover, we observe that the relationship between sampling rate and dis-
tribution moments does not hold for participants in general, but depends on
which domain a participant was assigned to. For example, the participants
who sampled the most were the ones in the positively skewed male face do-
main (see Figure 4.5).

Many previous studies have attempted to compute optimal mea-
sures based on an approximation of participants’ perceived option generat-
ing distribution. Some studies (e.g., Cardinale et al., 2021; Costa & Aver-
beck, 2015) assumed participants used real-world values as their generating
distribution and so offered them options sampled from real-world markets
to conform with participants’ presumed pre-existing prior. Other studies
attempted to teach participants the generating distribution either through
descriptions using statistical terminology and/or graphs of the probability
densities of statistical distributions (Baumann et al., 2020; Lee & Courey,
2020), enriched feedback and/or financial rewards (Campbell & Lee, 2006),
or through repeated interactions with the sequences of options (Goldstein et
al., 2020). These kinds of learning schemes are most suited to scenarios where
the rank of an option within its sequence can be computed directly from the
objective (numerical) values.
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However, for some real-world scenarios, many of these learning
schemes might not be representative of real-life distribution learning, which
occurs through repeated interaction with many options, often at random.
Additionally, a participant’s subjective valuation of a stimulus such as a num-
ber (e.g., a price), may not necessarily equal the number’s objective value, as
it is displayed on an exogenous statistical distribution provided by the re-
searcher to a participant. For example, a participant might subjectively val-
uate a sizeable difference between £0 and £10 but a negligible difference be-
tween £1000 and £1010 and then act on this subjective valuation (rather than
the objective price) when making decisions. This distinction would be rele-
vant for full information problems, where the absolute option value (rather
than its relative rank) is needed to solve the decision problem. Even further,
the style with which participants valuate numbers or other stimuli is likely
subject to individual differences. Methods that attempt to teach participants
generating distributions using mathematical representations cannot account
for such factors.

Therefore, an advantage of our study is that participants gener-
ated their own prior distribution of subjective values of attractiveness, which
ensures that they know the generating distribution and that the optimal-
ity model operates on participants’ personalised subjective values. Further-
more, our manipulation of decision-making domain effectively provided an
experimental manipulation of distribution moments, but using moments that
are representative of natural image-based domains. Although we did not
vary the generating distribution’s moments exogenously, our method is more
applicable to real-world scenarios where option values, and consequently
options’ ranks, are assigned subjectively, e.g., in mate choice (Furl et al.,
2019). Additionally, as more researchers may want to investigate sampling
behaviour on optimal stopping tasks using images rather than numbers, our
way of specifying the mean and variance of the generating distribution might
yet be the best option. After all, using only images requires the researcher
to obtain the option values separately for each individual, as the value of
these kind of complex, naturalistic stimuli often cannot be objectively de-
fined (Trendl et al., 2021).

To conclude, this paper provides novel insights into human sam-
pling behaviour by directly comparing decision biases across three image-
based decision making domains. Our studies support earlier findings on the
facial attractiveness task, showing that participants oversample compared to
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an optimal model. Results for the decision-making domains food and hol-
iday destinations also revealed an oversampling bias in participants. Ad-
ditionally, and perhaps most importantly, we found evidence that sampling
biases can be predicted by the mean and skewness of the underlying distri-
bution of domain-specific option values.
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Supplementary materials

S1 Attention check Study 1

We decided to add an attention check to phase one of Study 1 to compen-
sate for the unsupervised nature of online data collection. Each attention
check comprised two screens that were shown one after the other. Atten-
tion checks showed up at nine random points (5% of the total of 180 images)
throughout phase one. This totals 18 attention checks (nine time points x two
screens). Each attention check screen showed a cross (either black or red),
a ‘next’ button, and the text “press ‘next’ when the cross disappears”. The
cross disappeared at a random time interval between one and five seconds.
The ‘next’ button was active the whole time. Reaction times for pressing the
‘next’ button were recorded for both screens, that is, for both the black and
the red cross. Before data analysis, participants’ response time for pressing
the ‘next’ button was compared to the actual time interval before the cross
disappeared (cross display time). If participants were paying attention, they
would not press the ‘next’ button as soon as it appeared, but would instead
read the text and respond only after the cross had disappeared. Thus, if par-
ticipants’ response time exceeded the cross display time, they passed the at-
tention check.

S2 Filenames corresponding to food images

0001, 0002, 0004, 0007, 0009, 0010, 0016, 0022 ,0025, 0032, 0044, 0049, 0053,
0054, 0057, 0061, 0072, 0080, 0089, 0095, 0101, 0104, 0110, 0113, 0123, 0143,
0145, 0150, 0153, 0157, 0166, 0167, 0175, 0176, 0192, 0194, 0198, 0199, 0200,
0201, 0206, 0222, 0227, 0233, 0244, 0248, 0249, 0250, 0251, 0255, 0256, 0258,
0259, 0269, 0278, 0279, 0280, 0281, 0282, 0283, 0285, 0298, 0311, 0313, 0317,
0319, 0321, 0323, 0338, 0347, 0350, 0375, 0434, 0491, 0507, 0512, 0557, 0563,
0567, 0569, 0581, 0602, 0631, 0654, 0662, 0741, 0770, 0810, 0894, 0896

S3 Outlier removal Study 1

Although restrictions were set in Prolific to collect only 75 participants per
domain, upon inspection of the data, we discovered that 76 participants were
recruited in the food domain. As no duplicate IDs were found, we included
all 76 participants in the data analysis. Also of note is that one participant’s
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self-reported age was 16 (faces domain) and one participant’s self-reported
age was 36 (food domain), despite the enrolment restrictions set beforehand
on Prolific. Considering that neither age required ethical reconsideration un-
der British Psychological Society guidelines, we decided to include both par-
ticipants in the analyses. To control for task incongruent behaviour, we pre-
registered that all data points (i.e., mean number of samples and mean rank
for each participant) had to be within 2.5 SD of each condition mean. We
found three data points violating this assumption: one in the faces domain
(in the rank of the chosen face), and two in the food domain (in the number
of samples). These data points were thus excluded from the data analysis. If
participants failed > 25% of the attention checks (i.e., more than five) they
were also excluded from the data analysis. Using this measure, another 18
participants were excluded (seven in the faces domain, four in the food do-
main, and seven in the holiday destinations domain).

S4 Outlier removal Study 2

One data point in the faces domain, for the mean number of samples, was
excluded because it was > 2.5 SD from the condition mean.

TABLE S1: Demographic statistics for each of the three do-
mains: faces, food and holiday destinations. *One participant
did not provide a valid response to this demographics question.

Faces Food Holiday Destinations
(N = 68) (N = 72) (N = 68)

Age
Mean (SD) 26.43 (4.87) 25.53 (5.26) 27.13 (4.60)
Missing* 1 0 0

Sex
Male 25 28 24
Female 42 43 43
Other 1 1 1

Nationality
United Kingdom 34 44 54
Ireland 0 6 1
United States 14 11 7
Canada 19 11 3
Australia 0 0 3
New Zealand 1 0 0
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TABLE S2: Demographic statistics for Study 2, for each of the
three domains: faces, food and holiday destinations.

Faces Food Holiday Destinations
(N = 32) (N = 28) (N = 36)

Age
Mean (SD) 28.13 (14.89) 35.68 (18.23) 28.22 (15.71)

Sex
Male 5 11 10
Female 26 17 26
Other 1 0 0
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Chapter 5

Methodological remarks regarding
optimal stopping tasks and the
implications for sampling biases

Abstract

This paper investigates a type of optimal stopping problem where options
are presented in sequence and, once an option has been rejected, it is impos-
sible to go back to it. With previous research finding mixed results of under-
sampling and oversampling biases on these kinds of optimal stopping tasks,
the question remaining is what causes people to sample too much or too lit-
tle compared to models of optimality? In two pilot studies and a main study,
we explored task features that could lead to over- versus undersampling on
number-based tasks. We found that, regardless of task features, there were
no significant differences in human sampling rate across conditions. Nev-
ertheless, we observed differences in sampling biases across conditions due
to varying sampling rates of the optimal model. Our optimal model, like
most models used for this type of optimal stopping problem, requires that
researchers specify the mean and variance of a theoretical distribution, from
which the options are generated. We show that different ways of specify-
ing this generating distribution can lead to different model sampling rates,
and consequently, differences in sampling biases. This highlights that a cor-
rect specification of the generating distribution is critical when investigating
sampling biases on optimal stopping tasks.
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the implications for sampling biases

1 Introduction

Oftentimes in everyday life, decisions have to be made regarding options
presented in sequence, like when attempting to find the best deal on a certain
product or service. When should someone stop evaluating new information
and commit to a decision? This common real-life dilemma can be defined
as an optimal stopping problem. There are many types of optimal stopping
problems, but here we specifically look at full information best choice prob-
lems in which participants first learn the probability distribution that will
generate their decision options (e.g., from experience in the real world or
from within the paradigm itself). Then, option values from this generating
distribution are presented in sequence (e.g., finding new deals on different
websites), and a decision maker has to decide when to stop sampling and
choose an option, under the condition that rejected options cannot be re-
turned to later (e.g., because the deal has expired) (for a review, see Freeman,
1983). To do this successfully, the decision maker must balance the potential
of improving on the current option against the risk of losing the best option
if too many options are sampled (Furl et al., 2019).

Previous studies exploring decision-making on economic optimal
stopping tasks have reported that decision makers primarily stop searching
too early compared to models of optimality (undersampling) (Bearden et al.,
2006; Cardinale et al., 2021; Costa & Averbeck, 2015; Guan et al., 2014; Seale &
Rapoport, 1997; Sonnemans, 2000). However, there are also examples of spe-
cific optimal stopping tasks on which people sample too much (oversampling),
such as when choosing a date (Furl et al., 2019). Despite these contradicting
findings, relatively little progress has been made in terms of characterising
under which circumstances humans undersample or oversample on optimal
stopping tasks. The current paper addresses this question by investigating
various methodological task features that may affect sampling biases in three
separate studies. This is important in light of recent research suggesting that
optimal stopping tasks might have a wider real-world application, for exam-
ple as part of cognitive behavioural therapy in anxiety disorders (Cardinale
et al., 2021), or even as a general measure of problem solving ability and
psychometric intelligence (Lee et al., 2005). For these kinds of real-world
applications to be realised, more uniform and standardised procedures for
studying human behaviour on optimal stopping tasks are warranted.

Presently, numerous versions of optimal stopping tasks prevail, which
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complicate direct comparisons between studies. For instance, countless dif-
ferent stimuli are used across the literature to indicate the value of an option
(e.g., Baumann et al., 2020; Cardinale et al., 2021; Costa & Averbeck, 2015;
Furl et al., 2019; Goldstein et al., 2020; Guan & Stokes, 2020), but there is
reason to suggest that the type of stimulus (e.g., numbers or images) might
affect human sampling behaviour. Specifically, a study by Costa and Aver-
beck (2015) found that participants undersampled on an economic optimal
stopping task compared to a Bayesian ideal observer model. This behaviour
was reported for a selection of decision scenarios including buying a subway
ticket, a television, and a diamond ring. Option values were presented nu-
merically for all decision scenarios. On a similar optimal stopping task (the
‘facial attractiveness task’), however, where option values could be derived
from an image only, Furl et al. (2019) observed that participants oversampled
compared to the Bayesian ideal observer model. The reason why only im-
ages were used on the so-called facial attractiveness paradigm employed by
Furl et al. (2019) was because the task aimed to investigate mate choice de-
cisions: participants were instructed to choose the most attractive face from
a sequence of faces as their date. There are a number of task features on
which these studies varied, but one of the key differences between the two
paradigms is that Furl et al. (2019) used naturalistic image-based stimuli (im-
ages of faces) and Costa and Averbeck (2015) used more abstract, numerical
stimuli (e.g., prices).

Therefore, the aim of our first two pilot studies was to determine
whether numeric stimuli necessarily lead to undersampling. Pilot Study
1 aimed to replicate undersampling on a version of the economic optimal
stopping task employed by Costa and Averbeck (2015), which used smart-
phone prices. Then, in Pilot Study 2, participants still sequentially encoun-
tered prices for a smartphone contract, but the task otherwise retained all the
other task features of the facial attractiveness paradigm described by Furl et
al. (2019). In other words, the only change compared to Furl et al. (2019) was
that the images of faces were replaced with numerical smartphone prices.
Because of the use of numbers instead of image-based stimuli, we hypoth-
esised that this adaptation to the paradigm would be sufficient to induce
an undersampling bias, in line with the results of previous studies that em-
ployed numerical stimuli (e.g., Baumann et al., 2020; Bearden & Connolly,
2007; Cardinale et al., 2021; Costa & Averbeck, 2015; Furl & Averbeck, 2011;
Sonnemans, 2000).
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However, Pilot Study 2 showed that participants oversampled on
an economic number-based task that implemented task features of the facial
attractiveness task (Furl et al., 2019). Therefore, the aim of our Main Study
was to delineate which methodological task feature(s) could have led to over-
sampling on the number-based task. We hypothesised that at least one task
feature implemented in Furl et al. (2019) and Pilot Study 2, which was not
present in Costa and Averbeck (2015) and Pilot Study 1, might have been re-
sponsible for the observed oversampling bias. At this point, we were in a
position to perform a Main Study that attempted to replicate Pilot Study 1
and Pilot Study 2, and added additional conditions to systematically isolate
the task feature that leads to oversampling.

2 General Materials and Methods

Participants After excluding participants who did not pass the attention
check (Supplementary Materials, text A), 390 participants were included across
our three studies (Npilot1 = 50, Npilot2 = 46, Nmain = 294). Participants were re-
cruited through the online recruitment service Prolific (Prolific, 2014), and
were all fluent in the English language. As our studies involved present-
ing participants with phone prices in GBP, we used Prolific’s pre-screening
facility to ensure that all participants were residents of the United Kingdom.
Gorilla Experiment Builder (Anwyl-Irvine et al., 2020) was used to create and
host the studies. Across all studies, participants were presented with an in-
struction screen prior to commencing the study, and informed consent was
obtained in accordance with the Declaration of Helsinki. All three studies
were approved by Royal Holloway, University of London’s Ethics Board.

Stimuli Participants in all three studies were told that they were buying a
new smartphone. They were presented with sequences of prices for flagship
models by the top brands (e.g., iPhone, Samsung, Huawei), on an up to 5GB
plan with unlimited texts and minutes. All prices were actual prices (in GBP)
of 2-year contracts offered by various UK retailers as harvested from internet
advertisements in the year before data collection. In this way, we attempted
to approximate participants’ real-world expectations of prices on the market
as closely as possible.
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Bayesian ideal observer model Human behaviour on our optimal stop-
ping tasks was compared to a Bayesian ideal observer model, for which per-
formance is Bayesian optimal. This computational Markov decision process
(MDP) model has been used in previous literature, including Costa and Aver-
beck (2015), Furl et al. (2019) and Cardinale et al. (2021) (for a mathematical
description of the model, see Supplementary Materials, Text B). Just like the
historically used Gilbert and Mosteller model (Gilbert & Mosteller, 1966), the
ideal observer model’s expectations about future option values are based on
a standard normal distribution, from which future options are assumed to
be generated. Researchers using these types of model generally fix the mean
and variance of this ‘generating distribution’ in advance to what they think
participants are likely to use when making decisions. For the Bayesian ideal
observer model, where the generating distribution is updated based on each
new sample, researchers fix the mean and variance of the prior of the gener-
ating distribution (i.e., its initial value, before option sampling begins). Here,
we set the prior of the generating distribution of the ideal observer model in
two possible ways (Model 1 and Model 2), depending on the task features.
These will be explained in more detail below.

Pilot Study 1 used the original MATLAB code (MATLAB, 2015) gen-
erously provided by Costa and Averbeck (2015). The version of the model we
used in Pilot Study 1 (Model 1) received as input the same sequence values
(i.e., phone prices) as the participants, in the order in which they were pre-
sented to the participants. Costa and Averbeck (2015), when implementing
their ideal observer model, assumed that participants would use their experi-
ence with real world commodity prices when setting their prior distribution
of option values. Costa and Averbeck (2015) therefore harvested commodity
prices from real-world markets, and generated option sequences from these
approximations to the real-world price distributions. We have done the same
using smartphone prices that were also harvested from real-world markets.
We are assuming that participants attempt to choose the option with the max-
imal subjective value, but that participants’ subjective values of the options
are equal to the options’ exact (objective) price values which the model re-
ceives as input.

Like Costa and Averbeck (2015) and Cardinale et al. (2021), op-
tions were modeled as samples from a Gaussian distribution with a normal-
inverse-χ2 prior. The prior distribution has four parameters: the prior mean
(µ0), the degrees of freedom of the prior mean (κ0), the prior variance (σ2

0 ),
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and the degrees of freedom of the prior variance (ν0). For each sequence,
the values of µ0 and σ2

0 were set to the mean and variance of the log trans-
formed distribution of raw phone prices (i.e., all 90 possible phone prices; µ0

= -6.7402, σ2
0 = 0.1038). Log transformation was applied to the prices to ap-

proximate normality: a Shapiro-Wilk test of normality indicated that phone
prices were not normally distributed (W = 0.94, p < .001). Costa and Aver-
beck (2015) fixed the prior distribution in a slightly different way as we did,
as they set the mean and variance of the model’s prior generating distribution
to that of each individual sequence’s option values, rather than the whole
distribution of option values. We tested whether this alternative specifica-
tion of the prior of the generating distribution affected the model’s sampling
behaviour, but we found that the two similar ways of specifying the prior
produced nearly identical sampling rates (Supplementary Materials, Figure
S1). Model 1 employs a function R, which maps the rank of each option to
its corresponding reward value. Reward values were assigned as follows:
R(1) = 0.12, R(2) = 0.08, R(3) = 0.04, and R(i > 3) = 0, in accordance with the
bonus payments that could be earned (see Section 3). As there was no ex-
plicit extrinsic cost-to-sample in the experimental design, the cost-to-sample
parameter was fixed to zero.

Pilot Study 2 utilised a similar paradigm to Furl et al. (2019). Instead
of assuming that participants use experience from the real world outside the
study to set their prior, participants in Furl et al. (2019) learned the generating
distribution within the study itself, and participants’ subjective (reported)
values of the stimuli were measured. Our participants were instructed to
base their decisions on the optimal stopping task on their own distribution
of attractiveness ratings (i.e., the subjective option values rather than the ac-
tual raw phone prices). This means that in the version of the model that we
used for Pilot Study 2, the value of a given option in a sequence comprised
the mean of participants’ individual attractiveness ratings of that particular
option in the rating phase. These mean ratings were put into the version
of the model that we implemented for Pilot Study 2 (Model 2), in the same
order in which they were presented to participants in the sequences. As out-
lined above, Costa and Averbeck (2015) modelled options as samples from a
Gaussian distribution. To approximate a normal distribution in Pilot Study
2, ratings were log transformed for each participant before being put into the
model: a Shapiro-Wilk test of normality indicated that attractiveness ratings
were not normally distributed (W = 0.85, p < .001). In terms of the prior,
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Furl et al. (2019) set the mean and variance of the prior of their ideal observer
model to those of the participants’ subjective ratings of the stimuli in the gen-
erating distribution, which they learned prior to the optimal stopping task.
We followed this procedure here by setting µ0 and σ2

0 to the mean and vari-
ance of the log transformed subjective value distribution (i.e., attractiveness
ratings), which reflects the participant’s and model’s prior experience with
the set of phone prices (Furl et al., 2019). The respective degrees of freedom
for µ0 and σ2

0 were κ0 = 2 and ν0 = 1. Reward values for Model 2 were set
in the same way as Furl et al. (2019), meaning that we assumed that par-
ticipants followed our instructions and tried to choose the option with the
highest subjective value possible. Therefore, reward values were commen-
surate with the subjective value (attractiveness rating) of the chosen option.
In other words, R(1) = the subjective value of the highest ranked option, R(2)
= the subjective value of the second highest ranked item, and so on. The cost-
to-sample parameter was fixed to zero because there was no explicit extrinsic
cost-to-sample in the experimental design.

Conditions in our Main Study used either one of the two models
outlined above, depending on the task design and instructions to participants
(to be described in Section 5).

Data analysis The key dependent variable of interest for all three of our
studies is the number of samples before choice (i.e., the position of the chosen
price in the sequence). This variable is a mean value over the sequences for
each participant.

The comparison of participants’ sampling behaviour to the ideal
observer model was done using MATLAB version 2015b (MATLAB, 2015)
(repeated measures). Statistical tests were performed using RStudio (RStu-
dioTeam, 2020). For all analyses, a p value of < .05 was considered signifi-
cant.

3 Pilot Study 1

Experimental design Pilot Study 1 included 19 males, 30 females, and 1
participant who selected ‘other’ when reporting gender (Mage = 31.96, SDage
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= 10.67, range 18 to 65 years). Our design has been made openly avail-
able on Gorilla Open Materials 1. Participants were presented with seven
sequences of 12 prices each (Supplementary Materials, Figure S2). The order
in which the sequences were presented was randomised in Gorilla. Costa
and Averbeck (2015) rewarded participants financially for choosing one of
the top three options in the sequence. In our study, participants were able to
earn an additional £0.12 per sequence if they chose the lowest price, £0.08 if
they chose the second lowest price, and £0.04 if they chose the third lowest
price. Bonus payments were on top of a flat fee, which for all our studies was
set in line with Prolific’s recommended pay of at least £7.50 per hour. The
paradigm utilised fixed screen timings, meaning that participants automat-
ically advanced through the screens, except when asked to make a decision
(‘Take this option’ or ‘See next option’). Participants were warned about this
feature in the instruction sheet.

Results and Discussion Recall from Section 2 that Model 1 uses a prior
generating distribution with mean and variance calculated from the objective
price distribution and attempts to maximise the monetary reward value of its
choices. Contrary to our expectations, the comparison of participants’ sam-
pling rate to Model 1 did not replicate the undersampling bias reported by
Costa and Averbeck (2015) and Cardinale et al. (2021). Instead, we found that
there was no difference in sampling rate between participants and Model 1:
t(49) = -1.04, p = .302 (Figure 5.1). The reason why Figure 5.1 shows no vari-
ation in mean values for Model 1 is because the order of the phone prices
across the seven sequences was the same for each participant, and so the
model always produced the same answer for these sequences. This char-
acteristic means that the order of high quality and low quality options in a
sequence could influence the mean sampling rate of Model 1 substantially,
which might explain why we did not replicate undersampling. Because of
these results, in our Main Study we employed multiple sequence orders to
ensure we would obtain model results that are not specific to one particular
sequence of options but rather an average over many sequences.

1https://gorilla.sc/openmaterials/53623
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FIGURE 5.1: Distributions of the mean number of samples for
participants versus Model 1 in Pilot Study 1, and participants
versus Model 2 in Pilot Study 2. The red dots represent the
mean, horizontal black lines represent the median, boxes show
the 25% and 75% quantiles, and the whiskers represent the 95%

confidence intervals.

4 Pilot Study 2

Experimental design We enrolled into Pilot Study 2 participants who did
not participate in Pilot Study 1. Seventeen males and 29 females were in-
cluded in our analysis of Pilot Study 2 (Mage = 30.57, SDage = 11.36, range
18 to 75 years, four participants did not report their age). As with previ-
ous work (Furl et al., 2019), participants were presented with 180 prices (90
unique prices, all rated twice) in the first phase of the study. Prices were
the same as used in Pilot Study 1. Phone prices appeared on the screen one
at a time. Participants rated each price on its attractiveness using a slider
scale from very unattractive (1) to very attractive (100). Attractiveness was
defined as how willing participants were to buy this certain flagship model
phone at the given price. Sliders on the slider scale were made invisible until
first click to reduce slider biases (Matejka et al., 2016), and once clicked on,
the slider showed the currently selected value on the scale. A progress bar
was shown continuously at the bottom of the screen to visualise participants’
progression.
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Phase two of the study included five sequences. In each sequence,
participants encountered 12 prices (Supplementary Materials, Figure S3). Smart-
phone prices were randomly sampled from the entire pool of prices that was
rated in phase one. Participants were asked to attempt to choose as attractive
a price as they could in every sequence, with the restriction that they could
not return to a previously rejected price. The number of prices remaining
in each sequence was shown at the top of the screen, and the rejected prices
were shown at the bottom of the screen. When participants made a choice,
they had to advance through a series of grey squares that replaced the re-
maining prices. This ensured that participants could not finish the study
early by choosing an early option. Phase two was entirely self-paced - partic-
ipants advanced by using their mouse to click on the buttons on the screen. If
the last price in the sequence was reached, that price became their choice by
default. After finishing a sequence, participants were directed to a feedback
screen displaying their chosen price and the text: "This is the price of your
contract! How rewarding is your choice?". Participants responded to this
question using a slider scale ranging from not rewarding (1) to very reward-
ing (100). The feedback screen was included to provide feedback about the
quality of the participants’ choice by asking them to reflect upon its reward
value before moving onto the next sequence, in lieu of the bonus payment
screen in Pilot Study 1. Responses were not further analysed. Participants
were reimbursed a flat fee only - no bonus payments were awarded.

Results and Discussion Recall from Section 2 that Model 2 uses a prior
generating distribution calculated from the subjective values of the prices
and attempts to maximise the subjective value of its choices. Because of the
use of number-based stimuli, we hypothesised that participants would un-
dersample compared to Model 2 in Pilot Study 2 where they searched for
the most attractive smartphone price. However, we found that participants
showed an oversampling bias instead: the comparison of participants’ be-
haviour to the Model 2 version of the Bayesian ideal observer model showed
that participants sampled significantly more options than Model 2 (t(45) =
2.02, p < .05; Figure 5.1). This result is in line with the results of Furl et al.
(2019) on the facial attractiveness task, but contradicted our hypothesis. Al-
though Pilot Study 1 and Pilot Study 2 used the same stimuli (smartphone
prices), we found no evidence for sampling biases in Pilot Study 1, while
participants showed an oversampling bias in Pilot Study 2. When directly
comparing participants’ sampling rates, we found that participants in Pilot
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Study 2 sampled significantly more than participants in Pilot Study 1 (t(86) =
2.14, p < .05).

Hence, our results indicate that another task feature, rather than
stimulus type, must account for the fact that we replicated oversampling in
Pilot Study 2, despite not using images like previous research did (Furl et al.,
2019).2 Because statistical comparisons between studies where data were col-
lected at different times should be treated with some caution, we will further
investigate the difference in sampling rate between Pilot Study 1 and Pilot
Study 2 by directly comparing these two paradigms in the same study (our
Main Study).

We now highlight the key differences in task features between Pilot
Study 1 and Pilot Study 2, which we further investigate in our Main Study.
The first task feature that we will investigate is the rating phase that was in-
cluded in Pilot Study 2. The aim of the rating phase was not only to obtain
participants’ subjective values for each of the prices, but also to familiarise
them with the distribution of prices from which options in phase two are
sampled. This could be crucial, as previous research has shown that partici-
pants are responsive to prior knowledge of varying generating distributions
and adapt their sampling accordingly (Baumann et al., 2020; Guan & Lee,
2018; Guan et al., 2014). For example, Guan et al. (2014) reported that par-
ticipants updated their decision thresholds in accordance with the quality of
their environment (i.e., many high values/plentiful environment, many low
values/scarce environment), while Baumann et al. (2020) found that partici-
pants sampled more in a scarce environment than in a plentiful environment.
Although we attempted to match participants’ expectations about how prices
are distributed by including actual prices of UK retailers, participants in Pilot
Study 1 could have been using different distributions based on their previ-
ous real-life experiences. As such, participants in Pilot Study 1 might have
used different search strategies compared to participants in Pilot Study 2,
who learned the underlying distribution we used for our study prior to com-
mencing phase 2 of the task. Therefore, we consider the rating phase feature
a strong contender in explaining participants’ sampling biases.

A second possible influence of the rating phase is that subjective op-
tion values, rather than objective option values, can be used to determine the

2Oversampling biases on image-based optimal stopping tasks are also reported in Chap-
ters 3 and 4.
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highest ranking option in the sequence. The rating phase stems from Furl
et al. (2019)’s facial attractiveness paradigm where it was essential to obtain
each individual’s personalised ratings for the faces that were presented in
phase 2. Without the rating phase, the ranking of the faces could not have
reflected each individual’s true perception of facial attractiveness, as attrac-
tiveness is subjective. Thus, a certain face in theory could be the best option
in a given sequence (rank 12) for one participant but the worst option (rank
1) for another participant. Keeping this in mind, it is possible that raw prices
in Pilot Study 1 and subjective values in Pilot Study 2 were differently dis-
tributed because participants may not consider every GBP difference to be
equal in subjective value. For example, a participant who believes any price
of £800 or more is not worth choosing, might value a raw price of £800 and
£900 in the same way, despite £800 being £100 cheaper and thus the better
option. As such, the use of subjective values is another feature of the rating
phase that makes the rating phase a contender for explaining participants’
sampling biases.

There are additional differences in task features between Pilot Study
1 and Pilot Study 2, however, that must be considered. For example, after
choosing an option, participants in Pilot Study 2 had to advance through a se-
ries of grey squares that replaced the remaining options. This feature was not
incorporated in the previous implementations of the model that showed un-
dersampling (Pilot Study 1; Cardinale et al., 2021; Costa & Averbeck, 2015).
Although previous research has found no difference in sampling biases using
versions with and without grey squares (Furl et al., 2019), the results have yet
to be confirmed by directly contrasting a condition with grey squares with a
matched condition without grey squares within the same study.

Furthermore, participants in Pilot Study 1 received bonus payments
for choosing the lowest, second lowest, or third lowest price in the sequence,
whereas participants in Pilot Study 2 were paid only the flat fee but were ver-
bally instructed explicitly to maximise the subjective value of their choices.
However, there is also evidence that awarding bonus payments for obtain-
ing the best option in the sequence can actually increase sampling behaviour
(Hsiao & Kemp, 2020). This seems inconsistent with the current results as
we observe no increase in participants’ sampling rate in Pilot Study 1 (which
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incorporated bonus payments) compared to Pilot Study 2 (no bonus pay-
ments). Therefore, further comparison between payoff structures is neces-
sary to determine whether bonus payments might affect participants’ sam-
pling rate.

Finally, the pace of the two pilot studies was dissimilar, as Pilot
Study 1 incorporated fixed timings for most of the screens, whilst Pilot Study
2 was entirely self-paced. The fixed timings in Pilot Study 1 effectively elon-
gated the sequences, potentially giving participants a reason to choose sooner
if they wanted to terminate the study earlier. This strategy would be less
effective in a self-paced design like Pilot Study 2 where participants them-
selves decide how long they view an option. However, Pilot Study 2 was
inherently a longer study than Pilot Study 1 due to the addition of the rating
phase, which sheds doubt on the hypothesis that participants undersampled
merely to end the study sooner. To determine whether the timing of the task
could have influenced sampling biases, a direct comparison of an optimal
stopping task with fixed timings and a self-paced optimal stopping task is
warranted.

5 Main Study

Experimental design The differences between Pilot Study 1 and Pilot Study
2 (as outlined above) are further investigated in our Main Study, where we
compare each of the task features directly to two control versions of the task,
i.e., replications of Pilot Study 1 (baseline condition) and Pilot Study 2 (full
condition). The other four conditions will henceforth be referred to as squares,
payoff, timing, and prior (Table 5.1).

TABLE 5.1: Summary of condition characteristics for our Main
Study.

Condition

Baseline Full Squares Payoff Timing Prior

Task
feature

Grey squares X X
No bonus payments X X
Self-paced X X
Rating phase X X

Ideal
observer

Model 1 X X X X X
Model 2 X
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Demographic information for participants enrolled into each of our
six conditions in our Main Study can be found in Table 5.2. Because of a tech-
nical difficulty with the participant recruitment platform, we overshot our
data collection target in our Main Study by two participants, one in timing
and one in prior. Participants across all conditions were presented with seven
sequences of 12 prices each. Of note is that in Pilot Study 1, the order of the
phone prices across the seven sequences was the same for each participant,
which meant that there was no variation in the mean number of samples for
the model (Figure 5.1). We were surprised to find a null result in Pilot Study 1
(see Figure 5.1) when we expected to replicate undersampling (Costa & Aver-
beck, 2015), and so we were concerned that the null result arose from the use
of one stimulus sequence set that may or may not produce representative
or generalisable behavioural performance. Therefore, in our Main Study, we
strove to mitigate any such bias by introducing some variation in the model’s
performance. Hence, we created 10 different sets of seven sequences. Except
for the full condition (i.e., the replication of Pilot Study 2), participants across
all conditions were randomly assigned to one of the sets (fixed-ratio).

TABLE 5.2: Demographic statistics for each of the six condi-
tions.

Baseline Full Squares Payoff Timing Prior
(N = 50) (N = 48) (N = 50) (N = 51) (N = 50) (N = 45)

Age
Mean (SD) 31.06 (10.63) 32.45 (12.58) 33.36 (10.40) 30.41 (11.82) 33.02 (11.66) 33.36 (12.39)
Missing data points 1 1 0 0 0 0

Sex
Male 15 13 12 18 10 12
Female 34 33 38 32 39 33
Other 1 2 1 1 0 0
Prefer not to say 0 0 0 0 1 0

Baseline condition The first condition, henceforth referred to as baseline,
was a redesigned version of Pilot Study 1 and attempted to replicate the un-
dersampling bias reported on the economic optimal stopping task described
in Costa and Averbeck (2015). Recall that participants were instructed to at-
tempt to choose the lowest smartphone price in a sequence in order to max-
imise their earnings. The paradigm utilised fixed screen timings, and partici-
pants were able to earn bonus payments on top of the flat fee if they chose the
lowest, second lowest, or third lowest price in the sequence (Supplementary
Materials, Figure S2). As in Pilot Study 1, participants’ sampling behaviour
was compared to Model 1, which uses the full raw price distribution to set
the mean and variance of the prior of the generating distribution.
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Full condition The second condition attempted to replicate the oversam-
pling bias observed in Pilot Study 2, and will henceforth be referred to as
full. In this condition, participants first rated all possible phone prices on
their attractiveness (phase 1), after which they commenced with the optimal
stopping task (phase 2) where they were instructed to maximise the subjec-
tive value of their choices, that is, to choose the most attractive price in the
sequence (Supplementary Materials, Figure S3). When participants made a
choice, they had to advance through a series of grey squares that replaced
the remaining prices. The entire paradigm was self-paced, and there were
no bonus payments awarded on top of the flat fee. As in Pilot Study 2, par-
ticipants’ sampling behaviour was compared to Model 2, where the partici-
pants’ subjective valuations of the prices are used to define the prior of the
generating distribution and the option values.

Squares condition The third condition (squares) was the same as the baseline
condition in that it was incentivised, had automatic timings, and did not use
a rating phase. The only difference is that once participants had chosen an
option in the squares condition (that was not the last option), they had to
advance through the grey squares in a similar fashion to the full condition
(Supplementary Materials, Figure S4), which was not the case in the baseline
condition. Participants’ sampling behaviour was compared to Model 1. If
the task feature grey squares suffices to cause an oversampling bias, then
we expect participants to sample more in the squares condition than in the
baseline condition, leading to an oversampling bias in the squares condition
but not in the baseline condition.

Payoff condition The fourth condition (payoff ) was the same as the base-
line condition in that it had no grey squares, had automatic timings, and did
not use a rating phase. However, participants in the payoff condition did not
receive any monetary bonus payments on top of the flat fee they received
for their participation. Instead of receiving feedback regarding their earned
bonus payments on the feedback screen, participants were shown pictures of
either five stars, three stars or one star, if they chose respectively the lowest,
second lowest, or third lowest price in the sequence (Supplementary Materi-
als, Figure S5). Participants were specifically instructed that their goal was to
maximise their number of stars. Therefore, reward values for Model 1 were
changed to R(1) = 5, R(2) = 3, R(3) = 1, and R(i > 3) = 0, in line with the
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number of stars that participants could obtain. None of the other parame-
ter values for Model 1 were changed. If the task feature no bonus payments
suffices to cause an oversampling bias, then we expect participants to sam-
ple more in the payoff condition than in the baseline condition, leading to an
oversampling bias in the payoff condition but not in the baseline condition.

Timing condition The fifth condition (timing) was the same as the baseline
condition in that it had no grey squares, was incentivised, and did not use a
rating phase. Instead of advancing through the screens of the optimal stop-
ping task automatically, though, the timing condition incorporated a ‘next’
button in the top right corner of every option screen. This ensured that the
entire paradigm was now self-paced. Participants’ sampling behaviour was
compared to Model 1. If the task feature self-paced suffices to cause an over-
sampling bias, then we expect participants to sample more in the timing con-
dition than in the baseline condition, leading to an oversampling bias in the
timing condition but not in the baseline condition.

Prior condition The sixth and final condition (prior) was the same as the
baseline condition (no grey squares, incentivised, automatic timings) but added
the rating phase of the full condition before the optimal stopping task. Al-
though there was a phase 1 where participants expressed the subjective val-
ues of the distribution of potential options, the participants essentially ig-
nored these phase 1 ratings in phase 2 and instead attempted to maximise
their monetary bonus payment (i.e., by choosing the lowest phone price in
the sequence which has the highest monetary payoff). As in the baseline con-
dition, participants were able to earn bonus payments on top of the flat fee if
they chose the lowest, second lowest, or third lowest price in the sequence.
Participants’ sampling behaviour was compared to Model 1 because partic-
ipants attempted to maximise the monetary reward of their choices and not
the subjective values from phase 1. If the task feature rating phase suffices to
cause an oversampling bias, then we expect participants to sample more in
the prior condition than in the baseline condition, leading to an oversampling
bias in the prior condition but not in the baseline condition.

Results A 6x2 factorial ANOVA was used to compare the differential ef-
fects of our two agents (participants and model) across the six conditions.
This analysis showed that there was a significant main effect of condition
(F(5,576) = 3.39, p < .01), as well as a significant main effect of agent (F(2,576)
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= 39.73, p < .001), as can be observed in Figure 5.2. However, despite the ap-
parent differences in sampling bias between conditions (see Figure 5.2), we
did not find a significant interaction effect of agent*condition (F(4,576) = .90,
p = .463). Following this result, we wanted to assess whether the condition af-
fected the participants’ mean number of samples, as appeared to be the case
for Pilot Studies 1 and 2. Human participant data (excluding the models) was
analysed using Tukey’s Honest Significant Difference (HSD) method. The re-
sults are shown in Table 5.3, and indicate that there was no evidence that
participants sampled more options in any condition than any other. There-
fore, when participants’ sampling was directly contrasted within one study,
the significant difference in sampling that arose between Pilot Study 1 and
Pilot Study 2 did not replicate.

FIGURE 5.2: Distributions of the mean number of samples for
participants versus their corresponding models, grouped by
condition. The red dots represent the mean, horizontal black
lines represent the median, boxes show the 25% and 75% quan-
tiles, and the whiskers represent the 95% confidence intervals.

To test for differences in the mean number of samples between par-
ticipants and the model, we performed post hoc pairwise t-tests (Bonferroni



18
Chapter 5. Methodological remarks regarding optimal stopping tasks and

the implications for sampling biases

TABLE 5.3: Adjusted p values indicating differences between
the mean number of samples for participants across the six con-

ditions. p < .05 is considered significant.

Baseline Full Squares Payoff Timing Prior

Baseline
Full .73
Squares ∼ 1 .93
Payoff ∼ 1 .91 ∼ 1
Timing ∼ 1 .87 ∼ 1 ∼ 1
Prior ∼ 1 .43 ∼ 1 ∼ 1 ∼ 1

corrected for the six conditions) for each of the six conditions separately. Re-
call that in the baseline, squares, payoff, timing and prior conditions, the mean
and variance of the prior of the generating distribution are set to those of the
full distribution of raw phone prices (Model 1; Table 5.1), whereas for the full
condition, the mean and variance of the prior of the generating distribution
are set to those of the distribution of subjective values (Model 2; Table 5.1).
The results of our post hoc analysis showed that in conditions using Model
1 (i.e., baseline, squares, payoff, timing and prior), participants undersampled
(t(49) = -2.57, p < .05, t(49) = -3.36, p < .01, t(50) = -4.84, p < .001, t(49) =
-4.25, p < .001, and t(44) = -2.50, p < .05, respectively; Figure 5.2). In the full
condition, which used Model 2, participants oversampled (t(47) = 3.32, p <

.01; Figure 5.2).

Discussion In our Main Study, we investigated whether four candidate
task features lead to oversampling on an economic optimal stopping task.
The task features examined were grey squares (squares), no bonus payments
(payoff ), self-paced (timing) and rating phase (prior). Also included in our
Main Study were a baseline condition, a redesigned version of Pilot Study
1, and a full condition, which attempted to replicate Pilot Study 2. Our re-
sults showed that participants undersampled in the baseline, squares, payoff,
timing and prior conditions. This indicates that adding grey squares to the
sequences, just paying participants a flat fee, having a self-paced task de-
sign, or adding a rating phase, does not affect human sampling biases on
optimal stopping tasks. This was in contrast with our expectations, as we
hypothesised that at least one of the candidate task features would lead to
oversampling. We did replicate the oversampling bias of Pilot Study 2 in
the full condition, bolstering our finding that the type of stimulus (numbers



5. Main Study 19

or images) alone cannot account for different sampling biases. We will now
discuss an alternative theory to explain our findings.

Initially, we hypothesised that specific task features, and particu-
larly the rating phase, might affect how humans sample on an optimal stop-
ping task. Surprisingly, even though participants in our Main Study were
presented with a diversity of task features across very different paradigms,
we found no significant differences in human sampling rates across the six
conditions. Instead, what caused sampling biases to differ was the behaviour
of the Bayesian ideal observer model. Specifically, the model changed its op-
timal strategy depending on whether the prior of its generating distribution
was set using the moments taken from the objective value distribution (raw
prices) or the subjective value distribution (ratings). This highlights that if
participants’ generating distribution is unknown or incorrectly specified, ap-
parent sampling biases could arise not because participants behave differ-
ently, but because the generating distribution the model operates on might
be erroneous. We demonstrate this in Figure S6 in the Supplementary Mate-
rials: comparing participants in Pilot Study 2 and the full condition to Model
1 rather than Model 2 appears to flip our original results, causing a (slight)
undersampling bias instead. Moreover, comparing participants in the prior
condition to Model 2 rather than Model 1 resulted in no sampling bias, rather
than the originally reported undersampling bias. This illustrates the need for
standardised procedures for studying human behaviour on optimal stopping
problems when using models that operate on a generating distribution (like
the Gilbert and Mosteller model and the Bayesian ideal observer model). For
example, one might wish to manipulate or control the (otherwise unknown)
generating distribution so it can be modelled properly.

Previous research has tried different approaches to specify the prior
participants operate upon in optimal stopping tasks. Baumann et al. (2020),
for example, included a learning phase prior to the optimal stopping task
to ensure that participants were acquainted with the generating distribution.
Their learning phase encompassed the visual presentation of abstract mathe-
matical representations of probability distributions. At the end, participants
were asked to draw a histogram on which they received feedback. According
to Goldstein and Rothschild (2014), such a graphical elicitation technique can
lead to rather accurate representations of probability distributions in partic-
ipants. Nevertheless, it is unlikely that people learn statistical distributions
of options in the real world (e.g., when renting an apartment, or buying a
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smartphone) by memorising images of statistical distributions. Instead, they
are more likely to build up a distribution from frequent sequential encoun-
ters. The assumption that this kind of learning happens in the real world
formed the basis for the optimal model used in Costa and Averbeck (2015)
and Cardinale et al. (2021), and our Model 1 as applied in Pilot Study 1 and
the baseline, squares, payoff and timing conditions. In our prior condition, we
provided a type of simulation of real-world sequential encounters with op-
tion values through the addition of a rating phase, thus ensuring that partic-
ipants had learned the generating distribution of raw prices (which was oth-
erwise implicit) prior to phase 2. Another study that incorporated learning is
Goldstein et al. (2017), where participants learned an unknown distribution
through repeated play. For optimal stopping tasks where the generating dis-
tribution is known to the researcher but unknown to the participants (e.g.,
as in number-based optimal stopping tasks like Pilot Study 1), any of the
approaches discussed above might be used. Future research may wish to
investigate which approach leads to the most accurate specification of partic-
ipants’ prior distribution, and thereby advise on a standardised procedure.
For situations where the generating distribution is unknown to both the re-
searcher and the participants (e.g., all image-based optimal stopping tasks), a
rating phase which captures participants’ subjective values, as incorporated
in our Pilot Study 2, our full condition and Furl et al. (2019), might provide a
solution. The main advantage of using subjective values is that the models’
generating distribution can be unique for each participant. Participants can
have different subjective values about options, and in this way, the model
would be sensitive to these variations also.

Despite individual differences in subjective values, options’ relative
ranks should largely be preserved when using subjective values to set the
mean and variance of the generating distribution. In our scenario of smart-
phone prices, the lowest price is also likely to be the highest rated price, thus
both schemes should result in the same best-ranked item. This intuition was
confirmed when we mapped the subjective attractiveness values as rated
by participants in the prior condition onto the actual raw prices (Figure S7),
which showed that the lowest smartphone prices received the highest sub-
jective values. However, using subjective values instead of objective values
is likely to affect the spacing between options, that is, two options with two
different objective values might be viewed as similarly attractive by a partic-
ipant. This is illustrated by the nonlinear relationship between objective and
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subjective values in Figure S7: participants make relatively small distinctions
(the function appears flat) between objectively the lowest and highest prices,
and participants’ subjective evaluations primarily discriminate among inter-
mediate prices. When thinking about real-life decision-making scenarios,
this seems like an accurate representation of human decision-making: rarely
will someone pass on a current smartphone deal if they subjectively perceive
a potential future deal to be only incrementally better. Notably, this kind of
subjective evaluation of option values could affect the shape of the generat-
ing distribution as well, which is known to have an influence on participants’
sampling rate (Baumann et al., 2020; Guan & Lee, 2018; Guan et al., 2014).
Figure S8 in the Supplementary Materials shows density plots of all partic-
ipants’ subjective attractiveness ratings recorded for this paper, i.e., in Pilot
Study 1, the full condition and the prior condition, as well as a density plot
of the full distribution of raw prices (objective values). Upon visual inspec-
tion, we can confirm that the distribution of objective values differs in shape
from the distributions of subjective values, which could explain the reported
differences in sampling biases between conditions.

Building on the fact that we found a nonlinear relationship between
objective and subjective values, an interesting next step for future research
could be to directly investigate how these kind of scaling effects influence
model performance, beyond the inferences made from the existing dataset.
Presently, our findings regarding the differences in distribution shapes are
suggestive that the distance between option values could have an effect on
the model. That is, as mentioned above, the distance between participants’
subjective evaluations is greater for intermediate prices compared to the low-
est and highest prices. We note here that it would be possible to look either
at the additive effect, as we have done in this paper, or the proportional ef-
fect (i.e., the percentage change rather than the raw numbers). This distinc-
tion does not directly address the main hypothesis of the current paper as
oversampling results are regardless of being additive or proportional. Nev-
ertheless, future research may wish to look into this distinction to determine
whether there are any differences when looking at scaling effects. This could
be done, for example, in the context of a simulation study. Through model
simulations, the scaling between subjective and objective values can be made
explicit which allows for a high-quality investigation of scaling effects, whilst
empirical research like the present study is somewhat limited in this regard.
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One possible limitation is that besides the differences in the specifi-
cation of the generating distribution between Model 1 and Model 2, the two
models also incorporated a slightly different payoff structure, in line with the
task design and instructions given to participants. We investigate the effect of
varying the reward function on the sampling rate of Model 1 and Model 2 in
the Supplementary Materials (Figure S9, Text C). Our supplementary results
confirm that the difference in sampling of the models can best be explained
by the different specification of the generating distribution.

6 Conclusion

Through three separate studies, we were able to show that none of the follow-
ing task features significantly influenced participants’ sampling rate on an
optimal stopping task: use of images, adding grey squares, removing bonus
payments, making the task self-paced, and adding a rating phase. In other
words, these features cannot explain participants’ sampling biases on opti-
mal stopping tasks. Instead, we suggest that a correct specification of the
generating distribution of option values is critical when investigating sam-
pling biases on optimal stopping tasks, and several approaches to this chal-
lenge are discussed.
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Supplementary materials

Text A: Attention check

Multiple attention checks were added to phase one of Pilot Study 2 and the
full and prior conditions in our Main Study, to compensate for the unsuper-
vised nature of online data collection. Every attention check showed a cross,
a ‘next’ button, and the text "press ‘next’ when the cross disappears". The
cross disappeared at a random time interval between one and five seconds.
The ‘next’ button was active the whole time. If participants were paying
attention, they would not press the ‘next’ button as soon as it appeared,
but would instead read the text and respond only after the cross had dis-
appeared. Thus, if participants’ response time exceeded the cross display
time, they passed the attention check. Participants who failed > 25% of the
attention checks were excluded from analysis. Four participants failed the
attention check in Pilot Study 2, two failed in the full condition of our Main
Study, and six failed in the prior condition of our Main Study. These partici-
pants were subsequently excluded from analysis.
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Text B: Mathematical description of the Bayesian ideal observer

model

Participants’ sampling behaviour was compared to a Bayesian ideal observer
model, where performance is Bayesian optimal and the cost-to-sample pa-
rameter was fixed to zero. Mathematically, the model is based on a discrete
time Markov decision process (MDP) with continuous states (Cardinale et al.,
2021; Costa & Averbeck, 2015). The MDP framework models the utility u of
the state s at sample t as

ut (st) = max
a∈Ast

{
rt (st, a) +

∫
s

pt (j | st, a) ut+1(j)dj

}
(5.1)

where Ast is the set of available actions in state s at sample t. The term inside
the curly brackets is the action value, and rt (st, a) is the reward that will
be obtained in state s at sample t if action a is taken. The integral is taken
over the set of possible states subsequent to the current sample. This set is
weighted by the probability of transitioning into each state from the current
state, given by pt (j | st, a). In other words, the utility u of the state s at sample
t is the value of the best action a, which depends on reward value r, the
cost-to-sample Cs, and the probabilities of outcomes j of subsequent states,
weighted by their utilities.

At each position in the sequence, the ideal observer model computes the re-
spective values for choosing the option and declining the option, and chooses
the one with the highest value. To calculate the value of either taking or de-
clining an option in a sequence, the model computes the action value Q as:

Qt (st, a = take) = rt (st, a)

Qt (st, a = decline) =
∫

s
pt (j | st, a) ut+1(j)dj

(5.2)

The key computations for the ideal observer model, as seen in equation 5.2,
are utility (equation 5.1) and reward values (equation 5.3). The model uses
backwards induction to derive utilities that could result from further sam-
pling (equation 5.4).
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rt (st, a = accept) =
N

∑
i=1

p (rank = i) ∗ R (i + (h− 1))

rt (st, a = decline) = Cs

(5.3)

Function R assigns reward values to each option based on their rank, as fur-
ther specified in Section 2 of the main manuscript for the Model 1 and Model
2 versions of the Bayesian ideal observer model. h represents the relative
rank of the current option. When considering final sequence position N, the
model computes final utilities as:

uN (sN) = r (sN) for all sN ∈ N (5.4)

and working backwards from N, we use equation 5.1 to compute utilities at
every sequence position t.
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Text C: Supplementary discussion of Figure S9

Visual comparison between the two reward functions plotted in Figure S9
suggests that Reward 1 increases the model’s sampling rate, while Reward 2
decreases the model’s sampling rate, for both Prior 1 and Prior 2. This finding
further supports the need for standardised procedures, as sampling biases re-
ported on optimal stopping tasks with different reward structures may not
be directly comparable. Yet the reward function of the model alone cannot
fully explain the observed differences in sampling biases between Model 1
and Model 2, as seen in Figure S6. For example, Prior 1 with Reward 2 has a
fairly similar sampling rate compared to participants in both conditions, but
Prior 2 with Reward 2 results in a clear oversampling bias. This difference in
sampling of the models can only be explained by the different specification
of the generating distribution. As such, it is the Prior 1 versus Prior 2 na-
ture of Model 1 and Model 2 that accounts for their performance, rather than
Reward 1 versus Reward 2.
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FIGURE S1: Comparison between the mean number of samples
for our Model 1 and Costa & Averbeck’s version of this model
(C&A), using our results for Pilot Study 1. For the C&A model,
the mean and variance of the model’s prior generating distribu-
tion are set to that of each individual sequence’s option values,
rather than the whole distribution of option values (as in Model
1). The red dots represent the mean, horizontal black lines rep-
resent the median, boxes show the 25% and 75% quantiles, and

the whiskers represent the 95% confidence intervals.



6. Conclusion 31

FIGURE S2: Screenshots of Pilot Study 1. A: instructions screen,
shown for six seconds. B: option screen, shown for four sec-
onds. C: choice screen. D: feedback screen where the partic-
ipant chose the lowest price in the sequence, shown for three

seconds.
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FIGURE S3: Screenshots of Pilot Study 2. A: rating screen. B:
option screen.
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FIGURE S4: Screenshots of our Main Study, condition squares.
A: instructions screen, shown for six seconds. B: option screen,
shown for four seconds. C: choice screen. D: grey square. E:
feedback screen where the participant chose the lowest price in

the sequence, shown for three seconds.
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FIGURE S5: Screenshots of our Main Study, condition payoff. A:
instructions screen, shown for six seconds. B: option screen,
shown for four seconds. C: choice screen. D: feedback screen
where the participant chose the lowest price in the sequence,

shown for three seconds.
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FIGURE S6: Distributions of the mean number of samples for
participants versus Model 1 and Model 2 for Pilot Study 2, the
full condition and the prior condition. The current comparison
plot highlights how a different specification of the generation
distribution can lead to different sampling biases within the
same task. Specifically, for all three datasets, Model 1 tends to
show at least a slight undersampling bias while Model 2 tends
to show at least a slight oversampling bias or no sampling bias.
There is no variation in Model 1’s performance in Pilot Study
2 and the full condition because these conditions used only one
set of sequences, rather than 10 like the prior condition. The
red dots represent the mean, horizontal black lines represent
the median, boxes show the 25% and 75% quantiles, and the
whiskers represent the 95% confidence intervals. Reward func-
tions of Model 1 and Model 2 were adapted slightly to reflect

the instructions to participants in the relevant condition.
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FIGURE S7: Nonlinear relationship between subjective attrac-
tiveness values and objective raw prices (GBP). Orange dots
represent the mean subjective value for each price, the orange
line represents the regression line. Data were taken from the

prior condition.
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FIGURE S8: Top: density plots of participants’ subjective val-
ues as collected in Pilot Study 2, the full condition and the prior
condition. Bottom: density plot of the full distribution of raw
prices (GBP) as used in Pilot Study 1, and the baseline, squares,

payoff, timing and prior conditions.
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FIGURE S9: Model 1 (which uses a prior defined by objective
values: Prior 1) assigned reward values only to the top three
ranking options in the sequence (Reward 1), while Model 2
(which uses a prior defined by subjective values: Prior 2) as-
signed reward values commensurate with the subjective value
of an option (Reward 2). To delineate whether the reward func-
tion of the optimal model can affect sampling biases, we have
here plotted the distributions of the mean number of samples
for participants versus Prior 1 with reward functions Reward
1 and Reward 2, and Prior 2 with reward functions Reward 1
and Reward 2, for the full and prior conditions. To reiterate, in
the main text Prior 1 - Reward 1 is Model 1 for the prior condi-
tion, and Prior 2 - Reward 2 is Model 2 for the full condition.
The red dots represent the mean, horizontal black lines repre-
sent the median, boxes show the 25% and 75% quantiles, and

the whiskers represent the 95% confidence intervals.
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Chapter 6

Neural computations of
prospective social decisions

Abstract

An optimal stopping problem is a specific type of sequential decision-making
scenario that requires people to make prospective decisions. Specifically, a
decision maker must decide either to take an option now or to decline with
the prospective expectation of a better future option, under the restriction
that declined options cannot be returned to. A robust decision network has
been found to underlie take versus decline decisions on (economic) sequential
information sampling tasks where participants sample too few options com-
pared to computational models of optimality. Here, we investigated whether
a similar pattern of activation is associated with oversampling biases on a so-
cial optimal stopping task where participants attempted to maximise the fa-
cial attractiveness of a prospective date. Our results indicate that decisions to
take versus decline an option engaged a network that closely overlaps the net-
work identified in previous research, including the prefrontal cortex, parietal
cortex, insula, and striatum. As such, our findings showed that activation
in this decision network extends from previous economic optimal stopping
tasks where people sample too few options, to ecologically-valid prospective
social decisions where people sample too many options.

1 Introduction

In many real-world decision scenarios, a decision maker (DM) is required to
make a trade-off: weighing a current reward against the prospective proba-
bility of a future reward. This is called prospective decision-making (Kolling
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et al., 2018). Optimal stopping problems are one example of a decision sce-
nario that requires prospective decision-making (for historical reviews, see
Ferguson, 1989; Freeman, 1983). Everyday optimal stopping problems that a
DM may encounter are finding a parking space (Todd & Gigerenzer, 2012),
renting an apartment (Zwick et al., 2003), buying a secondhand car (Costa &
Averbeck, 2015), or choosing a date (Furl et al., 2019). What defines an op-
timal stopping problem is that options are sequentially presented in a fixed
length sequence, and a DM must decide either to take an option now or to
decline with the prospective expectation of a better future option. The diffi-
cult trade-off between taking and declining an option can be solved using a
finite horizon Bayesian Markov decision process (MDP) (Costa & Averbeck,
2015).

Previous research on economic optimal stopping problems has re-
vealed a decision-making network comprising the parietal and dorsolateral
prefrontal cortices, ventral striatum, anterior insula, and anterior cingulate
which could underlie the decision to stop sampling and choose an option
(Costa & Averbeck, 2015). This finding was similar to earlier findings of Furl
and Averbeck (2011) on the beads task (a related information sampling task,
see Chapter 1, Sidebar 2). On the beads task, the decision to stop sampling
was related to activation in the anterior insula, anterior cingulate, dorsal pari-
etal cortex, and ventral striatum (Furl & Averbeck, 2011). Only activation in
the dorsolateral prefrontal cortex was unique to Costa and Averbeck (2015).
The findings of these two studies indicate that there is a consistent pattern of
activation related to the belief that the expected reward for the current option
exceeds the prospective reward of future options, motivating the decision to
choose the current option. Aside from the functional magnetic resonance
imaging (fMRI) results, Furl and Averbeck (2011) and Costa and Averbeck
(2015) also found similar behavioural results. That is, compared to a Bayesian
ideal observer model, participants sampled less evidence than optimal (un-
dersampling). As such, the decision network identified by Furl and Averbeck
(2011) and Costa and Averbeck (2015) could be specifically related to deci-
sions to stop sampling too early on optimal stopping tasks.

Human undersampling biases are a common finding in the optimal
stopping literature (e.g., Bearden et al., 2006; Cardinale et al., 2021; Guan &
Lee, 2018; Hauser et al., 2018; Seale & Rapoport, 1997). However, there are
also reports of participants sampling too much before taking an option (over-
sampling). Furl et al. (2019), for example, found evidence of oversampling on
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a social decision scenario where participants had to choose the most attrac-
tive face from a sequence of faces as their date. To the best of our knowledge,
the neural network underlying oversampling biases on prospective social de-
cisions is yet to be investigated. Therefore, the aim of the current study is to
test whether the same decision network that contributed to the decision to
take an option in Costa and Averbeck (2015) and Furl and Averbeck (2011) is
involved in prospective social decisions on the facial attractiveness task (Furl
et al., 2019). If we find activation consistent with previous findings, this evi-
dence will bolster support for the general role of these regions in prospective
decision-making, including difficult, ecologically-valid social decisions.

2 Materials and methods

2.1 Participants

Thirty neurotypical volunteers were included in our study (8 male and 22
female participants, Mage = 20.07 years, SDage = 1.76 years). Participants
were recruited through Royal Holloway, University of London’s (RHUL)
online Psychology Experiment Management System (paid pool) and Face-
book groups intended for students of RHUL. All participants had normal
or corrected-to-normal vision and identified as heterosexual. The study was
approved by Royal Holloway, University of London’s Ethics Board.

2.2 Experimental design

Our experimental design closely follows that of the facial attractiveness paradigm
described by Furl et al. (2019). The experiment consisted of two parts: a rat-
ing task, which was carried out on a computer in the lab, and an optimal
stopping task, which was carried out in the fMRI scanner. As our sample
included only heterosexual participants, all male participants rated female
faces, and all female participants rated male faces.

In the first part of the experiment, participants were instructed to
rate 426 unique faces on their attractiveness, using a scale from 1 (very unattrac-
tive) to 9 (very attractive). Participants responded by keyboard press. The set
of 426 faces used in our experiment was the same set used in Study 2 of Furl et
al. (2019), and showed youthful individuals with happy expressions, roughly
aged 18 to 30, ranging in viewpoint degree between frontal and three-quarter
view, in colour with a circular grey mask. Each face was rated three times,
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allowing for a final attractiveness rating for each face to be computed from
the mean of these ratings. Because of ongoing restrictions related to COVID-
19, it was necessary to use MATLAB (MATLAB, 2015) for the delivery of the
rating phase to the first 15 participants, and a Gorilla Experiment Builder
(Anwyl-Irvine et al., 2020) version with only slightly different aesthetics for
the remainder.

In the second part of the experiment, participants carried out an op-
timal stopping task in which they had to choose the most attractive face from
sequences of faces as their date. Participants were told that the faces they
would encounter in part two would be a random subset of the faces in part
one, but were not provided with any further information regarding the at-
tractiveness distribution that generated the sequences. The task was divided
into four sessions, each of which contained eight sequences of eight faces,
i.e., participants were shown 32 sequences in total. In line with the typical
characteristics of optimal stopping problems, participants were unable to re-
turn to a previously rejected option, and they had no way of knowing for
certain the value of the option(s) yet to come in any given sequence. The
number of options remaining was shown at the top of the screen, and the re-
jected options were shown at the bottom of the screen. If participants did not
choose any of the faces in the sequence, the last option automatically became
their chosen face by default. Once participants had chosen an option, they
were directed to a feedback screen which displayed their chosen face and the
text ‘Here is your new date!’. Participants provided responses throughout
the second part of the experiment using a button box. Stimulus timings and
inter-trial intervals are shown schematically in Figure 6.1.

Participants’ sampling behaviour on the optimal stopping task was
compared to a Bayesian ideal observer model (Costa & Averbeck, 2015) where
performance is Bayesian optimal. Mathematically, the model is based on a
discrete time, finite-horizon MDP with continuous states (for a full math-
ematical description we refer to Furl et al. (2019) and Costa and Averbeck
(2015) 1). Model values were fixed to the values used by Furl et al. (2019).
For each option in the sequence, the ideal observer model computes the
prospective reward values for taking and declining that option, and chooses
the action with the highest value. The model received as input the same op-
tion values as the participants, in the order in which they were presented

1A mathematical description of the Bayesian ideal observer model is also provided in
Chapters 3, 4 and 5 of this thesis.
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FIGURE 6.1: Schematic overview of the stimulus timings and
inter-trial intervals of the optimal stopping task.

to the participants. Option values comprised the mean attractiveness rat-
ing for that particular option. Each participants’ attractiveness ratings were
log transformed before being put into the model to approximate normality,
which helps satisfy the model’s assumption that the generating distribution
is normal. The cost-to-sample parameter was fixed to zero.

2.3 fMRI scanning

For our structural MRI and fMRI measurements, we used a Siemens Mag-
netom TrioTim syngo MR B17 3-T scanner (Siemens AG, Munich, Germany)
at the CUBIC imaging centre at Royal Holloway, University of London, and
an 8-channel head coil. We carried out a standard T1-weighted 1x1x1mm
whole-brain structural scan (3D MPRAGE) with 1900ms time to repeat (TR),
3.03ms echo time (TE), flip angle 11◦, matrix: 256 x 256mm. Echo-planar vol-
umes were collected using a high-resolution 2x2x2mm multi-band sequence.
Volumes were collected as 56 slices, 2.0mm thick, in-plane resolution 1200ms
TR, 36.8ms TE, flip angle 30◦. The first five ‘dummy scans’ of each session
were discarded to allow for magnetization equilibration effects.

2.4 fMRI data preprocessing and statistical analysis

Data were preprocessed and analysed using MATLAB and SPM12 software
(Wellcome Trust Centre for Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/spm).
All participants were retained after motion correction, as motion estimates (R
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= [X Y Z pitch yaw roll]) were within reasonable bounds (maximum values of
8mm and 7 degrees). Motion parameters were put in as additional regressors
in the first level analysis (explained in more detail below). Scans were re-
aligned, spatially normalized to the Montreal Neurological Institute (MNI2)
standardized space and smoothed to 5mm3 full width half maximum us-
ing conventional procedures. Similar to Costa and Averbeck (2015), we em-
ployed a whole brain mass-univariate analysis for estimating the magnitude
of the hemodynamic blood oxygenation level dependent (BOLD) response to
each stimulus event (Friston et al., 1998).

At the individual-participant level, we computed ‘first level’ mass-
univariate time series models for each participant. The aim of the first-level
model is to predict the fMRI time series using regressors constructed from
stick functions representing stimulus onset times, convolved with a canonical
BOLD response function, which captures the temporal profile of the BOLD
response to a behavioural event. Regressors included in the first level anal-
ysis were the motion parameters mentioned above, as well as the stick func-
tions for the take events and decline events which were subtracted at the
first level and those subtractions brought to the second level to be tested for
significance from zero in a one sample t-test. For each regressor and its asso-
ciated event type, a β-value was computed to estimate the magnitude of the
BOLD response evoked by the events. β-values for different event regressors
were then contrasted statistically to test whether the BOLD responses evoked
by different events significantly differed in magnitude. Our first-level analy-
ses also used an AR(1) autocorrelation model and a high-pass filter of 128 s.
The term β-value or β-weight comes from the fact that it is a coefficient from
a general linear model.

Our primary hypothesis concerned BOLD responses related to the
decision to take the current option. Therefore, the participant response was
modelled separately for choices to take the current option versus choices to
decline the current option, so we could subsequently contrast these two de-
cisions (take > decline and decline > take). Once β-values had been computed
for both of our events of interest, as well as contrasts over these β-values (see
Results), we then brought these β-values to a ‘second level’ analysis where
they were entered into one-sample t-tests, treating participants as a random
effect. This allowed us to test whether β-values were statistically consistent

2MNI is the standard template for fMRI research (Chau & McIntosh, 2005; Poldrack et al.,
2011)
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across participants. All results reported below were observed at a p < .001
uncorrected cluster detection threshold with a minimum of 100 voxels, after
which they were tested for family-wise error (FWE) correction at the cluster
level at P(FWE) < .05 using Gaussian random field theory. This is a conven-
tional method (Penny et al., 2011) that uses the estimated smoothness of the
data to correct for the massive number of multiple comparisons at all voxels
in the whole brain.

3 Results

3.1 Behavioural results

After comparing participants’ sampling behaviour to that of a Bayesian ideal
observer model, we found that participants sampled more than the model (Z
= 0.501, p < .05 3), and ended up with lower-ranked faces (t(29) = -9.733, p <

.001) (Figure 6.2).

3.2 Functional imaging results

First, we examined the contrast between choices to take the current option
versus choices to decline the current option. This contrast revealed activa-
tion in a number of areas (Table 6.1), including the dorsomedial prefrontal
cortex (Figure 6.3A), extending to the anterior cingulate (Figure 6.3A), stria-
tum (Figure 6.3A), insula (Figure 6.3B), and parietal cortex (Figure 6.3C).
Like Furl et al. (2019), we found effects in the right supramarginal gyrus (an
area involved in emotional processing; Silani et al., 2013). Additionally, we
found effects in the occipital gyrus and the temporal gyrus (areas both re-
lated to the processing of faces; Jacques et al., 2019). The opposite contrast,
declining versus taking the current option, revealed effects in areas related
to visual processing (fusiform gyrus) and movement (supplementary motor
area, postcentral gyrus, precentral gyrus). Furl and Averbeck (2011) also re-
ported activity in the superior frontal gyrus, but we found activity in the
middle/inferior frontal gyrus. Both contrasts were associated with activity
in the cerebellum ansiform lobule, which is an area associated with cognitive
and visuomotor functions (Sugihara, 2018).

3A Shapiro-Wilk test of normality indicated that the distribution of the mean number
of samples for the optimal model differed significantly from the normal distribution (W =
0.908, p = .013), which is why a Wilcoxon signed rank test was used to calculate the difference
between participants and the model for the mean number of samples
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FIGURE 6.2: On the left: density plots of the mean number of
samples, separately for each agent, overlaid with the individ-
ual data points and a box plot showing the mean and 95% con-
fidence interval. On the right: density plots of the mean rank of
the chosen option, separately for each agent, overlaid with the
individual data points and a box plot showing the mean and

95% confidence interval.

FIGURE 6.3: Take versus decline activation. A: prefrontal activa-
tion. B: insula activation. C: parietal activation.

4 Discussion

The fMRI study described in this paper investigated which neural networks
underlie oversampling biases on a social optimal stopping task. In line with
our expectations, participants sampled more options than a Bayesian ideal
observer model. This finding is consistent with previous results on the so-
called facial attractiveness task (Chapter 4; Furl et al., 2019). When compar-
ing decisions to take an option with the decision to decline an option and
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TABLE 6.1: Peak activation coordinates and statistics for areas
differentiating take and decline choices.

Region xa y z tb Sizec

Take > Decline
Left frontal gyrus (medial/superior) 0 26 44 10.17 8026
Left insula -32 20 -4 6.2 1655
Left postcentral gyrus -46 -30 46 7.68 2612
Right supramarginal gyrus 46 -36 46 4.98 1347
Left inferior occipital gyrus -42 -72 -10 4.92 683
Left cerebellum ansiform lobule -8 -72 -26 4.57 210
Right middle temporal gyrus 62 -32 -12 4.56 161
Right caudate nucleus 14 8 14 4.51 108
Left middle frontal gyrus -30 50 10 5.4 271

Decline > Take
Right fusiform gyrus 32 -78 -14 18.39 8022
Left middle frontal gyrus -32 20 6 7.89 398
Left supplementary motor area 2 12 50 7.89 1375
Left superior parietal lobule -20 -62 52 7.19 426
Right inferior frontal gyrus 42 32 18 5.32 309

38 6 30 5.34 176
Left cerebellum ansiform lobule -6 -72 -32 5.24 108
Right insula 34 18 0 5.22 517
Left postcentral gyrus -44 -30 46 5.05 984
Right precentral gyrus 32 -2 50 4.61 310

a Peak coordinates are reported in MNI space.
b Whole brain corrected at P < .05 FWE.
c Cluster volume estimated using 2 mm3 voxels.

continue sampling, we found a robust network of activation that included
a large cluster in the prefrontal cortex, striatum, insula, and parietal cortex.
This pattern of activation was similar to the activation in Costa and Averbeck
(2015) and Furl and Averbeck (2011), who both investigated the take versus
decline contrast on an information sampling task.

Our results confirm the role of the frontal-parietal areas as well
as cingulate, insula and striatal areas in prospective decision-making, sup-
porting the hypothesis that these areas comprise the main decision network
for decisions to commit to an option and stop sampling more information.
Background information on the functions of these regions is provided in
Chapter 1, Section 1.5. The current study builds upon previous literature
by showing that activation in the decision network is independent of sam-
pling biases (undersampling/oversampling) and decision-making domains
(economic/social). While we have identified a decision network that seems
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to relate to prospective decision making on optimal stopping tasks, the func-
tions of the individual regions comprising the decision network remain spec-
ulative. Based on the findings of previous research, we hypothesise that acti-
vation in the parietal cortex is associated with decision thresholds and sam-
pling rate. The fact that we also found activity in the parietal cortex in the
decline > take contrast is unsurprising in light of previous research suggest-
ing that the parietal cortex is involved in the integration of evidence as it
is collected (Kiani & Shadlen, 2009). Furthermore, activation in the insula
could be related to the value of the current option (Furl & Averbeck, 2011),
while activation in the striatum might be associated with reward magnitude
(Costa & Averbeck, 2015; Haber & Knutson, 2010). The role of the prefrontal
cortex may be more general as it is an important contributor to cognitive con-
trol and decision-making (Domenech & Koechlin, 2015; Ridderinkhof et al.,
2004), although some areas of the prefrontal cortex, such as the VMPFC and
the ACC, have been highlighted in previous research to have functions that
are key also to decision making on optimal stopping tasks. For example, the
ACC was found to be important for evaluating potential future actions in for-
aging tasks that require exploratory behaviours (Kolling et al., 2016; Schuck
et al., 2015; Wittmann et al., 2016) and activation in the VMPFC was associ-
ated with the subjective value of a stimulus (Brosch & Sander, 2013; Levy &
Glimcher, 2012). We encourage future research to investigate our post-hoc
hypotheses and study the differential contributions of the areas comprising
the decision network.

In addition to studying the individual contributions of brain areas
to decision making in general, future research may wish to further explore
what cognitive processes are unique to taking an option vs declining an op-
tion specifically on optimal stopping tasks. Importantly, the main interest
of the current study in the take vs decline contrast was simply the extent
to which it would match previous studies (Costa & Averbeck, 2015; Furl &
Averbeck, 2011) - a question our study has satisfied. As such, we did not
have any a priori hypotheses regarding what different areas are doing when
taking or declining an option and are unable to draw direct inferences about
computations in these brain regions on the basis of the take versus decline
contrast alone. One way to resolve this would be to fit our models to the be-
havioural data, after which the computational qualities, such as the value of
taking an option vs the value of declining an option which vary trial by trial,
can be extracted. These computational qualities could then be correlated with



4. Discussion 11

the fMRI data. This procedure is similar to the analyses described in Costa
and Averbeck (2015) and Furl and Averbeck (2011). In Costa and Averbeck
(2015), for example, the authors used the value estimates generated by their
MDP model to produce a parametric modulator of the value of declining the
current option minus the value of taking the current option. They found that
this parametric modulator was significant amongst others in the VMPFC,
meaning that activity in the VMPFC corresponded to the magnitude of the
difference in value between take vs decline. Nevertheless, the primary goal
of the current study was to show concordance with other studies, to which
we have succeeded.

A limitation of the present study is that there also appeared to be
some noise in the data, including peak activation coordinates not correspond-
ing to brain areas in MNI space (not further reported nor included in Table
6.1). Although we have implemented standardised procedures for reducing
noise in the data, differentiating signal from noise can be challenging (Liu,
2016). Also of note is that noise in the form of typical spatial patterns has
been reported for studies using multi-band sequencing due to the simultane-
ous acquisition of multiple slices (Griffanti et al., 2017). Such artefacts were
not observed in the current dataset, perhaps because they typically depend
on the head movements of the participants (Griffanti et al., 2017), but we did
not correct for multi-band scanning either. As such, we cannot exclude that
noise due to the multi-band sequencing procedure was present in the data.
Peak coordinates in regions of MNI space outside of the brain have been
treated as noise, but we make no assumptions regarding our reported find-
ings. However, activation in the frontal-parietal areas and insula in the take
> decline contrast survived a more conservative correction method (whole-
brain FWE at p < .001). This finding bolsters support for the role of these
areas in prospective decisions.

Another limitation of the current paradigm is the fact that decline
events were always followed by another option, whilst take events were al-
ways followed by the feedback screen that communicated the reward value
of the chosen option. Because of this, some of the network activity observed
could have been related to reward anticipation, rather than prospective decision-
making. Regions typically involved in reward anticipation include the or-
bitofrontal cortex (Gorka et al., 2015; Kahnt et al., 2010), ventral striatum
(Haber & Knutson, 2010; Jauhar et al., 2021; Knutson et al., 2001a; Knutson
et al., 2001b), and anterior cingulate cortex (Gorka et al., 2015; Wilson et al.,
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2018). Although there is some activation in areas related to reward anticipa-
tion in the take > decline contrast (e.g., right caudate nucleus), the evidence is
not overwhelming. An explanation for this could be that the intrinsic reward
as implemented in our paradigm was insufficient to elicit a strong response in
regions associated primarily with monetary reward anticipation. However,
Costa and Averbeck (2015) did offer their participants monetary rewards but
nonetheless reported a similar pattern of activation. This suggests that acti-
vation in the take > decline contrast is predominantly related to prospective
decision-making. Future research may wish to further investigate whether
some activation in the take > decline contrast could be explained by reward
anticipation by directly comparing an optimal stopping task that implements
a feedback screen and rewards (intrinsic or monetary) to an optimal stopping
task without a feedback screen and rewards.

In conclusion, participants showed an oversampling bias compared
to a Bayesian ideal observer model on a social optimal stopping task. Prospec-
tive decision-making on this task was linked to activation in a decision net-
work comprising the prefrontal cortex, insula, striatum, and the parietal cor-
tex. Our findings indicate that activation in this decision network extends
from economic optimal stopping tasks where people sample too few options,
to ecologically-valid social decisions where people sample too many options.
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Chapter 7

Discussion

In my introduction, I specified three sub-questions, namely: are sampling bi-
ases dependent on the decision-making domain? Can certain task features
explain sampling biases? And, which brain areas correlate with prospective
decision-making on optimal stopping tasks? In the following sections, I out-
line how the research included in this thesis has addressed these research
questions, I discuss the theoretical contributions of this thesis as well as the
implications for the field, and I suggest directions for future research.

1 Sub-question 1: sampling biases are not depen-

dent on the decision-making domain

My first empirical chapter (Chapter 3) investigated whether oversampling
biases on full information optimal stopping problems are an intrinsic feature
of personal mate choice decisions, as suggested by Furl et al. (2019). In the
first study, I showed that oversampling biases persisted when participants
made decisions about the attractiveness of potential dates on an imaginary
client’s behalf (matchmaker). In the second study, I showed that oversampling
biases persisted when participants made decisions about the trustworthiness
of faces, rather than attractiveness (trustworthiness). As such, the studies de-
scribed in Chapter 3 provide evidence that oversampling biases are not lim-
ited to the personal mate choice domain, and may therefore not be domain
specific. However, this conclusion remained limited to decision-making do-
mains that used images of faces as stimuli. Up to this point, all studies that
found oversampling biases in participants (Furl et al., 2019, matchmaker,
trustworthiness) had used images of faces. Although I show in Chapter 3
that the different paradigms lead to distinctly different judgements (Figure
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3.1), it remains unclear whether oversampling biases extend to other image-
based domains beside faces. This was one of the main objectives of my sec-
ond empirical chapter (Chapter 4).

Chapter 4 builds upon the results of Chapter 3 by investigating
whether sampling rates across different image-based decision-making do-
mains depend on different sampling biases. The results of two studies pro-
vided convergent evidence that participants oversample in three different
image-based decision-making domains: faces, food and holiday destinations,
thus providing further support for the theory that sampling biases are not
domain specific. Yet a limitation remained: to this point I had only shown
oversampling biases on image-based decision-making domains. To be able
to conclude that sampling biases are not dependent on the decision-making
domain, I would need to show that participants can oversample on number-
based domains. To this point, research on number-based full information
problems had mainly reported that participants undersample on these kinds
of tasks (Baumann et al., 2020; Cardinale et al., 2021; Costa & Averbeck, 2015).
Hence, one of the objectives of Chapter 5 was to determine whether partici-
pants would continue to oversample on our full information task when nu-
meric stimuli were used instead, but all other task features as implemented
in Chapters 3 and 4 were maintained.

The results of the first two studies described in Chapter 5 showed
that oversampling biases persisted when smartphone prices (i.e., numbers)
were used as stimuli in the full information optimal stopping task. Why I
observed oversampling biases on a number-based task while previous re-
search reported undersampling is further discussed in Section 2. Consider-
ing the evidence presented in my first three experimental chapters, I am now
able to answer my first research question and conclude that sampling biases
are not dependent on the decision-making domain, whether image-based or
number-based.

2 Sub-question 2: certain task features can explain

sampling rates, but not sampling biases

Having ascertained that sampling biases (i.e., over- or undersampling com-
pared to optimality) are not dependent on the decision-making domain, I
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now consider my second research question, whether other task features ex-
plain sampling biases. In Chapter 4, I investigated whether the moments of
the generating distribution might explain the participants’ and model’s vari-
ations in sampling rate. Previous research had shown that on number-based
full information problems, a more positively skewed generating distribution
can increase participants’ sampling rate (Baumann et al., 2020). Chapter 4
builds on the findings of Baumann et al. (2020) by investigating whether the
moments of the generating distribution also affect participants’ sampling rate
on image-based full information problems, and whether the optimal model
is affected in a similar way by the moments of the generating distribution.

At first glance, this hypothesis may not seem related to task features.
However, from the results of Chapter 3 we know that different decision do-
mains that use the same stimuli can lead to distinctly different generating
distributions (Figure 3.1). Therefore, I hypothesised that using different im-
ages altogether like in Chapter 4 (faces, food and holiday destinations) could
in a similar way also lead to differences in the moments of the generating
distribution between conditions. As shown in Figures 4.3 and 4.4, this was
indeed the case. Significant differences were found between conditions in
the mean, variance, skewness and kurtosis of the generating distributions.
Additionally, the results showed that the mean and skewness of the generat-
ing distribution could statistically explain sampling behaviour, as these mo-
ments correlated in a similar way with both participants’ sampling rate and
the optimal model’s sampling rate. Moreover, the variance of the generating
distribution showed a negative correlation with the optimal model’s sam-
pling rate, and the kurtosis showed a positive correlation with the model’s
sampling rate. As such, I demonstrate that using different images, or even
just different judgements of the same image (i.e., attractiveness versus trust-
worthiness), can lead to variations in the shape of the generating distribu-
tion, which consequently affects sampling rate. However, the moments of
the generating distribution cannot explain sampling biases because the op-
timal model’s sampling rate is affected in a similar way to participants by
variations in the shape of the generating distribution.

Nevertheless, there are additional task features that can be consid-
ered candidates for explaining sampling biases and that could therefore an-
swer my second research question. In Chapter 5, after having found that
the decision-making domain does not affect sampling biases, I deduced that
some task feature(s) inherent to my full information task, other than the use
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of images, can lead to oversampling. To investigate this, I conducted a third
study in Chapter 5 where I explored the effects of four different task features
on participants’ sampling biases. The task features in question were the so-
called grey squares, the bonus payments, the fixed or self-paced timing of
the task, and the rating phase. Yet, none of the task features was sufficient to
instigate an oversampling bias, and no significant differences in participants’
sampling rate were found across conditions. Instead, what caused sampling
biases to differ was the behaviour of the optimal model. The model sampled
less in the condition that used a slightly different specification of the generat-
ing distribution and reward function compared to the other five conditions,
causing an oversampling bias to be observed in participants. The different
model specifications and their implications are further discussed below in
Section 4. For now, what is important is that I have found evidence that the
optimal model, rather than certain task features, can explain sampling biases.

3 Sub-question 3: a decision network correlates

with prospective decision-making on optimal stop-

ping tasks

In my final empirical chapter, Chapter 6, I investigated which brain areas cor-
relate with prospective decision-making on a full information optimal stop-
ping task on which people show an oversampling bias. When comparing
decisions to take an option versus decisions to decline an option (take > de-
cline), a robust pattern of activation emerged which included the prefrontal
cortex, striatum, insula, and parietal cortex. This pattern of activation was
similar to the activation found in previous research (Costa & Averbeck, 2015;
Furl & Averbeck, 2011), and confirms that activation in this decision network
extends from a number-based full information task (where people undersam-
ple) to an image-based full information task (where people oversample). The
functions of the individual regions comprising the decision network, how-
ever, remain speculative.

The activation in the prefrontal cortex was expected due to its role
in cognitive control and decision-making (Domenech & Koechlin, 2015; Rid-
derinkhof et al., 2004). A hypothesis for future studies on the basis of the
current findings and the literature is that specifically the DLPFC and VMPFC
are important for decision-making on optimal stopping tasks due to their role
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in value computation (Costa & Averbeck, 2015; Lin et al., 2020) and evidence
accumulation (Furl & Averbeck, 2011; Gluth et al., 2012). The striatum is
know for its specific function in reward anticipation (Haber & Knutson, 2010;
Knutson et al., 2001a; Knutson et al., 2001b). Costa and Averbeck (2015), for
example, found that activation in the ventral striatum related to the size of
the reward outcome. In my fMRI study I found striatal activation on a task
that had no monetary rewards. Instead, I assumed that participants would
feel intrinsically rewarded by the perceived quality of their choice. My find-
ings suggest that this intrinsic reward was sufficient to instigate activation
in the striatum. Alternatively, the activity I observed in the ventral striatum
in the take versus decline contrast could have been related to the anticipation
of the reward feedback screen which appeared after an option had been cho-
sen. The activation I found in the insula bolsters the hypothesis proposed
by Furl and Averbeck (2011) that on optimal stopping tasks, activation in the
insula relates to the value of the current option. Finally, previous research
has found that activation in the parietal cortex was associated with decision
thresholds and sampling rate on optimal stopping tasks (Costa & Averbeck,
2015; Furl & Averbeck, 2011). I observed activation in the parietal cortex in
both the take > decline and decline > take contrasts which suggests that on my
full information problem as well, the parietal cortex is involved in the inte-
gration of evidence as it is collected (Kiani & Shadlen, 2009), thus supporting
the findings of Costa and Averbeck (2015) and Furl and Averbeck (2011).

At this point, one might speculate why I observed a similar pattern
of activation in a task where participants oversampled, compared to a task
where participants undersampled (Costa & Averbeck, 2015). The answer is
that sampling biases are relative to the sampling rate of the optimal model.
From Figure 2E of Costa and Averbeck (2015), I can discern that participants
on average sampled around 4.9 options on the task with sequence length
eight, whilst the optimal model sampled around 5.1 options. On my optimal
stopping task, which also had a sequence length of eight, participants on av-
erage sampled 4.9 options (SD = 0.87), whilst the optimal model on average
sampled 4.49 option (SD = 0.32). In other words, the actual sampling rate of
participants across the two studies was similar, explaining the strongly over-
lapping decision network, but the sampling rate of the model was different,
leading to different results in sampling bias.
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4 Theoretical contributions and implications for the

field

This thesis focuses on a specific and simple version of a full information op-
timal stopping problem where the actual values of the options are presented,
the distributions that generate the option values are known, there is no ex-
trinsic (e.g., monetary) cost-to-sample, there is no recall of rejected options,
and in most cases decision outcomes provide a reward equal to their value
(Abdelaziz & Krichen, 2006; Cardinale et al., 2021; Costa & Averbeck, 2015;
Furl et al., 2019; Gilbert & Mosteller, 1966; Guan et al., 2014; Hill, 2009; Lee,
2006; Shu, 2008). This is important to specify as many other versions of op-
timal stopping problems exist, each with their own optimal solution, and
each (potentially) affecting human sampling behaviour in different ways (see
Chapter 1 for a review). The full information problem, however, is a more
novel area of investigation and, importantly, better resembles real-life opti-
mal stopping scenarios than versions which operate under many strong the-
oretical assumptions. For example, earlier research has long focused on the
rank-based version (i.e., the classical secretary problem) which presents par-
ticipants with the relative rank of an option rather than the actual value of the
option (Ferguson, 1989). However, in a real-life optimal stopping scenario
such as accepting a job offer, or finding a parking spot, a decision maker is
unlikely to encounter the relative rank of an option. Furthermore, the full
information problem is a far more difficult problem to solve computationally
compared to the relatively simple optimal solutions that exist for secretary
problems, and so how participants solve such problems is especially inter-
esting and important to understand. Therefore, the theoretical contributions
of this thesis apply to the specific full information problem detailed above,
and should not simply be generalised to other versions of optimal stopping
problems.

Together, my results indicate that oversampling biases might be
more common than previously thought. To illustrate this, I conducted a
meta-analysis of the studies included in this thesis, treating conditions as sep-
arate studies (Figure 7.1). The location of the study (online or in the lab) and
the specification of the optimal model (Model 1 or Model 21, as described in

1Recall that for Model 1, the mean and variance of the prior of the generating distribution
were set to those of the log transformed distribution of raw smartphone prices. Reward
values were assigned proportionally to the top three ranking options. For Model 2, the
mean and variance of the prior of the generating distribution were set to those of the log
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Chapter 5) were included as moderators. The results showed that the spec-
ification of the optimal model was a significant moderator (β = 1.722, z =
4.723, p < .001), but the location was not (β = -0.682, z = -1.790, p = .073).
The meta-analysis reveals that oversampling biases seem associated primar-
ily with the Model 2 specification of the optimal model. Recall that Model
2 resembled the optimal model used by Furl et al. (2019), who also reported
oversampling. Could sampling biases be explained by the optimal model,
rather than the decision-making domain or certain task features as initially
hypothesised? My results suggest this is the case: in Chapter 5 I demonstrate
that sampling biases can flip from oversampling to undersampling, and from
undersampling to no sampling bias, when the alternative model was used in-
stead (i.e., Model 1 instead of Model 2 or Model 2 instead of Model 1; Figure
S6). A similar observation can be made when comparing my fMRI study
(Chapter 6) to Costa and Averbeck (2015), as I have done in Section 3. Partic-
ipants’ sampling rate was almost identical in both studies. However, Costa
and Averbeck (2015) used an optimal model like Model 1, which sampled
more options than participants, resulting in an undersampling bias, while
I used an optimal model like Model 2, which sampled fewer options than
participants resulting in an oversampling bias.

These findings highlight the importance of researchers clearly and
correctly specifying the parameters of their optimal model. As Griffiths et al.
(2012) state, the goal of Bayesian models is not to show that people are opti-
mal, the goal is to characterise the problem people are solving and its ideal
solution. This means that the Bayesian model should provide the optimal so-
lution to the problem, with the problem being specified from the participants’
perspective. In other words, both participants and the optimal model should
be trying to solve the same problem (e.g., they are both trying to maximise
the objective/subjective value of the options), even if the optimal model and
participants use different computations to solve this common problem.

In the case of optimal stopping problems where the generating dis-
tribution is one of the model specifications, it is critical that this generating
distribution reflects the distribution that participants operate on when mak-
ing decisions on the task. Therefore I suggest that using subjective option
values rather than objective option values might be a more accurate represen-
tation of participants’ generating distribution. As I have shown in Chapter 5,

transformed distribution of subjective (rating) values. Reward values were commensurate
with the subjective value of the chosen option.
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FIGURE 7.1: Forest plot showing log transformed standard-
ized mean differences between participants and the optimal
model for each of the conditions/studies included in this the-
sis. The analysis performed was a meta-analysis mixed effect
model. The vertical line indicates the point on the x-axis equal
to no effect. Squares represent the effect size of the study, with
whiskers representing the 95 % confidence interval (CI). Studies
with a larger weight have a larger square. The random effects
model represents the average effect, with the length of the dia-
mond shape symbolising the confidence interval of the pooled

result.

options’ relative ranks were preserved for the most part when using subjec-
tive values, but the shape of the distribution was different between subjective
and objective values. And as I have illustrated in Chapter 4, the shape of the
generating distribution can affect the sampling rate of both participants and
the optimal model. As such I propose that using subjective values might be
more accurate for both image-based and number-based tasks. One of the
main benefits of using each participant’s unique generating distribution of
subjective values is that it ensures that the optimal model reflects the optimal
solution for that particular participant.

The implication of the debate between using objective or subjective
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values for the generating distribution is that the model specification can dif-
fer from task to task, depending on the instructions and information pro-
vided to participants. This can be observed when comparing Costa and
Averbeck (2015), Cardinale et al. (2021) and Furl et al. (2019), for example.
Costa and Averbeck (2015) and Cardinale et al. (2021) used a similar Bayesian
optimal model (like Model 1), and the findings of the two studies may there-
fore be compared (both reported undersampling). Furl et al. (2019), however,
used a different specification of the generating distribution for their Bayesian
optimal model (like Model 2), and found contrasting results (oversampling).
Furl et al. (2019) then suggested that an explanation for the opposing find-
ings could be the difference in decision-making domains. The theoretical
contribution of this thesis is that research like Furl et al. (2019) cannot di-
rectly be compared to research like Costa and Averbeck (2015) and Cardinale
et al. (2021), because the specification of the generating distribution for the
optimal model is dissimilar. This highlights the importance of establishing
standardised procedures for modelling optimality in full information prob-
lems to aid the comparison of optimal stopping research.

5 Limitations and future directions

It is important to recognise that individual differences are ever present in the
study of human behaviour (Ozer, 1990), and the field of optimal stopping
problems is no exception (Guan et al., 2014; Guan et al., 2015; Lee et al., 2005).
An example of a study that reported strong individual differences is Sonne-
mans (1998). Thirty-six participants received ‘bids’ from the computer on an
article they were supposed to sell for the highest possible price. The underly-
ing distribution was known to participants and uniform, hence the problem
could be classified as a full information problem. However, compared to the
studies described in this thesis, there was a fixed cost-to-sample (two cents)
and recall of previously rejected options was allowed. After the experiment,
participants filled out a questionnaire about the strategies they used during
the optimal stopping task. The results showed clear individual differences in
recall (some participants never recalled, some recalled most of the time), and
decision-making strategies. Next, Sonnemans (1998) grouped participants
according to their decision-making strategy. Approximately two-thirds of
participants could be classified as ‘maximizers’, while one-third of partici-
pants could be classified as ‘satisficers’. Maximizers employed a strategy
close to the optimal strategy, whereas satisficers focused mainly on earnings.
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In general, participants sampled close to optimality, but with a tendency to
stop sampling too early and to recall unnecessarily.

Supporting the idea of Sonnemans (1998) to cluster participants based
on their decision-making strategy are the findings of Lee (2006) on a gener-
alised secretary problem. In Lee (2006), participants were presented with 40
sequences of five options. Options were drawn from a uniform distribution
of values between 0.00 and 100.00, and participants had to choose the highest
value in a sequence (choosing any other value was wrong). Lee (2006) com-
puted individual decision-making thresholds for 50 participants, superim-
posed these on the thresholds for the optimal decision rule (which decrease
over sequence position), and revealed a clear variation across participants,
although further clustering of participants was not attempted. A visual com-
parison, however, showed that some participants used thresholds close to
the optimal thresholds, whilst others used either a single fixed threshold or
varying thresholds that were non-optimal.

It is very likely that, like Sonnemans (1998) and Lee (2006), partic-
ipants in my studies used various decision-making strategies. In Chapter 3,
the results of the exploratory analysis indicated that three different models
of human behaviour provided a good fit to the participants’ sampling data:
the sample reward model, the biased values model and the attractive prior
model. One explanation for this is that human sampling behaviour can best
be explained by different models in different participants. As such, my the-
sis, and especially the model comparison included in Chapter 3, provides
some early hints at interesting individual differences which could motivate
new lines of research.

To give an example, further research into whether certain individ-
ual traits can affect participants’ sampling rate in a systematic way could be
beneficial in the quest for factors that influence sampling biases on optimal
stopping problems. Analytic cognitive style, for instance, has been found
to predict data gathering on the beads task (a related information sampling
task; Ross et al., 2016). Analytic cognitive style finds it origin in the dual-
process theory of reasoning, and is defined as "the willingness or disposition
to critically evaluate outputs from Type 1 processing and engage in effortful
Type 2 processing" (p. 301, Ross et al., 2016), with Type 1 processing being
defined as intuitive and automatic processing, and Type 2 processing being
defined as slow and deliberative processing (Kahneman, 2011). As discussed
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in Chapter 6, the neural network underlying the decision to stop sampling
was found to be almost identical for the beads task and an optimal stopping
task (Costa & Averbeck, 2015; Furl & Averbeck, 2011). Therefore, it can be hy-
pothesised that the findings regarding analytic cognitive style might also ex-
trapolate to optimal stopping problems, where analytic cognitive style could
predict individuals’ sampling rate.

Additionally, as I have highlighted in Section 4, I believe it is impor-
tant for future research to establish standardised procedures for (full infor-
mation) optimal stopping tasks, as well as for modelling optimality on these
tasks. For example, a set of guidelines could be established detailing how,
in cases where subjective option values are not used, participants should be
taught the objective generating distribution of option values. This topic has
been addressed previously in the discussions of Chapter 4 and Chapter 5.
Previous research has used many different approaches to teach participants
the generating distribution of objective option values, including visual pre-
sentations of probability distributions (Baumann et al., 2020), statistical ter-
minology (Guan et al., 2014), enriched feedback and/or financial rewards
(Campbell & Lee, 2006), and repeated play (Goldstein et al., 2017, 2020). Oth-
ers simply assumed that participants would be familiar with the real-world
distribution of values that options were sampled from (Cardinale et al., 2021;
Costa & Averbeck, 2015). And of course, the so-called rating phase as imple-
mented in Study 3 of Chapter 5 (prior condition) could also be used for this
purpose. However, it remains unclear which (if any) of these approaches best
approximates the generating distribution participants are using to solve the
optimal stopping problem. Based on the results of this thesis, I suggest that
researchers may wish to use subjective option values instead as they might
be more accurate at representing people’s beliefs and they can account for
individual differences.

6 Conclusion

The aim of this thesis was to explain human oversampling biases on full in-
formation optimal stopping problems using a variety of techniques including
behavioural studies, computational analyses and neuroimaging methodol-
ogy. First, I showed that sampling biases are not dependent on the decision-
making domain. In a novel contribution to the literature, I demonstrate that
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oversampling biases extend from the mate choice domain to other decision-
making domains such as trustworthiness, food and holiday destinations, as
well as number-based domains such as smartphone prices. Second, I inves-
tigated an array of task features to determine whether they could explain
sampling biases, but while I found that the moments of the generating dis-
tribution affected participants’ sampling rate, none of the investigated task
features were found to influence sampling biases. Finally, I have presented
neuroimaging evidence indicating that similar areas in the so-called decision
network are activated when a decision maker samples too few or too many
options on a full information problem.

An interesting finding that emerged from my research was that the
optimal model, and particularly the specification of the generating distribu-
tion, might be able to explain oversampling biases on full information prob-
lems. This was not one of my a priori hypotheses, but after conducting a
meta-analysis of the studies included in this thesis, strong evidence for this
hypothesis emerged. I investigate two different specifications of the prior
distribution in this thesis, and show that the first specification (so-called
Model 1) mostly led to undersampling, while the second specification (so-
called Model 2) mostly led to oversampling. This highlights the importance
of researchers clearly and correctly specifying the generating distribution.
Particularly in the case of Bayesian optimal models, the idea is that the model
characterises the problem people are solving, meaning that the generating
distribution of the optimal model should correspond to the generating dis-
tribution that participants are using to solve the optimal stopping problem.
Therefore, a key future direction for research is to determine how to best ap-
proximate participants’ generating distribution. Based on my findings, I sug-
gest that using subjective option values corresponding to each participant’s
own belief might be more accurate than using the objective option values.
When using objective values, they must be learned by the participant in an
appropriate way or they might remain an inaccurate representation of the
participant’s prior beliefs.

If there is one conclusion that could be drawn from my thesis and
the optimal stopping literature it is that sampling rates, and indeed sampling
biases, are heavily task-dependent. For example, in this thesis I have shown
that the decision-making domain can affect participants’ generating distribu-
tion of subjective values, which consequently leads to variations in sampling
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rates. I therefore encourage future research to work on establishing stan-
dardised procedures for (full information) optimal stopping tasks, as well
for modelling optimality (see previous point). Not only would this benefit
the extrapolation of scientific findings to real-world optimal stopping sce-
narios (e.g., accepting a job offer, finding a parking spot, swiping on Tinder),
it would also aid the comparison of optimal stopping research.
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