
1

Iterative Message Passing Algorithm for
Vertex-disjoint Shortest Paths

Guowei Dai, Longkun Guo, Gregory Gutin, Xiaoyan Zhang∗, Zan-Bo Zhang

Abstract

As an algorithmic framework, message passing is extremely powerful and has wide applications in the context
of different disciplines including communications, coding theory, statistics, signal processing, artificial intelligence
and combinatorial optimization. In this paper, we investigate the performance of a message-passing algorithm
called min-sum belief propagation (BP) for the vertex-disjoint shortest k-path problem (k-VDSP), and derive the
iterative message-passing update rules. As the main result of this paper, we prove that for a weighted digraph G of
order n, BP algorithm converges to the unique optimal solution of k-VDSP on G within O(n2wmax) iterations,
provided that the weight we is nonnegative integral for each arc e ∈ E(G), where wmax = max{we : e ∈ E(G)}.
To the best of our knowledge, this is the first instance where BP algorithm is proved correct for NP-hard problems.
Additionally, we establish the extensions of k-VDSP to the versions of multiple sources or sinks.

Key words: Belief propagation, Message-passing algorithm, Vertex-disjoint shortest path

I. INTRODUCTION

Belief propagation (BP) is a distributed, message-passing heuristic algorithm for solving optimization and
inference problems on various graphical models. Since the proposition of BP algorithm by Pearl in 1988 [20],
the message-passing algorithm based on BP has shown its power as an algorithmic framework and has wide
applications in the context of variety of disciplines including satisfiability in discrete optimization [1], [8], [18],
[19], error correcting code in information theory [12], [14], [17], [21], and data clustering in machine learning
[9]. BP algorithm is known as essentially an approximation of the dynamic programming when the underlying
graph has no cycles [12], [20], [25]. Specifically, BP algorithm provides a natural parallel iterative version of
the dynamic programming in which variable vertices pass messages between each other along arcs on graphical
models. Surprisingly, even for graphs with many cycles, the BP algorithm performs well in practice and has
empirically been shown to give good results [18], [21]. While BP algorithms have been shown empirically to
be effective in solving many instances of optimization problems, the theoretical analysis of the performance of
BP algorithm remains far from complete.

Some progress has been made in understanding their convergence and accuracy of BP algorithms for several
optimization and inference problems, see, e.g., [3]–[7], [13], [22], [23]. As a major breakthrough, Bayati et al.
[4] and Cheng et al. [5] independently simplified the BP algorithm to obtain two essentially same algorithms
for the maximum weight matching (MWM) on a bipartite graph. They established the convergence of the BP

G. Dai is with School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China (e-mail:
guoweidai@njnu.edu.cn).

L. Guo is with Department of Computer Science, Qilu University of Technology, Jinan, China (e-mail: longkun.guo@gmail.com).
G. Gutin is with Department of Computer Science, Royal Holloway University of London, Egham, UK (e-mail: gutin@cs.rhul.ac.uk).
X. Zhang is with School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, China (e-mail:

royxyzhang@gmail.com, zhang−njnu@aliyun.com).
Z. Zhang is with School of Statistics & Mathematics, and Institute of Artificial Intelligence & Deep Learning, Guangdong University of

Finance & Economics, Guangzhou, China (e-mail: zanbozhang@gdufe.edu.cn).

2

algorithm for MWM, provided that the optimal solution is unique. Bayati et al. [3] as well as Sanghavi et al.
[22] generalized the result by showing the convergence of BP algorithm for the min-cost b-matching problem
on arbitrary graphs, provided that the corresponding linear programming (LP) relaxation has a unique integral
optimal solution. Note that the weighted matching problem on bipartite graphs can be viewed as a special case
of the minimum cost flow (MCF) problem. Gamarnik et al. [13] proved that BP algorithm for MCF converges
to the optimal solution if its optimal solution is unique. Recently, Even and Halabi [7] developed a BP algorithm
for the covering and packing problem and established that BP algorithm converges to the optimal solution if
its LP relaxation has a unique integral optimal solution. Sanghavi et al. [23] investigated the performance of
BP algorithm for the max-weight independent set problem and established a one-sided relation between BP
algorithm and its LP relaxation. Furthermore, an example in [23] shows that BP algorithm is unlikely to solve
the general linear programming problem.

Graph routing problems have already attracted intensive research from mathematicians and computer scientists
starting from early 1970s. One of the most well-known graph routing problems is the travelling salesman problem
(TSP), for which Gutin and Punnen [10] provided a compendium of results. In particular, Chapter 6 of [10]
describes a somewhat unexpected result that for any number n of vertices there is an infinite number of TSP
instances (both asymmetric and symmetric) such that the greedy algorithm outputs the unique worst possible
solution. The same result holds for the TSP nearest neighbor algorithm. These results were proved in [11] and
the TSP greedy algorithm result was generalized to other combinatorial optimization problems in [2].

As is a class of graph routing problems, the vertex-disjoint shortest k-path problem (k-VDSP) was first
introduced by Suurballe [24]. An objective of k-VDSP is to find k internally vertex-disjoint paths from given
source s to sink t, with minimum total length. Note that k-VDSP is strongly NP-hard when k ≥ 2 [15], and
it will be reduced to the classic shortest s-t path problem when k = 1. Vertex-disjoint paths are usually used
in communication networks for reliability of transmission between a given source and sink. In this paper, we
focus primarily on the performance of the Min-Sum BP algorithm for finding the optimal solution of k-VDSP.

A. Our Contributions

The contributions of this paper, in detail, are as follows. First, we derive a message-passing algorithm based
on BP for finding the optimal solution of k-VDSP. Then we establish that for any weighted digraph G with n
vertices, as long as the optimal solution is unique, our algorithm converges to the optimal solution x∗ within
(b U

2o(x∗)c+1)n iterations, where U and o(x∗) are the maximum weight of a simple directed path and minimum
weight of a directed cycle in the residual network Gx∗ , respectively. Note that we develop new and more complex
rules in our proof since the constraints of k-VDSP are more complex than those of the previous problems in [4],
[7], [13], [22], [23]. Next, we show that the Min-Sum BP algorithm converges to the unique optimal solution
in O(n2wmax) iterations, provided that the weight we is nonnegative integral for each arc e ∈ E(G), where
wmax = max{we : e ∈ E(G)}. Additionally, we extend our analysis to establish the extensions of k-VDSP to
the versions of multiple sources or sinks.

It is known that BP algorithm is unlikely to solve the general linear programming problem by means of
a counterexample [23]. Thus, our results extend the scope of the problems that are provably solvable by the
BP algorithm. To the best of our knowledge, this is the first instance where BP algorithm is proved correct
for NP-hard problems. We believe that our methods can help to analyse the convergence and accuracy of BP
algorithms for other NP-hard problems with more complex constraints.

3

II. PRELIMINARIES

A. Problem Statement

The input to the vertex-disjoint shortest k-path problem (k-VDSP) is a weighted digraph G = (V (G), E(G), w),
where V (G), E(G) denote the set of vertices and arcs (i.e., directed edges) in G, respectively, and w : E → R+

is a weight function. The weight w(P) of a path P is defined as the sum of the weights of its arcs. Several paths
are said to be internally vertex-disjoint if for any two paths of them, there exits no vertices in common except at
the terminals. For a given weighted digraph G with source s ∈ V (G) and sink t ∈ V (G), the problem k-VDSP
aims to find k internally vertex-disjoint paths from s to t, denoted by P1, P2, ..., Pk, such that

∑k
i=1 w(Pi)

is minimized. Let P = {P1, P2, ..., Pk} and E(P) = ∪ki=1E(Pi), where E(Pi) denotes the set of arcs in Pi.
For each e ∈ E(G), define xe as an indicator variable that xe = 1 if e ∈ E(P), and xe = 0 else. Then
those arcs belong to X = {e ∈ E(G) : xe = 1} correspond exactly to the k internally vertex-disjoint paths
that P1, P2, ..., Pk in G. So, for any k internally vertex-disjoint paths from s to t, it could be represented by
x = {xe : e ∈ E(G)} where xe is defined the same as before.

We use we to denote the weight on e for any arc e ∈ E(G). For any vertex i ∈ V (G), denote the sets of
out-neighbors and in-neighbors of i in G by N+

i = {j : ij ∈ E(G)} and N−i = {j : ji ∈ E(G)}, respectively,
and let Ni = N+

i ∪ N
−
i . Throughout the paper, we assume there exist no in-neighbors of source vertex and

out-neighbors of sink vertex, that is, N−s = N+
t = ∅. Let xe be the 0-1 value assigned to each arc e ∈ E(G).

Then the k-VDSP on graph G = (V (G), E(G), w) can also be formulated as the follows:

min
∑

e∈E(G)

wexe (1)

s.t.
∑
j∈N+

s

xsj =
∑
j∈N−t

xjt = k, (2)

∑
j∈N+

i

xij −
∑
j∈N−i

xji = 0, ∀ i ∈ V (G) \ {s, t}; (3)

∑
j∈Ni

xij ∈ {0, 2}, ∀ i ∈ V (G) \ {s, t}; (4)

xe ∈ {0, 1}, ∀ e ∈ E(G). (5)

The type of constraints (2) and (3) state that there are exactly k paths from s to t. The third type of constraints
(4) state that these k paths are internally vertex-disjoint. Note that on the premise that (3) and (5) are satisfied,
the type of constraints (4) hold if and only if∑

j∈N+
i

xij +
∑
j∈N−i

xji ≤ 2, ∀ i ∈ V (G) \ {s, t}.

Define a vertex demand function f : V (G)→ Z that fs = k, ft = −k and fi = 0 for any i ∈ V (G) \ {s, t}.
Then the k-VDSP on G can be formulated as the following integer programming problem (IP):

min
∑
e∈E

wexe

s.t.
∑
j∈N+

i

xij −
∑
j∈N−i

xji = fi, ∀ i ∈ V (G);

∑
j∈N+

i

xij +
∑
j∈N−i

xji ≤ 2, ∀ i ∈ V (G) \ {s, t};

xe ∈ {0, 1}, ∀ e ∈ E(G).

4

v1

v2

v3

v4

v5

v6

v1 v2

v3

v2 v5

v4

v6

v3 v5

v5v1 v3v6

Fig. 1: An example of a 2-level computation tree T 2
v1v2 with root v1v2.

Let x be the feasible solution of the integer programming problem (IP) above. Then the optimal solution of
k-VDSP can be defined as:

x∗ = arg min
x

∑
e∈E(G)

wexe.

B. Computation tree

Here we introduce the concept of rooted tree and computation tree. A connected acyclic graph (i.e., contains
no cycles) is called a tree. For any nontrivial tree, it must contain a vertex which has exactly one neighbor.
Such a vertex in a tree is also called a leaf of the tree. Throughout of the paper, we define a rooted tree Tr as
a tree T with a specified arc r, called the root of T . It should be noted that the definition of the root of a tree
sometimes refers to a specified vertex, in contrast to a root as the root. In a tree, any two vertices are connected
by exactly one path. We denote the unique path connecting vertices i and j in a tree T by iT j. For a rooted
tree Tr with root r, the level of a vertex j in Tr is the length of the path rTj, and each vertex on the path rTj
is called an ancestor of j. For two adjacent vertices i, j in T , if i is an ancestor of j, then i is also called a
parent of j, and j is a child of i.

We use TQr to denote the Q-level computation tree associated with arc r as the root. An example of
computation tree can be seen in Fig. 1. Denote the set of vertices and arcs in TQr by V (TQr) and E(TQr),
respectively. Each vertex or arc of TQr is a duplicate of some vertex or arc of the original graph G. Define the
mapping γQr : V (TQr) → V such that if i′ ∈ V (TQr) is a duplicate of i ∈ V (G), then γQr (i′) = i. Denote by
L(TQr) the set of leaves of TQr . For any i′ ∈ V (TQr), denote by P (i′) the parent of i′ in TQr . It is essentially
the breadth-first search tree of G (with repetition of vertices allowed) starting from r up to depth Q. In detail,
we inductively define TQr as the following rules.

• Let uv ∈ E(G). Then the computation tree T 0
r consists of two vertices u′, v′ and an arc u′v′, such that

γ0
r (u′) = u and γ0

r (v′) = v. The arc r = u′v′ is considered the “root” of T 0
r , and vertices u′, v′ are

considered to be at 0-level of T 0
r .

• Inductively, suppose that we defined a tree TQ−1
r , such that for any i′, j′ ∈ V (TQ−1

r), i′j′ ∈ E(TQ−1
r)

if and only if γQ−1
r (i′)γQ−1

r (j′) ∈ E(G). The computation tree TQr contains TQ−1
r as a subtree, which

can be obtained by adding vertices to V (TQ−1
r) and arcs to E(TQ−1

r) as follows. For each leaf vertex
i′ ∈ L(TQ−1

r), add node j′ to expand V (TQ−1
r) and add arc i′j′ or j′i′ to expand E(TQ−1

r) if there is
a vertex j ∈ V (G) such that ij ∈ E(G) or ji ∈ E(G) with γQ−1

r (i′) = i, and γQ−1
r (P (i′)) 6= j. In this

5

case, define P (j′) = i′, the map γQr (j′) = j, and level of j′ as Q. Indeed, γQr is identical to γQ−1
r for

vertices in V (TQ−1
r) ⊆ V (TQr).

• For any e = ij ∈ E(G), the arc from i′ to j′ in TQr is also denoted by e for simplicity and is assigned
the same weight we as that in G, where γQr (i′) = i and γQr (j′) = j.

In what follows, we shall drop reference to r,Q in notation of γQr when clear from context and abuse notation
by denoting γ(i′j′) = γ(i′)γ(j′).

Now assume there is a k-VDSP problem stated for a graph G = (V (G), E(G), w) with given source s and
sink t. We define the induced k-VDSP problem, denoted by VDSPQr , on computation tree TQr . Given a root r,
let V o(TQr) ⊂ V (TQr) denote the set of all the vertices but the leaves of TQr . Then the problem VDSPQr can
be formulated as follows:

min
∑

e∈E(TQ
r)

weye

s.t.
∑

j′∈N+

i′ (T
Q
r)

yi′j′ −
∑

j′∈N−
i′ (T

Q
r)

yj′i′ = fγ(i′), ∀ i′ ∈ V o(TQr);

∑
j′∈N+

i′ (T
Q
r)

yi′j′ +
∑

j′∈N−
i′ (T

Q
r)

yj′i′ ≤ 2, ∀ i′ ∈ V o(TQr) \ {s′, t′};

ye ∈ {0, 1}, ∀ e ∈ E(TQr),

where γ(s′) = s, γ(t′) = t.
Notation. The computation tree is locally equivalent to the original graph, which means one can view the

iterative process of BP algorithm as sending the messages along the way from leaf vertices to the root in the
computation tree. All the vertices on computation tree will send messages to their parents at each iteration,
and the direction of message-passing is independent of the direction of those arcs. One can guess that the BP
algorithm for VDSPQr works quite similar as BP algorithm for k-VDSP on the original graph, and the reasoning
will be formalized in the Lemma 4.1.

III. MIN-SUM BP ALGORITHM FOR k-VDSP

A. Factorized optimization problem and factor graph

Consider the optimization problem (P) as following:

min
∑
i∈V

φi(xi) +
∑
D∈D

ψD(xD)

s.t. xi ∈ R, ∀i ∈ V,

where V is a finite set of variables and D is a finite collection of subsets of V representing constraints. Here
φi : R→ R ∪ {∞} and ψD : R|D| → R ∪ {∞},∀D ∈ D are extended real-valued functions, where each φi is
called a variable function and each ψD is called a factor function. We also call the optimization problem (P)
a factorized optimization problem.

Next, we introduce the concept of a factor graph of a factorized optimization problem, which can be referred
to [16]. on problem. A factor graph FP of (P) is a bipartite graph with one partition containing variables
V and the other partition containing factor vertices D corresponding to the constraints, and there is an edge
(i,D) ∈ V ×D if and only if i ∈ D.

6

B. Algorithm

It is well-known that BP algorithms are always viewed as heuristic algorithms for factorized optimization
problems and operate by passing messages iteratively with variables and factors. Next, we will represent k-VDSP
as a factorized optimization problem. Let Ei be the set of arcs incident to i and xEi

= {xe : e ∈ Ei}, where
xe ∈ {0, 1} and x is a solution of k-VDSP. Recall that fs = k, ft = −k and fi = 0 for any i ∈ V (G) \ {s, t}.
We define the factor and variable functions φ, ψ for each e ∈ E(G), i ∈ V (G), respectively as follows:
φe(xe) = wexe if xe ∈ {0, 1}, otherwise φe(xe) = +∞; and

ψi(xEi) =

0 if i ∈ {s, t} and
∑

j∈N+
i

xij −
∑

j∈N−i

xji = fi,

0 if i ∈ V (G) \ {s, t},
∑

j∈N+
i

xij =
∑

j∈N−i

xji and
∑
j∈Ni

xij ≤ 2,

+∞ otherwise.

Then, solving k-VDSP is equivalent to solving the following factorized optimization problem:

min
∑

e∈E(G)

φe(xe) +
∑

i∈V (G)

ψi(xEi)

s.t. xe ∈ {0, 1}, ∀e ∈ E(G).

For each arc e = ij on the computation tree, define a message function me→j(xe) as the optimum (min-sum
weights) on the subtree below e with e included. Similarly, define mi→e(xe) as the optimum on the subtree
below i including i but not e. Due to the nature of tree structure, these two message functions can be recursively
defined as follows: for any arc e = ij,

me→j(xe) = φe(xe) +mi→e(xe), (6)

mi→e(xe) = min
xEi\e

{
ψi(xEi

) +
∑

e′∈Ei\e

me′→i(xe′)

}
. (7)

Using (1)-(2), starting from leaves, the message functions me→j(xe) and mi→e(xe) can be computed for all
e ∈ E(G), i ∈ V (G). Then, the update messages for each vertex and arc are as follows:

mq
e→j(xe) = φe(xe) +mq−1

i→e(xe),

mq
i→e(xe) = min

xEi\e

{
ψi(xEi

) +
∑

e′∈Ei\e

mq
e′→i(xe′)

}
.

At the root arc r = uv, combine the messages mr→u(xr) and mr→v(xr), we can derive the estimation at
the end of iteration Q on the computation tree TQr as

bQr (xr) = mQ
r→u(xr) +mQ

r→v(xr)− φr(xr),

which is also known as the belief of the root arc. Finally, we describe the Min-Sum BP algorithm for solving
k-VDSP in detail as Algorithm 1.

C. Results

Before formally stating our results, we need to define the residual network first with a feasible solution x of
k-VDSP. Define Gx to be the residual network of G with respect to a feasible solution x as follow rules:

• Gx has the same vertex set as G, i.e., V (G) = V (Gx);
• For each e = ij ∈ E(G), if xe = 0, then e = ij ∈ E(Gx) with weight wxij = wij ;

7

Algorithm 1 Min-Sum BP algorithm for k-VDSP

1: Initialize q = 0, message m0
i→e(xe) = 0 for any e = ij ∈ E(G).

2: for q = 1, 2, ..., Q do
3: For each e = ij ∈ E(G), update messages as follows:

mq
e→j(xe) = φe(xe) +mq−1

i→e(xe),

mq
i→e(xe) = min

xEi\e

{
ψi(xEi

) +
∑

e′∈Ei\e
mq

e′→i
(xe′)

}
.

4: q := q + 1

5: end for
6: For each e = ij ∈ E(G), set the belief function as

bQe (xe) = mQ
e→i(xe) +mQ

e→j(xe)− φe(xe).
7: Calculate the belief estimate by finding x̂Qe ∈ arg min

xe∈{0,1}
bQe (xe) for each e ∈ E(G).

8: Return x̂Q = {x̂Qe : e ∈ E(G)} as an estimation of the optimal solution.

• For each e = ij ∈ E(G), if xe = 1, then e′ = ji ∈ E(Gx) with weight wxji = −wij .
Let

o(x) = min
C∈C

{
wx(C) =

∑
e∈C

wxe

}
,

where C is the set of directed cycles in Gx. Note that if x∗ is the unique optimal solution of k-VDSP in digraph
G, then o(x∗) > 0 must hold in Gx∗ , or else we can change x∗ along the minimum weight cycle in o(x∗)

without increasing its weight.

Theorem 3.1: For any digraph G of order n, if the k-VDSP on G has a unique optimal solution x∗, then
Min-Sum BP algorithm converges to x∗ within (b U

2o(x∗)c+ 1)n iterations, where U is the maximum weight of
a simple directed path in Gx∗ . That is to say x̂Q = x∗ when Q ≥ (b U

2o(x∗)c+ 1)n.

Let wmax = max{we : e ∈ E(G)}. Then by the definition of U , we have that U ≤ nwmax since simple
directed path has at most n − 1 arcs in Gx∗ . If we is integral for each e ∈ E(G), then o(x∗) is also positive
integral. It follows that b U

2o(x∗)c ≤ nwmax. Combine this with Theorem 3.1, we have the corollary as follows.

Corollary 3.2: For any digraph G of size n, if the problem k-VDSP on G has a unique optimal solution x∗,
then Min-Sum BP algorithm converges to x∗ within O(n2wmax) iterations, provided that the weight on each
arc is nonnegative integral.

IV. PROOF OF CORRECTNESS AND CONVERGENCE

In this section, we establish the convergence of Min-Sum BP algorithm to the optimal solution of k-VDSP.
Before proving Theorem 3.1, we need to show two important lemmas as follows. Loosely speaking, VDSPQr
is essentially a k-VDSP on the computation tree TQr : there are similar constraints for any arc e ∈ E(TQr) and
any vertex, except for those at the Q-level.

Lemma 4.1: Let x̂Qr be the value of the output of the BP algorithm at the end of iteration Q on arc r ∈ E(G).
Then there exists an optimal solution y∗ of VDSPQr such that y∗r = x̂Qr where r is the root of computation tree
TQr .

Proof: Let r = uv be the root arc of computation tree TQr . By definition, TQr has two components, denoted
by C and C ′, which are connected via the root arc r. Without loss of generality, we assume C is the component
containing u. Let TQr→v denote C ∪ r, which can be viewed as a subtree of TQr . Next, let V 0(TQr→v) be the set
of all the vertices of TQr→v , excluding those at the Q-evel. Recall that γ(s′) = s and γ(t′) = t, where s, t is the

8

given source and sink, respectively. Denote by E(TQr→v) the set of arcs in TQr→v . Then we define VDSPQr→v(z)
as follows.

min
∑

e∈E(TQ
r→v)

weye (VDSPQr→v(z))

s.t.
∑

j∈N+
i (TQ

r)

yij −
∑

j∈N−i (TQ
r)

yji = fγ(i), ∀ i ∈ V o(TQr→v);

∑
j∈N+

i (TQ
r)

yij +
∑

j∈N−i (TQ
r)

yji ≤ 2, ∀ i ∈ V o(TQr→v) \ {s′, t′};

yr = z

ye ∈ {0, 1}, ∀ e ∈ E(TQr→v),

where N+
i (TQr), N−i (TQr) denote the sets of out-neighbors and in-neighbors of i in TQr , respectively.

Now, we show that under the Min-Sum BP algorithm (running on G) the value of message function mQ
r→γ(v)(z)

is the same as the weight of the optimal assignment for VDSPQr→v(z). This can be established by induction.
When Q = 1, the statement can be checked to be true trivially. Denote by Eu(TQr) the set of arcs incident to
u in TQr . For Q > 1 and each a ∈ Eu(TQr)\r with a = pu (or up), let TQ−1

a→u be the subtree of TQr→v that
includes everything in TQr→v but u, v and r. Consider the sub-problem VDSPQ−1

a→u(z) as follows.

min
∑

e∈E(TQ−1
a→u)

weye (VDSPQ−1
a→u(z))

s.t.
∑

j∈N+
i (TQ

r)

yij −
∑

j∈N−i (TQ
r)

yji = fγ(i), ∀ i ∈ V o(TQ−1
a→u);

∑
j∈N+

i (TQ
r)

yij +
∑

j∈N−i (TQ
r)

yji ≤ 2, ∀ i ∈ V o(TQ−1
a→u) \ {s′, t′};

ya = z

ye ∈ {0, 1}, ∀ e ∈ E(TQ−1
a→u).

By induction hypothesis, it must be that the value of mQ−1
a→γ(u)(z) equals the weight of the solution of VDSPQ−1

a→u(z).
Due to the hypothesis and the relation of subtree TQ−1

a→u for all a ∈ Eu(TQr)\r with TQr→v , it follows that the
problem VDSPQr→v(z) is equivalent to

min wrz +
∑

a∈Eu(TQ
r)\r

mQ−1
a→γ(u)(xa)

s.t.
∑

v∈N+
u (TQ

r)

yuv −
∑

v∈N−u (TQ
r)

yvu = fγ(u),

∑
v∈N+

u (TQ
r)

yuv +
∑

v∈N−u (TQ
r)

yvu ≤ 2, if u /∈ {s′, t′};

yr = z,

ya ∈ {0, 1}, ∀ a ∈ Eu(TQr)\r.

This is exactly the same as the relation between mQ
r→γ(v)(z) and message function mQ−1

a→γ(u)(·) for a ∈
Eu(TQr)\r as

mQ
r→γ(v)(z) = wrz +

∑
a∈Eu(TQ

r)\r

mQ−1
a→γ(u)(xa).

9

That is, mQ
r→γ(v)(z) is exactly the same as the weight of optimal assignment of VDSPQr→v(z). Using this

equivalence, we will complete the proof of Lemma 4.1.
Finally, for given r = uv, the problem VDSPQr (z) is equivalent to

min − wrz +
∑

e∈E(TQ
r→u)

weye +
∑

e∈E(TQ
r→v)

weye

s.t.
∑

j∈N+
i (TQ

r)

yij −
∑

j∈N−i (TQ
r)

yji = fγ(i), ∀ i ∈ V o(TQr);

∑
j∈N+

i (TQ
r)

yij +
∑

j∈N−i (TQ
r)

yji ≤ 2, ∀ i ∈ V o(TQr) \ {s′, t′};

ye ∈ {0, 1}, ∀ e ∈ E(TQr→i) ∪ E(TQr→j).

That means the min-sum weights of an optimal solution of the problem VDSPQr (z) equals mQ
r→γ(u)(z) +

mQ
r→γ(v)(z)− wrz for any z ∈ {0, 1}. Now the claim of Lemma 4.1 follows immediately.

Lemma 4.1 exhibits the relation between BP algorithm and computation tree. Next, we prove our main
technical lemma which is a key to the proof of Theorem 3.1.

Lemma 4.2: Let x∗ be the unique optimal solution of k-VDSP on G. If y∗ is the optimal solution of VDSPQr
and Q ≥ (b U

2o(x∗)c+ 1)n, then we have y∗r = x∗r where r is the root of TQr .
Proof: Suppose on the contrary that there is an arc r0 = uv ∈ E(G) such that y∗r0 6= x∗r0 . Let Λ∗ =

{e ∈ E(G) : x∗e = 1} and Ω∗ = {e ∈ E(TQr0) : y∗e = 1}. Without loss of generality, we assume y∗r0 > x∗e0 ,
i.e., x∗r0 = 0 and y∗r0 = 1. Then, by the definition of Λ∗ and Ω∗, we have that r0 ∈ Ω∗ − Λ∗. If a feasible
solution of VDSPQr0 can be obtained by modifying y∗ such that its total weight strictly less than that of y∗, then
a contradiction to the optimality of y∗ arises and Lemma 4.2 is established.

Let r0 = uv be the root of the computation tree TQr0 as above. We will choose an arc r1 6= r0 incident to u
in TQr0 as the following rules:

• If
∑

j∈Nu(TQ
r0

)

xju = 0, then there exists an in-arc r1 for u such that y∗r1 = 1;

• Otherwise, there exists an out-arc r1 for u such that x∗r1 = 1.

Similarly, we can choose an arc r−1 6= r0 incident to v in TQr0 as the following rules:

• If
∑

j∈Nv(TQ
r0

)

xjv = 0, then there exists an out-arc r−1 for v such that y∗r−1
= 1;

• Otherwise, there exists an in-arc r−1 for v such that x∗r−1
= 1.

Let u1, v1 be the other ends of r1, r−1, respectively. Then we can apply recursively the similar reasoning for
u1 and v1 so that the feasibility condition of x∗, y∗ and the inequalities between the value of components
of x∗, y∗ at arcs r1, r−1 lead to the existence of arcs r2, r−2 incident to u1, v1, respectively. Continuing this
manner all the way down to the leaves, we will find a path starting and ending in leaves of TQr0 , denoted by
P = {r−Q, ..., r−1, r0, r1, ..., rQ}, such that for −Q ≤ l ≤ Q,

rl ∈ Ω∗ − Λ∗ ⇔ both rl and r0 have the same orientation,

rl ∈ Λ∗ − Ω∗ ⇔ both rl and r0 have the opposite orientation.

Figure 2 demonstrates this path P with dashed arcs.
Now, we can modify y∗ to obtain a new feasible solution ỹ of VDSPQr as following. Let Ω′ = (Ω∗ − Ω∗ ∩

P) ∪ (Λ∗ ∩ P) and ỹ be the solution of VDSPQr corresponding to Ω′. Furthermore, for any vertex i on P , let
r′ and r′′ be the arcs which are incident to i and belong to P . Then we have that for any vertex i on P ,

10

v1

v2

v3

v4

v5

v6

v1 v2

v3

v2 v5

v4

v6

v3 v5

v5v1 v3v6

Fig. 2: An example of the path P on a computation tree T 2
v1v2 with dashed arcs.

• if r′ and r′′ have the same orientation as r0, then∑
j∈N+

i (TQ
r)

ỹij −
∑

j∈N−i (TQ
r)

ỹji = (−1 +
∑

j∈N+
i (TQ

r)

yij)− (−1 +
∑

j∈N−i (TQ
r)

yji) = fγ(i),

and∑
j∈N+

i (TQ
r)

ỹij+
∑

j∈N−i (TQ
r)

ỹji = (−1+
∑

j∈N+
i (TQ

r)

yij)+(−1+
∑

j∈N−i (TQ
r)

yji) = (−1+1)+(−1+1) = 0 ≤ 2.

• if r′ and r′′ have the opposite orientation as r0, then∑
j∈N+

i (TQ
r)

ỹij −
∑
j∈N−i

ỹji = (1 +
∑

j∈N+
i (TQ

r)

yij)− (1 +
∑

j∈N−i (TQ
r)

yji) = fγ(i),

and∑
j∈N+

i (TQ
r)

ỹij +
∑

j∈N−i (TQ
r)

ỹji = (1 +
∑

j∈N+
i (TQ

r)

yij) + (1 +
∑

j∈N−i (TQ
r)

yji) = (1 + 0) + (1 + 0) = 2 ≤ 2.

• if r′ has the same orientation and r′′ has the opposite orientation as r0, then both r′ and r′′ are in-arcs or
out-arcs for i.
(1) If both r′ and r′′ are in-arcs for i, then∑

j∈N+
i (TQ

r)

ỹij −
∑

j∈N−i (TQ
r)

ỹji =
∑

j∈N+
i (TQ

r)

yij − (−1 + 1 +
∑

j∈N−i (TQ
r)

yji) = fγ(i),

and ∑
j∈N+

i (TQ
r)

ỹij +
∑

j∈N−i (TQ
r)

ỹji =
∑

j∈N+
i (TQ

r)

yij + (−1 + 1 +
∑

j∈N−i (TQ
r)

yji) ≤ 2;

(2) If both r′ and r′′ are out-arcs for i, then∑
j∈N+

i (TQ
r)

ỹij −
∑

j∈N−i (TQ
r)

ỹji = (−1 + 1 +
∑

j∈N+
i (TQ

r)

yij)−
∑

j∈N−i (TQ
r)

yji = fγ(i),

and ∑
j∈N+

i (TQ
r)

ỹij +
∑

j∈N−i (TQ
r)

ỹji = (−1 + 1 +
∑

j∈N+
i (TQ

r)

yij) +
∑

j∈N−i (TQ
r)

yji ≤ 2.

11

This implies ỹ satisfies all the other equality constraints of VDSPQr , since only the values of the arcs in P are
changed. Therefore, ỹ is a feasible solution of VDSPQr .

Recall that P = {r−Q, ..., r−1, r0, r1, ..., rQ}. For any rl = ij ∈ P , we define r̃l = ij if x∗rl = 0, and r̃l = ji

if x∗rl = 1, where −Q ≤ l ≤ Q. Let P̃ = {r̃−Q, ..., r̃−1, r̃0, r̃1, ..., r̃Q}. Given the value of x∗ and definition of
r̃l, it can be checked that r̃l is an arc in the residual network Gx∗ , and P̃ is a directed walk in Gx∗ . Then P̃
can be decomposed into a simple directed path D and a collection of simple directed cycles C1, ..., Cd. Note
that each simple directed cycle or path on Gx∗ can have at most n arcs. Since there are 2Q+ 1 arcs in P̃ and
Q ≥ (b U

2o(x∗)c+ 1)n, we have

d >
2Q+ 1

n
≥

2(b U
2o(x∗)c+ 1)n+ 1

n
>

U

o(x∗)
.

Then we can obtain that the weight of P̃ is strictly positive:

w(P̃) = w(D) +

m∑
i=1

w(Ci) ≥ −U + d · o(x∗) > −U +
U

o(x∗)
o(x∗) = 0,

where w(P̃), w(D), w(Ci) denote the sum of weights of all the arcs in w(P̃), w(D), w(Ci), respectively.
Finally, for any Q ≥ (b U

2o(x∗)c+ 1)n, we have∑
e∈E(TQ

r)

wey
∗
e −

∑
e∈E(TQ

r)

weỹe =
∑

e∈E(TQ
r)

we(y
∗
e − ỹe)

=
∑

e∈Ω∗∩P
we −

∑
e∈Λ∗∩P

we

=
∑
e∈P̃

we

= w(P̃)

> 0.

The last inequality leads a contradiction that y∗ is the optimal solution of VDSPQr which completes the proof.

Now we can complete the proof of Theorem 3.1 and establish the correctness and convergence of Min-Sum
BP for k-VDSP as follows.

Proof of Theorem 3.1: Suppose to the contrary that there exists r ∈ E(G) and Q ≥ (b U
2o(X∗)c+ 1)n such

that x̂Qr 6= x∗r . According to the relation between BP and computation tree TQr as Lemma 4.1, there is an optimal
solution y∗ of VDSPQr such that y∗r = x̂Qr when r is the root of TQr . Then we have y∗r 6= x∗r which contradicts
Lemma 4.2. Therefore, the assumption that x̂Qr 6= x∗r does not hold. This completes the proof of Theorem 3.1.

V. EXTENSIONS

We now establish the extensions of k-VDSP to the versions of multiple sources or sinks. The main ideas
remain unchanged, and thus the proofs are omitted here. The key differences in mathematical programming
between the problem k-VDSP and its versions are the definition of vertex demand function f : V (G)→ Z for
some i ∈ V (G).

12

A. The version of multiple sources

For k given sources S := {s1, s2, ..., sk} ⊆ V (G) and a sink t ∈ V (G), it aims to compute k vertex-
disjoint (besides t) paths P1, P2, ..., Pk in G, such that

∑k
i=1 w(Pi) attains the minimum. Define the function

f : V (G) → Z that ft = −k, fi = 1 for any i ∈ S and fi = 0 for any i ∈ V (G) \ ({t} ∪ S). The version of
multiple sources is given by the following integer program:

min
∑

e∈E(G)

wexe

s.t.
∑
j∈N+

i

xij −
∑
j∈N−i

xji = fi, ∀ i ∈ V (G);

∑
j∈N+

i

xij +
∑
j∈N−i

xji ≤ 2, ∀ i ∈ V (G) \ ({t} ∪ S);

xe ∈ {0, 1}, ∀ e ∈ E(G).

B. The version of multiple sinks

For a given a source s ∈ V (G) and k sinks T := {t1, t2, ..., tk} ⊆ V (G), it aims to compute k vertex-disjoint
(besides s) paths P1, P2, ..., Pk in G, such that

∑
i=1,2,...,k w(Pi) attains the minimum. Define the function

f : V (G)→ Z that fs = k, fi = −1 for any i ∈ T and fi = 0 for any i ∈ V (G) \ ({s} ∪ T). The version of
multiple sinks is given by the following integer program:

min
∑

e∈E(G)

wexe

s.t.
∑
j∈N+

i

xij −
∑
j∈N−i

xji = fi, ∀ i ∈ V (G);

∑
j∈N+

i

xij +
∑
j∈N−i

xji ≤ 2, ∀ i ∈ V (G) \ ({s} ∪ T);

xe ∈ {0, 1}, ∀ e ∈ E(G).

C. The version of multiple sources and multiple sinks

For k given sources {s1, s2, ..., sk} ⊆ V (G) and k sinks {t1, t2, ..., tk} ⊆ V (G), it aims to compute k

vertex-disjoint paths P1, P2, ..., Pk in G, such that
∑k
i=1 w(Pi) attains the minimum. Let S := {s1, s2, ..., sk},

T := {t1, t2, ..., tk}. Define the function f : V (G)→ Z that fi = 1 for any i ∈ S, fi = −1 for any i ∈ T and
fi = 0 for any i ∈ V (G) \ (S ∪ T). The version of k sources and k sinks is given by the following integer
program:

min
∑

e∈E(G)

wexe

s.t.
∑
j∈N+

i

xij −
∑
j∈N−i

xji = fi, ∀ i ∈ V (G);

∑
j∈N+

i

xij +
∑
j∈N−i

xji ≤ 2, ∀ i ∈ V (G) \ (S ∪ T);

xe ∈ {0, 1}, ∀ e ∈ E(G).

13

VI. CONCLUSIONS

In this paper, we formulated the Min-Sum BP algorithm for the vertex-disjoint shortest k-path problem
(k-VDSP) and analyzed the correctness and convergence of the algorithm presented. We established that the
Min-Sum BP algorithm solves k-VDSP exactly in O(n2wmax) iterations, provided that the optimal solution
is unique and the weight parameter is nonnegative integral. Although the running time of our algorithm for
k-VDSP is not better than that of other existing algorithms for k-VDSP, the advantage of message-passing
algorithms based on BP is that it is widely applicable and easy to implement for a broad class of constrained
optimization problems. Due to its distributed nature, the BP algorithm and its variants can also run fast on a
large data network in synchronous circumstances.

ACKNOWLEDGEMENTS

We are very grateful to the reviewers for their invaluable suggestions and comments, which greatly help to
improve the manuscript. The research was partially supported by National Natural Science Foundation of China
(Grant Nos. 11871280, 11971349, 61772005 and U1811461), the Natural Science Foundation of Guangdong
Province (Grant No. 2020B1515310009) and Qinglan Project of Jiangsu Province.

REFERENCES

[1] D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random constraint satisfaction problems. In Proceedings of
the thirty-eighth annual ACM symposium on theory of computing, 2006, pages 130-139.

[2] J. Bang-Jensen, G. Gutin and A. Yeo. When the greedy algorithm fails. Discrete Optimization, 1:121-127, 2004.
[3] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief propagation for weighted b-matchings on arbitrary graphs and its relation to

linear programs with integer solutions. SIAM Journal on Discrete Mathematics, 25:989-1011, 2011.
[4] M. Bayati, D. Shah, and M. Sharma. Max-product for maximum weight matching: convergence, correctness, and LP duality. IEEE

Transactions on Information Theory, 54:1241-1251, 2008.
[5] Y. Cheng, M. Neely, and K. M. Chugg. Iterative message passing algorithm for bipartite maximum weighted matching. In Proceedings

of IEEE International Symposium Information Theory, Cambridge, 2006, pages 1934-1938.
[6] G. Dai, F. Li, Y. Sun, D. Xu, and X. Zhang. Convergence and correctness of belief propagation for the Chinese postman problem.

Journal of Global Optimization, 75:813-831, 2019.
[7] G. Even and N. Halabi. Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming. IEEE

Transactions on Information Theory, 61:5295-5305, 2015.
[8] U. Feige, E. Mossel and D. Vilenchik. Complete convergence of message passing algorithms for some satisfiability problems.

Approximation, Randomization, and Combinatorial Optimization, Algorithms and Techniques, 2006, pages 339-350.
[9] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007.

[10] G. Gutin and A. Punnen. The traveling salesman problem and its variations. Kluwer, Dordrecht, 2002.
[11] G. Gutin, A. Yeo and A. Zverovich. Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the

TSP. Discrete Applied Mathematics, 117:81-86, 2002.
[12] R. G. Gallager. Low density parity check codes. Cambridge, 1963, pages 21-28.
[13] D. Gamarnik, D. Shah, and Y. Wei. Belief propagation for min-cost network flow: convergence and correctness. Operations Research,

60:410-428, 2012.
[14] G.B. Horn. Iterative Decoding and Pseudocodewords. Ph.D. dissertation, Dep.Elec.Eng., California Inst. Technol., Pasadena, CA, 1999.
[15] A. Itai, Y. Peal and Y. Shiloach, The complexity of finding maximum disjoint paths with length constraints, Networks, 12:277-286,

1982.
[16] F.R. Kschischang, B.J. Frey and H.A. Loeliger. Factor graphs and sum-product algorithm. IEEE Transactions on Information Theory,

47:498-519, 2001.
[17] M. Mézard. Passing messages between disciplines. Science, 301:1685-1686, 2003.
[18] M. Mézard, G. Parisi and R. Zecchina. Analytic and algorithmic solution of random satisfiability problems. Science, 297:812-815,

2002.
[19] M. Mézard and R. Zecchina. Random k-satisfiability problem: from an analytic solution to an efficient algorithm. Physical Review,

66:249-264, 2002.
[20] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible reasoning. Morgan Kaufmann, 1988.
[21] T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-passing decoding. IEEE Transactions

on Information Theory, 47:599-618, 2001.

14

[22] S. Sanghavi, D. Malioutov, and A. Willsky. Belief propagation and LP relaxation for weighted matching in general graphs. IEEE
Transactions on Information Theory, 54:2203-2212, 2011.

[23] S. Sanghavi, D. Shah, A. S. Willsky. Message passing for maximum weight independent set. IEEE Transactions on Information Theory,
55:4822-4834, 2009.

[24] J.W. Suurballe. Disjoint paths in a network. Networks, 4(2):125-145, 1974.
[25] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. Exploring Artificial Intelligence in

the New Millennium, 8:236-239, 2003.

