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Abstract

Thermoelectric materials enable the conversion of a thermal gradient into electricity,
making them candidates in applications such as waste heat recovery. Their efficiency
is determined by key, often interdependent, electrical and thermal transport properties.
Therefore, requiring complex optimisation of the chemical composition and synthesis
process.

In this thesis, I perform first-principles modelling of the thermoelectric properties of
half-Heusler alloys focused on analysis of XNiSn (X = Ti, Zr, Hf) and Nb1 – xCoSbySn1 – y

based compositions. Thermoelectric properties of complex defective supercells were
performed using plane-wave DFT as implemented in CASTEP and by solving the phonon
Boltzmann Transport equation and the modified Debye-Callaway model to estimate κl .

We successfully use the non-diagonal supercell method, phonon unfolding, and neutron
weighting techniques to analyse vibrational spectra in defective half-Heuslers and compare
against inelastic neutron scattering experiments performed with our collaborators. We
determine that Ni interstitial vacancy clustering results in agreement with experiments.
We find a reduction of the κl in defective TiNi1.125Sn and establish importance of grain
boundaries.

We model the effect of interstitials on the electronic structure in n-type XNiSn (X = Ti,
Zr, Hf) compositions. Interstitial Cu in TiNiSn has been experimentally observed to reduce
κl without impeding electron mobility [1]. A promising thermoelectric with a ZT value of
0.8 at 773K. The electronic structure is investigated using DFT and DFT+U, charged cal-
culations, and meta-GGA treatment of the exchange and correlation, considering possible
localisation effects.

We determine the effect of X-site vacancies in defective n-type Nb1 – xCoSbySn1 – y

compositions, tuned to lower the average electron count, mimicking the unique, closed
shell 18-electron half-Heusler system. Results predict semi-conducting behaviour in
correspondence with experiments.

The calculations successfully model thermoelectric properties of stoichiometric and
defective half-Heusler compositions in good agreement with experiments. This predictive
power can be used in future research to aid in the optimisation of thermoelectric materials.
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Chapter 1

Introduction

The energy demand of modern society results in a heavy dependence on fossil fuels, which
are polluting the air and raising sustainability concerns all over the world with many
countries aiming to reduce their greenhouse gas emissions [2]. One route to address this
demand is through the development of renewable energy sources, but that is not the only
way to go forward as energy efficiency technologies can also play an important role in
reducing carbon footprint. The latter forms a key component of this thesis, exploiting the
phenomenon of thermoelectricity and its associated technological applications where we
will explore the properties of candidate materials for the construction of thermoelectric
devices.

The thermoelectric effect is composed of three separate effects called the Seebeck,
Peltier, and Thomson effects. The first allows the conversion of heat energy into electrical
energy, allowing for the creation of thermoelectric generators (TEGs) using solid-state
devices in the presence of a temperature gradient. On the other hand, the Peltier effect
allows for a reverse process to occur, where an electric current passed through a solid-state
device leads to a cooling effect, which can be designed to create a thermoelectric cooler
(TEC) module. It is immediately clear that these are fascinating and powerful phenomena
that can find their use in many applications. The performance of thermoelectric materials
is characterised using a figure of merit called the ZT (ZT = S2σT/κ). Where S is the
Seebeck co-efficient, σ is the electrical conductivity, κ is the thermal conductivity for a
given temperature T. The power factor is a useful quantity defined as S2σ and determines
the amount of work that can be done. Looking at the expression for ZT, we can see that
maximising performance requires a large power factor and a low thermal conductivity.
What should also be taken into account for device design is the fact that ZT curves vary
greatly between materials and the often quoted peak ZT values may be promising, they
may occur at temperatures that are not appropriate for the devices operating temperature.
Therefore, average ZT values across a wide temperature range should also be taken into
consideration. The figure of merit is one of the key estimators to determine the quality of
thermoelectric materials with current research efforts aiming to design materials with ZT

values > 1. Materials with a ZT of 1 can usually achieve energy conversion efficiencies of
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around 5-10% [10, 11]. A longer explanation of thermoelectric performance can be found
in Chapter 2.1.

We will be modelling the thermoelectric properties of a family of promising materials
for use in thermoelectric devices for the application in waste-heat harvesting. Namely,
the investigations found in this work will focus on half-Heusler alloys. This family of
materials shows promise in delivering economically viable thermoelectric efficiencies, are
of relatively low cost and have a relatively abundant composition. Making them candidates
for replacing the current best performing, but toxic thermoelectrics, such as PbTe.

1.1 Applications of thermoelectrics

The market for thermoelectrics has grown considerably to a size of $460 million US dollars
in 2019 with a strong forecast for future growth. This growth is estimated by a compound
annual growth rate (CAGR) between 8.3-13.8% to reach a size of $1025 million US dollars
by 2025 [12, 13]. Thermoelectric applications span a wide range of industry segments
due to the versatility of the technology, ranging from automotive, healthcare, consumer
or industrial segments and more. This section will highlight some of the key applications
of thermoelectrics that we currently benefit from in the present day as well as how the
technology may be improved or utilised effectively in future applications. The expected
growth and vision for the future of thermoelectrics is promising with a potential timeline
shown in Figure. 1.1.

Fig. 1.1 Roadmap for deploying new thermoelectric applications based on required thermo-
electric efficiency and power output using projected rate of developments in materials and
manufacturing. Image taken from Freer et al. [2] with permission from the Royal Society
of Chemistry.

The projected timeline largely depends on the success of scientific research in optimis-
ing performance and selecting materials that satisfy many demanding criteria, including
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cost, abundance and environmental impact. Nevertheless, the mounting pressure for re-
ducing greenhouse emissions and protecting the environment should act as a driver of
development.

1.1.1 Automotive applications

Transportation is known to be one of the key sources of greenhouse emissions with contin-
ued legislative pressures for automotive manufacturers to meet carbon dioxide emissions
and reduce fuel consumption. Therefore, there is scope for mass-scale deployment of
thermoelectric devices utilising the Seebeck effect for the purpose of waste heat harvesting
from internal combustion engines. During vehicle operation, waste heat can be extracted
from the exhaust and cooling system using a TEG module to generate electric power that
could reduce or replace the function of the alternator for powering the vehicle’s electrical
systems. In addition, provided that enough power can be generated, hybrid car systems
could also be powered for further gains inefficiency. The challenges arise due to the fact
that there are fluctuations in the cars operating temperature and often require additional
components to boost efficiency, such as a liquid heat exchanger, which may require ad-
ditional components such as valves, sensors, and pumps. This increases cost and weight,
which negatively impacts efficiency and economic viability. State of the art modules using
bismuth telluride (Bi2Te3) proved to produce good power output, but costs were too high
to be economically viable as found by a UK funded project called VIPER [2]. Therefore,
abundant and relatively low-cost materials that could provide sufficient power output are
necessary for mass production. If successful, the technology would be beneficial for many
years as the reliance on internal combustion engines is large and the phasing out process is
slow. The technology can also be extended to marine transportation, replacing on-board
diesel generators for powering the vessel’s electronic systems. Moreover, we can also
utilise the Peltier effect to enhance the efficiency and design of vehicle accessories for
passenger convenience. Luxury vehicles already use thermoelectric modules for heat-
ing and cooling of seats, as portable refrigerators, or to keep beverages hot or cold [14].
However, the greatest benefit for re-designing the vehicle convenience systems lies in the
heating, ventilation and air-conditioning (HVAC) systems. Thermoelectric technology
with sufficient efficiency would replace the current technology composed of a heating
core, AC radiator compressor-evaporator system and the required pipes and connections
between those systems. Ultimately, reducing the number of required components, resulting
in improved reliability and reduced weight [14].

1.1.2 Aerospace applications

Radioactive TEG (RTEG) modules have been a reliable mode of power generation on a
number of space exploration missions starting with the very first module being launched
into orbit in 1961 [15]. Many missions followed, including the Apollo moon missions
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and Voyager deep space exploration missions, with the latter still remaining operational
until this day. Most recently, RTEGs are still being used in new missions with NASA
launching the Perseverance Mars rover in 2020 using a PbTe/TAGS based TEG module
designed to produce around 110W of electrical power [15]. The popularity of the usage
of RTEG modules is well justified. The lack of moving parts makes them very reliable
and radioactive isotopes such as Plutonium 238 have a long half-life and produce a steady
source of thermal power. Mission-specific complexity, such as the Mars missions require
the TEG module to withstand sandstorms and reliably generate power on the surface
independent of the sun angle, a challenge the alternative solar cell based power supplies
have to overcome [16].

Moreover, on earth, commercial and military aircraft currently utilise TEG modules to
power a range of devices such as sensors, refrigerator units, and freezers [2]. There is the
future scope for waste heat from jet engines, similarly to that of the automotive and marine
applications provided efficiency requirements and safety standards can be met.

1.1.3 Medical applications

A significant role of thermoelectrics in medical applications lies in TEC devices in the
form of portable medical-grade refrigerators. These devices have been particularly helpful
in the roll-out of the Covid vaccines, with new designs being produced by companies
such as CoolMed, which have supplied over 500 such refrigerators to the NHS during
the Covid-19 pandemic [17]. This enables safe storage and easy transport of vaccines for
vaccine administration. As the TEC devices can be scaled down, small portable coolers
can be utilised to reach more patients in remote locations and require as little as one person
to carry out the transportation. The use of portable thermoelectric coolers extends to
transporting other vital substances such as blood. The TEC refrigerators are solid state
devices with no moving parts and are gas free, which prevents any possible leaks, reducing
the risk of failure.

1.1.4 Other applications

There are a range of other applications of of considerable interest across a range of indus-
tries. Wireless sensing networks (WSN) are one such application as the technology could
be used as sensors in domestic applications, sports performance tracking, medical diag-
nostics or even industrial plants and monitoring of aircraft engines [2]. Most applications
utilise a bulk thermoelectric module design architecture, composed of alternating n-type
and p-type thermoelectric materials that are connected in series and placed in parallel
between ceramic plates. However, it is possible to adapt the design of thermoelectric
devices though creative fabrication techniques and careful material selection to suit the
particular application. For example, the dimensions of the device can be reduced by
growing thin-film thermoelectric devices or though the use of organic polymers to produce
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flexible devices. A conceptual flexible TEG device can be seen in Figure. 1.2 to illustrate
the general design and scale of such a device.

Fig. 1.2 Flexible TEG module design illustration for self-powered circuit applications.
Image taken from Lee et al. [3] with permission from Nature Communications.

In the case of WSN the use of thin films would be particularly suitable, especially
in the case where small thermal gradients are present during operation, which would
allow to reduce the amount of material needed. Another application that would benefit
from reduced use of material and flexibility are wearable thermoelectrics in the form of
TEGs. On the other hand, the additional complexity of these devices and difficulty in
achieving consistency and high quality fabrication [18] of thin film materials are additional
challenges on top of ensuring low cost and good thermoelectric performance.

The improved waste-heat harvesting and recovery and more efficient cooling through
the use of thermoelectrics offer significant opportunities to reduce energy usage and
environmental burdens. Therefore, the nuclear energy industry is an obvious candidate for
the technology. Nuclear fission reactors have low operating efficiency at around 25-30%
[2] and produce a significant amount of waste heat that could be recovered. In addition,
the improved efficiency would reduce the temperature increasing effect on local water
reservoirs and rivers due to releasing hot water vapour. Lastly, energy generation of up
to an estimated 10MW [2] could be produced using geothermal heat at decommissioned
offshore oil platforms if economically viable efficiencies can be achieved.

1.2 Thermoelectric materials

In the previous section, we saw that thermoelectrics span a wide range of applications, each
of which come with their own set of criteria related to good performance, economic viability
and environmental impact. This means that correct thermoelectric material selection and
optimisation are crucial. This is an enormous challenge as we have already seen that
maximising the ZT value is a priority for high performing thermoelectric materials, which
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is a complex optimisation problem due to the interdependence of S, σ and κ , additional
consideration of factors such as earth abundance, cost, performance, stability, scalability,
durability, flexibility and toxicity has to be taken into consideration. This greatly constrains
the possible material search space, making experimental exploration and discovery difficult.
Moreover, emphasis must be placed on developing materials with a large average ZT value
over a relevant operating temperature range for the desired application rather than focusing
on attaining the largest peak ZT, which may result in lower efficiency despite good peak
performance. As a result, computational efforts in materials exploration and design aim
to accelerate progress in this direction and provide predictive power to aid experimental
endeavors. This section will discuss some of the classically used materials in thermoelectric
devices, half-Heuslers that form the basis of this thesis as well as a few other promising
types of materials that are currently being researched.

1.2.1 Chalcogenides

Chalcogenides are a benchmark class of materials used for thermoelectrics applications
since the 1950’s [19]. Traditionally the most common materials were the telluride based
Bi2Te3 and PbTe, which are both narrow-gap semiconductors with band gaps of 0.16 eV
and 0.32 eV respectively [20] and they form a part of a large number of thermoelectric
devices in use today. The former Bi2Te3 is particularly good in the low temperature range
between 20 and 150°C with ZT values of around 1-1.5 [19] and is often the material of
choice for cooling applications. Optimisation in performance can be done by alloying
Bi2Te3 with other compositions of similar crystal structure, such as Bi2Se3 or Sb2Te3,
which increases phonon scattering and improves performance [11]. On the other hand,
PbTe performs well over the intermediate and high temperature ranges making it a good
thermoelectric for waste heat harvesting applications. Extensive research has been un-
dertaken in the quest of their enhancement and the results in performance improvement
of PbTe-based thermoelectrics can be seen in Figure. 1.3, with ZT values under 1 at the
time of first discovery in 1960 to around a ZT of 2 for both n-type and p-type composi-
tions. More recent attempts at improving performance in PbTe were based on endotaxially
embedding nanoinclusions to scatter phonons and reduce the thermal conductivity [2].

Despite the good performance, the big issue of the low earth abundance of the con-
stituent materials cannot be overlooked, resulting in endeavours in the search for alternative
materials to overcome this issue and enable economic viability for applications at scale.
This resulted in the discovery of materials such as SnSe that have received attention due
to impressive performance with reports of a single crystal SnSe with ZT = 2.8 at 773 K
[21]. The high performance is coupled with the fact that the material is environmentally
friendly and cost-efficient. The performance can be attributed due to a narrow band gap
and low lattice thermal conductivity. The issue arises with scalability as the single crystal
form suffers from challenges such as poor mechanical properties and high production cost
[21]. To overcome this, recent research has been focused on optimising the performance of
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Fig. 1.3 Reported ZT values for PbTe-based thermoelectrics over time for n-type(green
ball) and p-type(orange ball) materials. Image taken from Xiao et al. [4] with permission
from Springer Nature.

polycrystalline SnSe and investigating alternative fabrication techniques such as aqueous
synthesis compared to melting and mechanical alloying which often fail to reproduce
performance figures due to variations in material morphology [21].

1.2.2 Half-Heusler Alloys

Half-Heuslers are a promising class of non-toxic, relatively abundant and low-cost ther-
moelectric materials that align with the criteria in the search for economically viable
and environmentally friendly materials to replace the current state-of-art thermoelectrics
for operation in the intermediate to high temperature ranges. These factors combined
with their good thermoelectric performance allowed half-Heuslers to gain considerable
research interest in recent years and they are in fact the key materials studied in this
thesis. Half-Heuslers are intermetallic compounds with a chemical formula XYZ where
X and Y are usually transition metals or noble metals and Z is a main-group element
[22]. The half-Heusler crystal structure consists of three interpenetrating face-centered
cubic (fcc) sublattices belonging to the space group F 4̄3m with element X at the Wyckoff
position 4a (0,0,0), element Y at the position 4c (1

4 ,
1
4 ,

1
4) and element Z at the position 4b

(1
2 ,

1
2 ,

1
2). A visual representation in Figure. 1.4 shows the unit cell and primitive cell for

the half-Heusler TiNiSn with vacancies present at the Wyckoff position 4d (3
4 ,

3
4 ,

3
4), in

contrast to the full-Heusler structure with a chemical formula XY2Z where the 4d (3
4 ,

3
4 ,

3
4)

Wyckoff position is filled by the Y element.
The main advantage in thermoelectric performance stems from the materials’ large

power factors which are as high as 6 mWm−1K−2 [2]. This is in contrast to their rela-
tively high lattice thermal conductivity of around 3-4 Wm−1K−1 [2] which impedes their
thermoelectric performance. However, despite the large κl , current research reported
maximal ZT values of 1.5 in doped FeNb0.88Hf0.12Sb and FeNb0.86Hf0.14Sb at 1200K [23].
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Fig. 1.4 Visual representation of the TiNiSn half-Heusler structure for a) fcc unit cell and
b) fcc primitive cell. The colours of the atoms correspond to Ti (blue), Sn(purple), Ni (red).
Created using the VESTA package [5]

.

Reducing the lattice conductivity forms the crucial component for optimising performance
which rests upon finding new mechanisms to enhance phonon scattering. Methods such
as binary or tertiary X-site alloying with heavier elements in order to reduce κl through
mass-disorder have been investigated [24] and shown to lower thermal conductivity. In
addition, unique properties of materials such as TiNiSn to accommodate significant con-
centrations of interstitial defects (∼ 10%) have led to new opportunities for optimisation
and reducing κl through further increasing phonon scattering [1]. Attempts at finding
novel ways to boost electronic properties have also seen success, with X-site vacancies
in NbCoSb shown to reduce the average electron count as to satisfy the 18 electron rule,
with the defective system behaving as a semiconductor and displaying good thermoelectric
properties, with a ZT value of 0.4 at 973 K [25] in a system that would otherwise be
metallic and contain 19 valence electrons. The synthesis route can have significant effects
on the material composition, homogeneity due to the introduction of competing binary and
Heusler phases and large variations in κl and power factors, meaning there is a spread in
the resulting thermoelectric properties [2]. This presents difficulty in regards to consistency
and reproducibility of performance that need to be addressed.

1.2.3 Other materials

Half-heuslers are just one of several emerging materials being studied for thermoelectric
applications. Metal oxides are another promising class of materials particularly for high
temperature applications due to their good thermal stability [11]. The challenge for this
family of materials is to enhance electrical properties to improve the power factors, which
is being attempted via doping [2]. There are also popular mixed anion compound materials,
namely oxychalcogenides, which are often arranged in alternating ionic oxide and covalent
chalcogenide layers to promote higher electron mobility in the chalcogenide layer and
lower κl in the oxide layer [26]. The best reported ZT values reached about 1.4 at 923 K
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in Bi0.875Ba0.125OCuSe [26]. Skutterides have the chemical formula MX3, where M is a
metallic element and X is a pnictide, based on derivatives of CoSb3. The materials have
gathered a lot of interest due to satisfy the conditions of the phonon-glass-electron-crystal
(PGEC) concept where the optimal material for thermoelectric applications is described to
have thermal properties of a glass and electrical properties of a crystalline material [27].
The thermal conductivity of undoped skutterudites is relatively high, but the redeeming
feature lies in the presence of voids in their structure. This has been utilised by filling the
voids with weakly bound guest atoms [2], resulting in rattler modes, which are localised
vibrational modes that effectively scatter phonons, resulting in large reductions of the
thermal conductivity [27]. This rattler behaviour has been observed and exploited in
another family of materials called clathrates [2]. Therefore, clathrates often have very
low thermal conductivity favourable to good thermoelectric performance. The current
challenge lies in the fact that the highest performing Sn-based clathrate thermoelectrics
suffer from low thermal stability. One approach that is suggested to alleviate this problem
is to investigate mixed Si-Sn clathrates due to Si-based frameworks displaying good
thermal stability [28]. Earth abundance is an important aspect of mass-scale production
of thermoelectric devices. Hence, Si-Ge alloys have been considered due to the large
abundance of Si with RTEG modules being successfully used in deep-space missions
by NASA [29]. The Si-Ge alloys have a large κl and efforts have been made to lower
the κl through varying the germanium content, nanostructuring and grain size reduction
[2]. Improvements were substantial and ZT values of 1.3 and 0.95 have been achieved
for n-type and p-type Si80Ge20 bulk nanocomposites [29]. The success in large-scale
adaptation of SiGe rests upon good thermoelectric efficiency and lowering material costs
due to the high price of Ge [2].

1.3 Methods for optimising thermoelectric performance

There is a broad range of established and emerging thermoelectric materials and whilst
many have advantageous properties relating to high performance, they rarely tick all the
boxes. This stems from the aforementioned fact that the key thermoelectric properties
are often interdependent. Hence, new routes to enhancement attempt to decouple this
dependence to improve the electronic properties without impeding the thermal properties
and vice versa. The final goal is to maximise the power factor and minimise the thermal
conductivity and a number of strategies exist, some of which will be outlined in this
section.

1.3.1 Structural defects

Intrinsic and extrinsic point defects play a great role in tuning the thermoelectric
properties of materials. In the case of intrinsic defects when no chemical impurities are
present, defects in the form of interstitials, antisites, and vacancies are often present.
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Interstitials occur when a normally unoccupied site is filled, a particular type of interstitial
defect called a "Frenkel defect" exists if the unoccupied site is filled due to an atom
migrating from its usual site. Antisites occur when a constituent element is in a different
site than expected and vacancies occur when there are missing atoms from their otherwise
occupied sites [30]. The presence of these defects is material dependent and is influenced
by the synthesis process and conditions, especially temperature. Moreover, the addition of
extrinsic point defects such as dopants or chemical impurities can aid the formation of
intrinsic defects. Point defects are not always isolated and may form larger defect
complexes, that can form voids or planar defects creating interfaces and grain boundaries
[31].

Alloying/Doping - Alloying can be utilised to increase phonon scattering through the
additional disorder in the crystal structure. In the case of TiNiSn, alloying with isovalent
elements has been used to induce mass-disorder to lower the thermal conductivity without
significantly altering the electronic properties [24]. In addition, TiNiSn can contain up to
around 10% of Ni or Cu interstitials with further reductions to the thermal conductivity
observed [1]. In the case of Cu interstitials for the TiNiSn, the Cu acts as an n-type dopant
that enhances the power factor [1]. We can see that the effect of point defects requires
detailed investigations and often combined approaches such as both alloying and doping
can be used to extract further improvements of thermoelectric properties.

Phonon-glass-electron-crystal - The concept of a phonon-glass-electron-crystal aims to
design semiconductors with crystal structures that have an efficient transmission of charge
carriers and poor glass-like thermal properties. In practice, this has been realised by
introducing localised vibrational modes in cage-like compounds. Trapping heavy atoms in
the cage structure to observe this "rattler" behaviour which has a strong phonon scattering
effect [32]. As mentioned in Section. 1.2, this approach has successfully reduced κl in
skutterudites and clathrates [27, 28] without negatively affecting the electrical transport
properties.

Band structure engineering - We have seen that doping can influence the dominant
charge carrier type and concentration, depending on the desire of an n-type or p-type
semiconductor [31]. This can be taken a step further in band convergence strategies due to
the effect of dopants on the energy levels of the system to align electronic bands as to
increase valley degeneracy at the conduction band minimum or the valence band
maximum. This increases the density-of-states effective mass of either electron or holes
[33] and leads to a greater amount of available states around the Fermi level, increasing
the Seebeck co-efficient and therefore increasing the thermoelectric performance. [11].
Alternatively, resonant impurity atoms can lead to resonant states, perturbing the density
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of states as demonstrated in Tl:PbTe [34].

Grain boundaries - The additional scattering of phonons at grain boundaries is an
important factor in enhancing thermoelectric performance and reducing thermal
conductivity. Tuning and understanding the size and morphology of grain boundaries is
challenging and both a macroscale and nanoscale approach is often required [35]. Dense
dislocation arrays at low-energy grain boundaries in Bi0.5Sb1.5Te3 were shown
successfully scatter mid-frequency phonons to significantly reduce the thermal
conductivity and improve the ZT to 1.86 at 320K. The large improvements were possible
as the additional scattering of phonons did not have a large impact on the electrical
conductivity [36].

1.3.2 Dimensionality reduction and nanostructuring

In bulk 3D crystalline systems the key thermoelectric properties S, σ and κ are often
interdependent, making them difficult to modify. However, by reducing the system size to
form 2D quantum wells, 1D quantum wires or 0D quantum dots leads to changes to the
electronic density of states and introduces quantum-confinement effects as the size of the
material in any direction becomes comparable to the wavelength of the charge carriers [11].
This can be used to alter the DOS near the Fermi level to enhance the Seebeck co-efficient
[2]. The introduction of new physical phenomena opens new opportunities to decouple the
dependence of key thermoelectric properties and enhance them separately [37]. Moreover,
low-dimensionality results in a large number of interfaces that can effectively scatter
phonons that significantly contribute to κl . Experiments on 2D superlattices of Bi2Te3 and
Sb2Te3 have found that the reduction in κl was more significant than the change to the
electrical conductivity [37]. The enhancements to the power factor and κl both contribute
to improvements in ZT. However, in practice, it was found that the enhancement to the
power factor is not as effective at improving the ZT value and thermoelectric performance
as the reduction of κl [2].

Nanostructuring of thermoelectric materials has successfully been shown to enhance
thermoelectric performance by embedding nanoinclusions into the semiconducting matrix
of a host bulk material. After embedding of SrTe nanocrystals into a bulk PbTe matrix,
strong phonon scattering was observed without impeding the hole mobility, allowing to
achieve a ZT value of 2.2 for this p-type thermoelectric material [38]. Improvement of
the thermometric figure of merit using this approach has been seen in a number of other
nanocomposites from Bi2Te3 [39], SiGe [40] and In2O3 [41] based compositions. The
phonon mean free path determines the distance between scattering events of phonons
which cumulatively contribute to the thermal conductivity. Hence, by incorporating various
nanostructures that span a wider length scale, phonons with a broad range mean free paths
can be selectively scattered to lower the thermal conductivity [42]. These nanocomposites
can usually be fabricated using spark plasma sintering (SPS), ball milling, hot pressing.
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However, the preparation conditions are important for reproducibility of performance [43]
and manufacturing processes for nanostructuring materials can be challenging.

1.4 Modelling Thermoelectric Properties

The continuous search for new strategies and mechanisms for improving thermoelectric
performance through experimental methods has shown a lot of success, but the broad range
of candidate materials and complex material compositions makes experimental efforts
difficult, costly, and time-consuming. This often results in limited ability to search for new
materials and often finds materials with poor performance. On the other hand, access to
high-performance computing is improving and continuous developments in materials mod-
elling techniques are being made. This places great importance on theoretical modelling
as it can aid experimental research in regard to material selection. Initial high-throughput
screening of a large number of materials to test for phase stability and estimate ZT values
can be used to efficiently compile a list of promising candidate thermoelectric materials
[44]. Moreover, first-principles calculations can be used to compute all of the necessary
components in determining the electronic and thermal transport properties to investigate
the thermoelectric performance of materials and gain an additional understanding of the
underlying mechanisms for their optimisation. To determine electron transport properties
code implementations to solve the semi-classical Boltzmann transport equation have been
written. Although, calculations of electron transport are not undertaken in this work,
the currently available codes to do this include BoltzTraP [45], BoltzTraP2 [46] and
BoltzWann [47]. On the other hand, we do compute thermal transport properties by solving
the phonon Boltzmann transport equation with the aid of the ShengBTE package [48].
Other codes such as almaBTE [49], phono3py [50] are also capable of solving the phonon
BTE. Solving the phonon BTE comes at a large computational cost as phonon density
of states, second-order and third-order force constants need to be computed using DFT
codes to provide the necessary input. This may be computed using the many available DFT
packages such as CASTEP [51], Quantum Espresso [52], VASP [53] and others. However,
it should be noted that not all DFT codes are supported by the BTE solver packages. In
addition, we also compute κl using an alternative theoretical model in the form of the
modified Debye-Callaway model with the help of the mDCThermalC code [54]. Here, the
required input requires computing the phonon dispersion, phonon velocities, and mode
parameters, which can be obtained using packages such as CASTEP [51] and Phonopy
[55].

1.5 Thesis Structure

Real-world applications of thermoelectrics and their capabilities as an energy recovery
technology have been discussed. A mention of the state-of-the-art thermoelectric materials
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and promising candidates have been outlined, particularly half-Heusler alloys which are
the focus of this work. Potential methods for optimising thermoelectric performance have
been described. Theoretical and computational frameworks allowing for modelling of the
relevant material properties and optimisation mechanisms investigated in this thesis were
presented. A summary of the thesis structure can be found below.

Chapter 1 : Introduction - This chapter introduces the field of thermoelectrics and its
real-world applications. An overview of state-of-the-art and promising thermoelectric
materials is presented. In addition, key optimisation techniques to enhance performance
and the computational tools available to model and predict material properties are
described.
Chapter 2 : Theory - The theory chapter includes the key theoretical framework to
provide an understanding of the thermoelectric effect, first principles simulations,
bandstructure theory, lattice dynamics, and thermal transport.
Chapter 3 : Methodology - In Chapter 3, the methods used to perform the first principles
calculations are described in detail. The computer programs used are noted and
appropriate procedure for testing and convergence of the calculations is described,
including the choice of computational parameters. Details of inelastic neutron scattering
experiments and experimental parameters are also provided. This will ensure that the
investigations contained in this thesis can be repeated if one wishes to do so.
Chapter 4 : Computing lattice thermal conductivity of defective supercells - This
chapter investigates XNiSn (X= Ti, Zr, Hf) based half-Heusler compositions, which have
shown promising performance as n-type thermoelectric materials. However, the
stoichiometric materials suffer from a relatively high lattice thermal conductivity.
Therefore, an investigation of the effect of interstitial Ni and Cu defects on the vibrational
properties and κl are investigated. A homogeneous and clustered Ni defect model is used
to describe the vibrational properties, this required using supercells to capture the desired
ordering of interstitials. The neutron weighted phonon density of states is computed to
enable a direct comparison against results from inelastic neutron scattering experiments
for compositions with comparable interstitial content. Lastly, the lattice thermal
conductivity is computed for TiNiSn and TiNi1.125Sn through solving both the phonon
Boltzmann Transport equation and the modified Debye-Callaway model.
Chapter 5 : Electronic properties of XNiSn (X = Ti, Zr, Hf) with interstitial defects -
The electronic structure properties of parent TiNiSn, ZrNiSn and HfNiSn and chosen
defective supercells containing Ni or Cu interstitials are computed. Due to the use of
supercells, band folding is present and a method for computing the effective
bandstructures is implemented. The previous chapter investigated the role of Ni and Cu
interstitials on vibrational properties. However, thermoelectric properties are often
interdependent and this chapter aims to understand the consequences and differences of Ni
and Cu interstitials on the electrical properties. A mismatch between a computationally
predicted metallic state and experimentally observed semiconducting behaviour is found.
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Charged calculations through removal of electrons are performed to determine the level of
charge compensation that may be present. The Hubbard U model and meta-GGA
treatment of the exchange and correlation are used to investigate localisation effects.
Finally, effective electron masses are calculated using the parabolic band approximation.
Chapter 6 : Electronic structure properties of Nb1 – xCoSbySn1 – y - In the final results
chapter, the effects on the electronic structure properties of Nb1 – xCoSbySn1 – y due to
X-site vacancy and doping are investigated. Calculations are performed with and without
Sn doping, with a defect concentration targeted to reduce the average number of valance
electrons from the expected 19 in stoichiometric NbCoSb to satisfy the 18 electron rule,
which is often used as a predictor of semiconducting behaviour. The disagreement of
experimental lattice parameters with previous simulations of stoichiometric NbCoSb is
explored. In addition, to tackle the main focus of the chapter, calculations of the electronic
band structures and effective electron masses are performed to provide insight into the
properties of defective compositions and to spot potential mechanisms for optimisation.
Chapter 7 : Conclusions - The final chapter provides a summary of the results and
findings of the investigations found in this work. Suggestions for future research directions
and computational methods for modelling thermoelectric properties are discussed.
Appendix A : - Comparison of INS phonon DOS obtained using the MARI instrument
for XNiSn (X = Ti, Zr, Hf) based compositions to display the effects of binary and ternary
X-site substitution.



Chapter 2

Theory

2.1 Thermoelectric effect

2.1.1 Seebeck effect

The thermoelectric effect has three manifestations in the form of the Seebeck, Peltier and
Thomson effect. The first to be discovered was the Seebeck effect in the year 1821 when T.
J. Seebeck managed to produce a voltage difference across a junction when two dissimilar
materials were joined together in the presence of a thermal gradient [56]. This occurs as
the mobile charge carriers diffuse towards the cold side of the junction, which creates a
potential difference and thus an electrical current between the junctions in a closed circuit.
The concentration of electrons follows the Fermi distribution around the Fermi energy and
is temperature dependent, resulting in a larger number of electrons above the Fermi energy
at the hot end of the material and the electrons will transport energy to the cold end to
equilibrate the system. If the temperature difference is maintained, the charge must build
up generating a thermovoltage. A possible set-up to produce this effect can be seen in Fig
2.1. This proportionality between the voltage difference and temperature is an intrinsic
property, called the Seebeck coefficient, also known as the thermopower, which represents
the proportionality of the voltage difference due to the temperature difference. It can be
defined as [57]:

S =−△V
△T

=−Vhot −Vcold

Thot −Tcold
, (2.1)

where S is the Seebeck co-efficient, △V represents the voltage difference and △T cor-
responds to the temperature difference between the hot and cold sides of the junction.
The thermopower is measured in the units of V/K and is small in metallic systems (few
µV/K) and much larger in semiconductors (few hundred µV/K) [56]. This study focuses
on exploiting this effect for the purpose of waste heat harvesting. Finding an n-type and
p-type semiconducting material pair with a high Seebeck coefficient is one of the key
components in optimising the performance of a thermoelectric generator device. The sign
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of the voltage reveals if the material is n-type or p-type as a result of either negative or
positive charge carriers being responsible for the Seebeck effect.

Fig. 2.1 A thermoelectric circuit for a thermoelectric generator (left) and a thermoelectric
refrigerator (right). The white arrows represent the diffusion direction of the charge carriers
in the n-type and p-type semiconductors respectively. Image taken from [6].

2.1.2 Peltier and Thomson Effect

A related manifestation of the thermoelectric effect was discovered a few years later. This
is known as the Peltier effect, which occurs when a current I is passed through a junction
of two dissimilar materials to either absorb or expel heat at a junction. [11]. Heat will
be absorbed or rejected at the junction dependent on the type of charge carrier diffusing
when an electric current is applied. When an electric field is applied through the material
at constant temperature the electric current density of the electrons, jq can be expressed as
[58]:

jq = neµeE, (2.2)

where n is the electron concentration, e is the electron charge, µe is the electron mobility
and E is the electric voltage. The corresponding energy flux can then be written as [58]:

jU = n(Ec −µ + 3
2kBT )−µeE, (2.3)

here µ refers to the Fermi energy and Ec is the energy at the conduction band edge [58].
The Peltier co-efficient relationship can then be written as jU = Π jq for electrons. In the
case of holes, a similar relationships can be found [58]:

jq = peµhE

jU = p(µ −Ev +
3
2kBT )−µhE,

(2.4)
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where p is the hole concentration, Ev is the energy of the valance band edge and µh is the
hole mobility. It should be noted that the Fermi level has to be recomputed in the case
of doped semiconductors, where donor and acceptor levels in the band gap have to be
considered. This can be calculated by assuming the charge neutrality condition, which
states that the sum of the positive charges is equal to the sum of the negative charges. The
amount of Peltier heat generated or absorbed per unit time is given using the following
relationship [58]:

Q = (ΠA −ΠB)I, (2.5)

where Q is the produced or absorbed heat, ΠA and ΠB are the Peltier coefficient’s of
conductor A and B and I is the electric current between the conductors. This is not the
total rate of heat generated as other effects, such as Joule heating are not taken into account.
The Peltier effect is often used to create thermoelectric heat pumps and thermoelectric
coolers.
Finally, we arrive at the last thermoelectric effect, namely the Thomson effect. This
provides an extension to the Seebeck and Peltier effects and concerns only one conductor.
If the conductor is subject to a thermal gradient along it’s length from an external heat
source an electrical current will be generated and vice versa when an electrical current is
passed across the material a thermal gradient will be present.

2.1.3 Quantifying thermoelectric performance

For a device to function effectively a large enough thermal gradient is required to generate
electricity. To achieve good performance, the materials used generally need to be doped
semiconductors and are usually designed in an n-type and p-type material arrangement, a
schematic of this can be seen in Figure 2.1.
When assessing the thermoelectric performance of a material, the efficiency can be deter-
mined through a dimensionless figure of merit called the ZT value, given by [57],

ZT =
S2σT

κe +κlat
, (2.6)

where S is the Seebeck coefficient, σ is the electrical conductivity, with S2σ being the
power factor. Whereas κe and κlat are the electronic and lattice thermal conductivity
respectively. The higher the ZT value the better the efficiency, but ultimately the average
ZT across the operating temperature range is the most important in devices. The param-
eters involved are interdependent and therefore obtaining a good ZT value becomes an
optimisation problem dependent highly on the underlying crystal structure, with an aim
to reduce the lattice thermal conductivity whilst maintaining a high power factor. The
equation for maximum thermoelectric efficiency, ηmax can be written as [11]:
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ηmax =
TH −TC

TH

√
1+ zT̄ −1√

1+ zT̄ + TC
TH

(2.7)

with T̄ , TH and TC corresponding to the average temperature, hot side temperature and cold
side temperature respectively. Here, we can see that optimising the ZT value is crucial
to obtaining good efficiency. Looking at Equation. 2.6 we can see that increasing the
power factor will not improve efficiency if the electronic and lattice thermal conductivity
terms seen in Equation. 2.6 remain large. Semiconductors have the ability to become good
thermoelectric materials as the carrier concentration can be controlled through doping to
optimise the power factor. The optimisation problem is further complicated as increasing
doping concentration leads to an increase in κe with their relationship described through
the Wiedemann-Franz law[57]:

LT =
κe

σ
, (2.8)

where L is the Lorenz factor, which is a constant. This means that the key remaining
component for the optimisation of ZT and thermoelectric efficiency lies in reducing the
lattice component of the thermal conductivity, κlat and is one of the focal points of this
work.

2.2 Density Functional Theory

Modelling atomic interactions exists in the realm of quantum mechanics. This means that
if we were to attempt to gain insight into the material properties, we would need to solve
the many-body Schrödinger equation [59]. The time independent equation is given by,

ĤΨ(ri,RA) = EΨ(ri,RA), (2.9)

where E is the total ground state energy, Ĥ is the Hamiltonian operator and Ψ is the full
many-body wavefunction with the electron and nuclear co-ordinates ri and RA for an
electron i and nucleus A. However, upon adding atoms to the system, the complexity of this
approach scales with dimensions of 3nelectrons+3Natoms and quickly becomes prohibitively
expensive to compute. However, a range of approximations has been utilised in order
to access ground state solutions. In this chapter, we will see how this can be achieved
through the use of density functional theory (DFT), which allows us to overcome this
computational complexity to an extent that simulating systems containing hundreds or
even thousands of atoms is now possible.

2.2.1 Born-Oppenheimer Approximation

The Born-Oppenheimer Approximation, also known as the adiabatic approximation is one
of the principal approximations made in quantum chemistry. It springs from the fact that
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in most cases the nuclei are relatively heavier and move much slower than the electrons.
Hence, the nuclei can be assumed to be fixed in space with electrons moving within a
field around them. This of course requires many corrections and breaks down when the
nuclei have a lot of kinetic energy or when the ground state energy of the nuclear motion
is comparable to the size of the band gap [60]. This allows the many-body Hamiltonian to
be written as the electronic Hamiltonian, describing the motion of N electrons in a field of
point charges and the electronic Hamiltonian then takes the following form [60],

Ĥe =−
N

∑
i=1

1
2
▽2

i −
N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
ri j

, (2.10)

where the first term describes the operator for the kinetic energy of electrons, the second
term describes the operator for the Coulomb interaction between the electron i and the
atomic number of nucleus A. Finally, the third term represents the electron-electron
repulsion between electrons i and j.
The solutions can then simply be found using [60],

ĤeΨe = EeΨe, (2.11)

With the electronic wave-function Ψe being dependent explicitly on the electronic co-
ordinates and only parametrically on the nuclear co-ordinates,

Ψe = Ψe(ri;RA), (2.12)

Similarly, reversing the argument and treating the electronic co-ordinates as their average
values over the wave function we can find the Hamiltonian describing the motion of nuclei.
In conclusion, this provides the scope for the development of the Hamiltonian in DFT,
which will be described in the following section.

2.2.2 Hohengberg-Kohn Theorems

One of the main quests in developing the theory is to look for an easier solution to the
many electron wavefunction. More specifically the electron density. The main foundation
and success of DFT rest on the first and second Hohenberg-Kohn theorems, which were
published in 1964 [61].

First Hohenberg-Kohn theorem

To begin with, the first theorem provides the model that will allow the electron density to
uniquely describe the Hamiltonian, due to the one-to-one mapping of the electron-nuclear
potential, only varying by a constant [61]. The proof begins from writing the Hamiltonian
in the form:

Ĥ = T̂ +V̂ee +V̂ext , (2.13)
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where T̂ is the kinetic energy operator, V̂ee is the electron interaction operator and V̂ext is
the external potential. After writing the Hamiltonian we attempt a proof by reductio ad

absurdum in the following way:

1. Assume two different external potentials can give rise to the same ground state density,

2. Use the ground state and a trial wave function,

3. Apply the variational principle.

The ability to use the trial function comes from the non-unique description of the density,
meaning that two different ground state wavefunctions Ψ1 and Ψ2 and their associated
Hamiltonians Ĥ1 and Ĥ2 both give the groundstate density n0(r) . Therefore we can now
write [61]:

E0
1 <

〈
Ψ2|Ĥ2|Ψ2

〉
=
〈
Ψ2|Ĥ2|Ψ2

〉
+
〈
Ψ2|Ĥ1 − Ĥ2|Ψ2

〉
= E0

2 +
∫

n0(r)[vext,1(r)− vext,2(r)]dr,
(2.14)

where E0
1 and E0

2 are the resulting groundstate energies. Reversing the above calculation
for the ground state energy of the trial wave function, it can be shown that there is a
contradiction:

E0
1 +E0

2 < E0
2 +E0

1 (2.15)

As a result we can conclude that the ground state density specifies the electron-nuclear
potential uniquely.

Second Hohenberg-Kohn Theorem

Leading on from the first theorem, the energy can now be found for all N-electron densities
and be written as a functional of the density n(r) [61]:

E[n] = T [n]+Vee[n]+Ven[n] (2.16)

= F [n]+
∫

n(r)vext(r)dr, (2.17)

where F[n] is a universal functional of the density. Hence, if we know the true groundstate
density then E[n] is equal to the groundstate energy [61]. On the other hand, the next
statement shows that for any trial density ñ(r), the energy evaluated for that particular
density will satisfy the following relation:

E[n(r)]≤ E[ñ(r)], (2.18)



2.2 Density Functional Theory 21

a minimisation procedure must be performed in order to find the ground state if ñ(r) ̸= n(r).
However, searching for all densities in large systems, even of a few electrons becomes
impractical. Moreover, there is no access to all possible wave functions, so DFT is
an approximate functional approach rather than a wave function approach [62]. Thus,
requiring a computationally practical approach, leading to the Kohn-Sham method, which
is outlined in the next section.

2.2.3 Kohn-Sham Theory

There was quite a lot of scepticism from the practical aspects of real calculations after
the introduction of the Hohenberg-Kohn theorems due to the fact that even though the
ground-state energy functional could be written as a functional of the density, this was
not the case for the T [n] or Vee[n] functionals [63]. Kohn and Sham realised the Kinetic
energy(K.E) has to be calculated more efficiently and their idea was to write the exact K.E
for a non-interacting system, but use the density of the real system instead. This leads to
coupled single particle equations that depend on the density alone and takes the form of
[63]:

EiΨi(r) = (−1
2
▽2 +VH [n(r)]+VXC[n(r)]+Vext [n(r)])Ψi(r), (2.19)

with Ei and Ψi(r) being the energy and wavefunction of electron i and n(r) is the density,
given as:

n(r) =
N

∑
i=1

∑
s
|ψs

i (r)|2, (2.20)

where N represents the number of electron orbitals and s represents the electron spin.
ψs

i (r) is in general a two component spinor, which is able to describe collinear magnetic
states. This can have a significant effect on the electron energy levels and should be
considered to model magnetism. In the case of a known non-magnetic system, the spin
up and spin down components of ψs

i (r) are equal and need not be treated separately in a
calculation. The right side of the Equation 2.19 describes the functionals for the kinetic
energy, Hartree potential, exchange and correlation potential and the external potential
respectively. However, the form of the Hartree functional introduces a self-interaction error,
which is the residual error of an electron interacting with itself due to the approximate
nature of the exchange-correlation functional [64]. The functional form of which is:

VH [n(r)] =
∫ n(r′

)

|r− r′|
dr

′
(2.21)

to remedy this the error is swept onto exchange-correlation functional EXC, which contains
all of the unknown contributions to the energy arising from non-classical effects and to
some extent the K.E, as clearly the non-interacting system will not have the same exact
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value as that of an interacting one [62]. Although this is theoretically an exact form for the
solution, due to the fact EXC is unknown the output will still be approximate.

2.2.4 Bloch’s Theorem

The Kohn-Sham scheme allows to exactly write the many-body problem for electrons as a
set of single electron equations. The set of wavefunctions that minimises the total energy
can be found self-consistently. In practice, this is usually done by placing the atoms at
some specified coordinates and generating the potential for the nuclei. Then a guess has to
be made for the density, which will either be the density of a homogeneous electron gas, a
randomly assigned density, or a density chosen using another starting density model. At
this point, the density can be used to solve the Kohn-Sham equations and solve for the
energy. From here there is now a new set of wavefunctions from which the density can be
re-computed. If at this point the energy the self-consistent energy is identical for both the
trial density and output density then the ground state has been found. However, if this is not
the case then the process is repeated until the change in energy reaches convergence within
the user specified tolerance criteria. This would require computing an infinite number of
electrons and an infinite number of wavefunctions. To overcome this problem and enable
calculations at a reasonable computational cost, we can often utilise the periodicity of the
system, allowing simulation cells to contain hundreds of atoms with the help of Bloch’s
theorem. The theorem enables to write the electronic wavefunction as two components, the
wave-like component and a periodic function which has the periodicity of the simulation
cell[63]:

Ψ(r)i,k = exp(−ik.r)φ j,k(r), (2.22)

where the periodic function φ(r) is described by a discrete set of plane waves, k is a
wavevector within the first Brillouin zone and j is the band index.
In CASTEP [51] the periodic functions of choice are plane waves. A plane wave can be
written as,

Ψ j,k = ∑
G

C j,k,G exp−iG.r, (2.23)

where G is the reciprocal lattice vector and satisfies the condition G.a = 2πm with a being
a lattice vector and m is an integer. C j,k,G are the plane wave coefficients, which form
the basis set. This discrete and periodic nature makes this form suitable for deploying the
fast Fourier transform method to speed up diagonalisation of the eigenvalue equation in
computer simulations and allows the calculations to be much more cost efficient. This is a
key advantage of plane wave basis set over alternatives such as the Gaussian basis set as
the wave function remains periodic in reciprocal space [65].
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2.2.5 Exchange and Correlation

The contribution of the EXC has to be further developed as trying calculations without
it would generally lead to meaningless results. The general form of the exchange and
correlation functional is:

VXC =
∂EXC

∂n(r)
(2.24)

where EXC is the total exchange and correlation energy. The exchange component of this
energy originates from the already mentioned self-interaction term due to the Hartree
energy and also due to the fermionic nature of the electrons, which requires that we satisfy
the Pauli exclusion principle. On the other hand, the correlation energy encompasses the
difference between the assumed non-interacting system and the true interacting system
[66]. Various exchange-correlation functionals have been developed and many performing
calculations to a high degree of accuracy. Throughout the calculations in my investigation,
I have predominantly used the Perdew-Burke-Ernzerhof(PBE) EXC functional, which is
known to give good results and is commonly used [67].
When enhancing the accuracy with exchange-correlation functionals, these days there are
complex methods, starting from the local density approximation (LDA). However, the LDA
is regarded as inaccurate for atomization energies in highly interacting systems. However,
it builds a foundation for the PBE functional.
In the scheme of the LDA approximation, the contribution of this exchange correlation
functional to the energy at a particular point in space depends only on the density at that
point [66].

EXC[n] =
∫

n(r)εLDA
XC (n(r))dr (2.25)

After obtaining this, the exchange and correlation components are usually separated
according to their respective density components. In LDA the exchange functional is given
by [66]:

ELDA
X [n] =−3

4

(
3
π

)1/3 ∫
n(r)4/3dr, (2.26)

and the correlation component is parametrised using quantum Monte-Carlo energy calcu-
lations as a function of the density of a homogeneous free electron gas, under a chosen
interpolation scheme[68].
However, the LDA approximation tends to underestimate the bond lengths, and in order to
make up for this issue, the next step is to make the exchange-correlation density dependent
on both the electron density and the gradient, where the gradient can better account
for local inhomogeneities[69]. This leads to the topic of the PBE exchange-correlation
generalised-gradient-approximation (GGA) functional.



2.2 Density Functional Theory 24

Exc[n(r)] =
∫
(r)εGGA

xc (n(r),n(r),▽n(r),▽n(r))dr (2.27)

The exchange-correlation density can be split into the exchange and correlation components
as before. Which is simply:

ε
GGA
xc (n(r),▽n(r)) = ε

GGA
x (n(r),▽n(r))+ ε

GGA
c (n(r),▽n(r)) (2.28)

in the case of a spin-polarized case, the exchange-correlation also depends on the spin up
and spin down components of the spin density, n↑ and n↓ respectively, forming the local
spin density approximation (LSDA) and can be extended to GGA’s through a dependence
on the spin up and spin down components of the spin density as well as their gradients
[14].
The way the LDA exchange density is improved is through applying an enhancement factor
that is a function of the reduced density gradient [70].

EGGA
x [ρ] = (r)εLDA

x (ρ(r))Fx(s)dr, (2.29)

where the reduced density is a dimensionless parameter of the following form:

s(r) =
|▽ρ(r)|

2(3π2)
1
3 ρ

4
3 (r)

(2.30)

and the PBE functional has the enhancement factor, which takes the form:

FPBE
x (s) = 1+κ − κ

1−µs2/κ
, (2.31)

where κ has the value of 0.804 [70].
There are ways to go further beyond and develop hybrid exchange functionals. These
use a mixture of the Hartree-Fock exchange term and the general gradient approximation
exchange described in the above equations. These may perform better for particular calcu-
lations, but for many systems and properties of interest PBE provides good performance.

2.2.6 DFT+U

The accuracy of computing electronic structure properties using approximate DFT func-
tionals, such as LDA or PBE is system specific and often depends on properties that one
wishes to study. Although the LDA and PBE functionals perform well in many cases, they
often excessively delocalise electrons due to the self-interaction error of partially occupied
Kohn-Sham orbitals and favour metallic ground states [71], particularly in strongly cor-
related systems. In order to tackle this issue whilst minimising additional computational
expense, a simple formalism called DFT+U has been proposed, which aims to apply a
"+U" correction based on the Hubbard model [72] in order to improve the description and
predictive power of correlated systems. The general formulation of the method consists of
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applying this correction to specified localised orbitals (usually d or f orbitals) and a regular
treatment of the valence electrons according to the formulation of the chosen functional,
this can be written as:

EDFT+U = EDFT +EHub −Edc = EDFT +EU (2.32)

where EDFT is the approximate DFT total energy, EHub is the Hubbard Hamiltonian term
and Edc includes the double counting term, to remove the interaction energy modelled by
the Hubbard term from the DFT functional [71]. The final term EU , is simply the grouping
of the Hubbard interaction and double counting term. This EU term is often simplified for
practical implementation purposes as:

EU =
U l

2 ∑
a

Tr[nlσ (1 = nlσ )] (2.33)

where U l is the effective U parameter at an atomic site l and niσ is the atomic orbital
occupation number for site l with spin σ . Approximate DFT functionals produce an
unphysical non-linear total energy curve with respect to the number of electrons for
orbitals with fractional occupation. The Hubbard correction encourages Mott localisation
on atomic sites, reducing the tendency for partial occupation. Therefore, the U correction
aims to compensate for this discrepancy. The effect of the Hubbard U correction, though the
increased accuracy in describing the electron interactions can lead to recreating insulating
behaviour and size of the band gap for systems which would’ve otherwise been predicted
as metallic. In addition, this approach can also improve the description of structural
and magnetic properties of strongly correlated systems. However, the value of U must
be re-computed for each system under investigation or particular implementation of the
method and not treated as a means to reach agreement with experiment [71].

2.2.7 Pseudopotentials

The purpose of a DFT calculation is to extract an accurate set of properties of interest.
Modelling core electrons entails short wavelength oscillations, meaning large Fourier
components and therefore a high cut-off energy. The cut-off energy is a parameter that
determines the size of the basis set and is described in more detail in Section 3.1.3. However,
the core electrons are shielded by the valence electrons and are largely unperturbed by
the chemical environment. It is the valence electrons that play a role in the bonding. This
allows us to replace a strong ionic potential with a pseudopotential. The design of a
pseudopotential focuses on replicating the valence electron wavefunctions exactly outside
of the core region r > rc, but to vary smoothly within the core region as seen in Figure 2.2.
Allowing to remove the nodes in the core region, meaning the wave functions can now be
represented by a much smaller number of plane waves [7]. Moreover, pseudopotentials
can include relativistic effects for the core electrons if they are non-negligible.
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Fig. 2.2 An all electron wavefunction ΨV , ionic potential Z/r (solid lines), pseudopotential
wavefunction Ψps and pseudopotential Vps (dashed lines). Image taken from [7].

It should be noted, that a non-local pseudopotential is usually required to achieve accuracy
in modelling the behaviour of elements. The general form of such an operator can be
written as [7]:

VPS = ∑
l,m

|Ylm >Vl(r)< Ylm| (2.34)

where |Ylm > are spherical harmonics and Vl is the pseudopotential for angular momentum
l. The pseudopotentials are constructed to accurately reproduce the properties of an all-
electron atom. DFT calculations of different atomic configurations of isolated spherically
symmetric atoms are used to perform the fitting [73]. If the isolated pseudoatom manages
to reproduce the properties of the single atom in any chemical environment then the
pseudopotential is said to be transferable.
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Fig. 2.3 Flowchart describing the self-consistent loop for computing the ground state
density and total energy.

Putting everything together we can now self-consistently solve the Kohn-Sham equations.
The procedure for doing so can be seen in the flowchart in Figure 2.3. Where the self-
consistent loop will keep updating the electron density until the change in energy is smaller
than the user specified convergence tolerance Ec.

2.3 Electronic Structure

2.3.1 Band Theory

Solving the Kohn-Sham equations allows us to obtain information about the allowed energy
levels of the system at a particular k-point within the Brillouin zone. This gives us the
ability to define the dispersion relation E(k), for a chosen set of k-points. The variation of
each energy level can be plotted along a path formed by the set of k-points, often chosen to
be along the high symmetry directions within the BZ, forming bands. This gives a visual
representation of the nature of the dispersion and often provides great insight into the
material properties. one key feature that can be determined is the presence and size of a
band gap in a semiconductor. If there are no allowed states between the top of the valence
band and the bottom of the conduction band, semi-conducting or insulating behaviour will
be observed. The distinction can be made by quantifying the size of the band gap. For a
material to be semi-conducting this band gap has to be small, to allow thermal excitation of
electrons to the conduction band, allowing for conduction of electrons to occur, if the band
gap is too large the material will act as an insulator. On the other hand, if the valance and
conduction bands cross, the electrons can freely move between the bands, and the material
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is classified as a metal. In addition, the band gaps can be further categorised into direct
band gaps, where the position of the VBM and CBM occurs at the same k-point in the
Brillouin zone or indirect band gaps, when the position of the VBM and CBM are found at
a different k-point, requiring additional momentum for photon emission. This additional
momentum is usually transferred via phonons. When designing semi-conducting devices,
optimising the electronic properties plays a crucial role. Quantifying the magnitude of the
dispersion gives insight into the nature of the charge carriers, with highly dispersive or flat
dispersion-less bands suggesting delocalised or localised states respectively. Moreover,
thermoelectric properties, such as the Seebeck coefficient can be approximated, with
localised bands, leading to higher Seebeck coefficients.

2.3.2 Effective Mass

An electron or hole in a crystal displays a different behaviour to that of a free electron in a
vacuum. In order to compensate for this difference, we can assign the holes and electrons
an effective mass m∗ [74]. This allows us to retain the free particle model, but allow the
mass to adjust the particles response to forces accordingly. The effective mass tensor can
be written as [75]: (

1
m∗

)
i j
=

1
ℏ2

∂ 2En(k)
∂ki∂k j

, (2.35)

where En(k) is the energy for band of index n at k-point k and the indices i and j represent
the x, y and z directions in reciprocal space. The valence band maximum (VBM) has a
negative gradient and has a negative effective mass. This is equivalent to a the response
which would be experienced by a positively charged particle in an electric field, this is
known as a hole. Where as, the conduction band minimum (CBM) has a positive mass and
corresponds to an electron.
Effective masses may be highly anisotropic. Therefore, a scalar approximation called
the "density of states effective mass", m∗

dos which may be used in transport theory can be
defined as [75]:

m∗
dos =

3
√

g2m∗
l m∗

t m∗
t , (2.36)

where m∗
l and m∗

t are the longitudinal and transverse effective masses and g is the number
of equivalent band minima inside the first Brillouin zone. Flat bands will produce large
effective masses and steep gradients produce low effective masses. The variations in
effective mass can span three orders of magnitude in relation to the electron rest mass, m0.
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2.4 Lattice Dynamics

2.4.1 Phonons

A phonon is a quantum of vibrational energy within a solid as a photon is a quantum of
energy in an electromagnetic wave [58]. They are a quantum mechanical manifestation
of wave-like normal modes observed in classical mechanics from which any arbitrary
vibration can be described as a superposition of these normal modes. [76]. In order to
study bulk properties of crystals, periodic boundary conditions must first be invoked, called
the Born von Karman boundary conditions, which reduce the infinite system to a unit cell
representation, albeit ignoring surface effects[24]. For an infinite crystal, vibrations can be
considered as a travelling wave, where the direction and amplitude of vibration of each
atom in one unit cell is invariant across all other unit cells. We can describe a crystal with
a unit cell of atoms with positions in mechanical equilibrium and write an expression for a
displacement uκ,α from their initial equilibrium position Rκ,α . In calculations of lattice
dynamics, the first step is usually writing the Taylor expansion of the energy, for a unit cell
labelled l and atoms labelled κ , this can be written as [77]:

E = E0 +
1
2 ∑

l
∑

κ,α,κ ′,α ′
uκ,α,l.φ

κ,κ ′

α,α ′(l).uκ ′,α ′,l + ... (2.37)

where α and α ′ correspond to the Cartesian indices. In this expansion, all terms past
the second-order term are neglected as the harmonic approximation is assumed. More-
over, there is no first-order term present as it is equal to zero, due to the equilibrium
condition[77]. In order to obtain the necessary components to compute the vibrational
properties using electronic structure theory, the degrees of freedom can be decoupled via
the Born Oppenheimer approximation, which is outlined in Section 2.2.1. One then needs
to obtain the matrix of force constants is given by [77]:

φ
κ,κ ′

α,α ′ (l) =
∂ 2E

∂uκ,α,l∂uκ ′,α ′,l
(2.38)

The guess for the solution to the equations of motion takes the form of a plane wave [77]:

uκ,α = εmκ,αqe(iq.Rκ,α−ωmt) (2.39)

where q is the phonon wavevector and εmκ,αq is the polarization vector with one longitudi-
nal and two transverse modes for each wave vector. The equilibrium position vector Rκ,α

takes the form:

Rκ = κa1 +κa2 +κa3 (2.40)

with a1, a2 and a3 being primitive lattice vectors along the respective x, y and z axes. From
here the consequence of the Born von Karman boundary condition results in:
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eiq(Rκ+Niai) = ei(q.Rκ ), (2.41)

enforcing a quantisation on the allowed values of q as:

qi =
2π

Niai
li,(i = 1,2,3), (2.42)

li =−Ni

2
,−Ni

2
+1, ...,

Ni

2
−1 (2.43)

and N is the number of unit cells in the system [76].
Hence, it can be seen that a translation vector can bring any other q vector back into the
first Brillouin Zone, and so the full set of allowed q points inside the first Brillouin zone
describes the system completely. The phonon diagonalises the harmonic Hamiltonian
and thus the solutions can be found by solving the dynamical matrix as an eigenvalue
problem[78]:

Dκ,κ ′

α,α ′(q)εmκ,αq = ω
2
m,qεmκ,αq (2.44)

where the dynamical matrix can be written in the form involving the Fourier transform of
mass-reduced force constant matrix [79]

Dκ,κ ′

α,α ′(q) =
1√

MκMκ ′
Cκ,κ ′

α,α ′ (q) =
1√

MκMκ ′
∑

l
φ

κ,κ ′

α,α ′ (l)e−iq.Rl , (2.45)

where M is the mass of an atom. If the solutions can be obtained then the eigenvectors will
give the atomic displacements at each phonon mode and the square roots of eigenvalues
will give the frequencies [80]. Therefore, all phonon properties can be determined solely
through the knowledge of the interatomic force constant (IFC) matrix, which can be
computed. Theoretical derivation of the second-derivative can be facilitated using the
Hellmann-Feynman Theorem to find the forces, which correspond to the first derivative of
the energy with respect to atomic displacement λ :

F =−⟨ψ|dV
dλ

|ψ⟩ (2.46)

then the second derivative dF
dλ

contains the required second-order energy, which by
variational theorem also gives the first-order change in density, wavefunctions and potential.
The second derivative is non-vanishing and has to be evaluated using either a technique
called the finite displacement method[81]. This works by computing the electronic response
of the system by calculating the numerical derivative at two atomic coordinates separated
by a small displacement. Alternatively, this can be computed through the response wave
function dψ

dλ
using density functional perturbation theory (DFPT) calculated at a small

distortion from the equilibrium geometry [82].
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2.4.2 Phonon Dispersion

The dynamical matrix gives the relationship between the frequency and specific phonon
mode at each allowed q point to give us the dispersion relation ω = ω(q). Hence, allowing
to plot this phonon dispersion relation and analysing each normal mode of vibration. There
are 3 modes of vibration allowed for each atom for each polarisation with no energy
transfer in between each mode[78]. There are always 3 long wavelength solutions are
called the acoustic modes and represent in-phase motion of the atoms, moving along their
respective cartesian directions. Whereas, short wavelength modes, called the optic modes
involving out-of-phase motions and are only present when there are two or more different
atoms within the unit cell, with 3n− 3 possible modes and with n being the number of
atoms. These modes arise due to mass difference or charge difference of the atoms [24].
Phonon dispersions are generally plotted for a range of high symmetry directions, which
depend on the particular Brillouin Zone of the simulation cell and it is accepted that those
directions are sufficient to study vibrational spectra sufficiently. The group velocity of a
phonon mode can be written as:

v jq =
dω( jq)

dq
, (2.47)

where j represents a phonon branch and v jq is the group velocity.
We can also compute the mode Grüneisen parameter, γ which is usually used to measure
the anharmonic phonon scattering rate and can be written as [63]:

γ(q j) =− V
ω(q j)

∂ω(q j)
∂V

, (2.48)

where V is the cell volume and ω(q j) is the phonon frequency for a given q-point and
phonon branch index j. This can be computed using a finite difference method, which
requires three phonon calculations. The first is for eigenvectors at the equilibrium volume
V and the remaining two are for cells with slightly larger and smaller volumes than the
relaxed cell volume.

2.4.3 Density of states

If the phonon dispersion is known, then one can compute the density of states(DOS), g(ω),
defined as the number of vibrations in a range of angular frequencies ω and ω +dω[80].
In a crystal, the unit cell volume is equal to the total volume of the crystal divided by the
number of unit cells, V

N and the volume of the Brillouin Zone is equal to the reciprocal

unit cell volume (2π)3N
V . Since there is one wave vector per unit cell, the number of wave

vectors in a reciprocal unit cell is (2π

L )3 = N0Ω

8π3 [80]. In CASTEP the total density of states
is computed as [80]:

g(ω) =
∫

dk∑
j

δ (ω j(k)−ω(q)) (2.49)
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in the above equation, j represents the phonon mode as before. The accuracy of the
calculated density of states can then be increased by including a larger number of q points,
within the Brillouin Zone. Although only the irreducible part of the Brillouin Zone needs
to be computed, so crystal symmetries can be exploited in lowering computational costs.
Moreover, once the DOS is obtained then expressions for various thermodynamic functions
can be written, of particular importance is generally the heat capacity behaviour. For
phonon mode occupation number n, this is defined as:

cv =
∫

∂n
∂T

ωg(ω)dω (2.50)

For example, the DOS for acoustic modes has an explicit frequency dependence at low ω

of ω = ck where c is the average speed of sound and k is the modulus of the wave vector.
But, optical modes are fully dependent on the force constants and do not have a known
particular dependence[80].

2.4.4 Finite displacement method

The finite displacement is one of the methods for computing the IFC matrix in ab initio

lattice dynamics. This is achieved by applying a small displacement to atoms away from
their equilibrium positions and computing the forces of the perturbed configuration. The
central-difference formula can then be used to compute the numerical derivative to find the
force constants [81]:

∂Fκ,α

∂u
≈

F+
κ,α −F−

κ,α

2u
=

∂ 2E
∂uκ,α∂uκ ′,α ′

, (2.51)

where F+
κ,α and F−

κ,α are the positive and negative displacements respectively. This will
allow to compute the dynamical matrix at q = 0. To compute the dynamical matrix at any
arbitrary wavevector q the finite displacement method can be combined with the supercell
method. This approach relies on the fact that the IFC matrix is short-ranged and entails
constructing a supercell containing enough atoms to fit an imaginary sphere of radius Rc

beyond which the force constants can be assumed as negligible [83]. This magnitude
of the radius Rc is system-dependent and is usually smaller for metallic systems than
semiconductors and often increases with the complexity of the system. When the criteria
for the size of the supercell L > 2Rc is met then at the supercell wavevector qsc = 0, we
can write [84]:

Cκ,κ ′

α,α ′ (qsc = 0) = φ
κ,κ ′

α,α ′ (l) , (2.52)

where α denotes the index of atom κ in the primitive cell l. Using the definition of the
dynamical matrix in Equation 2.45, we can apply the Fourier transform to compute the
dynamical matrix at any q [84].
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2.4.5 Non-diagonal Supercell method

An extension to the supercell method called the non-diagonal supercell method was
formulated to reduce the computational cost of the supercell method through the use
of smaller supercell matrices with non-zero off-diagonal elements [85]. It was proven
that for a wave vector with reduced fractional coordinates (m1/n1,m2/n2,m3/n3) there
exists a commensurate supercell that has a number of primitive cells equivalent to the
least common multiple of n1, n2 and n3 [85]. This allows for more efficient sampling
of the vibrational Brillouin Zone that scales better than the cubic scaling achieved with
only diagonal supercell matrices [85] and can be used to compute the dynamical matrix
on an arbitrary q-point grid [83]. This method has provided sufficient reduction in the
computational cost for the calculations of thermal conductivity in defective supercells
found in this work to make them possible using the available computational resources.

2.4.6 DFPT

Adding perturbation theory to DFT further extends its abilities in performing ab initio

calculations, gaining insight into lattice dynamics and external electromagnetic field
responses to those perturbations [79]. This method can overcome shortfalls of experimental
quantities that are second-order, for example, the derivative of energy based on the atomic
position to determine vibrational frequencies.
DFPT has been formalised using two approaches. Firstly, the self-consistent solution using
Green function methods, which was implemented by Baroni[82]. This begins with an
initial ansatz that the required physical quantities can be written as a perturbation series

X(λ ) = X (0)+λX (1)+(λ )2X (2)+ ... (2.53)

where λ is the small perturbation[86]. Also, the coefficients in the expansion obey the
relation:

X (n) =
1
n!

dnX
dλ n |λ=0 (2.54)

the first-order Kohn-Sham potential is given by:

H(1)
KS = T (1)+ v(1)ext (r)+ e2

∫
ρ(1)(r‘)

| r− r‘ |
dr‘ +

∫
δvxc

δρ(r‘)
ρ
(1)(r‘)dr‘ (2.55)

Combining this with the variation in Kohn-Sham orbitals gives the Sternheimer equation[87]:

(H(0)
KS − ε

(0)
n |ψ(1)

n ⟩= (H(1)
KS − ε

(1)
n |ψ(0)

n ⟩ (2.56)

and by the means of the orthogonality condition and normal perturbation theory procedure,
the usual Rayleigh-Schrödinger resembling perturbation result can be found for the first
order perturbation:
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|ψ(1)
n ⟩= ∑

m ̸=n
C(1)

nm |ψ(0)
m ⟩ (2.57)

with the corresponding coefficients given by:

C(1)
nm =

⟨ψ(0)
m |H(1)

KS |ψ
(0)
n ⟩

ε(0)− ε
(0)
m

(2.58)

determining the solution of the first-order correction then requires the knowledge of all
eigenvalues[86]. However, the simplification by Baroni comes from the next steps. Firstly,
writing the equation of the first order electron density and, which has a linear dependence
on the Kohn-Sham Hamiltonian[82]. The products of occupied states cancel and mean
that the first-order perturbation will apply to the coupling of valence and conduction band
manifolds.
A projection operator can be used to cast the wave function onto the conduction band
manifold[82]:

Pc(HKS − ε
(0)
v )Pc|ψ(1)

v ⟩=−PcH(1)
KS |ψ

(0)
v ⟩ (2.59)

where
Pc = ∑

c
|ψ(0)

c ⟩⟨ψ(0)
c |

Finally, we can use the Green’s function operator in this approach, via the equation shown
below:

|ψ(1)
v ⟩= GvH(1)

KS |ψ
(0)
v ⟩ (2.60)

and Gv is given by:

Gv = ∑
c

|ψ(0)
c ⟩⟨ψ(0)

c |
(ε

(0)
v − ε

(0)
c )

(2.61)

In conclusion, this form of the wave function means the solution can be found only using
the occupied state eigenvalues.

2.4.7 The Gonze (2n + 1) Theorem

The theorem itself simply states that a derivative of a Hamiltonian eigenenergy of the
(2n+ 1) order only needs the eigenfunctions up to the nth term. This will be true for
any Hamiltonian with a small perturbation[11]. Adding the perturbation means that the
variational principle is obeyed, which means the true wave function functional yields the
true minimum value for ground state energy. What Gonze showed was the first perturbative
expansion of the Kohn-Sham energy functional. In addition, he proved the existence
of even-order variational principles. By using the method of Lagrange multipliers and
constraining the particle number, he formulates an expression for the energy [88]:
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E(2n+1)
0 = (Ê(λ )[

n

∑
i=0

λ
i
φ
(i)
0 ]−Λ0(λ )Ĉ(λ )[

n

∑
i=0

λ
i
φ
(i)
0 ])(2n+1), (2.62)

where Λ is the Lagrange multiplier and Ĉ is a functional constraining the domain of the
variation of the wave function. This is the form for the 2n+1 theorem and the even-order
can be shown to obey the stationary principle. Using principles of gauge freedom when
finding the Lagrange multiplier for the expansion of the Kohn-Sham orbitals, after analysis
it can be shown that the first-order wave function is orthogonal to the valence manifold[86]:

⟨ψ(0)
α |ψ(1)

β
⟩= 0 (2.63)

The approach by Gonze can be linked back to the Green function approach and can be
written in the form of the Sternheimer equation[86]. The Gonze and Green’s function
methods should both converge to the same answer, but only Gonze’s method relies on the
variational principle and so it converges better. In addition, it is more accurate because the
Green’s function method has additional errors from first-order errors in the wavefunctions,
ψ(1) when computing the second-order energy [89].
The introduction of both of the approaches by Baroni and Gonze meant that since then
DFPT calculations could be implemented with a much more accuracy [79], providing
advances in simulations of lattice dynamics and electromagnetic field responses.

2.4.8 Phonon unfolding

When modelling the phonon dispersion of a system that breaks translational crystal sym-
metry due to complexities caused by various defects, alloying, interfacial reconstruction
or other deviations from an ideal crystal, we can use the supercell method to attempt to
model such crystal structures [90, 91]. However, this approach results in the folding of the
phonon dispersions due to the smaller first Brillouin zone of the supercell, which means
that analysis of the calculated phonon dispersion becomes very difficult [91]. Hence, a
method for unfolding the supercell phonon dispersion onto a corresponding primary-cell
Brillouin zone is required. An unfolding scheme using a generalised projection algorithm
has been proposed [91] and has been used to unfold the phonon dispersion of defective
supercells found in this thesis. This method uses the plane wave basis and constructs a
projection operator P̂b(b = 1,2,3, ...,n) where n is the number of supercell Brillouin zones
contained in the primary-cell Brillouin zone, which can be written as [91]:

P̂b = ∑
j,α

|w j,α,b⟩⟨w j,α,b| (2.64)

and |w j,α,b⟩ takes the form [91]:

|w j,α,b⟩=
ei(Gb+g j).RI

√
N

δα,α ′, (2.65)
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where RI is the position of the Ith atom, N is the number of atoms, α = 1,2,3 corresponds
to the the x, y, z Cartesian directions, Gb and g j are the reciprocal lattice points of the
supercell and primitive cell respectively. This projection operator can be used to compute
the unfolding weight [91]:

|cQ+Gb|
2 = ⟨φQ|P̂b|φQ⟩, (2.66)

where φQ is the component of the phonon polarisation vector ψα
Q [91]:

ψ
α
Q(RI) = φ

α
Q(RI)eiQ.RI , (2.67)

obtaining these unfolding weights allows plotting the supercell phonon dispersion along
the primary-cell Brillouin zone. Due to the generalised approach of this method, this
scheme can be used for any complex system requiring the use of supercells to model the
desired structure and analyse the nature of the phonon dispersion.

2.5 Transport properties

2.5.1 Thermal conductivity

Within the harmonic approximation there are no phonon-phonon interactions between
different modes and lattice momentum is conserved, so heat conduction in this scenario
is infinite, which is clearly non-physical in a real crystal. Only by including scattering
mechanisms which provide thermal resistivity does the thermal conductivity become finite.
The scattering mechanisms are of either of geometrical or phonon scattering nature [58].
These include anharmonic effects, grain boundary, defect or mass-disorder scattering as
well as others. I will mainly try to investigate three phonon scattering events for the two
allowed coalescence and decay processes which obey energy conservation laws. Where
either two phonons annihilate to produce one phonon or one phonon decaying into two
phonons. This can be expressed in terms of momentum as [92]:

q+q′ = q′′+G (2.68)

and
q = q′+q′′ (2.69)

where each phonon has their own frequency ω,ω ′ and ω ′′. In the coalescence process, the
reciprocal lattice vector G is necessary for a process called Umklapp-scattering, where
momentum conservation requires a translation of the new phonon back into the first
Brillouin zone, effectively reversing the direction of the phonon. It is therefore this process
which can cause thermal resistivity and lead to a finite value for thermal conductivity[58].
All processes which lie within the first Brillouin zone are called normal processes and
there is no change to the total momentum and G = 0. However, it is clear that for Umklapp
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scattering to occur the wavevectors of the two interacting phonons must be of the order of
1
2G and so the rate of Umklapp scattering increases as the temperature increases. Therefore
the thermal conductivity is lower at higher temperatures and the mean free path value when
computing the thermal conductivity stems only from this type of process whilst ignores
the remaining normal processes [58].
One way to model lattice thermal conductivity is through the phonon Boltzmann transport
equation(BTE). It translates the phonon mode occupation number into a distribution
function f jq(r, t) at position r and time t, where the distribution is the Bose-Einstein
distribution as phonons are bosons. And j labels the phonon branch. This would lead to a
set of mode distributions along a trajectory, but thermal transport is a random process and
energy does not travel ballistically [58]. Therefore, the thermal flux is dependent on the
temperature gradient and a mean free path that represents the average phonon path between
collisions. The total change of the phonon mode occupation number in the presence of a
thermal gradient is then expressed as [48]:

∂ f jq

∂ t
=

∂ f jq

∂ t
|di f f usion +

∂ f jq

∂ t
|scattering (2.70)

with the contribution separated for the diffusion and scattering mechanisms. Firstly, looking
at the diffusion, phonons have a group velocity, vq and by taking the thermal gradient into
account on which f jq depends according to the position T = T (r), the diffusion rate can
be written as:

∂ f jq

∂ t
|di f f usion =−v j(q)▽T

f jq

∂T
(2.71)

At this point a steady state approximation can be introduced where the total rate of change
in the phonon distribution must be zero. Now the BTE takes the form:

− v jq ▽T
f ′jq
∂T

+
∂ f jq

∂ t
|scattering = 0, (2.72)

where f ′jq is the deviated occupation number, which is given as the average occupation
number based on the Bose-Einstein distribution, but with a number of modes deviated
from equilibrium due to the thermal gradient.
The BTE can be solved by approximating the thermal current to be small for most practical
applications of the method, so that the deviation of the phonon mode distribution from
equilibrium will be small and can be expanded to first order as flq = f 0

jq+g jq, where f 0
jq is

the equilibrium phonon distribution according to Bose-Einstein statistics and g jq =−F jq▽

T
d f 0

jq
dT , considering only two -phonon and three-phonon as the scattering mechanism, the

linearized BTE can be written [48]:

Flq = τ
0
lq(vlq +∆lq) (2.73)

And, τ0
jq is the relaxation time denoting the time a phonon mode will travel before scatter-

ing, v jq is the phonon velocity and ∆ jq is the measure of the deviation from the relaxation
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time approximation (RTA) with dimensions of velocity. If we were to set ∆ jq = 0. This
would equate to a solution equivalent to the RTA where the solution to the BTE does not
include correct treatment of normal three-phonon scattering processes [48]. Solving the
linearized BTE allows us to then compute the lattice thermal conductivity, κl [48] and
write it as:

κl =
1

kBT 2ΩN ∑
jq

f 0
jq( f 0

jq +1)(ℏω jq)
2v jqF jq, (2.74)

where Ω is the unit cell volume, kB is the Boltzmann constant, N is the number of q points
in the regular grid used to discretise the Brillouin zone for a calculation, ℏ is the reduced
Planck constant, ω jq is the phonon frequency. To obtain the necessary components of
this equation we require the second-order force constants that will allow to determine
the phonon velocity and phonon frequency as well as the phonon distribution function.
However, the complex and computationally demanding aspect arises in the computation
of τ0

jq and ∆ jq that require the knowledge of the third-order anharmonic force constants,
which can be obtained from the expansion of the total potential energy of the system and
written as [48]:

φ
κ,κ ′,κ ′′

α,α ′,α ′′ =
∂ 3E

∂uκ,α∂uκ ′,α ′∂uκ ′′,α ′′
, (2.75)

and φ
κ,κ ′,κ ′′

α,α ′,α ′′ be calculated using a the supercell finite-difference method. Here, α,α ′,α ′′

correspond to Cartesian coordinates and κ,κ ′,κ ′′ are the atomic indices. This method
allows us to theoretically model κl going beyond the RTA and obtain a better prediction
particularly in systems where normal three-phonon processes are important.

2.5.2 Modified Debye-Callaway Model

There exist alternative methods of computing the lattice thermal conductivity than the
previously described approach using the relaxation time approximation or iterative so-
lution of the Boltzmann transport equation. The method we will present here is based
upon a modified Debye-Callaway model that builds upon the traditional Debye-Callaway
description of κl to provide an accurate and computationally inexpensive calculation to
approximate κl . The advantage of the method stems from the fact that it does not require
the knowledge of an anharmonic force constant matrix [54]. In the Debye-Callaway model
the total contribution to κl comes from contributions of the acoustic modes, namely the
longitudinal κLA branch and the two transverse branches κTA and κTA′ and their sum can
be written as [93]:

κ = κLA +κTA +κTA′ (2.76)
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The modified Debye-Callaway model updates this description to include an additional
contribution from a pseudo-optic branch κO, so that the new weighted average to describe
the total κl can be written as [54]:

κ =
caco

V

caco
V + copt

V
× κLA +κTA +κTA′

3
+

copt
V

caco
V + copt

V
×κO, (2.77)

where caco
V and copt

V are the specific heat of the acoustic and optic branches respectively. In
the Debye-Callay model the contribution of both the Umklapp phonon processes and the
normal phonon processes contribute to the thermal conductivity, the latter is accounted as it
can redistribute the phonon energy and momentum which can effect the resistive scattering
processes [54, 93]. Therefore the total scattering rate, which the thermal conductivity
is a function of, is specified as 1

τC
= 1

τR
+ 1

τN
with τR denoting the contribution due to

all resistive scattering processes, such as Umklapp phonon-phonon scattering and τN

corresponds to the contributions from normal phonon scattering [93]. Hence, we can write
the partial conductivity as κi = κi1 +κi2 with i corresponding to the LA, TA or TA’ modes
to take the form [54]:

κi1 =
1
3

CiT 3
∫

Θi/T

0

τ i
C(x)x

4ex

(ex −1)2 dx

κi2 =
1
3

CiT 3

∫ Θi/T
0

τ i
C(x)x

4ex

(ex−1)2 dx∫ Θi/T
0

τ i
C(x)x

4ex

τ i
N(x)τ

i
R(e

x−1)2 dx
,

(2.78)

in the above equations Ci = k4
B/(2π2ℏ3νi), kB is the Boltzmann constant, ℏ is the Planck

constant, x = ℏω/kBT , where ω is the phonon frequency and νi is the phonon velocity
for the respective phonon branch. The specific heat of the acoustic and optic branches
mentioned previously in Equation. 2.77 can be computed using the Debye model for the
acoustic branches and using the Einstein model for the optic branches [54]:

caco
V = 3

N
V

kB fD

(
ΘD

T

)
copt

V = (3p−3)
N
V

kB fE

(
ΘE

T

)
,

(2.79)

where ΘD and ΘE are the Debye temperature and Einstein temperature respectively, N is
the number of primitive calls and fD and fE are the Debye and Einstein function [54]:

fD(x) =
3
x3

∫ x

0

y4eydy
(e−1)2

fE(x) = x2 ex

(e−1)2 ,

(2.80)

The method as implemented in the mDCThermalC code used for the calculations of the
thermal conductivity in this thesis takes into account phonon-phonon normal scattering
processes, Umklapp scattering, and isotope scattering processes. The inputs required are
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the phonon dispersion, phonon velocity, and mode Grüneisen parameters which can be
obtained from ab inito DFT calculations [54]. This method applies to a wide range of
materials, but it should be noted that an approximation to the optical branch is made as it
is treated as a longitudinal acoustic branch in the outlined formalism.



Chapter 3

Methodology

3.1 Computational methods

Modelling the properties of materials to give a picture of real physical phenomena with
confidence requires choosing the correct theoretical framework for the system one wishes
to study. In addition, a complex procedure to correctly implement and test the theory and
methods is required before reaching a final result. Computing resources are vastly more
abundant than they have ever been before, but many ab inito endeavours can easily become
prohibitively expensive. The often differentiating factor of a materials modelling expert
is the ability to strike a fine balance in the trade-off between accuracy and computational
expense. Consequently, each of the steps in a computational procedure requires extra care
and thorough consideration of the modifiable parameters in the calculations as well as the
limitations of the chosen model.
This chapter will attempt to provide the necessary detail and insight to enable repro-
ducibility of the results found in this work as well as outlining the software used and tests
performed in order to verify the results.

3.1.1 First principles calculations

All of the DFT calculations for the determination of the electronic structure and vibrational
properties were obtained using the CASTEP first principles simulation package [51].
CASTEP is a leading DFT plane wave basis code, which has the ability to compute a
wide range of properties of crystalline solids, surfaces, molecules, liquids and amorphous
materials. This includes the use of the CASTEP "on-the-fly" ultrasoft pseudopotential
(USP) libraries which have been used throughout.

3.1.2 Requirements for a CASTEP calculation

In order to prepare and run a simulation, the CASTEP code requires two input files
in the form of a <seedname>.cell and <seedname>.param file, the former specifying
the key structural information, such as the lattice vectors, ionic positions, choice of
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pseudopotentials, symmetries, cell constrains, Monkhorst-Pack k-point grid for sampling
the Brillouin zone [94], and more calculation specific information. This can include the
choice of the Hubbard U parameter, spin initialisation, phonon interpolation grids, and
more.
On the other hand, the <seedname>.param input file is responsible for task dependent
parameters in a calculation. The key parameters being the choice of task, the exchange-
correlation functional, and the plane wave cut-off energy. However, the parameter file
enables much more control than this, including setting initial conditions, control of paral-
lelism, memory, level of output data and many task-specific options. The user need not
specify all of the parameters as there are many default parameters already set and it is good
practice to alter parameters one at a time and consult the output thoroughly to check for
any apparent errors.

3.1.3 Convergence testing

Cut-off Energy

A crucial aspect of obtaining a reliable result lies in the convergence testing with respect to
the energy cut-off and k-point grid size. The plane-wave cut-off determines the size of the
basis set and is dependent on the type of atom in the system one wishes to simulate.
As an example, convergence tests had to be performed for stoichiometric half-Heusler
compositions with an X-site substitution, i.e. XNiSn (X = Ti, Zr, Hf), but the cut-off can
be assumed to be kept the same in the case of excess Nickel in XNi1+xSn compositions as
there is no change of element involved, reducing unnecessary computational expense.
Thankfully, it turns out that the size of the basis-set required can be truncated up to some
cut-off energy. Due to the fact that only the plane waves with small kinetic energy have
the largest contribution to the accuracy of the total energy.[95] The size of the matrix
for solving the Kohn-Sham equations is determined by the cut-off energy, defined as the
highest Fourier component:

Ec =
ℏ2

2m
|k+G|2, (3.1)

where k and G are the real and reciprocal lattice vectors respectively.
Systematic calculations of total energy and stress at varying values of cut-off energy and k-
point grid sizes, were performed for convergence purposes. An example for a convergence
test for NbCoSb can be seen in Figures 3.1a and 3.1b. Oscillations in the total energy upon
increasing the k-point grid size are to be expected as convergence is not variational and
will vary depending on the chosen discrete k-point mesh used. Therefore the k-point grid
should be converged based on the required convergence tolerance criteria.
The total energy is computed using a self-consistent loop with the help of a density mixing
scheme. One should test different density mixing schemes, using the mixing_scheme

keyword in the parameter file if a calculation is failing to converge or the convergence
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(a) Total Energy of NbCoSb vs cut-off energy.

(b) Total Energy of NbCoSb vs k-point grid (n x n x n).

Fig. 3.1 Total energy convergence with respect to energy cut-off and k-point grid for
NbCoSb.
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procedure is taking many self-consistent loops to do so. After benchmarking various
schemes available in CASTEP, I have found the Pulay [96] density mixing scheme to be
the best performing. In addition, all of the calculations presented in the results section were
converged to a total energy difference of 0.5meV per atom or less with stress converged to
less than 0.1GPa.
Basis set convergence is important to make sure the orbitals are represented as accurately as
possible. This is because ground state energy is variational. Hence, better convergence of
the basis set results in a lower error in energy. However, convergence should be prioritised
with the property of interest in mind and can usually provide good accuracy for the required
purpose with incomplete basis sets whilst using a reasonable amount of computational
resources. A significant speed-up can be gained due to the fact that when converging
with respect to cut-off energy a grid with few k-points can be used as the convergence is
independent or vice versa. Forces converge even faster than the aforementioned parameters
due to not having to deal with the large Fourier components near the nucleus. However,
they are not always possible to converge depending on the choice of unit cell. In this
case, a stress convergence can be done instead. By default, no Hubbard U parameter is
specified, but the correction can be applied to a chosen set of atoms and orbitals within the
<seedname>.cell file.

K-point sampling

The set of allowed k-point values is determined by the periodic boundary conditions. There
will be a number of contributing occupied electronic states that specify the electronic
potential and are therefore needed in order to accurately compute the correct total energy
of the system. Computing many quantities, such as the total energy or density requires a
Brillouin zone integral, the general form of this integral for some lattice-periodic function
F(k) is given by [97]:

Ω

(2π)3

∫
BZ

dkF(k) = F0 ≈
Nw

∑
j=1

w jF(k j), (3.2)

where Ω is the cell volume, F0 is the lowest Fourier component, w j are weighting factors
for a special set of k-points found using the Monkhorst-pack method [94], Nw is the
number of irreducible k-points within the irreducible Brillouin Zone (IBZ) wedge, where
j = 1, ...,Nirred

special and ∑ j w j = 1. The number of special points in the IBZ depends on
the point-symmetry of the system [97]. Due to the fact that nearby k-points have similar
solutions and in high symmetry systems with filled bands, such as semiconductors, a
great example being the half-Heusler systems in question, meaning that the total energy
can be computed efficiently whilst requiring a relatively small k-point grid. This is
evident from my calculations the desired convergence criterion was reached with a 6x6x6
Monkhorst-pack grid in the primitive cell. Generally denser grids are required for metallic
systems. A k-point convergence test such as the one that has been described can generally
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minimise the computational expense whilst keeping the error relatively low. Moreover,
when computing defective structures generally a supercell has to be created in order to
represent the desired periodicity, which increases the number of atoms in the system. In
turn, increasing the computational expense. However, this can be offset by the fact that
increasing the simulation cell size reduces the size of the Brillouin zone. Hence, the same
sampling density as for the primitive cell can be achieved with a smaller k-point grid.

3.1.4 Structural Relaxation

Geometry optimisation was done in order to make sure the structure is as close to equilib-
rium as possible ensuring the total energy and forces are converged to a high degree of
accuracy, dictated by a user-modifiable set of convergence tolerance criteria. This optimisa-
tion problem was tackled using a gradient minimisation algorithm developed by Broyden,
Fletcher, Goldfarb and Shanno(BFGS) [98] as well as a modified, low memory version
of this called L-BFGS [99]. Calculations were deemed successful if two consecutive
minimisation steps meet the minimum convergence criteria or better.
A high-quality convergence is especially important when performing a well converged
phonon calculation, more so than for studying the electronic structure properties. Failure to
do so can lead to large errors in phonon frequencies and give rise to imaginary frequencies,
giving a qualitatively and quantitatively incorrect picture.
The convergence values for the k-point grid depending on the size of supercell used to
obtain the results in this work are those stated in Table 3.1. Whereas the forces were
converged to 0.03eV/atom and stress was converged to 0.05 GPa or better. Lattice param-
eters were re-optimised when changing from the Generalised-Gradient Approximation
(GGA) PBE [69] exchange-correlation functional to the meta-GGA rSCAN [100] where
applicable.

Cell Dimensions K-Point Grid
1x1x1 6x6x6
2x2x2 4x4x4
2x2x4 4x4x2
2x4x4 4x2x2

Table 3.1 Simulation cell size dependent structural relaxation convergence parameters.

3.1.5 Electronic Band Structure

In the CASTEP package, there are two methods for computing a band structure. The first
is the bandstructure task, which computes the set of eigenvalues at a chosen set of k-points.
This set can be specified within the <seedname>.cell file as a path along with a set of
high-symmetry directions or simply as a list. It is important to ensure that a robust set
of high symmetry directions is chosen as failing to do so can result in not being able to
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visualise key features of the band structure for analysis. However, this only needs to be
done within the irreducible wedge of the Brillouin zone and symmetry equivalent points
will be detected by the code to reduce computational expense.
The second method is selected by choosing the spectral keyword for the task parameter,
this will then also require an additional input parameter spectral_task, which provides
information about the task-specific to a spectral calculation. The spectral task is a newer
implementation and is recommended. However, the spectral task is not yet fully imple-
mented to be used with the band unfolding tool bs_sc2pc.f90, which is necessary when
computing band structures of supercells. This will be described in more detail later. Due
to this restriction of the spectral task, all of the band unfolding calculations presented in
this thesis were performed using the bandstructure task.
Furthermore, CASTEP also contains two useful tools to post-process the output band
structure data. The data can be found within the <seedname>.bands output file. The first
of which is a Perl [101] script that is aimed to allow easy plotting of the band structure,
called dispersion.pl. The other is a Fortran90 [102] script, namely orbitals2bands.f90. This
is an optional, but recommended post-processing tool which attempts to perform a band
crossing detection and re-order the bands appropriately, re-writing the <seedname>.bands
file to retain the same file formatting.

Effective Band Structure

As mentioned earlier, when studying defective systems a supercell is usually required to
model the structure [103], this means the well-defined E versus k⃗ relationship is no longer
present. Therefore, obtaining a direct comparison with ordered structures or experiments
to study the effects of the defects or substitutions requires additional work. This can
be achieved through the use of effective band structures (EBS) to obtain an unfolded
representation of the bands. The amount of folding present increases with supercell size
and the number of the defects in the structure, prohibiting any attempt to analyse supercell
band structure from a usual plot of eigenvalues obtained for each k-point. The method
consists of computing the spectral weight of the supercell energy eigenvalue at a given
supercell K-point by projecting the corresponding eigenstate on all primitive cell Bloch
states corresponding to a k-point in the primitive cell. Where the weight represents the
Bloch character preserved in the supercell [103]. Hence, with this information, the spectral
function A(k,E) can be derived. Where its resolution in k is limited by the chosen set of k
points at which the EBS and BS were evaluated [103].
A test was performed on a defect free supercell of the stoichiometric TiNiSn, the result
of which can be seen in Figure 3.2. Here, the spectral weight can be seen to match the
underlying primitive cell band structure as expected. The advancements of this method
have also allowed some techniques to be applied to phonon dispersion unfolding[91],
which I have also required in order to analyse and compare the effects on the nature of the
phonon modes. This will be described in Section 3.1.6.
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Fig. 3.2 Unfolded band structure of a 2x2x2 supercell of the TiNiSn primitive fcc unit
cell. The value of 1 on the colour bar corresponds to a single non-degenerate band per
energy interval. The continuous red line is the band structure for TiNiSn, calculated using
a primitive fcc unit cell. The dotted red line indicates the Fermi energy.

Density of States

Having a band dispersion is very insightful. However, it does not give the whole picture,
this is where a density of states (DOS) can provide additional information and is often
important in understanding the underlying physics.
The computational procedure is almost identical to that of the band structure calculation, it
can be invoked by changing the Brillouin zone sampling path to a sampling grid, in order
to evenly sample and count the total number of states at each energy level. Therefore, the
DOS is an integral through the Brillouin zone of the primitive cell and takes the form:

gn(ε) =
∫ dk

4π3 δ (ε − εn(k)), (3.3)

where gn and εn are the DOS and the energy for a band of index n. A dense grid is often
required to obtain a good DOS. Moreover, as space is discretised. Plotting often requires a
broadening scheme, which aims to discern between real and fictitious sharp peaks, whilst
computing the DOS on a relatively coarse grid. However, symmetry equivalent k-points
do not need to be recomputed. This is utilised to reduce the computational cost. There are
two ways to approach this in CASTEP. The <seedname>.bands file can be read and plotted
by a script provided as part of the CASTEP distribution, called dos.pl. This enables the use
of a fixed width broadening scheme. Using a fixed-width Gaussian function has limited
ability to deal with sharp features of a DOS and in order to overcome this, there is a post-
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processing program called OptaDOS [104]. This utilises an adaptive broadening scheme,
which takes into account the band gradients, thus coping better with the aforementioned
difficulties with sharp features. OptaDOS has many additional capabilities for computing
optical, core-level excitation spectra as well as partial and joint electronic DOS [104].
Moreover, the program can give additional output with information regarding the presence
and magnitude of a band gap or locating the valence band maximum as well as the
conduction band minimum, which can be helpful when performing analysis of the effective
electron mass.

Effective electronic mass

There are many approaches to approximating the effective electron mass from a band
structure calculation. Quite often this requires a manual procedure of fitting a parabola
to the bands by hand. However, there are now semi-automated procedures available to
do this. The natural choice for the calculations in this work is the EMC code [105]. This
program has been specifically written as an interface to CASTEP in order to work with
CASTEP’s band structure code.
The basis upon which the EMC program is formulated rests on a finite difference method
for evaluating the second derivatives of the energy numerically. As this is a semi-automated
procedure, the program requires an additional emc-input file as well as editing the code
script to choose between a three or five point stencil for generating a k-point list. For
this, the user must specify the index of the band and the k-point at the bands extrema to
generate a set of k-points for which the band structure will be performed to obtain the
necessary data to compute the derivatives. To aid this process, one can use the OptaDOS
output information to find the location of the VBM and CBM. However, this will not
always succeed and if one wishes to compute effective masses of supercells, particularly
with defects present, the matter becomes significantly more difficult. This is because
band folding can lead to translations of the VBM or CBM onto a different k-point. In
addition, the required components of the effective mass may not appear as part of the same
band. Hence, extra care is required when preparing the input file. Finally, there is one
more important input parameter, namely the step_size, which determines the difference
between the k-points in the generated list. There is no correct way to choose this. However,
choosing too small a step size will give a better approximation to the derivative when for
light bands and a large step size favours heavy bands. It is best to benchmark the step
size against experimental data if possible. The EMC code must first be run only with the
emc-input file to generate the k-point list. This list must then be input into the CASTEP
<seedname>.cell file. Once this is done, one might then proceed with a regular CASTEP
band structure calculation. When this is ready the EMC code may be run again for a chosen
band index to compute the effective masses.
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3.1.6 Lattice Dynamics

Finite Displacement Method

Obtaining the vibrational spectra within the harmonic approximation requires the knowl-
edge of the second-order force constants. This task was also done using CASTEP. There
are two implementations to chose between, a finite-displacement supercell approach or
DFPT. During the preliminary stages of research, both methods and their convergence were
tested on stoichiometric compositions, and the finite-displacement method was chosen to
complete this task. Hence, this is the method that will be described in more detail here.
The method focuses on evaluating forces on a set of perturbed configurations. These are
configurations containing small positive and negative displacements in each direction, one
atom at a time. Then using the central difference formula with the computed forces to
construct the force constant matrix (FCM) [83]. In order to compute the FCM for an
arbitrary choice of q-point, a supercell is required. The method relies on the short-ranged
nature of the forces, which generally converge quickly as L > 2R_c, where L is the super-
cell size and R_c is a spherical cut-off radius. Hence, upon increasing supercell size the
approximate force constant matrix will begin to converge. This may be done by setting the
task parameter to phonon and adding an additional parameter, phonon_task to textitfinite-
displacement in the <seedname>.param file. When the FCM has been computed, a Fourier
interpolation scheme may be used. This can be specified with the phonon_fine_method
parameter and setting it to interpolation. This will then generate a dynamical matrix for
a fictitious supercell size and can be specified in the <seedname>.cell file, by setting the
phonon_fine_kpoint_path or the phonon_kpoint_mp_grid keyword to produce high-quality
phonon dispersion and density of states plots. A dense grid is often required to obtain
a good quality DOS, but this may be done as a continuation of the phonon calculation
using the output <seedname>.check checkpoint file. In addition, the phonon_calculate_dos
parameter must be set to true. The output will be saved to the <seedname>.phonon file
and will contain the Total DOS as well as the contribution to the DOS from each atomic
species. This allows the plotting of a partial phonon DOS, in order to analyse the phonon
spectra in more depth.
Even though the DFPT method computes the force constants on a q-point grid and therefore
tends to scale better than increasing the supercell size. The finite displacement method
has its advantages and has recently received a significant speed-up. There are two main
advantages to note. The DFPT method is much harder to implement and therefore can
be used only with norm-conserving pseudopotentials, but the finite-displacement method
makes use of the USP set, which significantly reduces the required cut-off energy, in the
case of TiNiSn this is a reduction from 1600eV to 600eV. Moreover, thanks to the non-
diagonal supercell method [85], which as the name suggests, uses smaller non-diagonal
supercell matrices in order to access all of the necessary perturbations for each k-point.
This speed-up allowed for much larger supercells to be accessible using the computational
resources available.
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Fig. 3.3 Phonon dispersions plots of a)unfolded phonon dispersion of a 2x2x2 supercell of
the TiNiSn primitive fcc unit cell and b) phonon dispersion of the primitive cell of TiNiSn.

Phonon Unfolding

The phonon unfolding has been performed using the Phonon Unfolding Fortran 90 code
[91], which uses a generalised projection algorithm. The algorithm projects phonon
polarization vectors onto a set of plane waves, in order to compute the unfolding weight.
This allows for visualisation analysis of the complex supercell phonon dispersions as the
unfolding weight now corresponds to the desired primitive cell Brillouin zone path. An
unfolded phonon dispersion for the TiNiSn supercell can be seen in Figure. 3.3a.
The unfolded phonon dispersion now shows agreement with the primitive cell phonon
dispersion in Figure. 3.3b. This is evident as the primitive TiNiSn contains only 3 atoms
and therefore three acoustic and six optic modes that are now clearly seen on the plot as
well as displaying the same frequencies for each mode.

3.1.7 Lattice Thermal Conductivity

As described in Chapter. 2.5.1, one theoretical approach to computing the lattice thermal
conductivity, κl is through solving the phonon Boltzmann transport equation. This has
been done by using the ShengBTE [48] code. This program can compute the mean phonon
scattering time, mode Grüneisen parameter, relaxation time, and of course the lattice
thermal conductivity for a chosen range of temperatures. The ShengBTE code aims to
improve on some limitations of using a relaxation time approximation [92], by solving the
Boltzmann transport equation iteratively.
The ShengBTE code requires the knowledge of both the second-order and third-order force
constants. As it is only through the addition of anharmonicity in the way of third-order
force constants that a finite κl may be obtained. The second-order force constants can
be obtained using CASTEP as described in Section 1.1.6. Then with the help of a script,
castep2shangbte.py, the CASTEP output files can be read to generate a set of second-order
force constants as a CONTROL file with the required input parameters for the ShengBTE



3.2 Experimental Methods 51

calculation. This file attempts to provide the correct default input parameters but needs
to be edited accordingly. This involves testing and converging the ShengBTE integration
grid, adding the desired temperature range as well additional information such as the
Born effective charges. In addition, the parameter scalebroad, which controls the level of
Gaussian smearing to attempt in achieving a speedup in computational time and is set to 1
by default. This ensures the agreement of theory, but it is possible to reduce this parameter
can be tested and often reduces the computational expense without sacrificing accuracy.

Third-order Force Constants

The final missing component to compute the thermal conductivity is to obtain the third-
order force constants. This can be done using the finite-displacement method using the
information about the forces. This is facilitated with the help of a script called thirdorder.py

[48], which is part of the ShengBTE distribution. The code reads in a relaxed atomic
configuration and generated a set of pair displacements. Taking into consideration the
symmetry of the system in order to make sure the set of displacements is unique to reduce
the computational expense. The code will prepare all of the necessary displaced cells to be
calculated. As we are yet again computing the forces on the atoms to construct the now
anharmonic force constant matrix, we can use CASTEP again to do so. Here a high level
of convergence tolerances is required. The thirdorder.py code can then gather all of the
data to construct the anharmonic force constant matrix and prepare the third-order constant
file in the format required by the ShengBTE calculation.

3.2 Experimental Methods

3.2.1 Inelastic neutron scattering vs ab initio phonon DOS

In this work, the phonon density of states were obtained using powder inelastic neutron
scattering experiments measured using the MARI chopper time-of-flight spectrometer
[106]. The MARI instrument covers a large energy range and achieved good experimental
resolution, making it a good choice for measuring the density of states. The Fermi chopper
produces a monochromatic neutron beam that scatters neutrons at the sample, then an array
of detectors is used to compute the energy transfer. A schematic of the spectrometer design
can be seen in Figure. 3.4, showing the beam line and spectrometer set-up. Utilising the
incoherent one-phonon approximation to ignore correlation effects between the motions of
atoms, we can compute the one-phonon incoherent scattering function S(Q,E) [107]. This
scattering function is related to the phonon generalised density of states, gn(E) and can be
written as [108]:

gn(E) = A⟨e2Wk(Q)

Q2
E

n(E,T )+ 1
2 ±

1
2

S(Q,E)⟩, (3.4)
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Fig. 3.4 A CAD drawing of the MARI chopper spectrometer. Image received from [8]

where 2Wk(Q) is the Debye-Waller factor, Q is the momentum transfer, E is the energy
transfer, A is a normalisation constant and n(E,T ) = [eE/kbT −1]−1 and the plus or minus
signs are determined by energy loss or gain of the neutrons.
However, in order to compare the phonon DOS from experimental neutron scattering data
against the CASTEP theoretical phonon DOS, both data sets need to be post-processed.
The raw scattering data is reduced and processed using the Mantid software [109], a python
script was used to compute the scattering function of S(Q,E). Finally, it then computes the
phonon DOS, gn(E). Here care should be taken to choose an appropriate energy binning,
which should start at a few meV above zero as noise originating from the instrumental
resolution dominates at very low energies. On the other hand, CASTEP can compute the
partial phonon density of states, gk(E) for the kth atom in the unit cell. To connect the
theoretically computed DOS with an experimental result requires a formalism with the
following relationship[108].

gn(E) = ∑
k

4πb2
k

mk
gk(E), (3.5)

where bk and mk are neutron scattering length and the mass of the kth atom in the unit cell.
The neutron scattering lengths were obtained from the NIST database[110].
In addition to this, the CASTEP data has to then be broadened according to the experimental
resolution function, which has been computed using a Python script, which is provided
as one of the many scripts within the Mantid project [109]. The broadening data and the
CASTEP DOS data were combined and plotted using a custom-made Python script.



Chapter 4

Computing lattice thermal conductivity
of defective supercells

4.1 Background

This chapter will investigate XNiSn (X = Ti, Zr, Hf) based compositions. This is a class
of non-toxic, relatively abundant, and cost-effective materials, when compared to the
benchmark thermoelectrics, such as Bi2Te3 or PbTe [111]. Half-Heusler compositions
are known to have large power factors, but the challenge lies in the optimisation of the
relatively high κlat . This has limited their thermoelectric performance, achieving maximum
reported thermoelectric ZT values of around 1.5 with doping [112]. As the ZT value is
given by the equation, ZT = S2σT/κ , where S is the Seebeck coefficient, σ is the electrical
conductivity and κ is the thermal conductivity. We can then see that the aim of optimising
thermoelectric properties lies in reducing κ , maintaining as high values of S and σ as
possible.
Various approaches with the aim to find mechanisms for reducing κlat in the aforementioned
thermoelectric materials have been undertaken. It is known that the largest contribution
to the thermal conductivity in these materials stems from the κlat and not the electronic
component of the thermal conductivity. One of the main attempts for achieving this
is through X-site substitution with heavier atoms in order to reduce κlat through mass-
disorder[24]. Moreover, different synthesis and preparation techniques aim to reduce
the grain size [113], which has a significant effect on lowering the κlat as it will be
evident from the results in this chapter when incorporating grain boundary scattering
with a theoretical model and comparing against experimental data. Additionally, the
introduction of interstitials into the half-Heusler matrix provides an alternative route to
increase scattering. The most unique structure which encompasses this mechanism is
TiNiSn and can be synthesised to contain a significantly larger number of interstitials
(∼ 10%), as opposed to the half-Heuslers composed of the heavier ZrNiSn and HfNiSn
where the maximal interstitial content is around (∼ 2 − 3%) in identical preparation
conditions. In addition, interstitials in this class of half-Heuslers have experimentally
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shown a significant reduction in κlat , resulting in values of around 4.5 W/mK at around
5% filling of the half-Heusler vacancy sites compared to ∼ 13W/mK in the stoichiometric
compositions at an assumed grain size on the order of a few microns. The magnitude of
this reduction warrants an investigation of the vibrational spectra in order to exploit this
effect for further potential optimisation of the thermoelectric properties, which is the key
focus of this chapter.
To begin such an investigation, the first task was to compute the vibrational spectra of
stoichiometric compositions XNiSn(X = Ti,Zr,H f ). This is done as to benchmark the
level of theory and parametrisation required to obtain agreement with previous theoretical
and experimental results. Moreover, it enables to lay a foundation describing the nature
of the phonons without the presence of any defects in the structure. Secondly, we then
investigate the effect of interstitials on the nature of the phonon modes and the phonon
density of states. The added complexity due to the use of supercells required to model the
defective structures makes it difficult to directly compare the phonon dispersion to that
of the stoichiometric parent compound. Therefore, a method for unfolding the phonon
dispersion back onto the primitive cell BZ has been deployed. In addition to this, together
with my experimental collaborator Duc. Le, we have performed an inelastic neutron
scattering experiment on powder samples on the MARI spectrometer at Harwell. The beam
time proposal, sample synthesis and material characterisation were led by Jan-Willem. G.
Bos and Donald. A. MacLaren. The interstitial Ni or Cu content present in the sample was
guided as to match closely with the theoretical simulations when preparing the samples.
Post-processing of the data using a theoretical framework was used to allow for a direct
comparison of the computed and measured phonon density of states, taking into account
neutron scattering cross-sections and experimental resolution to gain insight into the effects
of interstitials. In this section, we highlight the impact of various arrangements of vacancy
site filling on the phonon DOS. The experimental results together with robust testing of the
simulations serves as a validation of the model and results. Finally, we compute the lattice
thermal conductivity of TiNiSn and TiNi1.125Sn through iteratively solving the phonon
Boltzmann Transport equation as implemented in the ShengBTE code [114]. The results
are compared to available experimental data as we have not come across previous attempts
of obtaining the κlat for defective structures which originate from a supercell model. Here,
we also include the effect of additional scattering due to grain boundaries. In addition,
I have used a simpler model, namely the modified Debye-Callaway model of thermal
conductivity [54] in an attempt to reduce what turned out to be a prohibitive computational
expense, when trying to compute the κlat of defective compositions with interstitials at the
required convergence criteria in systems with clustered defects due to reduced symmetry in
the system. Both models were bench-marked against experimental data of stoichiometric
TiNiSn.
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4.2 Computational Details

4.2.1 Second order vibrational spectra calculations

Phonon calculations were performed using the CASTEP first principles simulation package
[51]. Calculations used the Perdew-Burke-Ernzerhof (PBE) generalized gradient approxi-
mation (GGA) as the exchange-correlation functional as well as an ultrasoft pseudopoten-
tial set (C18), which was generated on-the-fly, with CASTEP version 18.1. Convergence
parameters for the plane-wave cut-off were determined to be in the range of 600-800 eV
with a grid scale of 2.0 and a fine grid scale set to 3.0. The k-point sampling was performed
on a 4x4x4 Monkhorst-Pack grid. This corresponds to a total energy convergence of 0.5
meV per atom or better. A primitive face-centered-cubic (fcc) cell containing 3 atoms
was used for the stoichiometric compositions. Whereas the supercell approximation was
used in calculations for the defective compositions with interstitials. The supercell was
a 2x2x2 multiple of the primitive fcc cell and contained 24-25 atoms. To achieve the
required periodicity for the clustered interstitial Ni case in TiNi1.125Sn a larger 2x2x2
supercell of a cubic unit cell containing 100 atoms was required. Structural relaxation
was performed using the LBFGS [99] optimization method as implemented in CASTEP.
The force and stress convergence for the geometry optimisation were 0.03 eV/Å and 0.05
GPa respectively for obtaining the phonon dispersion and phonon DOS. A 4x4x4 phonon
q-point grid was used along with Fourier interpolation to obtain the dynamical matrix.
This was sufficient to obtain high quality forces for the phonon dispersion and DOS calcu-
lations. This level of convergence translated to a phonon frequency convergence of 1% or
better. The unfolded phonon dispersion for the relaxed structure was calculated along the
Γ−X −Γ−L−W −X path in the primitive Brillouin zone using the same convergence
parameters as for the structural relaxation. The phonon DOS was calculated on a fine
30x30x30 Monkhorst-Pack grid. Finally, the neutron weighted DOS was calculated using
a custom made script. Implementing the same theoretical framework as the one which
can be found in Section. 3.2.1. This script also made use of the pychop.py script, which
is part of the Mantid software package [109], allowing for the computation of the energy
dependent experimental resolution function used in the broadening of the phonon DOS.
The graphical representation of the data was plotted using the dispersion.pl [51] script that
is a part of the CASTEP package as well as matplotlib [115].

4.2.2 Lattice thermal conductivity calculations

The lattice component to the thermal conductivity was computed through iteratively solving
the phonon Boltzmann transport equation (BTE), using the ShengBTE code [114]. To
do so, the code requires both the second order interatomic force constants (IFC), which
is the IFC matrix found within the harmonic approximation. As well as the third order
IFC’s to compute the anharmonic contributions to thermal conductivity. Second order
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Table 4.1 Convergence of forces and their effect on computed κlat .

Force Tol. (eV/Å) Energy Tol. (eV) κlat(W/mK)

4 x 10−4 1 x 10−10 0.43
2 x 10−7 8 x 10−13 0.81
6 x 10−11 1 x 10−14 0.82

force constants were obtained using CASTEP, implementing the finite displacement, non-
diagonal supercell method [85]. This method also helped to reduce the computational
cost in comparison to the standard finite displacement method implementation as found
in CASTEP by computing the required phonon q-points on a set of smaller supercells.
The calculations used the PBE-GGA exchange and correlation functional and the same
C18 "on-the-fly" pseudopotential set, with the same energy cut-off and k-point grid mesh
as for the second order calculation. However, when computing the κlat even at this level
of convergence the error in the forces can lead to spurious results. Therefore, the force
convergence tolerance for obtaining both the second order and third order force constants
was subsequently tightened to < 2x10−7 eV/Å and the energy per atom convergence
tolerance was increased to 1x10−12 eV. A test was performed using a smaller 2x2x2
phonon q-point grid at varying force and energy tolerances before performing the final
set of second and third order force constant calculations. The convergence can be seen in
Table 4.1.
A script called castep2shengbte.py [116] was used to post-process the CASTEP outputs
and save the data in ShengBTE’s format for the second order IFC’s. Computing the
third order force constants matrix required a set of supercells with pair displacements to
obtain the full anharmonic force constant matrix. A script called thirdorder.py was used to
help find and generate an irreducible set of displaced supercells [114]. In the case of the
stoichiometric TiNiSn a 4x4x4 supercell was created, taking into account all interactions up
to the third nearest neighbour. This supercell contained 192 atoms, requiring 320 displaced
supercells and thus 320 self-consistent CASTEP jobs to compute the forces. On the other
hand, extracting the third order IFC’s in the the defective TiNi1.125Sn model required a
2x2x2 supercell of the 25 atom primitive cell, resulting in a supercell containing 200 atoms.
There were 904 jobs required for the calculation of forces. As the simulation cell was
larger a smaller 1x1x1 k-points sampling grid was needed to converge the total energy.
The ShengBTE code requires an additional convergence parameter for it’s own integration
grid. This was found to be 16x16x16 for both compositions. In addition, the Gaussian
smearing parameter, scalebroad was kept at the maximum value of 1.0. Lastly, the effect
of grain-boundaries was included as a post-processing step as ShengBTE only computes
the intrinsic component of κlat .
To compute the lattice thermal conductivity using the modified Debye-Callaway model, the
mDCThermalC [54] code was used. The code required inputs in the Phonopy format [55] of
both the second order IFC’s as well as mode Grüneisen parameters. Phonopy generated the



4.3 Stoichiometric XNiSn (X = Ti, Zr, Hf) compositions 57

required second order displaced cells, but the ab initio force calculations were performed
using CASTEP [51]. As for the mode Grüneisen parameters, three separate simulations
were required to obtain these. One relaxed equilibrium structure and two strained cell
calculations which were altered by adding small deviations away from the equilibrium
lattice parameters. The strained cells were then relaxed under constrained volume. Finally
the lattice thermal conductivity was sampled for a desired set of temperatures.

4.2.3 Experimental details

The elemental powders used to synthesise the samples were purchased from Alfa Aesar
and have a purity > 99.5%. Synthesising the samples involved grinding the elemental
powders using an agate pestle and mortar, cold pressing and sintering at 1123K for 24
hours, followed by 14 days of annealing. The phonon DOS of the experimental samples
was measured using the MARI time-of-flight chopper spectrometer. The powder samples
were placed in a vanadium can and placed inside the instrument. Measurements were taken
for each powder sample as well as a final measurement of the empty vanadium can under
the same experimental conditions. The empty can measurement allows to subtract the DOS
of the vanadium can from the sample DOS. The instrument was set to an incident energy
of 60meV at a temperature of 300K. The choice of Fermi chopper used was the "sloppy"
chopper, with an energy resolution of 3−8% that is dependent on the choice of chopper,
incident energy and energy transfer. The data reduction and vanadium can subtraction was
performed with the help of the Mantid software [109]. The background corrected data was
summed over a Q range of 0−10 Å−1.

4.3 Stoichiometric XNiSn (X = Ti, Zr, Hf) compositions

TiNiSn, ZrNiSn and HfNiSn are half-Heusler alloys with a XYZ (X = Ti, Zr, Hf) type
composition. The atoms form an fcc crystal structure formed via three interpenetrating fcc
sublattices, where the space group is F 4̄3m (216). The X element is found at the Wyckoff
position 4a (0,0,0), Ni is at the position 4c (1

4 ,
1
4 ,

1
4) and Sn is at the position 4b (1

2 ,
1
2 ,

1
2).

Vacancies are present at the Wyckoff position 4d (3
4 ,

3
4 ,

3
4). A graphical representation of

TiNiSn can be seen in Figure 1.4. This is a unique composition as even though there are
metallic constituents, the resulting structure forms an 18 electron closed shell system.
In addition, I have tabulated the computed and known experimental lattice parameters for
some of the key compositions found in this chapter in Table. 4.2. We can see that the X-site
substitution leads to an intermediate lattice parameter between the TiNiSn and ZrNiSn
lattice parameters, which is perhaps an unsurprising result. Whereas, it can be seen that
the introduction of interstitials into the half-Heusler matrix results in a small increase in
the lattice parameter. There is a strong agreement between the known experimental lattice
parameters and the computed values to within 0.5% or better which is expected when
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using the PBE exchange-correlation functional. The structural relaxation was performed
with respect to both the cell parameters and internal co-ordinates.

Table 4.2 Equilibrium lattice parameters in computed and experimentally measured stoi-
chiometric and defective half-Heuslers.

Structure Lattice Param(Å) Exp. Lattice Param(Å)
TiNiSn a = 5.942 a = 5.9298[117]
ZrNiSn a = 6.140 a = 6.1089[117]
HfNiSn a = 6.112 a = 6.0795[117]

Ti0.5Zr0.5NiSn a = 6.048 a = 6.0385[117]
TiNi1.25Sn a = 5.996 a = N/A
TiNi1.125Sn a = 5.974 a = N/A

TiNiCu0.125Sn a = 5.981 a = N/A

When attempting to analyse and understand the properties of thermoelectrics, one of the
crucial starting points is to first obtain and interpret the nature of the phonons. Initially, we
begin by analysing the phonon dispersion of the stoichiometric materials before attempting
to investigate the more complex defective counterparts. The phonon dispersion is invaluable
at revealing many key characteristic features of vibrations. Hence, here we begin by
presenting the results of the computed phonon dispersions as seen in Figure 4.1.

Fig. 4.1 Phonon dispersions of a) TiNiSn, b) ZrNiSn and c) HfNiSn. The phonon dispersion
is plotted along the Γ−X −Γ−L−W −X high symmetry directions through the primitive
cell BZ. The plots illustrate the qualitative similarities between the compositions and the
effect of increasing mass on lowering the phonon frequencies.

Analysing the phonon dispersion there were no imaginary frequencies found suggesting
that the structure is stable and no symmetry breaking is predicted via a displacive phase
transition caused by a "soft" or "frozen" phonon mode[118]. At first glance TiNiSn, ZrNiSn
and HfNiSn have similarly shaped phonon dispersions as seen in Figure 4.1.
On the other hand, there is a clear reduction in the phonon frequencies as the mass of the X-
site atom increases from Ti through to Hf. This change in frequencies is also accompanied
by a closing of the largest energy gap in TiNiSn between 17-23meV beginning to close for
ZrNiSn and eventually closing in HfNiSn. Instead, opening up a new gap in the higher
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frequency optical branches. In addition, some parts of the dispersion show band crossing as
in ZrNiSn going from Γ to X in the Brillouin zone. Meaning that at those points phonons
can undergo a transition from the acoustic to optic mode at no extra momentum cost. Due
to the fact that the finite displacement method was used for the calculations along with the
ultrasoft pseudopotential set, the non-analytic correction has not been applied by default.
However, effects of LO-TO splitting have been previously investigated [24] where the
effect on the high frequency optic modes can be seen, and are therefore not investigated in
this chapter. The qualitative similarities allow for isoelectronic substitution of the Ti, Zr,
and Hf atoms to be laid out as an optimisation problem to provide one way of lowering the
thermal conductivity without dramatically altering the nature of the phonon dispersion.

Fig. 4.2 Phonon partial DOS of a) TiNiSn, b) ZrNiSn and c) HfNiSn. The total phonon
DOS is shown by the black solid line. The contributions from the individual species are
identified by a different colour as indicated in the legend box for each plot. The plots
illustrate the low and high frequency modes being dominated by heavy and light atoms
respectively.

However, the biggest difference can be seen in Figure 4.2. These show the partial phonon
density of states with respect to each species. There is a clear difference for the heavi-
est atoms taking over the dominant portion of the acoustic phonon contribution at low
frequency, for TiNiSn and ZrNiSn this is the Sn atoms. Where as in HfNiSn, the Hf
atoms are now the heaviest and most dominant in this frequency range. Since, the low
frequency modes tend to carry the most of the contribution to the thermal conductivity,
and mass-disorder scattering effects mostly the high frequency range, it is expected that
at low temperatures where the phonon mode occupation in the optical range is lower,
the effect of mass-disorder scattering will become less sensitive to temperature change
after some particular substitution concentration as well as not being the optimal scattering
process for lowering thermal conductivity. A study has performed calculations within the
virtual crystal approximation and has shown that the most effective reduction occurs up to
concentrations of around 10%[24]. To gain some additional insight on the effect of such a
substitution. I have computed the vibrational spectra for a binary substitution of the X-site
of the Ti0.5Zr0.5NiSn composition, which was modelled using a 2x2x2 supercell of the fcc
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primitive cell, where half of the eight X-site Ti atoms were pseudo-randomly replaced with
Zr atoms.

Fig. 4.3 Phonon partial DOS of Ti0.5Zr0.5NiSn. The total phonon DOS is shown by
the black solid line. The contributions to the total DOS from the individual species are
represented by a different colour as indicated in the legend box for each plot.

The effects of the substitution show the expected down shift of phonon frequencies com-
pared to that of the stoichiometric TiNiSn due to the fact Zr is a heavier element. This
is why the heaviest Sn atoms still maintain the largest contribution to the DOS at low
frequencies. With the largest changes to the individual species being seen for Ni, par-
ticularly the peaks present at around 22-24meV. One might assume that since the X-site
elements do not have the largest contribution at low frequencies, there will not be a sig-
nificant reduction in available states for a reduction in κlat . However, from experimental
measurements, a significant reduction is observed. This can be explained by the fact that
the whole frequency range contributes to the thermal conductivity, but there needs to be
a way to effectively scatter the acoustic phonons as they are our majority carriers for our
compositions in question. In fact, a promising way is through boundary scattering. This
mechanism assumes that if the grain size in the crystal can be engineered to a specific
size that is of a similar scale to the phonon mean free path then boundary scattering will
become significant and thus increase thermal resistivity, consequently lowering the thermal
conductivity. In the literature there seems to be a large spread of reported grain sizes in
produced samples. Ranging from a few micrometers to grain sizes as small as 50nm [119]
depending on the processing techniques being used. In the next section, I investigate the
thermal conductivity at various grain sizes using a theoretical model, and the effect of
this is shown for TiNiSn and TiNi1.125Sn in order to further understand the underlying
mechanisms for lowering thermal conductivity.
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4.4 Modelling vibrational properties

4.4.1 Interstitial Ni, clustered vs homogeneous defect models

A topic that is more of a mystery and requires more in depth knowledge for these materials
is the effect of interstitial defects and how these defects are distributed within the crystal. It
is known that there is solubility within TiNiSn that allows for around 10% excess Nickel to
enter the structure. Studies investigating defect formation energies found Ni interstitials to
be one of the favourable point defect configurations in terms of stability [120]. In addition,
experimental measurements of Ni rich TiNiSn have shown a significant reduction in the
thermal conductivity at low temperature measured at 4−4.5W/mK [121, 1]. A literature
study has attempted DFT calculations on small supercells and varied the spacing of the
intersitial Ni atoms to try and shed some light if the Ni should be found in clusters of
neighbouring 4d site vacancies, closely resembling a full-Heusler TiNi2Sn inclusions or
if the Ni has a random statistical distribution. They have concluded that it is indeed the
clustering scenario which appears to be lower in energy and therefore preferred [121].
They did not however perform local studies of the structure, which my collaborators are in
fact investigating using electron microscopy techniques. Previously, due to the promising
nature of the nano-inclusions, they have investigated this possibility and found no full-
Heusler interstitial nano-inclusions[122] with only half-Heusler grains with interstitials of
full-Heusler grains present. Instead, they have determined that there must be multi-phase
behaviour and effect on thermal conductivity might come into effect on the microstructure
scale. An interesting observation lies in the fact that the synthesis route for TiNi1+xSn
requires the reactants to indirectly transition from the full-Heusler to the half-Heusler phase.
This is different for the ZrNi1+xSn and HfNi1+xSn compositions, which can be directly
synthesised as half-Heuslers. This allows for a stronger possibility for a non-random
distribution of the Ni atoms in the vacancy sites.
To investigate this, I have prepared simulations where the Ni interstitials have been placed in
two different configurations. One aiming to model a pseudo-random statistical distribution
of interstitials, where the defect-defect distance is kept constant. Whereas, the second
simulation cell includes clustering of Ni interstitials, based on findings of previous work
considering energetics of different Ni clustering configurations in defective ZrNiSn [123].
As the 2x2x2 supercell includes eight primitive cells. The defects were placed to include a
cluster of three out of four 4d site vacancies being filled within one of the eight primitive
sub-cells and the final Ni interstitial being placed further away from the rest. There are
multiple choices of distances for the final Ni atom and my calculation considers one
configuration, which is an intermediate and not the maximal achievable separation of the
interstitials when taking into account the periodicity of the simulation cell.
A visual representation of example simulation cells for both cases can be seen in Figure
4.4. Modelling the pseudo-random Ni interstitial was possible using a smaller 25 atom
supercell of the fcc primitive cell, which enabled to reduce the computational expense.
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Fig. 4.4 TiNi1.125Sn simulation cells of a) pseudo-randomly distributed defect in a 2x2x2
supercell of the fcc primitive cell and b) 3-1 clustered Ni interstitials and one separated Ni
interstitial in a 2x2x2 supercell of the fcc conventional unit cell. The colours of the atoms
correspond to Ti (blue), Sn(purple), Ni (gray) and Ni defect atoms (red). The size of the
atoms for the cubic supercell has been adjusted to highlight the defect atoms.

However, achieving the required configuration for the clustered model called for a larger
100 atom supercell in the cubic fcc unit cell to achieve the desired arrangement of Ni
interstitials.
Analysis was performed by computing the neutron weighted (NW) phonon DOS for both
models. This enabled a direct comparison with the collected experimental data, which was
performed on powder samples of TiNiSn and TiNi1.1Sn using the MARI instrument.
Before tackling the question for the choice of model of interstitial defects, we can take
a look at the experimental data in Figure. 4.5, displaying the phonon DOS and error
bars. Here we can see the differences in the DOS between the samples. We can see that
there is significant DOS present around 20meV for all three samples. Comparing TiNiSn
against TiNi1.1Sn, we can see there are statistically significant broadened shoulders for
TiNi1.1Sn both in the low-frequency range from 5-12meV as well as in the intermediate
range of 14-21meV. Albeit, no significant new peaks in the DOS can be seen. In the case
of TiNiCu0.1Sn, the broadening is less pronounced in the low energy range, but additional
DOS can be seen. A slight downshift in the peaks can be seen, likely due to the slightly
larger mass of Cu compared to Ni.
In order to then compare the choice of interstitial defect model, phonon DOS for both
the homogeneous and clustered Ni interstitial models were computed. The results for
both models were plotted against the experimental data, this can be seen in Figure 4.6 (a)
and (b) respectively. An additional 5% scaling has been applied to the computed phonon
frequencies, this is done due to the known underestimation of the strength of the forces
by the PBE functional [124]. We can immediately notice that the calculated DOS for the
homogeneous defect is almost zero around the 20−23meV range. This is in disagreement
with the experimental result and it can be seen that only the clustered model manages to
correctly capture this energy range. Although, the DOS does not seem to reveal a single
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Fig. 4.5 Experimental phonon DOS for stoichiometric fcc primitive cell of TiNiSn plotted
against the experimental phonon DOS of TiNi1.1Sn and TiNiCu0.1Sn. The shaded regions
correspond to error bars.
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large new peak, it instead displays a clear broadened shoulder in the 14−23 meV range.
I believe this intermediate range broadening is a significant factor in lowering the κlat

and this will be discussed later. It should also be noted that the experimental DOS does
not tend to zero at energies < 5meV , this is simply an artefact of the limitations of the
spectrometer. In addition, what appears to be a peak developing at around 8 meV in Figure
4.6 (a) appears broadened in the clustered case and is not reflected in the experimental
DOS.

Fig. 4.6 Theoretical vs experimental phonon DOS for a) pseudo-randomly distributed
defect in a 2x2x2 supercell of the fcc primitive cell of TiNi1.125Sn and b) 3-1 clustered Ni
interstitials and one separated Ni interstitial in a 2x2x2 supercell of the fcc conventional
unit cell. The experimental phonon DOS result is plotted for TiNi1.1Sn.

Fig. 4.7 Unfolded Phonon dispersion for a) TiNi1.125Sn and b) TiNiCu0.125Sn. Plotted
along the Γ−X −Γ−L−W −X high symmetry directions through the primitive cell BZ.
Where the gray-scale intensity bar represents the unfolding weight.
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4.4.2 Interstitial Cu defect

Since I have obtained unfolded phonon dispersion curves for the supercell calculations, we
can also make a direct comparison between the phonon dispersion and the phonon DOS.
The unfolded phonon dispersions for TiNi1.125Sn and TiNiCu0.125Sn are shown in Figure
4.7, where both compositions seem to show a new flat mode around 20meV, which is not
present in the stoichiometric compositions.
Continuing the analysis for excess Ni and looking in particular at the low-frequency
acoustic modes around the Γ point, we retain the largest unfolding weight and as the
frequency increases the unfolding weight is generally lower across the modes in higher
frequency regions, suggesting a higher level of broadening. There are low-lying optic
modes with a significant weight that can be found at around 8 meV along the Γ−X

direction. This is in contrast to the stoichiometric TiNiSn, where those modes are not
present as seen in Figure 4.1. This suggests additional phonon broadening in the low-
frequency region, which would contribute to shorter phonon lifetimes and therefore a
reduction in κlat .

Fig. 4.8 Theoretical vs experimental phonon DOS for stoichiometric fcc primitive cell of
TiNiSn plotted against the experimental phonon DOS of TiNiSn.

Naturally, to test the hypothesis of the new agreement in the clustered case, we can try
to look at the stoichiometric parent material phonon DOS. This is in fact what can be
seen in Figure 4.8. However, here we still have the persistent mismatch at around 20
meV. Nevertheless, what must be kept in mind is that based on tests performed by my
collaborators, the stoichiometric samples usually include interstitials at a level of at least
1% as it is very difficult to synthesise a pure sample of TiNiSn due to the synthesis route
through a full-Heusler phase. I believe that this level of interstitials could explain why the
experimental results differ from the calculated result.
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Fig. 4.9 Theoretical vs experimental phonon DOS for pseudo-randomly distributed defect in
a 2x2x2 supercell of the fcc primitive cell of TiNiCu1.125Sn plotted against the experimental
phonon DOS of TiNiCu0.1Sn.

For the case of Cu interstitials, by comparing Figure. 4.6 (a) against Figure 4.9, we can
see that with the homogeneous defect the same mismatch arises in the region of 20 meV.
The plots show a comparable level of agreement between the theoretical and experimental
phonon DOS as for the stoichiometric case, with the largest shift in frequencies between
theory and experiment occurring in the high-frequency regions. What can also be seen
is that the computational result with Cu interstitials shows a smoothed DOS in the low
acoustic energy range and does not appear to show a peak at around 8 meV as in the case
of the model with homogeneous Ni interstitials. It should be noted that once again a 5%
scaling factor has been applied to the computed frequencies as it is known that this is the
typical DFT error using the PBE functional when computing phonon spectra.
The same trend continues when looking at the results for the experimental phonon DOS
of ZrNi1.1Sn and ZrNiSn as seen in Figure. 4.10. Here we can see that in the closing
phonon gap seen from the phonon dispersion for the computed ZrNiSn in Figure. 4.1
(b) at around 18 meV, we once again have a phonon DOS present in the experimental
result, which is non zero. Synthesised samples usually contain a percentage of interstitials,
which deviates from the desired one-to-one stoichiometry that could contribute to the DOS
in this region. However, this can also be largely attributed to the fact that the phonon
gap present in TiNiSn at around 17-23meV begins to close in the ZrNiSn system as
seen in Figure. 4.1. When comparing the composition with 10% of Ni interstitials we
do not see clear broadening present in the acoustic region for ZrNi1.1Sn, but there is
clear broadening in the optic region around the peak at around 29 meV. The interesting
point to be made here is that even though it is expected to find some interstitials when
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Fig. 4.10 Experimental phonon DOS for stoichiometric fcc primitive cell of ZrNiSn plotted
against the experimental phonon DOS of ZrNi1.1Sn defective structure.

attempting to synthesise a defect-free ZrNiSn sample. The synthesis route for the defective
compositions of ZrNi1 + xSn is simpler than that for TiNi1 + xSn as the elemental mixture
can directly form the half-Heusler phase and not have to pass through a full-Heusler phase
in the process. This suggests that interstitial defects in both compounds could have a
preference for clustering regardless of the chemical pathway, but the preferential clustering
arrangement in both would have to be investigated. Furthermore, my collaborators had
prepared additional samples for the MARI INS experiment. Namely ZrNiSn, HfNiSn,
Ti0.5Zr0.25Hf0.25NiSn, Ti0.5Zr0.5NiSn and ZrNi1.1Sn. The plot of the experimental data for
these samples can be found in Appendix. A for a further comparison.

4.5 Lattice thermal conductivity

Now we can try to tackle one of the key questions for optimising the thermoelectric per-
formance of our systems, the lattice thermal conductivity. Here, I will present the results
for the computationally predicted κlat , these have been obtained using two different theo-
retical approaches to provide an additional layer of model testing. Due to the prohibitive
computational expense, the clustered defect model for the Ni interstitials was not possible
to compute given the time constraints and resources of the project. Therefore results were
computed for the homogeneous defect model as this could be achieved using a smaller
simulation cell to capture the pseudo-random arrangement of Ni interstitials and reach
the required convergence criteria for obtaining the second and third-order force constants.
The most computationally demanding calculation for the determination of third-order
force constants of the 100 atom TiNi1.125Sn supercell, required over 900 independent DFT
calculations parallelised using 54 processors, each running for up to 8 hours.
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Table 4.3 Lattice thermal conductivity as well as Grüneisen parameters calculated as a
weighted sum of mode contributions for TiNiSn and TiNi1.125Sn at 300K. Computed
theoretical values are shown as well as available theoretical and experimental values from
the literature.

Structure & Method κlatt(W/mK) Grüneisen parameter
TiNiSn (ShengBTE) 13.4 1.7

TiNiSn (Debye-Callaway) 7.9 n/a
TiNiSn (Literature Expt.) 8 [113] n/a

TiNiSn (Literature Theory) 14.5 [24], 15.4 [125] n/a
TiNi1.125Sn (ShengBTE) 0.43 2.2

TiNi1.125Sn (Debye-Callaway) 0.24 n/a

The results for the calculated and literature values of κlat can be seen in Table. 4.3.
Calculations obtained through the solution to the linearised phonon Boltzmann transport
equation as implemented in the ShengBTE code [114] give the intrinsic part of the κlat

and we can see that the obtained value of 13.4W/mK is in good agreement with previous
theoretical work [24, 125], however the value is significantly larger than the experimentally
obtained results. This can be attributed to the fact that extrinsic scattering effects have not
been included. Hence, I have also investigated the effect of grain boundaries using a simple
model according to κgb =

κint

1+
Lmp f
Lgb

, where κgb is the intrinsic lattice thermal conductivity

including grain boundary scattering, κint is the intrinsic lattice thermal conductivity, Lmp f

is the phonon mean free path, as obtained using ShengBTE and Lgb is the size of the grain
boundaries. In Figure. 4.11, we can see that lowering the grain size has a significant effect
on lowering the κlat and converges on the experimental results for grain sizes in the order
of a few hundred nanometers, with a value of 7.4W/mK at a grain size of 1x10−7 m.

Fig. 4.11 Plot showing the effect of different grain sizes on the computed value of the
thermal conductivity for TiNiSn at 300K.
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Fig. 4.12 Thermal conductivity of TiNiSn and TiNi1.125Sn plotted as a function of temper-
ature, calculated using the modified Debye-Callaway model (black line) and ShengBTE
(red line).

The only experimental values for TiNi1.125Sn are those from measurements taken by my
experimental collaborators, which are in the range of 2-4 (WmK) at 300K. Looking at the
computed results this is an order of magnitude difference for the values of 0.43 W/mK and
0.24 W/mK obtained from the solutions of the phonon Boltzmann transport equation and
the modified Debye-Callaway model respectively. The latter theoretical result seems to be
consistently smaller than the result obtained from the ShengBTE model by around 40%,
this could be because only a fraction of the optic modes are included in the calculation for
the modified Debye-Callaway model, we can see this trend across the predicted thermal
conductivity values as a function of temperature as seen in Figure. 4.12. The lower
than experimental predicted value of κlat may be due to the fact that this calculation
was performed for the homogeneous Ni interstitials model, which we have seen to be in
disagreement with the experimental result when analysing the neutron weighted phonon
DOS. This means that a further calculation for the clustered Ni model could lead to better
agreement with experimental results and test the accuracy of the theoretical approach.
The curve in Figure. 4.13 can show the value of the cumulative κlat up to a maximum
allowed phonon mean free path (MFP), here we can see a vast difference between TiNiSn
and TiNi1.125Sn where the final converged value of κlat can be found at 750 nm and 30 nm
respectively. This is an order of magnitude in difference and could suggest the possibility
of a large variation in grain sizes could dominate over the anharmonic scattering as a
possible explanation. However, as the experimentally obtained thermal conductivity values
have their own significant variations as observed for TiNiSn and often attributed to the
different sample processing techniques [126], it may be worthwhile to investigate the
optimal grain size which can be engineered for defective compositions with significant
excess Ni content of perhaps 10% as synthesised by my collaborators and modelled in my
investigations.
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Fig. 4.13 Cumulative lattice thermal conductivity of TiNiSn and TiNi1.125Sn as a function
of the maximum mean free path at a temperature of 300K. Both results were computed
using ShengBTE.

4.6 Conclusions

This chapter studies the vibrational properties of n-type XNiSn (X = Ti, Zr, Hf) based
compositions with a focus on exploring the effects of interstitial defects on the vibrational
spectrum and lattice component of the thermal conductivity. The phonon spectra were
theoretically modelled using an ab initio approach in conjunction with conducting measure-
ments of phonon DOS from powder inelastic neutron scattering experiments. Calculations
of κlat involved solving the Boltzmann transport equation as well as incorporating the
effect of grain boundaries. The use of supercells was required to theoretically model the
desired concentration and ordering of interstitial defects. Hence, a scheme for unfolding
their phonon dispersion was utilised to enable comparison against stoichiometric parent
compounds to unpack the complexity of the folded supercell phonon dispersions.
Calculations of the phonon spectra of the stoichiometric parent materials of TiNiSn, ZrNiSn
and HfNiSn were performed to understand the nature of the phonon modes and benchmark
against literature and experimental results. Good agreement of structural parameters as
well as qualitative features of the phonon dispersion was obtained. Due to the promising
experimental measurements of reduced κlat in the presence of interstitial Ni on the half-
Heusler vacancy sites, an in-depth investigation of the role of interstitial defects was
undertaken. Analysis of the results has shown that a clustered model for Ni interstitials
provides the best agreement with the experimentally measured phonon DOS in contrast to a
homogeneous interstitial Ni ordering. In addition, studying the effect on the phonon modes
has shown that the presence of Ni interstitials, a significant level of phonon broadening in
the low to intermediate phonon frequency range is present that can contribute to a reduction
of the mean phonon lifetimes. This effect is less pronounced in the low frequency region
for the compositions containing Cu interstitials, however significant phonon broadening is
still observed in the intermediate frequency range. Calculations of the κlat , were performed
for TiNiSn as well as the homogeneous defect model containing Ni interstitials, the latter
was chosen due to the lower computational cost in comparison to the clustered intestitial
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defect model, allowing for the calculation to be computationally feasible. There is a
range of values reported for the κlat for TiNiSn in literature for both theoretical and
experimental approaches. This stems from the knowledge that different synthesis and
preparation techniques seem to have an impact on the thermoelectric properties in the
case of experimental measurements. Moreover, due to difficulty in theoretical predictions
of κlat , the varying levels of theory, assumptions, and parameters used in theoretical
calculations that can impact the final result and agreement with experiment. However,
we have successfully demonstrated calculations solving the iterative Boltzmann transport
equation as implemented in ShengBTE for TiNiSn, resulting in good agreement with the
theory. Here it was evident that the inclusion of grain boundaries plays a major role in
the reduction of the κlat and an improvement of the synthesis process to optimise grain
size would be of great interest. In addition, demanding supercell defect calculations of
TiNi1.125Sn were successfully performed, showing an order of magnitude reduction in the
lattice thermal conductivity in predictions stemming from both the Boltzmann transport
equation and Debye-Callaway model. Clustering of Ni interstitials was not modelled for
the calculations of κlat due to the computational expense and time constraints of the project
but would be a useful future research direction to fully understand the role of interstitials
as a mechanism for lowering the κlat and optimising thermoelectric performance.



Chapter 5

Electronic properties of XNiSn (X = Ti,
Zr, Hf) with interstitial defects

5.1 Background

In chapter four we investigated the effects of interstitial defects on the phonon spectrum and
lattice component of the thermal conductivity. However, the viability of these half-Heusler
materials as good thermoelectrics is largely attributed to their good power factors. A
combination of X-site alloying and interstitial Cu defects was deployed and experimentally
measured in Ti0.5Zr0.25Hf0.25NiCu0.025Sn, achieving a power factor of 3.6 mWm−1K−2

[1]. Unlike the good power factors, half-Heusler’s have a relatively large thermal conduc-
tivity, which impedes performance. It can be seen from the results presented in chapter
four that interstitial defects can be a beneficial mechanism for optimising thermoelectric
performance, but the Seebeck coefficient, electrical conductivity, and thermal conductivity
are often interdependent mechanisms forming the optimisation challenges that we are
trying to solve. Attempts to understand and optimise thermal conductivity have been made
through different methods. For example, binary and tertiary X-site substitution led to
greater phonon scattering, primarily due to mass difference [24] as well as grain size engi-
neering through changing the synthesis method [127]. On the other hand, in this chapter
we will focus on the effects of Ni and Cu interstitials on the electronic properties of these
materials. We assess the consequences of interstitials as a mechanism for lowering thermal
conductivity and test if this route for optimising performance can be achieved without
significantly impeding the electrical properties. Previous efforts to compute the band gap
in the stoichiometric compositions of TiNiSn, ZrNiSn and HfNiSn resulted in a mismatch
with an experiment where the experimental band gap was measured at around 0.12 eV
[128] compared to a significantly larger theoretical band gap of around 0.43 eV [129].
These calculations were performed using the PBE (GGA) approximation and a well known
artefact of this exchange-correlation potential is that it often underestimates the band gap,
but here we see the contrary. Further experimental investigations have demonstrated that
TiNiSn has the ability to accommodate as much as around 10% of interstitials [1] and a
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smaller amount between 2-3% in ZrNiSn and HfNiSn. One study has modelled a low
concentration of 1% Ni interstitials and its effect on the band gap, with the study reporting
a band gap of 0.08 eV [129], now in much better agreement with the experimental result.
Nevertheless, no study to our knowledge has attempted to replicate interstitial content
close to the maximal experimental concentrations, which is what forms the main part of
the investigation in this chapter. In addition, the introduction of interstitial Cu doping has
been shown to improve the power factor. Electronic structure properties are studied and
analysed in this chapter in order to understand the origins of this improvement as well
as the effect of interstitial Ni and Cu concentration on the nature of the electronic band
structure.
To perform this analysis, I begin by first computing the stoichiometric electronic struc-
ture properties of TiNiSn, ZrNiSn and HfNiSn using the CASTEP code [51] to establish
baseline results and benchmark against existing literature, presenting the electronic band
structures. In order to model the effect of various interstitial concentrations, supercell
calculations were required. This introduces band folding due to the reduction of the Bril-
louin Zone upon increasing supercell size. Therefore, a procedure for obtaining effective
band structures was utilised with the help of the bs_sc2pc.f90 code [103] to enable the
comparison against the stoichiometric band structure along the primitive cell BZ. Mod-
elling was performed for 6.25% and 12.5% interstitial content of Ni and Cu. Qualitative
and quantitative comparisons against experimental findings are made for compositions
with comparable interstitial content. To understand the possible roots of mismatch with
predicted metallic behaviour for experimentally semiconducting compositions, calculations
were performed for charged systems via the removal of electrons. In addition, calcula-
tions applying the Hubbard U correction were undertaken with the aim of understanding
possible localisation effects through the application of the Hubbard U parameter to the
Ni d states. A further investigation was completed to compare the performance of the
RSCAN meta-GGA exchange-correlation functional, to determine whether this introduces
any qualitative differences in the result. In addition, a calculation of the effective band
structure of Ti0.5Zr0.5NiSn showing the effects of X-site substitution is presented and
contrasted against the effect of interstitial defects. Finally, a finite difference method
is utilised to compute the effective electron masses for the conduction band minima for
relevant compositions, using the formalism implemented in the emc.py code [105]. This
allows approximating the effective masses within the parabolic band approximation.

5.2 Computational Details

Electronic structure calculations were performed using the CASTEP first principles sim-
ulation package [51]. The same choice of pseudopotentials, calculation parameters, and
exchange-correlation potential was used as in chapter four, with the addition of the RSCAN
(meta-GGA) functional being utilised for a subset of the electronic structure calculations.
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A primitive face-centered-cubic cell containing 3 atoms was used for the stoichiometric
compositions. On the other hand, the supercell approximation was used in calculations
for the defective compositions to incorporate the interstitial defects. This was modelled
in supercells containing a 2x2x2 multiple of the primitive fcc cell, containing 25 atoms.
Structural relaxation was also performed using the same convergence criteria as in chapter
four. The electronic band structures of supercell calculations were unfolded to obtain
a primitive cell representation of the supercell band structure using the bs_sc2pc code
[103] which implements the scheme described by Popescu and Zunger [90], modified for
use with ultrasoft pseudo-potentials. The effective band structure (EBS) for the relaxed
structure was calculated along the G–X–G–L–W–X path in the primitive Brillouin zone
using the same convergence parameters as for the structural relaxation. Altering the num-
ber of electrons in the system was specified using the CHARGE parameter as required.
The Hubbard U was specified within the <seedname>.cell file for the chosen species and
orbitals. The electronic DOS was calculated on a fine 30x30x30 Monkhorst-Pack grid. The
graphical representation of the electronic DOS was plotted using the dispersion.pl [51]
script and matplotlib [115] was used for plotting the primitive cell band structures and well
as the supercell effective band structures. For the effective mass calculations the step size
controlling the grid for evaluating the energy derivatives with respect to k was set at 0.05
1/Bohr.

5.3 Stoichiometric electronic structure properties

TiNiSn, ZrNiSn and HfNiSn are half-Heusler alloys are a unique composition as even
though there are metallic constituents, the resulting structure forms an 18 electron closed-
shell system. In this chapter, the same simulation cell as for the calculations of vibrational
properties of the stoichiometric half-Heuslers was used to compute the electronic proper-
ties. Similarly, the defective structure calculations containing 12.5% of interstitials were
performed in a 2x2x2 multiple of the primitive fcc cell, where the homogeneous defect
placement was chosen to keep the computational expense relatively low, placed at the
4d (0.75, 0.75, 0.75) Wyckoff position. To model the lower 6.25% concentrations of Ni
in a larger 2x2x4 supercell containing 49 atoms was required. Lastly, a 2x2x5 supercell
containing 61 atoms was used to incorporate 5% of Cu interstitials.
The band structure plots of TiNiSn, ZrNiSn and HfNiSn can be seen in Figure. 5.1
with all three stoichiometric compositions being predicted as semiconducting with the
Fermi level placed within the band gap. The valence band maximum (VBM) is triply
degenerate, positioned at the Γ, and the conduction band minimum (CBM) can be found
at X. There is a small indirect band gap for each of the three systems at a size of 0.46
eV for TiNiSn, 0.5 eV for ZrNiSn, and 0.42 eV for HfNiSn. These values are in good
agreement with literature [130, 129]. However, the band gap in TiNiSn is bigger than the
experimentally reported gap of 0.12eV and as the PBE exchange-correlation functional
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Fig. 5.1 Electronic band structures of TiNiSn, ZrNiSn and HfNiSn. Plotted along the
W −L−Γ−X −W −K path through the Brillouin zone. The dashed red line represents
the Fermi energy.

is well known for underestimating the band gap, the significantly smaller experimental
band gap cannot be attributed to this discrepancy but would suggest the difference is even
larger. Consequent attempts to investigate this have found that measured samples contained
Ni interstitials, generally, when attempting to synthesise the stoichiometric half-Heusler
compound between 1-3% of Ni interstitials were present [1, 131]. In addition, TiNiSn was
shown to be unique, in that it is able to accommodate even larger concentrations of Ni
interstitials of up to 10%. This turns out to be significant as measurements of κlat have
shown a significant effect of lowering the κlat when increasing interstitial content, which
is crucial to optimising the thermoelectric performance in half-Heuslers. Investigations
of a small concentration with 1% of Ni interstitials have been computed within the GGA
treatment of the exchange and correlation and a band gap of 0.08 eV was stated. This
would suggest agreement with experimental data. Moreover, the study noted the presence
of in-gap Ni defect states, which would explain the closing of the gap in the presence of
interstitials. However, no further investigation was made to determine the optimal content
of Ni interstitials and their effect on the electronic properties.

Structure Direction Effective mass
TiNiSn Γ−X 2.92, 2.89[130]
TiNiSn X −W 0.59, 0.56[130]
ZrNiSn Γ−X 3.13, 3.23[130]
ZrNiSn X −W 0.41, 0.38 [130]
HfNiSn Γ−X 3.13 , 3.14[130]
HfNiSn X −W 0.39, 0.36 [130]

Table 5.1 Effective Masses of the conduction band minima represented in units of free
electron mass for TiNiSn, ZrNiSn, HfNiSn obtained from ab-intio calculations, computed
along high symmetry directions though the BZ.

Tests were performed to compute the effective masses of the CBM for the stroichiomet-
ric compositions of TiNiSn, ZrNiSn and HfNiSn along a chosen set of high-symmetry
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directions through the Brillouin zone. In Table. 5.1 we can see that calculated effective
masses are in close agreement with the values found in the literature [130]. This agreement
provides additional confidence to apply the methodology for calculating effective masses
of the more complex defective structures of these parent materials. The results of which
will be presented in Section. 5.4 where they will be analysed further.

5.4 Interstitial Ni and Cu defects in XNi1+xCuySn(X =
Ti, Zr, Hf)

Fig. 5.2 Unfolded bandstructures of 2 x 2 x 2 supercells for (a) TiNi1.125Sn, (b)
TiNi1.0625Sn, (c) TiNiCu0.125Sn and (d) TiNiCu0.05Sn showing the effect of varying in-
terstitial concentrations. The value of 1 on the colour bar corresponds to a single non-
degenerate band per energy interval. The continuous red line is the band structure for
TiNiSn, calculated using a primitive fcc unit cell. The dotted red line indicates the Fermi
energy.

This section of the chapter explores the unique ability of TiNiSn to accommodate larger
interstitial content. In addition to investigating the effect of Ni interstitials, we will also
explore the choice of Cu interstitials to act not only as a potential enhancement to phonon
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scattering but as a simultaneous n-type dopant. Results of the computed effective band
structures of these systems are presented in Figure. 5.2 with the PBE exchange-correlation
functional being used in this set of calculations. We can see in Figure.5.2 (a) and (b), the
appearance of in-gap Ni states, these have a rather flat curvature, suggesting localised
defect states. This is not seen with the addition of Cu interstitials that is in agreement
with experimental data showing no change to the electron mobility, which could’ve been
otherwise decreased due to carrier scattering [1]. Both the Ni and Cu interstitials show
the development of a new partially filled band at the CBM. Band fitting using a finite
differences approach and a valley degeneracy, Nv = 3 was used to compute the effective
masses for the band at the CBM that can be found at the X-point. This resulted in an
m∗

dos = 2.5 for TiNiCu0.125Sn, this higher value is due to an overall decrease in band
anisotropy even though the gradient of the band is steeper for the Γ−X direction and
is in line with the experimental result of m∗

dos = 4.1 [1], suggesting that addition of Cu
increases the effective mass. The computed m∗

dos of TiNiSn was found as m∗
dos = 2.1,

compared to the experimental m∗
dos = 2.8 for TiNiSn. The absolute values of the effective

masses are not in exact agreement with experimental values, but this can be attributed to
the fact that the method of fitting the effective mass is approximate, where the choice of
step size and degree of anisotropy will skew the result. In addition, the choice of GGA
exchange-correlation functional leads to approximations of the exchange energy, which
can lead to differences between the computed and experimentally found effective masses
[132].

Fig. 5.3 Unfolded bandstructures of 2 x 2 x 2 supercells for (a) HfNiCu0.125Sn, (b)
ZrNiCu0.125Sn showing the effect of varying interstitial Cu concentrations. The value of 1
on the colour bar corresponds to a single non-degenerate band per energy interval. The
continuous red line is the band structure for TiNiSn, calculated using a primitive fcc unit
cell. The dotted red line indicates the Fermi energy.

In addition, experimental samples contain defects and additional phases, which have an
impact on the electrical properties. For comparison calculations including Cu interstitials
were also performed for ZrNiCu0.125Sn and HfNiCu0.125Sn, the unfolded band structures
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Fig. 5.4 Unfolded bandstructure for the binary X-site substitution in Ti0.5Zr0.5NiSn show-
ing the effect of varying interstitial Cu concentrations. The value of 1 on the colour bar
corresponds to a single non-degenerate band per energy interval. The continuous red line
is the band structure for TiNiSn, calculated using a primitive fcc unit cell. The dotted red
line indicates the Fermi energy.

can be seen in Figure. 5.3. As it was demonstrated experimentally that these compositions
can only accommodate up to around 2-3% of interstitials, but 12.5% of interstitials was
modelled for consistency. This allows us to reinforce the presence of a new partially
filled band at the CBM as well as the lack of in-gap states for both ZrNiCu0.125Sn and
HfNiCu0.125Sn. In contrast, the EBS of Ti0.5Zr0.5NiSn modelling the effect of binary
X-site substitution is also computed and presented in Figure. 5.4, here the band structure
resembles that of the stoichiometric TiNiSn, with the presence of additional spectral weight
only near the X and W-points, but at energies distant from the Fermi level, so they are not
expected to play a role in conduction. Moreover, we do not see the development of a new
partially filled band at the CBM and no in-gap defect states can be seen. This behaviour
is to be expected as the band structures of the stoichiometric compounds show the same
qualitative features as it was seen in Figure. 5.1.

Structure Theoretical m∗
dos Exp. m∗

dos
TiNiSn 2.1 2.8
ZrNiSn 1.7 2.7
HfNiSn 1.6 2.7

TiNi1.25Sn 2.3 3.1
TiNiCu0.125Sn 2.5 4.1

Table 5.2 Effective masses for the conduction band minima of TiNiSn, ZrNiSn, HfNiSn,
TiNi1.25Sn and TiNiCu0.125Sn obtained from ab-intio calculations compared against exper-
imental data collected by my collaborators [9] for comparable compositions.
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5.4.1 Localised effects using Hubbard model

To try and understand the cause for the prediction of a metallic state in the case of the
calculations with Ni interstitials, one approach is to investigate localisation effects. Use of
the GGA exchange and correlation functional often suffers from an excessive delocalisation
error, which neglects correlation effects. Resulting in the localised states being placed too
close to the Fermi energy. This can be addressed using the DFT+U approach to apply a
Hubbard U model [71], which has been performed on the TiNi1.125Sn system. Applying
the Hubbard U is appropriate particularly for open shell d and f shell systems. When
looking at the nature of the DOS decomposed onto the angular momentum channels as
shown in Figure. 5.5, we can see that the open shell Ni d states have a significant DOS near
the Fermi level, providing for motivation in testing the ability of PBE in capturing their
correct band structure. The choice of the U parameter is semi-empirical and tests for a
range of U values (1-5 eV) have been undertaken as the U value is not known unless tuned
against known experimental results or computed using higher level calculations, such as
a DFT+DMFT approach [133]. The results of an unfolded electronic band structure of
TiNi1.125Sn with a U = 3 applied are presented in Figure. 5.6. We can see that the is still
partial filling of the conduction band at the X-point, with only a slight up-shift of the bands
in comparison to the calculation without the Hubbard U. This was consistent for all tested
U values and suggests that correlated Mott insulator type behaviour [71] is not evident
from the results and another mechanism for charge compensation may be involved.

Fig. 5.5 Partial DOS decomposed onto species and angular momentum channels for
TiNiSn.
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Fig. 5.6 Unfolded bandstructure for TiNi1.125Sn with a Hubbard U parameter of 3 applied.
The value of 1 on the colour bar corresponds to a single non-degenerate band per energy
interval. The continuous red line is the band structure for TiNiSn, calculated using a
primitive fcc unit cell. The dotted red line indicates the Fermi energy.

Fig. 5.7 Folded supercell bandstructure of (a) TiNi1.125Sn with no charge removed, (b)
TiNi1.125Sn with a +1 charge and (c) TiNi0.0625Sn with a +1 charge. The supercell BZ
path is shorter than that of the primitive cell BZ. The red dashed line represents the Fermi
energy.

Fig. 5.8 Folded supercell bandstructure of TiNiCu0.125Sn computed with 0, 1 and 2 elec-
trons removed. The supercell BZ path is shorter than that of the primitive cell BZ. The red
dashed line represents the Fermi energy.
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5.4.2 Charged calculations

Due to the additional electron from Cu, the Fermi energy has shifted upwards more
significantly than in the case of Ni, resulting in a larger volume of the conduction band
being partially filled around the CBM. The compositions with Ni and Cu both indicate
metallic behaviour in disagreement with the experiment. To understand the possible roots
of this mismatch and gain an estimate of the extent of charge compensation mechanisms
that may be present, calculations were performed for charged systems with the removal
of electrons. This was done by modifying the total number of electrons for the total
energy calculation in CASTEP. The results for the effect of a +1 charge on the TiNi1+xSn
composition at varying Ni concentration can be seen in Figure. 5.7. This figure shows
the folded supercell BS, which is not representative of the primitive cell E(k) relationship
apart from Γ and the position of the Fermi energy. We can see that the removal of charge
does in fact allow for the band gap to form, with the lower excess Ni concentration at
6.25% forming a gap of around 0.2 eV. In the case of adding Cu interstitials, the overall
net system charge was set and the band structure was re-calculated calculated for charge
values ranging from +1 to +2 charge in the case of Cu. The results are presented in Figure.
5.8. Here unlike in the case of interstitial Ni, removing electrons to achieve a +1 net
charge still results in metallic behaviour, with partial filling of the conduction band. In
Figure. 5.8 (c) for the Cu +2 system, the Fermi level now placed in the valence band.
Hence, an intermediate level of charge compensation is expected. However, the numerical
convergence of the Brillouin Zone integral in the calculation of the Fermi level is difficult
to accomplish. Therefore, taking into account a margin of error and the fact that a discrete
number of electronic states is expected, it’s likely that the Cu +1 system would result in
the Fermi level within the band gap. From the computed results with the present level
of convergence, n-type semiconducting behaviour might be expected with a net charge
between +1 and +2 electrons. This could arise from grain boundaries, point defects, and
other mechanisms that could explain the experimentally observed behaviour if additional
charge compensation is a real effect. Experimental Hall data [9] for the TiNiCu1+xSn
composition shows carrier concentrations greater than 1 e−/Cu. This coincides with
the obtained theoretical results. However, it was not possible to establish the specific
macroscopic mechanism responsible for this effect from the current results. The charge
compensation for the Ni interstitials in the experimental samples can occur due to other
negative species in the sample, possibly in the form of metal vacancies or the presence of
oxygen. This would allow the composition containing interstitials to retain semiconducting
behaviour and allow the Fermi energy to be found in the band gap.

5.4.3 GGA vs meta-GGA

Another approach to tackle potential sources of inaccuracy through the use of semi-
local GGA functionals is to go a step further and use newer formulations for exchange
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functionals, which aim to provide greater accuracy through the addition of the orbital
kinetic energy density, namely meta-GGA’s. This is precisely the approach deployed in
this section using the rSCAN functional [100]. Structural relaxation of the atomic positions
was performed. This was followed by a calculation of the electronic DOS for TiNi1.125Sn,
the results are shown in Figure. 5.9. Here we can see that there is still non-zero density
present around the Fermi energy, meaning that the prediction of a metallic state still persists.
There is a small change to the DOS around the Fermi energy with additional DOS near
the conduction band minimum. This suggests further evidence of the need to investigate
additional charge compensation effects apart from only considering the localisation of Ni
d states.

Fig. 5.9 Electronic DOS computed for TiNi1.125Sn with PBE (blue) and rSCAN (black)
exchange-correlation functionals.

5.5 Conclusion

In summary, the baseline results for structural parameters and electronic structure properties
of stoichiometric compositions are in good agreement with benchmark literature results.
This chapter establishes the impact of large Ni and Cu interstitial content on the electronic
structure properties. The results of the calculations considering the addition of interstitial
Cu have shown to provide the most promising effect in enhancing thermoelectric properties
compared to Ni interstitials. This is due to the lack of in-gap states being present that
could otherwise lead to carrier scattering and impede carrier mobility. The experimental
semi-conducting behaviour and band gap require further investigation as applying the
Hubbard U correction on the Ni d states does not provide a conclusive result with metallic
behaviour still being predicted in disagreement with experimental findings. Moreover,
using the rSCAN meta-GGA functional for the treatment of the exchange and correlation,
did not change to prediction of a metallic state from calculation. Performing charged
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calculations revealed that the compensation of 1 e− charge for systems with interstitial Ni
reproduces the semi-conducting behaviour and presence of a band gap, consistent with
experiment and literature [134, 129], even at an interstitial content of 12.5%. Whereas in
the case of Cu interstitial, where the additional electron in Cu leads to an intermediate
level of charge compensation between 1-2 electrons. However, a discrete number of
electronic states is expected and there is a likely hood that the Cu +1 system would result
in the Fermi level within the band gap as some uncertainty can arise due to numerical
convergence errors when computing the exact position of the Fermi level. Further studies
could consider investigating applying the Hubbard U parameter to additional states or
alternative treatments of correlated systems using approaches such as DFT + DMFT [135]
as well as modelling the effects of other charge compensation mechanisms due to the
presence grain boundaries or other defects. Moreover, it would be of interest to compute
charged calculations for the Zr and Hf based half-Heuslers containing interstitial Ni and
Cu to compare and contrast against the TiNiSn based compositions.



Chapter 6

Electronic structure properties of
Nb1 – xCoSbySn1 – y

6.1 Background

Generally, when considering half-Heuslers as potential thermoelectrics, we search com-
positions that satisfy the 18 electron rule for the valence electrons. This often ensures
semiconducting behaviour, allowing for further attempts in optimising the electronic prop-
erties to enhance performance, commonly achieved through doping. However, it has been
found that only searching for compositions that satisfy the 18 electron rule, may omit
potential candidates for good thermoelectric materials. We will begin this chapter by
computing the stoichiometric electronic structure properties of NbCoSn and NbCoSb,
which are 18 and 19 electron compositions respectively. Interestingly, the 19 electron
NbCoSb system is found to be one such potential composition and behaves as an n-type
material showing good thermoelectric performance, with a measured ZT value of 0.4 at
973K [25]. Similar to the XNiSn (X = Ti, Zr, Hf) compositions, the series of compositions
in this chapter benefits from the desirable low cost, non-toxic, and relatively abundant
materials [136]. This prompted investigations to optimise thermoelectric performance in
these materials. One of the initial endeavours involved Sn doping in NbCoSbxSn1 – x, where
an improved ZT of 0.56 was achieved at 20% (x = 0.2) Sn doping [25]. Further experimen-
tal efforts analysing synchrotron data had revealed significant numbers of stable Nb site
vacancies, tending towards a composition of Nb0.8CoSb, which leads the system back to
an average count of 18 valence electrons. It was subsequently theoretically predicted that
the NbCoSb structure is unstable [137]. My investigations model this system through DFT
calculations, in order to benchmark and perform analysis of the electronic structure of
these compositions through analysis the band structures, electronic DOS, and computing
the effective electronic masses, m∗dos. In addition, my collaborators have measured the
thermoelectric properties of the defective Nb0.85CoSb composition, which resulted in a
ZT of 0.5 at 950K. Even though this experimentally measured composition contains 18.25
valence electrons, the material displays semiconducting behaviour and can be treated as
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a heavily doped semiconductor. I then investigate the composition of Nb0.9CoSb0.5Sn0.5,
which allows the composition to maintain an average 18 electron count at a smaller number
of Nb vacancies, but reducing the average number of electrons through replacing 50% of
the Sb atoms with Sn. The behaviour of this system is found to be semiconducting, with
an effective mass, m∗dos of 1.0 me for Nb0.8CoSb and 9.5 me in Nb0.9CoSb0.5Sn0.5 at the
CBM. It is shown that the position and ordering of the CBM minimum are sensitive to Sn
concentration enabling band convergence to increase the valley degeneracy and therefore
increasing the m∗dos. This provides additional insight in understanding the effects on the
electronic band structure in a composition with a complex defect structure. However, the
nature of thermal transport has not yet been fully investigated.

6.2 Computational Details

Electronic structure calculations were performed using the CASTEP first-principles sim-
ulation package [51]. The same choice of pseudopotentials, calculation parameters, and
exchange-correlation potential was used as in chapter four. A primitive face-centered-cubic
cell containing 3 atoms was used for the stoichiometric compositions. On the other hand,
the supercell approximation was used in calculations for the defective compositions with
interstitials. The supercell was a 2x2x5 multiple of the primitive fcc cell, containing be-
tween 56 atoms for the case of Nb0.8CoSb and 58 atoms for Nb0.9CoSb0.5Sn0.5. Structural
relaxation, supercell band structure unfolding and plotting of the effective band structure
and electronic DOS were performed using the same methods and parameters as in chap-
ter five. The effective band structure for the relaxed structure was calculated along the
Γ–X–Γ–L–W–X path in the primitive Brillouin zone.

6.3 18 vs 19 electron properties, NbCoSb vs NbCoSn

As NbCoSb and NbCoSn are half-Heusler alloys, they share the same structure with XYZ
(X = Ti, Zr, Hf) type compositions described in chapters four and five. The key difference
of this chapter is the modelling of defects due to deficiency of the X-site Nb atoms, without
modelling any potential interstitial content in the half-Heusler vacancy sites. In the case
of the effect of heavy Sn doping, the Z-site atoms of Sb are substituted to achieve the
desired concentration. The relaxed lattice parameter for NbCoSb is in good agreement
with theoretical literature results [138]. There is more than a 1% mismatch between
the experimental lattice parameter for NbCoSb. However, this result did not take into
account the possibility of Nb defects, we can see in Table. 6.1 that the lattice parameter
of Nb0.8CoSb is in better agreement with the experimental result, differing by 0.04 Å, the
slight overestimation is within the expected error of the GGA approximation [139].
We begin the journey to understanding more about the electronic properties in these
materials by plotting the electronic band structures of NbCoSb and NbCoSn as seen in
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Structure Lattice Param. (Å) Exp. Lattice Param (Å)
NbCoSb 5.978, 5.975 [138] 5.897[25]
NbCoSn 5.968 5.954 [140]

Nb0.8CoSb 5.938 5.899 [137]
Nb0.9CoSb0.5Sn0.5 5.952 n/a
Table 6.1 Equilibrium Lattice Parameters of NbCoSb and NbCoSn

Fig. 6.1 Electronic bandstructures of a) 19 valence electron NbCoSb and b) 18 valence
electron NbCoSn half-Heuslers. The dashed red line represents the Fermi energy.

Figure. 6.1. The latter predicts semi-conducting behaviour with a clear band-gap of around
1 eV. The CBM can be located at the X-Point in the primitive cell BZ and band convergence
can be observed. Where as the 19 valence electron NbCoSb system is predicted to have
the Fermi level situated well into the conduction band, predicting metallic behaviour with
the position of the Fermi level relative to the valence and conduction bands can be clearly
seen in Figure. 6.2, which displays the electronic DOS. This is an expected finding as
the usual 18-electron rule is not satisfied, but one that was puzzling at first as in an initial
study, semi-conducting behaviour was experimentally observed [25]. However, further
studies have shown that this composition is unstable [137] and in fact diffraction data has
shown a formation of between 15-17% of Nb vacancies on the X-site [141]. This provides
a mechanism that reduces the electron count down in the range of 18.15-18.25 electrons,
with the additional electrons above 18 acting as a dopant.

6.4 Maintaining 18 electron count through X-site vacancy
and doping

To gain further insight into the behaviour of the Nb vacancies. I have computed the
unfolded band structure of Nb0.8CoSb along the Γ-X-Γ-L-W-X high symmetry path of
the fcc primitive cell of NbCoSb. This supercell is a 2x2x5 multiple of the primitive cell
and due to the Nb vacancies, the symmetry has been reduced, leading to a change from
the space group of F 4̄3m (216) to a space group of Cm (8). Because this is an attempt to
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Fig. 6.2 Density of states of a) 19 valence electron NbCoSb and b) 18 valence electron
NbCoSn half-Heuslers. The dashed red line represents the Fermi energy.

model one configuration from a cubic ensemble, only internal coordinates were structurally
optimised and not the cell parameters. This result is presented in Figure. 6.3. We can see
the Fermi energy is in the band gap, predicting semiconducting behaviour in agreement
with experimental findings. The position of the VBM and CBM at the L-Point and X-Point
remains unchanged. The presence of a significant level of defects due to the presence of
20% Nb vacancies and symmetry breaking leads to broadening of the bands, with some
additional spectral weight present in the band gap. The CBM at the X-point appears to have
a single minimum, with the closest higher energy band at a separation of around 0.1 eV,
corresponding to a temperature greater than 1000 K. This suggests no increase to the valley
degeneracy as the states in the flatter band would not be thermally available, which does
not suggest an increase of the m∗dos. However, the literature mentions the development of
a new minimum forming at the high-symmetry point U [137] with a different space group
symmetry of I4(̄82) that could result in a higher valley degeneracy. This high-symmetry
point was not sampled in the chosen BZ high-symmetry path for the result in Figure. 6.3.
The experimental samples show a global cubic symmetry with the F 4̄3m (216) space group.
Meaning that the choice of the ordering of the Nb vacancies may not exactly represent the
experimental electronic structure properties.
The next set of results presents an investigation into a complex defective structure model
of Nb0.9CoSb0.5Sn0.5, which contains both Nb vacancies as well as Sn substitution on the
Z-site. As Sn has one less valence electron per atom, this composition allows to satisfy
the 18-electron rule exactly. The unfolded band structure for this composition can be seen
in Figure. 6.4. We can see that the calculation predicts semiconducting behaviour and
exhibits band convergence at the X-point, with a flattening of the heavier band, particularly
in the X - Γ direction. The effects of this can be quantified by looking at the results for the
effective masses, which were obtained according to the effective mass density of states
formula m∗dos = (N2

v ∗ml ∗mt ∗mt)
1
3 , where m∗dos is the effective electron mass, Nv is

the valley degeneracy, ml and mt are the longitudinal and transverse masses. The results
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Fig. 6.3 Unfolded band structure of a 2 x 2 x 5 supercell of Nb0.8CoSb. The value of 1
on the colour bar corresponds to a single non-degenerate band per energy interval. The
continuous red line is the band structure for NbCoSb, calculated using a primitive fcc unit
cell. The dotted red line indicates the Fermi energy.

are presented in Table 6.2. The effective masses are computed using a finite difference
method at the band extrema. An effective mass of m∗dos = 5.1 is found for NbCoSn,
in reasonable agreement with the experimental result of m∗dos = 6 [9]. The literature
investigating Sn doping, reports an increase in the effective mass to about m∗dos = 10,
this trend is in agreement with the increase for Nb0.9CoSb0.5Sn0.5, which was computed
to have an m∗dos = 9.5. As the two bands at the CBM are converged to around 0.01eV,
both are expected to contribute to the effective mass. However, the band fitting can only
approximate the m∗dos of a single band, upon looking at Figure. 6.4 we can see that the two
band curvatures are different and anisotropic along the plotted Γ - X and X - Γ directions
with additional anisotropy possible along directions that can not be seen from the plot.
Normally the valley degeneracy of the half-Heusler X-point is Nv = 3, but to account for
the two bands converging this is increased to Nv = 6. Therefore, only the flatter band has
been considered and no further theoretical model was deployed to consider the curvatures
of both bands simultaneously. This will contribute to discrepancies in the computed and
experimental values of m∗dos. Comparing with the result when modelling only the Nb
vacancies, there appears to be sensitivity to Sn doping on band convergence, but not in the
case of X-site Nb content. This is beneficial as the level of Sn can be tuned in order to
optimise the power factor, with a trade-off between maximising the Seebeck co-efficient
and not impeding the carrier mobility. When considering the effective mass of Nb0.8CoSb
as a single contributing band at the CBM, the band shows a steep curvature and has a
valley degeneracy of Nv = 3. This results in a low m∗dos = 1 that is almost an order of
magnitude smaller from the result of m∗dos = 9.6 obtained experimentally [141]. The
current computational result cannot completely disregard the current ordering of the light
and heavy band in this system, but it is possible that the heavy band is in fact the one
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contributing at the CBM. This stems from the fact that the computational model does not
always fully reflect the real system. This may suggest that there is another mechanism that
impacts the band structure, band ordering, or valley degeneracy. This could include the
dependence of Nb vacancy ordering [142] or Co interstitials.

Fig. 6.4 Unfolded band structures of a 2 x 2 x 5 supercell of Nb0.9CoSb0.5Sn0.5. The value
of 1 on the colour bar corresponds to a single non-degenerate band per energy interval.
The continuous red line is the band structure for NbCoSn, calculated using a primitive fcc
unit cell. The dotted red line indicates the Fermi energy.

Structure Theoretical m∗
dos Lit. m∗

dos
NbCoSn 5.1 6.0[9],
NbCoSb 5.2 (heavy band), 0.0 (light band) 7.7[9], 7.6 [25]

Nb0.9CoSb0.5Sn0.5 9.5 n/a
Nb0.8CoSb 5.6 (heavy band), 1.0 (light band) 7.7[9]

Table 6.2 Effective Masses of NbCoSn, NbCoSb, Nb0.9CoSb0.5Sn0.5 and Nb0.8CoSb ob-
tained from ab-intio calculations compared against literature data of approximate composi-
tions.

6.5 Conclusions

We have investigated the electronic band structure properties for Nb1 – xCoSbySn1 – y type
compositions. The presence of X-site Nb vacancies and their effect of the band structure
was investigated due to an initial mismatch between computational efforts to model the
stoichiometric NbCoSb composition and experimental structural measurements which
later revealed the presence of X-site vacancies. To model this effect, a simulation cell of
Nb0.8CoSb was prepared to contain 20% of Nb-site vacancies, providing good agreement
with experimental structural parameters. A method for unfolding for computing the
effective band structure for the defective supercell calculations was used, to capture
the effect of the Nb defects in comparison to the stoichiometric parent materials. The
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presence of a band gap is shown in agreement with the experiment, with a single band
expected to contribute to conduction, leading to an m∗dos significantly smaller than for
experimental measurements, due to the computed ordering of the bands in the chosen defect
model. Different orderings of the Nb vacancies should be considered to determine the
consequences on the electronic properties to investigate if behaviour of the really system
can be theoretically found. Additional mechanisms for optimisation of thermoelectric
properties and achieving band convergence to increase valley degeneracy, such as the role
of interstitial defects may be of interest in future calculations. An effort was made to
understand the effect of heavy Sn doping in the Nb0.9CoSb0.5Sn0.5 composition, designed
to satisfy the 18-electron rule through both Nb-site vacancy and substitution of 50% Sb
with Sn. The outcome of computing the effective band structure also predicts a band gap as
well as band convergence at the CBM. Consequently, leading to a higher valley degeneracy
and a m∗

dos that is good agreement with the experiment. This revealed the sensitivity of
conduction bands to Sn concentration. These findings suggest that tuning the Nb vacancy
content and level of Sn doping can be used as a mechanism for optimising the carrier
concentration and increasing the Seebeck coefficient. Furthermore, studies of thermal
transport properties would be of considerable interest, to understand the effect of Nb
vacancies on the thermal conductivity and to gain predictive power in further optimisation
of the thermoelectric properties of these materials.



Chapter 7

Conclusions

This thesis has focused on investigating the thermoelectric properties of half-Heusler
alloys using first-principles simulations as well as inelastic neutron scattering experiments.
The field of thermoelectrics was introduced discussing thermoelectric materials, real-
world applications, and approaches to optimise performance. In Chapter 2, the required
theoretical framework underpinning the first-principles calculations was laid out. Whereas,
Chapter 3 contains the methodology required to perform and repeat the simulations and
experiments found in this work.
Chapter 4, examines the effects of interstitial Ni and Cu defects on the vibrational spectra
and lattice component of the thermal conductivity in n-type XNiSn (X = Ti, Zr, Hf)
based compositions. The results begin by presenting the benchmark calculations of the
stoichiometric materials, showing good agreement with the literature. Results of the
unfolded phonon spectra and neutron weighted phonon DOS are presented for defective
supercells containing interstitials. In-depth analysis of Ni interstitials has shown that a
clustered model in which Ni interstitials are found in clusters of neighbouring vacancy
sites results in the best agreement with the experimentally measured phonon DOS. In
addition, a significant level of phonon broadening was found in the presence of both
Ni and Cu interstitials, which can act to reduce the phonon lifetimes and lower the κlat .
This was followed by calculations of κlat and the effect of grain boundaries in TiNi1+xSn
using the homogeneous Ni defect model, here the Ni interstitials are placed on the same
supercell vacancy site in each periodic repetition of the supercell with no clustering on
neighbouring vacancy sites. This has revealed a large reduction in the κlat for the defective
composition when computed via both the iterative solution of the phonon BTE approach
and the modified Debye-Callaway model. A significant impact of grain boundaries can
be seen on lowering the value of κlat , providing an additional optimisation mechanism
via modification of the material synthesis process. Therefore, the ability to model the
different configurations of complex defective structures in these materials has yielded a
greater understanding of the possible microstructure in the real system. This is a novel set
of calculations and we have not come across previous attempts of obtaining the κlat using
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a full iterative solution of the phonon BTE for defective structures which originate from a
supercell model.
In Chapter 5, we investigate whether the presence of interstitials does not impede the
electronic properties of TiNi1+xSn and TiNiCuxSn. Results of the calculations have shown
the addition of interstitial Cu into the TiNiSn half-Heusler matrix provides an enhancement
of the thermoelectric properties and can simultaneously serve as a dopant. Unlike in the
case of Ni interstitials, no in-gap states were present for the TiNiCuxSn composition that
could otherwise lead to carrier scattering and impede carrier mobility, suggesting Cu is
the better choice which is in agreement with experiment. The discrepancy between the
experimentally observed semi-conducting and predicted metallic behaviour in the defective
systems containing Ni and Cu interstitial was investigated by applying the Hubbard U
model on the Ni d state electrons as well as through the use of the RSCAN meta-GAA
exchange-correlation functional. The results did not reveal conclusive evidence for Mott
like behaviour of the Ni electrons as the mechanism for charge compensation, but we can
approximate the charge compensation to lie in the region between 1-2 electrons. We have
also ruled out the choice of exchange-correlation functional as a source of error through the
use of the RSCAN functional. This raises the question of potential existence of unknown
microscopic origin, perhaps due to charge compensation at the grain boundaries or other
defects that would merit an investigation.
Lastly, in Chapter 6, we compute the electronic structure properties of NbCoSb and
NbCoSn half-Heusler alloys and their defective structures. Experimental structural mea-
surements have shown a significant level of stable Nb vacancies lowering the average
number of valence electrons to satisfy the half-Heusler 18-electron rule. This class of defect
was modelled using the supercell approach, resulting in a prediction of semi-conducting be-
haviour in agreement with the experiments and good agreement with structural parameters,
which had previously shown a large deviation for the stoichiometric NbCoSb system. The
effect of Sn doping in Nb0.9CoSb0.5Sn0.5 was explored, designed to satisfy the 18-electron
rule through both Nb-site vacancy and substitution of 50% Sb with Sn. The outcome of
computing the effective band structure predicted a band gap as well as band convergence
at the CBM. Consequently, leading to a higher valley degeneracy and higher m∗

dos in good
agreement with experiment. This also revealed the sensitivity of conduction bands to Sn
concentration, suggesting an expected improvement in the Seebeck coefficient.

7.1 Future Research

Calculations of κlat of the clustered Ni interstitial model was not performed in this work
due to a prohibitive computational expense. As the clustered Ni model provided good
agreement with the experimental phonon DOS, future calculations of the clustered Ni
defect model may provide a better prediction of the κlat in the real system. We have shown
that calculation for estimating the κlat by solving the Boltzmann transport equation can
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be used to investigate and provide insight in complex defective systems, which would not
be possible to model using smaller simulation cells. However, it is clear that modelling
of disordered systems requires large supercells and multiple configurations to reduce the
uncertainty of a particular defect model and its ability to correctly model the real system.
This is a clear limitation of the method, where a degree of mismatch with experiment is to
be expected and improvements through the increase of supercell size carry a large increase
in the computational expense.
Regarding the mismatch in the experimental measurement of a semi-conducting state
and a prediction of a metallic state for the electronic structure properties of compositions
involving Ni and Cu interstitials in Chapter 5. Further studies could consider investigating
applying the Hubbard U parameter to additional states or alternative treatments of correlated
systems using approaches such as DFT + DMFT [135] or model the effects of other charge
compensation mechanisms due to grain boundaries or impurity defects. In addition, it has
been shown in Chapter 4 that clustered Ni model provides a better description of the nature
of lattice dynamics, an obvious route would be to consider Ni clustering to determine
the potential impact on the electronic structure. Furthermore, the method used in this
work to compute m∗

dos has consistently shown reasonable agreement with experimental
findings, showing that this method has value for calculations of m∗

dos in a range of material
compositions.
Different orderings of the Nb vacancies should be considered to determine the conse-
quences on the electronic structure properties. Additional mechanisms for optimisation of
thermoelectric properties and achieving band convergence to increase valley degeneracy,
such as the role of interstitial defects are of considerable interest. Moreover, studies of ther-
mal transport properties to understand the effect of Nb vacancies on the vibrational spectra
and thermal conductivity can provide a route to further optimisation of the thermoelectric
properties in these materials.
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Appendix A

Experimental INS Results

Additional results of the inelastic neutron scattering measurements of the phonon
DOS for the half-Heusler compositions of TiNiSn, ZrNiSn, HfNiSn,Ti0.5Zr0.5NiSn and
Ti0.5Zr0.25Hf0.25NiSn are provided to display the effects of binary and ternary X-site
substitution and can be seen in Figure. A.1.

Fig. A.1 Experimental phonon DOS for TiNiSn, ZrNiSn, HfNiSn, Ti0.5Zr0.5NiSn and
Ti0.5Zr0.25Hf0.25NiSn as measured on the MARI instrument.

We can see that the introduced mass disorder due to the X-site substitution of TiNiSn with
heavier elements of Zr and Hf. The largest effect can be seen from the down-shift of the
high frequency optic phonon modes. Where the stoichiometric TiNiSn peaks at around 26
meV and 33 meV have down-shifted by about 3 meV. This suggests that mass-disorder
scattering is the most effective at scattering the high frequency phonons in this system.
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