
ar
X

iv
:1

40
3.

18
66

v2
 [

cs
.C

R
]

 7
 A

pr
 2

01
4

An Expressive Model for the Web Infrastructure:

Definition and Application to the BrowserID SSO System∗

Daniel Fett, Ralf Küsters, Guido Schmitz
University of Trier, Germany

{fett,kuesters,schmitzg}@uni-trier.de

Abstract

The web constitutes a complex infrastructure and as demonstrated by numerous attacks,
rigorous analysis of standards and web applications is indispensable.

Inspired by successful prior work, in particular the work by Akhawe et al. as well as
Bansal et al., in this work we propose a formal model for the web infrastructure. While unlike
prior works, which aim at automatic analysis, our model so far is not directly amenable to
automation, it is much more comprehensive and accurate with respect to the standards and
specifications. As such, it can serve as a solid basis for the analysis of a broad range of
standards and applications.

As a case study and another important contribution of our work, we use our model
to carry out the first rigorous analysis of the BrowserID system (a.k.a. Mozilla Persona),
a recently developed complex real-world single sign-on system that employs technologies
such as AJAX, cross-document messaging, and HTML5 web storage. Our analysis revealed
a number of very critical flaws that could not have been captured in prior models. We
propose fixes for the flaws, formally state relevant security properties, and prove that the
fixed system in a setting with a so-called secondary identity provider satisfies these security
properties in our model. The fixes for the most critical flaws have already been adopted by
Mozilla and our findings have been rewarded by the Mozilla Security Bug Bounty Program.

∗An abridged version appears in S&P 2014 [14].

1

http://arxiv.org/abs/1403.1866v2

CONTENTS 2

Contents

1 Introduction 4

2 Communication Model 5
2.1 Terms, Messages and Events . 6
2.2 Atomic Processes, Systems and Runs . 7
2.3 Atomic Dolev-Yao Processes . 7

3 Our Web Model 8
3.1 Web System . 8
3.2 DNS Servers . 10
3.3 HTTP Messages . 10
3.4 Web Browsers . 11

3.4.1 Browser State: Zp and sp0 . 11
3.4.2 Web Browser Relation Rp . 13

3.5 Web Servers . 17
3.6 Limitations . 18

4 The BrowserID System 18
4.1 Overview . 18
4.2 Implementation Details . 19
4.3 Sideshow and BigTent . 22
4.4 Secondary Identity Provider . 23

5 Analysis of BrowserID 23
5.1 Security Properties for BrowserID . 23
5.2 Attacks on BrowserID . 24

5.2.1 Identity Forgery . 24
5.2.2 Login Injection Attack . 24
5.2.3 Key Cleanup Failure Attack . 25
5.2.4 Cookie Cleanup Failure Attack (for the case of secondary IdP only) 25

5.3 Analysis of BrowserID with sIdP . 25
5.4 Security of the Fixed System . 27

6 Related Work 27

7 Conclusion 28

A Message and Data Formats 28
A.1 Notations . 29
A.2 URLs . 30
A.3 Origins . 30
A.4 Cookies . 30
A.5 HTTP Messages . 30
A.6 DNS Messages . 31

CONTENTS 3

B Detailed Description of the Browser Model 32
B.1 Notation and Terminology (Web Browser State) 32
B.2 Description of the Web Browser Atomic Process 34

B.2.1 Functions . 34
B.2.2 Main Algorithm . 40

C DNS Servers 41

D Step-By-Step Description of BrowserID (Primary IdP) 42

E Sideshow/BigTent OpenID Flow 44
E.1 OpenID Authentication Request . 44
E.2 OpenID Authentication Response . 44
E.3 Verification . 45

F Step-By-Step Description of BrowserID (Secondary IdP) 47
F.1 Additional Checks . 48
F.2 Automatic CAP Creation . 49
F.3 LPO Session . 49
F.4 Logout . 49

G BrowserID Model 49
G.1 Attacker . 50
G.2 Browsers . 50
G.3 LPO . 50
G.4 Relying Parties . 54
G.5 BrowserID Scripts . 55

G.5.1 Some Notation and Helper Functions . 55
G.5.2 script_LPO_cif . 57
G.5.3 script_LPO_ld . 60
G.5.4 script_RP_index . 63

H Security Property 66

I Proof of Theorem 1 66
I.1 Condition A . 66

I.1.1 The attacker does not know k in sj . 74
I.1.2 The attacker knows k in sj . 75

I.2 Condition B . 76

1 INTRODUCTION 4

1 Introduction

The World Wide Web is a complex infrastructure, with a rich set of security requirements
and entities, such as DNS servers, web servers, and web browsers, interacting using diverse
technologies. New technologies and standards (for example, HTML5 and related technologies)
introduce even more complexity and security issues. As illustrated by numerous attacks (see, e.g.,
[2,6,21,28,31]), rigorous analysis of the web infrastructure and web applications is indispensable.

Inspired by successful prior work, in particular the work by Akhawe et al. [2] and Bansal et
al. [5, 6], one goal of our work is to develop an expressive formal model that precisely captures
core security aspects of the web infrastructure, where we intend to stay as close to the standards
as possible, with a level of abstraction that is suitable for precise formal analysis. As further
discussed in Section 6, while prior work aimed at automatic analysis, here our main focus is to
obtain a comprehensive and more accurate model with respect to the standards and specifications.
As such, our model constitutes a solid basis for the analysis of a broad range of standards and
applications.

The standards and specifications that define the web are spread across many documents,
including the HTTP standard RFC2616 (with its successor HTTPbis) and the HTML5 speci-
fication [18], with certain aspects covered in related documents, such as RFC6265, RFC6797,
RFC6454, the WHATWG Fetch living standard [33], the W3C Web Storage specification [32],
and the W3C Cross-Origin Resource Sharing specification [12], to name just a few. Specifica-
tions for the DNS system and communication protocols, such as TCP, are relevant as well. The
documents often build upon each other, replace older versions or other documents, and some-
times different versions coexist. Some details or behaviors are not specified at all and are only
documented in the form of the source code of a web browser.

Coming up with an accurate formal model is, hence, very valuable not only because it
is required as a basis to precisely state security properties and perform formal analysis, but
also because it summarizes and condenses important aspects in several specifications that are
otherwise spread across different documents.

Another goal and important contribution of our work is to apply our model to the BrowserID
system (also known under the marketing name Mozilla Persona), a complex real-world single
sign-on system developed by Mozilla. BrowserID makes heavy use of several web technologies,
including AJAX, cross-document messaging (postMessages), and HTML5 web storage, and as
such, is a very suitable and practically relevant target to demonstrate the importance of a
comprehensive and accurate model.

More precisely, the main contributions of our work can be summarized as follows.

Web model. We propose a formal model of the web infrastructure and web applications. Our
model is based on a general Dolev-Yao-style communication model, in which processes have
addresses (modeling IP addresses) and, as usual in Dolev-Yao-style models for cryptographic
protocols (see, e.g., [1]), messages are modeled as formal terms, with properties of cryptographic
primitives, such as encryption and digital signatures, expressed as equational theories on terms.

As mentioned before, our model is intended to be expressive and close to the standards and
specifications, while providing a suitable level of abstraction. Our model includes web servers,
web browsers, and DNS servers. We model HTTP(S) requests and responses, including several
headers, such as host, cookie, location, strict-transport-security (STS), and origin headers. Our
model of web browsers captures the concepts of windows, documents, and iframes as well as
new technologies, such as web storage and cross-document messaging. It takes into account

2 COMMUNICATION MODEL 5

the complex security restrictions that are applied when accessing or navigating other windows.
JavaScript is modeled in an abstract way by what we call scripting processes. These processes
can be sent around and, among others, they can create iframes and initiate XMLHTTPRequests
(XHRs). We also consider two ways of dynamically corrupting browsers. Altogether, our model
is the most comprehensive model for the web infrastructure to date (see also Section 6).

Analysis of the BrowserID system. We use our model to perform the first rigorous security
analysis of the BrowserID system, which supports both so-called primary and secondary identity
providers. Our security analysis reveals a number of very critical and previously unknown flaws,
most of which cannot be captured by previous models (see Section 6). The most severe attack
allows an adversary to login to any service that supports authentication via BrowserID with the
email address of any Gmail and Yahoo user (without knowing the Gmail/Yahoo credentials of
these users), hence, breaking the system completely. Another critical attack allows an attacker
to force a user to login with the attacker’s identity. We confirmed that the attacks work on the
actual BrowserID implementation. We propose fixes and formulate relevant security properties.
For the BrowserID system with a secondary identity provider, we prove that the fixed system
satisfies these properties in our model. By this, we provide the first rigorous formal analysis
of the BrowserID system. Our attacks have been acknowledged by Mozilla, with the fixes for
the most severe problems having been adopted by Mozilla already and other fixes being under
discussion. Our findings have been rewarded by the Mozilla Security Bug Bounty Program.

Structure of this Paper. In Section 2, we present the basic communication model. Our web
model is introduced in Section 3. For our case study, we first, in Section 4, provide a description
of the BrowserID system. We then, in Section 5, present the analysis of BrowserID using our
model. Related work is discussed in Section 6. We conclude in Section 7. Full details are
provided in the appendix, including some notational conventions.

2 Communication Model

We now present a generic Dolev-Yao-style communication model on which our web model (see
Section 3) is based. While the model is stated in a concise mathematical fashion, instantiations,
for example, using the applied pi-calculus [1] or multi-set rewriting [13], are conceivable.

The main entities in the communication model are what we call atomic processes, which in
Section 3 are used to model web browsers, web servers, DNS servers as well as web and network
attackers. Each atomic process has a list of addresses (representing IP addresses) it listens to.
A set of atomic processes forms what we call a system. The different atomic processes in such
a system can communicate via events, which consist of a message as well as a receiver and a
sender address. In every step of a run one event is chosen non-deterministically from the current
“pool” of events and is delivered to an atomic process that listens to the receiver address of that
event; if different atomic processes can listen to the same address, the atomic process to which
the event is delivered is chosen non-deterministically among the possible processes. The (chosen)
atomic process can then process the event and output new events, which are added to the pool
of events, and so on. (In our web model, presented in Section 3, only network attackers may
listen to addresses of other atomic processes.)

2 COMMUNICATION MODEL 6

deca(enca(x,pub(y)), y) = x (1)

decs(encs(x, y), y) = x (2)

extractmsg(sig(x, y)) = x (3)

checksig(sig(x, y),pub(y)) = ⊤ (4)

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n (5)

πj(〈x1, . . . , xn〉) = ♦ if j 6∈ {1, . . . , n} (6)

πj(t) = ♦ if t is not a sequence (7)

Figure 1. Equational theory for Σ.

2.1 Terms, Messages and Events

To define the communication model just sketched, we first define, as usual in Dolev-Yao models,
messages, such as HTTP messages, as formal terms over a signature, and based on this notion
of messages, we introduce events.

The signature Σ for the terms and messages considered in this work is the union of the
following pairwise disjoint sets of function symbols:

• constants C = Addresses ∪ S ∪ {⊤,⊥,♦} where the three sets are pairwise disjoint, S is
interpreted to be the set of ASCII strings (including the empty string ε), and Addresses is
interpreted to be a set of (IP) addresses,

• function symbols for public keys, asymmetric/symmetric encryption/decryption, and sig-
natures: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), extractmsg(·),

• n-ary sequences 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and

• projection symbols πi(·) for all i ∈ N.

Let X = {x0, x1, . . . } be a set of variables and N be an infinite set of constants (nonces)
such that Σ, X, and N are pairwise disjoint. For N ⊆ N , we define the set TN (X) of terms
over Σ∪N ∪X inductively as usual: (1) If t ∈ N ∪X, then t is a term. (2) If f ∈ Σ is an n-ary
function symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. By
TN = TN (∅), we denote the set of all terms over Σ ∪N without variables, called ground terms.
The set M of messages (over N) is defined to be the set of ground terms TN . For example, k ∈ N

and pub(k) are messages, where k typically models a private key and pub(k) the corresponding
public key. For constants a, b, c and the nonce k ∈ N , the message enca(〈a, b, c〉,pub(k)) is
interpreted to be the message 〈a, b, c〉 (the sequence of constants a, b, c) encrypted by the public
key pub(k).

For strings, i.e., elements in S, we use a specific font. For example, HTTPReq and HTTPResp are
strings. We denote by Domains ⊆ S the set of domains, e.g., www.example.com ∈ Domains. We
denote by Methods ⊆ S the set of methods used in HTTP requests, e.g., GET, POST ∈ Methods.

The equational theory associated with the signature Σ is given in Figure 1.
By ≡ we denote the congruence relation on TN (X) induced by this theory. For example, we

have that π1(deca(enca(〈a, b〉,pub(k)), k)) ≡ a.

2 COMMUNICATION MODEL 7

An event (over Addresses and M) is of the form (a:f :m), for a, f ∈ Addresses and m ∈ M ,
where a is interpreted to be the receiver address and f is the sender address. We denote by E

the set of all events.

2.2 Atomic Processes, Systems and Runs

We now define atomic processes, systems, and runs of systems.
An atomic process takes its current state and an event as input, and then (non-deterministi-

cally) outputs a new state and a set of events.

Definition 1. A (generic) atomic process is a tuple p = (Ip, Zp, Rp, sp0) where Ip ⊆ Addresses,
Zp is a set of states, Rp ⊆ (E ×Zp)× (2E ×Zp), and sp0 ∈ Zp is the initial state of p. We write
(e, z)R(E, z′) instead of ((e, z), (E, z′)) ∈ R.

A system P is a (possibly infinite) set of atomic processes.

In order to define a run of a system, we first define configurations and processing steps.
A configuration of a system P is a tuple (S,E) where S maps every atomic process p ∈ P

to its current state S(p) ∈ Zp and E is a (possibly infinite) multi-set of events waiting to be
delivered.

A processing step of the system P is of the form (S,E)
e→p
−−−−−→
p→Eout

(S′, E′) such that

• there exist e = (a:f :m) ∈ E, Eout ⊆ E′, and p ∈ P with (e, S(p))Rp(Eout, S
′(p)) and

a ∈ Ip,

• S′(p′) = S(p′) for all p′ 6= p, and

• E′ = (E \ {e}) ∪ Eout (multi-set operations).

We may omit the superscript and/or subscript of the arrow.

Definition 2. Let P be a system and E0 be a multi-set of events. A run ρ of a system P

initiated by E0 is a finite sequence of configurations (S0, E0), . . . , (Sn, En) or an infinite sequence
of configurations (S0, E0), . . . such that S0(p) = sp0 for all p ∈ P and (Si, Ei) −→ (Si+1, Ei+1) for
all 0 ≤ i < n (finite run) or for all i ≥ 0 (infinite run).

2.3 Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states
that they output can be computed (more formally, derived) from the current input event and
state. For this purpose, we first define what it means to derive a message from given messages.

Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN . Then, by τ [t1/x1, . . . , tn/xn] we
denote the (ground) term obtained from τ by replacing all occurrences of xi in τ by ti, for all
i ∈ {1, . . . , n}. Let M ⊆ M be a set of messages. We say that a message m can be derived from
M with nonces N if there exist n ≥ 0, m1, . . . ,mn ∈ M , and τ ∈ TN ({x1, . . . , xn}) such that
m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dN (M) the set of all messages that can be derived
from M with nonces N . For example, a ∈ d{k}({enca(〈a, b, c〉,pub(k))}).

Definition 3. An atomic Dolev-Yao process (or simply, a DY process) is a tuple p = (Ip, Zp, Rp,
sp0, N

p) such that (Ip, Zp, Rp, sp0) is an atomic process and (1) Np ⊆ N is an (initial) set of
nonces, (2) Zp ⊆ TN (and hence, sp0 ∈ TN), and (3) for all a, a′, f, f ′ ∈ Addresses, m,m′, s, s′ ∈

3 OUR WEB MODEL 8

TN , set of events E with ((a:f :m), s)R(E, s′) and (a′:f ′:m′) ∈ E it holds true that m′, s′ ∈
dN ({m, s}). (Note that a′, f ′ ∈ dN ({m, s}).)

In the rest of this paper, we will only consider DY processes and assume different DY pro-
cesses to have disjoint initial sets of nonces.

We define a specific DY process, called an attacker process, which records all messages it
receives and outputs all messages it can possibly derive from its recorded messages. Hence,
an attacker process is the maximally powerful DY process. It can carry out all attacks any
DY process could possibly perform. The attacker process is parametrized by the set of sender
addresses it may use.

Definition 4. An (atomic) attacker process for a set of sender addresses A ⊆ Addresses is an
atomic DY process p = (I, Z,R, s0, N) such that for all a, f ∈ Addresses, m ∈ TN , and s ∈ Z we
have that ((a:f :m), s)R(E, s′) iff s′ = 〈〈a, f,m〉, s〉 and E = {(a′:f ′:m′) | a′ ∈ Addresses, f ′ ∈ A,
m′ ∈ dN ({m, s})}.

3 Our Web Model

We now present our web model. We formalize the web infrastructure and web applications by
what we call a web system. A web system, among others, contains a (possibly infinite) set of
DY processes, which model web browsers, web servers, DNS servers as well as web and network
attackers.

As already mentioned in the introduction, the model has been carefully designed, closely
following published (de-facto) standards, for instance, the HTTP/1.1 standard, associated (pro-
posed) standards (mainly RFCs), and the HTML5 W3C candidate recommendation. We also
checked these standards against the actual implementations (primarily, Chromium and Firefox).

3.1 Web System

Before we can define a web system, we define scripting processes, which model client-side script-
ing technologies, such as JavaScript, in our browser model. Scripting processes are defined
similarly to DY processes.

Definition 5. A scripting process (or simply, a script) is a relation R ⊆ (TN × 2N)× TN such
that for all s, s′ ∈ TN and N ⊆ N with (s,N)R s′ it follows that s′ ∈ dN (s).

A script is called by the browser which provides it with a (fresh, infinite) set N of nonces
and state information s. The script then outputs a term s′, which represents the new internal
state and some command which is interpreted by the browser (see Section 3.4 for details).

Similarly to an attacker process, we define the attacker script Ratt. This script outputs
everything that is derivable from the input, i.e., Ratt = {((s,N), s′) | s ∈ TN , N ⊆ N , s′ ∈
dN (s)}.

We can now define web systems, where we distinguish between web and network attackers.
Unlike web attackers, network attackers can listen to addresses of other parties and can spoof
the sender address, i.e., they can control the network. Typically, a web system has either one
network attacker or one or more web attackers, as network attackers subsume all web attackers.
As we will see later, web and network attacks may corrupt other entities, such as browsers.

3 OUR WEB MODEL 9

Definition 6. A web system WS = (W , S , script, E0) is a tuple with its components defined as
follows:

The first component, W , denotes a system (a set of DY processes) and is partitioned into
the sets Hon, Web, and Net of honest, web attacker, and network attacker processes, respectively.
We require that all DY processes in W have disjoint sets of nonces, i.e., Np ∩Np′ = ∅ for every
distinct p, p′ ∈W .

Every p ∈Web ∪ Net is an attacker process for some set of sender addresses A ⊆ Addresses.
For a web attacker p ∈ Web, we require its set of addresses Ip to be disjoint from the set of
addresses of all other web attackers and honest processes, i.e., Ip∩Ip

′

= ∅ for all p′ ∈ Hon∪Web.
Hence, a web attacker cannot listen to traffic intended for other processes. Also, we require that
A = Ip, i.e., a web attacker can only use sender addresses it owns. Conversely, a network
attacker may listen to all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e.,
the set A may be Addresses).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS
server, as further described in the following subsections. Just as for web attackers, we require
that p does not spoof sender addresses and that its set of addresses Ip is disjoint from those of
other honest processes and the web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component,
script, is an injective mapping from S to S, i.e., by script every s ∈ S is assigned its string
representation script(s).

Finally, E0 is a multi-set of events, containing an infinite number of events of the form
(a:a:TRIGGER) for every a ∈

⋃

p∈W Ip.
A run of WS is a run of W initiated by E0.

In the definition above, the multi-set E0 of initial events contains for every process and
address an infinite number of TRIGGER messages in order to make sure that every process in
W can be triggered arbitrarily often. In particular, by this it is guaranteed that an adversary
(a dishonest server/browser) can be triggered arbitrarily often. Also, we use trigger events to
model that an honest browser takes an action triggered by a user, who might, for example, enter
a URL or click on some link.

The set S \ {Ratt} specified in a web system as defined above is meant to describe the set
of honest scripts used in the considered web application. These scripts are those sent out by an
honest web server to a browser as part of a web application. In real web applications, possibly
several dynamically loaded scripts may run in one document. However, if these scripts originate
from honest sites, their composition can be considered to be one honest script (which is loaded
right from the start into the document). In this sense, every script in S \{Ratt} models an honest
script or a combination of such scripts in a web application. (In our case study, the combination
is illustrated by the script running in RP-Doc.)

We model the situation where some malicious script was loaded into a document by the
“worst-case” scenario, i.e., we allow such a script to be the script Ratt. This script subsumes
everything any malicious (and honest) script can do.

We emphasize that script representations being modeled as strings are public information,
i.e., any server or attacker is free to send out the string representation for any script.

Since we do not model client-side or server-side language details, and hence details such as
correct escaping of user input, we cannot analyze whether a server application (say, written in
PHP) is vulnerable to Cross-Site-Scripting. However, we can model the effects of Cross-Site-
Scripting by letting the (model of the) server output the script Ratt, say, if it receives certain

3 OUR WEB MODEL 10

malicious input.
In the following subsections, (honest) DNS servers and web browsers are modeled as DY

processes, including the modeling of HTTP messages. We also discuss the modeling of web
servers.

3.2 DNS Servers

For the sake of brevity, in this paper we consider a flat DNS model in which DNS queries
are answered directly by one DNS server and always with the same address for a domain. A
full (hierarchical) DNS system with recursive DNS resolution, DNS caches, etc. could also be
modeled to cover certain attacks on the DNS system itself.

A DNS server d (in a flat DNS model) is modeled in a straightforward way as a DY process
(Id, {sd0}, R

d, sd0, N
d). It has a finite set of addresses Id and its initial (and only) state sd0 encodes

a mapping from domain names to addresses of the form

sd0 = 〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉 .

DNS queries are answered according to this table. DNS queries have the following form, illus-
trated by an example:

〈DNSResolve, example.com, n〉

where example.com is the domain name to be resolved and n is a nonce representing the random
query ID and UDP source port number selected by the sender of the query. The corresponding
response is of the form

〈DNSResolved, a, n〉

where a ∈ Addresses is the IP address of the queried domain name and n is the nonce from the
query.

The precise message format of DNS messages is provided in Appendix A.6, the full formal
specification for DNS servers can be found in Appendix C.

3.3 HTTP Messages

In order to model web browsers and servers, we first need to model HTTP requests and responses.
The formal specification of HTTP messages can be found in Appendix A.5. Here we provide a
more informal presentation.

HTTP requests and responses are encoded as messages (ground terms). An HTTP request
(modeled as a message) contains a nonce, a method (e.g., GET or POST), a domain name, a
path, URL parameters, request headers (such as Cookie or Origin), and a message body. For
example, an HTTP GET request for the URL http://example.com/show?page=1 is modeled as
the term

r := 〈HTTPReq, n1, GET, example.com, /show, 〈〈page, 1〉〉, 〈〉, 〈〉〉

where body and headers are empty. A web server that responds to this request is supposed
to include the nonce n1 contained in r in the response so that the browser can match the
request to the corresponding response. More specifically, an HTTP response (modeled as a

http://example.com/show?page=1

3 OUR WEB MODEL 11

message) contains a nonce (matching the request), a status code (e.g., 200 for a normal successful
response), response headers (such as Set-Cookie and Location), and a body. For example, a
response to r could be

s := 〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈SID, 〈n2,⊥,⊤,⊥〉〉〉〉, 〈script1, n3〉〉

where s contains (1) in the headers section, a cookie with the name SID, the value n2, and
the attributes secure and httpOnly not set but the attribute session set (see Section 3.4 for
details on cookies) and (2) in the body section, the string representation script1 of the scripting
process script−1(script1) (which should be an element of S) and its initial state n3.

For the HTTP request and response in the above examples, the corresponding HTTPS re-
quest would be of the form enca(〈r, k

′〉,pub(kexample.com)) and the response of the form encs(s, k
′)

where k′ is a fresh symmetric key (a nonce) which is typically generated by the sender of the
request. The responder is supposed to use this key to encrypt the response.

3.4 Web Browsers

We think of an honest browser to be used by one honest user. However, we also allow browsers
to be taken over by attackers. The honest user is modeled as part of the web browser model.
Actions a user takes are modeled as non-deterministic actions of the web browser. For example,
the web browser itself can non-deterministically follow the links provided by a web page. Secrets,
such as passwords, typically provided by the user are stored in the initial state of a browser and
are given to a web page when needed, similar to the AutoFill function in browsers (see below).

A web browser p is modeled as a DY process (Ip, Zp, Rp, sp0, N
p) where Ip ⊆ Addresses is

a finite set and Np ⊆ N is an infinite set. The set of states Zp, the initial state sp0, and the
relation Rp are defined below (Sections 3.4.1 and 3.4.2), with a full formal specification provided
in Appendix B.

3.4.1 Browser State: Zp and sp0

The set Zp of states of a browser consists of terms of the form

〈windows , secrets , cookies , localStorage , sessionStorage , keyMapping ,

sts ,DNSaddress ,nonces , pendingDNS , pendingRequests , isCorrupted 〉

Windows and documents. The most important part of the state are windows and documents,

both stored in the subterm windows . A browser may have a number of windows open at any
time (resembling the tabs in a real browser). Each window contains a list of documents of
which one is “active”. Being active means that this document is currently presented to the user
and is available for interaction, similarly to the definition of active documents in the HTML5
specification [18]. The document list of a window represents the history of visited web pages in
that window. A window may be navigated forward and backward (modeling forward and back
buttons). This deactivates one document and activates its successor or predecessor.

A document is specified by a term which essentially contains (the string representing) a
script, the current state of the script, the input that the script obtained so far (from XHRs and
postMessages), the origin (domain name plus HTTP or HTTPS, see Appendix A.3 for details) of
the document, and a list of windows (called subwindows), which correspond to iframes embedded
in the document, resulting in a tree of windows and documents. The (single) script is meant

3 OUR WEB MODEL 12

to model the static HTML code, including, for example, links and forms, and possibly multiple
JavaScript code parts. When called by the browser, a script essentially outputs a command
which is then interpreted by the browser, such as following a link, creating an iframe, or issuing
an XHR. In particular, a script can represent a plain HTML document consisting merely of links,
say: when called by the browser such a script would non-deterministically choose such a link
and output it to the browser, which would then load the corresponding web page (see below for
details).

We use the terms top-level window (a window which is not a subwindow itself), parent
window (the window of which the current window is a direct subwindow) and ancestor window
(some window of which the current window is a not necessarily direct subwindow) to describe
the relationships in a tree of windows and documents.

A term describing a window or a document also contains a unique nonce, which we refer to
by reference. This reference is used to match HTTP responses to the corresponding windows
and documents from which they originate (see below).

Top-level windows may have been opened by another window. In this case, the term of
the opened window contains a reference to the window by which it was opened (the opener).
Following the HTML5 standard, we call such a window an auxiliary window. Note that auxiliary
windows are always top-level windows.

We call a window active if it is a top-level window or if it is a subwindow of an active document
in an active window. Note that the active documents in all active windows are exactly those
documents a user can currently see/interact with in the browser.

Example 1. The following is an example of a window term with reference n1, two documents,
and an opener (n4):

〈n1,〈〈n2,〈example.com, P〉, script1, 〈〉, 〈〉, 〈〉,⊥〉,

〈n3,〈example.com, S〉, script2, 〈〉, 〈〉, 〈〉,⊤〉〉, n4〉

The first document has reference n2. It was loaded from the origin 〈example.com, P〉, which trans-
lates into http: // example. com . Its scripting process has the string representation script1,
the last state and the input history of this process are empty. The document does not have sub-
windows and is inactive (⊥). The second document has the reference n3, its origin corresponds
to https: // example. com , the scripting process is represented by script2, and the document
is active (⊤). All other components are empty.

Secrets. This subterm of the state term of a browser holds the secrets of the user of the web
browser. Secrets (such as passwords) are modeled as nonces and they are indexed by origins.
Secrets are only released to documents (scripts) with the corresponding origin, similarly to the
AutoFill mechanism in browsers.

Cookies, localStorage, and sessionStorage. These subterms contain the cookies (indexed
by domains), localStorage data (indexed by origins), and sessionStorage data (indexed by origins
and top-level window references) stored in the browser. Cookies are stored together with their
secure, httpOnly, and session attributes: If secure is set, the cookie is only delivered to
HTTPS origins. If httpOnly is set, the cookie cannot be accessed by JavaScript (the script).
According to the proposed standard RFC6265 (which we follow in our model) and the majority
of the existing implementations, cookies that neither have the (real) “max-age” nor the “expires”
attribute should be deleted by the browser when the session ends (usually when the browser is
closed). In our model, such cookies carry the session attribute.

http://example.com
https://example.com

3 OUR WEB MODEL 13

KeyMapping. This term is our equivalent to a certificate authority (CA) certificate store in the
browser. Since, for simplicity, we currently do not formalize CAs in the model, this term simply
encodes a mapping assigning domains d ∈ Domains to their respective public keys pub(kd).

STS. Domains that are listed in this term are contacted by the web browser only over HTTPS.
Connection attempts over HTTP are transparently rewritten to HTTPS requests. Web sites
can issue the Strict-Transport-Security header to clients in order to add their domain to this
list, see below.

DNSaddress. This term contains the address of the DY process that is to be contacted for
DNS requests; typically a DNS server.

Nonces, pendingDNS, and pendingRequests. These terms are used for bookkeeping pur-
poses, recording the nonces that have been used by the browser so far, the HTTP requests that
await successful DNS resolution, and HTTP requests that await a response, respectively.

IsCorrupted. This term indicates whether the browser is corrupted (6= ⊥) or not (= ⊥). A
corrupted browser behaves like a web attacker (see Section 3.4.2).

Initial state sp0 of a web browser. In the initial state, keyMapping , DNSAddress , and secrets

are defined as needed, isCorrupted is set to ⊥, and all other subterms are 〈〉.

3.4.2 Web Browser Relation Rp

Before we define the relation Rp, we first sketch the processing of HTTP(S) requests and re-
sponses by a web browser, and also provide some intuition about the corruption of browsers.

HTTP(S) Requests and Responses. An HTTP request, contains, as mentioned before,
a nonce created by the browser. In the example in Section 3.3, this nonce is n1. A server
is supposed to include this nonce into its HTTP response. By this, the browser can match
the response to the request (a real web browser would use the TCP sequence number for this
purpose). If a browser wants to send an HTTP request, it first resolves the domain name to
an IP address. (For simplicity, we do not model DNS response caching.) It therefore first
records the HTTP request in pendingDNS along with the reference of the window (in the case
of HTTP(S) requests) or the reference of the document1 (in the case of XHRs) from which
the request originated and then sends a DNS request. Upon receipt of the corresponding DNS
response it sends the HTTP request and stores it (again along with the reference as well as the
server address) in pendingRequests . Before sending the HTTP request, the cookies stored in the
browser for the domain of the request are added as cookie headers to the request. Cookies with
attribute secure are only added for HTTPS requests. If an HTTP response arrives, the browser
uses the nonce in this response to match it with the recorded corresponding HTTP request (if
any) and checks whether the address of the sender is as expected. The reference recorded along
with the request then determines to which window/document the response belongs. The further
processing of a response is described below.

We note that before HTTPS requests are sent out, a fresh symmetric key (a nonce) is
generated and added to the request by the browser. The resulting message is then encrypted
using the public key corresponding to the domain in the request (according to keyMapping).
The symmetric key is recorded along with the request in pendingRequests . The response is,

1As we will see later, in the case of XHRs this reference is actually a sequence of two elements, a document
reference and a nonce that was chosen by the script that issued the XHR. For now, we will refer to this sequence
simply as the document reference.

3 OUR WEB MODEL 14

Processing Input Message m

m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1, 2}
action = 1: Call script of some active document. Outputs new state and command cmd.
cmd = HREF: → Initiate request

cmd = IFRAME: Create subwindow, → Initiate request

cmd = FORM: → Initiate request

cmd = SETSCRIPT: Change script in given document.
cmd = SETSCRIPTSTATE: Change state of script in given document.
cmd = XMLHTTPREQUEST: → Initiate request

cmd = BACK or FORWARD: Navigate given window.
cmd = CLOSE: Close given window.
cmd = POSTMESSAGE: Send postMessage to specified document.

action = 2: → Initiate request to some URL in new window

m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s script input

Figure 2. The basic structure of the web browser relation Rp with an extract of the most important
processing steps, in the case that isCorrupted = ⊥.

as mentioned, supposed to be encrypted with this symmetric key (see also Appendix A.5 for
details).

Corruption of Browsers. We model two types of corruption of browsers, namely full corrup-
tion and close-corruption, which are triggered by special network messages in our model. In
the real world, an attacker can exploit buffer overflows in web browsers, compromise operating
systems (e.g., using trojan horses), and physically take control over shared terminals.

Full corruption models an attacker that gained full control over a web browser and its user.
Besides modeling a compromised system, full corruption can also serve as a vehicle for the at-
tacker to participate in a protocol using secrets of honest browsers: In our case study (Section 5),
the attacker starts with no user secrets in its knowledge, but may fully corrupt any number of
browsers, so, in particular, he is able to impersonate browsers/users.

Close-corruption models a browser that is taken over by the attacker after a user finished
her browsing session, i.e., after closing all windows of the browser. This form of corruption is
relevant in situations where one browser can be used by many people, e.g., in an Internet café.
Information left in the browser state after closing the browser could be misused by malicious
users.

The Relation Rp. To define Rp, we need to specify, given the current state of the browser
and an input message m, the new state of the browser and the set of events output by the
browser. Figure 2 provides an overview of the structure of the following definition of Rp. The
input message m is expected to be FULLCORRUPT, CLOSECORRUPT, TRIGGER, a DNS response, or
an HTTP(S) response.

If isCorrupted 6= ⊥ (browser is corrupted), the browser, just like an attacker process, simply
adds m to its current state, and then outputs all events it can derive from its state. Once
corrupted, the browser stays corrupted. Otherwise, if isCorrupted = ⊥, on input m the browser
behaves as follows.

3 OUR WEB MODEL 15

m = FULLCORRUPT: If the browser receives this message, it sets isCorrupted to FULLCORRUPT.
From then on the browser is corrupted as described above, with the attacker having full access
to the browser’s internal state, including all secrets.

m = CLOSECORRUPT: If the browser receives this message, it first removes the user secrets,
open windows and documents, all session cookies, all sessionStorage data, and all pending
requests from its current state; nonces used so far by the browser may not be used any longer.
LocalStorage data and persistent cookies are not deleted. The browser then sets isCorrupted

to CLOSECORRUPT (and hence, from then on is corrupted). As already mentioned, this models
that the browser is closed by a user and that then the browser is used by another, potentially
malicious user (an attacker), such as in an Internet café.

m = TRIGGER: Upon receipt of this message, the browser non-deterministically chooses one of
two actions: (1) trigger a script or (2) request a new document.
m = TRIGGER, action = 1: Some active window (possibly an iframe) is chosen non-determin-
istically. Then the script of the active document of that window is triggered (see below).
m = TRIGGER, action = 2: A new HTTP(S) GET request (i.e., an HTTP(S) request with
method GET) is created where the URL is some message derivable from the current state of the
browser. However, nonces may not be used. This models the user typing in a URL herself, but
we do not allow her to type in secrets, e.g., passwords or session tokens. A new window is created
to show the response. (HTTP requests to domains listed in sts are automatically rewritten to
HTTPS requests).

m = DNS response: DNS responses are processed as already described above, resulting in
sending the corresponding HTTP(S) request (if any).

m = HTTP(S) response: The browser performs the steps (I) to (IV) in this order.

(I) The browser identifies the corresponding HTTP(S) request (if any), say q, and the window
or document from which q originated. (In case of HTTPS, the browser also decrypts m using
the recorded symmetric key.)

(II) If there is a Set-Cookie header in the response, its content (name, value, and if present, the
attributes httpOnly, secure, session) is evaluated: The cookie’s name, value, and attributes
are saved in the browser’s list of cookies. If a cookie with the same name already exists, the old
values and attributes are overwritten, as specified in RFC6265.

(III) If there is a Strict-Transport-Security header in the response, the domain of q is
added to the term sts . As defined in RFC6797, all future requests to this domain, if not already
HTTPS requests, are automatically altered to use HTTPS.

(IV) If there is a Location header (with some URL u) in the response and the HTTP status
code is 303 or 307, the browser performs a redirection (unless it is a non-same-origin redirect
of an XHR) by issuing a new HTTP request to u, retaining the body of the original request.
Rewriting POST to GET requests for 303 redirects and extending the origin header value are
handled as defined in RFC2616 and in the W3C Cross-Origin Resource Sharing specification [12].

Otherwise, if no redirection is requested, the browser does the following: If the request
originated from a window, a new document is created from the response body. For this, the
response body is expected to be a term of the form 〈sp, stat〉 where sp is a string such that
script−1(sp) ∈ S is a script and stat is a term used as its initial state. The document is then
added to the window the reference points to, it becomes the active document, and the successor
of the currently active document. All previously existing successors are removed. If the request
originated from a document (and hence, was the result of an XHR), the body of the response is

3 OUR WEB MODEL 16

appended to the script input term of the document. When later the script of this document is
activated, it can read and process the response.

Triggering the Script of a Document (m = TRIGGER, action = 1). First, the script of
the document is called with the following input:

• document and window references of all active documents and subwindows2

• only for same-origin documents: information about the documents’ origins, scripts, script
states and script inputs

• the last state and the input history (i.e., previous inputs from postMessages and XHRs)
of the script as recorded in the document

• cookies (names and values only) indexed with the document’s domain, except for httpOnly
cookies

• localStorage data for the document’s origin

• sessionStorage data that is indexed with the document’s origin and the reference of the
document’s top-level window

• secrets indexed with the document’s origin.

In addition, the script is given an infinite set of fresh nonces from the browser’s set of (unused)
nonces.

Now, according to the definition of scripts, the script outputs a term. The browser expects
terms of the form 〈state , cookies , localStorage , sessionStorage , cmd〉 (and otherwise ignores the
output) where state is an arbitrary term describing the new state of the script, cookies is a
sequence of name/value pairs, localStorage and sessionStorage are arbitrary terms, and cmd is
a term which is interpreted as a command which is to be processed by the browser. The old
state of the script recorded in the document is replaced by the new one (state), the local/session
storage data recorded in the browser for the document’s origin (and top-level window reference)
is replaced by localStorage/sessionStorage , and the old cookie store of the document’s origin is
updated using cookies similarly to the case of HTTP(S) responses with cookie headers, except
that now no httpOnly cookies can be set or replaced, as defined by the HTML5 standard [18]
in combination with RFC6265. For details, see Line 16 of Algorithm 6 and Definition 22 in
Appendix B.

Subsequently, cmd (if not empty) is interpreted by the browser, as described next. We note
that commands may contain parameters.

cmd = HREF (parameters: URL u, window reference w): A new GET request to u is initiated.
If w is _BLANK, the response to the request will be shown in a new auxiliary window. This new
window will carry the reference to its opener, namely the reference to the window in which the
script was running. Otherwise, if w is not _BLANK, the window with reference w is navigated

2Note that we overapproximate here: In real-world browsers, only a limited set of window handles are available
to a script. Our approach is motivated by the fact that in some cases windows can be navigated by names (without
a handle). However, as we will see, specific restrictions for navigating windows and accessing/changing their data
apply.

3 OUR WEB MODEL 17

(upon receipt of the response and only if it is active) to the given URL. Navigation is subject
to several restrictions.3

cmd = IFRAME (parameter: URL u, window reference w): Provided that the active document
of w is same origin, create a new subwindow in w (with a new window reference) and initiate
an HTTP GET request to u for that subwindow.
cmd = FORM (parameters: URL u, method md , data d, window reference w): Initiate a new
request for u with method md , and body data d, where, just like in the case of HREF, w determines
in what window the response is shown. Again the same restrictions for navigating other windows
as in the case of HREF apply. For this request an Origin header is set if md = POST. Its value
is the origin of the document.
cmd = SETSCRIPT (parameters: window reference w, string s): Change the string represen-
tation of the script of the active document in w to s ∈ script−1(S), provided that the active
document in w is same origin.
cmd = SETSCRIPTSTATE (parameters: window reference w, term t): Change the state of the
script of the active document in w to t, provided that w is same origin.
cmd = XMLHTTPREQUEST (parameters: URL u, method md , data d, nonce xhrreference): Initi-
ate a request with method md and data d for u, provided that u is same origin and md is not
CONNECT, TRACE, or TRACK (according to [34]). Instead of the window reference, the reference
used for this request is 〈r, xhrreference〉, where r is the reference of the script’s document and
xhrreference is a nonce chosen by the script (for later correlation). This combined reference
indicates that this request originated from an XHR and xhrreference is used by the script to
assign the response to the request. The Origin header is set as in the case of FORM.
cmd = BACK or FORWARD (parameter: window reference w): replace the active document in w
by its predecessor/successor in w. Again, the same restrictions for navigating windows as in the
case of HREF apply.
cmd = CLOSE (parameter: window reference w): close the given window, i.e., remove it from
the list of windows in which it is contained. The same restrictions for navigating windows as in
the case of HREF apply.
cmd = POSTMESSAGE (parameter: message msg , window reference w, origin o): msg , the origin
of the sending document, and a reference to its window are appended to the input history of the
active document in w if that document’s origin matches o or if o = ⊥.

3.5 Web Servers

While the modeling of DNS servers and browsers is independent of specific web applications,
and hence, forms the core of the model of the web infrastructure, the modeling of a web server
heavily depends on the specific web application under consideration. Conversely, the model of
a specific web application is determined by the model of the web server. We therefore do not
and cannot fix a model for web servers at this point. Such a model should be provided as part
of the analysis of a specific web application, as illustrated by our case study (see Section 4 and
following).

3We follow the rules defined in [18], Subsection 5.1.4: A window A can navigate a window B if the active
documents of both are same origin, or B is an ancestor window of A and B is a top-level window, or if there is
an ancestor window of B whose active document has the same origin as the active document of A (including A

itself). Additionally, A may navigate B if B is an auxiliary window and A is allowed to navigate the opener of
B. We follow these rules closely, as can be seen in Algorithm 2 in Appendix B.

4 THE BROWSERID SYSTEM 18

3.6 Limitations

We now briefly discuss main limitations of the model. As will be illustrated by our case study,
our model is formulated on a level of abstraction that is suitable to capture many security
relevant features of the web, and hence, a relevant class of attacks. However, as with all models,
certain attacks are out of the scope of our model. For example, as already mentioned, we
currently cannot reason about language details (e.g., how two JavaScripts running in the same
document interact). Also, we currently do not model user interface details, such as frames that
may overlap in Clickjacking attacks. Being a Dolev-Yao-style model, our model clearly does not
aim at lower-level cryptographic attacks. Also, byte-level attacks, such as buffer overflows, are
out of scope.

4 The BrowserID System

BrowserID [24] is a new decentralized single sign-on (SSO) system developed by Mozilla for user
authentication on web sites. It is a complex full-fledged web application deployed in practice,
with currently ∼47k LOC (excluding code for Sideshow/BigTent, see below, and some libraries).
It allows web sites to delegate user authentication to email providers, where users use their email
addresses as identities. The BrowserID implementation makes use of a broad variety of browser
features, such as XHRs, postMessage, local- and sessionStorage, cookies, etc.

We first, in Section 4.1, provide a high-level overview of the BrowserID system. A more
detailed description of the BrowserID implementation is then given in Sections 4.2 to 4.4 with
further details provided in Appendices D to F.

4.1 Overview

The BrowserID system knows three distinct parties: the user, which wants to authenticate
herself using a browser, the relying party (RP) to which the user wants to authenticate (log in)
with one of her email addresses (say, user@eyedee.me), and the identity/email address provider
IdP. If the email provider (eyedee.me) supports BrowserID directly, it is called a primary IdP.
Otherwise, a Mozilla-provided service, a so-called secondary IdP, takes the role of the IdP. In
what follows, we describe the case of a primary IdP, with more information on secondary IdPs
given in Section 4.4.

A primary IdP provides information about its BrowserID setup in a so-called support docu-
ment, which it provides at a fixed URL derivable from the email domain, e.g., https://eyedee.me/.well-known/browserid.

A user who wants to log in at an RP with an email address for some IdP has to present two
signed documents: A user certificate (UC) and an identity assertion (IA). The UC contains the
user’s email address and a public key. It is signed by the IdP. The IA contains the origin of the
RP and is signed with the private key corresponding to the user’s public key. Both documents
have a limited validity period. A pair consisting of a UC and a matching IA is called a certificate
assertion pair (CAP) or a backed identity assertion. Intuitively, the UC in the CAP tells the
RP that (the IdP certified that) the owner of the email address is (or at least claimed to be) the
owner of the public key. By the IA contained in the CAP, the RP is ensured that the owner of
the given public key wants to log in. Altogether, given a valid CAP, RP would consider the user
(with the email address mentioned in the CAP) to be logged in.

The BrowserID authentication process (with a primary IdP) consists of three phases (see
Figure 3 for an overview): I provisioning of the UC, II CAP creation, and III verification of

https://eyedee.me/.well-known/browserid

4 THE BROWSERID SYSTEM 19

RP Browser IdP

A gen. key pair

B pkb, email

C create UC

D UC

E gen. IA

F CAP

G pkIdP

H verify CAP

I

II

III

Figure 3. BrowserID authentication: basic overview

the CAP.
In Phase I , the (browser of the) user creates a public/private key pair A . She then sends

her public key as well as the email address she wants to use to log in at some RP to IdP B .
IdP now creates the UC C , which is then sent to the user D . The above requires the user to be
logged in at IdP.

With the user having received the UC, Phase II can start. The user wants to authenticate
to an RP, so she creates the IA E . The UC and the IA are concatenated to a CAP, which is
then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose, the RP could use
an external verification service provided by Mozilla or check the CAP itself as follows: First, the
RP fetches the public key of IdP G , which is contained in the support document. Afterwards,
the RP checks the signatures of the UC and the IA H . If this check is successful, the RP can,
as mentioned before, consider the user to be logged in with the given email address and send
her some token (e.g., a session ID), which we refer to as an RP service token.

4.2 Implementation Details

We now provide a more detailed description of the BrowserID implementation (see also Figure 4).
Since the system is very complex, with many HTTPS requests, XHRs, and postMessages sent
between different entities (servers as well as windows and iframes within the browser), we here
describe mainly the phases of the login process without explaining every single message ex-
change done in the implementation. A more detailed step-by-step description can be found in
Appendix D.

In addition to the parties mentioned in the rough overview in Section 4.1, the actual imple-

4 THE BROWSERID SYSTEM 20

LPO IdP RP-Doc

LD

PIF

/PIF

/LD

i

ii

iii

iv

v

vi

vii

1 open

2 GET LD

3 ready

4 request
5 GET session_context

6 email address
7 GET address_info

8 GET wk

9

10 create

11 GET PIF

12 PMs

13 close

14 auth IdP

repeat i

re
p
ea

t
ii

PIF

15 gen. key pair

16 pkb, email

17 pkb, email

18 create UC
19 UC

20 UC

/PIF

21 gen. IALPO

22 POST auth_with_assertion (CAPLPO)

23 GET list_emails

24 GET address_info

25 gen. IARP

26 response (CAPRP)

27 close

Browser

Figure 4. BrowserID implementation overview. Black arrows (open tips) denote HTTPS messages,
blue arrows (filled tips) denote XHRs (over HTTPS), red (dashed) arrows are postMessages, snake lines
are commands to the browser.

mentation uses another party, login.persona.org (LPO). The role of LPO is as follows: First,
LPO provides the HTML and JavaScript files of the implementation. Thus, the BrowserID

4 THE BROWSERID SYSTEM 21

implementation mainly runs under the origin of LPO.4 When the JavaScript implementation
running in the browser under the origin of LPO needs to retrieve information from the IdP
(support document), LPO acts as a proxy to circumvent cross-origin restrictions.

Before explaining the login process, we provide a quick overview of the windows and iframes
in the browser. By RP-Doc we denote the window (see Figure 4) containing the document
loaded from some RP, a web page on which the user wants to log in with an email address
of some IdP. This document typically includes JavaScript from LPO and contains a button
“Login with BrowserID”. (Loading of RP-Doc from the RP and the JavaScript from LPO is
not depicted in Figure 4). The LPO JavaScript running in RP-Doc opens an auxiliary window
called the login dialog (LD). Its content is provided by LPO and it handles the interaction with
the user. During the login process, a temporary invisible iframe called the provisioning iframe
(PIF) can be created in the LD. The PIF is loaded from IdP. It is used by LD to communicate
(cross-origin) with IdP. Temporarily, the LD may navigate itself to a web page at IdP to allow
for direct user interaction with the IdP.

Now, in order to describe the login process, for the time being we assume that the user uses
a “fresh” browser, i.e., the user has not been logged in before. As mentioned, the process starts
by the user visiting a web site of some RP. After the user has clicked on the login button in
RP-Doc, the LD is opened and the interactive login flow is started. We can divide this login
flow into seven phases: In Phase i , the LD is initialized and the user is prompted to provide
her email address. Then LD fetches the support document (see Section 4.1) of IdP via LPO. In
Phase ii , LD creates the PIF from the provisioning URL provided in the support document.
As (by our assumption) the user is not logged in yet, the PIF notifies LD that the user is not
authenticated to IdP yet. In Phase iii , LD navigates itself away to the authentication URL
which is also provided in the support document and links to IdP. Usually, this document will
show a login form in which the user enters her password to authenticate to the IdP. After the
user has been authenticated to IdP (which typically implies that IdP sets a session cookie in the
browser), the window is navigated to LPO again. (This is done by JavaScript loaded from LPO
that the IdP document is supposed to include.)

Now, the login flow continues in Phase iv , which basically repeats Phase i . However, the
user is not prompted for her email address (it has previously been saved in the localStorage
under the origin of LPO along with a nonce, where the nonce is stored in the sessionStorage). In
Phase v , which basically repeats Phase ii , the PIF detects that the user is now authenticated
to IdP and the provisioning phase is started (I in Figure 3): The user’s keys are created by
LD and stored in the localStorage under the origin of LPO. The PIF forwards the certification
request to IdP, which then creates the UC and sends it back to the PIF. The PIF in turn
forwards it to the LD, which stores it in the localStorage under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for the origin of RP-Doc and
sent (together with the UC) to RP-Doc (II in Figure 3). In the localStorage, LD stores that
the user’s email is logged in at RP. Moreover, the user’s email is recorded at LPO (see the
explanation on LPO Sessions below). For this purpose, LD generates an IA for the origin of
LPO and sends the UC and IA to LPO.

LPO Session. LPO establishes a session with the browser by setting a cookie browserid_state
(in Step 5 in Figure 4) on the client-side. LPO considers such a session authenticated after having
received a valid CAP (in Step 22 in Figure 4). In future runs, the user is presented a list of her
email addresses (which is fetched from LPO) in order to choose one address. Then, she is asked

4It is envisioned by Mozilla to integrate the part of LPO directly into the browser in the future.

4 THE BROWSERID SYSTEM 22

if she trusts the computer she is using and is given the option to be logged in for one month or
“for this session only” (ephemeral session). In order to use any of the email addresses, the user
is required to authenticate to the IdP responsible for that address to get an UC issued. If the
localStorage (under the origin LPO) already contains a valid UC, then, however, authentication
at the IdP is not necessary.

Automatic CAP Creation. In addition to the interactive login presented above, BrowserID
also contains an automatic, non-interactive way for RPs to obtain a freshly generated CAP:
During initialization of the BrowserID code included by RP-Doc, an invisible iframe called the
communication iframe (CIF) is created inside RP-Doc. The CIF’s JavaScript is loaded from
LPO and behaves similar to LD, but without user interaction. The CIF automatically issues a
fresh CAP and sends it to RP-Doc under specific conditions: among others, the email address
must be marked as logged in at RP in the localStorage. If necessary, a new key pair is created
and a corresponding new UC is requested at IdP.

In Figure 6 in Appendix F, we show the usage of the CIF in detail for the case of the
secondary IdP.

Logout. We have to differentiate between three ways of logging out: an RP logout, an LPO
logout, and an IdP logout. An RP logout is handled by the CIF after it has received a logout
postMessage from RP-Doc. The CIF then changes the localStorage such that no email address
is recorded to be logged in at RP.

An LPO logout essentially requires to logout at the web site of LPO. The LPO logout
removes all key pairs and certificates from the localStorage and invalidates the session on the
LPO server.

An IdP logout depends on the IdP implementation and usually cancels the user’s session
with IdP. This entails that IdP will not issue new UCs for the user without re-authentication.

4.3 Sideshow and BigTent

Since several email providers, such as gmail.com and yahoo.com, already use OpenID [25], a
widely employed SSO system, Mozilla implemented IdPs called Sideshow and BigTent which
use an OpenID backend for user authentication: Sideshow/BigTent are put between BrowserID
and an email provider running OpenID. That is, BrowserID uses Sideshow/BigTent as an IdP.
Sideshow/BigTent translate requests from BrowserID to requests to the email provider’s OpenID
interface. Currently, Sideshow and BigTent are used to provide BrowserID support for gmail.

com and yahoo.com, respectively. In what follows, we describe Sideshow in more detail; BigTent
is similar. Technical details on the communication between OpenID and Sideshow/BigTent can
be found in Appendix E.

All BrowserID protocol steps that would normally be carried out by the IdP are now handled
by Sideshow (i.e., the Sideshow server). For this purpose, Sideshow serves the provisioning URL
(for the PIF) and the authentication URL used in iii . It maintains a session with the user’s
browser. This session is considered to be authenticated if the user has successfully authenticated
to Sideshow using OpenID. In this case, Sideshow’s PIF document may send public keys to
Sideshow. Sideshow then creates a UC for the identity it believes to be logged in. If the session
at Sideshow is not authenticated, the user will first be redirected to the Sideshow authentication
URL. Sideshow’s authentication document will redirect the user further to the OpenID URL at
Gmail. This URL contains an authentication request encoding that Sideshow requests an OpenID
assertion that contains an email address. In general, such an assertion is a list of attribute

5 ANALYSIS OF BROWSERID 23

name/value pairs (partially) MACed by Gmail with a temporary symmetric key known only to
Gmail; an additional attribute, openid.signed, in such an assertion encodes which attribute
name/value pairs have actually been MACed and in which order. The user now authenticates
to Gmail. Then, Gmail issues the requested OpenID assertion and redirects the browser to
Sideshow with the assertion in the URL parameters. Sideshow then sends the OpenID assertion
to Gmail in order to check its validity. If the OpenID assertion is valid, i.e. the MAC over
the attributes listed in openid.signed verifies, Sideshow considers its session with the user’s
browser to be authenticated for the email address contained in the OpenID assertion.

4.4 Secondary Identity Provider

If an email provider (IdP) does not directly support BrowserID, LPO can be used as a so-called
secondary IdP (sIdP), i.e., it replaces the IdP completely. For this, the user has to register at
LPO. That is, she creates an account at LPO where she can register one or more email addresses
to be used as identities. She has to prove ownership of all email addresses she registers. (LPO
sends URLs to each email address, which then have to be opened by the user.)

When the sIdP is used, the phases ii – vi are not needed as now LPO replaces the IdP
and the actions previously performed by IdP and LPO are now carried out by LPO alone. The
user is prompted to enter her password directly into LD. If the password is correct, LPO now
considers the session with the browser to be authenticated. LPO will then issue UCs on behalf
of the email provider. We note that, for automatic CAP creation, the CIF (see Section 4.2) is
still used.

A detailed step-by-step description of a BrowserID flow with an sIdP can be found in Ap-
pendix F.

5 Analysis of BrowserID

In this section, we present the analysis of the BrowserID system. We first formulate fundamental
security properties for the BrowserID system. We then present attacks that show that these
properties are not satisfied and propose fixes. For the case of BrowserID with sIdP and the fixes
applied, we then prove that the security properties are satisfied in our web model. We note
that we also incorporate the automated CAP creation with the CIF in our model of BrowserID
(see Section 4.2). Our web model is expressive enough to also formally model the BrowserID
system with primary IdPs (and Sideshow/BigTent) in a straightforward way. However, we leave
the detailed formulation of such a model and the proof of the security of the fixed system with
primary IdPs to future work.

5.1 Security Properties for BrowserID

While the documentation of BrowserID does not contain explicit security goals, we deduce two
fundamental security properties that can be informally described as follows (see Appendix H for
a formal description): (A) The attacker should not be able to use a service of RP as an honest
user. In other words, the attacker should not get hold of (be able to derive from his current
knowledge) an RP service token for an ID of an honest user (browser), even if the browser was
closed and then later used by a malicious user (i.e., after a CLOSECORRUPT). (B) The attacker
should not be able to authenticate an honest browser to an RP with an ID that is not owned by
the browser.

5 ANALYSIS OF BROWSERID 24

5.2 Attacks on BrowserID

Our analysis of BrowserID w.r.t. the above security properties revealed several attacks (as
sketched next). We confirmed the attacks on the actual implementation and also reported
them to Mozilla. The first two fixes proposed below have been adopted by Mozilla already and
the others are currently under discussion at Mozilla.

5.2.1 Identity Forgery

There are two problems in Sideshow that lead to identity forgery attacks for Gmail addresses;
analogously in BigTent with Yahoo email addresses.5

a) It is not checked if all requested attributes in the OpenID assertion are MACed, which
allows for the following attack: A (web) attacker may choose any Gmail address to impersonate,
say victim@gmail.com. He starts a BrowserID login with this email address. When he is
then redirected to the OpenID URL at Gmail, he removes the email attribute from Sideshow’s
authentication request. The attacker authenticates himself at Gmail with his own account (say,
attacker@gmail.com). Upon receipt of the OpenID assertion, he appends the email attribute
with value victim@gmail.com and forwards it to Sideshow. The assertion is declared valid by
Gmail since the MAC is correct (the email attribute is not listed in openid.signed). Since
Sideshow does not require the email attribute to be in openid.signed, it accepts the OpenID
assertion, considers the attacker’s session to be authenticated for victim@gmail.com, and issues
UCs for this address to the attacker. This violates Condition (A).

b) Sideshow uses the first email address in the OpenID assertion (based on the attribute type
information), which is not necessarily the MACed email address. This allows for an attack similar
to the above, except that the attacker does not need to change Sideshow’s authentication request
but only prepends the victim’s email address to the OpenID assertion in an additional attribute.

Proposed fix. Sideshow/BigTent must ensure to use the correct and MACed attribute for the
email address.

5.2.2 Login Injection Attack

During the login process, the origin of the response postMessage (26 in Figure 4), which contains
the CAP, is not checked. An attacker (e.g., in a malicious advertisement iframe within RP-Doc
or in a parent window of RP-Doc), can continuously send postMessages to the RP-Doc with his
own CAP in order to log the user into his own account. The outcome of this attack is similar to
session swapping. For example, if the attacker is able to log the user into a search engine, the
attacker might be able to read the search terms the user enters. This attack violates Condition
(B).6

Proposed fix. To fix the problem, the sender’s origin of the postMessage 26 must be checked
to match LPO.

5See https://bugzilla.mozilla.org/show_bug.cgi?id=920030 and
https://bugzilla.mozilla.org/show_bug.cgi?id=920301.

6See https://bugzilla.mozilla.org/show_bug.cgi?id=868967

https://bugzilla.mozilla.org/show_bug.cgi?id=920030
https://bugzilla.mozilla.org/show_bug.cgi?id=920301
https://bugzilla.mozilla.org/show_bug.cgi?id=868967

5 ANALYSIS OF BROWSERID 25

5.2.3 Key Cleanup Failure Attack

When LD creates a key pair (15 in Figure 4), it stores the keys in the localStorage (even in
ephemeral sessions). When a user quits a session (e.g, by clicking on RP’s logout button and
closing the browser) the key pair (and the UC) remain in the localStorage, unlike session cookies.
Hence, users of shared terminals can read the localStorage (in our model, a CLOSECORRUPT allows
an attacker to do this) and then, using the key pair and the UC, create valid CAPs to log in at
any RP under the identity of the previous user, which violates Condition (A).7

Proposed fix. We propose to use the localStorage for this data only in non-ephemeral sessions.

5.2.4 Cookie Cleanup Failure Attack (for the case of secondary IdP only)

The LPO session cookie is not deleted when the browser is closed, even in ephemeral sessions and
even if a user logged out at RP beforehand. (In our model, if the attacker issues a CLOSECORRUPT,
he can therefore still access the LPO session cookie.) Hence, another user of the same browser
could request new UCs for any ID registered at LPO for that user, and hence, log in at any RP
under this ID, which violates Condition (A).8

Proposed fix. In ephemeral sessions, LPO should limit the cookie lifetime to the browser
session.

5.3 Analysis of BrowserID with sIdP

We now present an overview of our formal model and analysis of BrowserID with sIdP. More
details are presented in Appendix G. We consider ephemeral sessions (the default), which are
supposed to last until the browser is closed. We assume that users are already registered at LPO,
i.e., they have accounts at LPO with one or more email addresses registered in each account.

More specifically, we first model the BrowserID system as a web system (in the sense of
Section 3), then precisely formalize the security properties already sketched in Section 5.1 in
this model, and finally prove, for the BrowserID model with the fixes proposed in Section 5.2
applied (otherwise the proof would not go through), that these security properties are satisfied.

We call a web system BID = (W , S , script, E0) a BrowserID web system if it is of the form
described in what follows.

The system W = Hon ∪Web ∪ Net consists of the (network) attacker process attacker, the
web server for LPO, a finite set B of web browsers, and a finite set RP of web servers for the
relying parties, with Hon := B∪RP∪{LPO}, Web := ∅, and Net := {attacker}. DNS servers are
assumed to be dishonest, and hence, are subsumed by attacker. More details on the processes
in W are provided below.

The set N of nonces is partitioned into three sets, an infinite set NW , an infinite set Kprivate,
and a finite set Secrets. The set NW is further partitioned into infinite sets of nonces, one set
Np ⊆ NW for every p ∈W .

The set Addresses contains for LPO, attacker, every relying party in RP, and every browser
in B one address each. By addr we denote the corresponding assignment from a process to
its address. The set Domains contains one domain for LPO, one for every relying party in RP,
and a finite set of domains for attacker. Each domain is assigned a fresh private key (a nonce).
Additionally, LPO has a fresh signing key kLPO, which it uses to create UCs.

7See https://github.com/mozilla/browserid/issues/3770
8See https://github.com/mozilla/browserid/issues/3769

https://github.com/mozilla/browserid/issues/3770
https://github.com/mozilla/browserid/issues/3769

5 ANALYSIS OF BROWSERID 26

Each browser b ∈ B owns a finite set of secrets (⊆ Secrets) for LPO and each secret is assigned
a finite set of email addresses (IDs) of the form 〈name , d〉, with name ∈ S and d ∈ Domains,
such that browsers have disjoint sets of secrets and secrets have disjoint sets of IDs. An ID i is
owned by a browser b if the secret associated with i belongs to b.

The set S contains four scripts, with their string representations defined by script: the honest
scripts running in RP-Doc, CIF, and LD, respectively, and the malicious script Ratt (see below
for more details).

The set E0 contains only the trigger events specified in Definition 6.
Before we specify the processes in W , we first note that a UC uc for a user u with email

address i and public key (verification key) pub(ku), where ku is the private key (signing key)
of u, is modeled to be a message of the form uc = sig(〈i,pub(ku)〉, k

LPO), with kLPO as defined
above. An IA ia for an origin o (e.g., 〈example.com, S〉) is a message of the form ia = sig(o, ku).
Now, a CAP is of the form 〈uc, ia〉. Note that the time stamps are omitted both from the UC
and the IA. This models that both certificates are valid indefinitely. In reality, as explained in
Section 4, they are valid for a certain period of time, as indicated by the time stamps. So our
modeling is a safe overapproximation.

We are now ready to define the processes in W as well as the scripts in S in more detail. We
note that in Appendix G, we provide a detailed formal specification of the processes and scripts
in the style of Algorithm 9.

All processes in W contain in their initial states all public keys and the private keys of their
respective domains (if any). We define Ip = {addr(p)} for all p ∈ Hon.

Attacker. The attacker process is a network attacker (see Section 3.1), who uses all addresses
for sending and listening. All parties use the attacker as a DNS server. See Appendix G.1 for
details.

Browsers. Each b ∈ B is a web browser as defined in Section 3.4. The initial state contains
all secrets owned by b, stored under the origin 〈dom(LPO), S〉 of LPO; sts is 〈dom(LPO)〉. See
Appendix G.2 for details.

LPO. The initial state of LPO contains its signing key kLPO, all secrets in Secrets and the
corresponding IDs. The definition of RLPO closely follows the description of LPO in Section 4.4.
Sessions of LPO expire non-deterministically. UCs are signed using kLPO. See Appendix G.3 for
details.

Relying Parties. A relying party r ∈ RP is a web server. The definition of Rr follows the
description in Section 4 and the security considerations in [24].9 RP answers any GET request
with the script script_RP_index (see below). When receiving an HTTPS POST message, RP
checks (among others) if the message contains a valid CAP. If successful, RP responds with an
RP service token for ID i of the form 〈n, i〉, where i ∈ ID is the ID for which the CAP was issued
and n is a freshly chosen nonce. The RP r keeps a list of such tokens in its state. Intuitively, a
client having such a token can use the service of r for ID i. See Appendix G.4 for details.

BrowserID Scripts. The set S consists of the scripts Ratt,script_RP_index ,script_LPO_cif ,
and script_LPO_ld with their string representations att_script, script_RP_index,
script_LPO_cif, and script_LPO_ld. The latter two scripts (issued by LPO) are defined in a
straightforward way following the implementation outlined in Section 4. The script script_RP_index

9Mozilla recommends to (1) protect against Cross-site Request Forgery (Rr checks the Origin header, which
is always set in our model), (2) verify CAPs on the server (rather than in the browser), (3) check if the CAP is
issued for the correct RP, and (4) verify SSL certificates.

6 RELATED WORK 27

(issued by RP) also includes the script that is (in reality) loaded from LPO. In particular, this
script creates the CIF and the LD iframes/subwindows, whose contents (scripts) are loaded from
LPO. See Appendix G.5 for details.

5.4 Security of the Fixed System

We call a BrowserID web system BID with the fixes proposed in Section 5.2 a fixed BrowserID
web system. We now obtain the following theorem, which says that such a system satisfies the
security properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system. Then, BID is secure.

The proof of this theorem is presented in Appendix I.

6 Related Work

Early work in the direction of formal web security analysis includes work by Kerschbaum [22],
in which a Cross-Site Request Forgery protection proposal is formally analyzed using a simple
model expressed using Alloy, a finite-state model checker [20].

In seminal work, Akhawe et al. [2] initiated a more general formal treatment of web security.
Again the model was provided in the Alloy modeling language. Inspired by this work, Bansal
et al. [5,6] built the WebSpi model for the web infrastructure, which is encoded in the modeling
language (a variant of the applied pi-calculus [1]) of ProVerif, a specialized tool for cryptographic
protocol analysis [8]. Both models have successfully been applied to find attacks in standards
and web applications.

We see our work as a complement to these models: On the one hand, the above models
support (fully) automated analysis. On the other hand, our model is much more comprehensive
and accurate, but not directly suitable for automation.10 We think that, similarly to the area
of cryptography, both approaches, automated analysis and manual analysis, are very valuable.
Clearly, it is highly desirable to push automated analysis as much as possible, given that manual
proofs are laborious and error-prone. Conversely, automated approaches may miss important
problems due to the less accurate models they consider. Moreover, a “service” more comprehen-
sive and accurate models provide, even if they are manually driven, is that they summarize and
condense relevant aspects in the various standards and specifications for the web. As such, they
are an important basis for the formal foundation and discourse on web security and can serve
as reference models (for tool-supported analysis, web security researchers, for developers of web
technologies and standards, and maybe for teaching basic web security concepts).

The BrowserID system has been analyzed before using the AuthScan tool developed by
Bai et al. [4]. Their work focusses on the automated extraction of a model from a protocol
implementation. Their analysis of BrowserID is not very detailed; only two rather trivial attacks

10The tool-based models are necessarily tailored to and limited by constraints of the tools. For example,
models for Alloy are necessarily finite state. Terms (messages) need to be encoded in some way as they are
not directly supported. Due to the analysis method employed in ProVerif, the WebSpi model is of a monotonic
nature. For instance, cookies and localStorage entries can only be added, but not deleted or modified. Also, the
number of cookies per request is limited. Several features (that have been crucial for the analysis of BrowserID)
are not supported by the tool-based models, including the precise handling of windows, documents, and iframes
as well as cross-document messaging (postMessages), and the ability for an attacker to take over a browser after
it has been closed. Dealing with such features in an automated tool is indeed challenging.

7 CONCLUSION 28

are identified, for example, CAPs that are sent unencrypted can be replayed by the attacker to
an RP. There is also work on the analysis of other web-based single sign-on systems, such as
SAML-based single sign-on, OpenID, and OAuth (see, e.g., [3,7,11,15,17,23,27–30]). However,
none of these works are based on a model of the web infrastructure.

In [16, 26, 27, 30], potentially problematic usage of postMessages and the OpenID interface
are discussed. While very useful, these papers do not consider BrowserID or formal models,
and they do not formalize security properties for web applications or establish formal security
guarantees.

Bohannon and Pierce propose a formal model of a web browser core [9]. The scope and goal
of the model is different to ours, but some mechanisms can be found in both models. Börger
et al. present an approach for the analysis of web application frameworks, focussing on the
server [10].

7 Conclusion

We presented an expressive model of the web infrastructure and web applications, the most
comprehensive model for the web infrastructure to date. It contains many security-relevant
features and is designed to closely mimic standards and specifications for the web. As such, it
constitutes a solid basis for the analysis of a broad range of web standards and applications.

In our case study, we analyzed the BrowserID system, found several very critical attacks,
proposed fixes, and proved the fixed system for the case of secondary IdP case secure w.r.t. the
security properties we specified. The analysis of this system is out of the scope of other models
for the web infrastructure.

As for future work, it is straightforward to incorporate further features, such as subdomains,
cross-origin resource sharing, and finer-grained settings for cookie paths and domains, which we
have left out mainly for brevity of presentation for now. Our model could serve as a basis and
a reference for automated approaches, where one could try to extend the existing automated
approaches or develop new ones (e.g., based on theorem provers, where higher accuracy is typ-
ically paid by more interaction). Finally, BrowserID is being used by more and more web sites
and it will continue to be an interesting object of study. An obvious next step is to analyze
BrowserID for the case of primary IdPs. The model is already expressive enough to carry out
such an analysis. We also plan to apply our model to other web applications and web standards.

Acknowledgement

The first author is supported by the Studienstiftung des Deutschen Volkes (German National
Academic Foundation).

A Message and Data Formats

We now provide some more details about data and message formats that are needed for the
formal treatment of our web model and our case study presented in the rest of the appendix.

A MESSAGE AND DATA FORMATS 29

A.1 Notations

For a set s and a sequence t = 〈t1, . . . , tn〉 we use t ⊂〈〉 s to say that t1, . . . , tn ∈ s. We define
x ∈〈〉 t ⇐⇒ ∃i : ti = x . We write t+〈〉 y to denote the sequence 〈t1, . . . , tn, y〉. For a sequence
t = 〈t1, . . . , tn〉 we define |t| = n. If t is not a sequence, we set |t| = ♦. For a finite set M with
M = {m1, . . . ,mn} we use 〈M〉 to denote the term of the form 〈m1, . . . ,mn〉. (The order of the
elements does not matter; one arbitrary is chosen.)

We also use specific terms which we call dictionaries.

Definition 7. A dictionary over X and Y is a term of the form 〈〈k1, v1〉, . . . , 〈kn, vn〉〉, where
k1, . . . , kn ∈ X, v1, . . . , vn ∈ Y , and the keys k1, . . . , kn are unique, i.e., ∀i 6= j : ki 6= kj . We
call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of the dictionary with key ki and value vi.
We often write [k1 : v1, . . . , ki : vi, . . . , kn : vn] instead of 〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the
set of all dictionaries over X and Y by [X × Y].

We note that the empty dictionary is equivalent to the empty sequence: [] = 〈〉. Figure 5
shows the short notation for dictionary operations that will be used when describing the browser
atomic process. For a dictionary z = [k1 : v1, k2 : v2, . . . kn : vn] we write k ∈ z to say that there
exists i such that k = ki. We write z[kj] := vj to extract elements. If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . , ki : vi, . . . , kn : vn] [ki] = vi (8)

[k1 : v1, . . . , ki−1 : vi−1, ki : vi, ki+1 : vi+1 . . . , kn : vn]− ki =

[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1 . . . , kn : vn] (9)

Figure 5. Dictionary operators with 1 ≤ i ≤ n.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers.
The subterm is determined by repeated application of the projection πi for the integers i in the
sequence. We call such a sequence a pointer :

Definition 8. A pointer is a sequence of non-negative integers.

We write τ.p for the application of the pointer p to the term τ . This operator is applied
from left to right. For pointers consisting of a single integer, we may omit the sequence braces
for brevity.

Example 2. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the subterm of τ at
the position p is c = π1(π3(τ)). Also, τ.3.〈3, 1〉 = τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead,
we will use the names of the components of a sequence that is of a defined form as pointers that
point to the corresponding subterms. E.g., if an Origin term is defined as 〈host , protocol 〉 and o
is an Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 3.

In our pseudocode, we will write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that x := π2(t), and
y := π3(t) if Constant ≡ π1(t) and if |〈Constant, x, y〉| = |t|, and that otherwise x and y are
not set and doSomethingElse is executed.

A MESSAGE AND DATA FORMATS 30

A.2 URLs

Definition 9. A URL is a term 〈URL, protocol , host , path , params 〉 with protocol ∈ {P, S} (for
plain (HTTP) and secure (HTTPS)), host ∈ Domains, path ∈ S and params ∈

[

S× TN

]

. The
set of all valid URLs is URLs.

Example 3. For the URL u = 〈URL, a, b, c, d〉, u.protocol = a. If, in the algorithm described
later, we say u.path := e then u = 〈URL, a, b, c, e〉 afterwards.

A.3 Origins

Definition 10. An origin is a term of the form 〈host , protocol 〉 with host ∈ Domains, protocol ∈
{P, S}. We write Origins for the set of all origins. See Example 1 for an example for an origin.

A.4 Cookies

Definition 11. A cookie is a term of the form 〈name , content〉 where name ∈ TN , and content

is a term of the form 〈value, secure , session , httpOnly〉 where value ∈ TN , secure, session,
httpOnly ∈ {⊤,⊥}. We write Cookies for the set of all cookies.

Note that cookies of the form described here are only contained in HTTP(S) requests.
In responses, only the components name and value are transferred as a pairing of the form
〈name , value〉.

A.5 HTTP Messages

Definition 12. An HTTP request is a term of the form shown in (10). An HTTP response is
a term of the form shown in (11).

〈HTTPReq,nonce ,method , host , path , parameters , headers , body〉 (10)

〈HTTPResp,nonce , status , headers , body〉 (11)

The components are defined as follows:

• nonce ∈ N serves to map each response to the corresponding request

• method ∈ Methods is one of the HTTP methods.

• host ∈ Domains is the host name in the HOST header of HTTP/1.1.

• path ∈ S is a string indicating the requested resource at the server side

• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the
HTTP standard)

• parameters ∈
[

S× TN

]

contains URL parameters

• headers ∈
[

S× TN

]

, containing request/response headers. The dictionary elements are
terms of one of the following forms:

• 〈Origin, o〉 where o is an origin

• 〈Set-Cookie, c〉 where c is a sequence of cookies

A MESSAGE AND DATA FORMATS 31

• 〈Cookie, c〉 where c ∈
[

S× TN

]

(note that in this header, only names and values of
cookies are transferred)

• 〈Location, l〉 where l ∈ URLs

• 〈Strict-Transport-Security,⊤〉

• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respec-
tively.

Example 4 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,

[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (12)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,⊤〉〉〉〉〉, 〈somescript, x〉〉 (13)

An HTTP GET request for the URL http: // example. com/ show? index= 1 is shown in (12),
with an Origin header and a body that contains 〈foo, bar〉. A possible response is shown in (13),
which contains an httpOnly cookie with name SID and value n2 as well as the string representation
somescript of the scripting process script−1(somescript) (which should be an element of S) and
its initial state x.

Encrypted HTTP Messages

For HTTPS, requests are encrypted using the public key of the server. Such a request contains an
(ephemeral) symmetric key chosen by the client that issued the request. The server is supported
to encrypt the response using the symmetric key.

Definition 13. An encrypted HTTP request is of the form enca(〈m,k′〉, k), where k, k′ ∈ N

and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the form
encs(m

′, k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests and
responses HTTPSRequests or HTTPSResponses, respectively.

Example 5.

enca(〈r, k
′〉,pub(kexample.com)) (14)

encs(s, k
′) (15)

The term (14) shows an encrypted request (with r as in (12)). It is encrypted using the public key
pub(kexample.com). The term (15) is a response (with s as in (13)). It is encrypted symmetrically
using the (symmetric) key k′ that was sent in the request (14).

A.6 DNS Messages

Definition 14. A DNS request is a term of the form 〈DNSResolve, domain ,nonce〉 where
domain ∈ Domains, nonce ∈ N . We call the set of all DNS requests DNSRequests.

Definition 15. A DNS response is a term of the form 〈DNSResolved, result ,nonce〉 with result ∈
Addresses, nonce ∈ N . We call the set of all DNS responses DNSResponses.

As already mentioned in Section 3.2, DNS servers are supposed to include the nonce they
received in a DNS request in the DNS response that they send back.

http://example.com/show?index=1

B DETAILED DESCRIPTION OF THE BROWSER MODEL 32

B Detailed Description of the Browser Model

Following the informal description of the browser model in Section 3.4, we now present a formal
model. We start by introducing some notation and terminology.

B.1 Notation and Terminology (Web Browser State)

Definition 16. A window is a term of the form w = 〈nonce , documents , opener 〉 with nonce ∈
N , documents ⊂〈〉 Documents (defined below), opener ∈ N ∪ {⊥} where d.active = ⊤ for
exactly one d ∈〈〉 documents if documents is not empty (we then call d the active document of
w). We write Windows for the set of all windows. We write w.activedocument to denote the
active document inside window w if it exists and 〈〉 else.

We will refer to the window nonce as (window) reference. See Example 1 for an example of
a window.

The documents contained in a window term to the left of the active document are the
previously viewed documents (available to the user via the “back” button) and the documents in
the window term to the right of the currently active document are documents available via the
“forward” button, as will be clear from the description of web browser model (see Section B.2).

A window a may have opened a top-level window b (i.e., a window term which is not a
subterm of a document term). In this case, the opener part of the term b is the nonce of a, i.e.,
b.opener = a.nonce.

Definition 17. A document d is a term of the form

〈nonce , origin , script , scriptstate , scriptinput , subwindows , active〉

where nonce ∈ N , origin ∈ Origins, script , scriptstate, scriptinput ∈ TN , subwindows ⊂〈〉

Windows, active ∈ {⊤,⊥}. A limited document is a term of the form 〈nonce , subwindows〉 with
nonce, subwindows as above. A window w ∈〈〉 subwindows is called a subwindow (of d). We
write Documents for the set of all documents.

We will refer to the document nonce as (document) reference. An example for window and
document terms was given in Example 1.

We can now define the set of states of web browsers. Note that we use the dictionary notation
that we introduced in Definition 7.

Definition 18. Let OR := {〈o, r〉| o ∈ Origins, r ∈ N }. The set of states Zp of a web browser
atomic process p consists of the terms of the form

〈windows , secrets , cookies , localStorage , sessionStorage , keyMapping ,

sts ,DNSaddress ,nonces , pendingDNS , pendingRequests , isCorrupted 〉

where windows ⊂〈〉 Windows, secrets ∈ [Origins×N], cookies is a dictionary over Domains and
dictionaries of Cookies, localStorage∈

[

Origins× TN

]

, sessionStorage∈
[

OR × TN

]

, keyMapping∈

[Domains×N], sts⊂〈〉Domains, DNSaddress∈Addresses, nonces⊂〈〉N , pendingDNS∈
[

N × TN

]

,
pendingRequests∈ TN , isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT}. We call the set of all
states of standard HTTP browsers SHBStates.

B DETAILED DESCRIPTION OF THE BROWSER MODEL 33

Definition 19. For two window terms w and w′ we write w
childof
−−−−→ w′ if w ∈〈〉

w′.activedocument.subwindows. We write
childof+

−−−−−→ for the transitive closure.

In the following description of the web browser relation Rp we will use the helper functions
Subwindows, Docs, Clean, CookieMerge and AddCookie.

Given a browser state s, Subwindows(s) denotes the set of all pointers11 to windows in the
window list s.windows, their (active) documents, and the subwindows of these documents (re-
cursively). We exclude subwindows of inactive documents and their subwindows. With Docs(s)
we denote the set of pointers to all active documents in the set of windows referenced by
Subwindows(s).

Definition 20. For a browser state s we denote by Subwindows(s) the minimal set of pointers
that satisfies the following conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈
Subwindows(s) such that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of the
window s.p and every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set
such that for every p ∈ Subwindows(s), there is a pointer p′ ∈ Docs(s) with s.p′ = s.p.activedocument.

The function Clean will be used to determine which information about windows and docu-
ments the script running in the document d has access to.

Definition 21. Let s be a browser state and d a document. By Clean(s, d) we denote the
term that equals s.windows but with all inactive documents removed (including their subwindows
etc.) and all subterms that represent non-same-origin documents w.r.t. d replaced by a limited
document d′ with the same nonce and the same subwindow list. Note that non-same-origin
documents on all levels are replaced by their corresponding limited document.

The function CookieMerge merges two sequences of cookies together: When used in the
browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a sequence
of new cookies that was outputted by some script. The sequences are merged into a set of cookies
using an algorithm that is based on the Storage Mechanism algorithm described in RFC6265.

Definition 22. The set CookieMerge(oldcookies ,newcookies) for two sequences oldcookies and
newcookies of cookies (where the cookies in oldcookies have pairwise different names) is defined by
the following algorithm: From newcookies remove all cookies c that have c.content.httpOnly ≡
⊤. For any c, c′ ∈〈〉 newcookies , c.name ≡ c′.name, remove the cookie that appears left of the other
in newcookies . Let m be the set of cookies that have a name that either appears in oldcookies

or in newcookies, but not in both. For all pairs of cookies (cold, cnew) with cold ∈
〈〉 oldcookies ,

cnew ∈
〈〉 newcookies , cold.name ≡ cnew.name, add cnew to m if cold.content.httpOnly ≡ ⊥ and

add cold to m otherwise. The result of CookieMerge(oldcookies ,newcookies) is m.

The function AddCookie adds a cookie c to the sequence of cookies contained in the sequence
oldcookies . It is again based on the algorithm described in RFC6265 but simplified for the use
in the browser model.

Definition 23. The sequence AddCookie(oldcookies , c), where oldcookies is a sequence of cook-
ies with different names and c is a cookie c, is defined by the following algorithm: Let m :=
oldcookies . Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return m.

11Recall the definition of a pointer from Definition 8.

B DETAILED DESCRIPTION OF THE BROWSER MODEL 34

The function NavigableWindows returns a set of windows that a document is allowed to
navigate. We closely follow [18], Section 5.1.4 for this definition.

Definition 24. NavigableWindows(w, s′) is the set W ⊆ Subwindows(s′) of pointers to windows
that the active document in w is allowed to navigate. The set W is defined to be the minimal
set such that for every w′ ∈ Subwindows(s′) the following is true:

• If s′.w′.activedocument.origin ≡ s′.w.activedocument.origin (the active documents
in w and w′ are same-origin), then w′ ∈W , and

• If s′.w
childof∗

−−−−−→ s′.w′ ∧ ∄w′′ ∈ Subwindows(s′) with s′.w′ childof∗

−−−−−→ s′.w′′ (w′ is a top-level
window and w is an ancestor window of w′), then w′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′ childof+

−−−−−→ s′.p ∧ s′.p.activedocument.origin =
s′.w.activedocument.origin (w′ is not a top-level window but there is an ancestor window
p of w′ with an active document that has the same origin as the active document in w),
then w′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′.opener = s′.p.nonce ∧ p ∈ W (w′ is a top-level
window—it has an opener—and w is allowed to navigate the opener window of w′, p), then
w′ ∈W .

B.2 Description of the Web Browser Atomic Process

We will now describe the relation Rp of a standard HTTP browser p. For a tuple r = (((a:f :m) , s) , (M,s′))
we define r to belong to Rp iff the non-deterministic algorithm presented in Section B.2.2, when
given ((a:f :m) , s) as input, terminates with stop M , s′, i.e., with output M and s′. Recall that
(a:f :m) is an (input) event and s is a (browser) state, M is a set of (output) events, and s′ is a
new (browser) state.

The notation let n← N is used to describe that n is chosen non-deterministically from the
set N . We write for each s ∈ M do to denote that the following commands (until end for)
are repeated for every element in M , where the variable s is the current element. The order in
which the elements are processed is chosen non-deterministically.

We first define some functions which will be used in the main algorithm presented in Sec-
tion B.2.2.

B.2.1 Functions

In the description of the following functions we use a, f , m, s and Np as read-only global input
variables. Also, the functions use the set Np as a read-only set. All other variables are local
variables or arguments.

TAKENONCE returns a nonce from the set of unused nonces and modifies the browser state
such that the nonce is added to the sequence of used nonces. Note that this function returns
two values, the nonce n and the modified state s′.

Algorithm 1 Non-deterministically choose a fresh nonce.

1: function TAKENONCE(s′)
2: let n ←

{

x
∣

∣x ∈ Np ∧ x 6∈〈〉 s′.nonces
}

B DETAILED DESCRIPTION OF THE BROWSER MODEL 35

3: let s′.nonces := s′.nonces +〈〉 n
4: return n, s′

5: end function

The following function, GETNAVIGABLEWINDOW, is called by the browser to determine the
window that is actually navigated when a script in the window s′.w provides a window reference
for navigation (e.g., for opening a link). When it is given a window reference (nonce) window ,
GETNAVIGABLEWINDOW returns a pointer to a selected window term in s′:

• If window is the string _BLANK, a new window is created and a pointer to that window is
returned.

• If window is a nonce (reference) and there is a window term with a reference of that value
in the windows in s′, a pointer w′ to that window term is returned, as long as the window
is navigable by the current window’s document (as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

Algorithm 2 Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window , s′)
2: if window ≡ _BLANK then ⊲ Open a new window when _BLANK is used
3: let n, s′ := TAKENONCE(s′)
4: let w′ := 〈n, 〈〉, s′.w.nonce〉
5: let s′.windows := s′.windows +〈〉 w′ and let w′ be a pointer to this new element in s′

6: return (w′, s′)
7: end if
8: let w′ ← NavigableWindows(w, s′) such that s′.w′.nonce ≡ window if possible; otherwise

return (w, s′)
9: return (w′, s′)

10: end function

The following function takes a window reference as input and returns a pointer to a window as
above, but it checks only that the active documents in both windows are same-origin. It creates
no new windows.

Algorithm 3 Determine same-origin window.

1: function GETWINDOW(w, window , s′)
2: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window if possible; otherwise return

(w, s′)
3: if s′.w′.activedocument.origin ≡ s′.w.activedocument.origin then
4: return (w′, s′)
5: end if
6: return (w, s′)
7: end function

The next function is used to stop any pending requests for a specific window. From the
pending requests and pending DNS requests it removes any requests with the given window
reference n.

Algorithm 4 Cancel pending requests for given window.

1: function CANCELNAV(n, s′)
2: remove all 〈n, req, key , f 〉 from s′.pendingRequests for any req, key , f
3: remove all 〈x, 〈n,message, protocol 〉〉 from s′.pendingDNS for any x , message, protocol

B DETAILED DESCRIPTION OF THE BROWSER MODEL 36

4: return s′

5: end function

The following function takes an HTTP request message as input, adds cookie and origin
headers to the message, creates a DNS request for the hostname given in the request and stores
the request in s′.pendingDNS until the DNS resolution finishes. For normal HTTP requests,
reference is a window reference. For XHRs, reference is a value of the form 〈document ,nonce〉
where document is a document reference and nonce is some nonce that was chosen by the script
that initiated the request. protocol is either P or S. origin is the origin header value that is to
be added to the HTTP request.

Algorithm 5 Prepare headers, do DNS resolution, save message.

1: function SEND(reference, message, protocol , origin , s′)
2: if message.host ∈〈〉 s′.sts then
3: let protocol := S

4: end if
5: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies [message.host]

∧ (c.content.secure =⇒ (protocol = S))}〉
6: let message.headers[Cookie] := cookies

7: if origin 6≡ ⊥ then
8: let message.headers[Origin] := origin

9: end if
10: let n, s′ := TAKENONCE(s′)
11: let s′.pendingDNS[n] := 〈reference,message, protocol〉
12: stop {(s′.DNSaddress : a : 〈DNSResolve, host , n〉)}, s′

13: end function

The following two functions have informally been described in Section 3.4.2.
The function RUNSCRIPT performs a script execution step of the script in the document s′.d

(which is part of the window s′.w). A new script and document state is chosen according to
the relation defined by the script and the new script and document state is saved. Afterwards,
the command that the script issued is interpreted. Note that for each (Line 13) works in a
non-deterministic order.

Algorithm 6 Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let n, s′ := TAKENONCE(s′)
3: let tree := Clean(s′, s′.d)
4: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[

s′.d.origin.host
]

∧ c.content.httpOnly = ⊥
∧
(

c.content.secure =⇒
(

s′.d.origin.protocol ≡ S
))

}〉
5: let tlw ← s′.windows such that tlw is the top-level window containing d

6: let sessionStorage := s′.sessionStorage
[

〈s′.d.origin, tlw .nonce〉
]

7: let localStorage := s′.localStorage
[

s′.d.origin
]

8: let secret := s′.secrets
[

s′.d.origin
]

9: let nonces be an infinite subset of
{

x
∣

∣x ∈ Np ∧ x 6∈〈〉 s′.nonces
}

10: let R ← script−1(s′.d.script)
11: let in :=
〈tree, s′.d.nonce, s′.d.scriptstate, s′.d.scriptinput, cookies , localStorage, sessionStorage secret〉

12: let state ′ ← TN , cookies ′ ← Cookies, localStorage ′ ← TN , command ← TN , out :=
〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉 such that ((in , nonces), out) ∈ R

B DETAILED DESCRIPTION OF THE BROWSER MODEL 37

13: for each n ∈ dN (〈in , out〉) ∩Np do

14: let s′.nonces := s′.nonces +〈〉 n
15: end for
16: let s′.cookies

[

s′.d.origin.host
]

:= 〈CookieMerge(s′.cookies
[

s′.d.origin.host
]

, cookies ′)〉

17: let s′.localStorage
[

s′.d.origin
]

:= localStorage ′

18: let s′.sessionStorage
[

〈s′.d.origin, tlw .nonce〉
]

:= sessionStorage ′

19: let s′.d.scriptstate := state′

20: switch command do
21: case 〈〉
22: stop {}, s′

23: case 〈HREF, url , hrefwindow 〉12

24: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow , s′)
25: let req := 〈GET, url .host, HTTPReq, n, url .path, 〈〉, url .params, 〈〉〉
26: let s′ := CANCELNAV(s′.w′.nonce, s′)
27: SEND(s′.w′.nonce, req , url .protocol, ⊥, s′)

28: case 〈IFRAME, url ,window 〉
29: let w′, s′ := GETWINDOW(w,window , s′)
30: let req := 〈GET, url .host, HTTPReq, n, url .path, 〈〉, url .params, 〈〉〉
31: let n, s′ := TAKENONCE(s′)
32: let w′ := 〈n, 〈〉,⊥〉
33: let s′.w′.activedocument.subwindows := s′.w′.activedocument.subwindows +〈〉 w′

34: SEND(n, req, url .protocol, ⊥, s′)

35: case 〈FORM, url ,method , data, hrefwindow 〉
36: if method 6∈ {GET, POST} then 13

37: stop {}, s′

38: end if
39: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow , s′)
40: if method = GET then
41: let body := 〈〉
42: let params := data

43: let origin := ⊥
44: else
45: let body := data

46: let params := url .params
47: let origin := s′.d.origin
48: end if
49: let req := 〈method , url .host, HTTPReq, n, url .path, 〈〉, params , body〉
50: let s′ := CANCELNAV(s′.w′.nonce, s′)
51: SEND(s′.w′.nonce, req , url .protocol, origin , s′)

52: case 〈SETSCRIPT,window , script〉
53: let w′, s′ := GETWINDOW(w,window , s′)
54: let s′.w′.activedocument.script := script

55: stop {}, s′

56: case 〈SETSCRIPTSTATE,window , scriptstate〉
57: let w′, s′ := GETWINDOW(w,window , s′)
58: let s′.w′.activedocument.scriptstate := scriptstate

59: stop {}, s′

12See the definition of URLs in Appendix A.2.
13The working draft for HTML5 allowed for DELETE and PUT methods in HTML5 forms. However, these

have since been removed. See http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24.

http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24

B DETAILED DESCRIPTION OF THE BROWSER MODEL 38

60: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
61: if method ∈ {CONNECT, TRACE, TRACK} then 14

62: stop {}, s′

63: end if
64: if url .host 6≡ s′.d.origin.host ∨ url .protocol 6≡ s′.d.origin.protocol then 15

65: stop {}, s′

66: end if
67: if method ∈ {GET, HEAD} then
68: let data := 〈〉
69: let origin := ⊥
70: else
71: let origin := s′.d.origin
72: end if
73: let req := 〈method , url .host, HTTPReq, n, url .path, , url .params, data〉
74: SEND(〈s′.d.nonce, xhrreference〉, req, url .protocol, origin , s′)

75: case 〈BACK,window 〉 16

76: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
77: if ∃ j ∈ N, j > 1 such that s′.w′.documents.j.active ≡ ⊤ then
78: let s′.w′.documents.j.active := ⊥
79: let s′.w′.documents.(j − 1).active := ⊤
80: let s′ := CANCELNAV(s′.w′.nonce, s′)
81: end if
82: stop {}, s′

83: case 〈FORWARD,window 〉
84: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
85: if ∃ j ∈ N such that s′.w′.documents.j.active ≡ ⊤ ∧

s′.w′.documents.(j + 1) ∈ Documents then
86: let s′.w′.documents.j.active := ⊥
87: let s′.w′.documents.(j + 1).active := ⊤
88: let s′ := CANCELNAV(s′.w′.nonce, s′)
89: end if
90: stop {}, s′

91: case 〈CLOSE,window 〉
92: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
93: remove s′.w′ from the sequence containing it
94: stop {}, s′

95: case 〈POSTMESSAGE,window ,message, origin〉
96: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window

97: if ∃j ∈ N such that s′.w′.documents.j.active ≡ ⊤ ∧
(origin 6≡ ⊥ =⇒ s′.w′.documents.j.origin ≡ origin) then

98: let s′.w′.documents.j.scriptinput := s′.w′.documents.j.scriptinput +〈〉

〈POSTMESSAGE, s′.w.nonce, s′.d.origin,message〉
99: end if
100: end function

The function PROCESSRESPONSE is responsible for processing an HTTP response (response)
that was received as the response to a request (request) that was sent earlier. In reference , either

14According to W3C XMLHTTPRequest definition.
15We only allow same origin requests for now.
16Note that navigating a window using the back/forward buttons does not trigger a reload of the affected

documents. While real world browser may chose to refresh a document in this case, we assume that the complete
state of a previously viewed document is restored.

B DETAILED DESCRIPTION OF THE BROWSER MODEL 39

a window or a document reference is given (see explanation for Algorithm 5 above). Again,
protocol is either P or S.

The function first saves any cookies that were contained in the response to the browser state,
then checks whether a redirection is requested (Location header). If that is not the case, the
function creates a new document (for normal requests) or delivers the contents of the response
to the respective receiver (for XHR responses).

Algorithm 7 Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request , protocol , s′)
2: let n, s′ := TAKENONCE(s′)
3: if Set-Cookie ∈ response.headers then
4: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
5: let s′.cookies [request .url.host] := AddCookie(s′.cookies [request .url.host] , c)
6: end for
7: end if
8: if Strict-Transport-Security ∈ response.headers ∧ protocol ≡ S then
9: let s′.sts := s′.sts +〈〉 request .host

10: end if
11: if Location ∈ response.headers∧ response.status ∈ {303, 307} then 17

12: let url := response.headers [Location]
13: let method ′ := request .method 18

14: let body ′ := request .body 19

15: if Origin ∈ request.headers then
16: let origin := 〈request.headers[Origin], 〈request.host, protocol〉〉
17: else
18: let origin := ⊥
19: end if
20: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
21: let method ′ := GET

22: let body ′ := 〈〉
23: end if
24: if ∄w ∈ Subwindows(s′) such that s′.w.nonce ≡ reference then ⊲ Do not redirect XHRs.
25: stop {}, s
26: end if
27: let req := 〈method ′, url .host, HTTPReq, n, url .path, 〈〉, url .params, body ′〉
28: SEND(reference, req, url .protocol, origin , s′)
29: end if
30: if ∃w ∈ Subwindows(s′) such that s′.w.nonce ≡ reference then ⊲ normal response
31: let script := π1(response.body)
32: let scriptstate := π2(response.body)

17The RFC for HTTPbis (currently in draft status), which obsoletes RFC 2616, does not specify whether a
POST/DELETE/etc. request that was answered with a status code of 301 or 302 should be rewritten to a GET
request or not (“for historic reasons” that are detailed in Section 7.4.). As the specification is clear for the status
codes 303 and 307 (and most browsers actually follow the specification in this regard), we focus on modeling
these.

18While the standard demands that users confirm redirections of non-safe-methods (e.g., POST), we assume
that users generally confirm these redirections.

19If, for example, a GET request is redirected and the original request contained a body, this body is preserved,
as HTTP allows for payloads in messages with all HTTP methods, except for the TRACE method (a detail which
we omit). Browsers will usually not send body payloads for methods that do not specify semantics for such data
in the first place.

B DETAILED DESCRIPTION OF THE BROWSER MODEL 40

33: let d := 〈n, 〈request .host, request .protocol〉, script , scriptstate, 〈〉, 〈〉,⊤〉
34: if s′.w.documents ≡ 〈〉 then
35: let s′.w.documents := 〈d〉
36: else
37: let i ← N such that s′.w.documents.i.active ≡ ⊤
38: let s′.w.documents.i.active := ⊥
39: remove s′.w.documents.(i+ 1) and all following documents from s′.w.documents
40: let s′.w.documents := s′.w.documents +〈〉 d
41: end if
42: stop {}, s′

43: else if ∃w ∈ Subwindows(s′), d such that s′.d.nonce ≡ π1(reference) ∧
s′.d = s′.w.activedocument then ⊲ process XHR response

44: let s′.d.scriptinput := s′.d.scriptinput+〈〉〈XMLHTTPREQUEST, response.body, π2(reference)〉
45: end if
46: end function

B.2.2 Main Algorithm

This is the main algorithm of the browser relation. It was already presented informally in
Section 3.4 and follows the structure presented there. It receives the message m as input, as
well as a, f and s as above.

Algorithm 8 Main Algorithm

Input: (a:f :m), s
1: let s′ := s
2: if s.isCorrupted ≡ FULLCORRUPT then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 ⊲ Collect incoming messages
4: let m′ ← dNp(s′)
5: let a′ ← Addresses

6: stop {(a′:a:m′)}, s′

7: else if s.isCorrupted≡ CLOSECORRUPT then
8: let s′.pendingRequests := 〈m, s.pendingRequests〉 ⊲ Collect incoming messages
9: let N clean := Np \ {n|n ∈〈〉 s.nonces}

10: let m′ ← dNclean(s′)
11: let a′ ← Addresses

12: let s′.nonces := s.nonces
13: stop {(a′:a:m′)}, s′

14: end if
15: let n, s′ := TAKENONCE(s′)
16: if m ≡ TRIGGER then ⊲ A special trigger message.
17: let switch ← {1, 2}
18: if switch ≡ 1 then ⊲ Run some script.
19: let w ← Subwindows(s′) such that s′.w.documents 6= 〈〉 if possible; otherwise stop {}, s′

20: let d := w +〈〉 activedocument

21: RUNSCRIPT(w, d, s′)
22: else if switch ≡ 2 then ⊲ Create some new request.
23: let w′ := 〈n, 〈〉,⊥〉
24: let s′.windows := s′.windows +〈〉 w′

25: let protocol ← {P, S}
26: let host ← Domains

27: let path ← S
28: let parameters ← [S× S]

C DNS SERVERS 41

29: let n′, s′ := TAKENONCE(s′)
30: let req := 〈GET, host , HTTPReq, n′, path, 〈〉, parameters , 〈〉〉
31: SEND(n, req , protocol , ⊥, s′)
32: end if
33: else if m ≡ FULLCORRUPT then ⊲ Request to corrupt browser
34: let s′.isCorrupted := FULLCORRUPT

35: stop {}, s′

36: else if m ≡ CLOSECORRUPT then ⊲ Close the browser
37: let s′.secrets := 〈〉
38: let s′.windows := 〈〉
39: let s′.pendingDNS := 〈〉
40: let s′.pendingRequests := 〈〉
41: let s′.sessionStorage := 〈〉
42: let s′.cookies ⊂〈〉 Cookies such that

(c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies∧ c.content.session ≡ ⊥)
43: let s′.isCorrupted := CLOSECORRUPT

44: stop {}, s′

45: else if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests such that
π1(decs(m, key)) ≡ HTTPResp then ⊲ Encrypted HTTP response

46: let m′ := decs(m, key)
47: if m′.nonce 6≡ request .nonce then
48: stop {}, s
49: end if
50: remove 〈reference, request , key , f〉 from s′.pendingRequests
51: PROCESSRESPONSE(m′, reference, request , S, s′)
52: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request ,⊥, f〉 ∈〈〉 s′.pendingRequests such that

m′.nonce ≡ request .key then
53: remove 〈reference, request ,⊥, f〉 from s′.pendingRequests
54: PROCESSRESPONSE(m, reference, request , P, s′)
55: else if m ∈ DNSResponses then ⊲ Successful DNS response
56: if m.nonce 6∈ s.pendingDNS then
57: stop {}, s
58: end if
59: let 〈reference,message, protocol 〉 := s.pendingDNS[m.nonce]
60: if protocol ≡ S then
61: let k, s′ := TAKENONCE(s′)
62: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, k , m.result〉
63: let message := enca(〈message, k〉, s′.keyMapping [message.host])
64: else
65: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, ⊥, m.result〉
66: end if
67: let s′.pendingDNS := s′.pendingDNS−m.nonce
68: stop {(m.result:a:message)}, s′

69: else
70: stop {}, s
71: end if

C DNS Servers

An informal description of a DNS server is given in Section 3.2. We now provide a formal
definition of a DNS server d. A DNS server d is an atomic DY process (Id, {sd0}, R

d, sd0, N
d) with

D STEP-BY-STEP DESCRIPTION OF BROWSERID (PRIMARY IDP) 42

a finite set of addresses Id. The (initial) state sd0 ∈ [S × Addresses] is a mapping of a finite set
of domain names to addresses. We note that our definition of DNS servers does not change the
mapping from domain names to addresses at all. The set of states of the atomic DY process of
a DNS server therefore contains only sd0.

We now specify the relation Rd ⊆ (E × {sd0}) × (2E × {sd0}) of d. Just like in Appendix B.2,
we describe this relation by a non-deterministic algorithm.

Algorithm 9 Relation of a DNS server Rd

Input: (a:f :m), s
1: let domain , n such that 〈DNSResolve, domain , n〉 ≡ m if possible; otherwise stop {}, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := 〈DNSResolved, addr , n〉
5: stop {(f : a : m′)}, s
6: end if
7: stop {}, s

D Step-By-Step Description of BrowserID (Primary IdP)

We now present additional details of the JavaScript implementation of BrowserID. While the
basic steps have been shown in Section 4.2, we will now again refer to Figure 4 and provide a
step-by-step description. As above, we focus on the main login flow without the CIF, and we
leave out steps for fetching additional resources (like JavaScript files) and some less relevant
postMessages and XHRs.
We (again) assume that the user uses a “fresh” browser, i.e., the user has not been logged in
before. The user has already opened a document of some RP (RP-Doc) in her browser. RP-Doc
includes a JavaScript file, which provides the BrowserID API. The user is now about to click on
a login button in order to start a BrowserID login.

Phase i . After the user has clicked on the login button, RP-Doc opens a new browser window,
the login dialog (LD) 1 . The document of LD is loaded from LPO 2 . Now, LD sends a ready
postMessage 3 to its opener, which is RP-Doc. RP-Doc then responds by sending a request
postMessage 4 . This postMessage may contain additional information like a name or a logo
of RP-Doc. LD then fetches the so-called session context from LPO using 5 . The session
context contains information about whether the user is already logged in at LPO, which, by our
assumption, is not the case at this point. The session context also contains an XSRF protection
token which will be sent in all subsequent POST requests to LPO. Also, an httpOnly cookie
called browserid_state is set, which contains an LPO session identifier. Now, the user is
prompted to enter her email address (login email address), which she wants to use to log in at
RP 6 . LD sends the login email address to LPO via an XHR 7 , in order to get information about
the IdP the email address belongs to. The information from this so-called support document may
be cached at LPO for further use. LPO extracts the domain part of the login email address
and fetches an information document 8 from a fixed path (/.well-known/browserid) at the
IdP. This document contains the public key of IdP, and two paths, the provisioning path and
the authentication path at IdP. These paths will be used later in the login process by LD. LPO
converts these paths into URLs and sends them in its response 9 to the requesting XHR 7 .

Phase ii . As there is no record about the login email address in the localStorage under the

/.well-known/browserid

D STEP-BY-STEP DESCRIPTION OF BROWSERID (PRIMARY IDP) 43

origin of LPO, the LD now tries to get a UC for this identity. For that to happen, the LD
creates a new iframe, the provisioning iframe (PIF) 10 . The PIF’s document is loaded 11 from
the provisioning URL LD has just received before in 9 . The PIF now interacts with the LD via
postMessages 12 . As the user is currently not logged in, the PIF tells the LD that the user is
not authenticated yet. This also indicates to the LD that the PIF has finished operation. The
LD then closes the PIF 13 .

Phase iii . Now, the LD saves the login email address in the localStorage indexed by a fresh
nonce. This nonce is stored in the sessionStorage to retrieve the email address later from the
localStorage again. Next, the LD navigates itself to the authentication URL it has received
in 9 . The loaded document now interacts with the user and the IdP 14 in order to establish
some authenticated session depending on the actual IdP implementation, which is out of scope
of the BrowserID standard. For example, during this authentication procedure, the IdP may
issue some session cookie.

Phase iv . After the authentication to the IdP has been completed, the authentication docu-
ment navigates the LD to the LD URL again. The LD’s document is fetched again from LPO
and the login process starts over. The following steps are similar to Phase i : The ready and
request postMessages are exchanged and the session context is fetched. As the user has not
been authenticated to LPO yet, the session context still contains the same information as above
in 5 . Now, the user is not prompted to enter her email address again. The email address is
fetched from the localStorage under the index of the nonce stored in the sessionStorage. Now,
the address information is requested again from LPO.

Phase v . As there still is no UC belonging to the login email address in the localStorage, the
PIF is created again. As the user now has established an authenticated session with the IdP,
the PIF asks the LD to generate a fresh key pair. After the LD has generated the key pair 15 ,
it stores the key pair in the localStorage (under the origin of LPO) and sends the public key
to the PIF as a postMessage 16 . The following steps 17 – 19 are not specified in the BrowserID
protocol. Typically, the PIF would send the public key to IdP (via an XHR) 17 . The IdP would
create the UC 18 and send it back to the PIF 19 . The PIF then sends the UC to the LD 20 ,
which stores it in the localStorage. Now, the LD closes the PIF.

Phase vi . The LD is now able to create a CAP, as it has access to a UC and the corresponding
private key in its localStorage. First, LD creates an IA for LPO 21 . The IA and the UC is then
combined to a CAP, which is then sent to LPO in an XHR POST message 22 . LPO is now able
to verify this CAP with the public key of IdP, which LPO has already fetched and cached before
in 8 . If the CAP is valid, LPO considers its session with the user’s browser to be authenticated
for the email address the UC in the CAP is issued for.

Phase vii . Now, in 23 , the LD fetches a list of email addresses, which LPO considers to be
owned by the user. If the login email address would not appear in this list, LD would abort
the login process. After this, the LD fetches the address information about the login email
address again in 24 . Using this information, LD validates if the UC is signed by the correct
party (primary/secondary IdP). Now, LD generates an IA for the sender’s origin of the request
postMessage 4 (which was repeated in Phase iv) using the private key from the localStorage 25

(the IA is generated for the login email address). Also, it is recorded in the localStorage that
the user is now logged in at RP with this email address. The LD then combines the IA with
the UC stored in the localStorage to the CAP, which is then sent to RP-Doc in the response
postMessage 26 .

E SIDESHOW/BIGTENT OPENID FLOW 44

This concludes the login process that runs in LD. Afterwards, RP-Doc closes LD 27 .

E Sideshow/BigTent OpenID Flow

We will now give concrete examples of an OpenID flow that is started when Sideshow or BigTent
want to authenticate a user via OpenID (as presented in Section 4.3). We will show typical
requests and responses in such a flow and discuss the parameters that are important for the
attacks presented in Section 5.2. We focus on Sideshow (and thus, Google), the URLs for
BigTent (with Yahoo) are similar.

E.1 OpenID Authentication Request

As we already discussed in Section 4.3, Sideshow maintains a session with the user. Sideshow
issues UCs to a user only if the session is authenticated. This authentication is done via OpenID.
When detecting that a session is not authenticated, Sideshow redirects the user’s browser to the
so-called OpenID endpoint URL of Google/Gmail. This URL may look as follows (line breaks
added for readability):

https://www.google.com/accounts/o8/ud

?openid.mode=checkid_setup

&openid.ns=http%

&openid.ns.ax=http%

&openid.ax.mode=fetch_request

&openid.ax.type.email=http%

&openid.ax.required=email

&openid.ns.ui=http%

&openid.ui.mode=popup

&openid.identity=

http%

&openid.claimed_id=

http%

&openid.return_to=

https%

&openid.realm=https%

In this URL, the parameter openid.ax.type.email encodes that Sideshow requests under the
name “email” in the namespace “ax” an attribute of the type http://axschema.org/contact/

email. Per definition of the OpenID attribute exchange schema,20 this denotes the request for
an email address. Note that Google’s OpenID endpoint is (per the OpenID protocol) not obliged
to follow this request and may issue an OpenID assertion without a (signed) email address.
The parameter openid.return_to contains the URL to which Google redirects the user after
issuing the assertion. The assertion and possibly other information are appended to this URL.

E.2 OpenID Authentication Response

After accessing the above OpenID endpoint URL, the user authenticates with Google and con-
firms that Google releases the requested information to Sideshow. Google then creates an

20See http://openid.net/specs/openid-attribute-exchange-1_0.html

http://openid.net/specs/openid-attribute-exchange-1_0.html

E SIDESHOW/BIGTENT OPENID FLOW 45

OpenID assertion and appends it to the openid.return_to URL that was contained in the
OpenID authentication request. Finally, OpenID redirects the user’s browser to the resulting
URL, which may look as follows:

https://gmail.login.persona.org/authenticate/verify

?openid.ns=http%

&openid.mode=id_res

&openid.op_endpoint=https%

&openid.response_nonce=2013-09-24T11%

&openid.return_to=https%

&openid.assoc_handle=1.AMlYA(...)ubxCOqB

&openid.signed=op_endpoint

%

%

%

%

%

%

%

%

%

&openid.sig=BIPe1PIwitMp365MUEtd34IJLUs%

&openid.identity=

https%

&openid.claimed_id=

https%

&openid.ns.ext1=http%

&openid.ext1.mode=fetch_response

&openid.ext1.type.email=http%

&openid.ext1.value.email=user%

&openid.ns.ext2=http%

&openid.ext2.mode=popup

First note that the namespace “ax” was renamed by Gmail: What was prefixed with openid.ax

in the request is now prefixed with openid.ext1. The parameter openid.signed contains the
names of the parameters that have actually been MACed into the signature given in openid.sig.
Note that the receiver of the assertion can not know the exact renaming performed by Gmail and
must, although the renaming is obvious in this case, rely on the type parameters to determine
the actual contents of the parameters. In this case, openid.ext1.type.email contains the AX
schema type for an email address, saying that openid.ext1.value.email actually contains the
requested email address.
The parameter openid.assoc_handle contains the ID of a temporary symmetric key created
and stored at Google that is used for the MAC.

E.3 Verification

After receiving the above request, Sideshow can forward all attributes to a verification service at
Google. The URL for this verification is https://www.google.com/accounts/o8/ud?openid.

F STEP-BY-STEP DESCRIPTION OF BROWSERID (SECONDARY IDP) 46

RP Browser LPO

RP-Doc

CIF

LD

/LD

1 GET /

2 GET include.js

3 create

4 GET CIF

5 ready

6 loaded

7 GET ctx

8 logout

9 dlgRun

10 open

11 GET LD

12 ready

13 request

14 GET ctx

15 POST auth

16 gen. key pair

17 POST certreq

18 create UC

19 gen. IA
20 response

21 close

22 loggedInUser

23 dlgCmplt

24 POST verify 25 GET ctx

In
it
ia

li
za

ti
o
n

I

II

Figure 6. BrowserID sIdP flow overview. Black arrows (open tips) denote HTTP messages, blue arrows
(filled tips) denote XHRs, red (dashed) arrows are postMessages, snake lines are commands to the browser.

mode=checkid_authentication (same as in the authentication request, but with a different
openid.mode value). Sideshow appends to this URL all attributes from the authentication
response, i.e., the assertion, except for the openid.mode parameter. Google (only) checks that
the MAC in openid.sig is correct (using the symmetric key stored earlier) and answers with
“true” or “false” accordingly.

F STEP-BY-STEP DESCRIPTION OF BROWSERID (SECONDARY IDP) 47

F Step-By-Step Description of BrowserID (Secondary IdP)

We here provide a detailed description of the BrowserID flow including the LD and the CIF, but
considering only the sIdP mode. The formal model and analysis of this setting is presented in
Section 5 and Appendix G. As above, we leave out steps for fetching additional resources (like
JavaScript files) and some less relevant postMessages.
As before, we assume that the user uses a “fresh” browser, i.e., the user has not been logged
in before. Figure 6 shows a sequence diagram of the run. In comparison to the high-level
description with Phases I and II in Section 4.1, a new phase, the Initialization, is shown,
which contains some initialization steps and some steps of the CIF for automatic creation of
CAPs.

Initialization. First, the user opens a web page of an RP (RP-Doc) in her browser 1 . RP-Doc
includes the BrowserID JavaScript from LPO 2 . The JavaScript in RP-Doc then initializes the
BrowserID JavaScript, which first creates a communication iframe (CIF) within RP-Doc 3 . The
content of the CIF is loaded from LPO 4 . When the CIF has been initialized successfully, it
sends a ready postMessage to the BrowserID JavaScript in RP-Doc 5 , which in turn responds
with the loaded postMessage 6 . This message may contain an email address, which we ignore
for now (see below). The CIF saves the sender’s origin of this postMessage, as it identifies the
RP it is working with.21 It then fetches the session context from LPO using XHR 7 . The session
context contains information about whether the user is already logged in at LPO, which, by our
assumption, is not the case at this point. The session context also contains an XSRF protection
token which will be sent in all subsequent POST requests to LPO. Also, an httpOnly cookie
called browserid_state is set, which contains an LPO session identifier. The CIF finishes the
initialization by sending a logout postMessage 8 to RP-Doc, indicating that the browser is
currently not logged in at this RP. (In RP-Doc, this calls a message handler onlogout which
RP may have registered.)

Phase I . Now the user starts to log in at RP, typically by clicking on a login button in
RP-Doc, which calls the BrowserID login function. This JavaScript first tells the CIF that it
will now open a login dialog window (LD) by sending the dialog_running postMessage 9 ; this
pauses the CIF, in particular, automatic CAP generation (see below). The BrowserID login
function then opens the LD 10 . Its content is fetched from LPO 11 . When it is fully loaded, it
sends a ready postMessage to the BrowserID JavaScript in RP-Doc 12 , which is answered by
sending a request postMessage back 13 , indicating that the sender’s origin of this postMessage
requests a CAP.
After this request, the dialog fetches the session context at LPO 14 (similar to what the CIF
has done before). As the user is still not logged in, she is now asked to provide an email address
and a password for LPO. These are then sent to LPO by an XHR 15 . If the credentials are
accepted, a new key pair is generated by LD’s JavaScript 16 and the public key along with the
entered email address is sent to LPO 17 in order to get a UC 18 (see Section 4.1). Moreover,
the key pair and the UC are stored in the localStorage under the origin of LPO.

Phase II . Afterwards, an IA containing the so-called audience (the sender’s origin of the
request postMessage 13) and some expiration date is created, signed (with the generated private
key), and combined with the certificate to a CAP 19 . In the localStorage it is recorded that the
user is logged in at RP with the current email address. The CAP and the email address are now

21Note that for postMessages the sender origin cannot be spoofed and is always correct (see [19] for details).

F STEP-BY-STEP DESCRIPTION OF BROWSERID (SECONDARY IDP) 48

sent back to RP-Doc in a response postMessage 20 . After this, the LD is closed 21 .
The BrowserID JavaScript in RP-Doc informs the CIF that it now thinks that the email address
received in the response postMessage is logged in 22 . Next, it tells the CIF that the LD is now
closed 23 , by which the CIF is awoken from pausing. The CIF then fetches the session context
again 25 (as in 7) in order to perform some additional checks (see below).
It is not specified in the BrowserID system how the RP-Doc has to process the CAP received
in step 20 . Typically, as already mentioned in Section 4.1, the RP-Doc would send the CAP
to the RP’s server 24 , which then can verify the CAP. If successful, RP can consider the user
(with the email address mentioned in the CAP) to be logged in and send her some token, the
RP service token (as introduced in Section 4.1).

F.1 Additional Checks

We note that when postMessages are sent, the BrowserID system makes certain checks. These
checks are carried out by two different (Mozilla) JavaScript libraries. The communication be-
tween RP-Doc and CIF is realized with the library JSChannel and the communication between
RP-Doc and LD is realized with the library WinChan.
First recall that postMessages can be sent by providing the receiver’s origin. The browser ensures
that such a postMessage can only be received by a document having the origin the sender has
specified. If the receiver’s origin does not match the one specified by the sender, the sender
receives a JavaScript exception. However, the sender is not required to provide a receiver’s
origin, so any receiver can receive the postMessage. Also, a receiver can check from which
window a postMessage was sent and which origin the sender belongs to.
Now, the CIF only sends or accepts postMessages to or from its parent window (which typically
should be RP-Doc). However, the CIF does not check any origin while receiving postMessages
and does not provide an origin when sending postMessages. When RP-Doc receives a message
it expects to come from CIF, RP-Doc checks if the origin of this message matches LPO and if
the sender’s window is the window of CIF. RP-Doc always provides LPO as the receiver’s origin
when sending messages to the window it believes to contain the CIF.
The LD sends 12 only to its opener (RP-Doc) without providing any receiver’s origin to check.
After this, the LD accepts only one request postMessage 13 and blocks any further incoming
postMessages. The sender’s origin of the request postMessage 13 is used by LD to determine
the receiver’s origin of the response postMessage 20 . LD also fixes the receiver of 20 to be
its opener. When RP-Doc sends the request postMessage 13 to the LD, it sets the receiver’s
origin to be LPO in the postMessage. However, any postMessage RP-Doc expects to be sent by
LD is not checked (see also Section 5.2).
During the interaction between RP-Doc and LD, an additional check is set in place at both
parties: If one of both documents is navigated away, the window of LD is closed immediately
(and therefore any process in the LD is aborted).
We also note that step 23 triggers two checks in the CIF: First, the CIF checks the current login
status at LPO, by fetching the session context 25 . Second, the CIF compares the email address
received in 22 to the one that is marked as being logged in at RP in the localStorage (under
the origin of LPO). If in one of the checks the user is considered to be not logged in, a logout

postMessage is sent to RP-Doc (similarly to 8). Otherwise, if in the second check a mismatch is
detected, the CIF creates a new CAP according to the information in the localStorage and sends
it as a so-called login postMessage to RP-Doc. Whether this CAP is used by RP-Doc or the one
received in step 20 depends on the way the RP-Doc uses the API provided by BrowserID. One

G BROWSERID MODEL 49

possibility (which is considered in the BrowserID test implementation) is that RP-Doc relays
all received CAPs to the RP server with an XHR. The RP server, as already mentioned above,
would then verify each CAP it receives and issue an RP service token every time. This is also
what is done in our model of the BrowserID system.

F.2 Automatic CAP Creation

Once a run as described above is completed, an RP-Doc can get CAPs directly during the
Initialization from the CIF: The CIF will automatically issue a fresh CAP and send it to RP-
Doc (in a login postMessage instead of 8) iff (1) some email address is marked as logged in
at RP in the localStorage (under the origin LPO), (2) if an email address was provided in the
loaded postMessage 6 , this email address differs from the one recorded in the localStorage, and
(3) the user is logged in at LPO (indicated in 7). If necessary, a new key pair is created and a
corresponding new UC is requested at LPO.

F.3 LPO Session

As mentioned before, in the initial run LPO establishes a session with the browser by setting a
cookie browserid_state (in step 7) on the client-side.
If such a run is started again (possibly with some other RP) with the same browser in an LPO
session in which the user is already logged in at LPO, the user is not asked again by the LD to
provide her credentials. Instead she is presented a list of her email addresses (which is fetched
from LPO and cached in the localStorage) in order to choose one address. Then, she is asked
if she trusts the computer she is using and is given the option to be logged in for one month or
“for this session only” (ephemeral session). However, in any case cookies will be stored for some
time in the browser and will be valid for some time on the LPO server (one hour to 30 days).

F.4 Logout

We have to differentiate between two ways of logging out: an RP logout and an LPO logout. An
RP logout is handled by the CIF after it has received a logout postMessage from RP-Doc. The
CIF changes the localStorage (under the origin of LPO) such that no email address is recorded
to be logged in at RP and replies to RP-Doc with a logout postMessage. RP-Doc can run some
callback it may have registered before.
An LPO logout essentially requires to logout at the web site of LPO. The LPO logout removes
all key pairs and certificates from the localStorage and invalidates the session on the LPO server.

G BrowserID Model

In this section, we provide the full BrowserID model, i.e., the web system BID =
(W , S , script, E0), and its security properties. We note that our model considers the BrowserID
system with the fixes proposed in Section 5.2.
We first note that a UC uc for the identity (email address) i and public key (verification key)
pub(ku), where ku is the private key (signing key) of the user, is modeled to be a message of
the form uc = sig(〈i,pub(ku)〉, k

LPO), where kLPO is the signing key of LPO. An IA ia for an
origin o = 〈example.com, S〉 is a message of the form ia = sig(o, k′u). Now, a CAP is of the
form 〈uc, ia〉. We call that CAP valid iff ku = k′u. Note that the time stamps are omitted both

G BROWSERID MODEL 50

from the UC and the IA. This models that both certificates are valid indefinitely. In reality,
as explained in Section 4, they are valid for a certain period of time, as indicated by the time
stamps. So our modeling is a safe overapproximation.
The set N of nonces is partitioned into three disjoint sets, an infinite set NW , an infinite set
Kprivate, and a finite set Secrets. The set NW is further partitioned into infinite sets of nonces,
one set Np ⊆ NW for every p ∈W .
The sets Addresses and Domains have already been introduced in Section 5.3. Let addr and dom

denote the assignments from atomic processes to sets of Addresses and Domains, respectively,
where browsers (in B) do not have a domain. If dom or addr returns a set with only one
element, we often write dom(x) or addr(x) to refer to the element. Let key : Domains→ Kprivate

be an injective mapping that assigns a private key to every domain. The set Secrets ⊆ N

is the set of passwords (secrets) the browsers share with LPO. Let ID be the finite set of a
email address (IDs) of the form 〈name , d〉, with name ∈ S and d ∈ Domains, registered at
LPO. As mentioned in Section 5.3, different browsers own disjoint sets of secrets and different
secrets are assigned disjoint sets of IDs. Let ownerOfSecret : Secrets → B denote the mapping
that assigns to each secret the browser that owns this secret. Let secretOfID : ID → Secrets

denote the mapping that assigns to each identity the secret it belongs to. Now, we define the
mapping ownerOfID : ID → B, i 7→ ownerOfSecret(secretOfID(i)), which assigns to each identity
the browser that owns this identity.
We are now ready to define the attacker, the browsers, LPO, the relying parties, and the scripts
used in BrowserID in more detail. As for the attacker and browsers, nothing much needs to
be specified. The attacker will be modeled as a network attacker as specified in Section 3.1
and browsers will simply be web browsers as specified in Section 3.4. We only need to fix the
addresses the attacker and the browsers can listen to and their initial states.

G.1 Attacker

As mentioned, the attacker attacker is modeled to be a network attacker as specified in Section 3.1.
We allow it to listen to/spoof all available IP addresses, and hence, define Iattacker = Addresses.
His initial state is sattacker0 = 〈attdoms, pubkeys〉, where attdoms is a sequence of all domains
along with the corresponding private keys owned by the attacker and pubkeys is a sequence of all
domains and the corresponding public keys. All other parties use the attacker as a DNS server.

G.2 Browsers

Each b ∈ B is a web browser as defined in Section 3.4, with Ib := {addr(b)} being its ad-
dress and the initial state sb0 defined as follows: the key mapping maps every domain to its
public key, according to the mapping key; the DNS address is addr(attacker); the secrets are
those owned by b (as defined above) and they are indexed by the origin 〈dom(LPO), S〉; sts is
〈dom(LPO)〉. (Without the latter, the attacker could trivially inject, by an HTTP response, its
own browserid_state cookie and by this violate property (B).)

G.3 LPO

LPO is a an atomic DY process (ILPO, ZLPO, RLPO, sLPO0 , NLPO) with the IP address ILPO =
{addr(LPO)}. The initial state sLPO0 of LPO contains the private key of its domain, its signing
key kLPO, all secrets in Secrets and the corresponding sequences of IDs. (LPO does not need the

G BROWSERID MODEL 51

public keys of other parties, which is why we omit them from LPO’s initial state.). The definition
of RLPO follows the description of LPO in Section 4 in a straightforward way. HTTP responses by
LPO can contain, besides complex terms (e.g., for XHR responses), strings representing scripts,
namely the script script_LPO_cif run in the CIF and the script script_LPO_ld run in the
LD. These scripts are defined in Appendices G.5.2 and G.5.3, respectively.
Before we provide a detailed formal specification of LPO, we first provide an informal description.

Client sessions at LPO. Any party can establish a session at LPO. Such a session can either be
authenticated or unauthenticated. Roughly speaking, a session becomes authenticated if a client
has provided a secret sec ∈ Secrets to LPO in the session. Such a session is then authenticated
for all IDs associated with sec, i.e., for all such IDs an UC can be requested from LPO within the
authenticated session. (Recall that for every secret, LPO contains a list of all IDs associated with
that secret.) An authenticated session can (non-deterministically) expire, i.e. the authenticated
session can get unauthenticated or it is removed completely. Such an expiration is used to model
a user logout or a session expiration caused by a timeout.
More specifically, a session is identified by a nonce, which is issued by LPO. Moreover, a
session is associated with some xsrfToken, which is also a nonce issued by LPO. LPO stores
all information about established sessions in its state as a dictionary indexed by the session
identifier. In this dictionary, for every session LPO stores a pair containing the xsrfToken and,
in authenticated sessions, the sequence of all IDs associated with the secret provided in the
session, or, in unauthenticated sessions, the empty sequence 〈〉 of IDs. On the receiver side
(typically a browser) LPO placed, by appropriate headers in its HTTPS responses, a cookie
named browserid_state whose value is the session identifier (a nonce). This cookie is flagged
to be a session, httpOnly, and secure cookie.

HTTPSRequests to LPO. LPO answers only to certain requests (listed below). All
such requests have to be over HTTPS. Also, all responses send by LPO contain the
Strict-Transport-Security header.

GET /cif. LPO replies to this request by providing the script script_LPO_cif.

GET /ld. LPO replies to this request by providing the script script_LPO_ld.

GET /ctx. LPO replies with a session context. More precisely, LPO first checks if a cookie
browserid_state was sent within this request and if its value identifies a session within
LPO’s state. If such a session exists, LPO responds to such a request with the list of
(authenticated) IDs for this session,22 the xsrfToken, and a Set-Cookie header, which sets
the browserid_state cookie. If no cookie browserid_state was sent in the request, or
if the value of the cookie browserid_state does not identify a session within LPO’s state,
LPO first creates a new session. Such a new session contains a fresh nonce as a session
identifier, the empty sequence 〈〉 of IDs, and a fresh nonce as a xsrfToken. Once such a
session is created, LPO responds as above.

POST /auth. This request is sent to authenticate a session at LPO. A request to this interface
has to contain some secret sec ∈ Secrets in its body. The request also has to contain the
cookie browserid_state which has to refer to some session in the state of LPO. Moreover,

22In the real implementation, the session context only contains a flag indicating the authentication state of
the session. However, another GET request interface is available to retrieve the list of authenticated IDs for the
current session. Here, for simplicity, we right away provide all authenticated IDs in the session context.

G BROWSERID MODEL 52

the request has to contain an xsrfToken in its body which has to match the one recorded
in the considered session in LPO’s state. The session recorded in the state of LPO is then
modified to include the sequence of all IDs associated with sec. The response to such a
request contains some static acknowledgment.

POST /certreq. Such a request is sent to LPO in order to request a UC. The request has to
contain an ID and a public key in its body, for which a UC is requested. The request
also has to contain a cookie named browserid_state which has to refer to some session
recorded in the state of LPO. Moreover, the request has to contain an xsrfToken in its
body which matches the xsrfToken in the considered session record in LPO’s state. Also,
the sequence of IDs in the considered session recorded in LPO’s state has to contain the
ID provided in the (body of the) request. This ID is then paired with the public key sent
in the request and the resulting pair is then signed with kLPO. In other words, a UC is
created for the ID and the public key provided in the request. Finally, LPO responds with
this UC.

We now define LPO formally as an atomic DY process (ILPO, ZLPO, RLPO, sLPO0 , NLPO). As
already mentioned, we define ILPO = {addr(LPO)}.
In order to define the set ZLPO of states of LPO, we first define the terms describing the session
context of a session.

Definition 25. A term of the form 〈ids , xsrfToken〉 with ids ⊂〈〉 ID and xsrfToken ∈ N is called
an LPO session context. We denote the set of all LPO session contexts by LPOSessionCTXs.

Now, we define the set ZLPO of states of LPO as well as the initial state sLPO0 of LPO.

Definition 26. A state s ∈ ZLPO of LPO is a term of the form 〈nonces , sslkey , signkey,
sessions, secrets〉 where nonces ⊂〈〉 N (used nonces), sslkey = key(dom(LPO)), signkey = kLPO,
sessions ∈ [N × LPOSessionCTXs], and secrets ∈

[

Secrets× TN

]

is a dictionary which assigns
to every secret sec ∈ Secrets the sequence of all IDs associated with sec.23

The initial state sLPO0 of LPO is a state of LPO with sLPO0 .nonces = 〈〉 and sLPO0 .sessions = 〈〉.

Example 6. A possible state s of LPO may look like this:

s = 〈〈n1, . . . , nm〉, k, k
LPO, sessions , secrets〉

with

sessions = 〈〈sessionid1, 〈〈id
′
1, . . . , id

′
l〉, xsrfToken〉〉, . . .〉

secrets = 〈〈secret1, 〈id1, . . . , idp〉〉, . . .〉

We now specify the relation RLPO ⊆ (E×ZLPO)×(2E×ZLPO) of LPO. Just like in Appendix B.2,
we describe this relation by a non-deterministic algorithm. We note that we use the function
TAKENONCE introduced in Section B.2.1 for this purpose.

23As mentioned before, the state of LPO does not need to contain public keys.

G BROWSERID MODEL 53

Algorithm 10 Relation of LPO RLPO

Input: (a:f :m), s
1: let s′ := s
2: if m ≡ TRIGGER then ⊲ Triggers a (non-deterministic) logout or session expiration
3: if s′.sessions 6≡ 〈〉 then
4: let sessionid ← {id j |id j ∈ s′.sessions}
5: if sessionid ∈〈〉 s′.sessions then
6: let choice ← {logout, expire}
7: if choice ≡ logout then
8: let session := s′.sessions[sessionid]
9: let session [ids] := 〈〉

10: let s′.sessions[sessionid] := session

11: stop {}, s′

12: else
13: remove the element with key sessionid from the dictionary s′.sessions
14: stop {}, s′

15: end if
16: end if
17: end if
18: else
19: let mdec, k

′ such that 〈mdec, k
′〉 ≡ deca(m, s′.sslkey) if possible; otherwise stop {}, s

20: let n, method , path, params , headers , body such that 〈HTTPReq, n,method , dom(LPO), path,
params , headers , body〉 ≡ mdec if possible; otherwise stop {}, s

21: if method ≡ GET ∧ path ≡ /cif then ⊲ Deliver CIF script
22: let m′ :=

encs(〈HTTPResp, n, 200, 〈〈Strict-Transport-Security,⊤〉〉, 〈script_LPO_cif, initStatecif 〉〉, k′)
where initStatecif is the initial scriptstate of script_LPO_cif according to Definition 28.

23: let E := {(f :a:m′)}
24: stop E, s′

25: else if method ≡ GET ∧ path ≡ /ld then ⊲ Deliver LD script.
26: let m′ :=

encs(〈HTTPResp, n, 200, 〈〈Strict-Transport-Security,⊤〉〉, 〈script_LPO_ld, initStateld〉〉, k
′)

where initStateld is the initial scriptstate of script_LPO_ld according to Definition 29.
27: let E := {(f :a:m′)}
28: stop E, s′

29: else if method ≡ GET ∧ path ≡ /ctx then ⊲ Deliver context information.
30: let sessionid := headers [Cookie][browserid_state]
31: if sessionid 6∈〈〉 s′.sessions then ⊲ Create new session if needed.
32: let sessionid , s′ := TAKENONCE(s′)
33: let ids := 〈〉
34: let xsrfToken, s′ := TAKENONCE(s′)
35: let s′.sessions := s′.sessions+〈〉 〈sessionid , 〈ids , xsrfToken〉〉
36: end if
37: let result := s′.sessions[sessionid]
38: let headers ′ := 〈〈Strict-Transport-Security,⊤〉,

〈Set-Cookie, 〈〈browserid_state, 〈sessionid ,⊤,⊤,⊤〉〉〉〉〉
39: let m′ := encs(〈HTTPResp, n, 200, headers ′, result〉, k′)
40: let E := {(f :a:m′)}
41: stop E, s′

42: else if method ≡ POST ∧ path ≡ /auth then ⊲ Authenticate session.
43: let sessionid := headers [Cookie][browserid_state]
44: let secret , xsrfToken such that 〈secret , xsrfToken〉 ≡ body if possible; otherwise stop {}, s

G BROWSERID MODEL 54

45: if sessionid ∈〈〉 s′.sessions then
46: if secret ∈〈〉 s′.secrets∧ s′.sessions[sessionid].xsrfToken ≡ xsrfToken then
47: let ids := s′.secrets[secret]
48: let s′.sessions[sessionid].ids := ids

49: let m′ := encs(〈HTTPResp, n, 200, 〈〈Strict-Transport-Security,⊤〉〉,⊤〉, k′)
50: let E := {(f :a:m′)}
51: stop E, s′

52: end if
53: end if
54: else if method ≡ POST ∧ path ≡ /certreq then ⊲ Sign pubkey, deliver UC
55: let sessionid := headers [Cookie][browserid_state]
56: let ids := s′.sessions[sessionid].ids
57: let xsrfToken := s′.sessions[sessionid].xsrfToken
58: let id , pubkey , xsrfToken ′ such that 〈id , pubkey , xsrfToken ′〉 ≡ body if possible; otherwise

stop {}, s
59: if id ∈〈〉 ids ∧ xsrfToken ≡ xsrfToken ′ then
60: let uc := sig(〈id , pubkey〉, s′.signkey)
61: let m′ := encs(〈HTTPResp, n, 200, 〈〈Strict-Transport-Security,⊤〉〉, uc〉, k′)
62: let E := {(f :a:m′)}
63: stop E, s′

64: end if
65: end if
66: end if
67: stop {}, s

G.4 Relying Parties

A relying party r ∈ RP is a web server modeled as an atomic DY process (Ir, Zr, Rr, sr0, N
r) with

the address Ir := {addr(r)}. Its initial state sr0 contains its domain, the private key associated
with its domain, the public key of LPO, and the set of service token it has provided. The
definition of Rr again follows the description in Appendix F. RP only accepts messages sent
over HTTPS. Whenever r receives a GET message, it returns the script script_RP_index (see
below) and sets the Strict-Transport-Security header. If r receives an HTTPS POST message,
it checks if (1) the message contains a valid CAP for r, and (2) the header of the message contains
an Origin header which only contains a single origin and this origin is r’s domain with HTTPS.
If this check is successful, r responds with a token of the form 〈n, i〉 (sent in the body of the
response), where i ∈ ID is the ID for which the CAP was issued and n is a freshly chosen nonce.
We call, as mentioned in Section 5.3, 〈n, i〉 an RP service token (for ID i). As mentioned, r
keeps a list of such tokens in its state. Intuitively, a client in possession of such a token can use
the service of r for ID i (e.g., access data of i at r).

We now provide the formal definition of r as an atomic DY process (Ir, Zr, Rr, sr0, N
r). As

mentioned, we define Ir = {addr(r)}. Next, we define the set Zr of states of r and the initial
state sr0 of r.

Definition 27. A state s ∈ Zr of an RP r is a term of the form 〈nonces , sslkey, domain ,
pubkLPO , serviceTokens〉 where nonces ⊂〈〉 N (used nonces), sslkey = key(dom(LPO)),
domain = dom(r), pubkLPO = pub(key(dom(LPO))), serviceTokens ∈ [N × S].

The initial state sr0 of r is a state of r with sr0.nonces = 〈〉 and sr0.serviceTokens = 〈〉.

We now specify the relation Rr ⊆ (E × Zr) × (2E × Zr) of r. Just like in Appendix B.2,

G BROWSERID MODEL 55

we describe this relation by a non-deterministic algorithm. We note that we use the function
TAKENONCE introduced in Section B.2.1 for this purpose.

Algorithm 11 Relation of a Relying Party Rr

Input: (a:f :m), s
1: let s′ := s
2: let mdec, k

′ such that 〈mdec, k
′〉 ≡ deca(m, s′.sslkey) if possible; otherwise stop {}, s

3: let n, method , path, params , headers , body such that 〈HTTPReq, n,method , s′.domain, path, params ,
headers , body〉 ≡ mdec if possible; otherwise stop {}, s

4: if method ≡ GET then ⊲ Deliver RP’s index script
5: let m′ :=

encs(〈HTTPResp, n, 200,〈〈Strict-Transport-Security,⊤〉〉, 〈script_RP_index, initStaterp_index 〉〉, k
′)

where initStaterp_index is the initial scriptstate of script_RP_index according to Definition 30.
6: let E := {(f :a:m′)}
7: stop E, s′

8: else if (method ≡ POST) ∧ (headers ≡ 〈〈Origin, 〈s′.domain, S〉〉〉) then ⊲ Check received CAP
9: let uc, ia such that 〈uc, ia〉 ≡ body if possible; otherwise stop {}, s ⊲ Extract UC and IA

10: let i := π1(extractmsg(uc)) ⊲ Extract ID from UC
11: let pku := π2(extractmsg(uc)) ⊲ Extract pubkey from UC
12: let o := extractmsg(ia) ⊲ Extract audience from IA
13: if (checksig(uc, s′.pubkLPO) ≡ ⊤) ∧ (checksig(ia, pku) ≡ ⊤ ∧ o ≡ 〈s′.domain, S〉) then
14: let n′, s′ := TAKENONCE(s′) ⊲ Issue service token
15: let s′.serviceTokens := s′.serviceTokens+ 〈n′, i〉
16: let m′ := encs(〈HTTPResp, n, 200, 〈〉, 〈n′, i〉〉, k′)
17: let E := {(f :a:m′)}
18: stop E, s′

19: end if
20: end if
21: stop {}, s

G.5 BrowserID Scripts

As already mentioned in Section 5.3, the set S of the web system BID = (W , S , script, E0)
consists of the scripts Ratt, script_RP_index , script_LPO_cif , and script_LPO_ld

with their string representations att_script, script_RP_index, script_LPO_cif, and
script_LPO_ld (defined by script). The script Ratt is the attacker script (see Section 3.1).
The formal model of the latter two scripts follows the description in Appendix F in a straight-
forward way. The script script_RP_index defines the script of the RP index page. In reality,
this page has its own script(s) and includes a script from LPO. In our model, we combine both
scripts to script_RP_index . In particular, this script is responsible for creating the CIF and
the LD iframes/subwindows, whose content (scripts) are loaded from LPO.

In what follows, the scripts script_RP_index , script_LPO_cif , and script_LPO_ld are
defined formally. First, we introduce some notation and helper functions.

G.5.1 Some Notation and Helper Functions

In the formal description of the scripts we use an abbreviation for URLs for LPO. We write
URLLPOpath to describe the following URL term: 〈URL, S, dom(LPO), path , 〈〉〉 Also, we call originLPO
the origin of LPO which describes the following origin term: 〈dom(LPO), S〉.

The localStorage under the origin of LPO used by the scripts script_LPO_cif and

G BROWSERID MODEL 56

script_LPO_ld is organized as follows: it is a dictionary containing only one entry. This
entry consists of the key siteInfo and (as its value) a dictionary where this dictionary has
origins as keys with IDs as values indicating that a certain ID (of the user) is logged in at the
referenced origin. Here is an example a possible localStorage.

Example 7.

〈〈siteInfo, 〈〈〈domainRP1, S〉, id1〉, 〈〈domainRP2, S〉, id1〉, 〈〈domainRP3, S〉, id2〉〉〉〉 (16)

This example shows a localStorage under the origin of LPO, indicating that the user is logged in
at domainRP1 and domainRP2 with id1 and at domainRP3 with id2 (using HTTPS).

In order to simplify the description of the scripts, several helper functions are used.

CHOOSEINPUT. As explained in Section 3.4, the state of a document contains a term,
say scriptinputs , which records the input this document has obtained so far (via XHRs and
postMessages). If the script of the document is activated, it will typically need to pick one input
message from scriptinputs and record which input it has already processed. For this purpose, the
function CHOOSEINPUT(s′, scriptinputs) is used, where s′ denotes the scripts current state. It
saves the indexes of already handled messages in the scriptstate s′ and chooses a yet unhandled
input message from scriptinputs . The index of this message is then saved in the scriptstate
(which is returned to the script).

Algorithm 12 Choose an unhandled input message for a script

1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs |}∧iid 6∈〈〉 s′.handledInputs if possible; otherwise

return (⊥, s′)
3: let input := πiid (scriptinputs)
4: let s′.handledInputs := s′.handledInputs+〈〉 iid

5: return (input , s′)
6: end function

PARENTWINDOW. To determine the nonce referencing the parent window in the browser,
the function PARENTWINDOW(tree , docnonce) is used. It takes the term tree , which is the
(partly cleaned) tree of browser windows the script is able to see and the document nonce
docnonce , which is the nonce referencing the current document the script is running in, as
input. It outputs the nonce referencing the window which directly contains in its subwindows
the window of the document referenced by docnonce . If there is no such window (which is the
case if the script runs in a document of a top-level window), PARENTWINDOW returns ⊥.

SUBWINDOWS. This function takes a term tree and a document nonce docnonce as input
just as the function above. If docnonce is not a reference to a document contained in tree , then
SUBWINDOWS(tree , docnonce) returns 〈〉. Otherwise, let 〈docnonce , origin , script , scriptstate ,
scriptinput , subwindows , active〉 denote the subterm of tree corresponding to the document
referred to by docnonce . Then, SUBWINDOWS(tree , docnonce) returns subwindows .

AUXWINDOW. This function takes a term tree and a document nonce docnonce as input as
above. From all window terms in tree that have the window containing the document identified
by docnonce as their opener, it selects one non-deterministically and returns its nonce. If there
is no such window, it returns the nonce of the window containing docnonce .

OPENERWINDOW. This function takes a term tree and a document nonce docnonce as
input as above. It returns the window nonce of the opener window of the window that contains

G BROWSERID MODEL 57

the document identified by docnonce . Recall that the nonce identifying the opener of each
window is stored inside the window term. If no document with nonce docnonce is found in the
tree tree , ♦ is returned.

GETWINDOW. This function takes a term tree and a document nonce docnonce as input as
above. It returns the nonce of the window containing docnonce .

GETORIGIN. To extract the origin of a document, the function GETORIGIN(tree , docnonce)
is used. This function searches for the document with the identifier docnonce in the (cleaned)
tree tree of the browser’s windows and documents. It returns the origin o of the document. If
no document with nonce docnonce is found in the tree tree, ♦ is returned.

G.5.2 script_LPO_cif

As defined in Section 3.1, a script is a relation that takes as input a term and a set of nonces it
may use. It outputs a new term. As specified in Section 3.4 (Triggering the Script of a Document
(m = TRIGGER, action = 1)) and formally specified in Algorithm 6, the input term is provided
by the browser. It contains the current internal state of the script (which we call scriptstate
in what follows) and additional information containing all browser state information the script
has access to, such as the input the script has obtained so far via XHRs and postMessages,
information about windows, etc. The browser expects the output term to have a specific form,
as also specified in Section 3.4 and Algorithm 6. The output term contains, among other
information, the new internal scriptstate.

As for script_LPO_cif , this script models the script run in the CIF, as sketched in Ap-
pendix F.

We first describe the structure of the internal scriptstate of the script script_LPO_cif .

Definition 28. A scriptstate s of script_LPO_cif is a term of the form 〈q, parentOrigin ,
loggedInUser , pause, context , key, handledInputs , refXHRctx , refXHRcert〉 where q ∈ S,
parentOrigin ∈ Origins ∪ {⊥}, loggedInUser ∈ ID ∪ {〈〉,⊥}, pause ∈ {⊤,⊥}, context ∈ TN ,

key ∈ N ∪ {⊥}, handledInputs ⊂〈〉 N, refXHRctx , refXHRcert ∈ N ∪ {⊥}.
The initial state initStatecif of script_LPO_cif is the state 〈init,⊥,⊥,⊥,⊥,⊥, 〈〉,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the behavior of
script_LPO_cif , we present an informal description. The behavior mainly depends on the
state q the script is in.

q = init is the initial state. It’s only transition handles no input and outputs a postMessage
cifready to its parent window and transitions to default.

q = default is the state to which script_LPO_cif always returns to. This state handles all
postMessages the CIF expects to receive. If the postMessage received was sent from the
parent window of the CIF, it behaves as follows:

postMessage loaded records the sender’s origin of the received postMessage as the re-
mote origin in the scriptstate. Also, an ID, which represents the assumption of the
sender on who it believes to be logged in, is saved in the scriptstate. If the pause flag
in the scriptstate is ⊤ it transitions to the state default. Otherwise, it is checked, if
the current context in the scriptstate is ⊥. If the check is true, the script transitions
to the state fetchContext, or to the state checkAndEmit otherwise.

G BROWSERID MODEL 58

postMessage dlgRun sets pause flag in the scriptstate to ⊤ and transitions to default.

postMessage dlgCmplt sets the pause flag in the scriptstate to ⊥. It then transitions to
the state fetchContext.

postMessage loggedInUser has to contain an ID. This ID is saved in the scriptstate
and then the script transitions to default.

postMessage logout removes the entry for the RP (recorded in the scriptstate) from
the localStorage and then transitions to the state sendLogout.

q = fetchContext sends an XHR to LPO with a GET request to the path /ctx and then tran-
sitions to the state receiveContext.

q = receiveContext expects an XHR response as input containing the session context. This
context is saved as the current context in the scriptstate. The script transitions to
checkAndEmit.

q = checkAndEmit lets the script transition to requestUC iff (1) some email address is marked
as logged in at RP in the localStorage, (2) if an email address is recorded in the current
scriptstate, this email address differs from the one recorded in the localStorage, and (3)
the user is marked as logged in in the current context. Otherwise, if the email address
recorded in the current scriptstate is 〈〉, the script transitions to default, else it transitions
to sendLogout.

q = requestUC creates a new private key (by taking a fresh nonce), stores the key in the script-
state, and sends out an XHR POST request with the ID recorded in the localStorage for
the parent window’s origin and the public key (which can be derived from the private key)
to LPO to get a UC. The script transitions to receiveUC.

q = receiveUC receives an XHR response (from LPO) containing a UC. It creates an IA for the
parent window’s origin, combines the UC and the IA to a CAP, and sends the CAP as
login postMessage to the parent window. The script then transitions back to the default
state.

q = sendLogout sends a logout postMessage to the parent document and then the script tran-
sitions to the default state.

We now specify the relation script_LPO_cif ⊆ (TN ×2
N)×TN of the CIF’s scripting process

formally. Just like in Appendix B.2, we describe this relation by a non-deterministic algorithm.
Just like all scripts, as explained in Section 3.4 (see also Algorithm 6 for the formal speci-

fication), the input term this script obtains from the browser contains the cleaned tree of the
browser’s windows and documents tree, the nonce of the current document docnonce , its own
scriptstate scriptstate (as defined in Definition 28), a sequence of all inputs scriptinput (also
containing already handled inputs), a dictionary cookies of all accessible cookies of the docu-
ment’s domain, the localStorage localStorage belonging to the document’s origin, the secrets
secret of the document’s origin, and a set nonces of fresh nonces as input. The script returns
a new scriptstate s′, a new set of cookies cookies ′, a new localStorage localStorage ′, and a term
command denoting a command to the browser.

Algorithm 13 Relation of script_LPO_cif

G BROWSERID MODEL 59

Input: 〈tree, docnonce, scriptstate, scriptinputs , cookies , localStorage, sessionStorage, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: switch s′.q do
5: case init

6: let command := 〈POSTMESSAGE,PARENTWINDOW(tree, docnonce), 〈cifready, 〈〉〉,⊥〉
7: let s′.q := default

8: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

9: case default

10: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
11: if π1(input) ≡ POSTMESSAGE then
12: let senderWindow := π2(input)
13: let senderOrigin := π3(input)
14: let m := π4(input)
15: if senderWindow ≡ PARENTWINDOW(tree, docnonce) then
16: switch m do
17: case 〈loaded, id〉
18: let s′.parentOrigin := senderOrigin

19: let s′.loggedInUser := id

20: if s′.pause ≡ ⊤ then
21: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
22: else if s′.context ≡ ⊥ then
23: let s′.q := fetchContext

24: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
25: else
26: let s′.q := checkAndEmit

27: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
28: end if
29: case 〈dlgRun, 〈〉〉
30: let s′.pause := ⊤
31: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉

32: case 〈dlgCmplt, 〈〉〉
33: let s′.pause := ⊥
34: let s′.q := fetchContext

35: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉

36: case 〈loggedInUser, id〉
37: let s′.loggedInUser := id

38: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉

39: case 〈logout, 〈〉〉

40: end if
41: end if
42: case fetchContext

43: let s′.refXHRctx← nonces

44: let command := 〈XMLHTTPREQUEST,URL
LPO

/ctx, GET, 〈〉, s
′.refXHRctx〉

45: let s′.q := receiveContext

46: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

47: case receiveContext

48: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
49: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRctx) then
50: let s′.context := π2(input)

G BROWSERID MODEL 60

51: let s′.q := checkAndEmit

52: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
53: end if
54: case checkAndEmit

55: let lid := localStorage ′[siteInfo][s′.parentOrigin]
56: if (lid 6≡ 〈〉)∧(s′.loggedInUser /∈ {〈〉,⊥} ⇒ (s′.loggedInUser 6≡ lid))∧(π1(s

′.context) 6≡ 〈〉)
then

57: let s′.q := requestUC

58: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
59: else if s′.loggedInUser≡ 〈〉 then
60: let s′.q := default

61: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
62: else
63: let s′.q := sendLogout

64: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
65: end if
66: case requestUC

67: let id := localStorage ′[siteInfo][s′.parentOrigin]
68: let s′.key ← nonces

69: let body := 〈id , pub(s′.key), s′.context.xsrfToken〉
70: let s′.refXHRcert← nonces \ {s′.key}
71: let command := 〈XMLHTTPREQUEST,URL

LPO

/certreq, POST, body , s
′.refXHRcert〉

72: let s′.q := receiveUC

73: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

74: case receiveUC

75: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
76: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRcert) then
77: let uc := π2(input)
78: let ia := sig(s′.parentOrigin, s′.key)
79: let cap := 〈uc, ia〉
80: let command :=

〈POSTMESSAGE,PARENTWINDOW(tree, docnonce), 〈login, cap〉, s′.parentOrigin〉
81: let s′.q := default

82: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
83: end if
84: case sendLogout

85: let command := 〈POSTMESSAGE,PARENTWINDOW(tree, docnonce), 〈logout, 〈〉〉,⊥〉
86: let s′.q := default

87: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

88: stop 〈scriptstate, cookies , localStorage , sessionStorage, 〈〉〉

G.5.3 script_LPO_ld

The script script_LPO_ld models the script that runs in the LD. Its formal specification,
presented next, follows the one presented above for script_LPO_cif .

Definition 29. A scriptstate s of script_LPO_ld is a term of the form 〈q, requestOrigin,
context , key, handledInputs , refXHRctx , refXHRauth, refXHRcert〉 with q ∈ S,
requestOrigin ∈ Origins ∪ {⊥}, context ∈ TN , key ∈ N ∪ {⊥}, handledInputs ⊂〈〉 N,
refXHRctx , refXHRauth , refXHRcert ∈ N ∪ {⊥}.

The initial state initStateld is the state 〈init,⊥,⊥,⊥, 〈〉,⊥,⊥,⊥〉.

G BROWSERID MODEL 61

Before we provide the formal specification of the relation that defines the behavior of
script_LPO_ld , we present an informal description. The behavior mainly depends on the
state q the script is in.

q ≡ init is the initial state. Its only transition takes no input and outputs a postMessage
ldready to its parent window and transitions to start.

q ≡ start expects a request postMessage. The sender’s origin of this postMessage is recorded
as the requesting origin in the scriptstate. An XHR is sent to LPO with a GET request to
the path /ctx and then the script transitions to the state receiveContext.

q ≡ receiveContext expects an XHR response as input containing the session context. This
context is saved as the current context in the scriptstate. If the received context contains 〈〉
as the ID list, the script transitions to the state requestAuth. Else, the script transitions
to requestUC.

q ≡ requestAuth sends an XHR POST request to LPO with the path /auth containing a brow-
ser’s secret. The script then transitions to the state receiveAuth.

q ≡ receiveAuth expects an XHR response as input containing ⊤. The script then sends an
XHR to LPO with a GET request to the path /ctx and then transitions to the state
receiveContext.

q ≡ requestUC chooses (non-deterministically) an id, chooses a fresh private key and sends the
id and the public key (corresponding to the private key) as an XHR POST request to LPO

with the path /certreq. The script then transitions to receiveUC

q ≡ receiveUC receive UC from LPO, create IA, combine with UC to CAP, record ID as logged
in at the requester’s origin. Send CAP in postMessage to parent. Go to state null

q ≡ null do nothing.

We now formally specify the relation script_LPO_ld ⊆ (TN ×2N)×TN of the LD’s scripting
process. Just like in Appendix B.2, we describe this relation by a non-deterministic algorithm.
Like all scripts, the input term given to this script is determined by the browser and the browser
expects a term of a specific form (see Algorithm 6).

Algorithm 14 Relation of script_LPO_ld

Input: 〈tree, docnonce, scriptstate, scriptinputs , cookies , localStorage, sessionStorage, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: switch s′.q do
5: case init

6: let command := 〈POSTMESSAGE,OPENERWINDOW(tree, docnonce), 〈ldready, 〈〉〉,⊥〉
7: let s′.q := start

8: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

9: case start

10: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
11: if π1(input) ≡ POSTMESSAGE then

G BROWSERID MODEL 62

12: let senderWindow := π2(input)
13: let senderOrigin := π3(input)
14: let m := π4(input)
15: if m ≡ 〈request, 〈〉〉 then
16: let s′.requestOrigin := senderOrigin

17: let s′.refXHRctx← nonces

18: let command := 〈XMLHTTPREQUEST,URL
LPO

/ctx, GET, 〈〉, s
′.refXHRctx〉

19: let s′.q := receiveContext

20: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
21: end if
22: end if
23: case receiveContext

24: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
25: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRctx) then
26: let s′.context := π2(input)
27: if π1(s

′.context) ≡ 〈〉 then
28: let s′.q := requestAuth

29: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
30: else
31: let s′.q := requestUC

32: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
33: end if
34: end if
35: case requestAuth

36: let body := 〈secret , s′.context.xsrfToken〉
37: let s′.refXHRauth← nonces

38: let command := 〈XMLHTTPREQUEST,URL
LPO

/auth, POST, body , s
′.refXHRauth〉

39: let s′.q := receiveContext

40: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

41: case receiveAuth

42: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
43: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRauth) then
44: if π2(input) ≡ ⊤ then
45: let command := 〈XMLHTTPREQUEST,URL

LPO

/ctx, GET, 〈〉〉
46: let s′.q := receiveContext

47: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
48: end if
49: end if
50: case requestUC

51: let id ← s′.context.ids
52: let s′.key ← nonces

53: let body := 〈id , pub(s′.key), s′.context.xsrfToken〉
54: let s′.refXHRcert← nonces \ {s′.key}
55: let command := 〈XMLHTTPREQUEST,URL

LPO

/certreq, POST, body , s
′.refXHRcert〉

56: let s′.q := receiveUC

57: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

58: case receiveUC

59: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
60: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRcert) then
61: let uc := π2(input)
62: let ia := sig(s′.requestOrigin, s′.key)
63: let cap := 〈uc, ia〉

G BROWSERID MODEL 63

64: let command :=
〈POSTMESSAGE,OPENERWINDOW(tree, docnonce), 〈response, cap〉, s′.requestOrigin〉

65: let s′.q := null

66: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
67: end if
68: stop 〈scriptstate, cookies , localStorage , sessionStorage, 〈〉〉

G.5.4 script_RP_index

The script script_RP_index models the script that is run by an RP. Its formal specification,
presented next, follows the one presented for the other scripts above.

Definition 30. A scriptstate s of script_RP_index is a term of the form 〈q, CIFindex ,
LDindex , dialogRunning , cap, handledInputs , refXHRcap〉 with q ∈ S, CIFindex ∈ N ∪ {⊥},
dialogRunning ∈ {⊤,⊥}, cap ∈ TN , handledInputs ⊂〈〉 N, refXHRcap ∈ N ∪ {⊥}.

We call s the initial scriptstate of script_RP_index iff s ≡ 〈init,⊥,⊥,⊥, 〈〉, 〈〉,⊥〉.

Before we provide the formal specification of the relation that defines the behavior of
script_RP_index , we present an informal description. The behavior mainly depends on the
state q the script is in.

q ≡ init is the initial state. It creates the CIF iframe and then transitions to receiveCIFReady.

q ≡ receiveCIFReady expects a cifready postMessage from the CIF iframe with origin of LPO.
It chooses some ID, 〈〉, or ⊥ and sends this as a loaded postMessage to the CIF iframe
with receiver’s origin set to the origin of LPO.24 It then transitions to the state default.

q ≡ default chooses non-deterministically between (1) opening the LD subwindow and then
transitions to the same state or (2) handling one of the following postMessages:

postMessage login which has to be sent from the CIF with origin of LPO. Handling
this postMessage stores the CAP (contained in the postMessage) in the scriptstate
and then transitions to the sendCAP state.

postMessage logout which has to be sent from the CIF with origin of LPO. Handling
this postMessage has no effect and results in the same state.

postMessage ldready which can only be handled after the LD has been opened and
before a response postMessage has been received. The ldready postMessage has to
be sent from the origin of LPO. The script sends a request postMessage to the LD
and stays in the default state.

postMessage response which can only be handled after the LD has been opened and
before another response postMessage has been received. The ldready postMessage
has to be sent from the origin of LPO. Handling this postMessage stores the CAP
(contained in the postMessage) in the scriptstate, closes the LD, and then transitions
to the dlgClosed state.

24From the point of view of the real scripts running at RP either some ID is considered to be logged in
(e.g. from some former “session”), or that no one is considered to be logged in (〈〉), or that script_RP_index

does not know if it should consider someone to be logged in (⊥). This is overapproximated here by allowing
script_RP_index to choose non-deterministically between these cases.

G BROWSERID MODEL 64

q ≡ dlgClosed sends a loggedInUser postMessage to the CIF and transitions to the state
loggedInUser.

q ≡ loggedInUser sends a dlgCmplt postMessage to the CIF and transitions to the state
sendCAP.

q ≡ sendCAP sends the CAP to RP as a POST XHR and then transitions to the state
receiveServiceToken.

q ≡ receiveServiceToken receives 〈n, i〉 from RP, but does not do anything with it. The script
then transitions to the state default.

We now formally specify the relation script_RP_index ⊆ (TN × 2N)× TN of the RP-Doc’s
scripting process. Just like in Appendix B.2, we describe this relation by a non-deterministic
algorithm. Like all scripts, the input term given to this script is determined by the browser and
the browser expects a term of a specific form (see Algorithm 6). Following Algorithm 15, we
provide some more explanation.

Algorithm 15 Relation of script_RP_index

Input: 〈tree, docnonce, scriptstate, scriptinputs , cookies , localStorage, sessionStorage, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: switch s′.q do
5: case init

6: let command := 〈IFRAME,URL
LPO

/cif,GETWINDOW(tree, docnonce)〉
7: let s′.q := receiveCIFReady

8: let subwindows := SUBWINDOWS(tree, docnonce)
9: let s′.CIFindex := |subwindows |+ 1 ⊲ Index of the next subwindow to be created.

10: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

11: case receiveCIFReady

12: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
13: if π1(input) ≡ POSTMESSAGE then
14: let senderWindow := π2(input)
15: let senderOrigin := π3(input)
16: let m := π4(input)
17: let subwindows := SUBWINDOWS(tree, docnonce)
18: if (m ≡ 〈cifready, 〈〉〉) ∧ (senderOrigin ≡ originLPO) ∧

(senderWindow ≡ πs′.CIFindex(subwindows).nonce) then
19: let id ← {⊥, 〈〉} ∪ ID

20: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows), 〈loaded, id〉, originLPO〉
21: let s′.q := default

22: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
23: end if
24: end if
25: case default

26: if s′.dialogRunning≡ ⊥ then
27: let choice ← {openLD, handlePM}
28: else
29: let choice := handlePM

30: end if

G BROWSERID MODEL 65

31: if choice ≡ openLD then
32: let s′.dialogRunning := ⊤
33: let command := 〈HREF,URL

LPO

/ld ,_BLANK〉
34: let s′.q := default

35: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
36: else
37: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
38: if π1(input) ≡ POSTMESSAGE then
39: let senderWindow := π2(input)
40: let senderOrigin := π3(input)
41: let m := π4(input)
42: let subwindows := SUBWINDOWS(tree, docnonce)
43: if senderOrigin ≡ originLPO then
44: if senderWindow ≡ πs′.CIFindex(subwindows).nonce then
45: if π1(m) ≡ login then
46: let s′.cap := π2(m)
47: let s′.q := sendCAP

48: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
49: else if π1(m) ≡ logout then
50: let s′.q := default

51: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
52: end if
53: else if s′.dialogRunning≡ ⊤ then
54: if π1(m) ≡ ldready then
55: let command :=

〈POSTMESSAGE,AUXWINDOW(tree, docnonce), 〈request, 〈〉〉, originLPO〉
56: let s′.q := default

57: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
58: else if π1(m) ≡ response then
59: let s′.dialogRunning := ⊥
60: let s′.cap := π2(m)
61: let command := 〈CLOSE,AUXWINDOW(tree, docnonce)〉
62: let s′.q := dlgClosed

63: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉
64: end if
65: end if
66: end if
67: end if
68: end if
69: case dlgClosed

70: let subwindows := SUBWINDOWS(tree, docnonce)
71: let id := π1(extractmsg(π1(s

′.cap))) ⊲ Extract ID from CAP.
72: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows).nonce, 〈loggedInUser, id〉, originLPO〉
73: let s′.q := loggedInUser

74: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

75: case loggedInUser

76: let subwindows := SUBWINDOWS(tree, docnonce)
77: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows).nonce, 〈dlgCmplt, 〈〉〉, originLPO〉
78: let s′.q := sendCAP

79: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

80: case sendCAP

81: let s′.refXHRcap← nonces

H SECURITY PROPERTY 66

82: let host , protocol such that 〈host, protocol〉 = GETORIGIN(tree, docnonce) if possible; oth-
erwise stop 〈scriptstate, cookies , localStorage, sessionStorage, command〉

83: let command := 〈XMLHTTPREQUEST, 〈URL, protocol , host , /, 〈〉〉, POST, s′.cap, s′.refXHRcap〉 ⊲
Relay received CAP to RP.

84: let s′.q := receiveServiceToken

85: stop 〈s′, cookies ′, localStorage ′, sessionStorage, command〉

86: case receiveServiceToken

87: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
88: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRcap) then
89: let s′.q := default

90: stop 〈s′, cookies ′, localStorage ′, sessionStorage, 〈〉〉
91: end if
92: stop 〈scriptstate, cookies , localStorage , sessionStorage, 〈〉〉

In Lines 6–10 and 32–35 the script asks the browser to create iframes. To obtain the window
reference for these iframes, the script first determines the current number of subwindows and
stores it (incremented by 1) in the scriptstate (CIFindex and LDindex, respectively). When
the script is invoked the next time, the iframe the script asked to be created will have been
added to the sequence of subwindows by the browser directly following the previously existing
subwindows. The script can therefore access the iframe by the indexes CIFindex and LDindex,
respectively.

H Security Property

Formally, the security property for BrowserID is defined as follows. First note that every RP
service token 〈n, i〉 recorded in RP was created by RP as the result of a unique HTTPS POST

request m with a valid CAP for ID i. We refer to m as the request corresponding to 〈n, i〉.

Definition 31. Let BID be a BrowserID web system. We say that BID is secure if for every
run ρ of BID, every state (Sj, Ej) in ρ, every r ∈ RP, every RP service token of the form 〈n, i〉
recorded in r in the state Sj(r), the following two conditions are satisfied:

(A) If 〈n, i〉 is derivable from the attackers knowledge in Sj (i.e., 〈n, i〉 ∈
dNattacker(Sj(attacker))), then it follows that the browser owning i is fully corrupted in Sj, i.e., the
value of isCorrupted is FULLCORRUPT.

(B) If the request corresponding to 〈n, i〉 was sent by some b ∈ B which is honest in Sj, then
b owns i.

I Proof of Theorem 1

In order to prove Theorem 1, we have to prove Conditions A and B of Definition 31. These are
proven separately in what follows:

I.1 Condition A

We assume that Condition A is not satisfied and prove that this leads to a contradiction. That is,
we make the following assumption (*): There is a run ρ = s0, s1, . . . of BID, a state sj = (Sj , Ej)
in ρ, an r ∈ RP, an RP service token of the form 〈n, i〉 recorded in r in the state Sj(r) such that
〈n, i〉 ∈ dNattacker(Sj(attacker)) and the browser owning i is not fully corrupted in Sj.

Without loss of generality, we may assume that ρ also satisfies the following:

I PROOF OF THEOREM 1 67

(**) Whenever a browser becomes corrupted (i.e., either FULLCORRUPT or CLOSECORRUPT) in
a processing step leading to some state sl in ρ, this browser is triggered immediately afterwards
again (in the processing step leading to sl+1) and sends the full state of the web browser to
the attacker process attacker, which then receives this knowledge in state sl+2. Afterwards, this
browser is not triggered anymore.

(***) For every term enca(t,pub(k
′)) for some t ∈ TN , k′ ∈ N that is a subterm of the output

of a transition of Ratt but not of the input, i.e., Ratt has created enca(t, k
′) by itself, Ratt has

sent an HTTP message containing t (unencrypted) to some d ∈ dom(attacker) before.
If there is a run that satisfies (*), it is easy to turn this run into a run that satisfies both (*)

and (**). This is because an attacker who obtains the state of the browser can simulate the
browser himself. Moreover, it is easy to turn a run that satisfies (*) and (**) but not (***) into
a run that satisfies all three properties by adding the necessary requests from the script Ratt.

Given (*), by definition of RPs, for 〈n, i〉 there exists a corresponding HTTPS request received
by r, which we call reqcap, and a corresponding response respcap. The request must contain a
valid CAP c and must have been sent by some atomic process p to r. The response must contain
〈n, i〉 and it must be encrypted by some symmetric encryption key k sent in reqcap.

In particular, it follows that the request and the response must be of the following form, where
dr = dom(r) is the domain of r, ncap, k ∈ N are some nonces, and c is some valid CAP:

reqcap = enca(〈〈HTTPReq, ncap, POST, dr, /, 〈〉, [Origin : 〈dr, S〉], c〉, k〉,pub(key(dr))) , (17)

respcap = encs(〈HTTPResp, ncap, 200, 〈〉, 〈n, i〉〉, k) . (18)

Moreover, there must exist a processing step of the following form where m ≤ j, ar ∈ addr(r),
and x is some address:

sm−1

(ar :x:reqcap)→r
−−−−−−−−−−−−→
r→{(x:ar :respcap)}

sm .

From the assumption and the definition of RPs it follows that c is issued for dr (otherwise,
RP would not accept the CAP, see Line 13 of Algorithm 11). The nonce n in 〈n, i〉 is chosen
freshly and from RPs nonces N r. It is not used again by r afterwards.

We assume that sj is the first state in ρ where 〈n, i〉 ∈ dNattacker(Sj(attacker)) (i.e., there is no
j′ < j, 〈n, i〉 ∈ dNattacker(Sj′(attacker))).

We note that, by definition of attacker processes, the attacker never discards any information,
i.e., t ∈ dNattacker(Su(attacker)) implies t ∈ dNattacker(Su+1(attacker)) for every term t and u ∈ N.

To conclude the proof, we now first prove several lemmas.
In what follows, given an atomic process p and a message m, we say that p emits m in a run

ρ = s0, s1, . . . if there is a processing step of the form

su−1 −−−→
p→E

su

for some u ∈ N, set of events E and some addresses x, y with (x:y:m) ∈ E.
We say that an atomic process p created a message m (at some point) in a run if m is

(congruent to) a subterm of a message emitted by p in some processing step and if there is no
earlier processing step where m is a subterm of a message emitted by an atomic process p′.

We say that a browser b accepted a message (as a response to some request) if the browser de-
crypted the message (if it was an HTTPS message) and called the function PROCESSRESPONSE,
passing the message and the request (see Algorithm 7).

I PROOF OF THEOREM 1 68

We say that an atomic DY process p knows a term t in some state s = (S,E) of a run if it
can derive the term from its knowledge, i.e., t ∈ dNp(S(p)).

We say that a script initiated a request r if a browser triggered the script (in Line 12 of
Algorithm 6) and the first component of the command output of the script relation is either
HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request r in the same
step as a result.

Lemma 1. If in a run ρ of BID an honest browser b emits an HTTPS request of the form

enca(〈req , k〉,pub(k
′))

where req is an HTTP request, k is a nonce (symmetric key), k′ is the private key of an RP or
of LPO, and if in that run b does not become fully corrupted, then all of the following statements
are true:

1. There is no state of BID where any party except for b and the owner of the key k′ knows
k′, thus no one except for b and the owner of the key k′ can decrypt req .

2. There is no state in the run ρ where k is known to any atomic process p (i.e., in no state
s = (S,E) in ρ, k ∈ dNp(S(p))), except for the atomic processes b and the owner of the
public key (some RP or LPO).

3. The value of the host header in req is a domain of the owner of the key k′.

4. Only the owner of the key k′ can create a response r to this request that is accepted by b,
i.e. the nonce of the HTTP request is not known to any atomic process p, except for the
atomic process b and the owner of the public key (some RP or LPO).

Proof. First, we note that only the intended receiver can decrypt the message: The private
keys of RPs and LPO are per definition only known to the respective parties. According to the
definition of RPs and LPO, the keys do not leak to other parties, i.e., there is no state in a run
ρ of BID where the keys are known to any other parties except their respective owners. This
proves (1).

We can further see from the definition of the receivers (some RP or LPO) that they use the key
k only to encrypt the responses (Algorithms 10 and 11). In both definitions, k is extracted from
the message and discarded after encrypting the response. Note that neither RPs nor LPO can
be corrupted. Hence, neither RPs nor LPO can leak k. From the definition of the browser b, we
see that the key is always chosen from a fresh set of nonces (Line 61 of Algorithm B.2.2) that are
not used anywhere else. Further, the key is stored in the browser’s state in pendingRequests , but
discarded after receiving the response. The information from pendingRequests is not extracted
or used anywhere else (in particular it is not accessible by scripts). If the browser becomes
closecorrupted at some point in the run ρ, the key cannot be used anymore (compare Line 9 of
Algorithm 8). Hence, k cannot leak from b either. This proves (2).

From Line 63 of Algorithm 8 we can see that the encryption key for the request req was
actually chosen using the host header of the message. The mapping from domains to encryption
keys in BID is always “correct”, i.e., the owner of k′ is the owner of the domain that is given in
the host header. This proves (3).

An HTTPS response r that is accepted by b as a response to the above request has to be
encrypted with k. (This is checked by the browser using the pendingRequests state information

I PROOF OF THEOREM 1 69

that is not alterable by scripts or other browser actions.) This nonce, however, is only known to
the owner of the public key and b. The browser b cannot send responses. This proves (4).

Lemma 2. If in a run ρ of BID an honest browser b has a document d in its state with the origin
〈dom , S〉 where dom ∈ dom(RP) ∪ dom(LPO), then b extracted (in Line 33 in Algorithm 7) the
script in that document from an HTTPS response that was emitted by the owner of the private
key belonging to dom .

Proof. The origin of the document d is set only once: In Line 33 of Algorithm 7. The values
(domain and protocol) used there stem from the information about the request (say, req) that
led to loading of d. These values have been stored in pendingRequests between the request and
the response actions. The contents of pendingRequests are indexed by freshly chosen nonces
and can never be altered or overwritten (only deleted when the response to a request arrives).
The information about the request req was added to pendingRequests in Line 62 (or Line 65
which we can exclude as we will see later) of Algorithm 8. In particular, the request was an
HTTPS request iff a (symmetric) key was added to the information in pendingRequests . When
receiving the response to req , it is checked against that information and accepted only if it is
encrypted with the proper key and contains the same nonce as the request (say, n). Only then
the protocol part of the origin of the newly created document becomes S. The domain part of
the origin (in our case dom) is taken directly from the pendingRequests and is thus guaranteed
to be unaltered.

From Line 63 of Algorithm 8 we can see that the encryption key for the request req was
actually chosen using the host header of the message which will finally be the value of the origin
of the document d. Since the honest browsers in BID select the correct public keys for a domain,
we can see that req was encrypted using the public key belonging to dom . With Lemma 1 we
see that the symmetric encryption key for the response, k, is only known to b and the respective
RP or LPO. The same holds for the nonce n that was chosen by the browser and included in the
request. Thus, no other party than the owner of the private key belonging to dom can encrypt
a response that is accepted by the browser b and which finally defines the script of the newly
created document.

Lemma 3. If in a run ρ of BID an honest browser b issues an HTTP(S) request with the Origin
header value 〈dom , S〉 where dom ∈ dom(RP) ∪ dom(LPO), then that request was initiated by a
script that b extracted (in Line 33 in Algorithm 7) from an HTTPS response that was emitted
by the owner of the private key belonging to dom.

Proof. First, we can see that the request was initiated by a script: As it contains an origin
header, it must have been a POST request (see the browser definition in Appendix B.2). POST
requests can only be initiated in Lines 51, 74 of Algorithm 6 and Line 28 of Algorithm 7. In
the latter instance (Location header redirect), the request contains at least two different origins,
therefore it is impossible to create a request with exactly the origin 〈dom , S〉 using a redirect.
In the other two cases (FORM and XMLHTTPRequest), the request was initiated by a script.

The Origin header of the request is defined by the origin of the script’s document. With
Lemma 2 we see that the content of the document, in particular the script, was indeed provided
by the owner of the private key belonging to dom .

Lemma 4. In a run ρ of BID, if LPO sends a browserid_state cookie in a Set-Cookie header
in an HTTPS response to an HTTPS request emitted by a browser b, there is no state in the run
where the browser is honest and the attacker can derive the cookie value from its own knowledge.

I PROOF OF THEOREM 1 70

Proof. We can see that the browser is honest when sending the request (otherwise, it would
not do so, (**)). With Lemma 1 and as in the proof for Lemma 2 we see that the sender of
the request to LPO (say, req) is the same as the receiver, namely browser b. As the message is
transferred over HTTPS, the attacker cannot read the cookie from the response.

The browserid_state cookie is sent to b as an httpOnly secure session cookie (compare
Line 38 in Algorithm 10). When the response arrives at b, the cookie is transferred to the
cookie store (Line 5 of Algorithm 7) which is indexed by domains. The cookie information
can be accessed by scripts (Line 4 of Algorithm 6) and can be added to requests (Line 5 of
Algorithm 5). As the browserid_state cookie is an httpOnly cookie we can rule out the first
case. In the second case, the cookie can only be added to requests to the origin 〈dom(LPO), S〉,
as the cookie is marked as secure (as defined in Line 5 in Algorithm 5). These properties hold
as long as the browser is not corrupted.

As a last step, we have to rule out that LPO or the browser use a cookie value that is known
to the attacker via some other way. We will see that any cookie value was initially chosen by
LPO.

First, we can see that the cookie value was either in the browser’s knowledge before it received
the browserid_state header or that it was chosen freshly by LPO. The only line where LPO
sets the cookie is in Line 38 of Algorithm 10. From the lines before, it is easy to see that the
session value that finally becomes the cookie value was either provided as a cookie in the request
or is chosen from the set of unused nonces. In Lemma 6 we see that any value that is contained
in a request sent by an honest browser to LPO was initially chosen by LPO.

We see that the attacker cannot know the cookie value as long as the browser stays honest,
which proves the lemma.

Lemma 5. In every state s = (S,E) of run ρ of BID, for every xsrfToken of an LPO
session and its session ID sessionid , if xsrfToken ∈ dNattacker(S(attacker)), then sessionid ∈
dNattacker(S(attacker)), i.e., an attacker can only know an xsrfToken value for an LPO session if
he knows the browserid_state session ID of that session.

Proof. The xsrfToken is chosen by LPO (Line 34 in Algorithm 10). If LPO receives a POST
request with the path /ctx that contains a browserid_state cookie containing a sessionid

that is in its list of valid sessions, it returns xsrfToken as part of the response. If LPO receives
a request to the same URL without a valid session ID, it creates a new session and returns
sessionid as well as a freshly chosen xsrfToken in the response. For other requests (to other
URLs, etc.) xsrfToken is not a part of the response at all.

The xsrfToken is only transferred over HTTPS: LPO only reacts to HTTPS requests (Line 20
of Algorithm 10) and the request that is sent from the browser to LPO to retrieve xsrfToken is
explicitly sent over HTTPS (Line 44 of Algorithm 13 or Line 18 of Algorithm 14). Thus, if an
honest browser sends a request to LPO, the attacker cannot read the response if the browser stays
honest (Lemma 1). If the browser becomes corrupted later, the attacker learns the sessionid and
the xsrfToken at the same time. The LPO script that has access to xsrfToken in the browser’s
state does not sent out this part of the state to origins other than LPO’s (see Algorithm 13 and
Algorithm 14) and the xsrfToken is stored only temporarily in the script’s state (as part of the
context, see Line 50 in Algorithm 13 and Line 26 in Algorithm 14), such that it is never released
when the browser is honest or closecorrupted.

We can see that the attacker knows sessionid whenever he knows xsrfToken, which proves the
lemma.

I PROOF OF THEOREM 1 71

Lemma 6. In a run ρ of BID, for any HTTPS request req that is emitted by an honest browser
b and that is encrypted with the public key of LPO, if there is a Cookie header in req containing
a cookie with the name browserid_state, then there is an HTTPS response that was emitted
by LPO previously in the run and that was accepted by b. In this response, a Set-Cookie header
was sent with the name browserid_state and the same value as the browserid_state cookie
in req.

Proof. The cookie that is sent in req was taken from the cookie list that is stored in the browser
state (see Algorithm 5). Cookies are stored per-domain, i.e., dom(LPO) in this case. Adding a
cookie to this list can be achieved by adding a Set-Cookie to a response on a request to dom(LPO)
or by setting the cookie from a script in a document with the origin 〈dom(LPO), x〉 where
x ∈ {P, S}. The domain dom(LPO) is part of the sts list in honest browsers (see Section G.2)
thus the browser b never contacts the insecure origin 〈dom(LPO), P〉. Thus, responses and scripts
can only be received from the origin 〈dom(LPO), S〉 (see Lemma 1 Property (4) and Lemma 2).
The LPO scripts script_LPO_cif and script_LPO_ld do not set cookies, thus the only possible
way that a cookie can be stored in the browser’s list of cookies is when LPO adds a Set-Cookie
header to a HTTPS response. Obviously, this header has to have the same value as the cookie
that is finally returned to the server. This proves the lemma.

Lemma 7. In a run ρ of BID, if an honest browser b emits a request reqauth that is re-
ceived by LPO and leads to the authentication25 of an LPO session identified by the sessionid
sessionid , then the identity i, for which the session was authenticated, is owned by b, i.e.,
i ∈ ownerOfID−1(b).

Proof. For authentication, a request of the following form has to be received by LPO:

reqauth = enca(〈〈HTTPReq, n2, POST, dom(LPO), /auth, 〈〉,

〈[Cookie : [browserid_state : sessionid], . . .]〉,

〈s, xsrfToken〉, 〉, k′′〉,pub(key(dom(LPO)))) (19)

The request reqauth contains the secret s and the xsrfToken that, by definition of LPO, is stored
at LPO along with sessionid . In an honest browser (which b is), this request can only be caused
by a script (or through a redirection, which again would require a script to initiate the request
in the first place). There are three scripts that can issue such a request: the attacker script
and both LPO scripts. In the latter case, the LPO scripts will provide the browser secret as s
and hence, authenticate for an identity owned by the browser. In the former case, the attacker
script needs to know xsrfToken . Hence, by Lemma 5 he needs to know sessionid . However, the
sessionid value does not leak from the honest browser b (Lemma 4) and cannot be set by the
attacker (Lemma 6). Hence, the attacker cannot know sessionid , and hence, by Lemma 5 he
cannot know xsrfToken , and hence, reqauth cannot have been initiated by the attacker script.

Lemma 8. In a run ρ of BID if either script_LPO_cif or script_LPO_ld were loaded into
a document with HTTPS origin and are used to create a CAP c, i.e., if c is contained in a
postMessage that is sent in Line 82 of Algorithm 13 or in Line 66 of Algorithm 14, then the
origin for which c is issued is the origin of the script that receives this postMessage.

25See Section G.3 for an explanation on the authentication at LPO.

I PROOF OF THEOREM 1 72

Proof. Looking at the case when script_LPO_cif issues the CAP in Line 80 of Algorithm 13,
the origin for which the IA is issued in this case is determined by the element s′.parentOrigin
of the script’s state. This element is only written to in Line 18 of Algorithm 13. Its value is the
sender origin of the postMessage requesting the CAP. The very same value determines the only
allowed receiver origin of the postMessage that returns the CAP (Line 80). With a very similar
argument (different line numbers), we can see that the statement for script_LPO_ld holds true
as well.

Lemma 9. In a run ρ of BID, if a CAP c = 〈uc, ia〉 is sent by script_RP_index (Line 85
of Algorithm 15) running in an honest browser b ∈ B in a document with origin 〈dr, S〉 as an
HTTP(S) message to an RP r ∈ RP, where dr = dom(r), uc = sig(〈i,pub(ku)〉, k

LPO), and
ia = sig(o, k′u), then all of the following statements are true:

1. c is a valid CAP. In particular, ku = k′u.

2. uc was created by LPO and transferred to script_RP_index in a postMessage by a script
of LPO running in b (either script_LPO_ld , postMessage sent in Line 82 of Algorithm 14
or script_LPO_cif , postMessage sent in Line 66 of Algorithm 13) loaded into a document
with the origin 〈dom(LPO), S〉.

3. ia contains the origin o = 〈dr, S〉 .

4. ku is not known to any atomic DY process except for b, as long as b is not fullycorrupted.

5. uc is issued for an identity i ∈ ownerOfID−1(b) .

Proof. As we know that the message is sent from the origin 〈dr, S〉, we know that the script
script_RP_index was loaded over an HTTPS origin (see Lemma 3). Its script state cannot be
manipulated by scripts loaded from a different origin (see Algorithms 3 and 6).

The only transitions of the script script_RP_index which can send out a request to r are
the ones starting out from state scriptstate .q = sendCAP (Line 80 of Algorithm 15). These
transitions take the CAP c from scriptstate .cap. The only transitions before which could have
written something into this place in the scriptstate are the ones where scriptstate .q = default

(Line 25) when handling a postMessage from origin LPO (we can overapproximate here by
ignoring all other side restrictions of this transition, e.g. having scriptstate .dialogRunning = ⊤).
This means that the CAP c was sent by a script with origin LPO. Since origin LPO is also an
HTTPS origin, the script must have been sent by LPO (Lemma 2).

The postMessage that was received by script_RP_index is checked to be a sequence with the
first element being login or response. Such postMessages are issued by LPO only in Line 80
of Algorithm 13 (script_LPO_cif) and in Line 64 of Algorithm 14 (script_LPO_ld). In both
cases, ia is signed using the private key ku that is taken from the respective script’s state. This
element of the script’s state is only written to once, and with a freshly chosen nonce (Line 68 of
Algorithm 13 and Line 52 of Algorithm 14, respectively). In both cases, starting in the script
state requestUC, an XHR to LPO is sent to have pub(ku) signed by LPO. From the response
to this request, uc is extracted. The request is always sent over HTTPS to LPO. Lemma 1, in
particular Property (4), applies. Therefore, we see that uc was actually sent by LPO.

Looking at the LPO definition (Line 60 of Algorithm 10) we see that LPO only sends out
freshly created uc’s. LPO only issues valid UCs (if any). Once returned to script_LPO_cif

or script_LPO_ld , the UC is combined with an IA and sent to script_RP_index (which is

I PROOF OF THEOREM 1 73

determined by the sender of the initial CAP request and its origin). This script sends the CAP
to r. Thus, the CAP that is sent is always valid, which proves (1). Further, the UC was always
created by LPO, proving (2).

Property (3) follows immediately from the above observations (i.e., script_LPO_cif or
script_LPO_ld were loaded over HTTPS and are used to create the CAP) and Lemma 8.

To prove (4), we observe that the key ku is always chosen freshly and that it is stored only
in the script’s state. It is not sent to any party, not even LPO. The key therefore cannot leak
as long as the browser is not fullycorrupted (if it becomes closecorrupted, the key is removed
together with the document’s state). This proves (4).

Property (5) follows immediately with the observations in the proof of Property (2) and
Lemma 7.

Lemma 10. If in a run ρ of BID an IA ia for an origin 〈dr, S〉 where dr ∈ dom(RP) is signed
in the scripts script_LPO_ld or script_LPO_cif in an honest browser b, and these scripts
were loaded over HTTPS from LPO, then at most b and the RP r = dom−1(dr) know ia.

Proof. The scripts script_LPO_ld and script_LPO_cif send the ia to the parent or opener
window (respectively) using a postMessage. For this postMessage, the only allowed receiver
origin is the same as the origin for which ia was issued, so in our case 〈dr, S〉 (see proof for
Lemma 9 Property (3)). The script script_RP_index , which thus must be the receiver, sends
the complete CAP (containing ia) to RP using HTTPS. The RP discards the CAP after checking
it. The CAP and especially ia therefore cannot leak.

Lemma 11. In a run ρ of BID, if LPO creates a message containing a UC uc for an identity
i of a browser b, then there is no state in the run ρ where b is honest and attacker knows the
private key ku corresponding to the public key pub(ku) that was signed in uc.

Proof. First, it is easy to see that the Lines 60–63 in Algorithm 10 have to be used in the
transition to create uc: At no other point in the definition of LPO uc is created or emitted.
From Line 54 and following it is easy to see that a request of the following form has to be sent
to LPO in order to create uc:

requc = enca(〈〈HTTPReq, n1, POST, dom(LPO), /certreq, 〈〉,

〈[Cookie : [browserid_state : sessionid], . . .]〉,

〈i,pub(ku), xsrfToken〉〉, k
′′〉, pub(key(dom(LPO)))) (20)

We can see that this message is encrypted with pub(key(dom(LPO))) and thus the attacker
cannot decrypt it. There are now two cases:

• The attacker knows k′′: In this case, we can see with Lemma 1 that no honest browser
has created requc. As RP, LPO, and dishonest browsers do not emit requests in general,
only the attacker can have created this request. For this, he needs to know xsrfToken and
sessionid .

The attacker could use a sessionid value that was first issued to a browser that was honest
when requc was created or to some other party (a dishonest browser or himself).

The first case can be ruled out, as the attacker cannot know the sessionid value (Lemma 4).

In the second case, he cannot create a message that leads to the authentication of the
session himself (which would require knowledge of the secret for identity i) and he cannot
force the owner browser of i to authenticate the session (Lemma 7).

I PROOF OF THEOREM 1 74

• The attacker does not know k′′: In this case, the request was not created by the
attacker. As above, RP, LPO and dishonest browsers do not create requests. Thus, this
request was created by an honest browser (“honest” in the state when requc was created)
and an honest script in that browser (with a dishonest script, the attacker would need to
know xsrfToken , which he does not according to Lemma 5 and Lemma 4). If an honest
script, i.e., script_LPO_cif or script_LPO_ld , is used, the attacker does not learn ku
(Lemma 9 Property (4)).

As we can see, in both cases the attacker does not learn ku, which proves the statement.

Lemma 12. If in a run ρ of BID a browser b created the request reqcap defined in (17), then
(i) reqcap was sent from the script script_RP_index that was loaded over an HTTPS origin
from r while the browser was honest or (ii) reqcap was encrypted by the attacker script while the
browser was honest and the attacker knows the CAP c and the symmetric key k.

Proof. We can see that if the browser is dishonest, it did encrypt reqcap while it was still honest:
With assumption (**) we can see that dishonest browsers only send their state to the attacker.
Thus, the encrypted message must have been in the state of the browser before corruption. So
for both (i) and (ii) we know that the browser was honest.

In an honest browser, the browser itself can create encrypted requests (when an HTTPS
request is sent) and scripts can create encrypted requests (by assembling and encrypting the
message in the script relation).

In the former case (HTTPS request), which corresponds to statement (i) of the lemma, we
see by Lemma 3 that the script that initiated reqcap was actually loaded from r using HTTPS
(r is the owner of dr), and that it was not altered by any other party.

In the latter case (script encrypted request), which corresponds to statement (ii) in the lemma,
we see that the honest scripts do not encrypt messages and thus, the attacker script is the only
script that can do so. To do so, the script needs to know every component of reqcap before the
encryption, in particular k and c. These have been sent to the attacker before the encryption
according to (***). Thus, the attacker must know k and c before.

Let m be the message that was passed to attacker leading to sj for some addresses x and y
(with sj as defined in (*)). That is:

sj−1
(x:y:m)→attacker
−−−−−−−−−−−→ sj .

By our assumption, we know that 〈n, i〉 6∈ dNattacker(Sj−1(attacker)) and that 〈n, i〉 ∈
dNattacker(Sj−1(attacker),m).

We now distinguish two cases: (i) The attacker does not know k in sj (i.e., cannot derive k
in state sj). (ii) The attacker can derive k in sj. In both cases we lead (*) to a contradiction.

I.1.1 The attacker does not know k in sj

We now assume that k 6∈ dNattacker(Sj(attacker)), i.e., the attacker does not know k in sj. In
particular, we have that k 6∈ dNattacker(Sj−1(attacker)).

We distinguish between the kind of atomic processes that potentially have created reqcap. In
all cases, we arrive at a contradiction.

I PROOF OF THEOREM 1 75

• The browser that owns i created reqcap: By Lemma 12 it follows that the browser was
honest when encrypting reqcap, and reqcap was initiated by script_RP_index , which was
delivered over HTTPS from r. Note that we can rule out case (ii) in the lemma, as the
attacker does not know k.

This script initiated reqcap and it is easy to see that this script (or no script at all) receives
the corresponding response: From the browser definition, we see that XHR responses are
delivered to the document with the same nonce as the document that initiated the request
(Line 43 in Algorithm 7). Other documents have no access to the data from this document,
except for same-origin documents (this is ensured by the Clean function that is used in
Line 3 of Algorithm 6 and by the GETWINDOW function (Algorithm 3) that determines
the windows which can be manipulated by other scripts). However, other same-origin
documents can only contain the script script_RP_index (this is the only script that RP
sends, and with Lemma 2 we see that other same-origin documents cannot have been sent
by the attacker). Other manipulations to the window of the document (e.g., navigating
the window away) change the active document in the window (Algorithm 7) and could
only prevent the script from receiving the response.

From Algorithm 15 it is easy to see that after 〈n, i〉 is delivered back to script_RP_index

after respcap was received, nothing happens with 〈n, i〉: If the browser is uncorrupted, only
same-origin scripts have access to it (as shown above), but there are no scripts which use
the information. The information can therefore not leak to the attacker. If the browser is
closecorrupted before receiving respcap, the attacker cannot derive 〈n, i〉 from its informa-
tion, as the decryption key is lost. If the browser is closecorrupted after receiving respcap,
by definition of close-corruption, 〈n, i〉 is removed from the browser’s state before the brow-
ser can be controlled by the adversary. By the assumption in (*), the browser cannot be
fullycorrupted at any point in the run. Hence, in contradiction to (*), the attacker cannot
obtain 〈n, i〉.

• A browser that does not own i created reqcap: In this case, it still holds that the
browser was honest when encrypting reqcap and the script script_RP_index created the
request and was loaded over HTTPS (Lemma 12). With Lemma 3 and Lemma 9, in
particular Properties (2) and (5), we see that the RP script only initiates HTTPS requests
containing CAPs that have been created by LPO and for an identity of the browser. This
is in contradiction to the fact that i is not owned by the browser but reqcap contains a
CAP for i. Hence, reqcap cannot have been created by this browser.

• RPs or LPO created reqcap: As per their definitions (Algorithms 10 and 11), they do not
initiate or create HTTP(S) requests.

• The attacker process created reqcap: It is clear that any atomic process that created
reqcap needs to know k. It follows, by our assumption that the attacker cannot derive k,
that the attacker has not created reqcap.

I.1.2 The attacker knows k in sj

As above, we distinguish between the kind of atomic processes that potentially have created the
request reqcap. We will see that the attacker needs to know the CAP c to learn 〈n, i〉.

REFERENCES 76

• The browser that owns i created reqcap: By our assumption (*), this browser cannot be
fully corrupted in the run. By Lemma 12, it follows in the case (i) that script_RP_index

sent the request and that k cannot be known by the attacker (with Lemma 1, Property (2))
and hence, the browser cannot have created reqcap. In the case (ii) it follows that the
attacker needs to know the CAP c in order to create the request.

• A browser not owning i created reqcap: By Lemma 12, we see that the browser was
honest while encrypting reqcap and (i) that script_RP_index sent the request. With
Lemma 9 Property (5) we see that the browser cannot have created reqcap because it only
creates requests for its own identities. In the case of (ii) we see that, again, the attacker
has to know the cap c in order to create the request.

• RPs or LPO created reqcap: As per their definitions (Algorithms 10 and 11), they do not
emit HTTP requests.

• The attacker process created reqcap: It is clear that any atomic process that created
reqcap needs to know c.

As we can see, the attacker needs to know c = 〈uc, ia〉 before he is able to create reqcap. With
Lemma 11 we know that the attacker cannot request uc itself with the identity i, and thus, he
cannot know the key ku that was signed in uc. Neither can any browser other than b know ku,
otherwise the attacker could corrupt this browser and learn ku. The key ku is needed to create
ia, therefore only in b the identity assertion ia can be created, and it can only be created by
script_LPO_cif or script_LPO_ld (LPO checks the origin of the request for uc, and only the
script that sends uc knows ku). With Lemma 10 we see that the attacker cannot learn ia.

Hence we can see that the attacker cannot know the CAP c that he needs in order to to create
reqcap. In particular, he cannot know the key k that was used to encrypt the response respcap,
in contradiction to the assumption that the attacker knows k. �

I.2 Condition B

We assume that Condition B is not satisfied and prove that this leads to a contradiction. That
is, we make the following assumption: There is a run ρ of BID, a state (Sj, Ej) in ρ, an r ∈ RP,
an RP service token of the form 〈n, i〉 recorded in r in the state Sj(r), the request corresponding
to 〈n, i〉 was sent by some b ∈ B which is honest in Sj and b does not own i.

Again, without loss of generality, we may assume that ρ satisfies (**) and (***) as above.
As above, the request reqcap corresponding to 〈n, i〉 is of the following form

reqcap = enca(〈〈HTTPReq, ncap, POST, dr, /, 〈〉, [Origin : 〈dr, S〉], c〉, k〉,pub(kr)) (21)

with dr, ncap, pub(kr), k, c as before.
By Lemma 3, this request was actually initiated by a script of r, which can only be the script

script_RP_index . Lemma 9 says that for any such request, b must be the owner of i which is
a contradiction to the assumption. �

References

[1] M. Abadi and C. Fournet. Mobile Values, New Names, and Secure Communication. In
Proceedings of the 28th ACM Symposium on Principles of Programming Languages (POPL
2001), pages 104–115. ACM Press, 2001.

REFERENCES 77

[2] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a Formal Foundation of
Web Security. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, pages 290–304. IEEE Computer Society, 2010.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal analysis of
SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for google
apps. In V. Shmatikov, editor, Proceedings of the 6th ACM Workshop on Formal Methods
in Security Engineering, FMSE 2008, pages 1–10. ACM, 2008.

[4] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu, and J. S. Dong.
AUTHSCAN: Automatic Extraction of Web Authentication Protocols from Implementa-
tions. In Proceedings of the 20th Annual Network and Distributed System Security Sympo-
sium (NDSS’13). The Internet Society, 2013.

[5] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Keys to the Cloud: Formal
Analysis and Concrete Attacks on Encrypted Web Storage. In D. A. Basin and J. C. Mitchell,
editors, Principles of Security and Trust - Second International Conference, POST 2013,
volume 7796 of Lecture Notes in Computer Science, pages 126–146. Springer, 2013.

[6] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering Concrete Attacks on Website Autho-
rization by Formal Analysis. In S. Chong, editor, 25th IEEE Computer Security Foundations
Symposium, CSF 2012, pages 247–262. IEEE Computer Society, 2012.

[7] J. Bellamy-McIntyre, C. Luterroth, and G. Weber. OpenID and the Enterprise: A Model-
Based Analysis of Single Sign-On Authentication. In Proceedings of the 15th IEEE Inter-
national Enterprise Distributed Object Computing Conference, EDOC 2011, pages 129–138.
IEEE Computer Society, 2011.

[8] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In
Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
82–96. IEEE Computer Society, 2001.

[9] A. Bohannon and B. C. Pierce. Featherweight Firefox: formalizing the core of a web
browser. In Proceedings of the 2010 USENIX conference on Web application development,
pages 11–11. USENIX Association, 2010.

[10] E. Börger, A. Cisternino, and V. Gervasi. Contribution to a Rigorous Analysis of Web
Application Frameworks. In J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, editors, Abstract State Machines, Alloy, B, VDM, and Z -
Third International Conference, ABZ 2012, volume 7321 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2012.

[11] S. Chari, C. S. Jutla, and A. Roy. Universally Composable Security Analysis of OAuth v2.0.
IACR Cryptology ePrint Archive, 2011:526, 2011.

[12] Cross-Origin Resource Sharing - W3C Recommendation 29 January 2013.
http://www.w3.org/TR/2013/CR-cors-20130129/.

[13] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Multiset rewriting and the complexity
of bounded security protocols. Journal of Computer Security, 12(2):247–311, 2004.

http://www.w3.org/TR/2013/CR-cors-20130129/

REFERENCES 78

[14] D. Fett, R. Küsters, and G. Schmitz. An Expressive Model for the Web Infrastructure:
Definition and Application to the BrowserID SSO System. In IEEE Symposium on Security
and Privacy (S&P 2014). IEEE Computer Society, 2014. To appear.

[15] T. Groß. Security Analysis of the SAML Single Sign-on Browser/Artifact Profile. In 19th
Annual Computer Security Applications Conference (ACSAC 2003), pages 298–307. IEEE
Computer Society, 2003.

[16] S. Hanna, R. Shin, D. Akhawe, A. Boehm, P. Saxena, and D. Song. The emperor’s new
apis: On the (in)secure usage of new client side primitives. In Proceedings of the 4th Web
2.0 Security and Privacy Workshop (W2SP), 2010, 2010.

[17] S. M. Hansen, J. Skriver, and H. R. Nielson. Using static analysis to validate the SAML
single sign-on protocol. In C. Meadows, editor, Proceedings of the POPL 2005 Workshop
on Issues in the Theory of Security, WITS 2005, pages 27–40. ACM, 2005.

[18] HTML5, W3C Candidate Recommendation. Dec. 17, 2012.

[19] HTML5 Web Messaging, W3C Candidate Recommendation. May 1, 2012.

[20] D. Jackson. Alloy: A new technology for software modelling. In J.-P. Katoen and P. Stevens,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 8th Inter-
national Conference, TACAS 2002, volume 2280 of Lecture Notes in Computer Science,
page 20. Springer, 2002.

[21] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharming attacks and locked
same-origin policies for web browsers. In P. Ning, S. D. C. di Vimercati, and P. F. Syver-
son, editors, Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, pages 58–71. ACM, 2007.

[22] F. Kerschbaum. Simple cross-site attack prevention. In Third International Conference on
Security and Privacy in Communication Networks and the Workshops, SecureComm 2007,
pages 464–472. IEEE Computer Society, 2007.

[23] A. Kumar. Using automated model analysis for reasoning about security of web protocols.
In R. H. Zakon, editor, 28th Annual Computer Security Applications Conference, ACSAC
2012, pages 289–298. ACM, 2012.

[24] Mozilla Identity Team. Persona. Mozilla Developer Network. Last visited May 1, 2013.
https://developer.mozilla.org/en/docs/persona.

[25] OpenID Foundation website. http://openid.net.

[26] S. Son and V. Shmatikov. The Postman Always Rings Twice: Attacking and Defending
postMessage in HTML5 Websites. In 20th Annual Network and Distributed System Security
Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013. The Internet
Society, 2013.

[27] P. Sovis, F. Kohlar, and J. Schwenk. Security Analysis of OpenID. In Sicherheit, volume
170 of LNI, pages 329–340. GI, 2010.

https://developer.mozilla.org/en/docs/persona
http://openid.net

REFERENCES 79

[28] S.-T. Sun and K. Beznosov. The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM
Conference on Computer and Communications Security, CCS’12, pages 378–390. ACM,
2012.

[29] S.-T. Sun, K. Hawkey, and K. Beznosov. Systematically breaking and fixing OpenID secu-
rity: Formal analysis, semi-automated empirical evaluation, and practical countermeasures.
Computers & Security, 31(4):465–483, 2012.

[30] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through facebook and
google: A traffic-guided security study of commercially deployed single-sign-on web services.
In IEEE Symposium on Security and Privacy (S&P 2012), 21-23 May 2012, San Francisco,
California, USA, pages 365–379. IEEE Computer Society, 2012.

[31] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to shop for free online - security analysis
of cashier-as-a-service based web stores. In 32nd IEEE Symposium on Security and Privacy,
S&P 2011, pages 465–480. IEEE Computer Society, 2011.

[32] Web Storage - W3C Recommendation 30 July 2013.
http://www.w3.org/TR/2013/REC-webstorage-20130730/.

[33] whatwg.org. Fetch. http://fetch.spec.whatwg.org/.

[34] XMLHttpRequest W3C Working Draft. Dec. 6, 2012.

http://www.w3.org/TR/2013/REC-webstorage-20130730/
http://fetch.spec.whatwg.org/

	1 Introduction
	2 Communication Model
	2.1 Terms, Messages and Events
	2.2 Atomic Processes, Systems and Runs
	2.3 Atomic Dolev-Yao Processes

	3 Our Web Model
	3.1 Web System
	3.2 DNS Servers
	3.3 HTTP Messages
	3.4 Web Browsers
	3.4.1 Browser State: Zp and sp0
	3.4.2 Web Browser Relation Rp

	3.5 Web Servers
	3.6 Limitations

	4 The BrowserID System
	4.1 Overview
	4.2 Implementation Details
	4.3 Sideshow and BigTent
	4.4 Secondary Identity Provider

	5 Analysis of BrowserID
	5.1 Security Properties for BrowserID
	5.2 Attacks on BrowserID
	5.2.1 Identity Forgery
	5.2.2 Login Injection Attack
	5.2.3 Key Cleanup Failure Attack
	5.2.4 Cookie Cleanup Failure Attack (for the case of secondary IdP only)

	5.3 Analysis of BrowserID with sIdP
	5.4 Security of the Fixed System

	6 Related Work
	7 Conclusion
	A Message and Data Formats
	A.1 Notations
	A.2 URLs
	A.3 Origins
	A.4 Cookies
	A.5 HTTP Messages
	A.6 DNS Messages

	B Detailed Description of the Browser Model
	B.1 Notation and Terminology (Web Browser State)
	B.2 Description of the Web Browser Atomic Process
	B.2.1 Functions
	B.2.2 Main Algorithm

	C DNS Servers
	D Step-By-Step Description of BrowserID (Primary IdP)
	E Sideshow/BigTent OpenID Flow
	E.1 OpenID Authentication Request
	E.2 OpenID Authentication Response
	E.3 Verification

	F Step-By-Step Description of BrowserID (Secondary IdP)
	F.1 Additional Checks
	F.2 Automatic CAP Creation
	F.3 LPO Session
	F.4 Logout

	G BrowserID Model
	G.1 Attacker
	G.2 Browsers
	G.3 LPO
	G.4 Relying Parties
	G.5 BrowserID Scripts
	G.5.1 Some Notation and Helper Functions
	G.5.2 script_LPO_cif
	G.5.3 script_LPO_ld
	G.5.4 script_RP_index

	H Security Property
	I Proof of Theorem 1
	I.1 Condition A
	I.1.1 The attacker does not know k in sj
	I.1.2 The attacker knows k in sj

	I.2 Condition B

