MagnetDroid: a Bridge between
Security, Privacy, and the Law for

Android Applications

Emanuele Uliana
Submitted in fulfillment for the degree of Doctor of Philosophy
Department of Computer Science

Royal Holloway, University of London

ROYAL

HOLLOWAY

December 18, 2021

Declaration of Authorship

[, Emanuele Uliana, hereby declare that this thesis and the work presented
in it are entirely my own. Where I have consulted the work of others, this is

always clearly stated.

December 18, 2021

Emanuele Uliana

Acknowledgements

I wish to express my gratitude to everyone who made my PhD experience and
this thesis possible. First of all, my primary supervisor Kostas Stathis who
pushed me when I needed a push, listened to me when I needed to talk, and
guided me thanks to his knowledge, experience, and wisdom. There are no
words to describe the support I got from you when I was plagued by technical
problems, and in a terrible mood, due to the still ongoing pandemic. Thank
you!

I am grateful to my co-supervisor from the School of Law Robert Jago who
inspired me to dive into the world of legislation on data protection, and
provided an invaluable support when I was confused in the world of legal
systems, rules, and regulations.

[am grateful to Leverhulme and Royal Holloway University of London for
the Magna Charta scholarship that allowed me to get by while working on
my PhD research.

[am grateful to my fellow PhD students of the DICELab for supporting me
on my journey since they joined the lab, exchanging ideas on challenging
subjects, and providing feedback both on my research, and this thesis. In

rigorous alphabetical order: thank you Pallavi Bagga, Joel Clarke, Nausheen

Saba Shahid, and Benedict “Ben” Wilkins.

I am grateful to Royal Holloway University of London for accepting me as
a PhD student, therefore allowing me to leave Italy, which was a long-time
goal of mine. I am grateful to my old supervisors at Politecnico di Milano
- Federico Maggi and Stefano Zanero - for letting me develop part of my
Master thesis at Royal Holloway under Lorenzo Cavallaro whom I also owe
much. That was the start of the process that brought me here.

[am grateful to all the members of the “Phish’n’Chips” and “TU6PM” CTF
teams. We shared some amazing moments, including the privilege of testing
our collective security knowledge and skills by competing in several Capture
The Flag event teams. Among them, I must highlight my long-time friend
Claudio Rizzo who was also an invaluable source of inspiration for my re-
search. We spent some amazing days together! Special thanks to Roberto
Jordaney who also helped my in my research during his time as a PhD stu-
dent at Royal Holloway. I am sure I am going to forget someone (I apologise
for that), yet thank you Giovanni Cherubin, Feargus Pendelbury, Giulio De
Pasquale, Eamonn Postlethwaite, James Patrick-Evans, and Fernando Vir-
dia.

[am also grateful to a number of PhD students with whom I had time to
exchange ideas of various subjects: Duncan Mitchell, Blake Loring, Thomas
Van Binsbergen, Marie-Sarah Lacharité, Mateo Torres, Diego Galeano Gale-
ano, Juan Caceres Silva, and Nery Riquelme Granada. Once again, I apolo-
gise, if I forgot some of you.

I am grateful to those who still live in Italy, yet remained in frequent contact

with me during my PhD years. Thank you Giulia Desteffani, Luca Fanton,

Dino Desteffani, and Antonella Ziliani.
Finally, I am grateful to my parents Mario Uliana and Ornella Gavinelli, and
to my grandparents Aldo Gavinelli and Amedea Sarasini for accepting my

life choices, and encouraging me to pursue my objectives.

Abstract

We study the problem of privacy of user data in relation to the behaviour of
Android applications. The problem is of interest not only to common users
who regularly use Android applications, but also to application developers
who aim to provide users with a secure enough final product. It is also
relevant to legal professionals, who are involved in litigations about privacy
of data with mobile devices. In that regard, we believe it is also relevant to
developers and publishers, even though it is often overlooked by them.

We view privacy as intrinsically dependent on security. As a result, the thesis
discusses how insufficient security impacts the private data of Android users
at the application level and granularity. To assess the problem in a concrete
scenario, we develop MagnetDroid, a novel agent-based framework that infers
privacy-related legal violations and consequences that stem from insufficient
security in the context of Android applications. Our main goal is to provide
a fact-based interpretation capable of linking security with the relevant law
on data protection.

We first present a unifying framework on the application analysis side, where
agents translate and aggregate reports from different analysis tools under a

common ontology defining the security issues that Android applications can

trigger. As a result, the framework delivers a structured collection of iden-
tified security issues (contained in a so called final report) which we refer to
as Technological Knowledge Base (TKB). The application-dependent TKB
is used in conjunction with a general model of the relevant law on data pro-
tection, which we call Legal Knowledge Base (LKB). We then reason on the
union of TKB and LKB by performing queries to derive legal violations and
infer legal consequences. The results are then presented in natural language
format to link security issues with legal violations and consequences.

MagnetDroid takes full advantage of the communication and coordination
abilities of a multi-agent platform, which we experimentally evaluated on a
dataset of applications from AndroZoo. We conclude by discussing how our
approach can be applicable to non-Android and non-mobile scenarios as well,

given the appropriate ontologies.

Glossary of terms

Android application analysis tool: Any software that analyses an An-
droid application and produces a report.

APK: The file of an Android application.

ASO: Short for Android Security Ontology.

LKB: Short for Legal Knowledge Base.

(Raw) report: The product of an application analysis tool.
Technological: Anything related to Android application analysis, as op-
posed as related to the law.

TKB: Short for Technological Knowledge Base.

Contents

1 Introduction 13
1.1 Background 14
1.1.1 The privacy problem 16

1.2 Thesis Objectives 18
1.3 Thesis Contributions 19
1.4 Structure of the thesis 21
1.5 Previous publications 21

2 Background and State of the Art 22
2.1 Privacy Backgroundo 23
2.1.1 Philosophical privacy 23

2.1.2 Privacy in legal systems 29

2.1.3 Privacy in Computer Science 37

2.1.4 Working definition of Privacy 41

2.2 Security Background for Android 43
2.2.1 Platform level security 45

2.2.2 Application level security 45

2.2.3 Security of network communications 47

CONTENTS

2.2.4 Security of dataat rest
2.2.5 Security and data leaks
2.2.6 Defense-in-depth techniques
2.3 Security analysis for privacy 0L
2.4 Limitations of the State-of-the-Art
2.4.1 Limits of security analysis
2.4.2 Limitsof thelaw
2.4.3 Obstacles to integration

25 Summary ...

3 MagnetDroid: Design and Architecture
3.1 Platform assumptions
3.2 Goalsand aims
3.2.1 Cyberlegal privacy
3.2.2 Prerequisites for cyberlegal privacy
3.3 MagnetDroid designo oL
3.3.1 High level architecture
3.3.2 A platform for integrative analysis and synthesis
3.3.3 A reasoning platform L.
3.3.4 A webapp to close thering

34 Summary ...

4 MagnetDroid Agent Platform
4.1 The opportunity of an agent Platform
4.1.1 Key Agent Properties.

4.1.2 Practical examples

o7
58
99
60
63
63
66
66
67

69
70
74
74
76
80
80
82
96
102
103

CONTENTS 10

4.2 Agent Model and Architecture 111
4.2.1 Agent capabilitieso 113

4.3 High level structureo 114
4.3.1 MAP entities 114
4.3.2 MAP agent protocol 125

4.4 Phase 1: parallel analysis 128
441 Theflow 128
4.4.2 The algorithm00 129
443 Rawreports 131

4.5 Phase 2: translation 000 132
4.5.1 Parsing 133
4.5.2 ASO instantiationo 137

4.6 Phase 3: aggregation oL 140
4.6.1 Theflow 141
4.6.2 The algorithm 00 141
4.6.3 Conflict solving mechanism 144
4.6.4 The final report oL 146

4.7 MAP extensibility and agility 147
4.8 Summary ... 148
5 MagnetDroid Reasoning Module 149
5.1 Phase 4a: creationofa TKB 150
5.1.1 From leaves and state variables to Prolog rules 151
5.1.2 The algorithm 153

5.2 Phase 4b: creationof a LKB 153

5.2.1 The 2018 UK Data Protection Act 154

CONTENTS 11

5.2.2 From the articles to a Legal Knowledge Base 157

5.3 Phase 5: reasoning o 160
5.3.1 Queries 160

54 MWA: Interacting with MagnetDroid 163
5.4.1 Parameterised Analysis and Queries 164

5.4.2 Visualisation of the Results 164

5.5 Summary ... 166

6 Discussion 167
6.1 Justification of the High Level Approach 168
6.2 The significance of ASO 169
6.2.1 Absolute Relevance Index 169

6.2.2 The Impact Indexes 170

6.2.3 The Nature of DNS Issues 172

6.3 Experimental Evaluation: MAP 174
6.4 Experimental Evaluation: MRM 176
6.5 Summary 179

7 Conclusions and Future Work 181
7.1 Summary of the Thesis 181
7.2 Futurework 183
Appendix A: MAP agents actions 185
Appendix B: Raw Report Example 190

Appendix C: Pseudo-grammar Example 193

CONTENTS 12

Appendix D: Example of a TKB complementing a LKB 196

Chapter 1

Introduction

At the centre of our Internet dependent lifestyles, we rely more and more on
a large network of devices that we use to carry out our daily activities. The
software application running on these devices often need to know personal
identifying data [1], which may violate our privacy if exposed. As a result,
there is a growing interest over privacy. Moreover, the increasingly shifting
demographics perceive practices such as the abuse of digital systems for the
sake of non-explicitly authorised user profiling, selling of personal informa-
tion to advertisers, and mass surveillance [2] as unacceptable. All of these are
consistently regarded as detrimental to individuals, whether persons or or-
ganisations, in terms of their rights and freedoms. In particular, there seems
to be a common understanding of a universal right to retain exclusive control

of certain pieces of information about oneself, whether digital or not [3].

13

CHAPTER 1. INTRODUCTION 14

1.1 Background

Consider a metaphorical enclosure where everything inside needs to remain
private, while, on the other hand, we assume that what remains outside could
become public, at some point. Such a definition highlights our first issue with
the notion of privacy: there is no universal agreed perimeter for the enclosure,
because it is a subjective matter [4]. Therefore, for instance, it is difficult to
write any kind of legislation with precise limits on the matter [5]. In practice,
what happens is that societies derive the extent of the enclosure from the
particular set of moral values developed over time within them. This process
is not unique to privacy. In fact, arguably that is how the law originates and
gets updated [6]. The law reflects, at least to some extent, the set of moral
values that are accepted (either spontaneously, or by coercive means, such
as a dictatorship) by the majority of the population of a certain society. It
is apparent that, due to the proliferation of different human societies, many
different (often incompatible) sets of moral values exist today in the world.
As such, it is not surprising, therefore, to find widely different laws on privacy
in different countries.

Another important issue is that new disruptive technologies generate both
new kinds of “information”, and new ways to access, use, and abuse it.
Thanks to computing devices such as smartphones, more and more aspects
of our lives are encoded into data. Some data reflect pieces of personal in-
formation that we may want to retain exclusive knowledge of. Some other
apparently harmless data (e.g. our location at a specific time of date) can
be aggregated into a “profile” from which more personal information can be

inferred (e.g. whether we play tennis every Sunday) [7]. Those data and

CHAPTER 1. INTRODUCTION 15

information are powerful. On average, whoever has more data on a subject
makes better decisions related to that subject. Therefore, there is a strong
push towards the collection of the largest amount possible of data [3], even
though the obtained information might not be immediately useful. Think
about a nation state spying on its own citizens or foreign nationals. For a
political party, having access to the profiles of a large number of voters al-
lows the development a more effective electoral strategy. In a cynical way, we
could say that exploiting the fears of a large group of voters while campaign-
ing becomes notably easier when the profiles of those people are available.
Or perhaps a corporation whose revenue depends on customers buying their
products. Having access to the profiles of a large number of perspective
customers is an obvious advantage for such corporation, as it allows tai-
lored advertising, for instance. In other words, there are strong incentives
from different angles to reduce the size of the enclosure as much as possible.
However, the push is not infinitely powerful. The abuse of private data in
different digital domains has generated a reaction, namely, demanding for a
better protection for private information [9].

Our thesis constitutes a part of the push-back against what we perceive as
an excessive push towards a smaller enclosure. However, we aim to be a
line of defense against a more subtle threat against privacy. If the enclosure
has holes or weak sections, no push-back will save private data, because an
external attacker could just mount a targeted effort against the weak point(s),
and still gain access to the private data. Out of metaphor, our thesis is based
on the basic assumption that privacy is the first victim of insufficient security.

Even more so, privacy is impossible in absence of a sufficient level of security

CHAPTER 1. INTRODUCTION 16

in the context of whoever and whatever is managing our private data. By
now, it is abundantly clear that privacy of individuals nowadays is almost
synonymous with privacy of their data. Therefore, this kind of privacy is our

main focus.

1.1.1 The privacy problem

Having established privacy of data as our main focus, and insufficient secu-
rity as its biggest threat, we recognise that the problem is still open. We
choose to focus our attention on mobile operating systems, because we carry
mobile devices with us for a significant amount of time, and we entrust them
with a large amount of personal data. Among the mobile operating systems
we restrict the domain even more, and focus on Android, both because its
open source nature makes it an easier subject for research than its closed
source counterparts, and because it is the most popular and used mobile
OS. Within Android we choose to ignore the security issues that are intrinsic
to or derive from the Android OS, focusing our attention only on Android
applications. Therefore, we study the problem of privacy with respect to
Android applications as pieces of software that can perform actions and take
decisions.

As already mentioned, insufficient security is a sufficient condition to under-
mine privacy. In that context, we broadly categorise Android applications
in two groups: vulnerable applications and malicious applications. From
the technological point of view, once a vulnerable or malicious application
has been developed and published, the standard line of defence consists of

attempting to detect malicious behaviours and/or vulnerabilities. Unfortu-

CHAPTER 1. INTRODUCTION 17

nately, as it stands, this approach exhibits some significant shortcomings,
which constitute the core of what we characterise as the privacy problem.
First, most of the tools that are designed to detect vulnerabilities and mali-
cious behaviours produce reports that are meant for humans. As such, these
reports are not machine-friendly, and hinder a fully automated approach
which is necessary for the detection to work at scale, given the enormous
amounts of applications and the scarcity of security professionals.

Second, there is an apparent lack of coordination between the technologi-
cal response to the privacy problem (i.e., the analysis tools), and the legal
response. As much as technology can help identifying security issues, with-
out an appropriate legislative framework, it becomes all but impossible to
force developers to think about security when designing and building their
applications. Likewise, a deterrent is required to at least partially prevent
the damage that malicious actors cause when they publish malicious applica-
tions. The main reason that hinders the cooperation between technology and
the law in terms of mitigating the insufficient security of Android application
is a crucial mismatch. The law is written in natural language by legal ex-
perts with little knowledge of security. On the other hand, analysis tools (and
Android application, for what matters) are developed by professionals with
little knowledge of the law. As such, given the current differences between
the two domains, the lack of a bridge between the two is not surprising.
The apparent lack of a bridge between technology and the law is the main
motivation for this thesis. As we explore the causes of it, the mostly uncoor-
dinated and machine-unfriendly nature of the technological response becomes

another driving force. It is clear to us that, before a bridge can be built, we

CHAPTER 1. INTRODUCTION 18

need to lay a solid foundation on both sides. As such, we take interest in
creating unity in the analytical response to insufficient security, and in ensur-
ing that such unity enables a machine friendly toolchain to be built, as well
as the aforementioned bridge. On the legal side, our interest is captivated
by how the inherently technological terminology (e.g., data confidentiality,
etc.) is defined and/or referenced within the law. Once both sides’” shortcom-
ings have been addressed, we take interest in building a bridge that provides
an interpretation linking security issues in Android applications with legal

violations and legal consequences.

1.2 Thesis Objectives

Motivated by the privacy problem described above, our hypothesis is that it
is possible to develop a bridge between application analysis and the relevant
law. The bridge will be developed via process of raising the level of applica-
tion analysis to legal concepts, and by formulating the law as a logic program,
so to check individual applications for compliance. Given this hypothesis, the
main aim of the thesis is to develop a generic framework for evaluating the
privacy of Android applications, in the light of insecure practices. In this

context, the key objectives of our work are to:

e Use existing analysis tools and identify new ones to provide more thor-

ough technical analyses for Android applications.

e Formalise computationally a subset of privacy legislation and link them

to concepts of the technical analysis.

CHAPTER 1. INTRODUCTION 19

e Identify suitable integration mechanisms that allow us to coordinate
results from analysis tools, reasoning with privacy legislation, and run-
ning applications to test whether privacy is compromised within exper-

1ments.

e Perform a series of experiments to demonstrate the use of the frame-

work.

1.3 Thesis Contributions

Given the privacy problem, and our motivation to address it, our contribu-

tions to its mitigation are as follows:

e We designed an ontology that specifies a standard syntax and seman-
tics for Android application analysis reports. Named Android Security
Ontology (ASO), it encompasses the relevant security issues that users
of Android applications can face, and analysis tools are able to identify

and report.

e We designed a framework that, given an Android application, a set of

available analysis tools, and ASO:

— Runs the tools in parallel on the application, and collects the

reports.

— Translates the reports into an ASO compatible structure via a
standard procedure that concentrates agility in a few points (in
order to minimise the additional coding needed to accommodate

for new tools).

CHAPTER 1. INTRODUCTION 20

— Aggregates the translated reports into an ASO compatible final

technological report that can be used for further analysis.

— Outputs a Technological Knowledge Base (TKB) from the final

report that can be used for reasoning purposes.

e We implemented the framework as a multi-agent platform, in order to
take advantage of the cooperation, coordination, and communication

properties that are intrinsic to agent platforms.

e We produced a model of a subset of the relevant law on data protection,

and derived a Legal Knowledge Base (LKB) from it.

e We designed and implemented a reasoning module that, given the TKB
and the LKB, allows for reasoning on their union, as well as querying

for legal violations, and legal consequences.

e We designed a human-friendly interface to the system that allows for
selective querying, and explains the results in comprehensible terms for

three types of users: developers, regular users, and legal experts.

We call the collection of frameworks MagnetDroid. In particular, we call
the sub-framework responsible for generating the final report MagnetDroid
Agent Platform (MAP), and the sub-framework that enables reasoning Mag-
netDroid Reasoning Module (MRM).

CHAPTER 1. INTRODUCTION 21

1.4 Structure of the thesis

The remainder of the thesis is structured as follows. In Section 2 we discuss
the relevant background on privacy, security, Android, and the law. In Sec-
tion 3 we describe the design of ASO, and our approach to MagnetDroid as
a whole system. In Section 4 we describe the implementation of MAP. In
Section 5 we describe how we modelled the law, and our MRM. In Section 6
we evaluate our contributions both in terms of compatibility with existing
standards, and via two rounds of experiments. Finally, in Section 7 we sum-
marise our work, and discuss the limitations of MagnetDroid, how it can be

improved, and future research directions.

1.5 Previous publications

Some of the components of MagnetDroid (namely, ASO, MAP and MRM)
have already been published in [10] for what concerns their design, architec-

ture, and proto-implementation.

Chapter 2

Background and State of the
Art

In this Chapter we explore the relevant background to the thesis contribu-
tions, and we establish the common ground terms and concepts required in
order to understand our contributions. We start by exploring privacy from
different points of view. In Section 2.1.1 we describe how the concept of
privacy has been shaped by philosophical thought throughout history. In
Section 2.1.2 we describe how privacy is currently framed within different
legal systems, and we establish what for us constitutes the relevant law on
data protection. In Section 2.1.3 we explore what privacy means in the con-
text of Computer Science, and we establish security as a necessary condition
for privacy. Then, in Section 2.1.4 we provide our working definition of pri-
vacy. We explore security (and therefore privacy) in the context of Android
in Section 2.2 by concentrating on Android applications (Section 2.2.2), their

network communications (Section 2.2.3), and their treatment of data at rest

22

CHAPTER 2. BACKGROUND AND STATE OF THE ART 23

(Section 2.2.4). In Section 2.2.5 we discuss the practical consequences of
insufficient security of Android applications on privacy. We continue in Sec-
tion 2.3 with the presentation of the current state of the art techniques to
analyse Android applications in the context of security. Finally, we identify
the limitations of the state of the art in Section 2.4, especially the limits of
analysis, the limits of the law, and the obstacles to the integration of the

two.

2.1 Privacy Background

In this Section we discuss the background surrounding the concept of privacy
from different points of view. In Section 2.1.1 we focus on the philosophical
view. In Section 2.1.2 we focus on legal systems. In Section 2.1.3 we focus

on Computer Science.

2.1.1 Philosophical privacy

Privacy has no universally agreed definition. Multiple attempts have been
made throughout history to characterise it from different points of view.
Early attempts predated both written laws and computer technology. Con-
sequently, they were mainly focused on social behaviours and philosophical
disquisitions. The former case mainly consists in attempts at identifying
what constitutes a normal social behaviour. In the latter case, topics for
debate typically include what may or may not be considered private, un-
der which conditions, and with which exceptions. When written laws came

into existence, lawmakers attempted to formalise some of the results of the

CHAPTER 2. BACKGROUND AND STATE OF THE ART 24

philosophical discussions into written clauses. History brought technology
advancements, at various rates, and in different periods. However, in the
20th and 21st centuries this pace experienced a notable acceleration. Many
technological advancements in the last 200 years have demonstrated that
the previous definitions of privacy are crumbling, and no more applicable.
In particular, new technologies can either allow behaviours that were phys-
ically impossible before (e.g., remote connections from home with far away
places in the world), or create new objects that may fall under the span
of privacy (e.g., digital data). On the other hand, advancements may be
used to improve the level of privacy, once a definition consistent with the
historical period has been adopted. Along with technology, the philosophical
discussion on the meaning of privacy and on its subjects of applicability has
accelerated too, in the attempt to keep apace. The whole process consists of
a cycle which repeats itself. When technology improves, the definition and
the span of privacy changes. Whenever the definition and/or the span of
privacy evolve, new philosophical discussions arise. Consequently, lawmak-
ers and legislators try to incorporate the results of those debates. New laws
contribute to new advancements in technology, and so on. Effectively, there
is a perpetual cycle of philosophy, law, and technology taking their turn in

defining privacy, working with its definition, and expanding it.

Understanding the past to predict the future The current iteration
of the aforementioned cycle consists of a world where most of the daily rou-
tine would be impossible as it is without mobile devices. As mobile devices

contain more data about people than people often realise and remember, it

CHAPTER 2. BACKGROUND AND STATE OF THE ART 25

seems natural to consider any breach in the management of those data as a
privacy-related problem. Philosophical discussions about privacy in a tech-
nological world are already frequent and widespread [11]. The next expected
step is for lawmakers to incorporate the results of those discussions into rel-
evant rules and regulations. In order to understand how this process works
and might work in the future, we need to explore how that happened in the

past.

Before the modern era From the beginning of the modern human (pre-
)history, around 200,000 years ago, to the beginning of the modern era, pri-
vacy was in its infancy. We know that primitive humans already understood
the concept of dignity [12], especially with respect to actions like sleeping.
In Ancient Greece the desire to be let alone in determinate circumstances
played a role in the construction of residential dwellings. Greeks had a so-
phisticated understanding of Geometry, and they built their houses by lever-
aging their knowledge, so that rooms had the maximum exposure to sunlight,
while being minimally exposed to the sight of external viewers. In Ancient
Sparta the first known attempt at providing a private form of communica-
tion took place: the Scytale [13]. Within the ancient roman civilisation, we
can find another example of an attempt at securing communications against
unauthorised third parties: the so called Caesar’s Cipher [14]. The advent
of Christianity in Europe, first within the Roman Empire, then during the
Middle Ages, brought the concept of seclusion: isolation from the society, in
order to fight against the inner demons, so not to sin anymore. The most

evident effect of this line of thought was the creation of the monastic orders.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 26

Another notable contribution of Christianity to the philosophical concept of
privacy was the mandatory secretiveness of the confession sacrament [15].
Every single word needed to remain between the person and the priest. This
is likely because Christians then believed and still believe that a third party,
the christian divinity, was listening to the entire conversation as the only
intended recipient, while the priest was only an intermediary. Towards the
end of the Middle Ages, another privacy-related practice, the one-person-
one-bed accommodation, became common. Albeit this can be regarded as a
privacy matter, the real reason behind that is probably the need to improve
the hygiene in hospitals when the Black Death surged in 1348. We do not
know about relevant laws about privacy that were written before the mod-
ern era. However, the customs that we described can be considered part of
the foundations of the laws on privacy that would have been written in the

subsequent centuries.

The modern era before the computer revolution In the Modern Era,
technology started to raise concerns for the secrecy of certain activities. The
beginning of the 17th century saw the invention of the telescope, which could
be used to gain a better view of far away objects and activities. One of
the consequences was and is that, in case of espionage, the victim could
and can be totally unaware of it. The 19th century saw the invention of
the telegraph. For the first time, a reliable transmission of data between
distant endpoints became possible. With every technology advancement,
people started to value more the right not to be subjected to intrusions in

their private properties.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 27

By the advent of the two industrial revolutions, when products and services
became available to the masses, the need for private spaces and private ac-
tivities became a major and widespread line of thought across Europe. The
belief was that the common well-being could not be achieved without the
right for individuals and /or family to live in a separate and healthy, possibly
owned, house in which they could perform activities without being exposed
to external interferences. It is during this period that historians agree the
right to privacy (or modern privacy) was born [16]. Privacy was expected to
become a political right, and scholars from universities were involved in the
discussion. Warren and Brandeis work in 1890 on the right to privacy is an
example of an attempt at building a general concept of privacy which could
incorporate technological advancements [16]. One of the most significant
contributions in the pre-computer era dates back to 1883. In that year the
Dutch linguist Auguste Kerckhoff formulated his eponymous principle which
is considered one of the foundations of modern cryptography, and which is
still valid today [17].

With the increasing pressure for a legal recognition of the right to be in-
volved in secret activities, the matter started to be seriously discussed by
lawmakers. In 1710 the British Parliament approved the Post Office Act [18§]
which made illegal in the North American colonies for post office operators
to look at the contents of mails while sorting them. In 1903, in New York a
form of identity theft, namely the use of someone’s unauthorised likeness for

commercial purposes, was outlawed [19].

CHAPTER 2. BACKGROUND AND STATE OF THE ART 28

The computer revolution and the Internet era Soon after World War
IT, the television and computer era began. It became possible to program
machines and to instruct them to perform tasks in a fast way with a lowered
effort and risk for humans. The advent of ARPANET before, and Internet
after, made possible for computers to transfer large amount of data. With
fiber-optics the speed of data transfer can be up to 2/3 of the speed of light
in the vacuum. Devices which could capture pictures, sounds and motion
events could be connected to computers, and the captured data could travel
the world in a matter of seconds. The implications for privacy are huge.
Different threads of discussion arose in response of the major technological
revolutions of the 20th and 21st Centuries. One of them regards surveillance
of people by the public authority. The main element of uncertainty is where to
put the threshold between what is considered normal and necessary for crime
prevention, evidence discovery, and global well being, and what is considered
a useless and unfair access to other people or entities private data, conversa-
tions and behaviours. Computer scientists and engineers mostly agree that
mass surveillance and any intentional government-mandated weakening of
the security of digital devices always do more harm than good. To cite some,
Turing Award recipients Ronald Rivest, Adi Shamir, Whitfield Diffie, Martin
Hellman, and the main developer of the Signal Protocol Moxie Marlinspike
all agree on these matters [20)].

Among computer scientists a major concern is to protect data confidentiality
and integrity, and availability of/for digital systems, as well as ensuring the
authentication of peers in network communications. The fields of modern

cryptography, (digital) system security, network security, transport security,

CHAPTER 2. BACKGROUND AND STATE OF THE ART 29

and cyberphysical systems security were all born in order to fulfil these needs.

2.1.2 Privacy in legal systems

Among legal scholars, William Prosser had the intuition that, in order to
properly include privacy in the law (Tort’s law in its case), a more system-
atic approach was required. In its work in 1960 [21] Prosser identified four

different rights to privacy, as he called them:

1. A person’s right to seclusion or solitude, and to have private affairs.

2. A person’s right not to have personal embarrassing private facts dis-

closed to the public.
3. A person’s right not to be put under a false light in the public light.

4. A person’s right not to have someone else appropriating of their likeness

for a personal advantage.

While Prosser’s attempt at systematically reorganising the definition of pri-
vacy is important (for the systematic approach), it groups together concepts
that are too different. The first point is indeed relevant for privacy in a
technological world, but the others are much less. Points number 2 and 3
are more about defamation than privacy (even though in some jurisdictions
only the third point can be regarded as defamation [22]). The last point falls
under the identify theft problem.

In response to the philosophical debate, every country has since incorporated
into their legal system rules and regulations regarding privacy, along with a

definition of it. In the next paragraphs we are going to examine 4 instances:

CHAPTER 2. BACKGROUND AND STATE OF THE ART 30

UK (more specifically, England and Wales, as Scotland and Northern Ireland
have their own jurisdictions) in Paragraph 2.1.2.1, the European Union in
Paragraph 2.1.2.2, the United States of America in Paragraph 2.1.2.3, and
China in Paragraph 2.1.2.4. The word privacy in these sub-paragraphs refers
to its meaning in the specified legal context. We mainly focus on the UK and
EU, citing U.S.A. and China for comparison purposes. In particular, we chose
the U.S.A. as the representative for multi-party democracies, and China as
the representative for one-party countries. This approach is modelled after
the archetype vs deviant example approach described by Francis Pakes in its
book Comparative Criminal Justice [23]. China, in our case, is the deviant

example.

2.1.2.1 Privacy in the United Kingdom

The United Kingdom (UK) does not have a unique legal system. However,
the relevant pieces of legislation on privacy mostly apply throughout the
whole country. According to the case of Wainwright v Home Office [24], the
general concept of invasion of privacy is beyond the scope of UK common law.
Therefore, there cannot be a cause of action for it under English common
law. However, in 1998, the promulgation of the Human Rights Act resulted
in the incorporation into the UK domestic law of the Furopean Convention
on Human Rights [25] (ECHR). According to Art. 8(1), of the ECHR:
Everyone has the right to respect for his private and family life, his home
and his correspondence.

According to Art. 8(2), the public authority cannot interfere with such right,
unless to protect higher rights/values. These are also stated in Art. 8(2):

CHAPTER 2. BACKGROUND AND STATE OF THE ART 31

e National Security.

Public Safety.

Economic well-being of the country.

Prevention of disorder or crime.

Protection of health or morals.

Protection of the rights and freedom of others.

Also, any interference, as specified in Art. 8(2), must be fully justified in the
law at each Country level.

The ECHR is a European Convention. As such, it has been incorporated
into the laws of other European countries, and laws are constantly promul-
gated in accordance with the principles described in both Art. 8(1) and Art.
8(2). For instance, regarding the protection of health, in 2017 both Italy
and France passed national laws which prescribe 10 to 11 mandatory vacci-
nations to all children, in order for them to be able to attend pre-school. A
vaccination record is also created and shared between the local and national
health systems. This is an example of a lawful interference in individuals’
privacy for a greater and global benefit, since those laws were passed in re-
sponse to a noticeable drop in vaccination rates. This drop lead to the loss
of the so called herd immunity, and, consequently, to a widespread outbreak
of measles in Italy in 2017 [20].

In the UK laws in accordance with ECHR allow, for example, luggage inspec-

tion and body scans at the airport(s). In this case, the matters are National

CHAPTER 2. BACKGROUND AND STATE OF THE ART 32

Security, Public Safety, Prevention of crime, and Protection of health (e.g.,
in case of illegal transport of hazardous materials).

The problem with Art. 8 of the ECHR is the vagueness of the terms: each
of the higher rights/values require a proper definition. To date, there is
no universally accepted definition for any of those, which means that each
country has to define them in the corresponding domestic law. This is prone
to a number of abuses. The limit between useful checks and practices like
individuals humiliation (e.g., public searches and seizures) and immoral mass
surveillance is all but clear. The facial scanners at Heathrow airport are an
instance of the problem: are they an anti-terrorism measure, or a mere mass
surveillance tool? Again, the answer is different, depending on who you ask
to.

As mentioned in Section 1.1.1, and reinforced in Section 2.1.3 we are mainly
interested in data privacy. For this reason, we are particularly interested in
the legislation on data protection. In this thesis, we choose to focus on the
legal system of England and Wales. Within it, the single most important
piece of legislation on data protection is the 2018 Data Protection Act (2018
UK DPA from now on, or even simply DPA). While we have little reason
to doubt that the legislators acted with their best intentions and in good
faith, in order to ensure the best legal protection possible to users’ data, and
to specify reasonable consequences for violations, the DPA has limits. We

discuss them in Section 2.4.2.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 33

2.1.2.2 Privacy in the European Union

As of February 2020, the UK is no more a member of the European Union
(EU). However, the 40+ years long membership has ensured that EU legis-
lation affected the domestic legal systems within the UK. For this reason, we
also examine how privacy is regarded in the EU legal system. Privacy in the
member countries of the European Union is regulated by the following two
documents proposed by the European Commission in 2012 and approved by

the European Parliament in 2016:

e Regulation on the protection of natural persons with regard to the

processing of personal data and on the free movement of such data [27].

e Directive on the protection of natural persons with regard to the pro-
cessing of personal data by competent authorities for the purposes of
the prevention, investigation, detection or prosecution of criminal of-
fences or the execution of criminal penalties, and on the free movement

of such data [28].

Both documents officially repeal previous regulations (Directive 95/46/EC)
and directives (Council Framework Decision 2008/977/JHA) on the matter
of privacy. Regarding the Regulation, EU countries’ domestic laws cannot
be in contrast with it, much like other EU regulations. Additionally, at the
time of approval, all EU countries were expected to incorporate the Directive
by 2018. Since all EU members are European countries, their national laws
usually incorporate the ECHR as well.

Article 4 of the Regulation states both that the processing of personal data
should be designed to serve mankind, and that the right to the protection

CHAPTER 2. BACKGROUND AND STATE OF THE ART 34

of personal data is not an absolute right: it must be considered in rela-
tion to its function in society and be balanced against other fundamental
rights, in accordance with the principle of proportionality. The fundamental
rights are described in the Charter of Fundamental Rights of the FEuropean
Union [29] and in the Treaty on the Functioning of the European Union [30].
The underlying concept is that there is a fundamental right to the protection
of personal data (seen as a component of privacy), but other fundamental
rights (see above) can override it in case of necessity. In particular, everything
regarding a specific person, from their identity, to the result of their actions,
is treated as data. While the EU regulations and directions are among the
most conservative on the matter of personal data protection, they suffer from

the same vagueness which threatens Art. 8 of ECHR and its applications.

2.1.2.3 Privacy in the United States of America

Begin a federal republic, the United States of America has multiple legal sys-
tems at multiple levels [31]. There are a central federal government (led by
the President of the U.S.A.) and parliament (the Congress) which promulgate
and enact federal laws in accordance with the Constitution of the U.S.A.. At
the federal level, laws are either general-purpose or of national interest (e.g.,
national security). Below the federal level there are the 50 States. Each of
them has a State Constitution, a Governor, and a State Parliament. For this
reason, it is correct to say that each State has its own legal system. How-
ever, the States cannot promulgate laws on subjects of national interest, and
cannot declare a federal law invalid. They can, however, legalise something

which is illegal at the federal level - e.g., the recreative use of marijuana, etc.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 35

The existence of multiple legal systems is relevant to the subject of privacy,
because at the federal level and at the level of the single States it is possible
to have discrepancies on the regulation of privacy.

We are mainly interested in the federal level. The Constitution and its

amendments, ensure some fundamental rights, such as:

e The right of free assembly (First Amendment).

e The right to be free of unwarranted search or seizure (Fourth Amend-

ment).

Those rights are complemented by the generally accepted principle of The
right to be let alone, which, in theory, ensures that a free assembly can-
not be monitored and arbitrary secret searches and seizures cannot take
place [16] [32]. However, the aforementioned general principle has some lim-

itations:

e It does not apply to the matters of public interest.
e [t can be overridden by higher interests.

e [t is weaker than its European counterparts, since, as already written,
single States can override the Federal law to a greater extent than
European and EU countries can with respect to European and EU

regulations and directives.

The right to be let alone, also, partly ceases to apply when an individual
voluntarily agrees to the terms and conditions of a particular service, such

that those explicitly allow some degree of intrusion in data in transit and

CHAPTER 2. BACKGROUND AND STATE OF THE ART 36

data at rest, defined as the data sent by the user to the service provider and
stored by the latter. As long as the terms and conditions are not against the
law that applies in the circumstance, the harvesting of users’ data after the
acceptance of the aforementioned terms and conditions is legitimate. There
is a trade-off between having a service and having the exclusive control over
personal data. For this reason, and since most of the network-based services
are provided by American companies, privacy in the U.S. is usually informally
defined as a commercial right.

The United States regulations concerning privacy are not immune from the
already described vagueness problem. In particular, the National Security
exception has been taken to an extreme level to justify mass surveillance not
only of private US citizens, but also of citizens and entities based in foreign

countries, as described by the leaked information in the last few years [11].

2.1.2.4 Privacy in China

The final legal system we cite for the sake of comparison is the Chinese
one. It is of interest to us because of the inner distinction between privacy
with respect to companies, and privacy with respect to the government. Ac-
cording to Pernot-Leplay et al. [33], the Chinese approach to privacy is an
example of middle ground between the EU and US approaches, at least for
what concerns data privacy. The authors clearly state that the data privacy
framework applies to users as consumers, but not as citizens. As such, the
relevant law protects Chinese users from abuses by private companies, while
the government is free to pursue its notorious and invasive state surveillance

program. Additionally, the Chinese law in general tends to be vague, and

CHAPTER 2. BACKGROUND AND STATE OF THE ART 37

the privacy law is no different. Therefore, the most relevant fragments of
the Chinese approach to data privacy are part of non binding dispositions
that private companies are supposed to follow as “best practices.”. This is in
starch contrast with what users (as citizens) can expect in terms of privacy.
Not only individuals are restricted from visiting certain websites, feature
achieved thanks to the so called Great Firewall of China, but users are often
forced to use specific software applications (the others are forbidden) in or-
der to access network-based services. These applications are usually heavily
monitored by the central government (or by affiliated entities). The claim
is that this is a necessary trade-off between the freedom of people to get
services and the control of potential rebellions/criminal activities.

Essentially, this is a complete and explicit subordination of every right of
individuals to national stability and alleged security. The result is the partial
or complete suppression of rights which are given for granted in the legal

systems we previously examined.

2.1.3 Privacy in Computer Science

In this Section we discuss how privacy is framed within Computer Science
and its applications such as digital devices. As we briefly mentioned in
Chapter 1, in that context we cannot unlink the privacy of a user from the
security of its data. In other words, a notable fraction of the privacy of a user
coincides with the security of its data. In order to avoid a long periphrasis
every time the subject is touched, we defined two new labels: privacy of
data, and its abbreviated form data privacy. When either of them appears,

their meaning is privacy of a user that depends on the security of their data.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 38

From now on, in this thesis, unless differently specified, the term privacy
will be synonymous with and refer to data privacy. In that regard, threats
to privacy can be mostly partitioned into insufficient security and misuse
and abuse of legitimately obtained data. We discuss both in Section 2.1.3.1
and Section 2.1.3.2. Likewise, the expression private data for our purposes

indicates a set of data whose privacy is valuable by its owner (such as a user).

2.1.3.1 Privacy and Security

Whenever data are managed by digital devices, one of the biggest threats to
their privacy is insufficient security. For a device storing or interacting with
any kind of private data, security is a necessary condition for the privacy of
those data. While perfect security is not achievable in the general case, the
correct expression to use (and what to aim for in practice) is secure enough,
denoting an acceptable level of security, given a certain threat model. The
reason why security is paramount for privacy descends from the fact that
security vulnerabilities are likely to open sinks for data to flow towards an
attacker’s possession. It is not necessary for the attacker to compromise the
entire device for that to happen, even though, in that scenario, every single
piece of data on the device (unless encrypted at rest) is compromised. The
situation would be so severe that, if the threat model includes an attacker
having full and unrestricted access to a device (e.g., root privileges on an
Operating System), little can be done in any case. It is also worth noting that
it is in principle possible to exploit a vulnerability without leaving any trace.
Therefore, it is possible that a user never realises that their device and their

private data have been compromised. That of course does not remove the

CHAPTER 2. BACKGROUND AND STATE OF THE ART 39

fact that a privacy breach has happened. Furthermore, if a device exchanges
data with the external world - think network communications on the Internet
- the privacy of those data is dependent on the security of the communication
channel. The main issue here is that no communication channel is secure by
default. Therefore, a secure enough channel has to be actively established
before a secure data transfer can begin, together with some form of identity
verification of the other party. Unfortunately, the establishment of a secure
enough communication channel is error prone, not trivial at all, and full of
traps. It does not help that attacks only get better with time, so what is
secure enough today almost certainly will become insecure some time in the
future. Ultimately, we can reinforce the concept that the lack of appropriate
security within devices and their components (such as Operating Systems),
and the lack of secure enough communication channels arguably pose the

biggest threat to the privacy of data.

2.1.3.2 Privacy and data treatment

The other face of data privacy is how the devices, the people, and the insti-
tution that are entrusted with the custody of private data actually manage
them. A given software could be secure enough from external threats, but
malicious in its behaviours. If leaking private data is part of the intended
functionalities of an application, rather than the result of a vulnerability,
that falls out of the threat model of an external attacker. It is still deadly for
privacy, though. Even discounting the behaviour of a user-controlled piece of
software, such as a classic computer program or a mobile application, there

are legitimate scenarios in which remote devices (think servers) legitimately

CHAPTER 2. BACKGROUND AND STATE OF THE ART 40

come into possession of user data, such as the user sending them to the end-
point to fulfil the prerequisites for accessing a service. It is hopefully crystal
clear that, from a technical point of view, whenever a piece of data is sent to
any of those remote sinks, the user has lost forever the exclusive control over
it. At least some of the possible actions that can be performed on remotely
stored data (whether or not accessible by the original user) are in general
influenced by forces that do not depend at all on the will of the original user.

Examples include:

e The remote party could have security problems of its own, which expose
vulnerabilities that are exploitable by attackers. Those vulnerabilities
can result in data leaks, such as database compromise. This point
mainly refers to threats to privacy that do not depend on the active

will of the remote party.

e The remote party could be outright malicious or go rogue at any point.
Sometimes, in the case of organisations, one single rogue employee can
significantly harm the privacy of the collected data. This point mainly

refers to threats to privacy that stem from illegal activities.

e The remote party could copy the data to an indefinite number of loca-
tions and /or infer more data via data mining techniques. It could also
sell the data to third parties such as advertising companies. This point
mainly refers to threats to privacy that stem from legal activities. It
also allows us to point out that not all the actions that compromise

privacy are necessarily illegal.

The main issue here is that not only it is difficult to determine in general

CHAPTER 2. BACKGROUND AND STATE OF THE ART 41

whether the first point applies, but also that a perfect cover up is technically
always possible in the other two for an indefinitely long time. Sometimes, no
cover up is needed, as the remote party is known to perform privacy dam-
aging actions (such as selling private data to advertising companies, which
is the norm for businesses whose revenue mainly depends on showing ads to
users). For these reasons, we can anticipate that we are not interested in
threats to privacy originating from the three scenarios, unless they are pre-
ventable by some user actions (e.g., refusing to send data to a server when
insufficient security parameters from the server are detected). More on that
in Section 2.1.4. We are still interested in the issue of malicious software

described at the beginning of the Section, though.

2.1.4 Working definition of Privacy

After describing the different perspectives on privacy in Section 2.1.1, Sec-
tion 2.1.2, and Section 2.1.3, we are now in the position of stating and dis-
cussing the working definition of privacy that we will assume for the remain-
der of the thesis, together with the classes of threats we will consider. The
starting point is how privacy is framed in Computer Science, i.e, data privacy
as defined in Section 2.1.3 (which includes the relation between privacy of a
user and security of its data). Anything else is out of scope. We live in a
world where digital devices are pervasive. We can take for granted that data
privacy constitutes at least a plurality (if not the majority) in any meaningful
partition of the concept of privacy. Threat wise, we limit our scope to those
threats to privacy that are relatable to software that the user uses and has

the control on. Network communications are included because the user side

CHAPTER 2. BACKGROUND AND STATE OF THE ART 42

has the power to close the connection at any time. Furthermore, among all
the classes of software, we limit the scope even more to Android applications.
After applying all these constraints, we can conclude that, for the remainder
of this thesis, our definition of privacy consists of the privacy of data that are
managed by Android applications. The threats we consider are those that
stem from insufficient security and malicious applications. Essentially, what

is in scope is:
e Malicious behaviours.
e Application vulnerabilities while storing data.

e Application vulnerabilities while exchanging data.

To clarify, the latter includes not reacting appropriately to apparent problems
with the security of remote endpoints of network communications. On the

other hand, the following is out of scope:

e Anything regarding hardware vulnerabilities.
e Anything regarding non-Android Operating Systems.

e Any vulnerability that is intrinsic to Android as an Operating System,

rather than Android applications.

e Anything regarding remote endpoints that is not reactable to and in-

fluenceable by users.

While we mainly disregard philosophy and the law in our working definition

of privacy, we need to interface with them for the purpose of this thesis. We

CHAPTER 2. BACKGROUND AND STATE OF THE ART 43

have already mentioned in Section 2.1.1 that lawmakers are inspired to some
extent by philosophical definitions of privacy when they legislate on it. As
one of our aims is to bridge the worlds of technology and law with regard
to privacy (see Section 1.2), we focus exclusively on rules and regulations on
data protection (See Section 3.1). We assume that our working definition
of privacy is compatible with the intended interpretation of the concept of
privacy referenced in or implied by the relevant law on data protection. That
is the case because, by choosing to focus on the subset of privacy that is
affected by security, we define a rule or regulation relevant if and only if it
relates to certain properties that are characteristics of security. Once again,
we explain the process in greater detail in Section 3.1.

Our working definition of privacy is an important prerequisite to our threat

model to privacy. We will describe and discuss it in detail in Section 3.3.2.2.

2.2 Security Background for Android

Android is by far the most popular mobile Operating System (OS), and it
has been for years. It is built on the top of a modified Linux Kernel. From
the user experience point of view, the user is presented with an app model:
rather than allowing the direct execution of software like most desktop OSs,
programs are encapsulated within applications that are run on the underlying
OS. The structure of Android is shown in Figure 2.1.

Being an application oriented OS is a deliberate security choice of the system
which relies on a particular threat model [35], and has two sides. The first

is about the platform level security and relates to the OS itself. The second

CHAPTER 2. BACKGROUND AND STATE OF THE ART

System Apps

Dialer Calendar Camera

Java AP| Framework

Managers
Content Providers

Activity Location Package

View System Resource Telephony

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC)

Bluetooth

Shared Memory

Power Management

Window

Core Libraries

Display

Camera

Notification

44

Figure 2.1: Android OS Structure: The layered structure of the Android Operating

system. [34]

CHAPTER 2. BACKGROUND AND STATE OF THE ART 45

is about application level security and relates to the security of the single
applications. Next, we discuss platform level security in Section 2.2.1, and

application level security in Section 2.2.2.

2.2.1 Platform level security

At the OS level, for the most part, Android does not expose an interface to
directly interact with low-level OS files, unlike many desktop OSs. While
some interaction is possible, it is heavily regulated by the permission sys-
tem described in Section 2.2.2. Additionally, every application runs in a
dedicated sandbox, so to minimise the attack surface for an attacker that
has compromised a single application. Inter-app communication is possible,
but still heavily regulated under the aforementioned permission system. A
detailed description of the Android OS security model can be found on the

official website [30].

2.2.2 Application level security

At the application level, the main features of the security model focus on ex-
posing a secure enough API to interact with the OS and other applications.
The underlying idea is that every privilege that is not explicitly needed and
requested is denied by default. That is in essence the rationale behind the
permission model. The API for performing certain actions (e.g., interacting
with the OS, performing network activity, communicating with other appli-
cations, etc.) is always available to developers. However, at runtime, if the
appropriate permission (or set of permissions) has not been requested by the

app and granted by the user, an error is triggered. Before Android 6.0, an

CHAPTER 2. BACKGROUND AND STATE OF THE ART 46

application needed to ask for all the permissions it might have needed until
the next update at install time. That was not the best practice, and led
to many applications asking for too many permissions, some in good faith,
some not. Since Android 6.0, the permission framework has become more
dynamic. In particular, while most permissions can still be asked at install
time, the permissions labelled as DANGEROUS are requested at runtime
when the developer thinks the application needs them. Upon receiving a
permission request, the user can either deny a permission, or grant it just for
that particular time, or grant it just when the application is in use (which
potentially impacts applications which perform some tasks in background),
or grant it until it is explicitly revoked. While the latter is less secure than
having to ask for a permission every time it is needed, it is a trade-off between
security and usability. Android permissions are categorised as belonging to 4
different classes: PROTECTION_NORMAL, PROTECTION_SIGNATURE,
DANGEROUS (as anticipated earlier in the Section), and SPECIAL. Some
permissions belong to multiple classes. For a detailed description of every
single permission, we encourage to read the official specification [37]. The
permissions that a certain application holds at runtime feature in our ASO
(see Section 3.3.2.2). A notable aspect of application security within Android
is that, other than requiring a specific permission, there are little constraints
by default on network communications. We explain why that is a prob-
lem in Section 2.2.3 and Section 2.2.3.5. The other notable face of Android
application security is how they manage data at rest. We discuss that in

Section 2.2.4 and Section 2.2.4.1.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 47

2.2.3 Security of network communications

We define network communication as the set of all the interactions that an
Android application performs on the top of the TCP/IP protocol stack. They
include interactions with other devices within a LAN, and interactions with
anything of the Internet. Network communications involving an Android
application are not secure by default. In fact, they inherit all the security
issues of network communications in general. The main issues are that no
communication channel is secure by default (i.e., a Man In The Middle -
MITM attack can always be performed), and communication endpoints can,
in principle, lie about their identity. MITM refers to the ability of an attacker
to sit in the middle of a communication and record data in transit (passive
MITM), and/or alter data in transit (active MITM). In both scenarios, the
attacker impersonates each endpoint to the other. The first issue (insecure
channel) raises the problems of confidentiality and integrity of the data in
transit, while both issues (insecure channel, and lying about the identity)
raise the problem of authenticity of the data in transit, or, in other words,
the problem of endpoint authentication. For these properties, it is important
that either they are guaranteed (confidentiality), or violations are immedi-
ately discovered (integrity and authentication), so that counter measures can
be adopted - usually interrupting the communication, or giving the user an
informed choice. Confidentiality refers to the fact that data in transit should
not be available to anyone other than the sender and the intended recipi-
ents. Integrity refers to the fact that data is transmitted unaltered (i.e., no
additions or removal) from the sender to the recipients. Note that ensuring

integrity of a given set of data is impossible due to network errors and the

CHAPTER 2. BACKGROUND AND STATE OF THE ART 48

ability of active MITM attackers to drop every packet they see over a channel
they control. Rather, the focus is on detection of integrity violation. Au-
thentication refers to how to prove the identity of an endpoint to the other(s)
while each one can in principle lie, and a MITM is always possible. As the
three properties are not independent (e.g., failing to provide authentication
undermines the other two), solutions, all of which widely employ modern
cryptography, tend to address all of them as an indivisible single issue. Au-
thentication, discussed in Section 2.2.3.1 is usually the most problematic of
the three, because no amount of cryptography (or anything else, for what
matters) can reasonably bind at scale the declared identity of two endpoints
that had no prior contact to their real identities. Insecure protocols and inse-
cure protocol parameters are discussed in Section 2.2.3.3 and Section 2.2.3.4

respectively.

2.2.3.1 The problem of authentication

In the field, the authentication problem is known as how to safely transmit
Alice’s public key to Bob, after the usual little story involving two parties
(Alice and Bob) that want to communicate over an insecure channel where
Eve (or Mallory, depending on the version) is always ready to perform a Man
in The Middle attack. The public key, relating to public key cryptography, is
what exposes the identity of a party to everyone else. There is no definitive
solution to that. As such three competing approaches attempt to mitigate
the problem at scale (meeting in person and exchanging keys is not a scalable

solution for obvious reasons):

e Public Key Infrastructure (PKI)

CHAPTER 2. BACKGROUND AND STATE OF THE ART 49
e Web of Trust (WoT)

e Trust On First Use (TOFU)

The next paragraphs discuss all of them.

PKI The first approach involves a party that wishes to engage in future
network communications to request a certification from a third party (called
Certification Authority - CA). The CA, after verifying the identity of the
party with some out-of-bound methods (which is usually context-dependent)
releases a certificate that includes the party identity, the party public key,
some additional data and constraints (such as what the certificate can be
used for), the party signature, and the CA signature. The idea is that the
party can prove its identity to anyone trusting the CA by simply sending the
certificate. The main issue with the approach is that all it does is shifting the
core point from trusting a party to trusting some CA that is out there. The
issue is mitigated by creating a pyramidal structure of CAs whose purpose is
to provide certificates for other CAs that conceptually are on a lower level in
the pyramid. Several of this pyramidal logical structures exist, and each of
them has a so-called Root CA at the top. A root CA has a certificate that
is self signed. The major root CAs have their certificate pre-installed in all
the major clients (which include Android devices), so that it is possible for
a party to prove their identity by sending their certificate together with all
the certificate of the intermediate CAs. The other party can now validate
the chain with the help of the appropriate Root CA certificate. The whole
pyramidal structure of CAs and certificates is referred to as Public Key In-

frastructure (PKI). By design, the PKI has an obvious single point of failure

CHAPTER 2. BACKGROUND AND STATE OF THE ART 20

which is the Root CA. If that is compromised, then nothing downstream can
be trusted anymore. Additionally, even non-Root CAs can become points of
failure if they are compromised or go rogue. For all those reasons, CAs are
expected to meet excellent standards both in terms of security and trans-
parency. As web communications are the main scenario where a PKI is used
to mitigate the problem of authentication, the rules all CAs and web browsers
are obliged to abide by are publicly discussed and voted on in the so-called
CA/Browser forum [38]. However, the main unsolved issue with the PKI
is trust revocation. As this is a major problem for privacy, we explain and
discuss it in Section 2.2.3.2. For now, we can say that the PKI trust model is
intrinsic to the Transport Layer Security (TLS) protocol which aims at cre-
ating a secure enough and (partially) authenticated communication channel

between two endpoints on a network.

WoT The second approach relies of the principle that I trust someone that
someone else that I already trust trusts. Far from being a tongue twister,
the idea is, for a party, to explicitly mark as trusted all the public keys of
the parties that it trusts (for whatever reason). Then all the public keys are
published to special servers called keyservers, where anyone can get them
together with the “trust marks”. Whenever a party encounters a new public
key, it trusts it if and only if, after a search on a keyserver, it is able to
find a “trust mark” of another party that is already trusted by the original
party. The main issue with WoT for an endpoint is how to behave when
presented with a public key that has not been signed with a “trust mark” by

anyone that the endpoint already trusts. Trusting everyone of those public

CHAPTER 2. BACKGROUND AND STATE OF THE ART o1

keys is equivalent to not having any trust system at all, while trusting none
generates an unacceptable amount of false positives, given that there are far
more good endpoints than attackers, and the probability of being subject to
an active attack when presented with a not-yet-trusted key is rather low. For
this reason, WoT has niche use cases, and was never considered as a scalable
solution to the authentication problem in general. In particular, WoT has

not been systematically integrated into the Android platform at any level.

TOFU The third approach relies on the assumption that it is unlikely that
an active MITM attack is being performed when communicating for the first
time with a remote endpoint. As such, an endpoint that wishes to verify
the identity of another endpoint for the first time simply assumes that the
received public key is genuine and binding. Therefore, as long as the remote
endpoint continues to present the same public key in successive network
communications together with a valid signature (the details are protocol-
specific), the first endpoint believes that no MITM is being performed. The
obvious point of failure of TOFU is that, if a MITM was happening during
the first communication, then the endpoint is mistakenly believing that an
attacker controlled keypair represents the identity of a certain endpoint, and
will not question that as long as the attacker is able to perform a MITM.
Another notable issue is that the user is the ultimate decider on what to do
when and if the endpoint public key changes in the future. Unless a MITM
or a breach of the remote endpoint are suspected, it is all but secure that the
user will trust any new public key. On the other hand, the obvious advantage

with respect to a PKI approach is the non-involvement of any third party.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 52

SSH and Signal are examples of protocols that incorporate a TOFU approach

to validate remote endpoints.

2.2.3.2 The problem of revocation

Establishing trust is only half of the problem of authentication. The other
face of the medal is trust revocation. If a party is compromised by an at-
tacker, they can now mount an impersonation attack on all the endpoints
that engage in any kind of network activity with the party (think a compro-
mised web server). When that happens, the legitimate owner of the device(s)
that allow the original party to communicate must be able to instruct all the
potential communication endpoints not to trust the (compromised) party
anymore. It is noteworthy that regaining full and exclusive control of the
compromised infrastructure is not enough to prevent impersonation attacks.
In all likelihood the attacker has been able to copy the private key that can
be used to sign whatever can be verified with the corresponding public key.
Therefore, the attacker can still hand over a public key (or a certificate in
the case of a PKI approach), and use the private key to “prove” that they
are someone or something they are not. For this reason, any incident that
results in a non-null probability of private key theft triggers the issues of

revoking the previously established trust, and re-establishing a new trust.

WoT For WoT the process involves explicitly revoking the public key, and
reuploading it on the keyserver(s). Obviously that only works if the “status”
of a received public key is always checked and compared with data from a

keyserver. Re-establishing trust is more difficult and time consuming, be-

CHAPTER 2. BACKGROUND AND STATE OF THE ART 93

cause all the “trust marks” on the now revoked key do not get passed to the

new key.

TOFU For TOFU trust revocation and trust re-establishment happen by
accepting a new public key from the previously breached endpoint, under the
assumption that the legitimate owner has regained full and exclusive control
of the infrastructure. That implicitly discards the old public key. The main
issue is that there is no general way to distinguish a good-faith key change

from an active MITM attack.

PKI Trust revocation in a PKI environment starts with the compromised
party informing the relevant CA of a potential security breach. According
to the CA/Browser forum rules, the CA is obliged to mark any certificate
whose public key relates to a potentially compromised private key as revoked.
The issue is that certificates are read-only. They cannot be updated, as that
would cause a signature mismatch. And even if they could be updated,
the real problem is how to convey the message that the original certificate
must not be trusted anymore to all the possible network endpoints. Two
main strategies are usually employed: Certificate Revocation Lists (CRL)
and Online Certificate Status Protocol (OCSP). For various reasons, none
of them work in practice [39]. In particular, CRLs do not scale [10], and
OCSP is completely useless in case of an active MITM attack, and severely
compromises availability and usability [41].

For the reasons explained in the previous paragraphs, revocation is broken
in general. However, in very specific cases, some of the techniques described

above can be used to effectively mitigate MITM attacks. As such, they are

CHAPTER 2. BACKGROUND AND STATE OF THE ART o4

part of our ASO, described in Section 3.3.2.2.

2.2.3.3 Insecure protocols

The mitigations to the problem of authentication need to be framed into
the broader issue of creating a secure enough communication channel. That
implies careful consideration on the properties of data confidentiality and
data integrity. The field that studies how to build secure protocols for data
in transit and how to analyse existing protocols from a security point of
view is called Transport Security. Despite its name, the secure channel is
always built at the application layer because it would be extremely difficult
to update every single network device in existence that only implements
TCP and UDP as transport protocols. Even Quic, a proposed standard for
a transport protocol that encapsulates and ameliorates TCP and TLS runs
over UDP [42]. If no third party is involved in the establishment of a secure
channel, the expression end-to-end encryption is often used to describe it.
The most notable protocol in that regard is Signal. Among non end-to-
end protocols, the most notable and relevant in our context is Transport
Layer Security. Regardless of the end-to-end nature of a protocol, it is a fact
that security was an after-thought (if a thought at all) when the Internet
infrastructure was built and its protocol stack was standardised in the 80s
and ’90s of the 20th century. Consequently, network communications today
are littered with a plethora of grossly insecure protocols, and protocols that

were once deemed secure enough, but have since aged poorly.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 95

Cleartext protocols Any protocol that does not encrypt data in transit
is trivially vulnerable to MITM. Any attacker can read and modify (even
drop) the data in transit without any of the endpoints being or becoming
aware of it. Additionally, an attacker can flawlessly impersonate each end-
point to each other. These kind of protocols are called cleartext protocols.
Every protocol below the application layer in both the ISO/OSI and TCP /TP
protocol stacks is a cleartext protocol. This reality makes rather difficult to
preserve the confidentiality of at least some communication metadata (e.g.,
the TP addresses and the TCP/UDP ports often reveal which device is com-
municating with which device). Originally, every protocol in the application
layer (in a network sense, rather than in an Android sense) was cleartext.
However, in the mid-90s, when MITM was recognised as theoretically possi-
ble, non-cleartext protocols where standardised. Even discounting the level
of security that they actually provide, the fact that all the protocols where
cleartext at the beginning means that cleartext is still the default way to go
when implementing one side of a network communication. For instance the
developer of an Android application can easily open a cleartext connection
with any other network-capable endpoint (unless the endpoint explicitly re-
fuses). In some cases, cleartext data transfer is mandatory (think captive
portals when connecting to certain WiFi networks). As cleartext protocols

are trivially insecure, we include them in our ASO (see Section 3.3.2.2).

Non-cleartext protocols When the need for a secure communication
channel became apparent, various entities began standardising protocols fea-

turing cryptography as a mean to protect data confidentiality, detect vio-

CHAPTER 2. BACKGROUND AND STATE OF THE ART 26

lations of data integrity, and allow for endpoint(s) authentication. Unfor-
tunately taking off-the-shelf cryptography primitives and combining them
in a way that seems to work is a terrible way to secure a communication
channel, because a secure protocol requires more than secure components.
Additionally, if one or more of those primitives become insecure, the whole
construction fails spectacularly. For these reasons, almost every protocol
aimed at establishing a secure communication channel is considered obsolete
when not completely insecure. That includes most past versions of TLS.
As the Internet does not update atomically [13], a large number of software
implementations of insecure protocols are still being used today. Their use
is often sufficient to expose significant vulnerabilities to external attackers.

For this reason, we include them in our ASO (see Section 3.3.2.2).

2.2.3.4 Insecure parameters

Even though the designers of modern transport security protocols, such as
TLS 1.3, have undertaken a monumental effort to minimise cryptographic
agility (i.e., remove all the unnecessary features that may turn insecure, and
rather focus on a small number of strong primitives), there are still secure
enough protocols that can be used in an insecure way. That is the case be-
cause it is often up to developers to choose some of the parameters of the
protocol (e.g., the advertised ciphersuites in TLS). The lack of secure opinion-
ated defaults, the incremental addition of new features, and the progression
of attacks have made rather easy to choose a weak or insecure configuration
by mistake or by ignorance. Choosing insecure parameters is often enough

to transform a secure enough protocol into an insecure protocol. For this

CHAPTER 2. BACKGROUND AND STATE OF THE ART o7

reason, insecure parameters are a part of our ASO (see Section 3.3.2.2).

2.2.3.5 Consequences of insufficient network security

After discussing how and why network communications can be insecure, in
this Section we describe the consequences that they bear in terms of data
privacy with respect to the properties of data confidentiality, data integrity,
and authentication. The breach of data confidentiality is trivially a sufficient
condition for a data leak, as the attacker is able to, among other things, read
the transmitted data. The undetected breach of authentication implies that
data intended to be transmitted to a certain endpoint is actually transmitted
to a third party. That qualifies as a breach of data confidentiality. The
undetected breach of data integrity is often a sufficient condition to mount an
attack against data confidentiality and/or authentication. For these reasons,
we can say that an insecure communication channel is a direct threat to the

privacy of data in transit.

2.2.4 Security of data at rest

The dual scenario of data in transit is data at rest, or, in other words, data
that is stored somewhere for future use. In the context of Android applica-
tions, data at rest is whatever is stored within an Android device. Concrete
examples include the list of contacts, images, videos, etc. The access to any
of those is regulated by the permission framework (see Section 2.2.2). As
the ultimate decider on whether to grant or not a specific permission to an
application is the user, it is possible for malicious applications to employ

social engineering techniques in order to trick the user into granting certain

CHAPTER 2. BACKGROUND AND STATE OF THE ART o8

permissions. Another scenario is that legitimate functionalities of a legiti-
mate application are locked behind permissions that are too broad, and can
therefore be abused. Note that we are not interested in the security of data
stored by servers that Android applications may connect to, as that kind of
security cannot be influenced by an application itself. With respect to remote
servers, we are only interested in whether an application connects to known
malicious servers, and how it reacts to live security decisions by servers that
affect the security of either data in transit, or data stored on the Android

device.

2.2.4.1 Consequences of insufficient storage security

It is reasonable to assume that Android devices store a significant amount of
data that either need to remain private, or are to be shared with a selected
and limited number of third parties. As Android application can access those
data under certain conditions, it is possible for vulnerable and/or malicious
applications to act as the source for a data leak. For this reason, we include
the most important application vulnerabilities that can result in data at rest
being leaked in our ASO (see Section 3.3.2.2). For the same reason, we
include the status of an application (benign, malicious, suspicious, etc.) as

part of our ASO.

2.2.5 Security and data leaks

In Section 2.2.3.5 and Section 2.2.4.1 we discussed how insufficient security
correlates with data leaks. In this Section we discuss how the security com-

munity mitigates the causes of data leaks. First of all, we need to make clear

CHAPTER 2. BACKGROUND AND STATE OF THE ART 29

that this Section does not focus on prevention (which we already implicitly
discussed in the previous Sections). Once we accept that at the moment there
are paths that lead to data leaks, part of the focus shifts to defense-in-depth
and detection. We explain what they are in Section 2.2.6. In parallel, part of
the focus is dedicated to detecting vulnerabilities and malicious applications,
so that the first can be patched, and the second neutralised. We discuss

security-based application analysis in Section 2.3.

2.2.6 Defense-in-depth techniques

In the context of security, a defense-in-depth technique is a second line of
defense that is supposed to be triggered when unpatched vulnerabilities can
lead to exploits. A notable example for web-based interactions (which are
not alien to Android, thanks to WebViews and web browser applications) is
Content-Security-Policy (CSP) [14]. Cross Site Scripting (XSS) vulnerabili-
ties have plagued the web ecosystem since its beginning, due to the fact that
the web platform is not secure by default, and easily allows for the unsafe
mix of code and data. CSP is a defense-in-depth technique that, when used
properly, instructs browsers to block the execution of scripts which do not

fulfil at least one of the following conditions:

e Present a response-specific “nonce” attribute whose value matches a
specific value delivered out-of-bounds via the Content-Security-Policy

HTTP header (or perhaps via Origin-Policy in the future).

e Present a “hash” attribute whose value matches the hash of the script

and a specific value delivered out-of-bounds via the Content-Security-

CHAPTER 2. BACKGROUND AND STATE OF THE ART 60
Policy HTTP header (or perhaps via Origin-Policy in the future).

e Have been dynamically added to the DOM in a safe way (i.e., non
parser-inserted), provided that the keyword strict-dynamic is in-

cluded in the Content-Security-Policy HTTP header.

Another notable example of defense-in-depth is the mechanism known as
TrustedTypes [15]. Its purpose, when enforced, is to inform browsers not
to load certain DOM elements that have not been wrapped with a specific
Trusted Type. As such, a better distinction between code and data is en-

forced, which makes many underlying XSS vulnerabilities not exploitable.

2.3 Security analysis for privacy

In Section 2.2 we discussed the Security of Android and Android applications
in the context of privacy. In this Section, we discuss how application analysis
can be employed to detect vulnerable and malicious applications, together
with the families of application analysis techniques.

When analysing a piece of software that can be directly executed or inter-
preted in some context, there are essentially two approaches (plus a hybrid
strategy): static analysis and dynamic analysis. They complement each
other both in terms of strengths and weaknesses. Before discussing them, we
have to precise that they are families of more fine-grained approaches that
depend on the context. Throughout the next paragraphs the term applica-
tion will refer to any kind of application software, with an eye on Android

applications.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 61

Static Analysis When an application is statically analysed, the focus is
on its code, whether source code or compiled binaries. In particular, the

application is not run. The main advantages of a static approach are:

e Not having to build an environment in which the application is able to

run.
e The ability to explore code paths that may not be triggered at runtime.

e The ability to bypass emulation detection techniques aimed at hiding
certain behaviours when the application detects it is run in an emulated

(and controlled) environment.
On the other end, the main disadvantages are:

e Having to deal with obfuscated code, if obfuscation techniques were

used.

e Not being able to analyse code that is dynamically loaded from remote

locations.

e Not being able to analyse code that is self-encrypted.

Dynamic Analysis When an application is dynamically analysed, the fo-
cus is on the behaviours that it exhibits while it is run (often in an emulated
and controlled environment). The main advantages of a dynamic approach

are:

e The ability to bypass obfuscated code (as it exhibits the same be-

haviours as the corresponding un-obfuscated counterpart).

CHAPTER 2. BACKGROUND AND STATE OF THE ART 62

e The ability to bypass encrypted code (as it has to get decrypted at

some point, in order to be executed).
e The ability to ignore dead code (i.e., code that can never be executed).
On the other hand, the main disadvantages are:
e Having to build an environment in which the application is able to run.

e Missing on all the behaviours deriving from those code paths that are

not triggered during the particular execution.

e Having to contend with emulation detection techniques which result in
the application potentially changing its behaviours after detecting that

it is being run in an emulated (and controlled) environment.

Hybrid Analysis A hybrid analysis of an application aims at combining
the strengths of static and dynamic analysis, while minimising the weak-
nesses. Often static analysis is employed as the first step (e.g., reading the
Android Manifest file in the case of an Android application), and its results
are then used to better guide the dynamic analysis that follows. While the
advantage is obvious (see just above), the downsides are the level of com-
plication and the absence of a general guarantee regarding how many of the
weaknesses of static and dynamic analysis are actually mitigated by a specific

hybrid approach.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 63

2.4 Limitations of the State-of-the-Art

In Section 2.2 we discussed the security implications of Android, and the
efforts to provide a secure enough environment to its users, together with
the consequences of potential failures. In Section 2.3 we discussed how ap-
plication analysis attempts to mitigate some of the security flaws that put
private data in jeopardy. We can regard what we discussed in those Sections
as the state-of-the-art. In this Section we discuss the limits of the state-of-
the-art with respect to privacy. In particular, in Section 2.4.1 we discuss the
limits of application analysis, and in Section 2.4.2 we discuss the limits of
the law, represented in our case by the limits of the 2018 UK DPA. Finally,
in Section 2.4.3 we discuss the barriers that prevent application analysis and
the law from efficiently complement each other with respect to the aim of

protecting privacy in the context of Android application.

2.4.1 Limits of security analysis

The individual fine-grained approaches that fall under the umbrella of the
families of strategies discussed in Section 2.3 are usually implemented into
analysis tools. While they are often good at finding what they were built
for under the specified preconditions, they all suffer from two limiting fac-
tors: the mostly standalone nature, and the arbitrary format (syntax and
semantics of their reports). We discuss the former in Section 2.4.1.1 and
the latter in Section 2.4.1.2. Furthermore, the analysis tools usually come
with performance metrics that have been measured by running the tools on

certain datasets of Android applications. In Section 2.4.1.3 we discuss the

CHAPTER 2. BACKGROUND AND STATE OF THE ART 64

importance of the dataset in correctly assessing the performances of tools,
while in Section 2.4.1.4 we discuss the issue of believability of the provided

performance indicators.

2.4.1.1 Standalone nature of the tools

Most tools are not built by design to be part of a toolchain that takes the
output of a tool to guide the analysis of another tool downstream. While
there are exceptions (e.g., FlowDroid and VirusTotal), most tool only focus
to find something very specific within Android applications, and, whether
they find it or not, they output a report and call it a day. The inevitable
result is little chance of integration with other tools, in order to deliver a
broader picture of the security vulnerabilities and implications (including
being malicious) of a certain application. In turn, this poses an additional
obstacle to the integration of security analysis with other subjects, such as

the law.

2.4.1.2 Arbitrary format of the reports

Each tool, more often than not, outputs its findings in a format that is spe-
cific to the tool itself. In other words, there is no underlying ontology that
supports a better organisation of the results via standardised syntax and
semantics. The inevitable result is, once again, little chance of integration
with other tools, in order to deliver a broader picture of the security vulnera-
bilities and implications (including being malicious) of a certain application.
Yet again, this poses an additional obstacle to the integration of security

analysis with other subjects, such as the law.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 65

2.4.1.3 Dataset and experimental evaluation of the tools

Each tool purports to be able to achieve certain scores with respect to certain
metrics (such as accuracy, precision, recall, etc.). Such scores are normally
inferred with a process of experimental evaluation on the tool itself. For such
evaluation to be possible, a dataset of Android applications is needed. The
crucial point is that the dataset can influence the results, if it exhibits biases.
For instance, in an extreme situation, if a tool aims at detecting network traf-
fic over insecure protocols, and the dataset fully consists of applications that
never connect to the Internet by construction, then the experiment is not
really evaluating whether the tool can detect insecure network communica-
tions. In other words, for the performance scores to be truthful (plus or minus
an unavoidable degree of uncertainty) the dataset must be representative of

the real world ecosystem, and free from biases as much as possible.

2.4.1.4 Believability of the tools

Each tool purports to be able to achieve certain scores with respect to cer-
tain metrics (such as accuracy, precision, recall, etc.). In Section 2.4.1.3 we
discussed the importance of the dataset in that regard. In this Section we
discuss how the believability of the results of a tool constitutes a limitation
of the state-of-the-art when such results are used as input for further anal-
ysis. The subject has been researched in the past, e.g., by Pauck et al. for
Android taint analysis tools [46]. The main limitation that stems from unre-
liable tools (i.e., tools whose performance scores are not believable) has to do
with how biases, errors, and misclassifications propagate through toolchains.

Essentially, when the output of a tool is used as input for another tool (which

CHAPTER 2. BACKGROUND AND STATE OF THE ART 66

is usually not straightforward - see Section 2.4.1.1), the output of the second
tool is influenced by the quality of the data in input, as well as the uncer-
tainty introduced by the tool itself. As such, un-believable results (in a broad
sense) produced by tools in a toolchain tend to multiply downstream. The

issue of containing such propagation is still open.

2.4.2 Limits of the law

The law, represented in this thesis by the 2018 UK DPA, uses technical terms
that it fails to further define or reference. For example, the terms security
and confidentiality (just to cite some) that can be found within the DPA have
a precise meaning in the context of security, but no effort is made within the
DPA to link them with the world of security. This omission has very real
consequences due to the inevitable interpretation of the law that is intrinsic to
court cases. In particular, not grounding some of the most important terms,
does little to limit the degree of interpretation, which in turn may lead to
misguided rulings. Also, on the legal side, there has been no serious attempt
to systematically link the relevant articles of the DPA on data protection
to the findings of security analysis. Therefore, at the moment a strong and
systematic integration between security analysis and law on data protection

is virtually non-existent.

2.4.3 Obstacles to integration

We have established that security analysis and the law at the moment hardly
cooperate to protect the privacy of Android applications users. The causes

of this lack of cooperation can be traced to pitfalls that are intrinsic to both

CHAPTER 2. BACKGROUND AND STATE OF THE ART 67

sides. We have discussed them in Section 2.4.1 and Section 2.4.2. Essentially,

they can be resumed into three main issues:
e The standalone nature of most analysis tool.

e The lack of an underlying ontology specifying syntax and semantics for

the reports of the analysis tools.

e The use of undefined and unreferenced terms from the domain of secu-

rity by the law.

2.4.3.1 Requirements for integration

In this thesis, we aim at bridging security analysis and the law. As such, we
necessarily have to deal with the above issues. We designed and implemented
MagnetDroid in part to mitigate those issues. Chapter 3, Chapter 4, and
Chapter 5 detail how we tackle them.

2.5 Summary

In this background Chapter we have laid the foundations for the reader to
contextualise and understand our work on MagnetDroid. We began by dis-
cussing the concept of privacy from different points of view: philosophi-
cal/historical, legal, and technological. Then, we established privacy of data
as our area of interest, and insufficient security as its biggest threat. In that
regard, we discussed the security features intrinsic in Android at the plat-
form level, and at the application level. In particular, we focused on network

security, and security of data at rest as the most relevant components of the

CHAPTER 2. BACKGROUND AND STATE OF THE ART 68

security of Android applications. After discussing the consequences of insuf-
ficient security, we spoke about defense-in-depth mitigations, and application
analysis as a detection “tool”, focusing on the different families of applica-
tion analysis. Following the discussion on the technological background, we
shifted our focus to the legal background. In particular, we selected the 2018
UK DPA as our candidate for the relevant law on data protection. Once we
established the state-of-the-art, technological and legal, we discussed its lim-
itations. In particular, we focused on the limits of application analysis, the
limits of the law, and the obstacles to a cooperative approach between the
two. In Chapter 3 we will discuss the design of MagnetDroid, the framework
we built to assess and address the aforementioned limits with respect to our

goals and aims (fully described in Section 3.2).

Chapter 3

MagnetDroid: Design and

Architecture

In order to mitigate the gaps and the shortcomings in the state-of-the-art
(identified in Section 2.4), we propose MagnetDroid, a multipurpose agent-
based framework that we envision as foundation for the integration of the
Android application analysis and legal domains, as well as a contribution
to application analysis itself. In this Chapter, we discuss the approach we
followed, and the conceptual design of MagnetDroid. We start by stating our
platform assumptions in Section 3.1, and continue with Section 3.2 in which
we discuss in detail the goals and aims of MagnetDroid in relation to the
expected contributions stated in Section 1.3. Then, in Section 3.3 we present
the design of MagnetDroid, with particular focus on its internal partitioning
into sub-frameworks (whose design and implementation will be discussed in
Chapter 4, and Chapter 5). In the same Section, we also introduce our first

main contribution of the thesis: the Android Security Ontology (ASO). We

69

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 70

conclude this Chapter with a summary in Section 3.4.

3.1 Platform assumptions

MagnetDroid as a project relies on some platform assumptions, some of
which are derived from the state-of-the-art, while others are self-imposed
constraints that define what is in scope, and what is not. While certain
major points warrant dedicated Sections, e.g., the agent-oriented nature of
the framework (Section 4.1), and the relation between privacy and security
(Section 2.1.3.1), most of the assumptions are elaborated in the following

paragraphs.

The need for a bridge between analysis and law The most essential
assumption we make is that an actual bridge between the domains of ap-
plication analysis and the law is desirable. Put another way, the behaviour
of software applications needs to be compliant with the law. Additionally,
non-compliance is bound to trigger legal consequences. As many of the com-
pliance aspects focus on privacy (and, therefore, on security), and as applica-
tion analysis is a prime technique to discover security issues (and, therefore,
privacy issues), it makes sense to have something that takes the findings of
the latter, and relates them to at least a possible interpretation of the letter
of the former. Without any form of technological aid, such connection is
usually made by legal professionals (e.g., judges and lawyers during litiga-
tions). However, the inevitable proxy that is interpreting the letter of the law,
combined with the lack of technical (in the context of software applications)

expertise from legal professionals, makes for a less than ideal uncertainty

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 71

regarding the outcome of privacy-related litigations. Any structured and
systematic option to reduce such uncertainty is likely to improve the current
situation, where there is a long-standing gap between the technical and legal

issues involved.

The focus on Android applications While a bridge between security
oriented application analysis and the law would in principle benefit any kind
of software application, we focus on Android applications. As mobile phones
are both the main instance of Android devices, and containers for some of our
most personal data (e.g., our location history), we believe they are a good
point where to start. Extending the bridge to non-Android and non-mobile
applications, would require a degree of added complexity that we believe
would compromise our efforts towards the declared goals and aims. Still, we
are open to the possibility of such extension in the future, as part of future
lines of research, as we explicitly discuss it in Section 7 at the end of the

thesis.

The 2018 UK Data Protection Act As outlined in Chapter 1, and
Chapter 2, and elaborated in Chapter 5, MagnetDroid currently supports
only a small subset of the 2018 UK Data Protection Act (DPA) for what
concerns the relevant law on data protection. The design choice is deliberate,

and finds justification in the following:

e Identifying and translating the relevant law on data protection for all
possible jurisdictions is a task that transcends our goals and aims (see

Section 3.2). Therefore, the legal framework is limited to one jurisdic-

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 72

tion only. As this thesis and the underlying MagnetDroid framework
are developed and produced within an English institution, it is sensible

for us to focus on the broad UK legal system.

e Even within the broad UK legal framework, identifying and translating
all the relevant rules and regulations on data protection would distract
us from our goals and aim. Since the 2018 UK DPA implements the

well known and relevant GDPR, it is a natural candidate for our work.

e The 2018 UK DPA itself contains many uninteresting parts and articles
for this thesis. Thus, our focus is on a limited subset of it (Art 32, Art.
66(1), and Art. 66(2) of Part 3), which, in our opinion, contains some
of the most relevant prescriptions that apply to our research subject

(data privacy and security on Android applications).

Soundness vs. Completeness Recall from Section 1.3, one of our aims
is to create a framework that relates the security issues identified by Android
application analysis tools to legal violations. Two of the key questions that

may arise, in that regard, are:

1. Can our framework identify all the legal violations (with respect to the

supported law) that a non-compliant application may trigger?

2. If our framework finds a link between a reported security issue and a

legal violation, how believable is it?

The first question relates to the concept of completeness of analysis, while the

second question relates to the concept of soundness of analysis. However, we

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 73

believe that these questions, no matter how legitimate, are misplaced. The
main reason, as discussed in Section 2.4.2 is the issue of interpretation of
the law. Depending on the interpretation, the same security issue in the
same context can be deemed as probable cause for a legal violation or not,
subject to the views of different judges. As such, it is impossible to answer
the second question in general, because the concepts of true positive and false
positive are always relative. What MagnetDroid provides instead, whenever
a link is found, is a possible interpretation of the consequences of security
pitfalls in Android applications under specific conditions. In fact, as we
discuss in Section 3.3.2.2, we bifurcate the interpretation for every security
issue, by introducing the concept of mindset (explained in Section 3.3.3.1),
built on the top of the indexes features of our Android Security Ontology
(ASO), described in Section 3.3.2.2. Likewise, the issue of interpretation
of the law, makes it impossible to clearly define what a false negative is.
Therefore, the first question is unanswerable as well, in general. A final
consideration on the matter is that, even in the unrealistic hypothesis that
only one possible interpretation of the law existed, our performances would be
limited by precision and recall of the tools we employ to find security issues,
some of which are not known or declared by the tools’ developers. We accept
that, if a tool produces a false positive (with respect to a security issue) which
eludes the Conflicting safeguard (essentially a procedure to cross-check the
consistency of reports on a specific instance of a specific security issue, fully
explained in Section 3.3.2), then it is likely that, no matter the interpretation
of the law, MagnetDroid finds a link that is always a false positive (with

respect to violating the law). Likewise, we accept that, if all tools fail to

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 74

report a security issue, it is likely that, no matter the interpretation of the
law, MagnetDroid produces a false negative by not establishing a link to
a security violation. This does not mean that our approach is not useful,
however, but instead that we should be aware of the nuances that we will

have to consider when analysing an Android application with our system.

3.2 Goals and aims

Given the open issues with the state-of-the-art discussed in Section 2.4, and
the ground assumptions discussed in Section 3.1, we are now able to state
and discuss the goals and aims of MagnetDroid. In the following Sections we
discuss the logical flow that starts from our main goal, and brings us to new

challenges, and novel approaches.

3.2.1 Cyberlegal privacy

Our top goal with MagnetDroid relates to what we call cyberlegal privacy.
We regard cyberlegal privacy as the union of data privacy with legal ele-
ments derived from the relevant law. The aim is to provide an automated
bridge between those links the security issues found (also with an automated
strategy) by Android application analysis tools to legal violations and their
consequences. We aim at supporting three main scenarios, as follows. We
note that, in the rest of the thesis (due to the structure of MagnetDroid), we
will usually split cyberlegal privacy into its components, namely data privacy
and relevant law on data protection, and mainly focus on them, rather than

on the concept of cyberlegal privacy which we just introduced.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 75

The regular user A regular user of an Android application wishes to know
whether such application has security issues that pose a threat to the privacy
of their data (specifically), and whether the aforementioned application is
compliant with the relevant law on data protection (more generally). The
assumption on the user part is that an application that either puts private

data in jeopardy, or fails to comply with the relevant law, is better avoided.

The vendor and/or publisher The vendor and/or the publisher of an
Android application would like to avoid the damage to their reputation, as
well as long and costly civil lawsuits that may derive from such application
exhibiting security issues that pose a threat/risk to its users, and may also
violate the relevant law. The assumption on the vendor/publisher part is
that, both a tarnished public image, and a civil lawsuit are detrimental to
their finances, and, therefore, any step to prevent the issues that can cause

those is welcome.

The legal professional In the last scenario, there is an active lawsuit
between a plaintiff who claims monetary reparations for damages caused by
privacy leaks allegedly deriving from the insufficient security of an Android
application that they have been using. Assuming that the lawsuit is able to
survive a motion to dismiss by the defendant (in our case the vendor of the
application), the discovery process starts. As every finding, and every related
claim of violation of the law is inevitably followed by a process of interpre-
tation of the law, MagnetDroid aims to help by providing a link between
security issues found by specialised analysis tools (technological element)

and legal violations, together with their consequences (legal element).

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 76

Enabling the three aforementioned scenarios, while maintaining an auto-
mated approach, opens some new issues whose resolution becomes a set of

sub-goals. Section 3.2.2 explains those issues.

3.2.2 Prerequisites for cyberlegal privacy

Building an automated bridge that links security issues to legal violations

requires a set of conditions to be true:

e A reliable and automated way to derive security issues from an Android
application, and to express them in a standard format. We discuss
this prerequisite in Section 3.2.2.1, where we introduce the concept of

integrative analysis.

e A common language between the domains of Android application anal-
ysis and the law. In Section 3.2.2.2 we discuss the issue of bringing two
completely different sets (the identified security issues, and the relevant

articles of the law) together in terms of syntax and semantics.

e A suitable procedure to link security issues to legal violations, when
expressed in a common language. In Section 3.2.2.3 we identify logical
reasoning as a suitable procedure to derive legal violations from security
issues, once both the security issues, and the relevant law have been

translated to logical rules and predicates.

e An easy to understand way to present the results to different kinds of
users (given the three different scenarios). In Section 3.2.2.4 we identify

a web application as a suitable tool for explaining the results.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 77

3.2.2.1 Integrative analysis

On the Android application analysis side, the tools ecosystem consists of
mostly standalone tools that look for a very specific set of security issues,
and ignore everything else. As discussed in Section 2.4.1, most of those tools
produce reports that are written for humans to understand. As such, the
report format (syntax and semantics) is often completely arbitrary, and dif-
fers from tool to tool. Not only this is an issue for building a toolchain (an
automated a chain of tools where each tool receives as input the previous
tool’s output), but it also hinders the aggregation of the findings of different
tools running on the same application. In our context, aggregating the secu-
rity issues from different reports produced by different tools is an important
task towards the identification of possible causes for legal violations. There-
fore, we can formulate the issue as the need for an automated and reliable

framework to support a peculiar analysis flow, as follows.

1. Run different tools in parallel on a specific Android application, and

collect the raw reports.

2. Translate the reports, so that they exhibit a common format (which

we also need to define).
3. Aggregate the translated reports into a final technological report that:

e encompasses all the security issues that have been found;

e keeps track of disagreements between reports, solving those that

are solvable, and marking as Conflicting those that are not.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 78

We call the process described by the above steps integrative analysis. With
regard to the final technological report, it is also desirable to be able to
quickly match each security issue with an explanation in layman terms (see

Section 3.2.2.4).

3.2.2.2 Common representation for analysis results and law

Historically, one of the greatest obstacles to any automated bridge between
application analysis and the law has been the different language of the two
domains (see Section 2.4.3). Therefore, it is no surprise that one of our goals is
to establish such common representation language. Additionally, we desire a
quick and easy translation from the language of the final technological report
(see Section 3.2.2.1) to this common representation. Furthermore, we also
desire for the common representation language both to be able to express the
core rules from the letter of the law, and to be able to maintain a link to the
specific articles of the law for explainability purposes (see Section 3.2.2.4).
All considered, what we need is a language that enables the creation of
knowledge bases (a technological one from the final report, and a legal one
from the letter of the law) that can be then aggregated, in order to extract
useful information from such aggregation. In Section 3.2.2.3 we identify
normal logic programs[47] as the desired representation language, because
not only they can be used to express the content of technological reports,
but also allow us to represent legal rules[48]. In addition to that, they have
an innate computational counterpart for the implementation of these ideas

in Prolog[419].

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 79

3.2.2.3 Reasoning as synthesis

Once the security issues and the letter of the law have been translated to
knowledge bases that share the same language, a suitable procedure for ex-
tracting useful information from the aggregation of the knowledge bases is
needed. In our case, we want to be able to derive legal violations and con-
sequences from security issues. Logical reasoning is a suitable procedure. If
we frame the legal knowledge base as a set of logical rules of the form if
A then B, we can then use the technological knowledge base to provide A,
whose value of truth will determine B. It is easy to see how A can represent
a security issue, and B a legal violation. In that regard, Prolog provides an
intuitive framework that enables our needs. Additionally, since conditions
can contain negative statements, we can make use of negation as failure in
logic programs, where to prove not A we have to prove that all possible ways
of demonstrating A fail (and, therefore, we can conclude not A)[50]. Further-
more, although normal logic programs do not support explicit negation in
conclusions[51], this issue can be addressed at the knowledge representation
level by means of choosing suitable domain predicate names (see Section 5.3
for concrete examples). We regard reasoning and its output as the synthesis

that follows the integrative analysis (See Section 3.2.2.1).

3.2.2.4 Results explanation

Logical reasoning is a powerful tool to extract information from knowledge
bases via queries. However, the visual format of the query results can fail
to be self-explanatory. In our case, a considerable effort would be required

by the users in our three scenarios (see Section 3.2.1) in order to interpret

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 80

the results (e.g., to understand which security issue triggered which legal
violation). Having a powerful framework whose results are hardly explain-
able is deleterious to user experience. As anticipated in Section 3.2.2.1, and
Section 3.2.2.2, the common format for security issues and the common lan-
guage between security issues and the letter of the law need to allow for easily
reverting to a natural language explanation. If we label each security issue
and each legal finding with a meaningful ID, and link each ID to a natu-
ral language explanation, it is possible to create different tables of clickable
IDs that expand to the appropriate explanations. We believe a web applica-
tion exhibiting tables and hyperlinks is a suitable way to present the results
of both the integrative analysis, and logical reasoning in a human-friendly

fashion.

3.3 MagnetDroid design

In Section 3.2 we stated the goals and aims of MagnetDroid. In this Section
we relate those goals and aims to the design of MagnetDroid, and to its
partition into its sub-components. In Section 3.3.1 we discuss the high-
level architecture of the system, while in Section 3.3.2, Section 3.3.3, and

Section 3.3.4 we discuss the architecture of the sub-components.

3.3.1 High level architecture

As discussed in Section 3.2, the top goal of MagnetDroid is to provide an
automated bridge that links the security issues found by Android application

analysis tools to legal violations and their consequences. As also discussed

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 81

—

- —| . .
W () =0 ‘an
APKs Law Human-in-the-Loop

Legal
Knowledge

Base

e—

Cached Final Reports

MagnetDroid — MagnetDroid
Agent Platform » — » Reasoning Module
(MAP) — (MRM)
Final Report

< > &
- Queries/Results —

Analysis Tools User MagnetDroid WebApp

Y
Start Analysis)
Queries/Results
b4
_ﬂ
rﬁ . > "‘E‘

Figure 3.1: MagnetDroid top level architecture: The partition into MAP, MRM

and a MWA is visible, as well as the inputs and outputs of each sub-component.

in the same Section, the top goal has four prerequisites. The high-level
architecture of MagnetDroid (shown in Figure 3.1) reflects such prerequisites

by means of partitioning the system into three main sub-components:

1. A MagnetDroid Agent Platform (MAP) whose purpose is to support
integrative analysis (see Section 3.2.2.1) on Android applications. The
goal is to run different tools in parallel on an APK, collect the raw
reports, translate them according to an Android Security Ontology

(ASO), and aggregate them into an ASO-compliant final report.

2. A MagnetDroid Reasoning Module (MRM) whose purposes are:

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 82

e Deriving a Technological Knowledge Base (TKB) from the final

report.

e Loading a pre-built Legal Knowledge Base (LKB), derived from a
subset of the 2018 UK DPA.

e Combining the two knowledge bases, and use Prolog reasoning to

solve queries on the resulting knowledge base.
3. A MagnetDroid Web Application (MWA) whose purposes are:

e Being the entry point of the system, where users can choose the
Android applications to analyse, a subset of the available tools for

the integrative analysis, and a subset of queries to run.

e Displaying and explaining the results to the users in a human

friendly fashion.

Section 3.3.2 describes the design of MAP. Section 3.3.3 describes the design
of MRM. Section 3.3.4 describes the design of the web application.

3.3.2 A platform for integrative analysis and synthesis

The MagnetDroid Agent Platform (MAP) is an agent-based platform that
enables integrative analysis. Its inputs are the APK file corresponding to
an Android application, a set of Android application analysis tools, and the
Android Security Ontology (ASO - discussed in detail in Section 3.3.2.2). Its
output is an ASO-compatible final report that specifies in a standard format

all the security issues that the analysis tools have been able to detect with

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 83

respect to the analysed application. In order to derive the output from the

inputs, we separated the flow of MAP into three main phases:

e Phase 1: Parallel Analysis which takes the APK and the tools, runs

the latter in parallel on the former, and outputs the raw reports.

e Phase 2: Translation which, given ASO, for each raw report, pro-

duces an ASO-compatible translated reports.

e Phase 3: Aggregation which, given ASO and the translated reports,
aggregates the latter, detects conflicting information, attempts to solve

any such conflict, and produces an ASO-compatible final report.

Figure 3.2 illustrates the flow of the phases within MAP. While technical
details, including how agents are employed to perform them, are explained

in Chapter 4, the design is discussed in the following Sections.

3.3.2.1 Phase 1: Parallel Analysis

This phase represents the beginning of the integrative analysis of an Android
application. Figure 3.3 illustrates the flow from the inputs to the outputs.
MAP receives an APK, and a list of application analysis tools. The tools are
run in parallel on the APK, and any input to the tools is provided by MAP.
Section 4.4 describes the implementation details, the specifics of the protocol
used by MAP to interact with each tool, and the currently supported tools.
After a tool has completed its analysis (or after a suitable timeout if the tool
has no predefined exit point - see Section 6 for details), it produces a report.
Note that this is a simplification, as some tools output the report incremen-

tally during the analysis. However, we can safely ignore such output until the

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 84

Phase 2:
Translation

- ' Dparsmg N %

Translated

Int. Reports Phase 3:
Reports Aggregation

Instantiation

Final Report

YV

Analysis Tools

Figure 3.2: MAP architecture: The flow of parallel analysis, translation, and aggre-
gation that produces a final report starting from an Android application, and a set of

analysis tools.

2

APK . .
Start analysis with Stop Analysis
tools Raw
m rerere
*
Tools

Figure 3.3: Phase 1: Parallel analysis: MAP receives an APK, and a set of tools.
Each tool is run in parallel on the APK, with MAP providing inputs (when required), start

signals, and stop signals. At the end of the analysis, each tool’s raw report is collected.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 85

end of the analysis, and, therefore, call raw report the output that is visible
after the analysis has terminated. Once all the tools have completed their
analysis (Section 4.4 describes what happens when a tool fails to produce a
report), the available reports are individually collected. These raw reports in
their current format are unusable for our top goal (see Section 3.2), because
their syntax and semantics are arbitrary. Therefore, they flow to Phase 2:
Translation, where they are morphed into something more useful.

As explained in Section 4.4, at the moment, MagnetDroid supports a limited
set of tools. That is the case mainly because different tools have different
inputs and commands. In Section 4.4 we also explain that, in terms of
the modular multi-agent implementation of MAP, implementing support for
newer tools (for what concerns Phase 1: Parallel Analysis) requires limited
additional work. The extensibility of MAP is discussed in more detail in

Section 4.7.

3.3.2.2 Android Security Ontology

Before describing any additional phase after Phase 1: Parallel Analysis, we
need to present our Android Security Ontology (ASO). In this Section we
state what ASO consists of, and we illustrate its structure. On the other
hand, in Section 6.2 (and its subsections) we discuss our choices for its pa-
rameters (mainly the indexes), and the sources for the relevant security con-
cepts, as part of the broader discussion and evaluation of MagnetDroid as
a whole. The purpose of ASO is to provide a standard format for reports,
in order to tackle the issue of arbitrary syntax and semantics of raw reports

which we detailed in Section 2.4.1.2.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 86

The structure of ASO We designed ASO as a tree where the nodes rep-
resent security concepts, and each parent-child relation describes either the
passage from a more general concept to a more specific one, or a partition
of a concept into its sub-components. The root node is the concept of An-
droid application. The leaves represent the security issues that can be found
by analysing Android applications, or, in some cases, intrinsic properties of
Android applications (such as its metadata). One of the advantages of a tree
structure is the possibility to group the leaves together by similarity (e.g., the
leaf referring to the insecure protocol known as plain HTTP is closer to the
leaf referring to the obsolete protocol of SSL 3.0 than the leaf referring to the
permission to write the external storage). Figure 3.4 shows the generic tree
structure of ASO, while Figure 3.5 illustrates the format of all internal nodes,
and leaves. Each leaf, among other internal fields, contains state variables.
A state variable represents a particular instance of the security issue that
the corresponding leaf encapsulates. For instance, the leaf relating to plain
HTTP has a state variable that takes into account whether plain HI'TP was
observed or not during the analysis. Figure 3.5 illustrates the format of all
state variables. A state variable, among other internal fields, has a special
field called value. In its standard form, ASO is un-instantiated, i.e., all state

variable have empty values.

State variables State variables are the most important components of
ASO. They not only encapsulate the details of security issues by means of
their value field, but also define and support a partial ordering of the security

issues according to the following indexes that we propose as part of the model:

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 87

o Absolute Relevance Index (ARI), an integer 1-10 which represents how

relevant the security issue is to data privacy.

e Minimal Impact Index (MIII), an integer 1-10 which represents how
impactful the identified issue is to data privacy if the best (i.e., the

least damaging) case scenario is assumed.

e Mazximal Impact Index (MXII), an integer 1-10 which represents how
impactful the identified issue is to data privacy if the worst (i.e., the

most damaging) case scenario is assumed.

Additionally, the value of each index can be classified into one or more equiv-
alence classes: minor, mild, moderate, severe, critical. The naming of the
classes is derived by merging two existing conventions, and down-scaling
them to 5 values. The first convention is defined by Sonar, a static anal-
yser for Java, and comprises info, minor, major, critical, and blocker. The
labels at the extremes are irrelevant in our context, because info hints at
something that is not an issue, and blocker refers to something that prevents
the correct functioning of a piece of code, something that does not apply
to our analysis. The second convention is usually employed to classify the
severity of the symptoms of a disease, and consists of mild, moderate, and
severe. As major and severe have a similar meaning, we keep only the latter.
For all indexes, values 1-2 are considered minor, values 3-4 are considered
mild, values 5-6 are considered moderate, values 7-8 are considered severe,
and values 9-10 are considered critical. Absolute Relevance Class (ARC) is
implied from ARI, Minimal Impact Class (MIIC) is implied from MIII, and
Mazimal Impact Class (MXIC) is implied from MXII.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 88

Internal Internal
Node Node

Leaf Leaf Leaf Leaf

containing containing containing containing
state variables state variables state variables state variables

Figure 3.4: ASO structure: A root, the internal nodes, and the leaves containing state

variables.

A full visualisation of ASO is available on the DICELab website !.

Using ASO within MAP By construction, ASO allows for a structured
presentation of security issues in a standard format. The only variable el-
ements are the values that are assigned to the state variables, representing
the details of security issues. ASO is a crucial component for MAP, because
it represents the underlying standard format for security reports. One of the
goals of MAP is to translate raw reports into instantiated versions of ASO.
Instantiation refers to assigning values to state variables according to the
contents of a raw report. It is not mandatory to assign a value to each state
variable. Conceptually, this relates to the fact that a report (and, therefore,

a tool) does not need to cover all the possible security issues that an Android

'https://dicelab-rhul.org/?page_id=121

https://dicelab-rhul.org/?page_id=121

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 89

State Variable
-1D
- Leaf ID
Leaf - Value
Root Internal Node
-1D - History
- 1D = android_app - 1D
- Name - ARI
- Name = Android app - Name
- Parent ID - ARC
- Parent ID = null - Parent ID
- State Variables - Ml
- MlIiC
- MXII
- MXIC

Figure 3.5: ASO building blocks: The structure of the root nodes, of the internal

nodes and leaves, and of the state variables.

application might exhibit. Section 3.3.2.3 illustrates the approach that MAP
uses to produce instantiated versions of ASO from the raw reports deriving

from Phase 1: Parallel analysis (see Section 3.3.2.1).

3.3.2.3 Phase 2: Translation

This phase represents the transition from raw reports to translated reports
under ASO. Figure 3.6 illustrates the flow of the phase. The inputs are the
raw reports produced by Phase 1: Parallel Analysis, the relevant pseudo-
grammars of the tools (see Appendix 7.2) and ASO (see Section 3.3.2.2).
The output is a collection of ASO-compatible translated reports containing
all and only the ASO-relevant information in a standardised format. We
describe ASO in Section 3.3.2.2. While the translation happens in parallel
for each report, each translation flow is fully independent. Therefore, it is
sufficient to describe a single flow. In that regard, the translation of a raw

report is split into two sub-phases: report parsing and ASO instantiation.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 90

Intermediate
Reports

Translated
Reports

Figure 3.6: Phase 2: Translation: Each raw report from Phase 1 is parsed in order to
extract the ASO-relevant content, and remove the ASO-irrelevant content, creating in the
process an intermediate report (either narrative, or factual). Then, for each intermediate
report, a new translated report is produced, by means of instantiating ASO with the

content of the intermediate report itself.

They are both described in the following paragraphs.

Report parsing A raw report usually contains a mixture of ASO-relevant
information, and irrelevant fillers. Notable example of the latter are welcome
messages, debug messages, and any verbose printout that can be removed
without depriving the report of its ASO-relevant content. Additionally, raw
reports can be classified into narrative and factual. The main difference is
that time plays a role in narrative reports (i.e., it is possible to define an
ordering based on time), while factual reports are a collection of findings
whose order is irrelevant. Both considerations (content and time) shape the

goals of report parsing:

e Identify the type of the raw report (narrative vs factual).

e Remove the ASO-irrelevant content.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 91

e Extract the ASO-relevant content to either a (still raw) narrative or

collection of facts.

The main idea behind report parsing is to create an intermediate represen-
tation of a raw report, so that then an ASO-compatible report is easier to
compile from such intermediate representation. Also, splitting the report
translation into sub-steps helps creating a less arbitrary and more standard-
ised procedure.

As we discussed above, raw reports are characterised by their arbitrary for-
mat. Therefore, identifying the ASO-relevant content from arbitrary reports
coming from arbitrary tools is hardly feasible, so we settled for a compro-
mise which, in our opinion, is still a notable improvement with respect to
the state-of-the-art. The compromise is that a report from a tool can be
parsed (and therefore translated) if a pseudo-grammar of the tool is avail-
able. In our context, pseudo-grammar means a collection of machine-parsable
directives that either whitelist the format of the ASO-relevant information,
or highlight the ASO-irrelevant information that can be find in the reports
produced by the tool. An example of pseudo-grammar can be found in Sec-
tion 4.5.1.2, together with implementation of the parsing protocol. As we
detail in Section 4.5.1, MAP currently supports a limited set of tools whose
pseudo-grammars were compiled by us during the implementation. For newer
tools to be compatible with MAP (for what concerns Phase 2: Translation),
their pseudo-grammar needs to be supplied, unless the reports are already
ASO-compatible, which would allow for the complete skip of translation al-

together. The extensibility of MAP is discussed in more detail in Section 4.7.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 92

ASO instantiation The ultimate goal of Phase 2: translation is to pro-
duce an ASO-compliant report from the content of a raw report. Having
parsed a raw report into an intermediate report, whether narrative or factual,
the goal of ASO instantiation, as the name suggests, is to use the intermedi-
ate report to fill the leaves and state variables of ASO (see Section 3.3.2.2 for
an explanation). While the implementation details are left to Section 4.5.2,
in this paragraph we describe the approach that MAP uses to instantiate
ASO from an intermediate report. We preempt the discussion by saying that
such instantiation is only possible if the instantiator has some kind of inside
knowledge about which leaves and state variables of ASO are the best match
for either the narrative or the facts of the intermediate report. However, as
with Phase 1: Parallel Analysis and report parsing, the structure of MAP
allows for extensibility (i.e., the support of a new tool) by adding a small
amount of custom code. See Section 4.7 for more details.

Instantiating ASO depends on whether the intermediate report is narrative
or factual. In the former case, the narrative as a whole is used to identify
the leaves and state variables that need to be updated by the narrative itself.
On the contrary, in the latter case, each fact is considered in isolation in
terms of the leaves and state variables it needs to update. As explained in
Section 3.3.2.2, updating an ASO leaf means to create one or more state
variables within that leaf. Likewise, creating a state variable means to get
the standard format of a state variable from ASO (given the appropriate
leaf), and to instantiate it. Section 4.5.2 offers concrete examples of how the
ASO-relevant content from real intermediate reports can be used to create

ASO instantiations. We call each instantiated ASO a translated report. The

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 93

output of ASO instantiation, as well as the entire Phase 2: Translation is
a collection of ASO-compliant translated reports. The main advantage such
collection has with respect to the collection of raw reports is that the arbitrary
syntax and semantics have been replaced by a common format, regardless of

the nature and content of the original raw reports.

Translated reports Recall that the format of a translated report reflects
ASQO. The main consequence of having a collection of translated reports, is
the ability to perform any kind of operation on such reports with procedures
that are completely agnostic of the nature and content of the original raw
reports. Therefore, we can say we are half way through the process of cre-
ating unity on the technological side, which is a sub-goal of MagnetDroid,
as originally stated in Section 3.2.2.1. The missing step is to integrate the
translated report into a final ASO-compliant report that can be considered
the final word on the privacy-impacting security issues identified by Android
application analysis tools. In other words, aggregating the translated re-
ports is the last step of our integrative analysis. Section 3.3.2.4 explains the

aggregating approach.

3.3.2.4 Phase 3: Aggregation

The name integrative analysis implies that something from different sources
is integrated into a product. In our context, we want to integrate reports
from Android application analysis tools. Having translated those reports into
ASO-compliant versions of themselves, their integration passes through their

aggregation under ASO.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 94

—_—

Gonflict Manager

~

h J
—

Aggregation > —

T Final Report

h

Bi
Bi

Translated
Reports.

Figure 3.7: Phase 3: Aggregation: Each translated report from Phase 2 is aggregated
into a final report by means of instantiating ASO from the content of the translated reports
themselves. If one or more reports disagree on an ASO state variable, the conflicting

management mechanism engages. Unsolvable conflicts are stored within the final report.

Disagreement
between Translated
Reports

Phase 3:
Aggregation

For each branch Yes
Conflict?

. Y

RFe'Ei'n Record Conflict in
the Final Report

Solvable?

Na

Figure 3.8: Conflict management: If during Phase 3 one or more reports disagree
on the value of a state variable, the conflict manager attempts to derive a value that is
acceptable nonetheless. If that is not possible, the conflict is recorded within the final

report.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 95

Figure 3.7 illustrates the flow of the phase, where the aggregation procedure
loops through the branches of ASO. Each branch has exactly one leaf. Such
leaf can be either instantiated or not. The latter case emerges when either no
tool has found any issue that the leaf represents, or no tool has analysed the
application with respect to that issue, or a combination of the two. Regard-
less of the reason, un-instantiated leaves are not interesting, and, therefore,
are skipped. On the other hand, if the leaf is instantiated, one or more in-
stantiated state variables exist within the leaf. As such, the procedure loops
through those state variables, and, for each of them, looks whether the trans-
lated reports agree on its value. If a report does not exhibit a value for a
particular state variable, we skip it for what concerns that state variable.
If all the reports agree on the value of a state variable, then such values is
copied into the final report. Otherwise, we say we have a conflict.

The implementation of the conflicting mechanism is better explained in Sec-
tion 4.6.3, while the architecture of the conflict manager is illustrated in Fig-
ure 3.8. When a conflict arises between one or more reports on the value of a
particular state variable, the procedure attempts to derive a value nonethe-
less by trying to solve the conflict. Sometimes, a solution can be found, e.g.,
when a report states that an application is malicious, while another states
that it is simply suspicious. In that specific case, the procedure assumes that
the application is indeed malicious, and that the second tool simply could
not prove its suspicions. However, if the conflict is not solvable (i.e., incom-
patible values with no reason to choose one over the other), the procedure
constructs a special Conflicting value, and copies that into the final report.

The structure of the conflicting value includes the disagreement. A concrete

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 96

example of a Conflicting value is discussed in Section 4.6.3.

It is worth noting that the Conflicting value can support an indefinite num-
ber of conflicting parties, some of which may agree among themselves. We
decided against using majority voting (or, even worse, plurality voting) as a
strategy to solve conflicts, in order to avoid the introduction of false positives,

at the expense of potentially introducing false negatives.

The final report Once all the state variables that can be instantiated for
every leaf/branch of the final report have been instantiated, the aggregation
comes to an end, and the final report is its output. As Phase 3: Aggrega-
tion is the last phase of MAP, the final report is also the output of MAP
itself. The final report and the integrative analysis that produces it are two
contributions on their own right (plus the ASO which is another standalone
contribution). In particular, the final report has many uses that transcend
its role as mere input to our reasoning framework (as per top goal of Mag-
netDroid). We speak about some alternative routes with the final report in
Chapter 7. For now, the final report represents the success of the integration
of the application analysis side of the bridge that we are trying to build be-
tween technology and the law. Section 3.3.3 describes the approach of how
the final report, together with a model of the law, can be used to build such
bridge.

3.3.3 A reasoning platform

The second of the three main sub-components of MagnetDroid is the Mag-
netDroid Reasoning Module (MRM for short). Figure 3.9 illustrates its ar-

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 97

=

Final Report

Knowledge
Extractor

)

 h TKB v
— Logical Support for
Static TKB Interpreter queries
A
[Manual [
—_— > Knowledge » —
— Extractor —
2018 UK DPA LKB

Figure 3.9: MRM architecture: A TKB is built from the final report (from MAP),
and some static rules. A LKB is manually derived (once and for all) from the 2018 UK
DPA. The union of the knowledge bases is fed into a logical reasoner, in order to support

queries.

chitecture. MRM is a module that, given a knowledge base, employs logical
reasoning in order to allow for queries. In our context, the queries are related
to the legal violations and consequences that privacy-impacting security is-
sues found by Android application analysis have (although a simple list the
security issues can also be the subject of queries). The issue is to build a
suitable knowledge base that encompasses both the results of Android appli-
cation analysis, and the relevant law. As we already discussed in Section 3.1,
our legal corpus consists of a small subset of the 2018 UK Data Protection
Act. Also, conveniently, MAP is able to produce a final report that specifies
the identified security issues with regard to a specific Android application.

Given these facts, we can characterise the flow of MRM as follows:

e Phase 4a: Creation of a Technological Knowledge Base which,

given a final report from MAP, derives a Technological Knowledge Base

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE ~ 983
(TKB).

e Phase 4b: Creation of a Legal Knowledge Base which derives a
Legal Knowledge Base (LKB - essentially an incomplete logic program)
from a subset of the 2018 UK DPA.

e Phase 5: Reasoning which allows for queries on the union of TKB

and LKB.

The naming convention of the three phases of MRM warrants an explanation.
Phase j is divided into Phase 4a, and Phase 4b because only the former
consistently happens for each Android application. The reason is that the
creation of a LKB can be performed asynchronously, and, more importantly,
once and for all (i.e., unlike the TKB, the LKB is the same for every Android
application). Its position in the flow simply reflects the need for the LKB to
be ready before Phase 5: Reasoning. Finally, the reason why MRM starts
with Phase 4 is that the creation of a TKB directly depends of the availability
of a final report from MAP. As the MAP phases are numbered 1-3, MRM

starts with Phase 4, to avoid any possible confusion.

3.3.3.1 Creation of a Technological Knowledge Base

Recall the discussion about the common representation from Section 3.2.2.2.
A prerequisite for linking security issues to legal violations is to have both
expressed in a common format. At the end of the aforementioned Section,
we established normal logic programs [17] as the route MagnetDroid pursues
in that regard. The first step is to derive a Technological Knowledge Base

(TKB), expressed as a logic program, that both encompasses the security

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 99

issues detailed in the final report, and links them to some cardinal proper-
ties of security (data confidentiality, data integrity, and data authenticity),

according to a mindset, which is discussed in the following paragraph.

Mindset: credulous vs. skeptical As anticipated in Section 3.3.2.2,
different findings can be considered issues or not depending on the mindset.
MRM supports two opposite mindsets: credulous, and skeptical. 1t is im-
portant to point out that a mindset is credulous or skeptical with respect
to the security of an application, not with respect to the content of the fi-
nal report. As such, we define credulous the mindset by which the gravity
of an identified issue is downplayed whenever possible (i.e., the best - least
damaging - case scenario is considered). By contrast, we define skeptical the
mindset by which every single identified issue is always considered with the
worst case scenario in mind. The rationale behind these opposite mindsets is
to minimise false positives (in the case of credulous), and false negatives (in
the case of skeptical). Note that the positive and negative classes here refer
to issues, and are therefore immune from the discussion from Section 3.1.

It is well known that security issues only make sense in the context of a
threat model. Bifurcating the interpretation of the identified issues allows
for some flexibility while querying for legal violations and consequences re-
lated to the identified issues (see Section 3.3.3.3). Section 5.1 describes the

implementation details of building a TKB from a final report.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 100

3.3.3.2 Creation of a Legal Knowledge Base

The last step before the bridge between application analysis and the law
can be built is to model the law into a Legal Knowledge Base (LKB), also
expressed as a logic program, that can be unified with the Technological
Knowledge Base (TKB) described in Section 3.3.3.1. In Section 3.1 we dis-
cussed why we limited our coverage of the law to a small subset of the 2018
UK DPA. In particular, our focus begins on Art. 66(1) and Art. 66(2) of
Part 3. Art. 66 relates to security of processing, and is interesting to us
because Android applications do process data, and security issues do arise
when data processing lacks certain security properties (namely, confidential-
ity, integrity, and authenticity). Both Art. 66(1) and Art 66(2) refer to
controllers and processors. They are defined in Art. 32 of Part 3. According
to our interpretation of such article, in our context, an Android application
plays the role of both. As such, we conceptually merge them into the more
compact concept of party. We are able to do so, because, as discussed in
Section 2.1.4 we are not interested in servers. Therefore, the only party that
is subject to our analysis is the Android application itself.

Our LKB contains a translation of our interpretation of the aforementioned
articles, linking their content to the same properties (data confidentiality,
data integrity, and data authenticity) that can be found within the TKB.
Consequently, TKB and LKB have a natural point of contact in those prop-
erties, which makes their union suitable for logical reasoning. The implemen-
tation details of our LKB, including the process of translation of the law are

described in Section 5.2.

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 101

3.3.3.3 Reasoning

Once a TKB and a LKB have been produced, we can reason on their union.
While the logical queries that the unified knowledge bases support can be

arbitrary, we identified some notable classes:

Purely technological queries These queries attempt to derive informa-
tion from the technological part of the knowledge base. Essentially, they aim
at finding the security issues that have been identified by the analysis, with-
out relating them to the law. They can be both comprehensive (i.e., query
for all the security issues), or selective (i.e., check whether a specific security
issue has been identified). While we did not envision MRM as a system to
query a purely TKB (for that we believe analysing the technological final
report directly would constitute a better path), these queries are supported

nonetheless.

Comprehensive legal queries These queries attempt to find all the pos-
sible ways in which all identified security issues trigger any legal violation
under a certain mindset (credulous vs. skeptical). In general, they are aimed
at “connecting the dots”. As the properties of data confidentiality, data in-
tegrity, and data authenticity can be violated in multiple ways, and can trig-
ger different legal violations, these queries attempt to cover all the possible

connections between security issues, and the aforementioned legal violations.

Selective legal queries These queries attempt to find whether a specific
article of the law was violated or not. As such, whether it is violated in 10

different ways or in a single way is irrelevant. The advantage they offer over

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 102

comprehensive queries is the possibility to cut the search when a “positive”
result (i.e., a violation) is found.
Section 5.3.1 describes the three classes of queries in more detail, including

some concrete real-world examples.

3.3.4 A webapp to close the ring

The combination of MAP (see Section 3.3.2) and MRM (see Section 3.3.3)
allows for the identification of security issues on Android applications by
means of application analysis. It also represents a bridge that, given the
aforementioned issues, links them to legal violations. Furthermore, it allows
for queries resolved via logical reasoning that return those links, when they
exist. However, what such combination lacks is an intuitive and human-
friendly way to interact with the system. For users (see Section 3.2.1) to
fully benefit from MagnetDroid, they need to interact with it at the following

levels:

e Booting the system with a selected application, and a subset of the

available analysis tools.

e Selecting the queries to perform without the need of specifying them

in any particular logical language.

e Viewing the results, and understanding them.

We believe a web application is a suitable approach to all of them, because
of the unique and seamless blending of text and multimedia content that

web technologies support. The concrete implementation (including visual

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 103

examples) is illustrated and discussed in Section 5.4. The MagnetDroid Web
Application (MWA) is reachable from the DICELab website

3.4 Summary

In this Chapter we introduced MagnetDroid, an agent-based framework that
builds a bridge between the domains of Android application analysis and the
law. We established the platform assumptions this thesis and MagnetDroid
rely upon, and we discussed the goals and aims of MagnetDroid, starting
from the top goal, and detailing the sub-goals that arise from it. We also
presented MagnetDroid at the design level, linking each high level component
to one or more of the aforementioned goals. In particular, we discussed the

partitioning into three macro systems:

e the MagnetDroid Agent Platform (MAP) supporting the integrative

analysis;

e the MagnetDroid Reasoning Module (MRM) that, given the output of
MAP, and a subset of the 2018 UK Data Protection Act, derives two

knowledge bases, and reasons on their union;
e a MagnetDroid Web Application (MWA) to explain the results.

With regard to MAP, we also presented the design and implementation of an
Android Security Ontology (ASO). Among the three main sub-components
of MagnetDroid, MAP and MRM deserve a detailed discussion of their im-

2https://dicelab-rhul.org/?page_id=121

https://dicelab-rhul.org/?page_id=121

CHAPTER 3. MAGNETDROID: DESIGN AND ARCHITECTURE 104

plementation. In Chapter 4 we present the implementation the former, while

in Chapter 5 we present the implementation of the latter.

Chapter 4

MagnetDroid Agent Platform

In Chapter 3 we stated the goals of MagnetDroid, and presented an architec-
ture to support them. In particular, we discussed the partition of Magnet-
Droid into MAP (see Section 3.3.2), MRM (see Section 3.3.3), and MWA (see
Section 3.3.4). In this Chapter we present and discuss the implementation
details of MAP.

We implemented MAP as a multi-agent platform. The rationale behind such
choice is discussed in Section 4.1. MAP makes use of an agent model and
architecture which we explain in Section 4.2. We then present the agent-
oriented high level view of MAP in Section 4.3. We continue our discussion
with the agent-oriented implementation of the phases (first described in Sec-
tion 3.3.2) in Section 4.4 (Phase 1: parallel analysis), Section 4.5 (Phase
2: translation), and Section 4.6 (Phase 3: aggregation). We conclude this
Chapter with a discussion regarding the agility and extensibility of our agent-
oriented implementation of MAP (see Section 4.7), and a summary (see Sec-

tion 4.8).

105

CHAPTER 4. MAGNETDROID AGENT PLATFORM 106

4.1 The opportunity of an agent Platform

In this section we make the case for an agent platform as a convenient ab-
straction for our system. When looked at from an external perspective, it
would seem that the tasks performed by the agents of the MagnetDroid Agent
Platform (MAP - see Section 3.3.2, and Section 4.3), could also be performed
by a lower-level set of abstractions like distributed-objects or scripts. Our
case for an agent-based approach relies on the fact that certain properties
of agents (see below and Section 4.2) can be used to support a number of

features that we argue are key for MAP as explained in Section 4.1.1.

4.1.1 Key Agent Properties

A multi-agent implementation of MAP can benefit from certain innate agent

properties, as follows.

Coordination A simple parallel execution of different tasks is not useful
by itself, especially when there are dependencies between the agents’ ac-
tivities. Coordination is the way of managing inter-dependencies between
activities performed to achieve a goal. This part is important, as we want
the system to behave as a coherent unit. The link between agent coordination
and cooperation has been researched in the past [52], both for cyberphysical
systems [53], and pure software frameworks. [54] Our agent-based approach
maps the tasks to different roles which agents can play while assessing an
application. More specifically, a ManagerAgent is responsible for the coordi-
nation of WorkerAgents, ParsingAgents, TranslatingAgents, and Aggregatin-

gAgents. Coordination allows the various components of MAP to perform

CHAPTER 4. MAGNETDROID AGENT PLATFORM 107

their task knowing that someone else (i.e., the MAPCoordinatorAgent - ex-
plained later in Section 4.3.1.2) will be responsible for effectively managing
the top-level goal and the inter-dependencies between tasks, including the
functioning of the platform. I.e., they can perform their work without the
need of constantly checking whether they should keep going or abort, or go
idle.

Cooperation A prominent feature of agents is the possibility to cooperate
to reach a common goal. The possibility for a cooperative behaviour of
software agents has been studied for years. [55] Within MAP we can find
multiple points where agent cooperation brings a noticeable benefit to the
system. Running the tools in parallel to produce reports, while being aware of
failures and /or needs for retries is an example. Translating the raw reports in
parallel, so that the AggregatingAgent can then aggregate them into the final
report is another example. Cooperation provides a boost in performance with
respect to a linear execution, while still allowing for non-trivial C'oordination

via Communication.

Communication A prominent feature of agents is the possibility of mes-
sage passing. As we previously described, Coordination is a desirable fea-
ture for MAP. Agent communication provides a natural and fluid mean
for that to be possible. The semantics of agent communication has been
studied in the past, both as a mean to support cooperation [56], and from
the pure semantic point of view. [57] Within MAP, agent communication
benefits the aggregation of translated reports, among other instances. The

MAPAggregatingAgent (explained later in Section 4.3.1.2) is always wait-

CHAPTER 4. MAGNETDROID AGENT PLATFORM 108

ing for all the translated reports before starting the aggregation process.
Should a fault happen in the chain that produces a translated report, agent
communication can be employed to either inform the AggregatingAgent to
proceed nonetheless, or to abort the process altogether, depending on the
circumstances. In other words, agents communication can be employed to
provide additional contextual semantics to uncertain situations. Drawing
a parallel with the law, we could say that agent communication provides
more information for a better interpretation of the current situation by the

recipient(s) [58].

Extensibility The set of inputs that the MAP receives is not meant to be
crystallised in time. For instance, new tools could be plugged in, or some of
them could be removed at a certain point in the future. Likewise, the focus
could shift from security analysis to, for instance, performance analysis. The
kind of application we analyse could shift from Android applications to, for
instance, non-mobile software (see Section 7.2). We want our system to
be as robust as possible, i.e., we would like to minimise the amount of re-
coding that is needed in those cases. The sensible design strategy in that
regard, is to maximise the invariants and minimise agility, where invariants
refers to everything that holds in general, and agility refers to the contextual
details that are intrinsically tied with certain elements of MAP (such as
the format of the reports coming from a specific tool). An agent platform
allows us to create some high-level routines that never change (see Section 4.2
and Section 4.1.2) while concentrating the agility into a small number of

places (see Section 4.1.2 for an example regarding the process of parsing raw

CHAPTER 4. MAGNETDROID AGENT PLATFORM 109

reports).

Integration of different technologies The integration of different tech-
nologies (such as security-oriented application analysis, ontologies, and doc-
ument translation) is intrinsic to MAP. We believe that a highly structured
design is an optimal choice for a framework made of such heterogeneous
components. The features of Coordination, Cooperation, Communication,
and FEztensibility make the integration much easier to perform, and easier
to adapt to new circumstances (such as plugging in a new tool, or tweaking

analysis and/or reasoning while they are already running).

4.1.2 Practical examples

In Section 3.2 we introduced a high level plan consisting of a sequence of goals.
In Section 3.3 we described the architecture of the framework that supports
them. In particular, in Section 3.3.2 we introduced an agent platform whose
ultimate purpose is to produce a final report from an APK, and a set of
analysis tools. Furthermore, in Section 3.3.3 we introduced an extension to
the agent platform. In this section, we explain why we think that an agent
platform is a more appropriate design choice (both in terms of approach and
implementation) with respect to other possibilities, such as simpler programs,
by referencing some of the concrete tasks that MAP supports.

First of all, looking at the steps required to produce a final report from an

Android application, we can identify several tasks:

e Coordinating a parallel analysis.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 110

e Performing an analysis on an APK with a tool.

Collecting a raw report from the tool.

e Removing the unnecessary information from the raw report.

Extracting the useful information from the report.

Instantiating ASO given the extracted content.

Aggregating several instances of instantiated ASO.

The above tasks are characterised by cyclical actions which need to be
performed in a certain order depending on the result of the previous one.
Having s/w components that play different roles in the form of agents, each
specialised in one or more tasks, is helpful for structuring the flow, and al-
lows for a more granular and natural subdivision of the work. Also, some
of the tasks, most notably all of them up to aggregation, can be defined as
contextual. For instance, as detailed in Section 4.5.1, parsing a raw report,
and extracting the relevant content from it, is highly dependent on the syn-
tax and semantics of the report itself. Recalling that every report has its
own arbitrary syntax and semantics, we devised an approach that is reusable
no matter which report is given, to an extent, if certain conditions are met.
In particular, all the agility is concentrated in a pseudo-grammar that is
given in input to the relevant ParsingAgent. Everything else, including the
parsing procedure, does not change. What that entails is the possibility to
integrate a new tool simply by providing the tool itself, and the correspond-
ing pseudo-grammar. Additionally, one of the known capabilities of agents

is message passing. MAP benefits from that in many different ways. For

CHAPTER 4. MAGNETDROID AGENT PLATFORM 111

instance, a user (recall the use cases described in Section 3.2.1) may, on sec-
ond thought, decide that they are not interested in certain kinds of security
problems (together with the corresponding privacy problems) once the flow
has already started. Via message passing, the agents could turn off or inter-
rupt those parts of the flow that have become irrelevant or no more needed,
given the latest user input (e.g., stopping or not performing the analysis with
a tool that was already scheduled or running, or removing content from the
instantiated ASO).

Overall, designing MAP as an agent platform allows for modularity, extensi-

bility, and minimisation of agility.

4.2 Agent Model and Architecture

Before explaining our agent implementation of MAP, we need to explain the
model and architecture that characterises our agents. We took inspiration
from the GOLEM agent environment [59] with regard to both. In particular,

each MAP agent is characterised by four main components:
e Mind: the core of the reasoning capabilities of the agent.

e Body: the outer shell of the agent which contains the mind, and the

other components.

e Sensors: a set of components which receive perceptions from whatever

environment the agent resides in.

e Actuators: a set of components which attempt actions in whatever

environment the agent resides in.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 112

Each MAP agent, irrespective of its role, shares the same structure for what
concerns body, sensor, and actuators. What sets different agents apart is
their mind. We further describe each component of a MAP agent in the
following paragraphs.

Mind The agent mind encapsulates the working memory of an agent, its
internal goals and beliefs, and its reasoning capabilities expressed as a cyclical
procedure named cycle step. The cycle step can be further divided into its

four primitives:

e perceive which stores any perception (e.g., messages) that the agent

sensors received from the environment since the last mind cycle began.

e revise which updates the agent’s beliefs according to the latest percep-

tion.

e decide which selects the next action according to the agent’s internal

beliefs and, possibly, is current goal.

e crecute which passes the selected action to the actuators for its attempt.

For each MAP agent, irrespective of its role, perceive and execute are stan-
dard procedures (i.e., they are equal for any two different agents). Conse-
quently, the role of an agent is always determined by its revise and decide
primitives, together with some fixed internal beliefs that are peculiar to a

certain role.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 113

Body The agent body serves as a container and medium of communication
for the other components. It is important to precise that communication in
this scenario does not refer to agent communication. Instead, it describes how
action attempts are transferred from the mind to the appropriate actuators,

and how perceptions are transferred from sensors to the mind.

Sensors FEach agent has a set of 2 sensors. First, the physical sensor which
constantly waits to perceive feedback from the environment in response to
physical actions (according to some definition of physics which is intrinsic
to the environment). Second, the listening sensor which constantly listens
for communicative actions coming from other agents. In other words, in
GOLEM, the perception of the result of physical actions and communicative

actions are separated, and we have kept this separation in MAP.

Actuators Every agent has a set of 2 actuators. First, the physical actuator
which is responsible for attempting physical action within the environment
(for some definition of physics which is intrinsic to the environment). Second,

the speaking actuator which is responsible for communicative actions.

4.2.1 Agent capabilities

The agent model and architecture described in Section 4.2 result in MAP

agents possessing a number of general capabilities, described as follows.

e Time awareness: thanks to the cycle step, an agent is able to measure

the passing time in terms of number of cycles.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 114

e Physical actions: thanks to the physical actuator and the physical sen-
sor, an agent is able to perform physical actions within the environ-
ment, and receive feedback. As mentioned earlier, the label physical

only makes sense in the context of the physics of the environment.

o Agent communication: thanks to the speaking actuator and the lis-
tening sensor, MAP agents support agent communication via message

passing.

4.3 High level structure

In Section 3.3.2 we proposed an architecture for the MagnetDroid Agent Plat-
form (MAP) that supports integrative analysis. In this Section we present
and discuss our multi-agent implementation of MAP. We start by describing
the entities of MAP (agents and environment) in Section 4.3.1. Then, we

present the agent protocol that permeates MAP as a whole in Section 4.3.2.

4.3.1 MAP entities

MAP as a multi-agent platform is characterised by different entities. Essen-
tially, it can be described as an enwvironment containing semi-autonomous
agents and tool wrappers, the latter belonging to the active bodies category.

Figure 4.1 illustrates the relation between them.

4.3.1.1 MAP Environment

The environment serves both as home for the agents, and as the medium of

communication between them. The environment has a state which evolves

CHAPTER 4. MAGNETDROID AGENT PLATFORM 115

Entities : Data

Analysed
: APK
: b B Raw

Agents Tool : == reports -

wrappers : =

: _‘ _‘ Intermediate Final
: == reports report
: Translated
: == reports

Figure 4.1: MAP high-level structure: A MAPEnvironment containing a set of agents,
a set of tool wrappers, the analysed APK, and the different kinds of reports. While agents
and tools wrappers are considered entities, the APK and the reports are treated as pure

data.

as agents attempt actions in it, while interacting with each other, and semi-
autonomous bodies. Each and every non-communicative (i.e., physical) ac-
tion that is performed by an agent on the environment results in the envi-
ronment sending a feedback to the actor agent. A feedback, among other
contextual, optional, and miscellaneous data and metadata, always contain
information regarding the outcome of an action attempt. In particular, a
feedback is structured as follows (here presented in pseudo-JSON for illus-

trative purposes):

CHAPTER 4. MAGNETDROID AGENT PLATFORM 116

{
"data”: {
I
"metadata”: {
“actor_id”: <actor_id >,
“attempted_action_type: <action_type >,
"result”: "IMPOSSIBLE/SUCCESS/FAILURE” ,
¥
}

While the actor_id value is left parametric, its meaning is self-evident, as it
represents the ID of the agent that attempted the particular action (whose
ID is also part of the feedback). The ... represent the contextual data and
metadata that depend on the specific feedback. The result field warrants
an explanation. Whenever an agent attempts an action, the environment
checks whether the pre-conditions (which may or may not exist) for such
action are met. For instance, for an agent to stop a tool’s analysis, such
analysis must be running at the time the stop action is attempted. If at
least one of the pre-conditions is not met, then the environment sends to the
actor a feedback where result is set to IMPOSSIBLE. In that scenario, the
environment does not even begin the execution of the action. As such, we
can say that an impossible action is guaranteed not to have side effects on
the state of the environment. If all the pre-conditions for an action are met,

or, if there is no pre-condition to satisfy, then the environment executes the

CHAPTER 4. MAGNETDROID AGENT PLATFORM 117

Physics

-+ IMPOSSIELE FAILURE

Attemnpt

Pre-conditions Post-conditions

Agent

< SUCCESS

Figure 4.2: Action attempt: If the pre-conditions are not met, the execution is impos-
sible. Otherwise, the execution is performed, and the post-conditions are checked. If they

are met, the result is a success, otherwise, it is a failure.

action according to its physics. Each action has a (possibly empty) set of
post-conditions. After the execution has ended, the environment checks all
the post-conditions. If at least one is not met, then a feedback with result
set to FAILURE is sent to the actor. A failed action may or may not alter the
state of the environment in a way that the environment itself has no control
over. Finally, if no post-condition check fails, a more complex feedback is
constructed, depending of the specific action, and sent to the actor. In such
feedback, result is set to SUCCESS. We regard that as the only positive result
for an action. A positive result implies that the state of the environment has
been successfully altered, assuming the action had side effects. Figure 4.2

showcases the flow of an action attempt within the environment.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 118

On a related note, we often use the terms agent, and actor interchange-
ably. In our context, only agents can be actors, and the term actor refers
to the agent that attempted a particular action. Finally, we define an en-
vironment with the properties and behaviours described in this Section as
a MAPEnvironment, and its internal physics as MAPPhysics. Furthermore,
a MAPEnvironment contains MAPAgents, and MAPTool objects which interact
each other and with the environment itself. Both are described in the follow-
ing Sections. We discuss MAPAgents, and MAPTool objects in more detail in

Section 4.3.1.2, and Section 4.3.1.3 respectively.

4.3.1.2 MAP Agents

MAP autonomous agents, referred to as MAPAgents, are the main actors
within MAP. They reside in a MAPEnvironment, and are characterised by
the model and architecture described in Section 4.2. Within MAP, each
MAPAgent has a role, specific knowledge and capabilities, in terms of internal
knowledge representation and potential actions. The role is the prime factor
in determining the knowledge and capabilities of MAPAgents. According to

their roles, they can be classified as follows.

MAPCoordinatorAgent The first kind of agent we can find in MAP is
the MAPCoordinatorAgent. Its primary feature is the ability to coordinate
other kinds of MAPAgents. As such, it does not possess detailed knowledge of
or interaction capabilities with the MAPBody objects of the MAPEnvironment.
The actions it can attempt are described in detail in Appendix A. Essentially,

the MAPCoordinatorAgent is the supervisor that links together the other

CHAPTER 4. MAGNETDROID AGENT PLATFORM 119

agents of MAP, and propagates the intermediate products of each phase to

the successive phase.

MAPWorkerAgent The second kind of agent we can find in MAP is the
MAPWorkerAgent. Its primary feature is the ability to interact with a specific
MAPBody wrapping a certain Android application analysis tool. Consequently,
a specific MAPWorkerAgent is tightly coupled with a specific tool. For this
reason, MAP includes a MAPWorkerAgent for every supported tool, each one
with slightly different capabilities, in order to accommodate different tools.
The actions a MAPWorkerAgent can attempt are described in detail in Ap-

pendix A.

MAPParsingAgent The third kind of agent we can find in MAP is the
MAPParsingAgent. Its primary features are the ability to parse a raw report
produced by a specific Android application analysis tool, and to produce
from it either a narrative report or a factual report. Consequently, a spe-
cific MAPParsingAgent is tightly coupled with a specific tool, as it needs to
understand the format of its raw reports. For this reason, MAP includes
a MAPParsingAgent for every supported tool, each one with slightly dif-
ferent capabilities, in order to accommodate different tools. The actions a

MAPParsingAgent can attempt are described in detail in Appendix A.

MAPTranslatingAgent The fourth kind of agent we can find in MAP is
the MAPTranslatingAgent. Its primary feature is the ability to instantiate
ASO from the content of either a narrative report or a factual report, pro-

ducing a translated report in the process. As both such kinds of intermediate

CHAPTER 4. MAGNETDROID AGENT PLATFORM 120

reports partially preserve the format of the original raw report, a specific
MAPTranslatingAgent is still tightly coupled with a specific tool. For this
reason, MAP includes a MAPTranslatingAgent for every supported tool,
each one with slightly different capabilities, in order to accommodate differ-
ent tools. The actions a MAPTranslatingAgent can attempt are described

in detail in Appendix A.

MAPAggregatingAgent The final kind of agent we can find in MAP
is the MAPAggregatingAgent. Its primary feature is the ability to aggre-
gate a set of ASO-compliant translated reports into a final report. Also, it
can attempt to solve conflicts (i.e., inconsistent security findings) when they
happen while aggregating the translated reports. As all the translated re-
ports are ASO-compliant by design, the MAPAggregatingAgent is no more
bound to any particular Android application analysis tool. The actions a
MAPAggregatingAgent can attempt are described in detail in Appendix A.

The MAPAgents described above are the primary enablers of the MAP phases
described in Section 3.3.2, and in even more detail in Section 4.4 (Phase 1:
parallel analysis), Section 4.5 (Phase 2: translation), and Section 4.6 (Phase
3: aggregation).

4.3.1.3 MAP Tool Wrappers

MAP tool wrappers, referred to as MAPTool objects, are the final components
of MAP. They reside within a MAPEnvironment like MAPAgents. However,
unlike MAPAgents, their internal architecture is opaque, and does not match

the MAPAgent internals. Additionally, they do not comply with the agent

CHAPTER 4. MAGNETDROID AGENT PLATFORM 121

model proper of MAPAgents. Within MAP, a MAPTool is essentially a wrapper
for an Android application analysis tool. It serves as the tool interface for

the MAPEnvironment (and, therefore MAPAgents). Its primary purposes are:

e Translating actions to commands that are compatible with the analysis

tool proper interface.

e Forwarding the output of the tool to the MAPEnvironment.

From its characterisation, it is apparent that a MAPTool is tightly coupled
with the corresponding tool. Currently, MAP supports MAPBody objects that

interact with the Android application analysis tools described as follows.

4.3.1.4 Bettercap

Bettercap [60] is an analysis tool that supports MITM attacks on network
connections. By convincing an Android application to route its outgoing
traffic through a machine where Bettercap is running, it is possible to in-
tercept and modify network connections. In our context, we use Bettercap
to analyse the traffic looking for cleartext protocols, insecure protocols in
general, and insecure protocol parameters. We also use it to alter some of
the server responses, in order to observe how the Android application re-
act (e.g., whether it responds properly to clearly dangerous situations, such
as downgrading of secure connections). As Bettercap requires live network
traffic to work in any meaningful way, we categorise it as a dynamic analysis
tool. Its report provides a narrative of the intercepted network traffic and the
MITM “events”. Among the ASO-relevant concepts that Bettercap reports
contain, we can cite insecure protocols (e.g., plain HTTP, SSL 3.0, FTP,

CHAPTER 4. MAGNETDROID AGENT PLATFORM 122

etc.), and insecure protocol parameters (e.g., insecure bulk ciphers such as

RC4, vulnerable constructions such as MAC-then-encrypt, etc.).

Why Bettercap We included Bettercap in our pool of available tools be-
cause it is a highly-customisable dynamic analysis tool whose report contains,
marked by what we call interesting patterns (see Section 4.5.1.2), information
that can be used to populate the state variables of those leaves of ASO (see
Section 3.3.2.2, and Section 4.5.2.2) that refer to network activity security

1ssues.

4.3.1.5 MalloDroid

MalloDroid ! [61] is a static analysis tool that looks for (dangerously) mis-
configured TLS communications within an application’s code. Built on the
top of AndroGuard [62], it uses the latter to disassemble an Android appli-
cation, in order to get access to the code. Its report consists of a collection
of facts regarding the identified misconfigurations. Among the ASO-relevant
concepts that MalloDroid reports contain, we can cite insecure versions of
otherwise secure protocols (e.g., SSL 3.0 with respect to TLS, etc.), insecure
protocol parameters (e.g., insecure bulk ciphers such as RC4, vulnerable con-
structions such as MAC-then-encrypt, etc.), and improper validation of X509

certificates.

Why MalloDroid We included MalloDroid in our pool of available tools
because it is a static analyser whose report contains, marked by what we

call interesting patterns (see Section 4.5.1.2), information that can be used

Thosted at https://github.com/sfahl/mallodroid

https://github.com/sfahl/mallodroid

CHAPTER 4. MAGNETDROID AGENT PLATFORM 123

to populate the state variables of those leaves of ASO (see Section 3.3.2.2,

and Section 4.5.2.2) that refer to network activity security issues.

4.3.1.6 VirusTotal

VirusTotal [63] is a service that checks a file (e.g., an APK) against multiple
malware analysis tools, looking for its reputation (e.g., known malware), and
known malicious behaviours. Originally a web service 2, it also offers an API
which is how we integrated it into MAP. Its report consists of a collection
of facts detailing each malware analysis tool’s opinion on the APK. For the
sake of unifying the results, we consider an Android application malicious if
and only if at least one of the results from VirusTotal reports so. Among
the ASO-relevant concepts that VirusTotal reports contain, we can cite the

reputation that an application has (e.g., malware).

Why VirusTotal We included VirusTotal in our pool of available tools
because it is a service that consults a set of anti-malware software in order to
determine the reputation of the analysed APK. As such, it is a good choice
for producing information that can be used to populate the state variables
of those leaves of ASO (see Section 3.3.2.2, and Section 4.5.2.2) that refer to

the reputation of an Android application.

4.3.1.7 CSP Checker

CSP Checker is a dynamic analysis tool we built on the top of Bettercap

that checks how an application reacts to an injected Content-Security-Policy

2hosted at https://www.virustotal.com

https://www.virustotal.com

CHAPTER 4. MAGNETDROID AGENT PLATFORM 124

(CSP) in web communications. In particular, by looking at the resulting
network traffic after the injection, it is possible to infer (at least partially) how
the application reacted to the CSP, and whether it followed its prescriptions
(e.g., loading vs. not loading certain scripts which, if loaded, cause additional
network traffic). Its report consists of a narrative highlighting improper
reactions from the analysed Android application. Among the ASO-relevant
concepts that Bettercap reports contain, we can cite the incorrect loading of

restricted resources.

Why CSP Checker We included CSP Checker in our pool of available
tools because, in conjunction with Bettercap, it provides information that
can be used to populate the state variables of those leaves of ASO (see Sec-
tion 3.3.2.2, and Section 4.5.2.2) that refer to network activity security issues,
in particular behaviours that are inconsistent with what is prescribed by a

received Content-Security-Policy.

4.3.1.8 OCSP Checker

OCSP Checker is a dynamic analysis tool we built on the top of Bettercap
that checks how an application reacts to various responses from a simulated
OCSP server which is supposed to check the status of an X509 certificate.
The available tests vary from an unresponsive OCSP server (in which case
it is acceptable for an Application to soft-fail - i.e., ignore the server and
proceed as if no issue was encountered), to an improperly signed response.
Its report consists of a narrative highlighting improper reactions from the

analysed Android application. Among the ASO-relevant concepts that Bet-

CHAPTER 4. MAGNETDROID AGENT PLATFORM 125

tercap reports contain, we can cite the soft-fail approach to an OCSP server
unavailability when the certificate to validate exhibit the OCSP-Must-Staple

extension.

Why OCSP Checker We included OCSP Checker in our pool of avail-
able tools because, in conjunction with Bettercap, it provides information
that can be used to populate the state variables of those leaves of ASO (see
Section 3.3.2.2, and Section 4.5.2.2) that refer to network activity security
issues, in particular behaviours that are inconsistent with the correct ac-
tions that have to be performed when an OCSP-Must-Staple [64] extension

is received.

4.3.2 MAP agent protocol

While MAP is conceptually divided into three phases (see Section 3.3.2), it
is possible to establish an uninterrupted flow of activities that spans all the
phases. In our multi-agent implementation of MAP, some of those activities
require cooperation and coordination between different agents, which in turn
leads to different roles, and communication as a mean to cooperate and
coordinate with each other. Figure 4.3 illustrates how different agents (whose
roles are explained in Section 4.3.1.2) use communication.

The high-level protocol starts with a MAPCoordinatorAgent (CoA) sending
analysis jobs to a pool of MAPWorkerAgents (WoA). Once a WoA has finished
the analysis, which happens without any need for further agent communi-
cation, it sends either a raw report, or an error message to the CoA. As

Figure 4.3 shows, that is the extent of Phase 1: parallel analysis for what

CHAPTER 4. MAGNETDROID AGENT PLATFORM 126

CoA [WoA} [{PaA} {TrA} AgA
. Analysis job .
.-
Parsing job

Translating job

Translated report /
error

Aggregating job

»

Final report / error

Figure 4.3: MAP agent protocol: Different agents pass messages to each others in
order to cooperate and coordinate with each other. The graduated columns represent
agents with different roles as time passes. Within each graduation, agents may or may not
perform additional actions that do not require message passing. Curly brackets indicate a
pool of agents, as opposed to a single agent. Labelled arrows represent messages, and the
“/” symbol indicates and separates two possible alternative messages. Different colours

highlights the phases of MAP.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 127

concerns the communication protocol.

Upon receiving the raw reports from all WoAs, the CoA sends them to a
pool of MAPParsingAgents (PaA). Once a PaA has parsed a report, which
happens without any need for further communication, it sends an intermedi-
ate report to a MAPTranslatingAgent (TrA) which, behind the scenes, uses
it to instantiate ASO, producing a translated report in the process. Such
report is then sent back to the CoA. As Figure 4.3 shows, that is the extent
of Phase 2: translation for what concerns the communication protocol. Two
colours are used to highlight the internal division of the phase into parsing
and ASO instantiation.

Upon receiving the translated reports from all TrAs, the CoA send them to
a MAPAggregatingAgent (AgA) which, behind the scenes, aggregates them
into an ASO-compliant final report. Such report is then sent back to the CoA
which outputs it, causing the MAP flow to end. As Figure 4.3 shows, that
is the extent of Phase 3: aggregation for what concerns the communication
protocol.

While the agent protocol highlights how different agents communicate with
each other in order to coordinate and cooperate, it treats some of the agent
actions as black boxes, namely all the processes which produce the reports
that are then exchanged via communication. Section 4.4, Section 4.5, and
Section 4.6 describe those black boxes in detail, in terms of the algorithms
that the relevant agents follow in other to produce the reports that are ex-
changed via agent communication according to the agent protocol. In par-
ticular, we highlight how the agent decision process can be deconstructed

into condition-action rules, where the conditions check the internal beliefs

CHAPTER 4. MAGNETDROID AGENT PLATFORM 128

of the agent which, as discussed in Section 4.2, are updated by the revise

primitive.

4.4 Phase 1: parallel analysis

In Section 3.3.2.1 we described at the design and architectural level the pro-
cess of running Android application analysis tools on an APK, and collecting
the reports produced by the tools themselves. In this Section we explain how
we employ some of the agents described in Section 4.3.1.2 in order to support
the flow of Phase 1: parallel analysis (see Section 4.4.1) thanks to an algo-
rithmic behaviour (explained in Section 4.4.2), and give concrete examples of

the raw reports that are collected at the end of the phase (see Section 4.4.3).

4.4.1 The flow

According to the agent protocol described in Section 4.3.2, the actors of
Phase 1: parallel analysis are the MAPCoordinatorAgent (CoA), and a pool
of MAPWorkerAgents (WoA), one for each analysis tool. The CoA sends an
analysis job to the WoAs, together with information on where to find the
APK to analyse and the tool to analyse it with. Each WoA is responsible for
a particular analysis tool. The agent-tool environmental interaction happens
via an interface exposed by a MAPTool (ToW) acting as a wrapper for the
tool. According to the agent protocol, after sending the jobs to the WoAs,
the CoA waits for either a raw analysis report or an error message from each
WoA. Such flow of Phase 1: parallel analysis is illustrated in Figure 4.4.

From the point of view of a single WoA, analysing an APK with a tool can

CHAPTER 4. MAGNETDROID AGENT PLATFORM 129

CoA

Sl s

Figure 4.4: Phase 1: Parallel analysis: The MAPCoordinatorAgent (CoA) sends

the APK to the pool of MAPWorkerAgents (WoA) which start the parallel analysis by
interacting with the MAPBody objects wrapping the tools. After the analysis has finished,

each MAPWorkerAgent collects the raw report, and sends it to the MAPCoordinatorAgent.

be described with the algorithm illustrated in Figure 4.5, and explained in
Section 4.4.2.

4.4.2 The algorithm

Whenever a WoA receives a job message, it starts the analysis by running the
tool on the APK via its ToW. After the analysis has started, the WoA wait
for feedback. Whenever the tool provides a feedback requesting for inputs,

the WoA provides them. If the tool provides a feedback informing the WoA

CHAPTER 4. MAGNETDROID AGENT PLATFORM 130

Input provided

. . Input needed
51 Start analysis w;lzinr teedback 83

job received QV input needed
Analysis done
feedback m Get raw report
wait for

S6:
raw report

obtained

tool

Stop tool

Timeout
signal

Figure 4.5: Phase 1 algorithm: A state diagram illustrating the conceptual states
from a WoA point of view, together with the actions and/or feedbacks that cause state

transitions.

that the analysis has finished, then the WoA retrieves the raw report from
the tool. If the tool provides a feedback informing the WoA that the analysis
ended with an error, the WoA does not attempt to collect any report. Finally,
if the tool does not report either the end of the analysis, or an error within 10
minutes, the WoA internal timeout is triggered, and the analysis if forcefully

stopped. In that case, if a report is available, it is retrieved.

Condition-action rules As mentioned in Section 4.3.2, the revise and
decide primitives of the agent’s mind can be used to implement the algorithm
that the WoA follows. Furthermore, the decision process can be modelled
with condition-action rules, according to a teleoreactive model [65]. For a

WOoA, the behaviour looks as follows.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 131

Condition —> Action

Analyse: {
new_job_received —> start_analysis
input_needed —> provide_input
analysis_timeout —> stop_analysis
report_available —> retrieve_report
report_received —> send_report

default —> stay_idle

}

The meaning of the listing above is that the conditions are checked in order,
and the first that is met triggers the corresponding action attempt. If no con-
dition is met, the default condition at the end will always be true. There are

also sub-goals, so this model allows for structure, and can be parameterised.

4.4.3 Raw reports

The products of Phase 1: parallel analysis are the so called raw reports. As
previously discussed, their format is generally arbitrary, which is one of the
reasons why we built more phases into MAP. Below is an extract from a raw
report produced by the Bettercap tool. The much longer complete report is
visible in Appendix A.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 132

192.168.1.117/24 > 192.168.1.3 >> [14:10:21] [net.sniff.leak.http]
http local POST example.com Mozilla /5.0 (X11; Android arm; rv:78.0)
Gecko /20100101 Firefox /78.0
Method : POST
URL: /
Headers:
Host: example.com
User—Agent: Mozilla/5.0 (X11; Android arm; rv:78.0) Gecko/20100101 Firefox /78.0
Accept: text/html,application/xhtml4xml, application/xml;q=0.9,%/%;9=0.8
Accept—Language: en—US,en;q=0.5
Accept—Encoding: gzip, deflate
Connection: keep—alive
Upgrade—Insecure—Requests: 1
Cache—Control: max—age=0
Form:
mgtxt => This message will be intercepted.
nmtxt => U. N. Owen

action => send

4.5 Phase 2: translation

In Section 4.4 we described Phase 1: parallel analysis from a multi-agent
point of view. In this Section we present and discuss the multi-agent imple-
mentation of Phase 2: translation. The goal of this phase is to transition
from reports whose format is arbitrary and depends on the specific tool to
reports whose format is standard and dictated by ASO. We call such reports
translated reports. The flow of the phase can be logically partitioned into re-
port parsing, and ASO instantiation. The former is discussed in Section 4.5.1,
while the latter is discussed in Section 4.5.2. The flow of the phase as a whole
is illustrated in Figure 4.6.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 133

B

Translated report

2 B

CoA - PahA - TrA
Raw report Intermediate report

=

Figure 4.6: Phase 2: Translation: Visualisation of a branch: the

MAPCoordinatorAgent (CoA) sends a raw report to a MAPParsingAgent (PaA) which
parses it, creating an intermediate report. Then the MAPParsingAgent (PaA) sends the
intermediate report to a MAPTranslatingAgent (TrA) which instantiates ASO from the
content of such report, creating a translated report. Then, the MAPTranslatingAgent

sends the newly produced translated report to the MAPCoordinatorAgent.

4.5.1 Parsing

The objective of the first half of Phase 2: translation is, for each raw report,
to produce an intermediate report which contains only the ASO-relevant
information that can be derived from the corresponding raw report. The
flow of this sub-phase is described in Section 4.5.1.1, while the algorithmic

agent behaviour is explained in Section 4.5.1.2.

4.5.1.1 The flow

According to the agent protocol described in Section 4.3.2, the report pars-
ing sub-part of Phase 2: translation has only two groups of actors: the
MAPCoordinatorAgent (CoA), and the set of MAPParsingAgents (PaA). For

the sake of explainability, it is convenient to focus on a single branch. Under

CHAPTER 4. MAGNETDROID AGENT PLATFORM 134

Praduce /
g Remove ASO- 33 S4:
Identify report type . irelevant patterns intermediate

report type ready to
identified exiract report
produced

S1:
raw report
received

Extract
ASO-relevant patterns

Figure 4.7: Phase 2a algorithm: A state diagram illustrating the conceptual states
from a WoA point of view, together with the actions and/or feedbacks that cause state

transitions.

that assumption, the actors are reduced to the CoA, and a single PaA. The
CoA sends a parsing job to the AgA, together with a raw report from Phase
1: parallel analysis. The PaA then parses the report, producing an interme-
diate report. According to the agent protocol, after sending the job to the
PaA, the CoA does not wait for any response from the PaA. Instead, it waits
for a message downstream that will be sent at the end of the full phase. Such
flow of Phase 2a: report parsing is visible on the left-hand side of Figure 4.6.
From the point of view of the PaA, producing the intermediate report can
be described with the algorithm illustrated in Figure 4.7, and explained in
Section 4.5.1.2.

4.5.1.2 The algorithm

Whenever a PaA receives a job message and a raw report, its first action
is to identify the report type. In particular, if the raw report exhibits a
narrative (i.e., time is featured), then it knows it has to produce a narrative
intermediate report. On the other hand, if the raw report exhibits a collection
of facts (i.e., time is not featured), it knows it has to produce a factual

intermediate report. Then, guided by the pseudo-grammar (which is part

CHAPTER 4. MAGNETDROID AGENT PLATFORM 135

of its beliefs), and ASO, the PaA starts a loop of removing all identifiable
ASO-irrelevant information, and extracting and storing all the identifiable
ASO-relevant information from the raw report. The loop ends when there is
nothing more to remove or extract. Once that happens, the PaA produces

the intermediate report according to the extracted content.

Pseudo-grammars Whenever a TrA needs to parse a raw report, it needs
a so-called pseudo-grammar that describes the reports of the tool that pro-
duced such raw report. A pseudo-grammar consists of different collections of
known uninteresting patterns, potentially interesting patterns, and interesting
patterns, plus some metadata (such as the expected kind of report - narrative
or factual). Patterns are expressed either via regular expression, or in full

(hence the pseudo prefix). A pattern is

e Uninteresting if all instances of matching content can be removed with-

out any loss of meaningful information (with respect to ASO).

o Interesting if all instances of matching content are expected to contain

meaningful information (with respect to ASO).

e Potentially Interesting if its value depends on the presence or absence

of other patterns.

An example of a pseudo-grammar is shown in Appendix C.

Condition-action rules As mentioned in Section 4.3.2, the revise and
decide primitives of the agent’s mind can be used to implement the algorithm

that the PaA follows. Furthermore, the decision process can be modelled

CHAPTER 4. MAGNETDROID AGENT PLATFORM 136

with condition-action rules, as with Phase 1: parallel analysis. For a PaA,

the behaviour looks as follows.

Condition —> Action
Parse: {
new_job_received —> identify_report_type

report_type_identified —> start_loop

can_remove —> remove

can_extract —> extract

empty_raw_report —> produce_intermediate_report
default —> stay_idle

}

The same considerations regarding the meaning of condition-action rules de-

scribed in Section 4.4.2 still apply.

Narrative vs. Factual reports The product of report parsing is an inter-
mediate report. Its only purpose is to guide the second sub-phase of Phase
2: translation, known as ASO instantiation. The reason behind the split
representation is that the procedure that instantiates ASO from a narrative
is slightly different from the procedure that instantiates ASO from a collec-
tion of facts. Format-wise, a narrative report features an ordered list of raw

events, each with its own relative timestamp.

happens_at(<raw_event_1>, 1).

happens_at(<raw_event_ N>, N).

On the contrary, a factual report is an unordered collection of facts, where a

CHAPTER 4. MAGNETDROID AGENT PLATFORM 137

fact is a piece of raw relevant content.

holds(<fact_1 >).

holds(<fact_-N >).
Although the format of both narrative and factual reports may be remi-
niscent of Prolog (especially Event Calculus [66]), that is just a coincidence.
Intermediate reports are not Prolog programs, and any assumption that their
syntax is valid Prolog syntax is incorrect. Intermediate reports are never fed
into any Prolog interpreter. Instead, they are the main input to the ASO

instantiation sub-phase of Phase 2: translation.

4.5.2 ASO instantiation

The objective of the second half of Phase 2: translation is, for each inter-
mediate report, to instantiate ASO with the content of the aforementioned
intermediate report. The flow of this sub-phase is described in Section 4.5.2.1,

while the algorithmic agent behaviour is explained in Section 4.5.2.2.

4.5.2.1 The flow

According to the agent protocol described in Section 4.3.2, the ASO instan-
tiation sub-part of Phase 2: translation has only three groups of actors: the
set of MAPParsingAgents (PaA), the set of MAPTranslatingAgents (TrA),
and the MAPCoordinatorAgent (CoA). For the sake of explainability, it is
convenient to focus on a single branch. Under that assumption, the actors
are reduced to a single PaA, a single TrA, and the CoA. The PaA sends a
translating job to the TrA, together with the intermediate report it just pro-

CHAPTER 4. MAGNETDROID AGENT PLATFORM 138

Produce /
st S4:
intermediate | Identify report type /SJZ\ Find state varisbie = translated

state variable
report

report type
identified selected
produced
Instantiate state variable

Figure 4.8: Phase 2b algorithm: A state diagram illustrating the conceptual states

from a WoA point of view, together with the actions and/or feedbacks that cause state

transitions.

duced in Phase 2a: report parsing. The TrA then instantiates ASO from the
content of the translated report, producing a translated report. According
to the agent protocol, the CoA is still waiting for either a translated report
or an error message from the TrA. Such flow of Phase 2b: ASO instantiation
is visible on the right-hand side of Figure 4.6. From the point of view of the
TrA, producing the translated report can be described with the algorithm
illustrated in Figure 4.8, and explained in Section 4.5.2.2.

4.5.2.2 The algorithm

Whenever a TrA receives a job message and an intermediate report, its first
action is to identify the report type. If the raw report exhibits a narrative
(i.e., time is featured), then it knows that, potentially, the entire narrative
may need to be used in order to identify the relevant ASO leaves and state
variables. On the other hand, if the raw report exhibits a collection of facts
(i.e., time is not featured), it knows that each fact potentially refers to a
distinct leaf and/or state variable. Then, guided by the pseudo-grammar
(which is part of its beliefs), and ASO, the TrA starts a loop of identifying a

state variable whose value can be derived from either the narrative, or a fact.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 139

Once the value has been assigned to the state variable, the loop continues
until there is nothing more in the intermediate report to instantiate any
state variable with. Once that happens, the PaA has successfully produced

a translated report.

Condition-action rules As mentioned in Section 4.3.2, the revise and
decide primitives of the agent’s mind can be used to implement the algorithm
that the TrA follows. Furthermore, the decision process can be modelled
with condition-action rules, as with Phase 1: parallel analysis. For a PaA,
the behaviour looks as follows.

Condition —> Action

Translate : {

new_job_received —> identify_report_type
report_type_identified —> start_loop
can_instantiate_sv —> instantiate_sv

empty_intermediate_report —> produce_translated_report

default —> stay_idle

}

The same considerations regarding the meaning of condition-action rules de-

scribed in Section 4.4.2 still apply.

Translated reports As discussed multiple times, the format of a trans-
lated report reflects ASO. The following listings show an extract from a
translated report. In particular, a leaf and one of its state variables are

shown.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 140

”id”: ”ocsp-behaviour”,
”name”: ”"OSCP behaviour”,
”parent_id”: "x509_status_checks”,

”state_variables”: |

{

”id”: "unreachable_server_with_ocsp_-must_staple”,
”leaf_id”: ”ocsp-behaviour”,

”value”: ”soft—fail?”,

” history”: [],

“ari”: 10,

“arc”: critical ,

"miii”: 1,

?miic”: ”minor”,

?mxii”: 10,

?mxic”: Ycritical”

}
The main consequence of having a collection of translated reports, is the abil-

ity to perform any kind of operation on such reports with procedures that
are completely agnostic of the nature and content of the original raw reports.
Therefore, we can say we are half way through the process of creating unity
on the technological side, which is a sub-goal of MagnetDroid, as originally
stated in Section 3.2.2.1. The missing step is to integrate the translated re-
port into a final ASO-compliant report that can be considered the final word
on the privacy-impacting security issues identified by Android application
analysis tools. In other words, aggregating the translated reports is the last
step of our integrative analysis. Section 4.6 describes how the aggregating

works from an multi-agent implementation point of view.

4.6 Phase 3: aggregation

In Section 4.5 we described Phase 2: translation from a multi-agent point

of view. Its output - a set of translated reports - feature as input to Phase

CHAPTER 4. MAGNETDROID AGENT PLATFORM 141

3: aggregation, which is the subject of this Section. The goal of this phase
is to aggregate all the translated report into an ASO-compliant final report,
which is also the only product of MAP as a whole. The flow of the phase is
described in Section 4.6.1, while the algorithmic agent behaviour is explained
in Section 4.6.2. We discuss how conflicts between reports are managed in
Section 4.6.3, and we also discuss the final report from the conceptual and

practical points of view in Section 4.6.4.

4.6.1 The flow

According to the agent protocol described in Section 4.3.2, Phase 3: ag-
gregation has only two actors: the MAPCoordinatorAgent (CoA), and the
MAPAggregatingAgent (AgA). The CoA sends an aggregating job to the
AgA, together with the translated reports from Phase 2: translations. The
AgA creates a new instantiation of ASO (called final report), and derives the
values of its state variables from the corresponding values in the translated
reports. According to the agent protocol, after sending the job to the AgA,
the CoA waits for either the final report or an error message from the AgA.
Such flow of Phase 3: aggregation is illustrated in Figure 4.9. From the
point of view of the AgA, producing the final report can be described with
the algorithm illustrated in Figure 4.10, and explained in Section 4.6.2.

4.6.2 The algorithm

Whenever an AgA receives a job message and the set of translated reports,
it creates a new ASO instantiation called final report, and loops through its

state variables. For each state variable, it checks whether all the translated

CHAPTER 4. MAGNETDROID AGENT PLATFORM 142

B

Final report

Translated reports

Figure 4.9: Phase 3: Parallel analysis: The MAPCoordinatorAgent (CoA) sends the
translated reports to the MAPAggregatingAgents (AgA) which aggregates them into a
final report. After such final report has been produced, the MAPAggregatingAgent sends

it to the MAPCoordinatorAgent.

51:
translated

Produce /
X 52 Feedback: no 53 S7:
Select state variable ‘State variable conflict State variable’ final

report selected value report
received agreed produced
Instantiate state variable

Feedback:

Feedback no conflict
conflict
S5 s4: Feedback: solvable S6:
Unsolvable

Conflicting
value built

conflict Conflict

Feedback: unsolvable

Build conflicting value

Figure 4.10: Phase 3 algorithm: A state diagram illustrating the conceptual states
from the AgA point of view, together with the actions and/or feedbacks that cause state

transitions.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 143

reports agree on its value. For our purposes, translated report that do not
assign a value to that particular state variable are simply ignored. If an
agreed value can be found, then it is assigned to that particular state variable
in the final report. Otherwise, a conflict arises, and the AgA attempts to
solve it, by deriving a value that is “acceptable”, given the actual values for
all the translated reports. If the AgA is able to derive such value, then the
conflict is solved. Otherwise, the AgA creates a custom Conflicting value
(see Section 4.6.3), and assigns it to the appropriate state variable in the
final report. Once all state variables in the final report have been looped
through, and a value has been assigned to each of them (if possible), then

the AgA has successfully produced the final report.

Condition-action rules As mentioned in Section 4.3.2, the revise and
decide primitives of the agent’s mind can be used to implement the algorithm
that the AgA follows. Furthermore, the decision process can be modelled
with condition-action rules, as with Phase 1: parallel analysis. For an AgA,

the behaviour looks as follows.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 144

Condition —> Action

Aggregate : {

new_job_received —> start_aggregation

state_variable_available —> select_state_variable

state_variable_selected —> look_for_value
no_conflict —> assign_value
conflict —> manage_conflict
conflict_solved —> assign_value
conflict_unsolvable —> assign_conflicting
default —> stay_idle

}

The same considerations regarding the meaning of condition-action rules de-

scribed in Section 4.4.2 still apply.

4.6.3 Conflict solving mechanism

Whenever a state variable in the final report needs a value, that value is
derived from the available translated reports. However, it is possible that
at least two translated reports exhibit a different value for the same state
variable. In Section 3.3.2.4 we discussed how, in that scenario, a conflict
manager attempts to solve the conflict, and derive a value. In our imple-
mentation, the conflict manager is the AgA. A conflict is solvable if a value
compatible with all the values from the translated reports can be derived or
inferred. A notable case of solvable conflict is when a state variable from a

translated report labels the application as malicious, while the same state

CHAPTER 4. MAGNETDROID AGENT PLATFORM 145

variable from another translated report labels the application as suspicious.
In that scenario, the AgA assumes that the application is malicious, and that
the second tool simply failed to prove it, despite having suspicions. However,
many conflicts are not solvable, as there is no apparent reason to select the
value from a specific translated report rather than the value from another
translated report. However, if the conflict is not solvable, the procedure con-
structs a special Conflicting value, and copies that into the final report. The
structure of the conflicting value includes the disagreement. For instance, as-
suming that report A and report B disagree on the value of the state variable

S1, the Conflicting value has the following structure:

{
"type”: "unsolvable_conflict”,
”disagreement”: |
<report_A >: <report_A_value >,
<report_B >: <report_B_value>
]
}

It is worth noting that the Conflicting value can support an indefinite number
of conflicting parties, some of which may agree among themselves. In our
implementation, we decided against majority voting (or, even worse, plurality
voting), in order to avoid the introduction of false positives, at the expense

of potentially introducing false negatives.

CHAPTER 4. MAGNETDROID AGENT PLATFORM 146

4.6.4 The final report

As previously discussed in Section 3.3.2.4, once the TrA has instantiated
all the state variables that can be instantiated (according to the translated
reports) for every leaf/branch of the final report, the aggregation comes to
an end, and the final report is its output. As Phase 3: Aggregation is the
last phase of MAP, the final report is also the output of MAP itself. The
following listing shows an extract from a final report containing a conflicting

value. In the particular example, and one of its state variables are shown.

{
7id”: ”ocsp-behaviour”,
"name”: ”"OSCP behaviour”,
?parent_id”: ”x509_status_checks”,
”state_variables”: |
{
7id”: "unreachable_server_with_ocsp_-must_staple”,
”leaf_-id”: ”ocsp-behaviour”,
?value”: {
"type”: “unsolvable_conflict”,
”?disagreement”: |
”bettercap”: "hard—fail”,
”oscp—checker”: ”"soft—fail”
]
Ix
”history”: [],
Pari”: 10,
“arc”: critical ,
?miii”: 1,
”miic”: ”minor”,
"mxii”: 10,
?mxic”: Ycritical”
}

CHAPTER 4. MAGNETDROID AGENT PLATFORM 147

4.7 MAP extensibility and agility

One of the intrinsic challenges MAP is how to manage the arbitrary format of
the reports produced by a certain tool. Conversely, one of the goals of MAP
is to standardise as much as possible the flow that ultimately produces a final
report from an APK and a set of analysis tools. Given that the arbitrary
format is an issue that cannot disappear as long as analysis tools do not settle
on a common report format (which is unlikely, in our opinion), the only
way to maximise the amount of standardised (i.e., reusable) architectural
components and code is to minimise the number of points where agility is
concentrated. In our context, a segment of MAP is agile, if it can be replaced
by a slightly different version of it without compromising the usability of the
entire platform. Minimising the number of agile points within MAP is the
key for an easy extensibility of the platform. Extensibility is a key property
for MAP, because of the issue of how to support a new tool. Assuming
that the reports produced by such tool are not ASO-compliant, having a low
number of agile points within the platform, minimises the number of changes
to the platform itself that are needed in order to support the new tool.

In our case, for MAP to support a new tool, the following needs to be provided

(either by the platform itself, or by the tool’s developers):

e A MAPWorkerAgent that knows how to interact with the tool, and the

corresponding MAPTool wrapper.

e A dedicated pseudo-grammar to guide the MAPParsingAgent in Phase

2: translation and the MAPTranslatingAgent Phase 3: aggregation.

It is noteworthy that the global structure of MAP, including the implemen-

CHAPTER 4. MAGNETDROID AGENT PLATFORM 148

tation of most of its agents would not need to change for a new tool to be

supported.

4.8 Summary

In this Chapter we presented and discussed our multi-agent implementa-
tion of MAP. We detailed the rationale behind such choice, together with
the agent model and architecture we made use of. We presented the agent-
oriented high level view of MAP, followed by the agent-oriented implementa-
tion and discussion of its three sub-phases (Phase 1: parallel analysis, Phase
2: translation, and Phase 3: aggregation), including the agent protocols,
and examples of each phase’s products. We also showcased the implementa-
tion details of ASO. Finally, we discussed the agility and extensibility of our

agent-oriented implementation of MAP.

Chapter 5

MagnetDroid Reasoning
Module

In the previous Chapter we presented and discussed the implementation de-
tails of the MagnetDroid Agent Platform (MAP). In this Chapter we present
and discuss the implementation details of the MagnetDroid Reasoning Module
(MRM), and of the MagnetDroid Web Application (MWA) used to visualise
its output, and to interact with MagnetDroid as a whole.

The goal of MRM is to support logical queries over the union of two knowl-
edge bases. We start by explaining the process of creation of a Technological
Knowledge Base (TKB) from a final report from MAP in Section 5.1, and
we explain the process of creating of a Legal Knowledge Base (LKB) from
a small subset of the 2018 UK DPA in Section 5.2. Then, we present our
implementation of a Prolog framework that reasons on the union of TKB
and LKB in Section 5.3. We also discuss our implementation of the Magnet-

Droid Web Application (MWA) as an entry point to MagnetDroid, and as

149

CHAPTER 5. MAGNETDROID REASONING MODULE 150

a visualisation tool for the results of the queries that are supported by the
Prolog framework in Section 5.4. We conclude the Chapter with a summary

in Section 5.5.

Prolog knowledge bases Before we discuss how we derived and used the
TKB, and the LKB, we need to establish a concrete language for both. Recall
Section 3.2.2.2: there we stated that normal logic programs were our choice
both for the representation of knowledge bases, and as a tool to enable logic
reasoning. In our implementation of MRM we decided to use Prolog as the
language in which both the TKB and the LKB are expressed. Likewise,
we decided to use SWI-Prolog as the interpreter that supports queries on
knowledge bases. We assume familiarity with the syntax and semantics of
normal logic programs, as supported by Prolog. For details on Prolog, the

reader is referred to [67].

5.1 Phase 4a: creation of a TKB

The goal of Phase 4a: creation of a TKB is to derive a logic program from
a final report and a set of static logic rules regarding the security properties
of data confidentiality, data integrity, and data authenticity. Despite being a
full phase, it is numbered as 4a, because its dual phase (Phase 4b: creation of
a LKB) is an asynchronous phase which needs to be completed before Phase
0: reasoning.

Recall the format specified by ASO in Section 3.3.2.2. In particular, ASO is
a tree where the nodes represent security concepts, and the leaves represent

the specific issues that are supposed to be subject of analysis by tools. The

CHAPTER 5. MAGNETDROID REASONING MODULE 151

core components of each leaf are its state variables. The main component of a
state variable is its value. In this section, we discuss how an ASO-compliant

final report is translated into a set of Prolog predicates.

5.1.1 From leaves and state variables to Prolog rules

The issue of deriving part of a TKB from a final report can be rephrased as the
issue of deriving a set of Prolog facts and rules from leaves and state variables.
Any final report can be thought as the combination of fixed elements (i.e., the
ASO structure from the root to the leaves), and mutable elements (i.e., the
state variables). The translation into Prolog of the fixed elements preserves

the ASO structure as a tree. For instance:

root (android_app, final_report).
child(<child_ID >, <parent_ID >, final_report).

leaf(<leaf_ID >, <parent_ID >, final_report).

The listing shows how to represent the tree structure in Prolog. The labels
with angular brackets are just placeholders for constants. The root elements
is represented by root/2, while each intermediate node is represented by a
collection of child/3 predicates. Finally, leaves are represented by a collec-
tion of leaf/3 predicates. On the other hand, the mutable elements of a
final report are represented by state variable/11 predicates, as illustrated

in the following listing;:

state_variable(<sv_ID >, <leaf_ID >, <value >, <history >,
<ari>, <arc>, <miii >, <miic>, <mxii>, <mxic>, final_report).

Once again, the angular brackets represent generic constants, as opposed to
variables in the above listing. Each state variable is represented by its 1D, its

leaf ID, its value, its history (if relevant), and a series of indexes and classes

CHAPTER 5. MAGNETDROID REASONING MODULE 152

whose meaning is explained in Section 3.3.2.2. The following listing shows a
simple example of the Prolog representation of a (doctored for space reasons)

subset of a final report.

root (android_app, final_report).

child (network_activity , android-app, final_report).

child (insecure_protocols, network_activity , final_report).
leaf(plain_http , insecure_protocols, final_report).

state_variable (observed, plain_http, yes, [yes], 10, critical,

6, average, 10, critical , final_report).

Essentially, the Prolog representation of this particular final report both pre-
serves the tree structure, and conveys the relevant information that the state
variable whose ID is observed, and whose leaf parent is plain_http contains.
However, a Prolog representation of a final report is one of two building blocks
of a TKB. The other one is a collection of Prolog rules that link the issues
encapsulated by the state variables to the properties of data confidentiality,
data integrity, and data authenticity, according to a mindset. As discussed
in Section 3.3.3.1, MRM supports the credulous and skeptical mindsets. The
following listing shows some of the rules that complement the Prolog repre-

sentation of the final report:

data_confidentiality_-issue (App, Evidence, plain_http, skeptical) :—
app (App, Evidence),
state_variable (observed, plain_http, yes, -, ARI, _, MIII, _, MXII, _, Evidence),
MXII > 0

data_confidentiality_-issue (App, Evidence, plain_http, credulous) :—
app (App, Evidence),
state_variable (observed, plain_http, yes, -, ARI, _, MIII, _, MXII, _, Evidence),
MIITI > 6

app (App, Evidence) :—
state_variable (app-id, app-metadata, App, -, -, -, -, -, -, -, Evidence).

CHAPTER 5. MAGNETDROID REASONING MODULE 153

The listing shows how the same issue (an observed plain HTTP connection)
is treated differently according to different mindsets. In skeptical, a data
confidentiality issue is triggered as long as the Maximal Impact Index is
greater than 0. In credulous, a data confidentiality issue is triggered only if
the Minimal Impact Index is greater than 6. The Prolog representation of the
final report, and the rules linking security issues to security properties and the
mindset constitute our Technological Knowledge Base (TKB). Section 3.3.3.3
shows how a TKB in conjunction with the LKB (see Section 3.3.3.2) can be
used to support Prolog-based queries, in order to determine legal violations

and consequences.

5.1.2 The algorithm

Much like the sub-phases of MAP, Phase 4a: generation of a TKB can be
described with the state diagram of Figure 5.1. As MRM is not part of an
agent platform, we say that the algorithm is implemented by a knowledge
extractor. The core of the algorithm is the loop that translates each node
and state variable within the final report into a Prolog predicate. Afterwards,

the fixed Prolog rules are appended, and the TKB is stored for future uses.

5.2 Phase 4b: creation of a LKB

The goal of Phase 4b: creation of a LKB is to derive a LKB from a subset
of the 2018 UK DPA. As discussed in Section 3.3.3, this phase has three

peculiar (with respect to every other phase) properties:

e It is asynchronous, i.e., it can be completed at any time before Phase

CHAPTER 5. MAGNETDROID REASONING MODULE 154

S5:
TKB ready for
use

Generate Prolog
predicate

Read node or state
51 Read final report s2: variable

H 83
Start Loop (1) Loop {2)
Add fixed rules m Save TKB
TKB

completed

d

Figure 5.1: Phase 2a algorithm: A state diagram illustrating the conceptual states
from the point of view of the knowledge extractor, together with the procedures that cause

state transitions.

6: reasoning, and does not depend on the output of any other phase.

e [t needs to be completed only once and for all, as, unlike the TKB, the
LKB does not depend on any mutable entity (assuming the 2018 UK
DPA is not amended).

e It is the only phase that is not automated. In fact, we manually trans-

lated the relevant articles (see Section 5.2.1) into Prolog rules.

5.2.1 The 2018 UK Data Protection Act

In this Section we examine the subset of the 2018 UK DPA that we translated
into Prolog. Within the DPA our focus begins on Art. 66(1) and Art. 66(2)
of Part 3. Recall from Section 3.3.3.2 that Art. 66 as a whole relates to
security of processing, and that an Android application can be characterised
as a controller and a processor (both of which are defined in Art. 32 of Part
3), or, more compactly as a party. In the next paragraphs we include and

examine each of Art. 66(1) and Art. 66(2) (plus Art. 32 for the meaning of

CHAPTER 5. MAGNETDROID REASONING MODULE 155

controller and processor), discussing our interpretation of them.

Relevant Articles of the 2018 UK DPA The relevant articles of the
2018 UK DPA [68] are as follows.

Art. 66(1) of Part 3

Each controller and each processor must implement appropriate technical
and organisational measures to ensure a level of security appropriate to the

risks arising from the processing of personal data.

Art. 66(2) of Part 3

In the case of automated processing, each controller and each processor must,
following an evaluation of the risks, implement measures designed to —

(a) prevent unauthorised processing or unauthorised interference with the
systems used in connection with it,

(b) ensure that it is possible to establish the precise details of any processing
that takes place,

(c) ensure that any systems used in connection with the processing function
properly and may, in the case of interruption, be restored, and

(d) ensure that stored personal data cannot be corrupted if a system used in

connection with the processing malfunctions.

Art. 32 of Part 3

(1) In this Part, “controller” means the competent authority which, alone or

jointly with others —

CHAPTER 5. MAGNETDROID REASONING MODULE 156

(a) determines the purposes and means of the processing of personal data,
or

(b) is the controller by virtue of subsection (2).

(2) Where personal data is processed only —

(a) for purposes for which it is required by an enactment to be processed,
and

(b) by means by which it is required by an enactment to be processed,

the competent authority on which the obligation to process the data is im-
posed by the enactment (or, if different, one of the enactments) is the con-

troller.

3) In this Part, “processor” means any person who processes personal data
y
on behalf of the controller (other than a person who is an employee of the

controller).

Appropriate security measures Art. 66(1) states that a party must im-
plement appropriate technical and organisational measures to ensure a level
of security appropriate to the risks arising from the processing of personal
data. As discussed in Section 2.4.2, no further explanation of what con-
stitutes appropriate security measures is given. In our interpretation, an
Android application does not implement appropriate security measures if it
exhibits unmitigated risks and/or unmitigated threats. In turn, if any of data
confidentiality, data integrity, and data authenticity are not preserved, we

imply the existence of unmitigated risks and threats. The aforementioned

CHAPTER 5. MAGNETDROID REASONING MODULE 157

data-X properties are assumed preserved unless there is evidence that they

are not. The evidence needs to be provided by a TKB.

Automated processing Art. 66(2) relates to the automated processing
of data. Four separated sub-commas specify the obligations that a party en-
gaged in automated processing must fulfil. However, we are not interested in
some of them. Transparency (Art. 66(2b)), proper functioning (Art 66(2c)),
and availability (Art. 66(2d)) are not interesting to us. We still model them,
but the TKB will never provide any evidence that either of those proper-
ties is violated. As such, they will be assumed preserved. On the other
hand, Art 66(2a) relates to unauthorised processing and interference. In our
interpretation, for either to happen, at least one of the properties of data
confidentiality, data integrity, and data authenticity need to be violated. As
with Art. 66(1), we assume any property to be preserved, unless there is
evidence of the contrary. Also, like with Art. 66(1), the evidence needs to
be provided by a TKB.

5.2.2 From the articles to a Legal Knowledge Base

A Prolog model of the selected subset of the 2018 UK DPA needs to take

into consideration the following elements:

e The numbered articles that may or may not be violated.

e The identifiable classes of problems that trigger legal violations, ac-

cording to our interpretation of those articles:

— Unmitigated risks.

CHAPTER 5. MAGNETDROID REASONING MODULE 158

— Unmitigated threats.
— Unauthorised processing.

— Unauthorised interference.
e The security properties that need to be supplied by a TKB:

— Data confidentiality.
— Data integrity.

— Data authenticity.

e The characterisation of an Android application as a controller and pro-

cessor, or, in our interpretation, as a party.

The translation of those concepts needs to explicitly model the different
ways in which different articles can be violated, at least in terms of our
interpretation of the letter of the law. The resulting Prolog rules are discussed

in the following paragraph.

Prolog Rules The first set of rules defines which parts of the law can
be violated (Article), by what (App), how (Reason), according to which
evidence (Evidence), and mindset (Mindset). In particular, the (Evidence)

needs to be supplied by a TKB.

violates_law (App, Article, Evidence, FullReason, Mindset) :—
violates_uk_-dpa (App, Article, Evidence, Reason, Mindset),

reverse (Reason, FullReason).

violates_uk_dpa (App, 7Art._.66(1)”, Evidence, Reason, Mindset) :—
violates_-3_66_1 (App, Evidence, Reason, Mindset).

violates_uk_dpa (App, Article, Evidence, Reason, Mindset) :—
violates_3_66_2 (App, Article, Evidence, Reason, Mindset).

CHAPTER 5. MAGNETDROID REASONING MODULE 159

The second set of rules specifies how the identified articles of the law can be
violated, according to concepts that can still be found within the letter of
the law. The relevant_party/2 predicate is used to check whether it makes
sense to investigate whether a specific party violates the law, according to

the Fuidence supplied by a TKB.

violates_-3_.66_1 (App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
unmitigated_-risk_-found (App, Evidence, Reason, Mindset).

violates_3_66_1 (App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
unmitigated_threat_found (App, Evidence, Reason, Mindset).

violates_3_-66_-2 (App, 7 Art._66(2a)”, Evidence, Reason, Mindset) :—
in_scope(73_-66_-2a”),
violates_3_.66_2a (App, Evidence, Reason, Mindset).

violates_3_.66_2a (App, Evidence, FullReason, Mindset) :—
relevant_party (App, Evidence),
unauthorised_processing (App, Evidence, Reason, Mindset),

append (Reason, [”unauthorised_processing”], FullReason).

violates_3_.66_2a (App, Evidence, FullReason, Mindset) :—
relevant_party (App, Evidence),
unauthorised_interference (App, Evidence, Reason, Mindset),

append (Reason, [”unauthorised_interference”], FullReason).

The third set of rules further specifies how classes of problems that trigger
legal violations can be triggered by means of not satisfying the properties of

data confidentiality, data integrity, and data authenticity.

unauthorised_processing (App, Evidence, FullReason, Mindset) :—
data_confidentiality_issue (App, Evidence, Reason, Mindset),

append ([Reason], [”data_confidentiality_issue”], FullReason).

unauthorised_interference (App, Evidence, FullReason, Mindset) :—
data_authenticity_issue (App, Evidence, Reason, Mindset),

append ([Reason], [”data_-authenticity_-issue”], FullReason).

According to our interpretation of the law, the predicates relating to data

CHAPTER 5. MAGNETDROID REASONING MODULE 160

confidentiality, data integrity, and data authenticity are not defined within
the law itself. Therefore, they need to be supplied by a TKB. Likewise, all
the relevant_party/2 predicates need to be supplied by a TKB, as they refer

to the name and relevance of a particular Android application.

5.3 Phase 5: reasoning

Once we have a TKB, and a LKB, we can reason on their union. Recall
Section 3.3.3.2: the LKB makes use of certain security properties (data con-
fidentiality, data integrity, and data authenticity) without providing evidence
that shows their possible violation. Such evidence is always provided (if avail-
able) by the TKB. An example of a TKB complementing the LKB is available
in Appendix D. If no evidence that a property has been violated is provided,
it is assumed to be preserved. The act of integrating the evidence from
the TKB completes the LKB, and enables logical reasoning via Prolog. We

explain such queries in Section 5.3.1.

5.3.1 Queries

In Section 3.3.3.3 we discussed three main classes of queries: purely techno-
logical, comprehensive legal, and selective legal. In this Section we illustrate
them in the context of a unified Prolog knowledge base deriving from a TKB

and the LKB.

CHAPTER 5. MAGNETDROID REASONING MODULE 161

5.3.1.1 Purely Technological Queries

A MagnetDroid user may be interested in deriving the security issues that
MAP has identified without having to parse the final report. For instance,
they may be interested in every possible way in which a certain application
does not preserve data confidentiality. The user is also rather concerned
with the possibility that their private data could be seen by unauthorised
individuals. Therefore, his mindset is skeptical (see Section 3.3.3.1). Given
these premises, the user would formulate the following query !:

7~ data_confidentiality_issue(”appl73”, Evidence, Reason, ”skeptical”).
Essentially, what the user is interested in is whether the Android application
whose ID is app173 exhibits data confidentiality issues for some Reason, and

according to some FEwvidence. A possible result of the query is the following:

Evidence = ”final_report”,

Reason = ”plain_http_network_activity”.

What the query result tells the user is that, according to the final report,
app173 exhibits a data confidentiality issue because it has engaged into net-

work activity by means of a cleartext protocol (plain HTTP).

5.3.1.2 Comprehensive Legal Queries

Another MagnetDroid user may be interested in discovering all the possible
ways in which a certain application violates the law. However, the user wants
to give the benefit of the doubt to the application. Therefore, they assume a

credulous mindset (see Section 3.3.3.1). Given these premises, the user would

! Actually, the user would interact with MagnetDroid via the MWA which formulates
the queries automatically, depending on the user’s choices. That is always true for all

queries of all types.

CHAPTER 5. MAGNETDROID REASONING MODULE 162

formulate the following query:

?— violates_law (”appl73”, Article, Evidence, Reason, ”credulous”).
Essentially, what the user is interested in is the set of all the Articles that
the Android application whose ID is app173 violates, together with all the
identifiable Reasons, and according to some Ewvidence. A possible result of

the query is the following:

Article = "Art._66(1)_of_part_3_of_the_2018_UK_DPA” ,

Evidence = ”final_report”,

Reason = [”"unmitigated_threat”, "data_confidentiality_issue”, "malicious_app”] ;
Article = "Art._66(1)_of_part_3_of_the_2018_UK_DPA” ,

Evidence = ”final_report”,

Reason = [”unmitigated_threat”, "data_confidentiality_issue”, "malicious_app”] ;
Article = "Art.._66(2a)_of_part_3_of_the_2018_UK_DPA” |

Evidence = ”final_report”,

Reason = [”unauthorised_processing”, "data_confidentiality_issue”, “"malicious_app”]
Article = "Art._66(2a)_of_part_3_of_the_2018_UK_DPA” ,

Evidence = ”final_report”,

Reason = [”unauthorised_processing”, "data_confidentiality_issue”, ”"malicious_app”] ;
Article = "Art._66(2a)_of_part_3_of_the_2018_UK_DPA” ,

Evidence = ”final_report”,

Reason = [”unauthorised_interference”, ”"data_confidentiality_issue”, ”"malicious_app”]
Article = "Art._.66(2a)_of_part_3_of_the_2018_UK_DPA” |

Evidence = ”final_report”,

Reason = [”unauthorised_-interference”, ”"data_-confidentiality_-issue”, ”"malicious_app”]
false .

What the query result tells the user is that, according to the final report,
app173 violates both Art. 66(1), and Art. 66(2) for many different Reasons.
In particular, limiting the explanation to the first result, Art. 66(1) was
violated because the application exhibits an unmitigated threat due to a
data confidentiality issue deriving from the fact that the application is a

malware.

CHAPTER 5. MAGNETDROID REASONING MODULE 163

5.3.1.3 Selective Legal Queries

A third MagnetDroid user may be interested in whether or not a certain
application violates the law. In particular, they do not care how, or which
specific articles. However, the user is interested in whether a credulous ap-
proach would produce different results from a skeptical approach. Therefore,
the user does not commit to any particular mindset, in order to bifurcate the
results. Given these premises, the user would formulate the following query:
?7— violates_law (?appl73”, ., Evidence, -, Mindset).
Essentially, what the user is interested in is whether the Android application
whose 1D is app173 violates any article of the law of any reason according
to some Fwvidence and a certain Mindset. Note the use of : in Prolog it

represents a don’t-care variable. A possible result of the query is the following;:

Evidence = ”final_report”,
Mindset = ”skeptical” ;
Evidence = ”final_report”,
Mindset = ”credulous” .

What the query result tells the user is that, according to the final report,
app173 violates the law according to both mindsets.

5.4 MWA: Interacting with MagnetDroid

In Section 5.3 we discussed how MRM enables and supports Prolog queries
on the union of TKB and LKB. In Section 5.3.1 we showcased some of the
possible queries, together with their results. The main issue with such system
is that it requires specialised knowledge to formulate queries, and understand

their results. The amount of specialised knowledge that is so far required in

CHAPTER 5. MAGNETDROID REASONING MODULE 164

order to interact with MagnetDroid as a whole could be too much for most
users. Therefore, we designed and built a MagnetDroid Web Application that

allows average users to interact with the system in a human-friendly fashion.

5.4.1 Parameterised Analysis and Queries

The MWA is the entry point for MagnetDroid. In that regard, it allows for

three main use cases:

e Upload an APK to analyse with a subset of the available tools (which

are selectable), in order to produce a final report.

e Run a query on an APK for which a final report already exists. The
query is automatically built by selecting its properties (e.g., the type,

the legal articles to consider, etc.).

e A full run consisting of a sequential run of the two above use cases.

Additionally, a user can toggle their own type (default: regular user), in

order to have the results presented in different fashions (see Section 5.4.2).

5.4.2 Visualisation of the Results

The other main purpose of the MWA is to visualise the results of the queries
performed within MRM in a human-friendly fashion, and with an explanation
that is tailored to each kind of user. Each run of MagnetDroid produces a
result that is visualised as a row in a table. The table has three columns:
App Info, Security Issues, and Legal Violations. Fach cell contains a clickable

link to the relevant information: the Android application info (i.e., metadata

CHAPTER 5. MAGNETDROID REASONING MODULE 165

such as name, package name, etc.), the identified security issues (consisting
of the final report, and the query result, if applicable), and the identified legal
violations (consisting of the query result, if applicable). However, rather than
presenting the raw result of a query, a textual interpretation of the reason
behind the result is given. By toggling the user type, it is possible to switch
between multiple interpretations which are tailored to the selected user type.
Visualising a detailed screenshot of the aforementioned interpretation in a
PDF like this thesis would not explain much. Therefore, in the following
listing we present the three different interpretations of a violation of Art.
66(1) of the 2018 UK DPA (see Section 5.2.1) triggered by the analysed
Android application using plan HTTP for its network activity.

Developer

Art. 66(1) of Part 3 of the 2018 UK DPA has been violated:

— The application uses plain HTTP, which, being vulnerable
to a Man—-In—The—Middle (MITM) attack, is enough to
compromise data confidentiality , data integrity , and data
authenticity , according to the selected skeptical mindset.
The probable cause is the use within the code of a

HttpURLConnection with an ”"http://” URL.

Legal Scholar

Art. 66(1) of Part 3 of the 2018 UK DPA has been violated:

— An unmitigated risk caused by the use of the insecure
plain HTTP protocol has been identified. Any data sent
via plain HTTP can be intercepted and modified by

an attacker having access to the connection.

Regular User

Art. 66(1) of Part 3 of the 2018 UK DPA has been violated:

— The use of plain HITP makes so that any data sent
through the Internet can be intercepted and modified by

an attacker having access to the connection.

Thanks to the visualisation of different explanations we can present the out-

put of queries in a way that is friendly to different kinds of users.

CHAPTER 5. MAGNETDROID REASONING MODULE 166

5.5 Summary

We have presented the most important aspects of our implementation of
MRM, and of the visualisation of its results (via MWA). We explained a
knowledge extractor that derives a Prolog TKB from a MAP final report,
and a set of fixed rules. We then discussed how we manually derived a
LKB from a subset of the 2018 UK DPA, and explained how Prolog can
be employed to support different kinds of queries on the union of TKB and
LKB. Finally, we showed how we use the MWA to present the results of the

aforementioned queries to different kinds of users.

Chapter 6

Discussion

In the last three Chapters we presented MagnetDroid. In this Chapter we
investigate the goodness of our approach and implementation of the system.
We structure this Chapter as follows. In Section 6.1 we investigate whether
the high level approach described in Chapter 3 is suitable towards the goals
we stated in Section 3.2. Section 6.2 investigates whether the ASO is a rea-
sonable model for the security issues that can impact Android applications.
Section 6.3 explores whether MAP provides a workable environment for in-
tegrative analysis, and Section 6.4 investigates whether the relation between
the security issues identified by MAP, and the legal violations identified by
MRM.

We can anticipate that some of the above questions required an experimental
evaluation for us to determine their goodness. However, for some of the oth-
ers, we were able to provide justifications based on widely accepted standards
and best practices. We want to stress that we envision MagnetDroid as a

foundation for future work on the subject. Therefore, we do not claim that

167

CHAPTER 6. DISCUSSION 168

it is able to solve all the issues that the stat-of-the-art has not addressed yet.

6.1 Justification of the High Level Approach

In this Section we investigate whether the high level approach described in
Chapter 3 is suitable towards the goals stated in Section 3.2. In Section 2.4
we identified a disconnect between the lacking legal response to privacy and
the technological analysis that aims at identifying security issues that im-
pact privacy. Lacking refers to the use by the law of technical terms that
are not further defined, and left vague. We take the mandatory interpre-
tation process of the relevant law in court cases as hard evidence of such
vagueness. The core issue is clear: the languages of security analysis and law
prevent any standardisable cooperation between the two domains. While
interpretation is not disappearing anytime soon (nor we claim it should), it
is undeniable in our opinion that it would significantly benefit from factual
evidence coming from a standardised technological analysis. Additionally,
such evidence, being the fruit of analysis, can be known in advance before a
case is even brought to a court. That is advantageous, because it offers pro-
tections to regular users (e.g., “should I use this application”), and because it
offers developers and publishers an early detection technique to prevent legal
issues stemming from negligence (e.g., inherent vulnerabilities in published
applications). Therefore, we claim that our approach provides an analysis
based interpretation to the legal domain, which can only be useful, given the
limitations of the current state-of-the-art. That is, of course, if the result

of our analysis is not grossly misleading. Debunking that possibility is the

CHAPTER 6. DISCUSSION 169

purpose of our experimental evaluation of MagnetDroid (see Section 6.3 and

Section 6.4).

6.2 The significance of ASO

Validating our Android Security Ontology is a necessary step towards validat-
ing MagnetDroid as a whole. Recall that ASO is an input to MAP. It is widely
recognised that inadequate inputs provide a straightforward path towards
meaningless outputs, according to the garbage in - garbage out (GIGO) [69]
principle. Even worse, no amount of excellent internal processing can sub-
vert GIGO. The main declared purposes of ASO (see Section 3.3.2.2) are to
encompass the relevant security issues that an Android application can face
at the application level (i.e., everything the application has the control of),
and to provide a standard format (syntax and semantics) to express them.
However, there is more to it: as detailed in Section 3.3.2.2, each state variable
representing a single issue has 3 indexes (plus some corresponding classes for

syntactic sugar). We discuss these indexes in turn.

6.2.1 Absolute Relevance Index

The Absolute Relevance Index (ARI) aims to assign a higher value to the
more serious security problems, and lower values to less serious security prob-
lems. More specifically, an ARI value only refers to the seriousness of the
issue per se, irrespective of the analysis. As such, the ARI for a specific state
variable is immutable, and not dependent on the analysis. For instance, the

state variable representing the application reputation (e.g., benign, malicious,

CHAPTER 6. DISCUSSION 170

suspicious, ...) is fixed to 10, because a malicious application represents on
of the greatest security problems, should it happen. Essentially, the purpose
of ARI is to provide a (partial) ordering of the security issues. It should sur-
prise nobody that we regard an untruthful or completely arbitrary ARI as
garbage input. Therefore, we need to justify how we assigned a value to each
state variable ARI. As we discussed in Section 2.2 and Section 3.3.2.2, we
sourced the Android threat model [70], and other [71] [72] Transport Security
and WebSec related standards, in order to build ASO. Many of the sources
already contain an implicit characterisation of the issues they describe in
terms of severity. Our job was to infer concrete numbers from them. We de-
cided against including the outcome of real world court cases in our process
to determine the ARIs for two main reasons. First, the law body that we
incorporated (2018 UK DPA) is relatively recent, and, therefore, not many
data are available. Second, and, more important, the outcome court cases
are not always proportionate to the offenses. We believe that interpretation
(always occurring in any court case) and factors such as punitive damages
(in civil cases) introduce a bias leading to more importance being assigned
to the security issues that are perceived to be more important by judges and
common people, rather than to those issues that are more important, as

recognised by security professionals.

6.2.2 The Impact Indexes

The other indexes (Minimal Impact Index - MIII and Maximal Impact Index -
MXII) represent how serious a certain security issue that has been identified

by the analysis is. Their existence support the twofold mindset (skeptical

CHAPTER 6. DISCUSSION 171

vs credulous) described in Section 3.3.3.1. In this section, we provide a
justification for our choice of a twofold mindset, and a justification of the
values we assigned to the MIII and MXII of each state variable (much like
ARI).

We start by recognising that one can make a reasonable case that the same
vulnerability may have a different impact, depending on the context. For
instance, transmitting anonymised diagnostics data from an application to a
server in cleartext, as deplorable as it is, has arguably a lower impact than
sending a password in cleartext to a server. The keyword is arguably. One
can also make the case that cleartext communications must not be performed
at any time (except perhaps when it is unavoidable due to terrible constructs
such as WIFT captive portals which can’t be helped by the developer), be-
cause they are inherently dangerous. In the interest of providing results that
reflect both points of view to the users of MagnetDroid, we included a MIII
and a MXII for each state variable. That way, it is possible to bifurcate the

reasoning (see Section 5.3).

6.2.2.1 Values for MIII and MXII

Having made the case for the existence of MIII and MXII within each ASO
state variable, we now need to justify how we assigned their values. We based
our selection on the same sources that we used to build ASO in the first place.
The difference with ARI is that MXII and MIII are context dependent, as
explained in the previous section. Therefore, their value is tailored to the ac-
tual issues found by the analysis and contained in the translated reports. As

such, the values of MIIT and MXII are determined by MAPTranslatingAgents

CHAPTER 6. DISCUSSION 172

for translated reports, and by the MAPAggregatingAgent for the final report.
Finally, as the names suggest, MXII is axiomatically greater than or equal
to MIII under all circumstances.

To summarise our take on ASO, we believe that it accurately represents
the most significant security issues that an Android application can face,
together with some metadata that are useful and used while reasoning (see
Chapter 5). We support our claim by referencing established threat models
and international standards. Therefore, in the next sections of our evaluation
of MagnetDroid, we will assume that ASO does not constitute an instance

of Garbage Input.

6.2.3 The Nature of DNS Issues

In our ASO we regard plain DNS queries that are used to resolve domain
names needed by an Android application in order to initiate some kind of
network activity as application security issues. It is known that, by default,
DNS resolution is managed by the underlying OS. Therefore, it appears that
plain DNS queries should be classified as a platform issue, and thus ignored
by MagnetDroid as per Section 2.1.4. However, there is a catch. While it is
true that DNS resolution is an OS matter by default, it is possible for An-
droid applications to resolve DNS names without involving the OS, by means
of DNS-over-HTTPS (DoH) [73]. DoH (not to be confused with DNS-over-
TLS [74] which simply wraps OS-initiated DNS activity with the TLS proto-
col) is a protocol that allows any kind of application software (not necessarily
Android or even mobile applications) to perform DNS queries to a resolver

(that also supports DoH) wrapping the request within HTTP which, in turn,

CHAPTER 6. DISCUSSION 173

is wrapped with TLS (as per textbook HTTPS). The important points are
that every message to and from the DNS resolver is seen as regular HT'TPS
traffic by an external observer (e.g., a MITM), and the OS is not involved in
crafting any DNS query and/or interpreting its results.

For Android applications the flow is as follows. Normally, whenever a domain
name is given in input to a (SSL)Socket or an HTTP(S)URLConnection, the
application delegates the resolution of such name to the OS. Therefore, it
has no control over how that kind of DNS requests are made. However,
it is not mandatory for the hostname to be a domain name when open-
ing a connection to a remote endpoint. In fact, both (SSL)Socket and
HTTP(S)URLConnection work well with IP addresses as hostnames. How-
ever, an HTTPSURLConnection still needs a proper domain name, but that
can be specified in the Server Name Indication (SNI) [75] TLS extension in
the Client Hello or Encrypted Client Hello (the latter still in its infancy).
Notably, SNI does not trigger any DNS request.

The core point is that an application can rely on DoH to resolve a DNS name,
and then use the IP address as the hostname, therefore avoiding OS-initiated
DNS queries. As such, since there is an effective mitigation at the application
level, the plain DNS issue can be considered an application issue.

To prove the point, we built a library that allows developers to initiate
HTTPS connections (or connections with custom protocols over an SSLSocket)
that automatically use DNS-over-HTTPS to resolve the domain name with

one line of code. The library is available at https://git.io/JDOTgq.

https://git.io/JDOTq

CHAPTER 6. DISCUSSION 174

6.3 Experimental Evaluation: MAP

The goal of this section is to investigate whether MAP is a suitable platform
for integrative analysis. We believe such goal requires an experimental eval-
uation of the flow of the MAP phases. As MAP is only a sub-component of
MagnetDroid, we limited the scale of our experiments. The full-scale experi-
ments on the full low of MAP + MRM described in Section 6.4 complement

the small-scale experiments described in this Section.

Setup Our setup for the small-scale experimental evaluation consists of
two Virtual Machines (VMs) with 8 GB of RAM each in which an inde-
pendent version of MAP is booted. We enabled all the tools described in
Section 4.3.1.3.

Samples Our sample set consists of 100 APKs mainly obtained from the
AndroZoo [76] dataset. We only selected applications whose year of publica-
tion of their analysed version is at least 2018. We included a known malware

(whose package name is com.qrcodescanner.barcodescanner).

Results Of the 100 analysed applications, 7 caused a crash in MalloDroid,
while the other tools were able to produce a raw report for all of them. 80 out
of 100 of the analysed applications did not exhibit any ASO-relevant issue in
the final report. Among those that did exhibit ASO-relevant security issues,
19 of them performed at least a plain DNS connection (without DNSSEC),
and initiated at least a plain HTTP connection to a server at least once.

10 out of 100 requested at least one permission that was not needed. 1 out

CHAPTER 6. DISCUSSION 175

H Prevalence N/100

Others '
Malware '

Too broad permissions

panirre. (D
e e T s s
0 2z 4 6 8 10 12 14 16 18 20

Plain DNS

Figure 6.1: Prevalence of the security issues: The barplot shows the security issues
identified by the integrative analysis. The X axis indicates the number of applications for

which a certain issue (Y axis) was reported.

of 100 was classified as a malware (the one application where we had prior
knowledge of its maliciousness). All applications that exhibited encrypted
network communications by means of TLS 1.2+ correctly aborted the TLS
handshake when presented with an injected SERVER_HELLO message se-
lecting TLS ciphersuites marked as insecure by the Qualys SSL Labs threat
model [71]. No conflicts were recorded during any Phase 3: aggregation.

Figure 6.1 illustrates the prevalence of the identified issues.

Comment on the results Despite the strong incentive to encrypt all net-
work communications with sound protocols (such as TLS 1.3, or the Signal
protocol), there are still some bubbles of resistance in terms of the use of
trivially insecure protocols, such as plain HTTP for network communica-
tions. Our opinion is that the issue derives by the failure of the Android API

to present HTTPS connections as an opinionated default, as opposed to the

CHAPTER 6. DISCUSSION 176

(unfortunately) much easier to use, but insecure HTTPURLConnection with an
hittp://... URL. Additionally, despite the current push from companies such
as Google, Cloudflare, and Mozilla towards a more secure DNS model (via
DNS-over-TLS and/or DNS-over-HTTPS), the experiments show that old
plain DNS queries (even without DNSSEC) are still broadly used. Moreover,
this first batch of experiments seems to confirm that a non-negligible num-
ber of Android applications ask for too broad permissions. Finally, MAP
successfully included in the final report of the analysis of the only known

malware its status as a malicious application.

6.4 Experimental Evaluation: MRM

In this section we investigate whether MAP and MRM constitute an appro-
priate bridge between security-oriented Android application analysis, and the
law. In that regard, we believe a large-scale experimental evaluation of the

combined flow of MAP and MRM is required.

Setup Once again, our setup for the small-scale experimental evaluation
consists of two Virtual Machines (VMs) with 8 GB of RAM each in which an
independent version of MAP is booted. We enabled all the tools described
in Section 4.3.1.3. In terms of queries, we opted for the comprehensive legal

queries, as they maximise the testing coverage of MRM.

Samples Our sample set consists of 10,000 APKs mainly obtained from
the AndroZoo [76] dataset. We only selected applications whose year of

publication of their analysed version is at least 2018. We included 10 known

CHAPTER 6. DISCUSSION 177

malicious applications.

Results Of the 10,000 analysed applications, 217 could not be run within
an Android Virtual Device (because of crashes). Therefore, among the tools,
Bettercap, CSP-checker, and OCSP-checker could not produce any raw re-
port. Of the 10,000 analysed applications, 1,205 cased MalloDroid to crash,
and, as such, the tool could not produce a raw report for them. The 9793 An-
droid applications for which at least a raw report was produced collectively
triggered 6,741 security issues. Out of 9793, 7034 applications (roughly 72%)
did not trigger any detectable ASO-relevant issue. As such, we conclude
that either they do not violate the law, or we were not able to demonstrate
that they do. Given the number of identified security issues, the remaining
2795 applications triggered on average 2.44 issues each. Most of the issues
(roughly 60%) regard either the use of plain DNS (34%), or the use of plain
HTTP (26%). 10% of the identified issues relates to Android applications
requesting at least one permission that was not needed. Roughly 12% of
the remaining issues relates to insecure TLS (either obsolete versions of the
protocol, or insecure parameters such as ciphersuites). The remaining issues
refer to other ASO-relevant concepts such as maliciousness (21 instances),
etc. No conflicts were recorded during any Phase 3: aggregation. Figure 6.2

illustrates the partition of the identified issues.

Legal Findings According to the comprehensive legal queries that look
for all the possible links between ASO-relevant security issues and legal vi-
olations, under the skeptical mindset, all 6,741 security issues triggered the

violation of both Art. 66(1) and Art. 66(2), for a total of 28312 different

CHAPTER 6. DISCUSSION 178

B Total Number of issues

overs (D
Malware '
TLS issues (grouped) —
Too broad permissions —

Plain HTTP

panons | (D
.-

0 100 200 300 400 500 600 TOO BOO 900 1000

Figure 6.2: Prevalence of the security issues: The barplot shows for the top cate-
gories of issues, how many times they were reported by the integrative analysis. The X

axis indicates the number of applications for which a certain issue (Y axis) was reported.

violations (roughly 4.2 per issue). In that scenario, 100% of the applications
that exhibited at least a security issue triggered at least a legal violation.
Conversely, under the credulous mindset, the 6,741 security issues triggered
only 2649 legal violations, roughly 0.39 per issue. In that scenario, only 63%
of the applications that exhibited at least a security issue triggered at least
a legal violation. Figure 6.3 illustrates the relation between identified issues,

and legal violations under the skeptical and credulous mindsets respectively.

Comment on the results With regard to the identified security issues,
the comments we made in Section 6.3 still apply. With regard to the relation
between the identified security issues, and the identified legal violations, it
is not surprising that the skeptical mindset revealed a strong correlation
(i.e., every single security issue triggered at least a legal violation), while

the credulous mindset revealed a much weaker correlation (i.e., each security

CHAPTER 6. DISCUSSION 179

W Security Issues
W Legal Issues

Skeptical Credulous

Figure 6.3: Relation between security issues and legal violations: The barplot
shows for both the skeptical and the credulous mindsets, how many legal violations where

triggered by the identified security issues.

issue triggered on average 0.39 legal violations).

6.5 Summary

We evaluated our thesis’ contributions with respect to the goals of the work.
We discussed how reasonable the high level approach, ASO, MAP, the model
of the law, and MRM are. When possible, we relied on existing standards,
and industry best practices to provide answers to our enquiries. When not
possible, we relied on two separate experimental settings that informed our
evaluation. The obtained results suggest that MagnetDroid is indeed a step-
up from the state-of-the-art for developers, users, and legal experts, and
solid ground for future work on the subject. Indeed, the advantages of an
integrative approach open up new directions for application analysis. These

advantages and the limitations of our work are discussed in the next Chapter

CHAPTER 6. DISCUSSION 180

that completes the work of this thesis.

Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

In this thesis we have presented MagnetDroid, a bridge between security,
privacy, and the law for Android applications.

We started our work by analysing the concept of privacy from different points
of view: philosophical, legal, and technological. We established privacy of
data as our subject of interest, and regarded security as a necessary con-
dition for it. We focused, in particular, on the problem of data privacy
in the context of Android applications, explicitly disregarding servers and
non-Android software. In that regard, we discussed how the legal and tech-
nological states-of-the-art do not manage privacy-impacting security issues
effectively. In particular, we identified the lack of a cooperative approach
between technology and the law, due to a semantic disconnect. Additionally,
we identified the lack of systematic cooperative approach between different

security-oriented Android application analysis tools. As a result, we made

181

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 182

our primary goal to bridge the gap between security-oriented Android appli-
cation analysis and the law, so that it becomes possible to identify legal issues
related to data privacy from security issues related to Android applications.
To experiment with these ideas, we selected a subset of the 2018 UK DPA
as the representative for the law on data protection.

We then proposed a novel approach to bridge the gap between Android ap-
plication analysis and the law by designing MagnetDroid. First, this system
uses a novel Android Security Ontology (ASO) to express the common se-
curity issues in the context of Android applications in a standard format.
Second, we designed the MagnetDroid Agent Platform (MAP) that, given
an APK and a set of analysis tools, runs the tools in parallel on the APK,
and collects, translates, and aggregates the reports under ASO, resulting in
a technological final report. Third, we designed a MagnetDroid Reasoning
Module (MRM) which derives a Technological Knowledge Base (TKB) from
each final report and some fixed rules regarding security. We unified each
TKB with a hand-compiled Legal Knowledge Base (LKB), which we derived
from a subset of the 2018 UK DPA. We also identified normal logic pro-
grams as a way to support logical reasoning and queries on the union of the
knowledge bases, so that it is possible to determine, under our interpretation,
which identified security issues trigger which legal consequences. Finally, we
designed a MagnetDroid Web Application as an interface to the system, and
to present the query results to different kinds of users: developers, legal
experts, and regular users.

We implemented MAP as a multi-agent platform with the goal of minimising

agility in order to maximise extensibility (i.e., future support for new analysis

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 183

tools). In doing so, we took advantage of the innate properties of semi-
autonomous agents (such as communication, coordination, and cooperation),
as well as the algorithmic nature of the sub-requirements of our main goal.
We also implemented MRM by selecting Prolog as the language for TKB,
LKB, and queries. We implemented MWA as a simple web application that
presents to different kinds of users a customised explanations of the query

results.

7.2 Future work

We envision MagnetDroid as the foundation layer for a new cooperative ap-
proach to data privacy between technology and the law. The current proof-
of-concept implementation has limitations that open the possibility of future

research directions.

e At present, only 5 tools are supported by MAP. More can be added
by virtue of the easy extensibility of the platform, as explained in Sec-
tion 4.7. Additionally, if a tool produces a report that is already ASO-
compatible, it would be possible to completely bypass Phase 2: trans-

lation for that particular report.

e Currently, MagnetDroid is limited by the believability of the analysis
tools upstream. The conflict management mechanism is able to detect
(and remove from further use) some incorrect results at the expense of
removing a likely correct result as well. Additionally, if an unsolvable
conflict is found is Phase 3: aggregation of MAP, it is not possible to

determine whether the security issue represented by the state variable

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 184

whose value cannot be determined (due to the conflict) is real or not.
Therefore, such security issue is ignored by MRM. A possible extension
to MAP could assign a value of trustworthiness to each tool, and use it,
together with a voting system, to solve at least some of the currently

unsolvable conflicts.

e Right now, only a small subset of the 2018 UK DPA is translated into a
LKB. Additionally, the compilation of the LKB is not automated. One
interesting direction in the future would be to employ natural language
processing in order to automate the process, as well as incorporating

more legal rules and regulations.

e As of now, human users have not been involved in testing the visuali-
sation of the MRM results via MWA. A feedback from real users could
be employed to further tailor the experience to the needs of developers,

legal experts, and regular Android application users.

Additionally, while MagnetDroid was designed with a limited technological
perspective in mind (i.e., the focus on Android applications), many of its ideas
can be recycled to build a bridge between any kind of software application
and the relevant law on data protection. A future research direction could be
to design security ontologies for different kinds of software applications, and
to implement an agent environment in which arbitrary software applications
can be analysed by the appropriate tools.

While all of the above was out-of-scope for this thesis, we believe it could
stimulate researchers to raise to the challenges, and propose novel and inter-

esting extensions to MagnetDroid.

Appendix A: MAP agents

actions

This appendix contains the concrete action that the agents described in Sec-

tion 4.3.1.2 can attempt within the MAPEnvironment.

MAPCoordinatorAgent A MAPCoordinatorAgent can attempt the fol-

lowing actions:

e MAPStartPhaselAction which, given the metadata of a set of available
analysis tools, and an APK, forwards them to an appropriate set of

MAPWorkerAgents, officially starting Phase 1: parallel analysis.

e MAPStopPhaselAction which, upon receiving all the raw reports (or er-
ror signals) from the MAPWorkerAgents, stores them for the next phase,

officially ending Phase 1: parallel analysis.

e MAPStartPhase2Action which, given the raw reports, sends them to
the appropriate MAPParsingAgents, officially starting Phase 2: trans-

lation.

185

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 186

e MAPStopPhase2Action which, upon receiving all the translated reports
from the MAPTranslatingAgents, stores them for the next phase, offi-

cially ending Phase 2: translation.

e MAPStartPhase3Action which, given the translated reports (ASO in-
stantiations), sends them to a MAPAggregatingAgent, officially starting
Phase 3: aggregation.

e MAPStopPhase3Action which, upon receiving the final report from the
MAPAggregatingAgent, stores it for future use, officially starting Phase
3: aggregation, and the MAP flow with it.

As the actions suggest, the MAPCoordinatorAgent is essentially the supervi-
sor that links together the other agents of MAP, and propagates the inter-

mediate products of each phase to the successive phase.

MAPWorkerAgent A MAPWorkerAgent can attempt the following ac-

tions:

e MAPStartAnalysisAction which, given the paths of an APK and of
an Android application analysis tool, starts the analysis of such tool

on the APK, by interacting with the appropriate MAPBody.

e MAPInputAction which, provides an input to a running tool (e.g., an
injectable event into an Android emulator UI) by interacting with the

appropriate MAPBody.

e MAPStopAnalysisAction which stops the analysis of a running tool

(unless it is already over) by interacting with the appropriate MAPBody.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 187

e MAPRetrieveRawReportAction which retrieves the raw report gener-
ated by the tool (if available) by interacting with the appropriate
MAPBody.

e MAPDataTransferAction which can be used to send data to another
MAPAgent, enabling, therefore, an effective form of agent communica-
tion. A MAPWorkerAgent uses it to send the raw report (or an error

signal) to the MAPCoordinatorAgent.

MAPParsingAgent A MAPParsingAgent can attempt the following ac-

tions:

e MAPIdentifyReportAction which, given a raw report, identifies its

nature as either a narrative, or a collection of facts.

e MAPRemoveUselessDataAction which, given a raw report (or its rem-
nant), edits it by removing all the ASO-irrelevant information that can
be identified according to the pseudo-grammar of the report that the

MAPParsingAgent possesses.

e MAPExtractUsefulDataAction which, given a raw report (or its rem-
nant), edits it by extracting all the ASO-relevant information that can
be identified according to the pseudo-grammar of the report that the
MAPParsingAgent possesses. The extracted information is stored in

the working memory of the MAPParsingAgent.

e MAPProduceIntermediateReportAction which, given the stored ASO-
relevant information, and the raw report nature, produces either a nar-

rative report, or a factual report.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 188

e MAPDataTransferAction which can be used to send data to another
MAPAgent, enabling, therefore, an effective form of agent communica-
tion. A MAPParsingAgent uses it to send the produced intermediate

report (either narrative, or factual) to the right MAPTranslatingAgent.

MAPTranslatingAgent A MAPTranslatingAgent can attempt the fol-

lowing actions:

e MAPIdentifyStateVariable which, given an intermediate report (ei-
ther narrative, or factual), and ASO, identifies a state variable that can

be instantiated from the content of the intermediate report.

e MAPInstantiateStateVariable which given an intermediate report
and a state variable, instantiates the state variable from the content
of the report. The instantiated state variable is stored in the working

memory of the MAPTranslatingAgent.

e MAPProduceTranslatedReportAction which, given the stored instan-

tiated state variables and ASO, produces a translated report.

e MAPDataTransferAction which can be used to send data to another
MAPAgent, enabling, therefore, an effective form of agent communica-
tion. A MAPTranslatingAgent uses it to send the produced translated

report to the MAPCoordinatorAgent.

MAPAggregatingAgent A MAPAggregatingAgent can attempt the fol-

lowing actions:

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 189

e MAPCheckForConflict which, given a set of translated reports, checks
whether, for a specific state variable, a conflict arises among at least

two translated reports with respect to the value of such state variable.

e MAPCopyStateVariable which copies the value of a state variable (or
the derived value from a MAPConflictSolverAction, or a Conflicting
value) to the work-in-progress final report in the internal memory of

the MAPAggregatingAgent.

e MAPConflictSolverAction which attempts to derive an acceptable
value for a state variable of the final report when a conflict arises be-
tween at least two translated reports with respect to the value of such
state variable. If no acceptable value can be derived, a Conflicting

value is produced instead.

e MAPProduceFinalReport which, given the in-memory stored informa-
tion regarding the ASO state variables and ASO itself, produces the
final report.

e MAPDataTransferAction which can be used to send data to another
MAPAgent, enabling, therefore, an effective form of agent communica-
tion. A MAPAggregatingAgent uses it to send the produced final report

to the MAPCoordinatorAgent.

Appendix B: Raw Report

Example
The following is a raw report generated by the Bettercap tool (see Sec-
tion 4.3.1.4).
[14:10:14] [sys.log] [inf]
Loading proxy script caplets/http-req-dump.js ...
[14:10:14] [sys.log] [inf]
Loading proxy certification authority TLS key from
/root/.bettercap-ca.key.pem
[14:10:14] [sys.log] [inf]
Loading proxy certification authority TLS certificate from
/root/.bettercap-ca.cert.pem
[14:10:14] [sys.log] [inf]
Loading proxy script caplets/http-req-dump.js ...
[14:10:14] [sys.log] [inf]
http.proxy started on 192.168.1.3:8080 (sslstrip disabled)
[14:10:14] [sys.log] [inf]

https.proxy started on 192.168.1.3:8083 (sslstrip disabled)

190

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 191

192.168.1.117/24 > 192.168.1.3 >> [14:10:14] [sys.log] [inf]
You are running 2.7 which is the latest stable version.
192.168.1.117/24 > 192.168.1.3 >> [14:10:21] [net.sniff.leak.http]
http local POST example.com Mozilla/5.0 (X11; Android arm; rv:78.0)
Gecko/20100101 Firefox/78.0

Method: POST
URL: /
Headers:
Host: example.com
User-Agent: Mozilla/5.0 (X11; Android arm; rv:78.0)
Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/%*;9=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive
Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

Form:
mgtxt => This message will be intercepted.
sendbtn => Send
nmtxt => U. N. Owen

action => send

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 192

192.168.1.117/24 > 192.168.1.3 >> [14:11:32] [net.sniff.leak.http]
http local POST example.com Mozilla/5.0 (X11; Android arm; rv:78.0)
Gecko/20100101 Firefox/78.0

Method: POST
URL: /login
Headers:
Host: example.com
User-Agent: Mozilla/5.0 (X11; Android arm; rv:78.0)
Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/%*;9=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive
Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

Form:
password => ifeellikeimbeingwatched
submit =>

username => cloudstrife9999

Appendix C: Pseudo-grammar

Example

The following is an example of pseudo-grammar for the tool Bettercap.

{
"expected_report_type": "narrative",
"narrative_watchdogs": [
"“\[[0-91{2}\: [0-91{2}\: [0-91{2}\]"
1,
"known_uninteresting_patterns": [
"You are running .+",
""\L0-9]{2}\: [0-9]{2}\: [0-9]{2}\]",
"\[sys\.log\]",
"[stable|betalalpha|development|dev] version",
"“\s*[W|w]elcome to bettercap \!?",
"Wifi access point",
"arp spoofer started",
"http.proxy started",

"https.proxy started",

193

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

],

"dns.spoof .+ \-> .+",
"targets: .+",

"Loading proxy .+",

"potentially_interesting_patterns": [

],

"sending spoofed DNS",
"sending spoofed ARP",
"Found strippted HTTPS link",
"Stripping \d+ HTTPS lines",

"net.sniff.leak.http"

"interesting_patterns": [

"http local POST",
"http local GET",
"http local HEAD",
"http local PUT",
"http local TRACE",
"http local OPTIONS",
"http local DELETE",
"https local POST",
"https local GET",
"https local HEAD",
"https local PUT",

"https local TRACE",

194

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 195

"https local OPTIONS",
"https local DELETE",

"Received request for .+"

Appendix D: Example of a
TKB complementing a LKB

The following is an example of how a TKB complements a LKB by provid-
ing the definition of some fluents that are undefined in the LKB. Note that
data_confidentiality_issue, data_integrity_issue, and data_authenticity_issue are

undefined in the LKB, and provided by the TKB.

00/070707/0707070707070707070707070707/070707070

% Legal Knowledge Base %

0/07/0/0/0707070/070707070/070707070/0707070/070
:— [tkb]. % Importing the TKB.

violates_law (App, Article, Evidence, FullReason, Mindset)
violates_uk_dpa (App, Article, Evidence, Reason, Mindset),

reverse (Reason, FullReason).

violates_uk_dpa (App, "Art._.66(1)_of_part_3_of_the_2018_UK_DPA”, Evidence, Reason, Mindset) :—

in_scope(”3.66_.17),
violates_-3_.66_1 (App, Evidence, Reason, Mindset).

violates_uk_dpa (App, Article, Evidence, Reason, Mindset) :—
violates_-3_.66_-2 (App, Article, Evidence, Reason, Mindset).

violates_-3_.66_-1(App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
unmitigated_risk_found (App, Evidence, Reason, Mindset).

violates_3_66_1 (App, Evidence, Reason, Mindset) :—

relevant_party (App, Evidence),
unmitigated_threat_found (App, Evidence, Reason, Mindset).

196

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 197

relevant_party (Party, Evidence) :—

controller (Party, Evidence).

relevant_party (Party, Evidence) :—

processor (Party, Evidence).

controller (Party, Evidence) :—

app(Party , Evidence).

processor (Party, Evidence) :—

app (Party , Evidence).

unmitigated_risk_found (App, Evidence, FullReason, Mindset) :—
risk (Risk, Evidence),
unmitigated (App, Risk, Evidence, Mindset, Reason),
append (Reason, [”unmitigated_risk”], FullReason).

unmitigated_threat_found (App, Evidence, FullReason, Mindset) :—
threat (Threat, Evidence),
unmitigated (App, Threat, Evidence, Mindset, Reason),
append (Reason, [”unmitigated_threat”], FullReason).

unmitigated (App, RiskOrThreat, Evidence, Mindset, Reason)
inappropriate-security (App, RiskOrThreat, Evidence, Mindset, Reason).

inappropriate_security (App, RiskOrThreat, Evidence, Mindset, Reason) :—
data_confidentiality_issue (App, Evidence, RiskOrThreat, Mindset),
append ([RiskOrThreat], [”data_confidentiality_issue”], Reason).

inappropriate_security (App, RiskOrThreat, Evidence, Mindset, Reason) :—
data_integrity_issue (App, Evidence, RiskOrThreat, Mindset),
append ([RiskOrThreat], [”data_integrity_issue”], Reason).

inappropriate_security (App, RiskOrThreat, Evidence, Mindset, Reason) :—
data_authenticity_-issue (App, Evidence, RiskOrThreat, Mindset),
append ([RiskOrThreat], [”data_authenticity_issue”], Reason).

violates_3_66_2 (App, "Art._66(2a)_of_part_3_of_the_2018_UK_DPA”, Evidence, Reason, Mindset)
in_scope(73_-66_-2a”),

violates_-3_66_2a (App, Evidence, Reason, Mindset).

violates_3_.66_-2 (App, "Art.._66(2b)_of_part_3_of_the_.2018_UK_DPA” , Evidence, Reason, Mindset)
in_scope(”3.66_2b”),
violates_3_66_-2b (App, Evidence, Reason, Mindset).

violates_-3_.66_-2 (App, "Art._66(2c)_of_part_3_of_.the_-2018_UK_-DPA”, Evidence, Reason, Mindset)
in_scope (73.66_.2c”),
violates_3_66_2c (App, Evidence, Reason, Mindset).

violates_3_66_2 (App, "Art._66(2d)_of_part_3_of_the_2018_UK_DPA” , Evidence, Reason, Mindset)
in_scope(73-66-2d”),
violates_3_.66_2d (App, Evidence, Reason, Mindset).

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 198

violates_3_.66_2a (App, Evidence, FullReason, Mindset) :—
relevant_party (App, Evidence),
unauthorised_processing (App, Evidence, Reason, Mindset),

append (Reason, [”unauthorised_processing”], FullReason).

violates_3_.66_2a (App, Evidence, FullReason, Mindset) :—
relevant_party (App, Evidence),
unauthorised_interference (App, Evidence, Reason, Mindset),

append (Reason, [”unauthorised_interference”], FullReason).

% This will never be reportedby the TKB.

violates_3_.66_2b (App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
lack_of_transparency (App, Evidence, Reason, Mindset).

% This will never be reportedby the TKB.

violates_-3_66_2c (App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
lack_of_proper_functioning (App, Evidence, Reason, Mindset).

% This will never be reportedby the TKB.

violates_3_.66_2d (App, Evidence, Reason, Mindset) :—
relevant_party (App, Evidence),
availability_issue (App, Evidence, Reason, Mindset).

% If data confidentiality 4is broken, data can be processed by an wunauthorised party.
unauthorised_processing (App, Evidence, FullReason, Mindset) :—
data_confidentiality_issue (App, Evidence, Reason, Mindset),

append ([Reason], [”data_confidentiality_issue”], FullReason).

% If data integrity is broken, data can be processed by an wunauthorised party.
unauthorised_processing (App, Evidence, FullReason, Mindset) :—
data_integrity_-issue (App, Evidence, Reason, Mindset),
append ([Reason], [”data_integrity_-issue”], FullReason).

% If data authenticity is mnot satisfied , data can be processed by an unauthorised party.
unauthorised_processing (App, Evidence, FullReason, Mindset) :—
data_authenticity_issue (App, Evidence, Reason, Mindset),
append ([Reason], [”data_authenticity_issue”], FullReason).

% If data confidentiality is broken, an unauthorised interference becomes possible.
unauthorised_interference (App, Evidence, FullReason, Mindset) :—
data_confidentiality_issue (App, Evidence, Reason, Mindset),

append ([Reason], [”"data_confidentiality_issue”], FullReason).

% If data integrity is broken, an wunauthorised interference becomes possible.
unauthorised_interference (App, Evidence, FullReason, Mindset) :—
data_-integrity_issue (App, Evidence, Reason, Mindset),
append ([Reason], [”data_integrity_issue”], FullReason).

% If data authenticity ts not satisfied , an unauthorised interference becomes possible.
unauthorised_interference (App, Evidence, FullReason, Mindset) :—
data_authenticity_issue (App, Evidence, Reason, Mindset),
append ([Reason], [”data_authenticity_issue”], FullReason).

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 199

% What is in scope and out of scope in terms of the relevant articles of the law.

in_scope (”3.66_-1") :— true.

in_scope(”3_.66_.2a”) :— true.
in_scope(”73.66_2b”) :— false.
in_scope(”3.66_2c”) :— false.
in_scope(73-66-2d”) :— false.

% We are mnot interested in those.

lack_of_transparency (-, -, -, -) :— false.
lack_of_proper_functioning (-, -, -, -) :— false.
availability_issue(-, -, -, -) :— false.

00/070, 070, 070, 0/0707070

% Technological Knowledge Base %

007/070707070707070707070/0707070707070707070707/070707070707070

data_confidentiality_issue (”appl73”, ”final_report”, ”plain_http_network_activity”, ”skeptical”).
data_confidentiality_issue (”appl73”, "final_report”, ”"malicious_app”, ”credulous”).
data_integrity-issue ("appl73”, ”final_report”, ”"plain_http_network_activity”, ”"skeptical”).
data_authenticity_-issue (”appl173”, ”final_report”, ”"plain_http_-network_activity”, ”skeptical”).
app(”appl73”, ”final_report”).

risk (” plain_http_network_activity”, ”final_report”).

threat (” malicious_app”, ”final_report”).

Bibliography

1]

A. Narayanan and V. Shmatikov, “Myths and fallacies of” personally
identifiable information”,” Communications of the ACM, vol. 53, no. 6,

pp. 24-26, 2010.

N. Tabata, H. Sato, and K. Ninomiya, “Comparison of privacy con-
sciousness between younger and older adults,” Japanese Psychological

Research, vol. 63, no. 2, pp. 104-110, 2021.

A. F. Westin, “Privacy and freedom,” Washington and Lee Law Review,
vol. 25, no. 1, p. 166, 1968.

J. A. Blumenthal, M. Adya, and J. Mogle, “The multiple dimensions
of privacy: Testing lay expectations of privacy,” U. Pa. J. Const. L.,
vol. 11, p. 331, 2008.

P. M. Schwartz and D. J. Solove, “The pii problem: Privacy and a
new concept of personally identifiable information,” NYUL rev., vol. 86,

p. 1814, 2011.

J. Feinberg, The moral limits of the criminal law. Oxford University

Press, 1984.

200

BIBLIOGRAPHY 201

[7]

[12]

[13]

[14]

D. J. Hand and N. M. Adams, “Data mining,” Wiley StatsRef: Statistics
Reference Online, pp. 1-7, 2014.

K. Boda, A. M. Foldes, G. G. Gulyas, and S. Imre, “User tracking on the
web via cross-browser fingerprinting,” in Nordic conference on secure it

systems, pp. 31-46, Springer, 2011.

P. Eckersley, “How unique is your web browser?,” in International
Symposium on Privacy Enhancing Technologies Symposium, pp. 1-18,

Springer, 2010.

E. Uliana, K. Stathis, and R. Jago, “Magnetdroid: security-oriented

Y

analysis for bridging privacy and law for android applications,” in Pro-
ceedings of the Seventeenth International Conference on Artificial Intel-

ligence and Law, pp. 123-132, 2019.

G. Greenwald and E. MacAskill, “Nsa prism program taps in to user
data of apple, google and others,” The Guardian, vol. 7, no. 6, pp. 1-43,
2013.

J. Coggon, “Human dignity in bioethics and law by charles foster,”
Journal of Law and Society, vol. 39, no. 4, pp. 625-630, 2012.

“Scytale cipher.” Available at https://www.dcode.fr/
scytale-cipher - Retrieved: 2021-12-18.

“Caesar’s cipher.” Available at https://www.dcode.fr/
caesar-cipher - Retrieved: 2021-12-18.

https://www.dcode.fr/scytale-cipher
https://www.dcode.fr/scytale-cipher
https://www.dcode.fr/caesar-cipher
https://www.dcode.fr/caesar-cipher

BIBLIOGRAPHY 202

[15]

[17]

[18]

[19]

[20]

23]

F. Graf, “Confession, secrecy, and ancient societies,” Religion im kul-
turellen Diskurs, Religion in Cultural Discours: Festschrift fiur Hans G.
Kippenberg zu seinem 65. Geburtstag;, Essays in Honor of Hans G. Kip-
penberg on the Occasion of His 65th Birthday, pp. 259-71, 2004.

S. D. Warren and L. D. Brandeis, “The right to privacy,” Harvard law
review, pp. 193-220, 1890.

F. Petitcolas, “La cryptographie militaire,” 1883.

“Post office (revenues) act 1710.” Available at http://wuw.gbps.org.
uk/information/sources/acts/1710-11-25_Act-9-Anne-cap-10.
php - Retrieved: 2021-12-18.

P. Cirino, “Advertisers, celebrities, and publicity rights in new york and

california,” NYL Sch. L. Rev., vol. 39, p. 763, 1994.

“Rsa 2016 - the cryptographers panel.” Available at https:
//www.rsaconference.com/events/us16/agenda/sessions/2720/

the-cryptographers-panel - Retrieved: 2021-12-18.

W. L. Prosser, “Privacy, 48 calif,” L. Rev, vol. 383, no. 10.2307,
p. 3478805383, 1960.

E. Samson, “The burden to prove libel: A comparative analysis of tradi-

tional english and us defamation laws and the dawn of england’s modern

day,” Cardozo J. Int’l & Comp. L., vol. 20, p. 771, 2011.

F. Pakes, Comparative criminal justice. Routledge, 2017.

http://www.gbps.org.uk/information/sources/acts/1710-11-25_Act-9-Anne-cap-10.php
http://www.gbps.org.uk/information/sources/acts/1710-11-25_Act-9-Anne-cap-10.php
http://www.gbps.org.uk/information/sources/acts/1710-11-25_Act-9-Anne-cap-10.php
https://www.rsaconference.com/events/us16/agenda/sessions/2720/the-cryptographers-panel
https://www.rsaconference.com/events/us16/agenda/sessions/2720/the-cryptographers-panel
https://www.rsaconference.com/events/us16/agenda/sessions/2720/the-cryptographers-panel

BIBLIOGRAPHY 203

[24]

28]

“Wainwright v. home office.” Available at https://publications.
parliament.uk/pa/1d200203/1djudgmt/jd031016/wain-1.htm - Re-
trieved: 2021-12-18.

“European convention on human rights.” Available at http://www.
echr.coe.int/Documents/Convention_ENG.pdf - Retrieved: 2021-12-
18.

A. Porretta, F. Quattrone, F. Aquino, G. Pieve, B. Bruni, G. Gemignani,
M. L. Vatteroni, M. Pistello, G. P. Privitera, and P. L. Lopalco, “A noso-
comial measles outbreak in italy, february-april 2017,” Furosurveillance,

vol. 22, no. 33, p. 30597, 2017.

“Regulation on the protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of such data.” Avail-
able at http://eur-lex.europa.eu/legal-content/EN/TXT/?7uri=
uriserv:0J.L_.2016.119.01.0001.01.ENG&toc=0J:L:2016:119:T0C
- Retrieved: 2021-12-18.

“Directive on the protection of natural persons with regard to
the processing of personal data by competent authorities for
the purposes of the prevention, investigation, detection or pros-
ecution of criminal offences or the execution of criminal penal-
ties, and on the free movement of such data.” Available at
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:
0J.L_.2016.119.01.0089.01.ENG&toc=0J:L:2016:119:TOC - Re-
trieved: 2021-12-18.

https://publications.parliament.uk/pa/ld200203/ldjudgmt/jd031016/wain-1.htm
https://publications.parliament.uk/pa/ld200203/ldjudgmt/jd031016/wain-1.htm
http://www.echr.coe.int/Documents/Convention_ENG.pdf
http://www.echr.coe.int/Documents/Convention_ENG.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0089.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0089.01.ENG&toc=OJ:L:2016:119:TOC

BIBLIOGRAPHY 204

[29]

[30]

[31]

European Union, Charter of Fundamental Rights of the European Union,
vol. 53. Brussels: European Union, 2012.

“Treaty on the functioning of the european union.” Avail-
able at http://eur-lex.europa.eu/legal-content/EN/TXT/7uri=
celex’,3A12012E%2FTXT - Retrieved: 2021-12-18.

D. J. Solove and P. M. Schwartz, “Privacy law fundamentals,” D. Solove
& P. Schwartz, PRIVACY LAW FUNDAMENTALS, International As-

sociation of Privacy Professionals, 2011.

D. E. Kyvig, Explicit and authentic acts: Amending the US Constitu-
tion, 1776-1995. University Press of Kansas, 1996.

E. Pernot-Leplay, “China’s approach on data privacy law: A third way
between the us and the eu?,” Penn St. JL & Int’l Aff., vol. 8, p. 49,
2020.

“Platform architecture — android developers.” Available at https:

//developer.android.com/guide/platform - Retrieved: 2021-12-18.

R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The android
platform security model,” ACM Transactions on Privacy and Security

(TOPS), vol. 24, no. 3, pp. 1-35, 2021.

“Secure an android device.” Available at https://source.android.

com/security - Retrieved: 2021-12-18.

“Permissions on android.” Available at https://developer.android.

com/guide/topics/permissions/overview - Retrieved: 2021-12-18.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A12012E%2FTXT
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A12012E%2FTXT
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://source.android.com/security
https://source.android.com/security
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview

BIBLIOGRAPHY 205

[38]

[39]

[40]

[41]

[42]

[46]

“Ca/browser forum.” Available at https://cabforum.org/ - Retrieved:

2021-12-18.

“Revocation still doesn’t work.” Available at https://www.
imperialviolet.org/2014/04/29/revocationagain.html - Re-
trieved: 2021-12-18.

“Ca/revocation checking in firefox.” Available at https:
//wiki.mozilla.org/CA/Revocation_Checking_in_Firefox -

Retrieved: 2021-12-18.

“No, don’t enable revocation checking.” Available at https:
//www.imperialviolet.org/2014/04/19/revchecking.html - Re-
trieved: 2021-12-18.

“Quic: A udp-based multiplexed and secure transport.” Available
at https://tools.ietf.org/html/draft-ietf-quic-transport-33

- Retrieved: 2021-12-18.

D. Benjamin, “Tls ecosystem woes,” in Real World Crypto, 2018. Avail-

able at https://www.youtube.com/watch?v=_mE_JmwFilY.

“Content security policy level 3.” Available at https://w3c.github.
io/webappsec-csp/ - Retrieved: 2021-12-18.

“Trusted types.” Available at https://w3c.github.io/

webappsec-trusted-types/dist/spec/ - Retrieved: 2021-12-18.

F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?,” in Proceedings of the 2018 26th ACM Joint

https://cabforum.org/
https://www.imperialviolet.org/2014/04/29/revocationagain.html
https://www.imperialviolet.org/2014/04/29/revocationagain.html
https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox
https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox
https://www.imperialviolet.org/2014/04/19/revchecking.html
https://www.imperialviolet.org/2014/04/19/revchecking.html
https://tools.ietf.org/html/draft-ietf-quic-transport-33
https://www.youtube.com/watch?v=_mE_JmwFi1Y
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://w3c.github.io/webappsec-trusted-types/dist/spec/

BIBLIOGRAPHY 206

[47]

[51]

[52]

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pp. 331-341, ACM, 2018.

G. Brewka and J. Dix, “Knowledge representation with logic programs,”
in International Workshop on Logic Programming and Knowledge Rep-

resentation, pp. 1-51, Springer, 1997.

M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and
H. T. Cory, “The british nationality act as a logic program,” Commu-
nications of the ACM, vol. 29, no. 5, pp. 370-386, 1986.

I. Bratko, Prolog programming for artificial intelligence. Pearson educa-

tion, 2001.

K. L. Clark, “Negation as failure,” in Logic and data bases, pp. 293-322,
Springer, 1978.

L. M. Pereira and J. J. Alferes, “Well founded semantics for logic pro-
grams with explicit negation.,” in FCAI vol. 92, pp. 102-106, 1992.

A. Consoli, J. Tweedale, and L. Jain, “The link between agent coor-
dination and cooperation,” in International Conference on Intelligent

Information Processing, pp. 11-19, Springer, 2006.

S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart
factory for industry 4.0: a self-organized multi-agent system with big

data based feedback and coordination,” Computer Networks, vol. 101,

pp. 158-168, 2016.

BIBLIOGRAPHY 207

[54]

[56]

[59]

[60]

[61]

W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus prob-
lems in multi-agent coordination,” in Proceedings of the 2005, American

Control Conference, 2005., pp. 1859-1864, IEEE, 2005.

S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza, “Asynchronous
teams: Cooperation schemes for autonomous agents,” Journal of Heuris-

tics, vol. 4, no. 4, pp. 295-321, 1998.

P. Xuan, V. Lesser, and S. Zilberstein, “Communication decisions in

7

multi-agent cooperation: Model and experiments,” in Proceedings of the

fifth international conference on Autonomous agents, pp. 616-623, 2001.

Y. Labrou, T. Finin, and Y. Peng, “Agent communication languages:
The current landscape,” IEEFE Intelligent Systems and Their Applica-
tions, vol. 14, no. 2, pp. 45-52, 1999.

J. Larssan and B. Hayes-Roth, “Guardian: intelligent autonomous agent
for medical monitoring and diagnosis,” IEEFE Intelligent Systems and

their Applications, vol. 13, no. 1, pp. 5864, 1998.

S. Bromuri and K. Stathis, “Situating cognitive agents in golem,” in
International Workshop on Engineering Environment-Mediated Multi-

Agent Systems, pp. 115134, Springer, 2007.

“Bettercap.” Available at https://www.bettercap.org - Retrieved:
2021-12-18.

S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben, and

M. Smith, “Why eve and mallory love android: An analysis of android ssl

https://www.bettercap.org

BIBLIOGRAPHY 208

[62]

[69]

(in) security,” in Proceedings of the 2012 ACM conference on Computer

and communications security, pp. 50-61, 2012.

A. Desnos et al., “Androguard: Reverse engineering, malware and good-
ware analysis of android applications... and more (ninja!),” Retrieved

June, vol. 10, p. 2014, 2011.

“Virustotal.” Available at https://www.virustotal.com - Retrieved:

2021-12-18.

“X.509v3 transport layer security (tls) feature extension.” Available
at https://datatracker.ietf.org/doc/html/rfc7633 - Retrieved:
2021-12-18.

N. Nilsson, “Teleo-reactive programs for agent control,” Journal of ar-

tificial intelligence research, vol. 1, pp. 139-158, 1993.

M. Shanahan, “The event calculus explained,” in Artificial intelligence

today, pp. 409-430, Springer, 1999.

W. F. Clocksin and C. S. Mellish, Programming in Prolog. Berlin:
Springer, 5 ed., 2003.

“The 2018 uk data protection act.” Available at https://wuw.
legislation.gov.uk/ukpga/2018/12/contents/enacted - Retrieved:
2021-12-18.

M. F. Kilkenny and K. M. Robinson, “Data quality: “garbage in—garbage
out”,” SAGE Journals, 2018.

https://www.virustotal.com
https://datatracker.ietf.org/doc/html/rfc7633
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted

BIBLIOGRAPHY 209

[70]

[76]

R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The android
platform security model,” ACM Transactions on Privacy and Security

(TOPS), vol. 24, no. 3, pp. 1-35, 2021.

“Qualys ssl labs.” Available at https://www.ssllabs.com - Retrieved:
2021-12-18.

D. Wichers, “Owasp top-10 2013, OWASP Foundation, February, 2013.

“Dns queries over https (doh).” Available at https://datatracker.
ietf.org/doc/html/rfc8484 - Retrieved: 2021-12-18.

“Specification for dns over transport layer security (tls).” Available
at https://datatracker.ietf.org/doc/html/rfc7858 - Retrieved:
2021-12-18.

“Transport layer security (tls) extensions: Extension definitions.” Avail-
able at https://datatracker.ietf.org/doc/html/rfc6066 - Re-
trieved: 2021-12-18.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Col-
lecting millions of android apps for the research community,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pp. 468-471, IEEE, ACM, 2016.

https://www.ssllabs.com
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc6066

	Introduction
	Background
	The privacy problem

	Thesis Objectives
	Thesis Contributions
	Structure of the thesis
	Previous publications

	Background and State of the Art
	Privacy Background
	Philosophical privacy
	Privacy in legal systems
	Privacy in Computer Science
	Working definition of Privacy

	Security Background for Android
	Platform level security
	Application level security
	Security of network communications
	Security of data at rest
	Security and data leaks
	Defense-in-depth techniques

	Security analysis for privacy
	Limitations of the State-of-the-Art
	Limits of security analysis
	Limits of the law
	Obstacles to integration

	Summary

	MagnetDroid: Design and Architecture
	Platform assumptions
	Goals and aims
	Cyberlegal privacy
	Prerequisites for cyberlegal privacy

	MagnetDroid design
	High level architecture
	A platform for integrative analysis and synthesis
	A reasoning platform
	A webapp to close the ring

	Summary

	MagnetDroid Agent Platform
	The opportunity of an agent Platform
	Key Agent Properties
	Practical examples

	Agent Model and Architecture
	Agent capabilities

	High level structure
	MAP entities
	MAP agent protocol

	Phase 1: parallel analysis
	The flow
	The algorithm
	Raw reports

	Phase 2: translation
	Parsing
	ASO instantiation

	Phase 3: aggregation
	The flow
	The algorithm
	Conflict solving mechanism
	The final report

	MAP extensibility and agility
	Summary

	MagnetDroid Reasoning Module
	Phase 4a: creation of a TKB
	From leaves and state variables to Prolog rules
	The algorithm

	Phase 4b: creation of a LKB
	The 2018 UK Data Protection Act
	From the articles to a Legal Knowledge Base

	Phase 5: reasoning
	Queries

	MWA: Interacting with MagnetDroid
	Parameterised Analysis and Queries
	Visualisation of the Results

	Summary

	Discussion
	Justification of the High Level Approach
	The significance of ASO
	Absolute Relevance Index
	The Impact Indexes
	The Nature of DNS Issues

	Experimental Evaluation: MAP
	Experimental Evaluation: MRM
	Summary

	Conclusions and Future Work
	Summary of the Thesis
	Future work

	Appendix A: MAP agents actions
	Appendix B: Raw Report Example
	Appendix C: Pseudo-grammar Example
	Appendix D: Example of a TKB complementing a LKB

