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Using Encoding to Reduce the Errors in Quantum Spin Chains

Catherine Keele

Abstract

Quantum computation is on the horizon, and promises to revolutionise the world of

computing. With vastly more computing power, we will be able to simulate systems

that are larger and significantly more complex than those we can currently simulate.

We will also be able to solve problems that cannot be solved with classical

computation. Within such quantum devices we require a way to transfer quantum states

between registers. Quantum spin chains have been introduced as a solution to this, but

their physical realisations will be subject to noise and errors associated with

construction. In extreme cases, this noise could render spin chains unusable. We

introduce a way to model this noise to show exactly how damaging it is to spin chains.

We then present an encoding technique that can be used to reduce the effects of noise

and fabrication defects in quantum spin chains. Our technique is easily applicable and

particularly useful in situations where the number of qubits is not high enough for full

error correction. We also demonstrate our technique on different systems to show the

improvement that can be made.
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10 0.1. List of Variables

0.1 List of Variables

For convenience, the variables used in this thesis are detailed below. This is not an

exhaustive list, but covers much of the notation used throughout the thesis as a whole.

Individual chapters may introduce additional variables.

• N: The number of sites in a chain

• n: The specific site number we refer to (our convention is to label these 1 through

to N , where 1 is the initial site and N is the final site)

• Jn: The coupling strength between sites n and n+1, (the 1
2 (XnXn+1+YnYn+1) term

in the Hamiltonian).

• Bn: The strength of magnetic field on site n, (the 1
2 Zn term in the Hamiltonian).

• |0〉: A single spin in the relaxed state

• |0〉⊗N ≡ |0〉: A chain of length N where all spins are in the relaxed state

• |1〉: A single spin in the excited state

• |n〉: A chain where only the spin at site n is excited

• |ψ〉: The state on a single qubit or encoding region

• |ψ〉: The state over a set of qubits

• H: The Hamiltonian

• Hi: The Hamiltonian in the i-excitation subspace

• Q: The superoperator describing some general noise

• QD: The superoperator describing the dephasing noise

• QA: The superoperator describing amplitude damping noise

• X,Y, Z: The pauli-X ,-Y ,-Z matrices respectively
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• Si: The ith excitation subspace

• Si, j : The subspace including excitations in the i and j excitation subspaces

• Γz: Dephasing strength parameter

• Γx: Amplitude damping strength parameter

• ρ: The density matrix

• |ρ〉: The density vector

• t0: The optimal extraction time for perfect state transfer, i.e when fidelity = 1.

• M: Size of encoding region

• Λ: Set of sites belonging to the decoding region
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1.1 Introduction

Since the introduction of personal computers to themarket in 1977, their size has reduced

dramatically and they have become increasingly more powerful [1]. This is largely due

to the growth of the semi-conductor industry and the ability to manufacture ever smaller

transistors. Computers are now used in almost every aspect of daily life, from personal

devices such as mobile phones, all the way up to supercomputers. For many people

today, it is hard to imagine a world without computers and we experience the benefits

of them every day. Computers have contributed to every sector of human existence,

creating invaluable contributions to the worlds of medicine, education, manufacturing,

and research, among many others. However, many of the world’s greatest problems

have such complexity that they cannot be solved by classical computation, and instead

require something with vastly more computing power. Examples of these problems are

the modelling of organic systems and chemical reactions. Organic systems are generally

very complex [2], which makes simulating them time-consuming at best and impossible

at worst. Quantum computation could allow us to simulate such systems, leading to

leaps in our understanding of biological systems and the chemical interactions used

in pharmacology. These quantum computers provide vastly more computing power,

that classical computers can never achieve, due to time limitations, and we call this

quantum supremacy [3], [4]. The idea of a computer based on quantum mechanics

was first introduced by Richard Feynman in 1981 [5], who envisioned creating a device

that could simulate the physical world - meaning to simulate quantum physics. Since

then, the area of quantum computing has become very popular in the academic world

for both experimentalists and theoreticians, and within industry, with large competitors

such as Google and IBM competing to win the race for full-scale quantum computation.

Quantum computing continues to be an exciting area of research for both academic

research and industry and [6], [7], [8], [9], and [10] provide just a small snapshot of the

exciting world of quantum computation.

Quantum computation is a vast topic, and if it is to be eventually realised, we must

break it down into various smaller topics. The particular part of quantum computing
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that we cover here is the topic of state transfer, which refers to the transfer of states

between quantum registers. To complete such a task, one can use quantum spin chains

(see Chapter 2). These quantum spin chains are subject to errors due to imperfect

construction, which can negatively affect the quality of the transfer (Chapter 3). Further

to this, any physical system will be subject to noise, which also reduces the transfer

quality significantly (Chapter 4). In this thesis, we present a technique that provides

significant improvement on quality of transfer in the presence of these two issues.

Our technique is simpler than the quantum error correction schemes that are currently

available, and uses less qubits. Therefore our technique is more applicable to current

quantum devices, where qubit numbers are small.

We now give an overview of what the reader will find in this thesis. In this Chapter,

we introduce the concepts required to understand quantum computation, and the current

experimental realisations. In Chapter 2, we introduce spin chains as a method for

transferring quantum states. We give ameasure of success for the systems and techniques

we describe and outlinemuch of themore in-depthmethods described in each ofChapters

3 and 4. In Chapter 3, we demonstrate the effects of random errors on an otherwise

perfect chain, and introduce our encoding method for mitigation of these errors. In

Chapter 4, we develop a method that allows us to consider systems with noise and we

demonstrate that our encoding can also be applied to noisy systems with improvement in

fidelity of transfer. In Chapter 5, we extend our technique to higher excitation subspaces.

1.2 Qubits

To understand the concept of quantum computing, we must first discuss the basic

component of the quantum computer - the qubit, and we introduce these via the more

familiar classical computing. Classical computing is well understood and utilises bits

to store and manipulate data. A bit is a system that exists in one of two states; on/off,

up/down, high/low, etc, where the classical computing realisation of these is usually a

small electronic device, called a transistor. Physically, a transistor is a device that can
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allow current to pass or not - giving our two states and effectively acting as a switch.

The states of a bit are given as 0 and 1 (0 being the ‘off’ state and 1 being the ‘on’ state).

Qubits, however, are not confined to being in either the state 0 or the state 1, they may

instead exist in a superposition of the two states. To make sense of this, we introduce

|0〉 and |1〉 as the qubit states that are somewhat equivalent to the 0 and 1 of a classical

qubit. The notation | 〉 is explained in detail in Section 1.3, but for now we will ignore

it to instead gain some conceptual understanding of what a superposition state is. We

note here that |0〉 is often known as the ground state, and |1〉 as the excited state. We

can write the total state on a qubit as

|ψ〉 = α |0〉+ β |1〉 (1.1)

where |α |2 + |β|2 = 1 and α and β give the proportion of each of the composite states

present in the superposition, such that if we have α = 1 and β = 0 then we have the

state |ψ〉 = |0〉 and effectively have the classical state, 0. Similarly, if β = 1 and α = 0,

the we have the classical 1 state. This superposition only remains in place as long as

no measurement is made on the system. Once a measurement has been performed on

a qubit, the superposition no longer holds and the system remains in the state |0〉 with

probability |α |2 or the state |1〉 with probability |β|2. We can represent all possible states

of a qubit on surface the Bloch sphere, where α = cos θ2 and β = sin θ
2 eiφ and the angles

θ and φ are indicated on the Bloch sphere in Fig. 1.1, where 0 ≤ θ ≤ π and 0 ≤ θ ≤ pi.

It then becomes clear that qubits have the ability to hold much more information and

can exist in infinitely many states (limited only by the ability to distinguish states that

are close together on the surface of the Bloch sphere), where a bit can only exist in two

states.

1.3 Vector Space, Dirac Notation, and Multiple Qubits

Although a qubit is interesting in itself, for us to move towards quantum devices and

quantum computation, we will need multiple qubits in a single device. Therefore,
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φ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

Figure 1.1: The Bloch sphere, where all possible states of a qubit can be described as a
location on the surface in terms of the angles θ and φ, where 0 ≤ θ ≤ π and 0 ≤ θ ≤ pi.

we require some important mathematical concepts to allow us to treat multiple qubits.

Here we will introduce vector spaces along with Dirac notation (that allows us to write

vectors more succinctly) and then demonstrate howwe can consider multiple qubits. We

introduce the vector space Cn, which is the space of all n−tuples of complex numbers

(z1, z2, . . ., zn), i.e. vectors of n complex elements. We have already seen this used in |0〉

and |1〉 where the notation | 〉 is used to describe a column vector. In the specific case

of the single qubit states |0〉 and |1〉 they are given as

|0〉 ≡


1

0

 , |1〉 ≡


0

1

 . (1.2)

This can be extended to consider a general vector |w〉, colloquially known as a ket, which

describes the column vector

|w〉 ≡



w1

w2
...

wn


. (1.3)
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We also introduce 〈v |, known as a bra, as the row vector

〈v | ≡
[
v∗1 v∗2 . . . v∗n

]
, (1.4)

where converting between row and column vector requires taking the hermitian conju-

gate, i.e. the complex conjugate of each element, such that 〈A| = |A〉†. We can take the

inner product of these vectors as such

〈v |w〉 = v∗1w1+ v
∗
2w2+ · · ·+ v

∗
nwn (1.5)

which produces a scalar value. We can also use this notation to give the outer product

as

|v〉〈w | =



v1w
∗
1 v1w

∗
2 . . . v1w

∗
n

v2w
∗
1 v2w

∗
2 . . . v2w

∗
n

...
...

. . .
...

vnw
∗
1 vnw

∗
2 . . . vnw

∗
n


(1.6)

which results in a matrix.

As we have seen, a single qubit or spin site can be represented as |0〉 or |1〉 (or a

superposition of the two), and has the vector space C2, but often the case is that we want

to build a system that contains more than one qubit, so we need to understand how to

represent multiple qubits. If we consider two qubits, |0〉A and |0〉B, we can write the

system containing both of these as |0〉A ⊗ |0〉B where the tensor product is given by


1

0

 A

⊗


1

0

B

→

1A×


1

0

B

0A×


1

0

B

→



1

0

0

0

 AB

(1.7)

where the subscripts are used to make the ordering clear. The same method is used for
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larger systems, so a system containing N qubits all in the state |0〉 is given by

|0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉N = |0〉⊗N (1.8)

such that the vector that represents this has 2N entries. It is important to note that the

tensor product can be written in multiple ways. The notation used above is easy to

understand but long, so we simplify to |0〉 ⊗ |0〉 = |0〉|0〉 = |00〉. When we begin to talk

specifically about spin systems we define |ψ〉 = |0〉⊗N or |ψ〉 = |0〉 where all qubits in

the system |ψ〉 are in the relaxed state. This is particularly useful when if we need to

represent arbitrarily long systems.

1.4 Operators

We have introduced a qubit, and demonstrated that we can consider a system containing

multiple qubits, but as of yetwe have not introduced amethod to act upon these qubits and

alter their states. This is where we introduce operators, starting with the Pauli matrices

and later introducing the time evolution operator (Section 1.8) - a key component in state

transfer, which we will introduce later (Section 2.2). The ability to manipulate quantum

states happens via operators, which may be represented as matrices. Some of the most

useful of these are the Pauli matrices, which are given by

X = |0〉〈1|+ |1〉〈0| ≡

[
0 1

1 0

]
, (1.9)

Y =

[
0 −i

i 0

]
, (1.10)

Z = |0〉〈0| − |1〉〈1| ≡

[
1 0

0 −1

]
. (1.11)
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Is it also useful to include the 2×2 Identity matrix in these

1 =

[
1 0

0 1

]
. (1.12)

We can now see that by allowing the Pauli-X matrix to act on the |1〉 state (by matrix

multiplication)wewill get the |0〉 state, therefore it acts as a quantumNOTgate (changing

a state from |0〉 to |1〉 and vice versa),

X |1〉 =

[
0 1

1 0

] [
0

1

]
=

[
1

0

]
. (1.13)

Similarly, if we allow the Identity operator to act on one of the states, it will return the

state unchanged. An important note to make, is that if we consider the operator Xi,

this means that we apply the X operator to the ith spin and the Identity operator to all

other spins in the system, so that in reality we have Xi = 11 ⊗12 ⊗ . . . X . . .⊗1N−1 ⊗1N .

These operators are often combined to create more complicated operations, such as the

Hamiltonian, which will be discussed in more detail in Section 2.2.

1.5 The Computational Basis

When working within a vector space, we must make it clear what basis we use. Here we

introduce our chosen basis. Using the tensor product to represent a system with multiple

qubits leads to a natural choice. We demonstrate our chosen basis using a system

containing 3 qubits, where have the following states according to excitation number.

|0〉 ⊗ |0〉 ⊗ |0〉 = |000〉
}

S0 (1.14a)

|0〉 ⊗ |0〉 ⊗ |1〉 = |001〉

|0〉 ⊗ |1〉 ⊗ |0〉 = |010〉

|1〉 ⊗ |0〉 ⊗ |0〉 = |100〉


S1 (1.14b)
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|0〉 ⊗ |1〉 ⊗ |1〉 = |011〉

|1〉 ⊗ |0〉 ⊗ |1〉 = |101〉

|1〉 ⊗ |1〉 ⊗ |0〉 = |110〉


S2 (1.14c)

|1〉 ⊗ |1〉 ⊗ |1〉 = |111〉
}

S3. (1.14d)

We have also divided the basis into sets which span subspaces Sn, where n is the

excitation number. If we compute the tensor products and write them as the columns of

a matrix, ordered as in Eqs. (1.14), we get

Basis =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (1.15)

Usually it is more useful to be able to separate the systems into the excitation subspaces,

so it is convenient to swap some columns around so that those representing a particular

number of excitations are adjacent. In this particular case, that means swapping columns

4 and 5 and the matrix above converts between the two orderings. If we then decide to

only consider systems with 0 excitations or 1 excitation, we can restrict this matrix and

take S0 and S1

S0,1 = span(|000〉, |001〉, |010〉, |100〉). (1.16)

We are able to consider parts of this matrix separately as we have a block matrix where

all elements in the rows and columns adjacent to the block are 0. More generally, as
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long as a matrix commutes with the total Z operator such that

[
A,

N∑
n=1

Zn

]
= 0, (1.17)

where [A,B] = AB−BA, it can be divided into separate subspaces, given by the eigen-

values of B. We can demonstrate that this is true by considering the case where N = 3.

Example 1. If we consider the case where N = 3, then we can expand the part
∑N

n=1 Zn

to give

3∑
n=1

Zn = (Z1 ⊗12 ⊗13)+ (11 ⊗ Z2 ⊗13)+ (11 ⊗12 ⊗ Z3), (1.18)

3∑
n=1

Zn =



3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −3



. (1.19)

We can then take the eigenvectors and eigenvalues of this matrix, we have eigenvalues:

{λ} = +3,+1,+1,+1,−1,−1,−1,−3 which correspond to the eigenvectors:

{|λ〉} =



1

0

0

0

0

0

0

0



,



0

1

0

0

0

0

0

0



,



0

0

1

0

0

0

0

0



,



0

0

0

0

1

0

0

0



,



0

0

0

1

0

0

0

0



,



0

0

0

0

0

1

0

0



,



0

0

0

0

0

0

1

0



,



0

0

0

0

0

0

0

1



, (1.20)
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Where we have ordered these from lower excitation number to higher excitation number.

Now we can see that the system divides into subspaces, where the different eigenvalues

refer to systems with different excitation number.

For much of this thesis, we remain in the single excitation subspace, and as such, we

take the first four vectors representing the first four states, as in Eq. (1.16) as above. We

can write these in a more concise format using ket notation

S0,1 = span
(
|0〉, |1〉, |2〉, |3〉

)
(1.21)

where the number in bold gives the location of the excitation and the |0〉 is the all zero

case. It is important to note here that |0〉 and |0〉 are generally not equivalent; the

former describes a single qubit in the spin down state and the latter describes a number

of qubits all in the spin down state. Similarly |1〉 represents a single excited qubit and

|1〉 represents a system of qubits where only the qubit in position 1 is excited. We

now demonstrate how the states of multiple qubit systems can be represented in Dirac

notation.

Example 2. Representing a superposition with kets

Let’s consider the case where we have the state |ψ〉 = α |0〉 + β |2〉 (where N = 3)

which indicates a superposition between the |000〉 and the |010〉 states (a superposition

on qubit two). As a single column vector this can be written as

|ψ〉 ≡



α

0

β

0


. (1.22)

in the S0,1 subspace. So we can see that the α will always be present in the first position

(which indicates the zero excitation subspace, S0) and the β will appear in the position

indicating where the excitation is. Of course this corresponds to the case where we have

a chain of 3 qubits, and can be generalised to larger N . We also note that this case is
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specific to a single excitation located on only one qubit, which will not be true as the

system goes through Hamiltonian evolution. Later we introduce encoding and decoding

regions where instead we have a single excitation, initially spread over a number of sites.

1.6 Pure States, Mixed States, and the Density Operator

Much of what we have discussed up to now, is assuming that the state of a system is pure,

however, in general that will not be the case - and particularly not when we introduce

noise. We therefore introduce the reader to the concept of pure states and mixed states

and show how these can be described with the density operator. A pure state is a state

that is completely known and satisfies the condition that Tr(ρ2) = 1. In the case of the

pure state, the density operator is given by

ρ = |ψ〉〈ψ |. (1.23)

A mixed state, by contrast, is one where the state is not completely known and is an

ensemble of different pure states. Mixed states satisfy Tr(ρ2) < 1. The density operator

for a mixed state is given as

ρ =
∑

j

p j |ψ j〉〈ψ j |. (1.24)

For a single qubit state, we can see what a density operator may look like. Our qubit

state is |ψ〉 = α |0〉 + β|1〉, then the density matrix is given as ρ = |ψ〉〈ψ |. Multiplying

this out, we get

ρ = |α |2 |0〉〈0|+αβ∗ |0〉〈1|+α∗β|1〉〈0|+ |β |2 |1〉〈1| (1.25)

ρ =


|α |2 αβ∗

α∗β |β |2

 . (1.26)

The density operator evolves as ρ′ =UρU†, where ρ′ is the density operator at a later

time, and U is the evolution operator.
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1.7 Fidelity

Often in quantum systems, it is necessary to transfer a state from one qubit to another,

but to do so we require a measure of how well a state has been transferred. Here we

introduce fidelity as a measure of success

F = 〈ψdesired |ρ|ψdesired〉, (1.27)

where ρ = |ψ〉〈ψ | is the density operator and fidelity is essentially a measure of how

close a state is to the desired state and a perfectly transferred state will have a fidelity

of 1. Usually, the measure we are interested in is the average fidelity, which gives the

fidelity averaged over all input states, and we will denote this as F. In Section 2.2, we

will introduce spin chains as a way of transferring states through quantum systems, and

to allow us to see the merit of these spin chains, we first demonstrate the calculation of

fidelity for semi-classical communication. Semi-classical communication means that

we measure a qubit state, then transfer that information classically, before applying the

communicated state to a second qubit. We note that for spin chains to be useful to us,

they must provide a fidelity that is higher than transferring the state semi-classically.

Starting with a single qubit in the superposition state

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉, (1.28)

where 0 ≤ θ ≤ π and 0 ≤ θ ≤ pi, we can measure this in the z−basis, such that we

measure the state |0〉 with probability cos θ2
2 or the state |1〉 with probability sin θ

2
2.

Such measurement destroys the information that was stored within the superposition.

We then communicate the measured state to the receiver, who then recreates the state

|0〉 or |1〉 so that the output is

ρ = cos2 θ

2
|0〉〈0|+ sin2 θ

2
|1〉〈1|. (1.29)
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Then, from Eq. (1.27), the fidelity is given by

F = cos2 θ

2
cos2 θ

2
+ sin2 θ

2
sin2 θ

2
. (1.30)

We now average over all the possible initial states of the first qubit by integrating over

all values of θ and φ given by the Bloch sphere 1.1, so that

F =
1

4π

∫ 2π

0

∫ π

0
F sinθdθdφ =

2
3
. (1.31)

Therefore, we can achieve an average fidelity of F = 2
3 for semi-classical communication.

1.8 Introduction to Quantum Mechanics

Although we have already introduced many of the essential concepts for understanding

this thesis, we take a short detour to provide a more complete overview of quantum

mechanics. Therefore, we introduce some of the fundamental concepts we will need

later via the 6 postulates of quantum mechanics. These postulates allow us to give

an overview of the concepts of state space, evolution, measurement, and composite

systems.

Postulate 1: Any isolated quantum system can be completely described by

a so-called state vector, |ψ〉, of length 1.

We have already demonstrated that we can describe the state of a single qubit, but we

extend this to any closed quantum system. This does not mean that we instantly know

the state of any given quantummechanical system – indeed, that is a muchmore complex

problem than anything we will discuss here. It does, however, introduce a method by

which we can describe a system, without necessarily knowing anything about it. Not

only can any closed quantum system be described by a state vector, but the superposition

of two state vectors is also a valid state vector of a system. If we have two possible

states of a system, given by |ψ1〉 and |ψ2〉, then |ψ〉 = a1 |ψ1〉+ a2 |ψ2〉 is also a state of

that same system. Indeed, this is more intuitively demonstrated by considering one of
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the simplest quantum systems, in which we have much interest: a qubit. A single qubit

has a two-dimensional state space, and we have introduced the states |0〉 and |1〉 as an

orthonormal basis. Then, we are able to write any vector in the qubit state space as

|ψ〉 = α |0〉+ β|1〉, which is known as a superposition state.

Postulate 2: Every observable quantity of a physical system A can be

described by an operator, Â, that acts on the state vector, |ψ〉.

In Section 1.4 we demonstrated some basic operators that can act on single qubits,

but this can be extended to operators that can act on more complicated states. Some

observables that one could be interested in are: position, energy, or momentum, all of

which can be described by an operator. The operator for position in one dimension is

generally written as X̂ = x and for momentum we have P̂ = ih̄ ∂
∂x
. In three-dimensions

the momentum operator is given by P̂ = −ih̄∇ where ∇ is the gradient operator. Such

operator acts directly on the state vector as Â|ψ〉. For two physical quantities to

be simultaneously observable, the two observables in question must commute. The

commutation relation is given as [Â, B̂] = 0 where [Â, B̂] = ÂB̂ − B̂Â. For the

position and momentum operators, this becomes [X̂, P̂] = ih̄ meaning that the two

quantities are not simultaneously observable. This lack of commutation for the position

and momentum operators is what leads to the uncertainty principle.

Postulate 3: The result of the measurement of an observable A will be an

eigenvalue of Â

This statement, in particular, explains the quantum nature of quantum mechanics.

Any time we take a measurement of a system, its energy is confined to being one of the

eigenvalues of the operator itself. This means that energy is quantised, and can only

take very particular discrete values, given by the eigenvalues an.

Postulate 4: When a measurement of observable A is made on the state

vector |ψ〉, the probability of getting the eigenvalue an is given by |〈an |ψ〉|
2
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This describes another of the fundamental reasons that the quantum world behaves

differently from the classical world. Instead of dealing with certainty, we are dealing

with probability, and one can only predict the result of a certain measurement with some

probability as given above. This statement assumes no degeneracy in the eigenvalues of

A.

Postulate 5: Immediately after the measurement has obtained eigenvalue

an, the state of the system is the eigenvector |an〉

We know from Section 1.2 that we cannot directly observe or measure a quantum state,

and that once we attempt to, the information held within the superposition is lost and

the system remains in a particular state. This postulate describes such phenomena and

reinforces the idea that we can only make predictions on the superposition state and

therefore quantum mechanics is highly probabilistic in nature.

Postulate 6: Time evolution of a quantum system is found by solving the

time-dependent Schrödinger equation.

This is perhaps the most important postulate we consider here, and it is what allows us

to evolve a system through time. We begin by introducing the Schrödinger equation as

ih̄
d |ψ〉

dt
= H |ψ〉, (1.32)

where H is known as the Hamiltonian and describes the energies present in the system.

The Hamiltonian will be introduced inmore detail in Section 2.2. We can use the general

solution to a differential equation to give

|ψ(t)〉 = e−
iHt
h̄ |ψ(0)〉, (1.33)

where we set h̄ = 1 for the rest of our work. This then demonstrates how a state evolves

according to some Hamiltonian H, and we can introduce a unitary evolution operator
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U = e−iHt that evolves a state through time so that

|ψ′〉 =U |ψ〉. (1.34)

This then concludes our introduction to the postulates of quantum mechanics. The

reader may find a much more complete explanation of all relevant concepts in [11].

1.9 Experimental Realisations

In the previous sections, we have introducedmany concepts required to understand quan-

tum computation, however we have introduced them purely as a theoretical framework.

To utilise these ideas, we need to actually be able to build a physical quantum computer,

and in the following section, we demonstrate that the idea of quantum computation is

not purely theoretical. The main benefit of qubits over their classical counterpart, is

that they can be simultaneously in the states |0〉 and |1〉, with different probability am-

plitudes, assuming one of these values when measured. To actually harness the power

of these superposition states and use them in quantum computation, we need a physical

implementation of these qubits. Here we introduce an overview of some of the most

promising examples of these, including Nuclear Magnetic Resonance (NMR) devices,

ion traps, superconducting qubits, and quantum dots.

NMR

One of the first potential physical implementations of a quantum computer was based

on the use of liquid NMR (Nuclear Magnetic Resonance) systems. These liquid NMR

systems use molecules containing atoms that behave as spin-1
2 particles, suspended

in liquid. These particles can then be acted on using NMR technology [12]. These

particles will line up with an external magnetic field and the parallel and anti-parallel

alignments provide the two qubit states required. Inter-atomic bonds provide interaction

between qubits that can be useful for forming quantum gates. A five qubit quantum

computer has been demonstrated in liquid NMR in [13], and in [14], a three qubit chain
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is demonstrated. Although these systems started off promisingly due to the research

already available on NMR techniques, there are limitations to liquid NMR. A particular

limitation is that these systems don’t scale well [15], which leads to problems if one

wants to implement complex gates which require multiple qubits. Another limitation is

given by the high ratio of gate operation time over decoherence time, which needs to be

low in order to have accurate information processing. These systems are also difficult

to reset after operations have been performed.

Recently, liquid NMR has been overtaken somewhat by solid state NMR, which

utilises the properties of lattice structures within crystals as opposed to molecules in

liquids. These systems have particular advantages in that they can be operated at room

temperature and have long decoherence times. Amore in-depth discussion of solid-state

NMR is presented in [16] and both liquid and solid-state NMR are discussed in [15].

Ion Traps

Trapped ions were another of the early potential realisations for quantum hardware [17].

The system involves a set of cold ions interacting with laser light in a linear trap. The

states of the qubit are given by the internal states of the ion. Manipulation of individual

qubits happens via interaction with laser beams, and the strong Coulomb interaction aids

with qubit-qubit interactions. As qubit-qubit interaction happen via interaction with a

common mode, we are not limited to nearest neighbour interactions. Trapped ions

have the benefit of having a long decoherence time, due to the internal ion states being

relatively well isolated from the environment [18]. There are limitations to ion traps

as qubits, and some of such limitations are presented in [19]. The authors specifically

make note of spontaneous emission from such atomic qubits, however this can be taken

into account in one’s choice of ion. These ion traps are not so easily scalable, and as

such scalability relies on using multiple traps connected using photons, or by physically

transferring ions to another register [20]. This means that the idea of state transfer is

less relevant to such devices. A demonstration of an ion trap quantum computer can be

found in [20].
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Superconducting Qubits

Solid state qubit devices have come a long way in the past 15 years [21], and using these,

artificial atoms can be created and used as qubits. The energy levels can be engineered

via Josephson junctions. Superconducting qubits are used in IBM’s Quantum computer

- IBMQ [22]. In [23], the authors present a solid state system based on Josephson

arrays. They demonstrate the fidelity of state transfer that can be achieved from such

systems and also consider the effects of imperfect manufacture. They consider errors of

the order ε = 0.1 for bond disorder and an absolute variance of 0.025 for site disorder,

both of which turn out to be quite damaging.

Quantum Dots

Quantum dots are small pieces of semiconductor material where electrons can be con-

fined to some space by a potential. Is has been shown that quantum spin chains can

be implemented using quantum dots in [24], although due to physical limitations they

present spin chains of length N ≤ 10. In [25], the authors also propose implementation

of a universal set of gates using these quantum dots.

Photonic Systems

Photonic lattices (arrays of coupled waveguides, [26]) currently provide some of the

best experimental realisations of quantum state transfer. State transfer over 19 sites is

demonstrated in [27]. Perfect State Transfer (Section 2.4) is also demonstrated using

photonic lattices in [28], where the authors also discuss noise as propagation loss - which

is analogous to amplitude damping (Section 4.5.3), which we consider later.
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2.1 Introduction

Quantum computation promises to revolutionise the world of computing, and in doing

so, will lead to significant advancements in many other fields. Although this new breed

of computation seems far-fetched and mystical, the real-world applications of such

computation cannot be understated. For quantum computation to be realised, we need a

way to transfer quantum states fromone location to another -much likewires in a classical

computer. However, we are not dealing with classical computation, we are instead

dealing with quantum computation, and to transfer quantum states, the wires themselves

must be quantum mechanical in nature. We gave an overview of the experimental

realisations of qubits in Section 1.9 and we note that many of the interaction present are

nearest neighbour interactions, which leads to a natural solution for transferring states

along a chain of qubits linked by such nearest neighbour interactions. In this chapter,

we introduce concepts required for understanding state transfer. We first introduce the

reader to spin chains and how these can transfer a state perfectly. We introduce the

different systems we will be considering in Chapters 3 and 4. We then go through the

encoding method first introduced in [29] that we will be extending in our work.

2.2 Spin Chains

To transfer quantum information between registers in a quantum computer, we require a

system that is quantum in itself. We can use a 1-dimensional chain of qubits as a system

to transfer information from one end to the other. By using a 1-dimensional chain, we can

use the nearest neighbour interactions, which are often found in experimental realisations

of such systems, and we can maximise our transfer distance. These nearest neighbour

interactions lead to natural choices of Hamiltonian, which are the XX-Hamiltonian or

the Heisenberg Hamiltonian - we choose the XX here. Choosing the XX Hamiltonian

allows us to demonstrate our techniques using a specific Hamiltonian, but we note

that the techniques can be used with any excitation preserving Hamiltonian. We now

describe the protocol for such transfer. If we start with a chain of N sites, such that
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each site contains a qubit in its relaxed state, then the overall state of the system is

|ψ〉 = |0〉 = |0〉⊗N . This system is governed by a system Hamiltonian, which describes

the energies present. Our system is given by the nearest neighbour (XX) Hamiltonian

H =
1
2

N−1∑
n=1

Jn(XnXn+1+YnYn+1)−
1
2

N∑
n=1

BnZn, (2.1)

where the Jn give the coupling strengths between adjacent sites and the Bn give the on

site energies. We also have that

[
H,

N∑
n=1

Zn

]
= 0, (2.2)

so that we are able to consider excitation subspaces separately, and indeed for much of

this thesis we will remain in the single excitation subspace. As we are able to separate

our system into subspaces, we introduce H1 as the part of the Hamiltonian that belongs

to the single excitation subspace. We can then introduce a state to a site at one end

of the chain so that the state of the system is now |ψ〉 = |ψ〉|0〉⊗N−1. This system can

then be evolved through time using our evolution operator U = e−iH1t , and for transfer

to be successful we require that the final state of the system is as close as possible

to |ψ′〉 = |0〉⊗N−1 |ψ〉, up to some phase eiφ which can be removed after evolution by

application of some single qubit unitary operator. Our initial state |ψ〉 is given by

|ψ〉 = α |0〉+ β |1〉, (2.3)

where the 1st qubit is in a superposition of the states |0〉 and |1〉 and all other qubits

are in the |0〉 state. As the |0〉 state is an eigenstate of the Hamiltonian, the problem

simplifies to become the transfer of a single excitation from one end of the chain to

the other |1〉|0〉⊗N−1→ |0〉⊗N−1 |1〉. As we are now considering the transfer of a single

excitation, we introduce the states

|n〉 = |0〉⊗n−1 |1〉|0〉⊗N−n, (2.4)
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which give an excitation on site n. In particular, in the single excitation subspace and

with the basis given by Eq. (2.4) the Hamiltonian in Eq. (2.1) is given by

H1 =

©­­­­­­­­­­­­­­­­­­«

B1 J1 0 . . . 0 0 0

J1 B2 J2 . . . 0 0 0

0 J2 B3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . BN−2 JN−2 0

0 0 0 . . . JN−2 BN−1 JN−1

0 0 0 . . . 0 JN−1 BN

ª®®®®®®®®®®®®®®®®®®¬

. (2.5)

This gives us a tridiagonal N ×N matrix with the on-site energies on the diagonal and

the coupling strengths off-diagonal.

2.3 Measure of Success

As we intend to use these spin chains to send some quantum state from one end to the

other, we need to be able to quantify the quality of transfer. We previously introduced

fidelity as a measure of the transfer success in Section 1.7, where the maximum value

is 1. Here we first demonstrate the fidelity of excitation transfer, Fex and then extend

this to the average fidelity of state transfer, F. Fidelity is essentially a measure of the

closeness of two states, so we can see how far our evolved state is from our desired state.

2.3.1 Fidelity of Excitation Transfer

To give ameasure of fidelity for excitation transfer we beginwith a state |ψ〉 = α |0〉+ β |1〉

and apply the evolution operator so that |ψ′〉 = U |ψ〉. Using the same justification as

above, we can consider just the evolution of a single excitation, meaning that our desired

state, at some later time, is |ψ′desired〉 = |N〉, where we have a single excitation on site
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N . The fidelity is then given by

Fex = |〈N|e−iH1t |1〉|2, (2.6)

where again we are remaining in the single excitation subspace. The fidelity of state

transfer is a slightly more involved calculation than that of excitation transfer, as we want

to average over all possible input states.

2.3.2 Average Fidelity of State Transfer

For state transfer via spin chains to be useful, we want to provide a fidelity that is

better than semi-classical communication - that is, measuring a state and classically

communicating such measurement before applying that state to a second qubit, which is

given in Section 1.7. In terms of the density operator, the fidelity of excitation transfer

is given by

Fex = 〈ψdesired |ρ
′|ψdesired〉, (2.7)

where ρ′ is the final density matrix, given by ρ′ = UρU† and |ψdesired〉 is the desired

state. As the task is to transfer a state from one end of a 1-dimensional chain to the

other, we only care about the state on the final qubit after the time evolution. Therefore,

we take the partial trace over all states other than the last site

ρ′N = Tr1,2,...,N−1ρ
′. (2.8)

Further explanation of the partial trace can be found inAppendixA.We remind ourselves

that the input state on the first qubit is |ψ〉 = α |0〉 + β |1〉 and take this chance to write

this instead in terms of θ and φ such that

α = cos
θ

2
(2.9)

β = sin
θ

2
eiφ. (2.10)
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We now have

Fex(θ, φ) = 〈ψ |ρ
′
N |ψ〉, (2.11)

where |ψ〉 = cos θ2 |0〉+sin θ
2 eiφ |1〉, and we can now integrate over all possible input states

so

F =
1
4

∫ 2π

0

∫ π

0
Fex(θ, φ)sinθdθdφ. (2.12)

The integral removes all terms with eiφ or similar, so the final average fidelity is

F =
1
6
(
3+2

√
Fex +Fex

)
. (2.13)

We note that the minimum value for the average fidelity of state transfer is Fmin =
1
2 as

the component belonging to the zero subspace will always transfer perfectly.

2.4 Perfect State Transfer

When a system is able to transfer a state with a fidelity of 1 for arbitrary length, it can

achieve Perfect State Transfer (PST) [30], [31], [32], [33], [34], [35]. In this section we

discuss the conditions that are necessary and sufficient for PST, as given in [33]. We

restrict ourselves to consider the 1D chain and we allow it to evolve with no external

control during evolution (naturally we require some control before and after evolution to

introduce the initial state, remove the final state, and correct any phase picked up during

transfer). We also restrict to the single excitation subspace. Given that we have restricted

ourselves to evolving a system with no external control, we can use the Hamiltonian in

Eq. (2.5) to give us an indication of what parameters we have access to in improving

transfer. It’s clear then that the only opportunity to alter the system is to play with the

coupling strengths Jn and the on-site energies Bn.

Lemma 1. For a PST chain, the Hamiltonian is mirror symmetric such that J2
n = J2

N−n

and Bn = BN+1−n,

Proof. Working in the single excitation subspace, we can write the Hamiltonian in terms
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of its eigenvectors and eigenvalues

H1 =
N∑

n=1
λn |λn〉〈λn |, (2.14)

where λn are the eigenvalues and |λn〉 are the eigenvectors. Using the notation in Eq.

(2.4) we can write our initial state as |1〉 and our desired state as |N〉. We can write these

in terms of their eigenvectors as

|1〉 =
N∑

n=1
αn |λn〉 (2.15)

|N〉 =
N∑

n=1
βn |λn〉. (2.16)

The intended evolution of the initial state is given by

e−iH1t0 |1〉 = eiφ |N〉, (2.17)

where φ is some arbitrary phase that can be removed by applying some unitary operator

on the last qubit. If we rewrite this in terms of the eigensystem, we have

N∑
n=1

e−iλnt0 |λn〉〈λn |

( N∑
n=1

αn |λn〉

)
= eiφ

( N∑
n=1

βn |λn〉

)
, (2.18)

which we can simplify to give

N∑
n=1

e−iλnt0αn |λn〉 = eiφ
N∑

n=1
βn |λn〉. (2.19)

Then we can see that we must have

e−iλnt0αn = eiφβn (2.20)

for all values of n. As the exponential terms are just phases, we can see that for Eq.

(2.20) that we must have |αn |
2 = |βn |

2. We can then use this to gain information on the
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elements of the Hamiltonian given by Eq. (2.5). We can use

〈1|Hm
1 |1〉 =

N∑
n=1

λm
n |αn |

2 = 〈N|Hm
1 |N〉 (2.21)

where m is an integer, to give us information on each of the elements. For m = 1 this

tells us that B1 = BN . For m = 2 we get that B2
1 + J2

1 = B2
N + J2

N−1, therefore J2
1 = J2

N−1.

As we increase m, we reveal more information, and eventually see that the Hamiltonian

must be mirror symmetric. �

Lemma 2. If t0 is the perfect state transfer time, and there is a phase, φ, we have e−it0λsn =

eiφ for the symmetric subspace and e−it0λan = −eiφ for the anti-symmetric subspace.

Proof. We assume for simplicity that all Jn > 0. This mirror symmetry means that the

Hamiltonian commutes with the symmetry operator

S =
N∑

n=1
|n〉〈N+1-n|, (2.22)

where S2 = 1, so that we can further divide H1 into symmetric and anti-symmetric

subspaces. The symmetric subspace govern particles that can occupy the same space,

such as bosons, where the antisymmetric subspace governs fermions - which cannot

occupy the same space and are constrained by the Pauli exclusion principle. Each of

these spaces has its own eigenvectors, given by |λs
n〉 for the symmetric subspace and

|λa
n〉 for the anti-symmetric subspace. As before, we decompose the initial state into

its eigenvectors, this time separating the symmetric and anti-symmetric subspaces, such

that

e−iH1t0 |1〉 =
∑

n

e−iλsnt0αs
n |λ

s
n〉+ e−iλan t0αa

n |λ
a
n〉. (2.23)

We can then give our target state as

eiφ |N〉 = eiφS |1〉 = eiφ
( N∑

n=1
αs

n |λ
s
n〉 −α

a
n |λ

a
n〉

)
(2.24)
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Equating these shows us that e−iλsnt0 = eiφ and e−iλan t0 = −eiφ, which gives conditions

for all αn , 0. This also means that at time t0, the states transfer perfectly to their mirror

opposite pair, leading to perfect transfer from site 1 to site N .

�

Lemma 3. If the chain has PST at time t0, the the eigenvalue spacing is given by

λn−λn−1 = (2mn+1)π/t0 (2.25)

where m is a positive integer, where we assume eigenvalues are are ordered such that

λn < λn+1.

Proof. This condition comes from the fact that the symmetry of the eigenvectors al-

ternates due to the structure of the Hamiltonian, which is proven in [36]. So we have

that

e−iλnt0 = e−iλn−1t0 e−i(2mn+1)π = −e−iλn−1t0, (2.26)

which gives the alternating sign. �

This concludes the conditions that are necessary and sufficient for Perfect State

Transfer.

There are also many chains that do not exhibit PST, but instead exhibit ‘pretty good’

or ‘almost perfect’ state transfer [37], [38], where the fidelity is arbitrarily close to 1.

2.5 Chain Types

Throughout this thesis, we apply our techniques to a number of different systems to

demonstrate their versatility. Here, we introduce the four chains we will be using. We

note that all systems are given by the Hamiltonian in Eq. (2.1), we just alter the coupling

strengths between sites. On-site energies are initially set to 0 throughout. We use two

systems that allow Perfect State Transfer (PST) and two that do not. In each case, we

set the maximum coupling strength equal to 1 and rescale all other couplings according
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to this upper bound. In the following sections we introduce such chains, starting with

the Uniform chain, followed by the Linear PST system, the Apollaro chain, and the

Quadratic PST chain. The specific chains that we will consider are:

• Uniform (Section 2.5.1)

• Linear PST (Section 2.5.2)

• Apollaro (Section 2.5.3)

• Quadratic PST (Section 2.5.4)

and their coupling strengths for N = 51 are shown in Fig. 2.1.

Figure 2.1: Coupling strengths of various different chain types with maximum coupling
strength set to 1. Linear and Quadratic chains allow for PST whilst the Apollaro and
Uniform chains do not

2.5.1 Uniform Chains

The first chain we present is the Uniform chain, where all coupling strengths are set to

the maximum coupling strength of 1. The Uniform chain is the simplest that we will

consider, with no modulation of couplings required, and provides fast transfer. This is

the case first presented in [30], where we see that PST can be achieved for N = 2,3 but is

impossible for higher N (proven in [39]), we demonstrate this in Fig. 2.2a. We can also

present the results for N = 2 and N = 3. In this case, the eigenstates of the Hamiltonian

are given by

|λk〉 =

√
2

N +1

N∑
n=1

sin
(
πkn

N +1

)
|n〉 (2.27)
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and the eigenvalues by

λk = −2cos
(

kπ
N +1

)
. (2.28)

We know that fidelity from site 1 to site N is given by Fex = |〈N|e−iHt |1〉|2, where we

can rewrite the evolution operator in terms of the eigenvectors as

e−iHt =

N∑
k=1

e−iλk t |λk〉〈λk |, (2.29)

which then gives the fidelity as

Fex = |
2

N +1

N∑
k=1

sin
(
πk

N +1

)
sin

(
πkN
N +1

)
e−iλk t |2. (2.30)

For N = 2,3 the solutions are Fex = sin2 t and Fex = [sin t√
2
]4. Given that we know we

cannot obtain PST for higher than N = 3, what are the benefits of considering a system

like this? Primarily, being a simple system without the need for initial tuning of the

couplings, we believe it will be easier to physically implement, along with being more

robust as all coupling strengths are maximum. The uniform chain has a fast transfer

speed, which will become important when we consider noise in Chapter 4. We also

consider chains that do not allow PST because we aim to see how much we can improve

the transfer fidelity, therefore we do not necessarily need our chains to initially transfer

with high fidelity.

We also note that the uniform chain can produce higher average fidelity if one is

willing to wait arbitrarily long, as shown in [30]. We choose to limit the transfer time

here to t ≤ N .

2.5.2 Linear PST Chain

In [31], Christandl et. al. present a set of modified couplings that allow PST for all

N . Starting with a chain of length N , they associate this to a ficticious spin-(N − 1)/2

particle and relabel the basis vectors as |m〉, where m = −1
2 (N −1)+n−1. This means

that the initial site can be labelled as both |n = 1〉 and |m = −1
2 (N −1)〉. Similarly, the
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(a) Average fidelity (b) Transfer time

Figure 2.2: Plots showing the transfer time and average fidelity for a uniform chain of
various lengths, where we have evolved through the time window 0 ≤ t0 ≤ N .

output site can be labelled as both |n = N〉 and |m = 1
2 (N −1)〉. We know from Section

2.2 that we can evolve a system like this with a Hamiltonian of the form

H =
N−1∑

n

Jn

2
(XnXn+1+YnYn+1)−

1
2

N∑
n=1

BnZn. (2.31)

We can represent this Hamiltonian by the Hamiltonian of the ficticious spin-1
2 (N−1)

particle, H = λSx where Sx is the angular momentum operator and λ is a constant. Then

the matrix elements will be given by

Jn =
λ

2
√

n(N −n). (2.32)

We then have evolution given by

U = e−iλtSx, (2.33)

meaning that the probability amplitude for state transfer is

F(t) = |〈N|U |1〉|2 =
����− i sin

λt
2

����2(N−1)
, (2.34)

and perfect transfer is obtained at time t = π
λ .
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Example 3. We demonstrate this for the case of N = 5. In this case, our basis vectors

are relabelled as | −2〉, | −1〉, |0〉, |1〉, |2〉 and we consider a spin S = 2 particle. We can

then construct Sx . The elements of Sx are given by

〈m′|Sx |m〉 = (δm′,m+1+ δm′+1,m)
1
2
√

S(S+1)−m′m. (2.35)

We can clearly see from the above equation that only the elements where |m| − |m′| = 1

will be filled, and all others will be 0. We can then calculate those elements such that

〈−1|Sx | −2〉 = 1 (2.36)

〈0|Sx | −1〉 =
√

6
2

(2.37)

〈1|Sx |0〉 =
√

6
2

(2.38)

〈2|Sx |1〉 = 1. (2.39)

We know that the Hamiltonian will be real and symmetric, so we don’t need to calculate

the rest of the elements. We can see then that our Hamiltonian will be

H =



0 1 0 0 0

1 0
√

6
2 0 0

0
√

6
2 0

√
6

2 0

0 0
√

6
2 0 1

0 0 0 1 0


. (2.40)

From this example that the couplings we have calculated are indeed given by Eq.

(2.32). We choose to rescale these so that the maximum coupling strength is 1, so our

new couplings are given by

Jn =
2
√

n(N −n)
N

, (2.41)

for even N , and

Jn =
2
√

n(N −n)
√

N2−1
, (2.42)
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for odd N . In this thesis we always use odd chain lengths, which will give an optimal

extraction time of

tLin =
π

4

√
N2−1. (2.43)

This chain is likely to be much more susceptible to errors due to the extremal

couplings being much smaller than those in the centre. We can also assume that

any errors associated with building the device will lead to less-than-perfect transfer.

However, starting with a system than allows perfect transfer will allow us to clearly see

how much damage is done by noise and fabrication errors.

2.5.3 Apollaro Chain

We include the chain presented in [40], which we call the Apollaro Chain after the first

author, as a compromise between the Uniform and Linear PST chains. The Apollaro

chain is a uniform chain with the two extremal couplings (x being the coupling between

sites 1 and 2 and sites N and N −1, y being between sites 2 and 3, and N −1 and N −2)

at each end modulated to give better transfer. We give a short overview on how the

values of x and y can be calculated, but for more detail we direct the reader towards the

original paper. We start by noting that for a uniform chain, the eigenvalues are given by

λ = 2cos k where the values of k are given by

k =
πn

N +1
, (2.44)

with n = 1, . . .,N . Then by altering the couplings x and y away from 1 such that x, y ≤ 1,

a shift is introduced on the eigenvalues, so that now

k =
πn+2ϕk

N +1
. (2.45)

For convenience the shifted variable

q ≡
π

2
− k ∈

(
−
π

2
,
π

2

)
(2.46)
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is used, having allowed values

qm =
πm−2ϕqm

N +1
, (2.47)

where m = −N−1
2 , . . . N−1

2 . The phase shifts are given by

ϕqm = tan−1
[

y2 sin2qm

x2−(2− y2)(1− cos2qm)

]
−2qm, (2.48)

where ϕqm = 0 for x = y = 1, therefore recovering the uniform chain. Then Eqs. (2.48)

and (2.47) can be solved iteratively and we can use the values of qm to calculate the

transition amplitude between sites 1 and N . This transition amplitude is given by

u(t) =
����∑

m

Pqmei(πm−t sin qm)
����, (2.49)

where

Pq =
2

N +1+2ϕ′q
×

x2y2

x4+ (4− x2−2y2)2 tan2 q−16(1− y2)sin2 q
(2.50)

and

ϕ′q = −2+
2y2[x2+2(2− x2− y2)sin q]

x4+4[y4− x2(2− y2)]sin2 q+16(1− y2)sin4 q
. (2.51)

Although, this is not a PST chain, the quality of transfer is very high for arbitrary

length of chain (reaching ≈ 0.995 for a chain of N = 51). The authors state that ‘almost

perfect’ transfer can be achieved for for arbitrary length N , where by ‘almost perfect’

they state that the fidelity is above 0.99. Therefore, we are able to compromise between

simplicity (all central couplings are uniform) and high fidelity transfer. The specific

values of x and y change depending on the chain length, and are given in [40] for N = 51,

but for lower N , we follow the above method to calculate.
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Figure 2.3: Average fidelity of transfer for the Quadratic chain with N = 15

2.5.4 Quadratic Chain

There are infinitely many different PST chains for fixed N , in fact any chain that satisfies

the particular set of conditions presented in [33] is able to achieve PST at some time,

t0, although there is an argument that it should achieve PST in a ‘reasonable time’ to

be useful (see Section 2.5.5). In [41], Zwick et al. discuss a number of these chains

in the context of random errors on the couplings. In this paper, there are two systems

in particular that stand out in their ability to transfer a state in the presence of these

errors; the Linear chain and the Quadratic chain [42]. We have already discussed the

Linear chain, but we also decide to include the Quadratic chain as another PST system.

This chain has eigenvalues given by λquadratic
n = (−1)n−k0(n− k0)

2, where k0 is the centre

of the spectrum. Using the Inverse Eigenvalue Problem, as described in [36] we can

retrieve the coupling strengths. Although allowing PST, the Quadratic chain has a large

t0, which could prove to be problematic later when we consider noise. We show the

average fidelity of transfer for this chain in Fig. 2.3.
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2.5.5 A Comparison of Extraction Time

As well as transfer fidelity, extraction time is also an important consideration for each

of these chain types. First, the chain must transfer the state in a reasonable time, as

we cannot afford to wait forever for the state to arrive. Second, the arrival time must

be somewhat predictable, as we need to know what time to extract without having the

ability to ‘see’ when the state has arrived. If we consider first the idea of a reasonable

extraction time, we need to first discuss what we mean by reasonable. We can first

introduce an earlier method of transferring a state, known as a swapping channel, which

can act as a limit on the maximum time we are willing to wait. Then we can discuss the

earliest possible arrival time. We then discuss each of our chosen chains in turn.

The swapping channel, as given in [43], is a system where swap gates are applied to

successive pairs of qubits to swap the state from one end of the channel to the other. We

can use this as a benchmark for our systems, as we know that spin chains can transfer

faster than these swapping channels [44], and if the spin chain is slower than this, we

would use a swapping channel instead. The time required for the state to be transferred

in this case is the time taken to operate a swap gate, multiplied by the N − 1 swaps

required. If we consider the ideal swap case, where every swap can occur with the same

maximum coupling strength as the Linear PST chain, Jmax , then the time for each swap

to take place is t = π
2Jmax

. For the N −1 swaps to take place, we then have a total transfer

time of

tmax =
(N −1)π

2Jmax
. (2.52)

This can therefore act as the maximum transfer time, and we aim for our transfer to be

faster than this.

Ideally, we want our transfer time to be as fast as possible, particularly as the effects

of noise get worse over time (we will show this more explicitly in Chapter 4). So it is

useful to find some minimum arrival time, such that we are able to properly evaluate

the arrival times of the chains we have selected. In [44] and [45], the authors discuss

both the Quantum Speed Limit (QSL) and the time required to transfer a state along a
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swapping channel. We choose to use these transfer times as the upper and lower bound

to our evolution later. The minimum time to transfer a state is given in [44], as

tmin = α(N −1)+ β, (2.53)

where α = 0.34 and β = 3.64. These values are found numerically by introducing some

threshold ε for infidelity and then defining tmin as the smallest value of t for each N

where the infidelity is < ε . We have therefore introduced our minimum and maximum

arrival times.

Uniform Chain

To effectively evaluate the average fidelity of transfer, we need to know the arrival time

of the state on the final qubit. In a system without errors, we can easily evolve the

system through time for various chain lengths and find the optimal arrival time for each

length. We confine ourselves to the time interval discussed above in this system. Higher

fidelity can be achieved if one is willing to wait longer, but we limit ourselves to a more

realistic solution, therefore finding the first ‘peak’ in fidelity. We display such results for

transfer time and fidelity for the uniform chain in Fig. 2.2. We have given the optimal

transfer time for the Linear PST case, so we can now compare that to the transfer time

of the Uniform chain. In his original paper [30], Bose gave a theoretical prediction of

the arrival time for the first revival as

tUni ≈
(N +0.8089N

1
3 )

2Jmax
, (2.54)

where Jmax is the maximum coupling strength (in our case this is 1), and we will see

that this transfers faster than the Linear chain, as shown in 2.1.

Linear PST

We have introduced our minimum and maximum transfer times in the section above,

but now we discuss in more detail the transfer times of each of our chosen systems.
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In [35], Yung discusses the quantum speed limit and proves that the Linear chain gives

the fastest possible transfer time for a perfect state transfer chain. We will introduce

the reader to an explanation of why this is true here, and more detail can be found in

the original paper. If we begin by noting that in Section 2.4, we demonstrated that for

perfect state transfer to occur, we must have

e−iλnt = ±eiφ, (2.55)

for all n, which gives us an infinite number of solutions according to the eigenvalue

spectra we can produce from this. One of the most well-known solutions is the Linear

PST chain, which we have selected as one of our example chains. If there are so many

possible spectra, then we can start to consider which of these would have the fastest

transfer. Yung introduces the efficiency η, which can be quantified using the maximum

coupling strength and the transfer time so that

η =
Jmaxt0

˜Jmax t̃0
, (2.56)

where ˜Jmax and t̃0 are the maximum coupling strength and the optimal transfer time for

the Linear PST chain, which we use to compare all other PST chains. Now, we will

demonstrate that for all other chains η ≥ 1, therefore showing that the Linear PST is the

fastest. If we order the eigenvalues such that λ1 > λ2 > ... > λN , then we can define the

difference between successive eigenvalues as ∆n ≡ λn −λn+1, and then the range of the

eigenvalue spectrum is ∆E ≡ λ1 − λN =
∑N−1

n=1 ∆n. Then from Eq. (2.55), the transfer

time is limited by the smallest energy interval ∆min = min{∆n} and so t0 ≥ π
∆min

. For the

Linear chain this is t̃0 = π
˜∆min
. Now we can rewrite our efficiency as

η ≥
Jmax ˜∆min

˜Jmax∆min
. (2.57)

If we scale the eigenvalue spectra so that ˜∆min = ∆min, then η ≥ 1 if Jmax ≥ ˜Jmax . As

we rescale all chains such that the maximum coupling strength is 1, this becomes a
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Figure 2.4: A comparison of arrival time for the Uniform (blue), Apollaro (green), and
Linear PST (magenta) chains, for N = 51. We do not include the quadratic chain as the
arrival time is significantly later

constraint on time and says that t̃0 ≥ t0. This then demonstrates that the Linear chain is

the fastest chain that allows for PST and the transfer time is given in Section 2.5.2 as

tLin =
π

4

√
N2−1.

Apollaro

The third chain we will consider is a compromise between the Uniform chain and the

Linear PST chain. There is no straightforward way of predicting an appropriate arrival

time for this chain. Although we cannot give a prediction for the arrival time in shorter

chains, we can assume that the arrival time will fall somewhere between the arrival

times of the Linear PST chain and the Uniform chain, given the nature of its couplings.

We have shown the evolution of a chain of N = 51 for the Uniform chain, Linear PST

chain, and the Apollaro chain in Figure 2.4.
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Quadratic PST

As the Quadratic chain leads to PST, it is somewhat easier to give an arrival time (given

that the state must arrive with fidelity of 1 at some point). If we consider a chain with

eigenvalues of λ = 0,±1,±22, . . .,±N−1
2

2, where N is odd, we know that this will achieve

perfect state transfer at time t = π. However, we have chosen to rescale our maximum

coupling strengths so that Jmax = 1. To then give a demonstration of the minimum

transfer time in this case, we use the method outlined in [46]. We have the Hamiltonian

of this system given by H and the symmetry operator given by S. We know that the

trace of H2S is the sum of the eigenvalues squared (counted with multiplicities)

Tr(H2S) =
N∑

n=1
λ2

n(−1)n+1 = 2
( N−1

2∑
n=1
(−1)nn4

)
(−1)

N−1
2 , (2.58)

where the second equality is possible as we have pairs of eigenvalues. We also find that

Tr(H2S) = 4J2
N−1

2
≤ 4J2

max . (2.59)

We can then write

4J2
max ≥

N +1
16
(N3−N2−5N +5), (2.60)

where we have simplified the final part in Eq. (2.58). We can now rescale our couplings

such that Jmax = 1 and we get

t0 ≥
π

8
√
(N +1)(N3−N2−5N +5). (2.61)

We now have an expected arrival time for the quadratic system and it is clear that this

arrives much later than the other chains we have chosen. We initially considered this

chain as it performs well against fabrication errors [47], but we will later see that the late

arrival time makes it a less useful candidate. We give a final overview of the transfer

times compared to the tmax given in Eq. 2.52 in Table 2.1
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Uniform Linear Apollaro Quadratic
t

tmax

1
π

1
2

1
π > N

Table 2.1: Comparison of extraction times of various chain types with respect to tmax

2.6 Encoding Method

Much of the work presented in this thesis is based on encoding and decoding strategies.

Therefore, we present the basis of this technique here. The optimal encoding strategy

that we apply and modify is that presented in [29].

Where previouslywe have introduced the theory of sending a state or single excitation

through the system and retrieving it with some fidelity; we now present the theory of

sending this as an encoding. Thismeans that we choose a certain number of spins that are

controlled by a sender and encode our state over those spins within the single excitation

subspace. We can then choose to extract this state at a single site or over a number of

spins that a receiver controls. Then, instead of starting with the state |ψ〉 = α |0〉+ β|1〉,

we begin with

|Ψ〉 = α |0〉+ β|ψ〉 (2.62)

where |ψ〉 =
∑M

n=1 δn |n〉 and M is the number of spins we encode over, and all other sites

are in the |0〉 state. After time evolution, the state of the chain is then

|ψ′〉 = α |0〉+ β
N∑

k=1
ηk |k〉 (2.63)

where the output state can have the excitation spread over all sites. If we have the

receiver controlling the same number of sites as the sender, it is possible to decode over

these sites. We introduce the set of sites belonging to the decoding region as Λ. The

receiver applies a unitary UΛ to their set of spins, where the part of the unitary applied

to the |0〉 component of each site returns |0〉 so that

UΛ0 |0〉 = |0〉. (2.64)
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The part of the unitary acting on the non-zero component gives

UΛ1
∑
k∈Λ

ηk |k〉 = |N〉
√∑

k∈Λ

|ηk |
2. (2.65)

Then our total final state is given as

UΛ |ψ′〉 = |ψ′U〉 = α |0〉+ β
∑
k<Λ

ηk |k〉+ β
√∑

k∈Λ

|ηk |
2 |N〉 (2.66)

where the first part of the final state gives the |0〉 component, the second part gives any

part of the excitation not on the spins controlled by the receiver, and the final part is

controlled by the receiver. Now we have our output state, we can find an expression for

the average fidelity of transfer. We start by finding the output density matrix

ρ′ = |α |2 |0〉〈0|+α∗β
∑
k<Λ

ηk |k〉〈0|+α∗β
√∑

k∈Λ

|ηk |
2 |N〉〈0|

+αβ∗
∑
k<Λ

η∗k |0〉〈k|+ |β |
2
∑
k<Λ

|ηk |
2 |k〉〈k|+ |β |2

∑
k<Λ

η∗k

√∑
k∈Λ

|ηk |
2 |N〉〈k|

+αβ∗
√∑

k∈Λ

|ηk |
2 |0〉〈N|+ |β |2

∑
k<Λ

ηk

√∑
k∈Λ

|ηk |
2 |k〉〈N|+ |β|2

∑
k∈Λ

|ηk |
2 |N〉〈N|.

(2.67)

We can then take the partial trace, (see Appendix A for details), noting that we have

removed any terms where the inner product is 0, and all remaining terms have an inner

product equal to 1.

Tr(ρ′) = |α |2 |0〉〈0|+α∗β
√∑

k∈Λ

|ηk |
2 |1〉〈0|+ |β |2

∑
k<Λ

|ηk |
2 |0〉〈0|

+αβ∗
√∑

k∈Λ

|ηk |
2 |0〉〈1|+ |β|2

∑
k∈Λ

|ηk |
2 |1〉〈1|.

(2.68)

If we rewrite this as a matrix such that

ρ′N =


|α |2+ |β|2

∑
k<Λ |ηk |

2 αβ∗
√∑

k∈Λ |ηk |
2

α∗β
√∑

k∈Λ |ηk |
2 |β |2

∑
k∈Λ |ηk |

2

 , (2.69)
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then we can see that the fidelity of excitation transfer is given as

Fex =
∑
k∈Λ

|ηk |
2. (2.70)

To average over all possible input states we take

F = 〈ψ |ρ′N |ψ〉, (2.71)

and then integrate over all possible values of α and β given by the Bloch sphere. We are

then left with

F =
1
6

(
3+2

√∑
k∈Λ

|ηk |
2+

∑
k∈Λ

|ηk |
2
)
. (2.72)

In the absence of noise, we can simply use Eq. (2.13) to find the average fidelity of state

transfer.

To apply the optimal encoding and decoding strategy, we use the method outlined by

Haselgrove in [29], which involves finding the singular value decomposition (SVD) of a

modified time evolution operator. We have already defined the time evolution operator

as

U = e−iHt, (2.73)

which automatically evolves the system to the optimal time for extracting the state.

Although, we are not necessarily considering the optimal extraction time but rather

some approximate time which we estimate should produce high fidelity transfer. Then

the fidelity at this time is maximised as

max
|ψ〉,|φ〉

|〈φ |U |ψ〉| (2.74)

where |φ〉 gives the state of the decoding region and |ψ〉 the encoding. The time

evolution operator is modified by applying the projection operators for the encoding

state space Pin and the decoding state space Pout . These projectors are given by
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Pin =

M∑
n=1
|n〉〈n| (2.75)

Pout =
∑
n∈Λ

|n〉〈n| (2.76)

where M is the size of the encoding zone, and Λ is the set of spins belonging to the

decoding region. Now our modified time evolution operator is

Ũ = PoutUPin. (2.77)

After applying the projection operators, we have fidelity of excitation transfer given by

Fex = |〈φ |Ũ |ψ〉|. (2.78)

Maximising |φ〉 happens by selecting some r |φ〉 = Ũ |ψ〉, so that |r | gives the fidelity.

We can find the maximum value of r by taking the SVD of Ũt0 , where the maximum of r

will be the maximum singular value. Taking the SVD means factorising the matrix into

three new matrices. This gives us three components: the left-singular vectors −→vi , the

right-singular vectors −→w ∗i , and the singular values si, where the columns of the left and

right singular values are orthonormal and the singular values are the non zero entries

in a diagonal matrix and are positive real. The singular value decomposition is given

in [48] as

A =
r∑

i=1
siviw

∗
i , (2.79)

where w and v are orthonormal sets and sk are positive real numbers. The vec-

tors w1,w2, ...,wr and v1,v2, ...,vr are the right and left singular vectors respectively,

s1, s2, ..., sr are the singular values, and r is the rank of the operator. We then have the

right-singular vectors giving the best possible encodings (optimal encoding given by

the first of these), left-singular values giving the best decodings (corresponding to the

encodings), and the singular values giving the fidelity of the encoding/decoding pair.

We can then use the largest singular value to tell us how good the transfer is.
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(a) Reproduction of first 4 singular values of an N=300 chain with an
encoding region of 20 qubits, calculated using our code

(b) Original figure from [29]

Figure 2.5: Comparison of our results for the first 4 singular values of an N=300 chain
with the results produced by Haselgrove in [29] for an N=300 chain

As Haselgrove already introduced the optimal encoding scheme in the noise-free

case, we can use some of the results produced in [29], to verify the numerics needed for

our investigations. We start by building the encoding scheme he talks about and finding

the largest singular values, as discussed above. The singular values in this case give

the excitation transfer, and if we substitute this into Eq. (2.13), we therefore have the

average fidelity as

F =
1
2
+

1
3

√
s2

1 +
1
6

s2
1 (2.80)
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where s2
1 is the first singular value squared. Using the results from [29] we can check

our system is correctly calculating the singular values. We take the case of N = 300

with 20 spins each for the encoding and decoding regions, which Haselgrove displays

in his results to compare with our own system. There will be some discrepancies due

to a slight difference in the models we are using (we use the XX-Hamiltonian, whilst

Haselgrove presents the Heisenberg Hamiltonian). The comparison of our own plot to

that produced by Haselgrove is shown in Figs. 2.5a and 2.5b.
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Fabrication Defects
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3.1 Introduction

Theoretically, perfect state transfer through quantum spin chains has been achieved for

an arbitrary length of chain, by modulating the couplings between sites [31]. However,

we ultimately aim to use spin chains in quantum computing devices and, as with any

manufacturing process, there will be some fabrication defects associated with the phys-

ical realisation. It is essential to investigate how the system will react to these errors,

and how we can attempt to mitigate these effects. Here, we discuss the types of random

errors likely to appear in physical spin chains - namely proportional and additive errors,

and show how these can be modelled. We then give an overview of the work already

done on this subject, before introducing the technique we use to improve transfer in

these conditions. We then demonstrate our technique on our example chains.

3.1.1 Random Errors

We now discuss how one can apply random errors to a system to mimic imperfect

manufacture. Realistically, the nature of such errors will depend on the physical system.

For the sake of demonstrating results, we have chosen a set of errors to present. We

consider errors present on the spin sites themselves and errors in the couplings between

spin sites. Particularly in the case of perfect transfer chains, such as that presented

in [31], the couplings need to be precise to allow for PST, and any inaccuracies in the

manufacture will lead to less-than-perfect transfer. The strengths of the couplings will

depend on the specific system, but we scale all systems such that the maximum coupling

strength is 1. When considering errors present on such system, we can consider both

errors that are proportional to the coupling strengths and errors that are additive (and

therefore do not depend on the coupling strengths). All on-site errors are additive as the

error-free values are all 0.
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Additive Errors

One method we may use to include errors in our system is to simply add some random

value to each of the coupling strengths or on site energies (noting that this will be a

different value for each coupling/site). Additive errors do not depend on the strength

of the coupling itself and are errors that are simply added to all couplings and on-site

energies with the same standard deviation. We give the coupling strengths with additive

errors as

Jεn = Jn+ εn, (3.1)

where Jεn are the new coupling strengths after errors have been added and εn is the

random error taken from the normal distribution with standard deviation of σJ centered

around 0. We have chosen the normal distribution as we believe it most closely models

the errors likely to be found in experimental systems, in that smaller errors are more

likely. However, our technique does not depend on the distribution we choose, and we

have selected one solely so that we are able to demonstrate the technique. The errors on

the sites themselves are given by

Bε
n = Bn+ εn, (3.2)

where εn again comes from the normal distribution with standard deviation of σB,

centered around 0.

Proportional Errors

Another method we could use to include errors in our system is to assume that errors

will appear as a proportion of the coupling strengths (as the on-site energies are all 0,

we use additive errors for those here). Proportional errors on the couplings are given by

Jεn = Jn(1+ εn), (3.3)
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where Jεn are the new couplings and they are different for each n. We take the random

error values εn from the normal distribution centered 0, where standard deviation is

given by σJ . There are no proportional errors present on the sites, as these are all 0. We

use additive errors here instead, which are given by Eq. (3.2).

We refer to these defects by their standard deviation, σB and σJ , and use σ without

a subscript when both values have the same standard deviation. It must be noted that

there is a specific case where the coupling error is equal to the coupling strength, which

could lead to the actual coupling strength being 0 – effectively creating separate chains.

When creating the Hamiltonian containing the errors, it is essential that the Jnm = J∗mn,

but as the Hamiltonian must be real, these values are exactly equal and the Hamiltonian

is symmetric. We have designed our system so that our error models can be easily

changed according to experimental findings.

Proportional vs. Additive Error

To make a comparison between proportional and additive errors, we demonstrate a set

of errors on each of the different systems we have chosen and apply it both additively

(black) and proportionally (red) in Fig. 3.1. In the case of the Uniform chain, these are

equivalent as all coupling strengths are 1. For all other chains the coupling strengths

are much weaker at the ends of the chain compared to the central couplings. We can

then expect that additive errors will be more damaging to these systems as they will

more drastically alter these extremal couplings. We can demonstrate this by plotting the

couplings with one random set of errors applied both proportionally and additively and

compare then for different chains. We note that the errors on each chain are the same

errors for both proportional and additive, but we apply a different set of random errors

to each chain. We can see that additive errors are likely to be more damaging from Fig.

3.1b and 3.1d, where the proportional errors do not strongly alter the end couplings, but

the additive errors do. The Apollaro chain demonstrates a mixture of the Uniform chain

and the Linear/Quadratic chains in that the type of error does not affect the errors on the

uniform portion of the chain, but at the ends we can see that the proportional errors are
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slightly less damaging.

(a) The Uniform chain (b) Linear chain

(c) Apollaro chain (d) Quadratic chain

Figure 3.1: Plots showing how proportional and additive errors affect the coupling
strengths for the four chains we have chosen, with an error having standard deviation
σJ = 0.1

3.1.2 Overview of Previous Work

Among the first to consider spin systems subject to random errors were De Chiara et. al.

in 2005 [49], who investigated static imperfections in an otherwise perfect state transfer

chain. They considered the model presented in [31] (which allows PST and is referred

to in this thesis as the Linear PST Chain, due to the nature of the eigenvalue spectrum)

in the context of random variations of both the couplings and an externally applied

magnetic field, although they do not attempt to mitigate the effects of these errors. They

consider random errors on the couplings given by

Jk → Jk(1+ δk) (3.4)
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where δk ∈ [−εJ, εJ] and these errors are therefore proportional to the strength of the

couplings. The site energies of the model used here are 0 in the perfect case, so in the

imperfect case, they become

Bk → bk (3.5)

where bk ∈ [−εB, εB]. As the disorder is random, the results are averaged over NAv

different disorder realisations. Results from [49] are shown in Fig. 3.2, where we can

see that even a small amount of error on the couplings can be damaging, particularly for

longer chains. We note here that the coupling strengths are not scaled, so the random

fluctuations in site energies are less damaging to longer chains as the energies in the

system are larger. This does not affect the coupling errors as these are proportional.

In Fig. 3.2c we can see the effects of errors on both the couplings and sites, and the

decrease in fidelity associated with these errors. We note that these figures use different

notation from our own, such that F (t1) is the average fidelity at time t1, εJ and εB are

equivalent to our ε for the couplings and ε for the sites. This reduction in fidelity due to

random errors is exactly what we aim to improve.
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(a) Coupling defects. (b) Site energy defects.

(c) Average fidelity of transfer for different errors present on both couplings
and sites for a chain length of N = 50.

Figure 3.2: Figures from [49] demonstrating the effect of different random errors on
spin chains of varying lengths

We can also consider how well different known systems react to random errors. In

particular it is possible for the choice of eigenvalue spectrum in a spin system to make it

more robust against fabrication errors, where [50] shows that the Linear spectrum, [31],

is almost optimal. In [47], Zwick et al. consider which systems are most robust against

the errors discussed in the previous literature, focusing specifically on coupling errors

which are proportional to the desired coupling strengths, as in Eq. (3.4). They do not
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Figure 3.3: Figure from [47] showing various eigenvalue spectra for a chain of N = 31,
and the coupling strengths for the same chain length

consider errors present on the sites themselves. The systems they consider all allow

PST, but have different eigenvalue spacings. These spectra are shown in Fig. 3.3 where

they specifically consider a chain of N = 31 sites. They found that the most robust

systems are those where the eigenvalues are either linear or quadratic in their spread

as demonstrated in Fig. 3.4. The eigenvalues for the PST couplings that we will use

are those given as ωk(kc,1) linear and ωk(kc,2) quadratic, and are shown as magenta

circles and red squares respectively.

Burgarth and Bose suggest a scheme to allow arbitrarily perfect state transfer even

with random fluctuations [51]. They discuss multiple randomly coupled quantum chains

in parallel, and how this system performs if the chains are not exactly identical to one

another. This work can be extended to consider chains where the Hamiltonian is not

exactly the same as that theorised. They conclude that dual-rail protocol makes a system

more robust against errors and also allows the receiver to check whether the state they

have received is correct or not. We, however, choose to look at the case where we have
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a single 1-dimensional chain. Primarily this is so we can evaluate our technique on a

simple to implement chain, but we also note that there is a significant size increase when

one considers multiple chains, and we restrict to smaller spaces such that we can easily

evaluate them numerically. Some static errors had been previously investigated for other

quantum systems [52], [53], but not specifically for spin chains.

Figure 3.4: From [47] compares different spreads of eigenvalues in the context of
robustness against perturbations on the couplings, where here εJ is the same as our σJ
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3.2 Methods

3.2.1 Extraction Time

When the system is subject to fabrication defects, there is no longer a specific optimal

time that we can expect to provide the highest fidelity. We therefore need to carefully

consider how to deal with time. There are a few options in this regard, we present those

options here, describe what we have chosen to do, and then demonstrate that we have

made a reasonable choice. We could

• Optimise over time

• Select a specific extraction time

• Optimise over a specific time window.

We could choose to optimise each system over time, by evolving the system with

small time steps, and choosing the time with the highest fidelity. Computationally this is

possible, but difficult and time-consuming. We also note that realistically we will need

to know the extraction time before we evolve, which is not possible for a system with

random errors. Experimentally, we could build a set of chains, select the best of these

and evolve it through time such that we know when the best arrival time would be. We

can then repeat for all chains that produce fidelity in the upper quartile of all those made

(or use any other method to select the best). Experimentally, this is possible as we will

have a physical chain with only one set of random errors. However, computationally

we want to average over a large set of errors, which would be computationally heavy

as it involves finding the best arrival time for every chain. We can also decide on an

extraction time before we evolve and choose to extract the state on all systems given

by a certain Hamiltonian at that time. This is much easier computationally, but it is

unlikely that we are able to find a reasonable time for all cases. We therefore choose

to optimise over time, but within a specific time window given by the minimum and

maximum arrival times as discussed in Section 2.5.5. We remind ourselves here that

the latest arrival time comes from the arrival time for the swapping channel and is given
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by tmax = (N −1) π2 . The earliest possible arrival time is taken from [44] and is given by

tmin = 0.34(N −1)+3.65. As we are using a chain of N = 51 qubits, the time we evolve

through is then

20.7 ≤ t ≤ 78.5, (3.6)

where we use a time step of δt = 0.1. Although this time window gives us a well-defined

minimum and maximum transfer time, we know from Section 2.5.5 that the arrival time

for the Quadratic chain is much later than this, so we now evaluate whether the Quadratic

chain is in fact a useful system to consider.

Quadratic PST Chain

The Quadratic PST chain is a system that allows PST, however, there is a long wait for

extraction. In Fig 3.5a we show that the best extraction time is around tQuad = 1020,

which is a particularly long time to wait. Once we encode over 5 qubits at either end,

we can see that the shape of this peak changes and that we can extract at a much earlier

time at only a slightly lower fidelity. However, our problem is not to choose a suitable

(a) Quadratic PST chain showing extrac-
tion time.

(b) Quadratic PST with an encoding re-
gion of 5 qubits.

Figure 3.5: Plots showing the extraction time for the Quadratic PST Chain without
encoding and with encoding for a chain of N = 51

time for extraction in a perfect chain, but rather for one subject to fabrication defects.

Therefore we can evaluate the same system subject to some random error, with and

without encoding to select an appropriate extraction time. We apply random errors

with standard deviation of σ = 0.1 for both sites and couplings and find that we have
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minimum fidelity for these errors with no encoding (shown as the blue line along the

x-axis in Fig. 3.6a). We repeat this 3 times for the case where we have encoded over

5 sites with the aim of revealing an extraction time. We can see the results of this in

Fig. 3.5. It becomes clear that although the fidelity is improved by the encoding, it is

difficult to find the best time to extract. However, as the best extraction time is no longer

as late as the case without noise, we can consider looking in a smaller time window. We

choose to look at the time window up to t = 500, as we can see from Fig. 3.5 that this

is where we see the first peak. We then plot this system for the time window selected,

repeating 5 times with a standard deviation of σ = 0.1 again. We can see from Fig. 3.6b

that there is no clear time to extract the state from this system. This quadratic chain is

then one that may benefit from physically constructing the chain and finding the specific

arrival time for that chain. Due to the nature of this system and the lack of clear optimal

time, we neglect this system from the rest of our results and focus on the Linear PST,

Apollaro, and Uniform chains.

(a) (b)

Figure 3.6: Plots showing how the quadratic chain evolves with random errors with
standard deviation of σ = 0.01. (a) shows the evolution until t = 2000, (b) shows a
shorter evolution time, until t = 500. Note that tmax = 78.5

3.2.2 Numerics

Ultimately, the optimisation of the encoding region is complex and must be solved

numerically. Therefore the problem can be simplified into a set of parameters we can

choose, a set that are given, and a set we try to optimise. Particularly, there are several
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variables that are dictated by experiment, such as: the length of the chain, the method

for including errors, and the size of the encoding region we can use. We select values

for these purely as a demonstration of our technique. The problem is then to find the

encoding that maximises the fidelity of state transfer from one end of the chain to the

other in the presence of fabrication defects. We must also consider time as a factor,

where here we have chosen the use a time window given by a reasonable minimum and

maximum.

We start by creating a Hamiltonian, with errors applied to the sites and couplings

with the methods described above. Specifically we consider σB up to 0.9, in steps of

0.05, and values of σJ up to 0.4 with the same steps of 0.05. Each of these Hamiltonians

evolves the initial state, through the extraction time window, in steps of δt = 0.1, without

any encoding and then compared to our desired state to give the average fidelity as given

by Eq. (2.13). For the encoded system we use the scheme presented in Section 2.6

and take the square of the largest singular value as our measure of success to give an

average fidelity given by Eq. (2.13). We repeat this process 1000 times and then choose

the chain with the fidelity at the upper quartile. We choose the upper quartile as it is

reasonable to assume one can take the best 25% of the manufactured chains and then

the upper quartile provides a lower bound on the fidelity achieved. We then present our

results as contour plots showing the fidelity of the upper quartile, averaged over input

state, against the standard deviation for the errors on sites and couplings.

3.3 Demonstrations

In this section, we apply the random errors and encoding to three different Hamiltonians

to demonstrate the scheme, these Hamiltonians being the Linear PST, Uniform, and

Apollaro. We use a chain length of N = 51 for all systems and we encode and decode

over 5 qubits at each end. We choose to first introduce errors that are proportional on

the couplings and additive on the sites, then later, additive on sites and couplings. We

choose the maximum standard deviation for the errors on the couplings to be σJ = 0.3
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and the maximum standard deviation of errors on the sites to be σB = 0.6. We repeat

each set of random errors 1000 times and take the value at the upper quartile.

3.3.1 Proportional Errors

We first give a demonstration of the errors applied proportionally on the couplings, as

given in Eq. (3.3).

Uniform Chain

The uniform chain is such that all couplings are equal to the maximum coupling strength

1. This system does not allow for PST in a system larger than N = 3, and additionally we

saw in Section 2.5.1 that the fidelity is particularly low for a chain of N = 51. One might

assume then that the Uniform chain would not be useful for transfer at these distances,

however it has the benefit of not needing modulated couplings. Indeed, we can see from

Fig. 3.7a that without encoding we cannot achieve a particularly high fidelity. However,

this system that shows a particular improvement when we apply encoding. This could

be very useful, as the Uniform chain has a very fast transfer time of tUni ≈
(N+0.8089N

1
3 )

2Jmax
,

and is easy to build due to the uniform couplings.

(a) Uniform chain with no encoding or decod-
ing present

(b) Uniform chain with an encoding and de-
coding regions of 5.

Figure 3.7: Plot showing encoding applied to a uniform chain in the presence of
fabrication defects
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Linear PST Chain

The second chain we apply our encoding to is that presented in [31], which we call the

Linear PST Chain. A particular benefit of this chain over others that allow for PST is

that the transfer time is much earlier than other examples (such as the Quadratic Chain,

which we choose not to present here).

(a) Linear chain with no encoding or decod-
ing present

(b) Linear chain with an encoding and de-
coding regions of 5.

Figure 3.8: Plot showing encoding applied to a linear chain in the presence of fabrication
defects applied proportionally

We can see from Figs. 3.8 that through application of a relatively small encoding

zone, we can already see substantial improvement.

Apollaro Chain

We expect the Apollaro Chain to be slightly more robust against errors, as the bulk of

the chain is uniform and therefore these couplings are not tuned to specific values. We

note that this is true, and that there is further improvement after applying encoding.

3.3.2 Additive Errors

We can also apply the errors additively, such that they are not dependent on the coupling

strengths. We note that we expect these systems to perform slightly worse than when

errors are proportional as we can see from Figs. 3.1 that the weaker coupling strengths

are altered much more. We note that the on-site errors are added in the same way as
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(a) Apollaro chain with no encoding or decod-
ing present

(b) Apollaro chain with an encoding and de-
coding regions of 5

Figure 3.9: Plot showing encoding applied to an Apollaro chain in the presence of
fabrication defects applied proportionally

previously, but there will be slight discrepancies as we are dealing with random errors.

We do not present he Uniform chain here as the choice of additive/proportional errors

is not relevant here where all coupling strengths are the same.

Linear Chain

The Linear chain is one that we expect to perform worse when we have additive errors

compared to proportional errors, as the end couplings are much smaller. We note from

Figs. 3.10 that this is true, and the performance is noticeably worse that that given in

Figs. 3.8.

Apollaro Chain

The Apollaro chain is another chain where we expect to see a reduced fidelity as

compared to when the errors are proportional to coupling strengths. We can see from

Figs. 3.11 that the fidelity is reduced, but not significantly as in the case of the Linear

chain. This is likely due to the fact that much of the Apollaro chain is uniform and so

the additive errors are no different from proportional errors in the bulk of the chain.
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(a) Linear chain with no encoding or decoding
present

(b) Linear chain with an encoding and decod-
ing regions of 5

Figure 3.10: Plot showing encoding applied to an Linear chain in the presence of
fabrication defects that are applied additively

3.4 Conclusion

We have demonstrated the effects of random errors to both the couplings and the sites

themselves in different spin chain systems. We have shown that fabrication defects can

be damaging and significantly reduce the fidelity of otherwise perfect systems. This is

a very real issue that will be faced when attempting to build these systems. We have

then introduced an encoding method that can reduce the effects of these defects and still

produce reasonably good transfer in such chains. The technique is easily applicable and

can be used in scenarios where the total number of qubits is low. It can also be applied

to any Hamiltonian that is excitation preserving, making is very widely applicable. We

have demonstrated the wide uses of this technique by applying our methods to three

different chains and saw improvements over all. Perhaps the most useful result, from our

demonstrations, is that applying this encoding scheme to a Uniform chain gives results

close to that of a fully modulated chain that can give PST in an error-free system. It is

also interesting to note that the average fidelities of the different systems after encoding

are all relatively similar, regardless of their values before encoding. Our technique is

easily applicable and the encoding zone can be adjusted to further increase fidelity or

decreased to increase the bulk chain length (at the expense of higher quality transfer).
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(a) Apollaro chain with no encoding or decod-
ing present

(b) Apollaro chain with an encoding and de-
coding regions of 5

Figure 3.11: Plot showing encoding applied to an Apollaro chain in the presence of
fabrication defects applied additively

3.5 Engineering Robust Chains

In the above sections, we chose specific chains to demonstrate that the encoding technique

leads to improvements in fidelity. We now consider whether we can build a chain that

is specifically designed to be robust against these errors. A natural starting point is to

consider the random errors as pertubations to the Hamiltonian. Then, can we perturb

the Hamiltonian in such a way that we can mitigate the effects of these? If we start with

the Hamiltonian H, which has some perturbation V due to the random errors so that

H = H0+V, (3.7)

where H0 is the unperturbed Hamiltonian, then we aim to apply some δH to the Hamil-

tonian to (at least partially) remove the perturbations caused by the errors. For some

set of random errors, given by some perturbation V , we can use the Dyson expansion of

evolution [54] to show that the fidelity is given by

F = 〈N |e−iHt0 |1〉 − i
∫
〈N |e−iH(t0−t1)(V + δH)e−iHt1 |1〉dt1

−

∫
〈N |e−iH(t0−t1)(V + δH)e−iH(t1−t2)(V + δH)e−iHt2 |1〉dt1dt2+ . . .,

(3.8)



76 3.5. Engineering Robust Chains

where t0 ≥ t1 ≥ t2. We can see then that the errors due toV appear at the first order. This

makes the problem more complex; given the random nature of the errors, we do not

know them in advance, and therefore do not know them when we need to choose δH.

It is possible for us to average over all errors such that we consider
∫

FdV , but we then

lose the first orderV term (given that our errors are centered around 0, the average of the

errors will be 0). The earliest our V will then appear is at the second order, and so we

can only correct for second order V with our δH. This means that for any instance of V

the first order term will still remain and cannot be corrected for. We then conclude that

this is not a viable method for improving the robustness of our system against random

errors and we have not pursued this further.



Chapter 4

Noisy Systems
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4.1 Introduction

In Chapter 3, we discussed fabrication defects in experimental quantum spin chains, and

how we can improve transfer in the presence of these errors with a simple to implement

encoding technique. Here we extend this encoding technique to cover some systems that

do not have unitary evolution. Any such quantum system, once created experimentally,

will be subject to interaction with the environment. We call this interaction with the

environment noise, or decoherence, and in Section 4.5, we will show how damaging

this is. There are two types of noise that we will be considering in detail here. We

will consider amplitude damping noise, which refers to the loss of information to the

environment and is excitation decreasing, and dephasing, which refers to the loss of

coherence in a quantum system. We can model amplitude damping noise analytically

within the single excitation subspace, to show the scale of the decay to the environment,

Section 4.5.3. Dephasing noise cannot be solved analytically. We then introduce a

generalisation of the encoding technique that can improve transfer in the presence of

noise.

Surprisingly little work has been done on noise within quantum systems, particularly in

terms of mitigation. In [55], Hu and Lian consider systems with intrinsic decoherence

modelled by the master equation, which is based on the research by Milburn in [56].

Some work has previously been done with respect to quantum error correction and noise

in quantum spin chains [57]. Parallel spin chains have also been considered as systems

appropriate for use in a noisy environment [58]. We specifically consider 1D spin chains

of length up to 35 qubits. We chose 35 as it’s unlikely that any experiment will exceed

that length soon, and therefore we can provide a theoretical framework that is prepared

for when experiments do reach that length. We also note that the noise becomes more

damaging for longer chains, as transfer time increases. Our methods are easily scalable

and we believe that these initial investigations show promising results.

In this chapter, we first give a very brief introduction to the types of noise we consider

and introduce the idea of error-correcting codes, we then introduce some mathematical

methods required to treat noisy systems. Then we introduce our noise, show how we



79 4.2. A (Very) Brief Introduction to Noise

can evolve a system according to this, and provide results on how noise effects a system.

We then introduce our encoding technique, aimed at improving transfer in the presence

of noise. Finally, we demonstrate our technique with three different systems.

4.2 A (Very) Brief Introduction to Noise

First we present a short introduction to the idea of noise such that the reader can gain

contextual information on the problem we are trying to solve. We introduce noise more

thoroughly in Section 4.5. In this thesis, we consider twomain types of noise: Amplitude

damping and dephasing. Amplitude damping noise is perhaps easier to understand as

it has many classical analogies. When we refer to amplitude damping, we are referring

to the loss of energy from the system to the environment (due to interaction with the

environment). Therefore, a system containing one excitation will decay to the zero

excitation subspace over time as the energy is lost to its surroundings, and we can say

that amplitude damping noise is excitation decreasing. Dephasing refers instead to the

loss of coherence within a system, meaning that the relations between phases within the

system are not exact, and we can no longer transfer states with high fidelity. Dephasing

is therefore quantum mechanical in nature and has no simple classical analogy. This

noise leads the state to spread throughout the system, but no energy is lost, so dephasing

noise is excitation preserving.

4.3 Error-Correcting Codes

In classical communication, bits are used to store information, where the bits can be in

either the state 1 or the state 0. An error on these bits, will manifest in a bit flip where

the state 1 becomes 0 or vice versa. One of the simplest ways to detect if a bit-flip has

occurred is to add additional bits and code each state onto a codeword. For example, the

state 0 can be encoded with 000 and the state 1 can be encoded with 111. If the receiver

receives the state 010, they can assume that the state 0 was sent, as long as the probability

of a bit flip is low. This systems relies on the probability of one bit flip occurring being
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much higher than the probability of two bit flips occurring, and therefore only allows

us to correct for a single bit flip. Nevertheless, this allows us to introduce the theory

of error-correction in classical systems. We now demonstrate how this can be adapted

to quantum error-correcting codes. When we consider qubits instead of bits, quantum

systems introduce another issue in that they cannot be directly measured without losing

the information contained within a state, so a clever solution is needed. This solution

appears in the addition of extra qubits to allow us to gain some information on the

state without direct measurement of the state. We introduce the three-qubit code as an

example of where these additional qubits are used, noting that this code only detects that

a bit-flip error has occurred and cannot correct for it. For the three qubit code, we first

introduce some assumptions:

1. Noise acts on each qubit independently

2. For each qubit, there is a probability (1− p) of it remaining unchanged

3. The probability that a bit-flip occurs (by application of a Pauli-X operator) is p ≤ 1
2

To describe the protocol for the three-qubit code, we stick to the convention of using

Alice as a sender and Bob as a receiver. Alice starts by preparing a qubit in the state

α |0〉+ β|1〉 which she intends to send. She prepares an additional two qubits in the state

|0〉, such that the initial state of all three qubits is

|ψ〉 = α |000〉+ β|100〉. (4.1)

Alice then operates a CNOT gate from the first qubit to the second (where the operation

of a CNOT is to initiate a bit-flip on the target qubit if the control qubit is in the state

1), so that the state is now |ψ〉 = α |000〉+ β|110〉. She then applies the CNOT from the

first qubit to the third to arrive at the state |ψ〉 = α |000〉+ β |111〉. Alice then sends the

three qubits down the channel, and Bob receives them after the noise in the channel has
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acted on them. The state of the qubits Bob receives is one of the following:

State Probability

α |000〉+ β|111〉 (1− p)3

α |100〉+ β|011〉 p(1− p)2

α |010〉+ β|101〉 p(1− p)2

α |001〉+ β|110〉 p(1− p)2

α |110〉+ β|001〉 p2(1− p)

α |101〉+ β|010〉 p2(1− p)

α |011〉+ β|100〉 p2(1− p)

α |111〉+ β|000〉 p3.

Bob is unable to directly measure the state he receives or he will lose the information

contained, so he adds two qubits of his own, prepared in the state |00〉, to the system.

He then performs a CNOT from the first and second received qubits to the first of his

added qubits, and from the first and third received qubits to the second of his. The state

of all five qubits is then:

State Probability

(α |000〉+ β |111〉)|00〉 (1− p)3

(α |100〉+ β |011〉)|11〉 p(1− p)2

(α |010〉+ β |101〉)|10〉 p(1− p)2

(α |001〉+ β |110〉)|01〉 p(1− p)2

(α |110〉+ β |001〉)|01〉 p2(1− p)

(α |101〉+ β |010〉)|10〉 p2(1− p)

(α |011〉+ β |100〉)|11〉 p2(1− p)

(α |111〉+ β |000〉)|00〉 p3.
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Bob can then measure the additional qubits that he added to the system and decide his

course of action depending on the state of such qubits. If he measures |00〉, then he does

nothing. If he measures |01〉, |10〉, or |11〉 then he applies the Pauli-X operator to the

third, second, or first qubit respectively. Then he either applies the operator such that he

has the exact state that Alice sent, or he is a state of X out on all qubits. This protocol

works on the assumption that one bit flip is much more likely than two, therefore Bob is

more likely to correct to the state sent by Alice than one that is X out. This may seem

like an elegant solution to the problem of quantum error correction, but this three-qubit

code only corrects for bit-flip type errors, where quantum systems introduce another

type of error. If we consider the Bloch sphere, shown in Fig. 1.1, we can see that there

are countless possible states that can be received that were not the intended state, rather

than a simple bit flip. This appears to make the task of error correction much more

complex in the quantum case, however we are able to digitise the quantum case such

that we can apply some of the same logic as in the classical case. We first note that any

interaction between a qubit and the environment can be written as

|ψ〉|φ0〉e→
∑

i

(Ei |ψ〉)|φi〉e (4.2)

where the Ei are error operators and are tensor products of the Pauli operators [59], |ψ〉

is the initial state of the system, and |φi〉e are the states of the environment. This shows us

that any error that can occur can be expressed using the Pauli matrices, and furthermore

we can express the Pauli-Y operator in terms of the Pauli-X and Pauli-Z operators (up

to a phase) so that −iY = X Z . We can now remind ourselves that the Pauli-X operator

is analogous to a bit flip, and the Pauli-Z operator enacts a phase change. Until now, we

have been working in the computational basis |0〉, |1〉, but to consider the phase flips, we

change to the conjugate basis |+〉, |−〉 where

|+〉 =
1
√

2
(|0〉+ |1〉) (4.3)

|−〉 =
1
√

2
(|0〉 − |1〉) (4.4)
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and the phase flip (which happens via the Z operator) acts such that Z |−〉 = |+〉 and

Z |−〉 = |+〉. We therefore need a code that is capable of detecting and correcting for both

bit flips and phase flips. We now discuss how the theory of quantum error correcting

codes has evolved. The first examples of quantum error-correcting codes are the CSS

codes (Calderbank Shor Steane). Shor proved in [60] that 9 qubits could protect a

single qubit , while in [61], Steane demonstrated that the same could be done with just

7 qubits. A more general theory for quantum error correcting codes was later given

in [62] and [63]. A perfect 5 qubit code was later found [64], [65]. Although these

perfect codes exist, they still require a large number of additional qubits, which is more

difficult in practice. Given that the largest quantum computer currently in operation is

a 53 qubit quantum computer created by IBM [66], it is useful to consider systems that

can be robust against noise without using full-error correction, and therefore using fewer

qubits. That is exactly what we present here.

4.4 Mathematical Methods

Before we discuss noise in detail, we introduce some of the mathematical methods

required to consider noisy systems. First, we introduce vectorisation as a method

whereby we rearrange the elements in a matrix to become a vector. This allows us to

apply noise as superoperators to vector states. We then recalculate our average fidelity

in this vectorised formalism to give us a measure of success for our technique.

4.4.1 Vectorisation

Here we introduce the vectorisation procedure that allows us to properly consider noisy

systems. When we introduce noise to a system, we must consider mixed states. For this

reason, we use the density operator

ρ =
∑

i j

pi j |i〉〈 j |, (4.5)
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where
∑

i pii = 1 and pi j = p∗ji.

This can be rewritten as a column vector by reorganising the elements

|ρ〉 =
∑
i, j

pi j |i, j〉. (4.6)

To apply this method to our work with spin systems and noise, we demonstrate how this

works with operators.

Lemma 4.

|AρB〉 = A⊗ BT |ρ〉

Proof. Consider operators A and B, with the same dimensions. We can write these as

A =
∑
kl

Akl |k〉〈l | (4.7)

and

B =
∑
kl

Bkl |k〉〈l |, (4.8)

where Akl = 〈k |A|l〉 and Bkl = 〈k |B |l〉 so that

A =
∑
kl

〈k |A|l〉|k〉〈l | (4.9)

and

B =
∑
kl

〈k |B |l〉|k〉〈l |. (4.10)

Applying the same vectorisation process as above for the density operator, we have

|AρB〉 =
∑
kl

〈k |AρB|l〉|k, l〉. (4.11)

Then substituting in the Density Operator, Eq. (4.5), we get

|AρB〉 =
∑

i j

∑
kl

pi j 〈k |A|i〉〈 j |B |l〉|k, l〉, (4.12)
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which can be rearranged to give

|AρB〉 =
∑

i j

∑
kl

pi j |k, l〉〈k |A|i〉〈l |BT | j〉 =
∑
kl

|k, l〉〈k, l |A⊗ BT
∑

i j

pi j |i, j〉. (4.13)

Where the first summation gives the identity matrix and the final sum returns the

vectorised density matrix. Therefore, we have

|AρB〉 = A⊗ BT |ρ〉. (4.14)

�

This will allow us to treat noise superoperators as operators and therefore consider

the evolution of a system subject to noise.

4.4.2 Average Fidelity in the Vectorised Formalism

We previously demonstrated how to calculate the average fidelity of state transfer for a

system using the density operator, in Section 2.3.2. Now, we must consider how that

translates to the vectorised form. If we start with an initial state

|ψ〉 = α |0〉+ β |1〉, (4.15)

then, after some evolution, we have the state

|ψ′〉 = α |0〉+ β
N∑

n=1
ηn |n〉, (4.16)

where the excitation can be spread over all sites. After we have allowed the system to

evolve for some time t, we take the partial trace over all sites other than the final site

(where we aim to extract the state). We therefore introduce some operator C that takes

the partial trace over sites 1 to N −1 such that

Ce−iHt |ρ〉 = Tr1,2,...,N−1 |ρ
′〉, (4.17)
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where ρ′ = |ψ′〉|ψ′∗〉 is the density vector after evolution.

Example 4. The partial trace operator, C for N = 3 is given by

C =

|00〉 |01〉 |02〉 |03〉 |10〉 |20〉 |30〉 |11〉 |12〉 |13〉 |21〉 |22〉 |23〉 |31〉 |32〉 |33〉



|00〉 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

|01〉 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

|10〉 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

|11〉 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

,

(4.18)

where the first row (referring to the zero excitation subspace)will have 1’s in the positions

that refer to |00〉,|11〉,. . . ,|N − 1,N − 1〉. Rows 2 and 3, will have 1’s in the positions

|0N〉 and |N0〉 respectively, and row 4, will have a 1 in position |N,N〉.

Taking the partial trace over of our density vector gives

Tr1,2,...,N−1 |ρ〉 = |ρN〉 =



|α |2+ |β|2(|η1 |
2+ ...+ |ηN−1 |

2)

αβ∗η∗N

α∗βηN

|β |2 |ηN |
2


, (4.19)

where we can see that |ηN |
2 is the fidelity of excitation transfer, where we note that Eq.

4.19 is very similar to Eq. 2.69.

We recall that our fidelity is given by

F = 〈ψ |ρN |ψ〉, (4.20)

which, in our vectorised format becomes

F = 〈ψψ∗ |ρN〉, (4.21)

so we have

F(α, β) = (|α |2〈00|+α∗β〈01|+αβ∗〈10|+ |β |2〈11|)(|ρN〉). (4.22)
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We expand this and replace α = cos
(
θ
2
)
and β = sin

(
θ
2
)
eiφ respectively. To average over

all possible input states, we integrate over all values of θ and φ on the Bloch sphere

F =
∫ 2π

0

∫ π

0
F(θ, φ)sinθdθdφ. (4.23)

The integration removes any terms with eiφ or similar, so we are left with

F = 1
6 [2+ (|η1 |

2+ · · ·+ |ηN−1 |
2))〈00|00〉+ |ηN |

2〈00|11〉+

η∗N 〈01|01〉+ηN 〈10|10〉+ (1+2(|η1 |
2+ · · ·+ |ηN |

2)〈11|00〉+2|ηN |
2〈11|11〉].

(4.24)

We then compute the inner products so that now we have

F =
1
6
(2+ |η1 |

2+ · · ·+ |ηN−1 |
2+η∗N +ηN +2|ηN |

2). (4.25)

Then, by applying a particular phase to η∗N + ηN we have 2|ηN |. We can show this

is true by considering the complex plane. As η∗N and ηN are complex conjugates of

each other we can write them as (x + iy)+ (x − iy). In polar coordinates we then have

reiφ+re−iφ where r is the absolute value and eiφ gives us the angle from the positive real

axis on the Argand diagram. We can then see that we have r(2cosφ) where by applying

some overall corrective phase e−iφ, we can retrieve the absolute value r . Finally our

average fidelity of transfer is given by

F =
1
6
(3+2|ηN |+ |ηN |

2) (4.26)

which is identical to the case without vectorisation. We extend this to the case of noise

in Section 4.5.4.

4.5 Noise

We present here dephasing noise, QD, (Section 4.5.2) and amplitude damping noise,

QA, (Section 4.5.3). We first demonstrate how a noisy system evolves through the
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LindbladMaster Equation [67], thenwe use this and our vectorisationmethod to build the

superoperators describing noise. Finally in this section, we demonstrate that dephasing

noise evolves only in the single excitation subspace and that we can provide an analytical

solution to amplitude damping noise.

4.5.1 The Lindblad Master Equation

When noise is introduced to a system, we are no longer confined to pure states and must

also be able to consider mixed states. For this reason, we use the density matrix as given

in Eq. (4.5). In this formalism, the Schrödinger equation for the noise-free case is given

by
dρ
dt
= −i[H, ρ] (4.27)

where [A,B] = AB− BA gives the commutator of operators A and B. To model the

noise, we use the Lindblad Master Equation

dρ
dt
= −i[H, ρ]+

N∑
n=1
(LnρL†n −

1
2

L†n Lnρ−
1
2
ρL†n Ln) (4.28)

and substitute suitable operators in place of the Lindblad operators, Ln. These Lindblad

operators are typically trace-free regardless of the trace of ρ, meaning that the sum of

the eigenvalues does not change (and indeed is always 1). We also note that the Lindblad

operators ensure that dρ
dt remains Hermitian so all the eigenvalues are real.

4.5.2 Dephasing Noise

Dephasing is the mechanism by which a quantum system becomes classical. For a

quantum system to be useful as an information transfer system, there must be definite

phase relations between states. When dephasing happens, this destroys the phase relation

between states and therefore the separate states can no longer be defined and we have

lost coherence in the system. This type of noise is excitation preserving and rather than

losing energy to the environment (in the case of amplitude damping, Section 4.5.3), the

energy is spread through the system and coherence between states is lost. In the case
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of dephasing noise, the Lindblad operators are given by Ln =

√
Γz
2 Zn, where Γz gives

the strength of the noise, and is related to the transverse relaxation process in NMR by

Γz =
1
T2

[68]. Substituting this into Eq. (4.28), we can see that the Lindblad equation

becomes
dρ
dt
= −i[H, ρ]+

Γz

2

N∑
n=1
(ZnρZ†n −

1
2

Z†n Znρ−
1
2
ρZ†n Zn). (4.29)

We know that the Pauli matrices are hermitian, so this may be rewritten as

dρ
dt
= −i[H, ρ]+

Γz

2

N∑
n=1
(ZnρZn)−

Γz

2
ρN . (4.30)

Using the result from Lemma 4, we can vectorise each component. Starting with

|Hρ〉 = (H ⊗1)|ρ〉, (4.31)

and similarly

|ρH〉 = (1⊗HT )|ρ〉, (4.32)

whereHT =H as long asH is real and symmetric. Then, without noise, our superoperator

is given by

H = −iH ⊗1+ i1⊗H. (4.33)

Finally,

|ZρZ†〉 = (Z ⊗ Z∗)|ρ〉. (4.34)

Using these results, the Lindblad equation can be written as

d |ρ〉
dt
=QD |ρ〉, (4.35)

where

QD =H+
Γz

2

N∑
n=1

Zn ⊗ Zn−
Γz

2
N1⊗1 . (4.36)
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We can use the general solution for the above differential equation, giving the evolution

of |ρ〉 as

|ρ(t)〉 = eQD t |ρ(0)〉. (4.37)

Using Eq. (4.36) we can build the superoperator for dephasing noise. Although this

cannot be solved analytically, due to the diagonal perturbations, we can demonstrate that

dephasing noise preserves excitation number through evolution. We first consider the

componentH = −iH ⊗1+ i1⊗H for the general case, taking each subspace separately.

Taking first the S00 subspace, we need only apply this to the tensor product |0〉 ⊗ |0〉

which gives

− i(H |0〉 ⊗1|0〉)+ i(1|0〉 ⊗H |0〉). (4.38)

The identity operator returns the state unchanged and the Hamiltonian operator only has

an effect on an excited states, so Eq. (4.38) gives us 0 for the S0 subspace. Let’s now

consider the S01 subspace, |0〉 ⊗ |n〉 , where we have the zero state tensored with a state

that contains a single excitation at site n. Applying the same logic as above, we have

− i(H |0〉 ⊗1|n〉)+ i(1|0〉 ⊗H |n〉). (4.39)

This time we have a Hamiltonian operator acting on an excited state, therefore we return

iH1, whereH1 denotes the single excitation subspace of theHamiltonian. We can also see

that if we instead acted on |n〉 ⊗ |0〉wewould get−iH1, thereforewe knowboth subspaces

S01 and S10. Finally, we calculate the S11 subspace, giving −i(H1 ⊗1)+ i(1⊗H1). The

first component of QD is then given as

H =

S0 S01 S10 S11



S0 0 0 0 0

S01 0 iH1 0 0

S10 0 0 −iH1 0

S11 0 0 0 −iH1 ⊗1+ i1⊗H1

. (4.40)
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The noise in this case applies only to the diagonal components, and therefore pre-

serves excitation number, so we can build the case for N = 3

QD =

|00〉 |01〉 |02〉 |03〉 |10〉 |20〉 |30〉 |11〉 |12〉 |13〉 |21〉 |22〉 |23〉 |31〉 |32〉 |33〉



|00〉 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

|01〉 0 −Γz i 0 0 0 0 0 0 0 0 0 0 0 0 0

|02〉 0 i −Γz i 0 0 0 0 0 0 0 0 0 0 0 0

|03〉 0 0 i −Γz 0 0 0 0 0 0 0 0 0 0 0 0

|10〉 0 0 0 0 −Γz −i 0 0 0 0 0 0 0 0 0 0

|20〉 0 0 0 0 −i −Γz −i 0 0 0 0 0 0 0 0 0

|30〉 0 0 0 0 0 −i −Γz 0 0 0 0 0 0 0 0 0

|11〉 0 0 0 0 0 0 0 0 i 0 −i 0 0 0 0 0

|12〉 0 0 0 0 0 0 0 i −2Γz i 0 −i 0 0 0 0

|13〉 0 0 0 0 0 0 0 0 i −2Γz 0 0 −i 0 0 0

|21〉 0 0 0 0 0 0 0 −i 0 0 −2Γz i 0 −i 0 0

|22〉 0 0 0 0 0 0 0 0 −i 0 i 0 i 0 −i 0

|23〉 0 0 0 0 0 0 0 0 0 −i 0 i −2Γz 0 0 −i

|31〉 0 0 0 0 0 0 0 0 0 0 −i 0 0 −2Γz i 0

|32〉 0 0 0 0 0 0 0 0 0 0 0 −i 0 i −2Γz i

|33〉 0 0 0 0 0 0 0 0 0 0 0 0 −i 0 i 0

(4.41)

where we can see that the elements that allow movement between subspaces are all 0,

therefore dephasing noise is excitation preserving.

4.5.3 Amplitude Damping Noise

Amplitude damping essentially refers to the relaxation of an excitation to the ground

state through loss of energy to the environment. We can consider this to be analogous to

a swinging pendulum. The systems we have considered in Chapter 3, without no noise

present, are lacking in interaction with the environment. We can similarly consider a

pendulum suspended in a vacuum, without any friction or other electrical or magnetic

interactions. Such pendulum would continue to swing indefinitely, given that there is

no energy being dissipated. However, if we consider the same pendulum, outside a

vacuum, we know that due to the air resistance it encounters, it will lose energy to

the environment and eventually stop. This description fits well with our spin system,

where the interaction with the environment will cause some dissipation of energy and

eventually the energy stored in our system will be lost to the environment. The Lindblad



92 4.5. Noise

operator for amplitude damping noise is given by

Ln =

√
Γx

2
(Xn+ iYn), (4.42)

where Γx is the strength of our noise, and is linked to the longitudinal relaxation time in

NMR by Γx =
1
T1

[68]. Substituting these operators into the Lindblad equation gives

QA =H+
Γx

2

N∑
n=1
[(Xn+ iYn) ⊗ (Xn+ iYn)

∗−(1− Zn) ⊗1−1⊗ (1− Zn)] . (4.43)

We can then evolve our system according to amplitude damping noise as

|ρ′〉 = eQAt |ρ〉. (4.44)

We are able to gain a little more information from the case of amplitude damping. We

can analytically calculate the evolution of each subspace of the density operator. We

can also show why amplitude damping noise is excitation decreasing. It helps for us to

show what the superoperator would look like in this case

QA =

S00 S01 S10 S11



S00 0 0 0 2Γx
∑

k 〈kk|

S01 0 iH1−Γx1 0 0

S10 0 0 −iH1−Γx1 0

S11 0 0 0 iH1 ⊗1− i1⊗H1−2Γx1

, (4.45)

where the upper right block exists as the (Xn + iYn) ⊗ (Xn + iYn)
∗ removed an excitation

from both components and therefore has no effect on the S01,S10, or S00 subspaces. We

can see straight away that this is excitation decreasing as the components between the

S11 and S0 subspace are non-zero. Due to the block structure of QA, we can calculate the

evolution of each of these subspaces separately. First, let’s consider the S11 subspace.
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If we take W =
∑

j 〈 j j |ρ11〉, from the above matrix (which is essentially the trace of the

component in that subspace), we can see that

d |ρ11〉

dt
= (−2Γx1+ iH1 ⊗1− i1⊗H1)|ρ11〉. (4.46)

Then
dW
dt
= −2ΓxW + i

∑
j

〈 j j |(H1 ⊗1−1⊗H1)|ρ11〉. (4.47)

The second term of this equation will be 0 as the two terms including H1 will cancel one

another out as Tr(Hρ11)−Tr(ρ11H) = 0 by the cyclic property of trace. We can then see

that W evolves as W(t) =W(0)e−2Γx t . Similarly, considering the ρ00 component, we can

see from the matrix that

d |ρ00〉

dt
= −2Γx |00〉

∑
j

〈 j j |ρ11〉 = −2ΓxW |00〉. (4.48)

We can solve this as a differential equation and we reach the result that if we let

|ρ00〉 = a(t)|00〉 then
da
dt
= −2ΓxW = −2ΓxW(0)e−2Γx t . (4.49)

We can then see that a(t) = −W(0)e−2Γx t + c, and as a(0) = ρ00(0), then

a(t) = ρ00(0)+W(0)−W(0)e−2Γx t . (4.50)

Finally we can see that our components evolve as

|ρ00〉 → |ρ00〉, (4.51)

|ρ01〉 → e−Γx2teiH1t |ρ01〉, (4.52)

|ρ10〉 → e−Γx2te−iH1t |ρ10〉, (4.53)

|ρ11〉 → e−2Γx tei(H1⊗1−1⊗H1)t |ρ11〉+ (1− e−2Γx t)|ρ00〉. (4.54)
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We can already see why this, unlike dephasing, is not excitation preserving by looking

at the Γx entries in the 1st row of Eq. (4.45). This Γx gives an indication of the scale

of decay of the single excitation subspace to the zero excitation subspace. We can

make predictions for this value, but realistically it would be experimentally determined.

Completing this calculation gives the measure of decay to S0 as (1− e−2Γx t). We have

plotted this decay as the growth of the zero-excitation subspace for values of Γx from 0

to 1 against time for 5 units of time, Fig. 4.1.

Figure 4.1: State on the S00 subspace for amplitude damping noise parameter of Γx over
time

Most importantly, from the above calculations, the fidelity of excitation transfer at

time t is given by e−2Γx t Fex where Fex is excitation transfer fidelity without noise. This

then indicates that our only possibilities of improving transfer in the presence of noise

is to make the transfer faster, or to improve Fex with encoding.

4.5.4 Figure of Merit

Before we can consider how to improve these spin systems, we must define a measure of

success. We have previously defined the average fidelity, so we can use this to give an
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indicator of howwell our noisy systems perform. We give our average fidelity calculation

here in terms of Q, which can subsequently be replaced with QD for dephasing noise

or QA for amplitude damping noise. We can also apply both types of noise by using

QD +QA−H where we take away H as it appears in both noise superoperators. We

start with the initial state

|ψ〉 = α |0〉+ β |1〉 (4.55)

then our initial density vector is given by

|ρ〉 = |ψ,ψ∗〉 = |α |2 |00〉+αβ∗ |01〉+α∗β |10〉+ |β|2 |11〉. (4.56)

We demonstrated previously that the time evolution of the density operator is given by

|ρ′〉 = eQt |ρ〉. (4.57)

After we have allowed the system to evolve for some time t, we take the partial trace

over all sites other than the final site (where we aim to extract the state). We therefore

remind ourselves of the operator C that takes the partial trace over sites 1 to N −1 such

that

CeQt |ρ〉 = Tr1,2,...,N−1 |ρ
′〉 (4.58)

where |ρ′〉 is the density vector after evolution.

We defineQ′ = CeQt for simplicity. Then we take our fidelity as defined previously

to get

Fα,β = (|α |2〈00|+α∗β〈01|+αβ∗〈10|+ |β |2〈11|)Q′|ρ〉. (4.59)

We then average over all input states to get the average fidelity of transfer, replacing

α = cos θ2 and β = eiφ sin θ
2 and integrating over all points on the Bloch sphere

F =
1

4π

∫ 2π

0

∫ π

0
F(θ, φ)sinθdθdφ. (4.60)

All components containing eiφ or similar will vanish due to integration, so we are left
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with

F =
1
6
[
〈00|

(
Q′|11〉+2Q′|00〉

)
+

(
〈01|Q′|01〉+ 〈10|Q′|10〉

)
+ 〈11|

(
Q′|00〉+2Q′|11〉

) ]
.

(4.61)

Given that neither type of noise we are considering is excitation-increasing, we have that

〈00|Q′|00〉 = 1 and 〈11|Q′|00〉 = 0. This is evident as anything starting in the zero-

excitation subspace must remain in the zero-excitation subspace and cannot increase

excitation number. We can also identify that the trace of any state is 1, so 〈00|Q′|11〉+

〈11|Q′|11〉 = 1. Again, we can explain this by noting that any state starting in the

single-excitation subspace can only evolve to the single-excitation subspace or the zero-

excitation subspace (where the latter is the decay of the state to the environment and

only occurs for amplitude damping noise). This gives us a simplified version of the

average fidelity

F =
1
6
(3+ 〈01|Q′|01〉+ 〈10|Q′|10〉+ 〈11|Q′|11〉). (4.62)

The part 〈01|Q′|01〉 + 〈10|Q′|10〉 appears to simplify to 2Re(〈01|Q′|01〉) but as we

can apply an arbitrary phase to the final state, we can apply this phase such that we

get |〈01|Q′|01〉|. We are then able to use this average fidelity to see how well systems

perform under different noise strength parameters. We have already indicated that we

can analytically calculate the extent of the decay to the environment with the case of

amplitude damping, but now we are able to provide numerical solutions.

4.5.5 Preliminary Results

Now that we have a way to measure success, we can see what this noise looks like. So

far, our work is applicable to any system governed by a Hamiltonian that is excitation

preserving, but we now select a specific Hamiltonian to demonstrate our methods. For

now, we choose the Hamiltonian presented in [31], where the coupling strengths are

given by Jn =
2
√

n(N−n)
√

N2−1
. We choose this system as without noise, it gives PST, so we can
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clearly see the damage due to noise. Later we show how our technique can be applied

to different Hamiltonians. Using the figure of merit as described above, we can plot

an example of the decay over time due to noise for N = 5 and N = 11 and amplitude

damping and dephasing strength parameters of Γx,z = 0.1. We choose N = 5 and N = 11

to show how the noise affects different chain lengths, but with small enough N to show

multiple peaks. We also evolve the longer chain over a longer time to provide clearer

results.

Amplitude Damping

We first plot the cases with no noise present, and compare that to the case where we

have just amplitude damping noise present.

It is quite clear from our results in Fig. 4.2 that even a small chain of just 5 qubits

suffers noticeably from amplitude damping, and that these effects worsen as the chain

increases in length, since transfer time ≈ N . We also note here that extracting the state

on its first revival gives the best average fidelity and all subsequent revivals will show a

decrease. Given how damaging amplitude damping noise can be to a system, due to the

−Γxt factor, it is important that we find a way to mitigate this damage.

Dephasing

We then use our figure of merit to demonstrate how dephasing noise effects our system.

Where amplitude damping preserves the coherence of our system but we have reduced

peaks due to energy leaking to the environment, dephasing does not leak energy to the

system but instead we lose coherence. This means that the excitation spreads evenly

over all sites and can no longer be located on a single site. We have plotted N = 5 and

N = 11 for a dephasing noise parameter of Γz = 0.1 and a system including both types

of noise, both with strength parameter Γx,z = 0.1 These results are shown in Fig. 4.3.
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(a) N = 5, Γx,z = 0 (b) N = 11, Γx,z = 0

(c) N = 5, Γx = 0.01 (d) N = 11, Γx = 0.01

Figure 4.2: Results showing how amplitude damping noise effects chains of different
lengths. We show chain lengths of N = 5 and N = 11, with no noise and an amplitude
damping parameter of Γx = 0.01
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(a) N = 5, Γz = 0.01 (b) N = 11, Γz = 0.01

(c) N = 5, Γx,Γz = 0.01 (d) N = 11, Γx,Γz = 0.01

Figure 4.3: Results showing how dephasing noise effects chains of different lengths.
We show chain lengths of N = 5 and N = 11, with dephasing noise and both amplitude
damping and dephasing noise. Noise parameters of Γx,Γz = 0.01
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4.6 Encoding and Decoding

We have shown how noise affects transfer of states through quantum spin chains, and

how the effects become worse over time and for longer chains. This is then an important

problem to find a realistic solution for, as this interaction with the environment will

always be present in physical spin systems. So far, with respect to noisy spin systems,

we have only considered sending a state from one qubit to another qubit (at opposite

ends of a 1D chain). However, we can consider encoding a state over a number of spins

and decoding over a number of spins at the other end. This allows us to collect the

excitation that may be spread out among a few qubits at the end of the chain and apply

a unitary to ‘move’ the state onto the final qubit before extracting. Therefore, we are

increasing the zone we can ‘catch’ the excitation from. Our work here builds on that of

Haselgrove in [29] where we extend his scheme into noisy system. For now, we restrict

ourselves to encoding within the single excitation subspace to see what improvement we

can achieve. Later, in Chapter 5, we extend this to consider encoding across the 1- and

2-excitation subspaces.

4.6.1 Technique

Previously we have introduced our initial state as

|ψ〉 = α |0〉+ β|1〉 (4.63)

where we have a superposition of the |0〉 state and the |1〉 state over the first qubit and

all remaining qubits are in the |0〉 or relaxed state. Our scheme remains in the single

excitation subspace, rather than encoding withmultiple excitations as in error correction.

We aim then to see what improvements can be made on a noisy systems with a much

simpler to implement scheme. Instead of confining the excitation on the first qubit, we

now spread it over a number of qubits such that we have

|ψ〉 = α |0〉+ β |ψ〉 (4.64)
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where |ψ〉 =
∑M

n=1 δn |n〉. M is the number of qubits we encode over and the optimal |ψ〉

is something to be determined. Also we have that M < N
2 such that we still have part

of the chain that forms the bulk and is not included in either the encoding or decoding

region. Generally, encoding over a larger number of qubits will give a higher average

fidelity, as the arrival peak will be wider so we have the opportunity to extract at an

earlier time, but will reduce the bulk length of the chain. Therefore we aim to find a

balance between a large enough encoding zone to achieve high fidelity transfer and large

enough bulk such that the transfer distance is meaningful. As we are dealing with noise,

and therefore mixed states, we must use the density operator formalism to evolve our

system over time. Referring to Section 4.4.1, we also continue to use the vectorised

format of the density operator. Our density operator is then given by

|ρ〉 = (α |0〉+ β|ψ〉)(α∗ |0〉+ β∗ |ψ∗〉). (4.65)

We have already shown evolution through time is given by applying the superoperator

eQt to the density vector, |ρ〉 whereQ is the superoperator that describes noise and can

be replaced with eitherQA or QD. We define our density vector at a later time as

|ρ′〉 = eQt(α |0〉+ β |ψ〉)(α∗ |0〉+ β∗ |ψ∗〉). (4.66)

As mentioned previously, the state we can extract deteriorates over time with noise, so

we must choose the optimal time for extraction. This optimal time will depend on our

choice of Hamiltonian, and we will consider this in more detail in Section 4.7.1. To

calculate our fidelity, we need to compare the state on the final qubit to our desired state

and then average over all input states. Therefore, we need to take only the state on the

final qubit. We can achieve this by applying a unitary, U, to the decoding region to move

any excitation to the final qubit and then trace off all remaining states. Then our fidelity

is given by

F = (α∗〈0|+ β∗〈1∗ |)(α〈0|+ β〈1|)C(U ⊗UT )|ρ′〉 (4.67)
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where C is as previously defined, and traces over all sites but N . We previously

demonstrated how to find the average fidelity of transfer by integrating over all possible

input states, and we apply the same action here such that

F =
∫ 2π

0

∫ π

0
F sinθdθdφ =

1
6
(3+ 〈10|A|ψ0〉+ 〈01|A|0ψ∗〉+ 〈11|A|ψψ∗〉), (4.68)

where A = C(U ⊗UT eQt . Our aim now is to choose the best encoding and unitary

operator to maximise the average transfer fidelity. To maximise F we initially maximise

the components 〈10|A|ψ0〉 and 〈11|A|ψψ∗〉 separately. We are then able to combine

our methods to achieve the near-optimal average fidelity.

Let us first consider how to maximise 〈11|A|ψψ∗〉 by choosing the optimal encoding

|ψ〉 and unitary U. As above, we defined our initial encoding as |ψ〉 =
∑M

n=1 δn |n〉, so

we can write

eQt |ψψ∗〉 = γ00 |00〉+
N∑

n=1
γn |n0〉+

N∑
m=1

γm |0m〉+
N∑

n,m=1
γnm |nm〉, (4.69)

where the {γn} are the time evolved constants, and we may have components belonging

to the zero-excitation subspace as our noise is excitation decreasing. To utilise our

decoding zone, we must apply a unitary to those sites to move the excitation to the

final site. However, as we have completed the evolution and we are only interested in

the decoding region, we can first trace off any spins that are not part of our decoding

region. For simplicity, we introduce the notation Λ to represent the set of spins in the

decoding region, and C
Λ
as the trace operator that traces off any states not belonging to

the decoding region. Similarly we introduce CΛN
to represent the trace operator over all

sites in the decoding region apart from the final site N . We are then looking for

A|ψψ∗〉 = CΛN
(U ⊗UT )C

Λ

(
γ00 |00〉+

N∑
n=1

γn |n0〉+
N∑

m=1
γm |0m〉+

N∑
n,m=1

γnm |nm〉
)
.

(4.70)

We can see that we later take the overlap with the state 〈11| and notice that only the term∑N
n,m=1 γnm |nm〉 can overlap, so we can neglect any other terms. We can consider each
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of the three operations separately, so we first trace off all sites that do not belong to the

decoding region. Therefore Eq. (4.70) becomes

C
Λ

eQt |ψψ∗〉 ∼
∑

n,m∈Λ

γnm |nm〉, (4.71)

where we have neglected terms that do not overlap with 〈11|. We now consider the action

of the unitary operator U on the decoding region. We can make some assumptions on

what this unitarywill look like, by noting that anything that belongs to the zero-excitation

subspacemust remain in that subspace after the action of the unitary, therefore we choose

U |0〉 = |0〉. (4.72)

Consequently, anything not within the decoding zone remains unchanged by the unitary

operator so

U |n〉 = |n〉,∀n ∈ Λ̄. (4.73)

All other states certainly arise from an excitation being input, so should decode to |1〉

on the output qubit. Without any further loss in generality, we denote that application

of the unitary operator will give

U |n〉 = |N,φn〉,∀n ∈ Λ (4.74)

where |φn〉 is a superposition of the all zero state |0〉 over all sites other than N , and

{|m〉} over sites ΛN . More information on the Unitary, along with an example, can

be found in Appendix B. Therefore, we can see that the action of the unitary, U, on

C
Λ

eQt |ψψ∗〉 is given by

(U ⊗UT )C
Λ

eQt ∼
∑

γnm |N,φn〉|N,φ
∗
m〉. (4.75)

Now we have used out unitary to ‘move’ the excitation from the decoding region to the

final site, we can take the partial trace over the remaining sites to leave us with only the
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state on the final site. We can show that |φ∗m〉 and |φn〉 are orthogonal states by noting

that 〈m |n〉 = 〈m |U†U |n〉 = 〈N,φm |N,φn〉, we can see that 〈φm |φn〉 = δnm, which then

gives us

A|ψψ∗〉 ∼
∑
|1,1〉γnm〈φm |φn〉 =

(∑
γnn

)
|1,1〉. (4.76)

Taking the overlap then with the state we want to extract, gives us

〈1,1|A|ψψ∗〉 =
∑
n∈Λ

γnn. (4.77)

This allows us to see that our choice of U is irrelevant (beyond our earlier assumptions),

for the 〈11|A|ψψ∗〉 component. All that’s left for us to do now, is to work out how

to choose the input state to maximise
∑
γnn. If we label our output sites (the decoding

region) as k, then we can sum over such output states as

Ri j =
∑
k∈Λ

〈k, k |eQt |i, j〉. (4.78)

We then have

R =
M∑

i, j=1
Ri j | j〉〈i |, (4.79)

such that
∑
γnn = 〈ψ |R|ψ〉, and are able to maximise

∑
γnn by selecting the eigenvector

of R with the maximum eigenvalue.

We then need to maximise our other component. It is sufficient to maximise only

〈10|A|ψ0〉 as this can always be made real by application of an arbitrary phase incor-

porated into the unitary, so 〈10|A|ψ0〉 = 〈01|A|0ψ∗〉.

Following the same method as before, after evolution we have the state

eQt |ψ0〉 = γ00 |00〉+
N∑

n=1
γn |n0〉. (4.80)

We then take the partial trace such that we remove the states on any sites other than
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those belonging to the decoding region.

C
Λ

eQt |ψ0〉 = γ00 |00〉+
∑
n∈Λ

γn |n0〉. (4.81)

We once again apply the unitary operator to our system

(U ⊗UT )C
Λ

eQt |ψ0〉 ∼
∑
n∈Λ

γn |N,φn〉|0〉, (4.82)

where we have again neglected any terms that will not overlap with 〈10|. We trace off

all remaining states in the decoding region, leaving only the state on the final site.

A|ψ0〉 ∼
N∑

n∈Λ

γn |10〉〈0ΛN
|φn〉 (4.83)

where 〈0ΛN
| indices that this is the zero components over all sites in the decoding region

excluding site N . We then take the overlap with our desired state

〈10|A|ψ0〉 =
∑
n∈Λ

γn〈0ΛN
|φn〉. (4.84)

We see now that if we want to maximise this quantity, we are actually maximising

〈0|UΛN

∑
n∈ΛN

γn |n〉 over U because once we have ‘moved’ any excitation from the

encoding region to the final site we expect to maximise the overlap of the decoding

region with 〈0|. We are therefore looking for (〈0|U)† parallel to
∑
γn |n〉 so

〈0|φn〉 =
γ∗n√∑

m∈Λ |γm |
2

(4.85)

and finally we can say that

〈10|A|ψ0〉 =
√∑

m∈Λ

|γm |
2 = 〈01|A|0ψ∗〉. (4.86)
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We can now maximise our input state |ψ〉 by saying that

S = |(Pout ⊗ 〈0|)eQt(|ψ〉 ⊗ |0〉)|. (4.87)

Therefore our encoding |ψ〉 will be the largest right singular vector of

(Pout ⊗ 〈0|)eQt(Pin ⊗ |0〉) (4.88)

where Pin and Pout are projectors projecting onto the encoding region and decoding

region respectively.

4.6.2 Comparison to Haselgrove

If we consider a system with no noise such that Q = −iH ⊗ 1+ i1 ⊗ H then we can

rewrite Eq. (4.88) as S = (Poute−iHt Pin) ⊗ (〈0|eiHt |0〉). We can see that the second

component will always be equal to 1 as the zero component will always evolve to itself

under an excitation preserving Hamiltonian. Looking at Eqs. (4.51), for amplitude

damping noise, we can see that when we are considering a noisy system, all we need

to do it take |ρ′10〉 → e−
Γ2
x
2 te−iH1t |ρ10〉. Therefore in our formalism we simply have

|ρ′10〉 → e−
Γ2
x
2 t(Poute−iHt Pin) ⊗ 〈0|eiHt |0〉. If we look at the R component, we have

R =
∑
i, j

∑
n

| j〉〈i |〈n|e−iHt |i〉〈n|eiH∗t | j〉, (4.89)

where H is hermitian, so 〈n|eiH∗t | j〉 = 〈 j |eiHt |n〉. Then R can be rewritten as

∑
i, j

∑
n

| j〉〈 j |eiHt |n〉〈n|e−iHt |i〉〈i | = PineiHt Poute−iHt Pin = S†S. (4.90)

We then see that our result coincides with the result Haselgrove obtained when there is

no noise in our system. We also note that in a system without noise, if we start with a

pure state, our system will only evolve to pure states and so the components of R that

represent mixed states will be 0. When we consider a system with amplitude damping
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noise, this just becomes e−Γx t
1. Therefore we can see that our result at a fixed time is the

same as that which Haselgrove obtained, with an additional factor of e−
Γx
2 t to account

for the noise, and we note that in the noiseless case, our encoding is entirely dependent

on the S01 subspace.

4.6.3 Optimising Over Components

In the previous section, we have described how to find the optimal encoding to maximise

each element of the average fidelity of transfer. Although in some cases (such as

amplitude damping noise), these results will coincide, they generally will not - such as in

the case of dephasing noise. We now consider howwe can combine these encodings such

that wemaximise the average fidelity. We remember that for the component 〈11|A|ψψ∗〉

our optimal encoding is given by the maximum eigenvector of R =
∑

Ri, j |i〉〈 j | and our

optimal encoding for the 〈10|A|ψ0〉 component is given by the maximum right singular

vector of S = (Pout ⊗ 〈0|)eQt(Pin ⊗ |0〉). Instead of finding the maximum right singular

vector of S, we can find the maximum eigenvector of S†S. Combining the two terms,

we want to maximise

F =
1
2
+

1
3

√
〈ψ |S†S |ψ〉+

1
6
〈ψ |R|ψ〉 (4.91)

over all |ψ〉, which, assuming that |ψ〉 is close to an eigenvector of S†S, can be written

as

F ≈
1
2
+

1
6
〈ψ |(2

√
S†S+R)|ψ〉 (4.92)

which is just the maximum eigenvector of

2
√

S†S+R. (4.93)

Then we can either evaluate Eq. (4.91) or approximate our average fidelity from Eq.

(4.92), which after finding the maximum eigenvalue of Eq. (4.93), which we call X ,
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Figure 4.4: Demonstration of the upper and lower bounds on fidelity of encoded state.
Noise parameters are Γx,z = 0.3

becomes

F ≈
1
2
+

X
6
. (4.94)

This gives us a lower bound on the best transfer fidelity we can achieve. We will

maximise S†S and R separately to obtain an upper bound and compare the results. We

present the results of the upper and lower bounds in Fig. 4.4 for a chain of N = 35

and both noise parameters Γx,z = 0.3, where we can see that the upper and lower bound

essentially coincide. Our approximation that |ψ〉 is close to an eigenvector of S†S is a

good one, even at the excessive noise levels, and any weaker noise can be expected to

give a better approximation.

4.7 Demonstrations

The techniques presented in this chapter are applicable to any excitation preserving

Hamiltonian and excitation non-increasing noise. We select three such Hamiltonians to

demonstrate the application of our technique. The specific Hamiltonians we select are

the Uniform Hamiltonian, Linear PST Hamiltonian, and Apollaro Hamiltonian. These
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systems are described in more detail in Section 2.5. We choose these as the Linear PST

chain provides perfect transfer in a reasonable time, the Uniform chain provides fast

transfer (at the expense of high quality transfer), and the Apollaro chain is a compromise

between these two qualities. One might assume that it is best to start with a system that

can already allow perfect state transfer, but we can see from Eqs. (4.51-4.54) that a faster

arrival time will be less affected by noise. We first give the extraction time windows

we have chosen and demonstrate that these times are reasonable. We then show the

improvement in average fidelity for a system with encoding, for the three systems we

have selected.

4.7.1 Extraction Time

Given that we are hoping for these systems to be experimentally realisable, it is useful

to consider what the best extraction time would be. We therefore need to look at each

of our systems and evolve them through time with our noise parameters to find out

when we are likely to achieve the best fidelity. We note that the encoded systems show a

broader peak, which allows us to extract earlier, and therefore reduce the effects of noise.

However, we need to be able to extract at the start of this peak or we lose a lot of this

potential benefit. We choose to evolve through a particular time window to find a good

extraction time, noting that this is a slightly easier task than with our fabrication errors,

as we no longer have to deal with randomness. We can therefore choose a time window

that surrounds the best arrival time for different strengths of noise. We demonstrate that

these time windows are appropriate in the following sections.

Uniform

The Uniform chain is the fastest of the three and, from Eq. (2.54) gives an extraction

time of tUni ≈ 18.8 for N = 35. We evolve the system through time with different noise

parameters and choose a time window of 10 ≤ tUni ≤ 25. We can see from Fig. 4.5 that

this is appropriate even for high levels of noise, where the optimal extraction time is

earlier that in the case with no noise.
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Figure 4.5: Uniform chain demonstrating that the time window (vertical blue lines) we
have chosen is reasonable. Noise free case is given in blue, Γx,z = 0.02 in red, and
Γx,z = 0.05 in green. Encoding region of M = 7

Linear PST

Next we consider the linear PST chain, where we know that the optimal transfer time in

the absence of noise is given by tPST =
π
4

√
N2−1, and for N = 35 this gives an extraction

time of tLin ≈ 27.5. We choose to evolve over a time window 10 ≤ tLin ≤ 25, as we know

we need to extract at the start of the broad encoding peak. From Figs. 4.6 we can see

that this time window is reasonable, and that the addition of noise moves the extraction

time slightly earlier.

Apollaro

The Apollaro chain is a modified version of the Uniform chain, where the two extremal

couplings at each end are given specific values to allow near perfect transfer for arbitrary

N in the absence of noise. The best extraction time for a chain of N = 35 without

encoding or noise is tApp ≈ 22. We choose the extraction window for the encoded case

to be the same as the previous case where we have 10 ≤ t ≤ 25, and demonstrate in Fig.

4.7 that this is reasonable.
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Figure 4.6: Linear chain demonstrating that the time window we have chosen is rea-
sonable. Noise free case is given in blue, Γx,z = 0.02 in red, and Γx,z = 0.05 in green.
Encoding region of M = 7

Figure 4.7: Apollaro chain demonstrating that the time window we have chosen is
reasonable. Noise free case is given in blue, Γx,z = 0.02 in red, and Γx,z = 0.05 in
green.Encoding region of M = 7
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Now we have demonstrated that the time windows we have chosen are reasonable,

we can apply our different noise parameters to the system with various values to get a

clearer picture of how noise affects our systems and how much improvement we can see

from introducing encoding and decoding regions.

4.7.2 Encoding

Using the methods we have developed in the previous section, we can work out the

optimal encoding for a system. We present here a chain of N = 35 with noise parameters

of Γx,Γz taking values from 0 to 0.05 for both parameters, with intervals of 0.005.

We chose N = 35, as it is longer than most experimentally realisable systems, but can

still be simulated in a reasonable time. We present our technique applied to different

Hamiltonians. The images in the left column show the systems without encoding

in the order: Uniform, Linear PST, Apollaro. The right column shows the encoded

counterparts in the same order. It is expected that these plots would show straight

lines as the effect of amplitude damping is to add an e−Γx term and the dominant term in

dephasing noise is an e−Γz term. Overall we have e−(Γx+Γz)t ≈ F, so constant noise values

will give constant F. We note that without encoding, the chain to perform the worse is

the Uniform system. This is expected as it does not perform well in a reasonable time

for longer systems without noise. The Linear PST and Apollaro both perform relatively

well - the Apollaro slightly better than the Linear PST. When we apply our encoding, we

can see that the Apollaro and Uniform chains perform equally well, and slightly better

than the PST chain. This result is very positive, as it demonstrates that simpler-to-build

systems actually show great improvement in the presence of noise when encoding is

applied.



113 4.7. Demonstrations

(a) No encoding, Uniform (b) Encoding over 7 sites, Uniform

(c) No encoding, linear PST (d) Encoding over 7 sites, linear PST

(e) No encoding, Apollaro (f) Encoding over 7 sites, Apollaro

Figure 4.8: Results from encoding over 7 sites for the linear PST, Apollaro, and Uniform
Hamiltonians, of length N = 35. Maximum values of Γx,z = 0.05

.
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4.8 Conclusion and Further Work

We have introduced a technique for reducing the effects of noise in quantum spin

systems that is simpler to implement than full error correction. Our results show

a significant improvement on the fidelity achievable, particularly in simpler chains,

such as the Uniform chain and the Apollaro chain presented in [40]. Our technique

is scalable and can be applied to any Hamiltonian that is excitation non-increasing.

Further improvements could be made by finding a more accurate extraction time. We

can further optimise the chains for the specific scenario of encoding - the x and y

values in the Apollaro chain are optimised for end to end transfer and we could consider

optimising these values for encoded transfer. We have also only encoded in the single

excitation subspace. In the next chapter, wewill extend this to consider higher subspaces.
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5.1 Introduction

Quantum computation is on the horizon and promises to revolutionise many aspects of

human life. However, one of the biggest challenges we currently face before quantum

computation can be fully realised, is the problem of noise. We have already seen in

Chapter 4 that both amplitude damping noise and dephasing noise lead to a significant

reduction in fidelity. We have introduced an encoding technique that aims to reduce

the effects of this noise and demonstrated that significant improvements can be made

to the fidelity. Now we want to see whether we can further improve this scheme.

In Section 4.5.3, we saw that amplitude damping noise is excitation decreasing, so

one might question why we should not attempt to transfer more than one excitation?

For example, the probability of receiving at least one excitation is higher when the

input state includes three excitations that when it only includes one. Nevertheless, it

is not clear that encoding with multiple excitations will perform better than encoding

with just one, as arrival probabilities decrease for multiple excitations in the absence of

noise [29]. Previouslywe restricted ourselves to the single and zero-excitation subspaces,

to introduce a technique that was easy to implement, but now we start to consider higher

excitation subspaces to see what further improvements we can make. In the following

sections, we extend our scheme to include the second excitation subspace - but we note

that we can also extend to higher excitation subspaces.

5.2 Technique

We now extend the noisy encoding technique introduced in Section 4.6 such that we can

encode across higher excitation subspaces. We introduce K as the excitation number,

where we can encode over subspaces up to and including the K th excitation subspace.

We begin with the same equation for the average fidelity of state transfer, restating it

here for clarity

F =
1
2
+

1
3
|〈10|A|ψ0〉|+

1
6
〈11|A|ψψ∗〉, (5.1)
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wherewe remember thatA =CΛN
(U⊗UT )C

Λ
eQt andwemaximise the two components,

10 and 11, separately. As we are now moving into higher excitation subspaces, we need

to define our initial state to include such subspaces. We therefore use

|ψ〉 =
∑

x∈VM\00...0
γx0 |x〉, (5.2)

where VM = {0,1}M (a binary string of length M , and weight ≤ K , and we have M as

the size of the encoding region - and assume that the decoding region is the same size.

VM \ 00...0 indicates that we do not include the all zero state.). An example of this is

the binary string 01100, which gives an encoding region of 5, with excitations present

at sites 2 and 3. The subscript 0 of γ refers to the sites not included in the encoding

region. We also note that ourQ now includes the subspaces belonging to all excitation

subspaces from the zero excitation subspace up to the K th. Let us first consider how

to maximise the component 〈11|A|ψψ∗〉, where we apply each of these operations in

turn, beginning with the time evolution of the initial state

eQt |ψψ∗〉 =
∑

x,y∈VN

ηx,y |x, y〉, (5.3)

where now VN = {0,1}N and the excitations can be spread over all sites. The next

operator we apply is C
Λ
, which traces off all states not belonging to the encoding region,

so that we are left with

C
Λ

∑
x,y∈VN

ηx,y |x, y〉 =
∑

k,l∈V|Λ |
z∈VN−|Λ |

ηkz,lz |k, l〉, (5.4)

where Λ is the set of sites belonging to the decoding region, and we are careful to note

that k and l only cover Λ. Next, we take a brief detour to consider what our unitary

operator should look like. We first use the constraint that when applying the unitary to
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the all zero state within the decoding region, we want to return the all zero state so that

U |0〉Λ = |0〉Λ. (5.5)

If there is an excitation within the decoding region, then we want this to be moved to site

N , and leave a set of orthogonal states on the remaining sites within the decoding zone

U |k〉 = |N,φk〉,∀k ∈ VΛ \00...0, (5.6)

where we note that we are assuming that |k〉 , |0〉. As we have orthogonal states

over Λ \N we know that 〈φk |φl〉 = δkl . To allow these orthogonal states, we have to

introduce some constraints to the size of the encoding region and excitation number.

The dimensions of the space that we require these states to be orthogonal over is 2|Λ|−1

as we are working in the decoding zone, but excluding the final site. Therefore, we need

the dimensions of our Hilbert space to be less than or equal to this value. If we are

working in the K th excitation subspace, then we can encode over excitation number up

to and including K , so that the size of our Hilbert space is
∑K

i=1
(M

i

)
.

Then we have enough space as long as we impose the constraint that

K <
M
2
, (5.7)

since
∑k

i=1
(M

i

)
= 2k − 1, and assuming that our encoding and decoding regions are the

same size. Now we apply the unitary, which must follow the constraints above but can

otherwise be arbitrary, to get

U ⊗UT
∑

k,l∈V|Λ |
z∈VN−|Λ |

ηkz,lz |k, l〉 ∼
∑

k,l∈V|Λ |
z∈VN−|Λ |

ηkz,lz |N,φk〉|N,φl〉, (5.8)

where we have neglected any terms that will vanish when we take the overlap with 〈11|.

Now we have used the unitary to ‘move’ any excitation within Λ to the final site, we can
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trace off all other sites

CΛN

∑
k,l∈V|Λ |

z∈VN−|Λ |

ηkz,lz |N,φk〉|N,φl〉 =
∑

k∈V|Λ |
z∈VN−|Λ |

ηkz,kz |11〉, (5.9)

where we see that again our choice of U is arbitrary as long as we stick to the earlier

constraints. Now all that remains is to take the overlap, giving

〈11|A|ψψ∗〉 =
∑

k∈V|Λ |
z∈VN−|Λ |

ηkz,kz, (5.10)

so that it is clear that to maximise this components, we need to maximise
∑

k∈V|Λ |
z∈VN−|Λ |

ηkz,kz.

To maximise this we use the same method as the case in the single excitation subspace

where we have ∑
k∈V|Λ |

z∈VN−|Λ |

ηkz,kz =
∑

k∈V|Λ |
z∈VN−|Λ |

〈k z, k z |eQt |ψψ∗〉, (5.11)

where the k are the output binary strings, and introduce

R =
∑

x,y∈VM

∑
k∈V|Λ |

z∈VN−|Λ |

|y〉〈x |〈k z, k z |eQt |x0, y0〉. (5.12)

Then ∑
ηkz,kz = 〈ψ |R|ψ〉 (5.13)

and this is maximised by choosing the eigenvector with the largest eigenvalue for |ψ〉.

We now consider how we can maximise the 〈10|A|ψ0〉 component, which is done

in the same way as the previous component, by applying each of the operators in turn.

We start with the time evolution operator such that

eQt |ψ0〉 =
∑
x∈VN

ηx |x0〉, (5.14)

where again we have the excitation spread over all sites in this subspace. We now apply
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the first trace operator and the unitary operator, giving

U ⊗UTC
Λ

∑
x∈VN

ηx |x0〉 ∼
∑

k∈V|Λ |

ηk0 |N,φk〉|00〉, (5.15)

where, again, we have neglected any terms that will disappear when we take the overlap

with the 〈10| state. We now trace off the states on all remaining sites so that

CN

∑
ηk0 |N,φk〉|00〉 =

∑
ηk0 |10〉〈0|φk〉. (5.16)

Finally we take the overlap with this to get

〈10|
∑

ηk0 |10〉〈0|φk〉 =
∑

ηk0〈0|φk〉, (5.17)

which is exactly what we need to maximise. To maximise this, we then have

〈0|φk〉 =
η∗k0,00√∑

l∈VM
|ηl0,00 |2

, (5.18)

where

ηk,l = 〈k, l |eQt |ψ0〉 (5.19)

and we are maximising √∑
|ηk0 |2. (5.20)

This is completed by setting

S =
∑

k∈V|Λ |

|k〉〈k0,00|eQt
∑

x∈V|Λ |

|x0,00〉〈x | = (Pout ⊗ 〈0|)eQt(Pin ⊗ |0〉). (5.21)

Previously, in Section 4.6, we combined the two components using an approximation.

It is less clear whether the approximation is still valid for all cases. By optimising

separately, we have an upper bound on what can be achieved, and the approximation

gives a lower bound on what is certainly achievable. It is less clear if we expect these
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curves to coincide, and in Section 5.4.1, we show that, in general, they do not.

5.3 Required Qubits

One might ask why we might encode over higher excitation subspaces rather than

using error-correction. We discuss here the additional qubits required for each of

these techniques. Introducing higher excitation subspaces means that we have a certain

minimum size of the encoding region as given in Eq. (5.7), meaning that we are required

to use more qubits to achieve an improvement in fidelity. Even increasing to the second

excitation subspace, where we have K = 2 requires encoding and decoding regions of

at least M = 5 each, where we then have 10 qubits that are not included in the bulk

of the chain. However, this does not necessarily scale with the length of the chain. A

longer chain could benefit from a larger encoding region, but adding qubits to the bulk

of the chain does not mean we are required to add qubits to the encoding and decoding

region to improve the fidelity in the presence of noise. We compare this to quantum

error correction where smallest possible code is a five-qubit code [69], meaning that for

each logical qubit, we require 5 physical qubits. Error correcting codes for noisy spin

chains are discussed in more detail in [34], [57], where the smallest error correcting

code is shown to be 7 qubits. Our technique shows that improvement can be made with

encoding regions smaller than M = 7, with chains of N = 51. It is expected that the

encoding region will need to be larger to see similar improvements on larger chains, but

this can be adjusted depending on exactly how much improvement one wants.

5.4 Noise Superoperators

The superoperators of noise presented in Sections 4.5.2 and 4.5.3 are still valid here

such that dephasing is given by

QD =H+
Γz

2

N∑
n=1

Zn ⊗ Zn−
Γz

2
N1⊗1, (5.22)
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and evolves the density vector as

|ρ′〉 = eQD t |ρ〉.

The superoperator for amplitude damping is given as

QA =H+
Γx

2

N∑
n=1
[(Xn+ iYn) ⊗ (Xn+ iYn)

∗ = (1− Zn) ⊗1−1⊗ (1− Zn)], (5.23)

and the evolution is given by

|ρ′〉 = eQAt |ρ〉.

We can demonstrate what the Hamiltonian component of this will look like in the

subspaces up to and including the K = 2, and we see that we have

H0,1,2 =

S0 S01 S10 S11 S02 S20 S12 S21 S22



S0 0 0 0 0 0 0 0 0 0

S01 0 iH1 0 0 0 0 0 0 0

S10 0 0 −iH1 0 0 0 0 0 0

S11 0 0 0 −iH1 ⊗1+ i1⊗H1 0 0 0 0 0

S02 0 0 0 0 iH2 0 0 0 0

S20 0 0 0 0 0 −iH2 0 0 0

S12 0 0 0 0 0 0 −iH1 ⊗1+ i1⊗H2 0 0

S21 0 0 0 0 0 0 0 −iH1 ⊗1+ i1⊗H2 0

S22 0 0 0 0 0 0 0 0 −iH2 ⊗1+ i1⊗H2

.

(5.24)

Now we know what the Hamiltonian looks like in the subspaces we are interested

in, we can see what the dephasing and amplitude damping superoperators look like. We

start with the dephasing superoperator (where we have not included H due to the size
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of the matrix).

QD −H =

S0 S01 S10 S11 S02 S20 S12 S21 S22



S0 0 0 0 0 0 0 0 0 0

S01 0 Γz1 0 0 0 0 0 0 0

S10 0 0 −Γz1 0 0 0 0 0 0

S11 0 0 0 −2Γz
∑

k, j 〈kj|1 0 0 0 0 0

S02 0 0 0 0 −2Γz1 0 0 0 0

S20 0 0 0 0 0 −2Γz1 0 0 0

S12 0 0 0 0 0 0 −Γz1 0 0

S21 0 0 0 0 0 0 0 −Γz1 0

S22 0 0 0 0 0 0 0 0 −2Γz
∑

k,l, j,m〈kl,jm|1

.

(5.25)

We can see then that dephasing noise remains excitation preserving in the second

excitation subspace, just as it does in the single excitation subspace.

We can also give the amplitude damping superoperator as

QA−H =

S0 S01 S10 S11 S02 S20 S12 S21 S22



S0 0 0 0 Γx
∑

k 〈kk| 0 0 0 0 0

S01 0 −
Γz
2 1 0 0 0 0 A 0 0

S10 0 0 −
Γz
2 1 0 0 0 0 B 0

S11 0 0 0 −Γz1 0 0 0 0 C

S02 0 0 0 0 −Γz1 0 0 0 0

S20 0 0 0 0 0 −Γz1 0 0 0

S12 0 0 0 0 0 0 −
3Γz
2 1 0 0

S21 0 0 0 0 0 0 0 −
3Γz
2 1 0

S22 0 0 0 0 0 0 0 0 −2Γz1

, (5.26)

where the elements of A are given by 〈0, k |i, j k〉 = Γxδi j and 〈0, j |i, j k〉 = Γxδik . We

have the elements of B given by 〈 j,0|i j, k〉 = Γxδik and 〈i,0|i j, k〉 = Γxδ j k . Finally, we

have that elements of C are 〈i, k |i j, kl〉 = Γxδ jl , 〈 j, l |i j, kl〉 = Γxδik , 〈i, l |i j, kl〉 = Γxδ j k ,

and 〈 j, k |i j, kl〉 = Γxδil . These are the elements that cause amplitude damping noise to

be excitation decreasing.
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Figure 5.1: Comparison of the upper and lower bounds of the approximation introduced
in Section 4.6 for a Uniform chain. We also include the encoding in the single excitation
subspace. Chain of N = 13 with encoding region of 5.

5.4.1 Structure of S and R

In Section 5.2, we have given expressions for S and R when we consider multiple

excitations. However, one cannot optimise these separately as we must have one single

input state. In Section 4.6.3, we demonstrated an optimisation that works in the single

excitation subspace, and we now consider whether this is still a valid approximation. In

Fig. 5.1, we show the evolution of an N = 13 Uniform system with encoding regions of

M = 5, and we encode across subspaces up to and including K = 2. We also include the

evolution in only the single excitation subspace (blue). We can see here that there is no

improvement from encoding in the second excitation subspace. We note that the separate

optimisation implies that there may be a better approximation. To make sense of this

plot, we consider the structure of S and R. We first consider S in the context of excitation

preserving noise, and then amplitude damping noise. The matrix, S, essentially shows

us how our input states evolve to our output states, such that we are considering the

evolution

|ψin0〉 ⊗ |0〉 → |0ψout〉 ⊗ |0〉. (5.27)

If our noise is excitation preserving, then a 2 excitation input will evolve to a 2 excitation

output and similarly, a 1 excitation input will evolve to a 1 excitation output. Then we
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have some block structure to the S matrix, separating excitation subspaces as so

S =

S10 S20


S10 1E x 0

S20 0 2E x

. (5.28)

We must also consider what happens when noise is excitation decreasing (as in the case

of amplitude damping noise). If we refer back to Eq. (5.23), we can see that the part

that makes this excitation decreasing is (Xn + iYn) ⊗ (Xn + iYn)
∗. This requires that we

are able to remove an excitation from both components of the tensor product |ψ〉 ⊗ |0〉,

which we cannot, as the second component does not contain an excitation. We can also

see this clearly from Eq. (5.26), where the blocks belonging to these components are

all 0 (other than those on the diagonal, which are excitation preserving).

Ifwe consider R in the excitation preserving case, we can show that it also exhibits this

block structure. Our input state looks like |ψin10〉 ⊗ |ψin20〉, and our output components

are given by
∑

kz〈kz | ⊗ 〈kz |. Then we can see that if |ψin1〉 contains 2 excitations, it

will evolve to a state 〈kz | with 2 excitations. Since we only take pure states as output,

the other 〈kz | components must contain 2 excitations, and therefore must come from an

input state |ψin2〉 containing 2 excitations. The same is true for 1 excitation. If refer to

Eq. (5.26), which is excitation decreasing, we can see that the output components 〈nn|

only come from the input components |mm〉 for m ≥ n. Within those components there

are no |i j〉 terms for i , j, so we still have some block structure.

5.5 Conclusion

We have demonstrated that our encoding scheme is not restricted to the single excitation

subspace and that we can extend it to higher subspaces as long as our encoding region is

large enough that we can have orthogonal states on all sites within the encoding region,

not including the final site. We demonstrated this with a short chain of N = 13, with an

encoding region of M = 5 andwe encode up to and including the 2nd excitation subspace.
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We expected this to show a significant improvement over encoding in the single excitation

subspace, as our amplitude damping noise is excitation decreasing. Instead, we saw that

the optimal encoding was found in the single excitation subspace. Our scheme does not

allow for full error-correction, but it does lead to significant improvements in transfer

fidelity with fewer additional qubits, when we encode in the single excitation subspace,

which can be useful for devices where a large number of qubits is not available. We are

unable to directly compare our scheme to the error correcting codes in [34] and [57]

as those systems require simulation of too large a Hilbert space to be practical. We

note that these error correcting codes are only designed to tolerate a single errors and

the stored information could be completely destroyed if a second error is present. Our

technique does not have such a rigid threshold and may be likely to perform better in

certain scenarios.



Chapter 6

Summary and Further Work
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6.1 Summary

Full scale quantum computation is on the horizon and will introduce significant im-

provements on classical computation, therefore leading to leaps in our understanding

of various other topics. Quantum spin chains have been introduced as systems used to

transfer states within quantum devices. There has been much theoretical study of these

spin chains and we have already shown above that they can provide fast, high quality

transfer. By selecting particular couplings, they can even provide perfect state transfer

for any length of chain. However, we know that any physical implementation of these

devices will be subject to manufacturing errors and noise.

In this thesis, we have presented particular problems with the physical implementa-

tion of these spin chains and introduced a technique than can improve transfer fidelity

in the presence of such issues. We first demonstrated how the energies within a system

are affected by imperfect manufacture, and how one can model such errors. We then

introduced the encoding scheme given in [29] and applied it to such systems, showing

significant improvement. Briefly, we considered how one might build a chain that is

robust against these defects. We then presented a method whereby one can model noisy

evolution within quantum spin chains. The results of this showed that even low levels

of noise can be damaging to the fidelity of state transfer that these systems are able to

achieve. Our encoding technique was extended to treat non-unitary evolution such that

we could apply it to these noisy systems, and we demonstrated that improvements were

made over all systems we considered. Finally, we discussed the possibility of encoding

over higher excitation subspaces, and developed the encoding scheme such that it can

be used as such. The main results are summarised as follows

• Fabrication defects lead to a significant reduction in fidelity for spin chains

• We can improve the fidelity of these spin chains in the presence of errors, by using

the encoding scheme presented in [29]

• We are able to treat the density operator as a vector and therefore evaluate the

effects of noise on a system, where both types of noise considered lead to a
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reduction in fidelity even at low levels

• The encoding technique can be extended to consider non-unitary evolution and

can then be applied to noisy systems

• Such encoding leads to significant improvements in fidelity in the presence of

both types of noise, with a lower number of qubits than error-correction

• Encoding in higher subspaces leads to a slight improvement in fidelity for the

Uniform chain, but no improvement in the linear chain

Our methods provide a way to deal with the errors and noise that will occur in physical

implementations of quantum spin systems, without needing full error correction tech-

niques. We have demonstrated the flexibility of our technique and its applicability to

various scenarios. Numerical simulations are provided to demonstrate the improvement

that can be made in particular scenarios, but we note these are a small set of the potential

applications of this technique.

6.2 Further Work

6.2.1 Building Robust Chains

In Section 3.5, we took a brief detour to consider how one could build chains that are

more robust against fabrication defects. We showed that adding a perturbation to the

Hamiltonian to mitigate the effects of the errors would not be possible, due to the random

nature of such defects. There may, however, be other ways to make systems more robust

against random errors in the presence of encoding. We have not considered here how

to build a chain that is more robust against noise. We note that in a noisy system, faster

transfer is likely to lead to better fidelity, and that the uniform chain is the fastest. We saw

from the demonstrations in Chapter 4, that the Uniform and Apollaro chains perform

equally well after encoding. The x and y values for the Apollaro chain are optimised

for end-to-end transfer, and there may be a possibility to improve transfer by optimising
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these in the encoding regime and/or optimising them in the presence of noise. We

then see that work could be done to further improve these systems, by considering the

construction of these chains.

6.2.2 Higher Subspaces

In Chapter 5, we considered the use of multiple excitation encodings. We have demon-

strated that our encoding technique can be applied in this scenario, although demonstra-

tions showedonlymild improvement in the case of the uniformchain and no improvement

in the case of the Linear chain. We restricted ourselves to 2 excitations, but there is

a possibility that further improvement can be made from higher subspaces (although

this would require a larger encoding region). Our technique was demonstrated on the

Uniform and Linear chains, and it is possible that other types of chains may show better

results.

6.3 Final Conclusion

In this thesis, we have introduced the reader to quantum state transfer through spin chains

and the issues we are required to overcome to realise such systems. We have presented

a technique that leads to significant improvement in state transfer fidelity, and is widely

applicable. Demonstrations show that the technique works well in various scenarios and

can be extended to noisy systems and higher subspaces. Finally, we have shown that

there is further work that may be done on these areas.



Appendix A

The Partial Trace

The partial trace is a method by which we can trace off the states on a set of qubits,

leaving only the states on the qubits we are interested in. It is given formally in [48] as

(Tr⊗1L(y))(X ⊗Y ) = Tr(X)Y, (A.1)

for all operators X ∈ L(x) and Y ∈ L(y). If we have a chain of N qubits, we often want

to know the state of a single qubit rather than the whole chain. For example, if we have

completed a state transfer protocol and want to extract from the last site, it is useful to

consider the state of that final site independently from the rest of the chain.

Example 5. We take a simple example for N = 3, where our chain is in the state

|ψ〉 = α |0〉+ β |3〉 (A.2)

meaning that the excitation is located on the 3rd site (in this case, the final site). We then

want to take the partial trace over all sites apart from the N th. We start by constructing

the density matrix, which is given by

ρ = |ψ〉〈ψ | = |α |2 |000〉〈000|+αβ∗ |000〉〈001|+α2β|001〉〈000|+ |β |2 |001〉〈001|.

(A.3)
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We then take the inner product of all the sites other than the site we want the state of

|α |2 |0〉〈0|〈00|00〉+αβ∗ |0〉〈1|〈00|00〉+α∗β|1〉〈0|〈00|00〉+ |β |2 |0〉〈0|〈00|00〉 (A.4)

where we know that the inner product 〈00|00〉 = 1 so we are left with

|α |2 |0〉〈0|+αβ∗ |0〉〈1|+α∗β |1〉〈0|+ |β |2 |0〉〈0| =


|α |2 αβ∗

α∗β |β|2

 . (A.5)

This gives us the state just on the final qubit.
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The Unitary

Relevant to Section 4.6.1. A unitary operator is an operator that maps a set of mutually

orthogonal states onto another set of mutually orthogonal states, and the existence of

such unitary can be proven in general using Gram-Schmidt [70]. Here, we demonstrate

that apart from some restraints on the unitary operator, we are free to choose any operator

that satisfies such restraints. Let’s consider a decoding region of size 3, which requires

a unitary operator of size 8×8. After evolution, the state of this region can be given by

|ψ〉 = α2 |N-2〉+α1 |N-1〉+α0 |N〉, (B.1)

where as always, N is the length of our chain. To demonstrate the action of the

unitary operator, we choose the constants {α2, α1, α0} to be {
√

2
3,0,

1√
3
} respectively. As

mentioned above, the job of our unitary is to map a set of orthogonal states onto another

set of orthogonal states. Given that the aim of our unitary is to ‘move’ the excitation

contained within the encoding zone to the final site, we can see that the act of the unitary

on |ψ〉 should be

U |ψ〉 = |N〉. (B.2)
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We can then introduce 2 new states that are orthogonal to |ψ〉 and to one another. We

are free to choose these states, and we ensure they are normalised. We therefore choose

|ψ⊥1 〉 =
1
√

3
|N-2〉 −

√
2
3
|N〉, (B.3)

and

|ψ⊥2 〉 = |N-1〉. (B.4)

Then after application of the unitary, we require

U |ψ⊥1 〉 = |N,N-1〉 (B.5a)

U |ψ⊥2 〉 = |N,N-2〉. (B.5b)

This information then allows us to fill in some elements of our unitary operator. For

our particular case, we therefore have some known elements. We choose to label the

elements of our unitary operator as {000,001,010,100,011,101,110,111}, where the

position of the 1 indicates that there is some portion of excitation present on that site,

and 001 refers to site |N-2〉 and 100 refers to |N〉. We first know that we require√
2
3
|N-2〉+0|N-1〉+

1
√

3
|N〉 → |N〉, (B.6)
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and can therefore fill in the corresponding elements.

U =

000 001 010 100 011 101 110 111

©­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

000 u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8

001 u2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8

010 u3,1 u3,2 u3,3 u3,4 u3,5 u3,6 u3,7 u3,8

100 0
√

2
3 0 1√

3
0 0 0 0

011 u15,1 u5,2 u5,3 u5,4 u5,5 u5,6 u5,7 u5,8

101 u6,1 u6,2 u6,3 u6,4 u6,5 u6,6 u6,7 u6,8

110 u7,1 u7,2 u7,3 u7,4 u7,5 u7,6 u7,7 u7,8

111 u8,1 u8,2 u8,3 u8,4 u8,5 u8,6 u8,7 u8,8

. (B.7)

We can similarly use the other known transfers of states to fill in further elements of the

unitary. Considering also that the matrix must be orthonormal, we can fill in the other

elements that must be 0. We can also add the assumption that U |0〉 → |0〉 by giving that

element the value of 1 (it must transfer to itself)

U =

000 001 010 100 011 101 110 111

©­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®¬

000 1 0 0 0 0 0 0 0

001 0 0 0 0 u2,5 u2,6 u2,7 u2,8

010 0 0 0 0 u3,5 u3,6 u3,7 u3,8

100 0
√

2
3 0 1√

3
0 0 0 0

011 0 0 0 0 u5,5 u5,6 u5,7 u5,8

101 0 0 1 0 0 0 0 0

110 0 1√
3

0 −

√
2
3 0 0 0 0

111 0 0 0 0 u8,5 u8,6 u8,7 u8,8

. (B.8)

Finally, we can choose the other elements freely. We choose to have |111〉 transfer

to itself and construct the matrix so that there is some symmetry with the remaining
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elements. Our final U is then

U =

000 001 010 100 011 101 110 111

©­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

000 1 0 0 0 0 0 0 0

001 0 0 0 0
√

2
3 0 1√

3
0

010 0 0 0 0 0 1 0 0

100 0
√

2
3 0 1√

3
0 0 0 0

011 0 0 0 0 1√
3

0 −

√
2
3 0

101 0 0 1 0 0 0 0 0

110 0 1√
3

0 −

√
2
3 0 0 0 0

111 0 0 0 0 0 0 0 1

. (B.9)

This is just an example of a Unitary operator that we could use. However, as long as

we stick to our previously mentioned constraints, we are relatively free to choose any

appropriate Unitary.
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