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ABSTRACT 
 

The processes that contribute to visual word recognition are highly versatile. Successful 

recognition is achieved via a complex set of interacting cognitive processes, which are co-

adapted from existing neuro-biological structures and shaped in response to the written 

environment. The overarching aim of this thesis was to better understand the nature and 

deployment of representations that arise during the early stages of word reading. The studies 

reported investigated both short-term situational factors that influence how readers weight 

orthographic information ‘in the moment’, as well as properties of the writing system that 

mould long-term representations over years of acquisition. The first half of this thesis 

investigated how letter identification is modulated online by surrounding orthographic and 

sentence context. The findings consistently indicated that letter identification processes are 

signal-contingent, as readers determine the precision of lower-level processing required based 

on cues from higher-level knowledge. Critically, the influence of surrounding orthographic 

information extends beyond individual word boundaries to mediate sub-lexical processing of 

other words within a sentence. The second half of this thesis focused on how weighting 

attributed to various orthographic cues emerges from long-term experience with the writing 

system. Our artificial language learning paradigm demonstrated that weightings assigned to 

various sources of orthographic information vary cross-linguistically, as they are shaped by 

salient characteristics of the written environment. In addition, we established partial MRI 

evidence that readers form neural representations for statistically salient letter combinations, 

such as those associated with morphemes. Overall, this thesis demonstrates that word 

recognition is achieved in a variable adaptive manner, as readers dynamically weight different 

sources of orthographic information based on immediate short-term context and long-standing 

knowledge of the writing system. 
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 CHAPTER ONE: INTRODUCTION 
 

Reading is a remarkable human skill that enables us to rapidly transform arbitrary visual 

symbols into meaningful linguistic information, such as the meanings and pronunciations of 

words. It is essential for participating in most modern societies, and it is ingrained in our 

everyday activities. Skilled reading becomes fluent and autonomous; therefore, it is easy to 

overlook the cognitive acrobatics required for this remarkable feat. The underlying cognitive 

processes are of particular interest because humans do not have an inborn capacity for reading. 

Unlike spoken language, reading is a culturally learned skill, which requires years of formal 

instruction to master. Therefore, reading is a prime example of a highly complex skill that 

draws upon existing cognitive structures and adapts based on properties of the environment 

(i.e. the writing system). Perhaps the most fundamental question within reading research is how 

readers recognise printed words. As I demonstrate below, a rich body of literature indicates 

that single word reading involves multiple levels of representation. Notably, orthographic 

knowledge plays a critical role in how salient information is weighted for efficient word 

recognition.  

Researchers typically investigate influences on word recognition in carefully controlled 

designs that enable specific processes to be studied in isolation. However, readers do not 

necessarily assign the same weight to different cues each time they recognise a word. This 

thesis highlights the consequences of studying reading processes as component parts, and how 

the overall picture might change when we consider how these processes interact or vary across 

instances of word recognition. Word recognition is a dynamic process shaped by the 

environment, and understanding the factors that contribute to this is essential for a fully 
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integrated account of reading. This thesis aims to achieve this goal, by investigating how skilled 

readers hierarchically integrate the various cues that arise during the early stages visual word 

recognition. I focus upon how information is weighted based on properties of the writing 

system and the context available. 

 

 The hierarchical nature of reading 

Word recognition involves the orchestration of various stages of information processing, 

whereby different levels of representation must be integrated in order to crack this orthographic 

code. A useful way to think about this is to consider some of the challenges that readers 

encounter at various stages within an imperfect writing system, outlined below. 

 

 Letter identification 

There is consensus that words are recognised through the analysis of their component 

letters. The visual appearance of letters can be highly variable depending on characteristics 

such as case and font. For example, rage and RAGE refer to the same word containing the exact 

same letters, yet they are visually very dissimilar. In contrast, RAGE and PACE look similar, 

but contain different letters and hence refer to different words. Therefore, readers must 

maintain enough flexibility to associate different letter shapes with the same identity (“telling 

together”1, e.g. R-r), but also enough precision to distinguish between visually similar letter 

shapes that refer to different letter identities (“telling apart”, e.g. R-B). 

                                                
1 This phrase is not typically used when describing letter identification. I have borrowed it from the face processing 
(Burton, 2013) and voice processing literature (Lavan et al., 2019). 
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Readers are remarkably tolerant of visual variability when telling letters together. 

Skilled readers can identify a briefly displayed letter without being able to recall whether the 

letter was presented in upper or lower case (Adams, 1979; Coltheart & Freeman, 1974; 

Friedman, 1980; McClelland, 1976), and cross-case priming facilitation occurs independently 

of visual similarity (e.g. kiss – KISS vs. edge – EDGE; Bowers et al., 1998; Kinoshita & Kaplan, 

2008). Readers are thought to tolerate within-letter variation by rapidly mapping the veridical 

visual form of letter shapes to abstract letter identities, invariant of feature disparities such as 

case or font (Davis, 2012; Dehaene et al., 2005; Gomez et al., 2008; Rothlein & Rapp, 2014).  

Whilst visual feature information does not appear to impede readers’ ability to tell 

letters together, it does influence readers’ ability to tell letters apart. Word recognition is 

facilitated by prior presentation of stimuli that contain visually similar letters (dentjst-

DENTIST vs. dentgst-DENTIST, Marcet & Perea, 2017; docurnent–DOCUMENT vs. 

docusnent–DOCUMENT; Marcet & Perea, 2018), numbers (C4BLE-cable vs. C9BLE-cable; 

Kinoshita et al., 2013; Lien et al., 2014; Perea et al., 2008) and symbols (C△BLE-CABLE; 

Perea et al., 2008). Visual similarity effects suggest that readers tentatively encode letter 

identities based on their correspondence to visual feature information, allowing an initial 

degree of uncertainty between letter identities which is resolved as information is accumulated 

(Norris & Kinoshita., 2012; Marcet & Perea, 2017). Together, these explanations of telling 

together and telling apart provide a converging account of how readers may maintain the 

balance of flexibility and precision when assigning letter identities. Readers initially identify 

letters through the assembly of low-level visual information and consolidation from 

orthographic knowledge of letter shapes, at which stage they are mapped onto abstract letter 

identities. 
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One critical feature of letters is that they are typically assembled to form a part of a 

letter string. There is substantial evidence that letter identification is not solely guided by 

properties of the individual letter, but also by surrounding letters within the string. Readers are 

more accurate at identifying letters when they appear in the context of a real word compared 

to a pseudoword, known as the word superiority effect (e.g. crown vs. crowl; Coch & Mitra, 

2010; Grainger & Jacobs, 1994; Kezilas et al., 2016; Reicher, 1969; Wheeler, 1970). Letter 

identification is also more accurate in pronounceable pseudowords compared to 

unpronounceable consonant strings (crowl vs. crtwl; Baron & Thurston, 1973; Carr et al., 

1978), termed the pseudoword superiority effect. Combined, these findings suggest that letter 

identification processes are enhanced by readers’ existing word representations and knowledge 

of orthotactic constraints (i.e. restrictions on how letters combine within a writing system; 

Kezilas et al., 2016). In addition, these effects display that the contexts in which letters appear 

can significantly alter readers’ ability to discriminate between them. 

 

 Letter position coding 

Readers must also be able to distinguish between words consisting of the same letter 

combinations, such as slate, stale and steal. Therefore, readers must assign positional 

information, as well as identity information, to each letter. The simplest way to model letter 

position is through slot coding, in which letter identity and position are encoded together, for 

example with letter position coded relative to the start of the word (e.g. slate = S1 L2 A3 T4 E5; 

McClelland & Rumelhart, 1981). However, substantial evidence suggests that letter position is 

encoded with greater flexibility than slot coding allows. This has been widely observed through 

the transposed-letter effect, which demonstrates that there is greater perceptual similarity 

between stimuli that comprise the same letters in different positions (jugde-judge), compared 
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to stimuli in which the equivalent letters are substituted (jupke-judge, Andrews, 1996; 

Chambers, 1979; Lupker et al., 2008; Perea & Lupker, 2003; Perea & Lupker, 2004; 

Schoonbaert & Grainger, 2004). Transposed-letter effects indicate that lexical representations 

of words can be activated with imprecise positional information. These effects pose a challenge 

for the rigidity of position-specific coding schemes, which would predict that letter 

transpositions and letter substitutions result in the same degree of perceptual similarity with 

their base word. For example, jugde (J1U2G3D4E5) and jupke (J1U2P3K4E5) both share three 

letters in the same position with judge (J1U2D3G4E5). 

The transposed-letter effect has inspired a variety of competing theories that allow for 

flexibility within letter position coding. The Open Bigram model proposes that readers code 

letter pairs in terms of their relative order within the word (judge: JU, JD. JG, JE, UD, UG, 

UE, DG, DE, GE, Whitney, 2001; Grainger & Whitney, 2004), with transposed-letters resulting 

in greater facilitation as they share more bigrams with the target. The overlap model predicts 

that positional information is normally distributed over letter identities and leaks into nearby 

letters (Gomez et al., 2008). For example, the letter g in judge is associated with Position 4, 

and to a lesser extent adjacent positions 3 and 5. If the letter identity is different, then there is 

no facilitation from overlapping positional information. In spatial coding schemes, letter 

identities are coded independently of position as switched-on letter nodes (Davis 1999; Davis, 

2010), which emit different activation levels based on letter position within the word. 

Therefore, anagrams activate the same letter nodes but produce different spatial patterns of 

activity. Letter transpositions have greater perceptual similarity than letter substitutions, as 

substitutions activate different letter nodes. 

As with letter identity, it is important to consider how letter position coding may be 

influenced by readers’ lexical knowledge of existing words. Some letter position coding 
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schemes have been incorporated in the role of lexical representations in establishing letter 

positions. For example, the SERIOL model (Whitney, 2001) posits that bigram nodes send 

excitatory activation to corresponding word nodes. Similarly, the SOLAR model (Davis, 2010) 

implements spatial coding and includes a word-matching scheme in which the spatial patterns 

of activated letter nodes are compared to spatial patterns of existing words within the lexicon. 

 

 Sub-lexical units 

Thus far, we have considered how readers identify individual letters and establish the 

order in which they appear. On the simplest level, letters constitute the building blocks of 

words. However, there may be intermediate levels of representation between letters and words, 

as letters can be combined to form functional orthographic structures that denote part of a 

word’s pronunciation or meaning. 

In alphabetic languages such as English, letters act as graphemes that represent 

phonemes (sounds). For example, the word blend contains five graphemes that represent the 

five sounds within the word (/b-l-e-n-d/). However, graphemes and phonemes do not 

necessarily have a one-to-one mapping, as a grapheme can consist of multiple letters. For 

example, the word though consists of six letters, but only two graphemes (th-ough = /ð-oʊ/). 

Evidence suggests that skilled readers form sub-lexical representations for multiple-letter 

graphemes, as readers are less accurate at detecting letters within multiple letter graphemes 

(break) compared to single letter graphemes (brick; Rey et al., 2000). Word recognition can 

also influenced by other phonological sub-lexical units, such as syllables, although there is 

debate as to whether this only apparent for words in languages with regular syllabic structures 

(see Chetail & Content, 2012; Chetail & Content, 2013; Chetail & Mathey, 2009). In Spanish, 
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readers recognise words more quickly when they are preceded by a pseudoword with the same 

first syllable (junas-JUNIO), relative to a pseudoword with the same proportion of letters 

(juntu-JUNIO; Álvarez et al., 2004; Carreiras & Perea, 2002). Pseudowords are also harder to 

reject in a lexical decision task and have shorter naming latencies if they contain high frequency 

syllables (Perea & Carreiras, 1998; Carreiras & Perea, 2004). 

Words can also contain sub-lexical units that denote meaning. Relationships between 

print and meaning are reflected in morphology, with morphemes defined as the smallest 

meaningful unit in a word. Words are classed as mono-morphemic when the word itself is the 

smallest unit of meaning (e.g. lock). However, morphologically complex words can be further 

parsed into meaningful components. Words are embedded as stems, appended by affixes that 

modify the meanings of words in a highly predictable manner (unlock, lockable, locker). 

Evidence suggests that readers rapidly decompose letter strings into their morphemic 

constituents (un-lock, see Rastle, 2019b for a review). Masked-priming demonstrates that 

morphologically complex words facilitate faster recognition of their stem (teacher-TEACH) 

compared with non-morphological words with equivalent orthographic overlap (window-

WIND; Rastle et al., 2004). Notably, this benefit extends to words that have a pseudo-

morphological structure but no semantic connection (corner-CORN; Beyersmann et al., 2012; 

Beyersman et al., 2016; Meunier & Longtin, 2007; Marslen-Wilson et al., 2008; Morris et al., 

2007; Rastle & Davis, 2008; Rastle et al., 2004). This suggests that readers decompose any 

word with a plausible morphological structure (Rastle et al., 2004). Therefore, there is 

substantial evidence that readers form sub-lexical representations for morphemes, which may 

play a crucial role in mapping print to meaning.  

 The examples above demonstrate intermediate levels of representation between 

individual letters and entire words. Various sub-lexical structures have a discernible influence 
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on reading behaviour, which suggests that readers utilise this information during visual word 

recognition. Therefore, any comprehensive theory of reading must be able to account for how 

sub-lexical units are processed. However, integration of sub-lexical processing introduces 

additional complications. Sub-lexical units cannot simply be regarded as independent 

component parts, as they can change how the entire word is processed. For example, syllable 

properties modify word pronunciations, such as vowel reduction and stress assignment 

(Mousikou et al., 2017). Further, some sub-lexical units may have greater salience compared 

with others, such as morphemes (Rastle, 2019b). In addition, there is evidence that letter-level 

perceptual effects can migrate across sub-lexical units. For example, transposed-letter effects 

occur regardless of whether transpositions violate graphemic letter combination rules (Guerrera 

& Forster, 2008) and cross syllable boundaries (Perea & Lupker, 2003). Therefore, 

understanding how readers integrate information from sub-lexical representations is a key part 

of the puzzle in understanding the processes that underpin visual word recognition. 

 

 Relationships between words 

Sub-lexical processes are guided by lexical knowledge, which refers to readers’ 

knowledge of existing words within their vocabulary (the lexicon). As outlined above, the word 

superiority effect demonstrates that lexical knowledge enhances the perceptibility of individual 

letters. Word recognition is not only influenced by whether a reader is familiar with a particular 

word, but also by their knowledge of related words. One of the biggest influences on the 

accuracy and speed of word recognition is frequency (how often a reader encounters a word). 

High frequency words are reliably processed faster than low frequency words in a variety of 

tasks, including lexical decision and word naming tasks (Forster & Chambers, 1973; see 

Brysbaert et al., 2018 for a review). Word frequency exerts such a powerful influence over 
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word recognition that it is estimated to account for 30-40% of variance in word recognition 

tasks (Brysbaert et al., 2016). This suggests either that frequently encountered words have more 

robust lexical representations, or that such representations are prioritised as they have a higher 

likelihood of occurring. More broadly, word frequency effects demonstrate that words are not 

recognised with equivalent ease.  

Word recognition is also influenced by other known words that are orthographically, 

semantically or phonologically related. A prominent example is how word recognition is 

modulated by orthographic neighbourhood effects (Coltheart et al., 1977). Orthographic 

neighbours are words that are the same length but differ by only one letter (e.g. clash-crash). 

Neighbourhood density (the number of orthographic neighbours belonging to a word) can have 

a facilitative effect on word recognition. Low frequency words with many neighbours are 

recognised faster than those with few neighbours (Andrews, 1989), and pseudowords with 

many word neighbours take longer to reject in lexical decision tasks (Coltheart et al., 1977). 

However, word neighbours can introduce competition effects and delay recognition if they 

have a higher frequency than the target (Grainger, 1990; Grainger & Segui, 1990). This 

example denotes a common theme within this thesis, a particular property of a word (in this 

case, high orthographic density) may beneficial for some cases of word recognition, but not 

necessarily in all cases of word recognition. Readers often encounter words in which there are 

multiple cues, which may outweigh each other based on based on other orthographic 

information available. 

Visual word recognition is further influenced by words that are phonologically and 

semantically related. Readers take longer to recognise homophones as real words (e.g. weight-

wait, Ferrand & Grainger, 2003; Pexman et al., 2001) and find it harder to reject pseudoword 

homophones that have the same pronunciations as real words (e.g. hite, Ferrand & Grainger, 
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2003; Ziegler et al., 2001a). These findings indicate that word recognition is subject to 

interference from competing words with overlapping phonological information. Masked-

priming paradigms demonstrate that words are recognised faster when preceded by a 

semantically related word (fast-quick) compared to an unrelated word (fast-quiet; see Neely, 

2012, for a review). It is suggested that word activation spreads to related words within a 

semantic network, therefore, semantically related words are recognised faster as they are 

already partially activated from the prime. Semantic effects are also evident in words that are 

spelled the same but have multiple meanings. Homonyms with multiple unrelated meanings 

(bark) are typically recognised more slowly and less accurately than words with a single 

unambiguous meaning (Armstrong & Plaut, 2016; Hino et al., 2006), whereas polysemous 

words with multiple related meanings (run) are recognised faster and with greater accuracy 

than unambiguous words (Klepousniotou et al., 2008; Rodd et al., 2002).  

In summary, word recognition is routinely modulated by connections between other 

words within the lexicon. These connections can induce facilitation as well as interference 

based on various overlapping orthographic, phonological and semantic properties, and how 

they interact with each other. 

 

 Words in context 

If letters are the building blocks of words, words are the building blocks of sentences 

(Grainger & Hannagan, 2014). Reading is rarely restricted to words in isolation, as words can 

be combined to convey more complex messages. Thus, readers must also be able to understand 

how words relate to each other in a sentence. Sentence context can provide additional 

information during word recognition. For example, we can use wider context to infer between 



CHAPTER 1: INTRODUCTION 

 
 

 17 

multiple word meanings (the cricket team bought new bats/the caves were inhabited by bats, 

see Blott et al., 2020), or to deduce the intended word from a spelling error (the barber combed 

his berad/the baker sliced his berad). 

Readers routinely integrate sentence level information during word recognition. They are 

better at recalling grammatical sentences compared to the same words in a jumbled order 

(Baddeley et al., 2009, Toyota, 2001), and more accurate at recognising words in grammatical 

sentences compared to ungrammatical sentences (Snell & Grainger, 2017). Whilst readers 

demonstrate sensitivity to grammaticality, they also appear to demonstrate flexibility in 

sentence word order, in a similar manner to the transposed letter effect. For example, readers 

are less likely to notice transposed word effects if the words can be re-arranged to form a 

grammatical sentence (e.g. the old was tortoise slow vs. the old was tortoise quietly, Mirault et 

al., 2018; Pegado & Grainger, 2019, 2020, 2021; Snell & Grainger, 2019; Wen et al., 2021). 

As well as syntactic plausibility, word recognition is also facilitated by semantic predictability 

from sentence context. Readers are more accurate at identifying words in a semantically 

plausible context compared to an implausible context (I write a column to be published in a 

newspaper/vegetable; Asano & Yokosawa, 2011). 

Eye-tracking has played a pivotal role in understanding online processing during sentence 

reading, particularly how syntactic information is integrated (see Clifton & Staub, 2011 for a 

review), and how eye-movements are driven by semantic predictability (see Staub, 2015 for a 

review). For example, garden path sentences (grammatical sentences which lead the reader to 

predict an alternative syntactic structure, e.g. the old man the boat) provoke longer gaze 

durations and more regressions (Frazier & Rayner, 1982), suggesting that readers predict the 

simplest syntactic structure and adjust their expectations online as information is accumulated. 

Word predictability reduces fixation times (Balota et al., 1985; Frisson et al., 2005; McDonald 
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& Shillcock, 2003; Rayner & Well, 1996; Rayner et al., 2011; Zola, 1984) and increases the 

likelihood that a word is skipped (Altarriba et al., 1996; Ehrlich & Rayner, 1981; Frisson et al., 

2005; Rayner & Well, 1996; Rayner et al., 2011). This indicates that predictable words are 

faster to process or processed with less precision, as they can be anticipated from sentence 

context. 

Online sentence processing has also been measured using electroencephalography (EEG). 

Event-related potentials typically show a negative peak during semantic processing, around 

400 ms after a word is presented within a sentence (the N400, see Van Petten & Luka, 2012; 

DeLong et al., 2014 for a review). Words that are unexpected from sentence context have been 

shown to delay the N400 response (Kutas & Hillyard, 1980) or increase N400 response 

amplitude (Kutas & Hillyard, 1983; Kutas & Hillyard, 1984; Federmeier & Kutas, 1999; 

Federmeier et al., 2007; Frank et al., 2015; Kutas & Hillyard, 1984). This indicates that, during 

sentence reading, words that conflict with readers’ expectations evoke a processing cost. 

Further ERP studies have shown that predictability effects leak into words that have 

overlapping properties with the expected candidate. The amplitude of the N400 response has 

been observed to be lower for unexpected words that are semantically related to the predicted 

word (she cut her steak with the spoon) compared with unpredictable words that are unrelated 

to the predicted target (she cut her steak with the cup; Federmeier & Kutas, 1999). Similar 

effects have been observed for orthographic neighbours of predicted targets (Lazslo & 

Federmeier, 2009). These findings demonstrate that readers recover and adjust their 

expectations accordingly. Therefore, the processes that shape word recognition may not only 

be shaped by preceding context, they may also be revised in the event of conflicting 

information. Individual words cannot be considered as independent units with self-contained 



CHAPTER 1: INTRODUCTION 

 
 

 19 

processes, and context effects make it difficult to pinpoint when recognition of a particular 

word begins and ends. 

 

 Summary 

The purpose of this section was to highlight that reading is the product of a highly 

complex set of interacting cognitive processes. Within a fraction of a second, readers identify 

multiple letters, establish their relative order within a string, parse the string for sub-lexical 

structures and identify the word within the context of a sentence. Readers demonstrate a high 

aptitude for executing all of these processes and integrating information accordingly. Further, 

the weighting of various cues appears to be dynamic based on properties of the word itself, 

related words and the context that the word appears in. The recurrent focus across this thesis is 

to consider how different hierarchical processes interact during word recognition. In the 

following section, I outline various theoretical frameworks which seek to explain how the 

processes underpinning visual word recognition are integrated. 

 

 Cognitive models of reading 

Developments within computational modelling have enabled researchers to develop 

precise testable models, which simulate word reading behaviour and enable researchers to 

deduce how well an underlying theory can account for what is observed in practice. When 

models align with human behaviour, we can draw conclusions about how various orthographic 

processes are integrated. Reading models can be broadly divided into two classes: models of 

visual word recognition, which describe the sub-lexical processes that underpin recognition of 
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a single word, and models of sentence reading, which aim to explain how words are read in 

context.  

 

 Visual word recognition 

Models of single word recognition tend to focus on how readers use orthographic and 

lexical knowledge to extract information from the visual input and form meaningful linguistic 

representations. Below, I outline the most prominent models of single word reading, which 

include interactive activation models, connectionist models and Bayesian approaches. 

 

1.2.1.1 Interactive activation models 

Interactive activation models propose that bottom-up visual information interacts with 

lexical knowledge (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). Letter 

features, letters and words are represented as nodes in a network, which interact with each other 

using excitatory and inhibitory connections. Letter detectors are activated through bottom-up 

input from the feature detectors, and the perceptibility of individual letters increases through 

feedback from top-down word representations. Word nodes send excitatory feedback to letter 

nodes that correspond with letters that are present in the word, and inhibitory feedback to letter 

nodes that are not present in the word. This enhanced activation increases the perceptual 

salience of letters occurring within words, thus interactive activation models can account for 

the word superiority effect.  
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Figure 1. The original interactive activation model, after McClelland & Rumelhart (1981). 
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specific word under the M criterion, as sufficient overall lexical activity will indicate that the 

stimulus is a word. Finally, the T criterion is a time-based deadline for negative responses. If 

M or S criteria are not reached before this deadline, the stimulus is classified as a nonword. 

Critically, S and T criteria thresholds are adjustable based on stimuli properties and task 

demands. For example, the S criterion threshold may be raised if nonword stimuli are very 

word-like, to prevent overall lexical activity from prompting erroneous classification as a word. 

If readers are asked to prioritise accuracy, the T criterion time limit may be extended to reduce 

the chance of an incorrect “nonword” response. Adjustable thresholds enable the MROM to 

explain task specific effects, as well as why certain word properties are facilitative in some 

cases but not others. For example, why high neighbourhood density benefits word recognition 

(higher summed lexical activation meets the S criterion), unless the neighbours are higher in 

frequency (high frequency competitors have a lower M criterion) (Grainger, 1990; Grainger & 

Segui, 1990). 

Later models have extended the interactive activation model to propose how 

orthographic information can be used to produce word pronunciations and meanings. The dual-

route cascaded model is a generalisation of the interactive activation model (DRC, Coltheart et 

al., 2001), which features two separate routes for word reading: a lexical route and a sub-lexical 

route. Initially, readers establish constituent letters from feature information and identify them 

within a position-specific slot-based coding scheme. The lexical route implements the 

framework of the interactive activation model. The orthographic input activates the 

corresponding whole-word representation within the lexicon. Within the sub-lexical route, the 

orthographic input is parsed into graphemes, which are individually converted to phonemes 

based on regular grapheme-phoneme correspondence rules. Words are recognised via both 

routes in parallel, although recognition via the lexical route is quicker. The lexical route enables 
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readers to correctly pronounce words with irregular grapheme-phoneme correspondences, 

whereas the sub-lexical route enables readers to read aloud unfamiliar strings when they do not 

have an existing lexical entry. 

 

 

Figure 2. The dual-route cascaded model of reading, after Coltheart et al. (2001). Note: the 

semantic system has been proposed but not yet implemented within the model. 
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1.2.1.2 Connectionist models 

Interactive activation models represent linguistic knowledge as rules and 

representations as discrete localised units. Readers are proposed to have specific 

representations for individual letters or words. In contrast, connectionist models adopt a 

distributed approach, whereby linguistic knowledge is characterised by shared patterns of 

activation across units. There are two prominent connectionist models of word reading: the 

triangle model (Harm & Seidenberg, 2004; Plaut et al., 1996; Seidenberg & McClelland, 1989) 

and the connectionist dual-process model (CDP+ model; Perry et al., 2007; Perry et al., 2010; 

Perry et al., 2013). 

The triangle model does not feature specific rules on how readers decode words to 

access their pronunciations or meanings (Harm & Seidenberg, 2004; Plaut et al., 1996; 

Seidenberg & McClelland, 1989). Words are not represented by local discrete units in the 

triangle model. Instead, readers recognise words through distributed associations between 

orthography, phonology and semantics and the weighted connections between them. Unlike 

alternative models of word reading, the triangle model incorporates learning. Weights between 

units are adjusted based on repeated activation and error feedback to reflect statistical 

regularities within the writing system. This provides an advantage as the model has the capacity 

to adapt the weighting given to various cues based on their salience within the writing system. 
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Figure 3. The triangle model, after Harm and Seidenberg (2004). 
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model provides an advantage for learning and parsing sub-lexical phonological constituents 

during word reading. 

 

 

Figure 4. The connectionist dual-process model (CDP+ model) after Perry et al. (2007). 
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1.2.1.3 Bayesian models 

Thus far, the models discussed have outlined hypothetical processes that are specific to 

reading. Bayesian models take an alternative approach, as they postulate that reading does not 

require specialised orthographic processing. Instead, Bayesian models propose that reading 

behaviour is entirely the result of optimal decision-making based on available information. 

Readers combine tentative evidence with knowledge of prior probability (Norris, 2006; Norris 

et al., 2010; Norris & Kinoshita, 2012), which is informed by the reader’s understanding of the 

writing system. Predictions are based on a noisy signal during early processing and refined as 

information is accumulated over time. Whilst ambiguities in the signal are progressively 

resolved, readers prioritise information based on which known word best matches the signal, 

and the likelihood of that word occurring. The prior probability of a particular word occurring 

can be influenced by properties of the word itself (e.g. frequency) or extraneous contextual 

factors such as syntactic knowledge, sentence-level semantic interpretation and parafoveal 

preview (Rayner, 1998). By incorporating contextual cues, Bayesian models take a dynamic 

approach as they assume that processes may vary across each instance of word recognition.  

 

 Models of sentence reading 

The majority of sentence reading models are based upon eye-movements. These models 

can be placed on a continuum based on the extent to which eye-movements are guided by 

language processing (Reichle et al., 2003). Oculomotor models predict eye-movements based 

on biological properties of the visual system, whereas processing models posit that eye 

movements are guided jointly by a combination of linguistic, cognitive and oculomotor factors. 
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For relevance, this introduction focuses on word recognition within sentence reading models 

that are driven by cognitive or linguistic behaviour. 

One of the most contentious debates in the sentence processing literature is whether words 

are recognised one at a time in a serial manner, or whether multiple words can be recognised 

in parallel (see Snell & Grainger, 2019). There is evidence for parallel processing as readers 

demonstrate flexibility in sentence word order (Mirault et al., 2018). However, the plausibility 

of parallel processing has been questioned due to constraints on the visual system and 

attentional distribution (Reichle et al., 2009). Incorporating parallel processing raises 

additional considerations for how words are recognised in context, such as how readers 

represent word position and how sub-lexical processes remain co-ordinated with the 

appropriate word, in order to prevent erroneous leakage across word boundaries. Below, I 

discuss the leading serial and parallel models of sentence reading and consider their capacity 

to explain different sentence reading behaviours.  

 

1.2.2.1 E-Z Reader 

The E-Z Reader outlines word identification as the “driving engine” of sentence reading 

(Reichle et al., 2003, p.450), as successful word recognition acts as a signal to move the eyes. 

Attention is allocated to one word at a time in a serial manner using an attentional spotlight, 

and each word is recognised across two stages of lexical access. According to the E-Z Reader, 

words are initially recognised in their orthographic form at the first stage (L1), and 

accompanying semantic and phonological information is encoded during the second stage (L2). 

Completion of L1 prompts L2 processing and plans for the next saccade. Completion of L2 

prompts the oculomotor system to move the attentional spotlight to the next word. The time 
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required for L1 is dependent on the word’s frequency and its cloze probability from sentence 

context. The extent to which the word can be predicted from context reduces the time required 

for L2. If the word can be predicted with complete certainty then semantic and phonological 

information is already activated during L1 based on corroborating input from the orthographic 

form. In this situation, L2 can be skipped entirely. The E-Z Reader is able to account for a wide 

range of eye-movements, including fixation times based on word frequency and skipping 

behaviour based on word predictability (Reichle et al., 2003). However, the serial nature of the 

model has led researchers to question its ability to account for recent insights into readers’ 

flexibility in word position coding, as shown by the transposed-word effect (you that read 

wrong; Snell & Grainger, 2019). 
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Figure 5. The E-Z Reader model, after Reichle et al. (2003). 
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to zero. Thresholds are lower for frequent or predictable words; hence activation takes less time 

to reach the threshold in the first stage and less time to fall to zero in the second stage. There 

are two critical differences between the SWIFT model and the E-Z Reader. Firstly, the SWIFT 

model proposes that words are processed in parallel across a four-word attentional gradient 

rather than in a serial manner. Within the four-word gradient, attention is directed at words that 

have received intermediate amounts of lexical processing. Less attention is directed to highly 

predictable words within the gradient, as activation levels for predictable words are likely to 

be higher to threshold. This results in a higher skipping probability for highly predictable 

words. Secondly, the SWIFT model predicts that eye-movements are based on time intervals, 

rather than successful word recognition. However, this interval may be extended if the reader 

experiences difficulty identifying a word. 
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Figure 6. The SWIFT model, after Engbert et al. (2002). 
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within word units. Without these constraints, there is a risk of an extremely noisy output that 

does not correspond to any word present (Reichle et al., 2003). 

 

1.2.2.3 OB1-Reader model 

The OB1-Reader model also incorporates parallel word processing within an attentional 

window, known as an attentional gradient (Snell et al., 2018). Where the attentional window 

of the SWIFT model is consistently fixed to four words, the attentional gradient of the OB1-

Reader model adapts in size. The attentional gradient widens (enabling greater parallel 

processing) following each fixation resulting in successful word recognition, and narrows 

(enabling more focused processing) when readers encounter word recognition difficulty. 

The majority of sentence models depict words as the smallest units of representation, 

and do not consider the letter-level processes required to recognise the words themselves (Snell 

et al., 2018). Subsequently, there is a notable disconnect between models of single word and 

sentence reading. However, the OB1-Reader model is an exception, as it is one of the few 

sentence reading models that considers sub-lexical processing. Readers code open bigrams 

from letters that appear within the same word. Bigrams do not cross word-boundaries, although 

bigrams are activated for multiple words simultaneously. Bigrams then activate corresponding 

word representations and inhibit competitors containing similar letters, as outlined by the 

interactive activation framework. Activation for viable word representations is also modulated 

by cloze probability, which is generated by expectations from words that have already been 

recognised. When word activation surpasses a recognition threshold, words are mapped onto a 

plausible location within the sentence. According to the OB1-Reader model, readers generate 

a spatial sentence-level representation in which unrecognised words are represented as “blobs”. 
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Hence, readers can also use information about word length and syntactic rules to assign words 

to the correct sentence location, which completes word recognition. Saccade planning (when 

to move the eyes) is determined by successful word recognition, similar to the E-Z Reader. 

Saccades are cancelled if a word target to the left of fixation has not been successfully 

identified. In this case, fixation regresses to the unrecognised target and the attentional gradient 

is narrowed. 

 

 

Figure 7. The OB1-Reader model, after Snell et al. (2018). 
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In theory, the OB1-Reader model is able to account for the broadest range of 

behavioural effects. It is one of the few sentence reading models to include sub-lexical 

processing, providing a more comprehensive overview. Parallel-processing assumptions are 

able to account for transposed-word effects, and the mapping of words to spatial sentence level 

representations provides a viable prevention of sub-lexical processes leaking across words. 

However, the model has received some scepticism for the demands that such processes would 

place on the reader’s perceptual span (Reichle & Schotter, 2020). The model implements the 

interactive activation word recognition network, which relies upon inhibition between word 

nodes. It is not clear how the interactive activation lexicon could handle activation and 

inhibition for multiple words simultaneously. Other researchers have suggested the possibility 

of a blended approach, whereby the early orthographic processing of words is parallel but that 

lexical access is serial (White et al., 2020). This is supported by evidence of a serial bottleneck, 

whereby readers can make judgements on orthographic features of multiple words 

simultaneously, but performance for accurately identifying lexical features (e.g. lexical 

decision, semantic judgements) suffers when attention is distributed across multiple words 

(White et al., 2018; White et al., 2020). 

 

 Summary 

Models of word reading aim to provide a cognitive framework of the processes that 

contribute to skilled reading. Specific models can either be assessed on technical performance 

for a particular implementation, or alternatively entire classes of models can be evaluated based 

on broader in principle theoretical assumptions. Comparisons are not necessarily 

straightforward, as models vary in their theoretical and computational precision. Further, 

cognitive models vary in their scope of reading activity (e.g. single word recognition compared 
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with sentence reading). For example, there is often a notable disconnect between models that 

outline within-word processing and across-word processing. Words are typically considered 

the largest units of recognition in models that consider sub-lexical processing, whereas words 

are often smallest units of recognition in sentence reading models. This restricts many models’ 

abilities to account for how sub-lexical information is influenced by surrounding context, an 

issue which is explored further in Chapter 3. 

Whilst computational models provide a logical basis for how processes may be executed, 

their real-world validity is dependent on what is possible within existing biological structures. 

The following section summarises what is known about how neural and visual systems engage 

with and support reading behaviour, with commentary on how these findings align with 

cognitive models of reading. 

 

 A neuro-biological basis for reading 

Reading is a relatively new cultural invention within the history of human evolution; 

therefore, it is too recent for humans to have specialised neural architecture to support this skill. 

Instead, there is consensus that the cognitive processes required for reading exploit neural 

circuitry that has evolved for alternative purposes (the neuronal recycling hypothesis; Dehaene, 

2005; Dehaene & Cohen, 2007). Therefore, understanding the constraints of neural and visual 

systems is an important factor in piecing together the processes that underlie skilled reading.  
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 Reading in the brain 

Skilled reading engages multiple regions in the brain, which show different sensitivities 

to the various processes required for recognising words (see Price, 2012 for a review, and 

Taylor et al., 2013 for a meta-analysis). These areas are predominantly based in the left 

hemisphere, and include the angular gyrus, occipitotemporal cortex, as well as inferior, middle 

and superior temporal gyri. Combined, the neural regions engaged during reading can be 

described as a reading network. Activity across this network suggests that words undergo 

multiple levels of neural representation during recognition, as words show similar patterns of 

activation to each other in different regions based on their visual, orthographic, phonological 

and semantic properties (Fischer-Baum et al., 2017). 

Regions within a proposed neural reading network overlap with two distinct visual 

pathways that originate from the primary visual cortex: the dorsal and ventral stream (Goodale 

& Milner, 1992). The dorsal stream, which progresses upwards through the occipito-temporal 

cortex to the parietal lobe, has been associated with processing phonological information. The 

dorsal stream typically shows higher levels of activation for alphabetic writing systems (which 

are based on spelling-sound mappings) relative to logographic writing systems (Bolger et al., 

2005), and for pseudowords compared to words (Taylor et al., 2013). This is typically taken as 

evidence that the dorsal pathway is sensitive to phonological information, as pseudowords can 

be read aloud using spelling-sound mappings, but do not have a semantic association or an 

existing entry within the lexicon to allow phonological access via the recognised wordform. 

The ventral stream extends downwards through the occipito-temporal cortex towards the 

temporal cortex. Research had shown that ventral stream orthographic processing is lexical in 

nature and enables print-to-meaning mappings. The ventral stream becomes progressively 

tuned to word-likeness, as posterior-to-anterior activation becomes hierarchically selective for 
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letters compared to false fonts, pseudowords with legal bigrams compared to consonant 

clusters, low frequency words compared to pseudowords, and high frequency words compared 

to low frequency words (Vinckier et al., 2007). The ventral stream overlaps with a region in 

the left ventral temporal cortex known as the visual word form area (Cohen et al., 2000; Cohen 

& Dehaene, 2004), which produces greater activation for words compared to pseudowords 

(Glezer et al., 2009; Schurz et al., 2010), mediated by word frequency (Graves et al., 2010).  

 Reading engages additional regions that are associated with other forms of linguistic 

processing. For example, the left middle and superior temporal gyri demonstrate reliable 

activation during semantic processing (see Taylor et al., 2013). These regions elicit increased 

activation for meaningful stimuli such as words compared to pseudowords (Binder et al., 2009) 

and grammatical sentences relative to random lists of words (Bavelier et al., 1997; Humphries 

et al., 2006, Vandenberghe et al., 2002; Xu et al., 2005). Notably, these regions respond to 

semantic information across both spoken and written language tasks (Price, 2012), which 

suggests that semantic processing localised to this region is abstract and modality-general. 

Researchers have also established regions that are engaged in phonological processing across 

speech and text. The left inferior frontal gyrus shows increased activation during phonological 

reading tasks relative to semantic reading tasks, such as rhyme-judgements compared to 

semantic judgements (Poldrack et al., 1999) or in word-naming for phonologically related 

words relative to semantically related words (shin-ship vs. shin-leg, Mechelli et al., 2007). 

Increased activation is also observed in this area for auditory tasks involving speech, such as 

phoneme categorisation (Raizada & Poldrack, 2007) or determining syllable order (Moser et 

al., 2009).  
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In summary, neuro-imaging evidence has built an extensive map of regions associated 

with visual word recognition, which indicates that readers establish neural pathways for reading 

by utilising existing brain circuitry of visual and wider language systems. 

 

1.3.1.1 Neural models of reading 

Corroboration across neuroscience and computational models can validate cognitive 

theories and provide clarification on the brain mechanisms that underpin skilled reading, which 

can in turn assist in future model developments. However, it can be difficult to integrate neural 

evidence and cognitive accounts of reading, as cognitive models are not intended to directly 

simulate neural behaviour (Taylor et al. 2013). A meta-analysis by Taylor et al. (2013) 

developed a framework in which the authors formulated predictions on how dominant 

cognitive models of reading aloud would manifest in neural activity. They proposed that 

individual model components would be represented by a corresponding brain region, and 

neural activity would be determined by stimulus engagement and processing difficulty. The 

neural data demonstrated substantial convergence with the functional organisation of DRC, 

CDP+ and triangle models, as distributions of activity aligned with the prediction that there are 

multiple routes to word recognition via spelling-sound mappings and/or lexical-semantic 

correspondences.  

Alternative accounts of reading are directly based on the properties of neural pathways. 

The local combination detector model (Dehaene et al., 2005) proposes that the ventral stream 

becomes progressively attuned to word recognition as reading proficiency increases, which 

culminates in a functionally specialised pathway for recognising visual word forms. Words are 

recognised via a hierarchical network, in which readers encode increasingly large fragments of 
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orthographic information that advance in linguistic complexity. These fragments range from 

oriented bars (letter features) to case-specific letter shapes, which are subsequently transformed 

into case-invariant abstract letter detectors. From there, letters are combined into local bigrams 

and compiled into small words or recurring substrings (such as morphemes). The model is 

based on neurophysiological models of visual object recognition, with each processing stage 

based on the size and capabilities of receptive fields within the primate visual system. 

Subsequent fMRI studies have provided converging fMRI evidence for the local 

combination detector account. Vinckier et al. (2007) observed increasingly word-like 

processing along a posterior-to-anterior gradient within the ventral stream, as regions 

demonstrated increasing sensitivity to linguistic information within the writing system, such as 

orthographic symbols (letters vs. false fonts), word-likeness (consonant strings vs. high 

frequency bigrams) and word frequency. Rothlein & Rapp (2014) localised regions that were 

sensitive to distinct letter properties such as visual-spatial similarity (b-h) or motoric 

representations based on articulation (c-g). Critically, they were able to isolate neural 

representations based on abstract letter identity, regardless of visual overlap (A-a), which 

supported the existence of neural representations for case-invariant letter detectors. At word 

level, Taylor et al. (2019) also found that posterior-to-anterior ventral stream activation was 

initially sensitive to low-level visual information, and then further forward demonstrated neural 

sensitivities to word information that was increasingly more abstract from the visual form. 

They characterised areas within the ventral stream that show similar patterns of neural 

activation based on visual similarities, position-specific shared letter similarities, and position-

flexible shared letter similarities of words (based on spatial and open-bigram coding schemes). 

A potential limitation of the local combination detector model is that it assumes a one-way 

feed-forward approach, which restricts its ability to explain how lexical knowledge interacts 
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with sub-lexical processing. This has been challenged by a recent intra-cranial electrode study 

by Woolnough et al. (2020), which has suggested that ventral stream processing includes 

feedforward and feedback activity that may be missed by the low temporal resolution of fMRI. 

Woolnough et al. (2020) identified two spatiotemporally distinct regions that were sensitive to 

lexical status, but at different time points. Posterior ventral stream regions were first active 

earlier than anterior ventral stream regions, but also showed lexical sensitivity later than 

anterior regions. Differences in early and late selectivity could reflect an interaction of bottom-

up and top-down processing, as word-likeness recognised in the middle temporal gyrus may 

propagate backwards and interact with sub-lexical processing in the posterior ventral stream 

regions. These findings are more cohesive with interactive cognitive models of reading, such 

as the interactive activation model (McClelland & Rumelhart, 1981) or the dual-route cascaded 

model (Coltheart et al., 2001), which incorporate feedback from word knowledge into sub-

lexical processing. Thus, this theory provides an interactive alternative to the local combination 

detector model proposed by Dehaene et al. (2005). 

 

 The visual system 

Reading requires the integration of visual and linguistic information (Grainger, 2018). 

Therefore, when considering biological constraints on reading, we must also consider how 

oculomotor processes carry out this task. This can provide insights into how visual information 

is assimilated and reveal practical limitations for cognitive theories of reading. These processes 

have been investigated across multiple domains, including psychophysics (e.g. letter feature 

processing work: Pelli et al., 2006; Pelli et al., 2009) and eye-tracking (see Schotter & Rayner, 

2015 for a review), although as Grainger (2018) asserts, there has been little cross-

communication between these fields. 
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One of the key challenges is establishing the boundaries between low-level visual 

processing and higher-level linguistic processing. In reality, this is more likely to be a graded 

scale as opposed to a concrete dichotomy. One way in which visual processing can be 

distinguished from linguistic processing during reading is to compare performance across tasks 

with varying linguistic demands, or across populations with varying linguistic capacity. For 

example, trained baboons can fairly accurately distinguish real words from similar letter 

combinations (Grainger et al., 2012), and human readers demonstrate similar statistical 

sensitivity effects for linguistic stimuli and non-linguistic visual stimuli with similar 

complexity (Vidal et al., 2021). Both findings indicate that orthographic processing does not 

necessarily require pre-existing linguistic representations, which suggests that some aspects of 

reading can be executed by domain-general visual processes (Davis, 2021). Grainger (2018) 

has proposed that there is a mid-level vision stage of orthographic processing, in which 

mechanisms for visual object identification interact with linguistic processing in order to 

facilitate visual word recognition. In this section, I outline some of the visual factors that may 

contribute to this integration. 

The visual system places various constraints on reading, including visual acuity and 

crowding (Grainger et al., 2016). Visual acuity refers to the ability to discern fine optical 

details, which varies across the visual field. Accordingly, readers cannot process all visible 

information with equal precision. A fixated word is inspected within the fovea, the highest 

point of acuity within the visual field (Drieghe, 2011). Acuity then declines as distance from 

the fovea increases (Oyster, 1999). Retinal information just outside the fovea (parafoveal 

preview) also plays an important role in skilled reading, as evidence suggests that readers can 

extract broader information about word length and form within this region (Grainger et al., 

2016; McConkie & Rayner, 1975). Information about upcoming words may reduce the time 
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required for subsequent fixation, or enable them to be skipped altogether (Drieghe et al., 2005). 

Crowding is an alternative perceptual effect whereby peripheral objects might not be 

distinguished from each other if they appear too close together (Whitney & Levi, 2011). This 

has implications for processes such as letter identification, as letters typically appear clustered 

together. Crowding places additional constraints on the span of letter-level processing within 

the visual field. Readers are less accurate at identifying peripherally presented letters 

surrounded by additional flanking letters compared to peripherally presented letters in isolation 

(ara vs. r ; Legge et al., 2007), and less accurate at identifying peripheral letters with narrow 

inter-letter spacing (Liu & Arditi, 2001).  

The visual system also adapts based on reading experience. For example, skilled readers 

are more tolerant of crowding in letters compared to symbols, shown in a two-alternative forced 

choice identification task (Grainger et al., 2010). Based on this evidence, Grainger et al. (2016) 

proposed that readers refine their receptive field size during letter identification to reduce inter-

letter interference. Further evidence is found in differences in neural responses between literate 

and illiterate adults (see Dehaene et al., 2015 for a review). Literacy increases fMRI responses 

associated with retinotopic mapping in early visual areas (V1) for horizontally aligned stimuli 

(Dehaene et al., 2010). The bias for horizontally aligned stimuli suggests that readers apply 

these processes to strings that are word-like. Notably, this increase in neural activity is not 

exclusive to letters, which has led Grainger et al. (2016) to suggest that reading experience 

increases broader proficiency in parallel mapping of visual features onto location-specific 

shapes.  
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1.3.2.1 Visual models of reading 

Grainger et al. (2016) proposed an alternative cognitive model of reading that integrates 

properties of the visual system. Letters are most visible when they are at the centre of fixation 

(maximum acuity) or are flanked by blank spaces (minimal crowding), resulting in a W-shape 

of visibility (see Scaltritti et al., 2021 for experimental evidence). Readers then establish 

orthographic features and chunks using coarse and fine-grained codes, based on the dual-

pathway model of Grainger and Ziegler (2011). Coarse codes generate whole-word 

orthographic forms and enable faster access to semantics, whereas fine codes generate 

phonological codes with greater precision. Coarse orthographic features are represented as 

bigrams (shard: sh, sa, sr, sd, ha, hr, hd, ar, ad, rd.), which provide letter-position information 

while allowing position flexibility. Fine orthographic chunks are represented as graphemes 

(shard: sh-ar-d) or other frequently co-occurring letters (such as morphemes) to assist spelling-

sound mapping and enable processing of sub-lexical units. Words in a sentence are processed 

in parallel, with intermittent levels of precision based on their position within the visual field. 

Fixation brings a word into the fovea, where the increase in visual acuity enables readers to 

extract fine and coarse orthographic information. Words outside of the fovea appear blurred 

due to lower visual acuity; therefore, the ensuing word is partially processed via coarse code. 

Acuity is further limited for words within peripheral vision, although readers can extract broad 

information about word length to guide eye movements and narrow potential upcoming word 

candidates. 

 



CHAPTER 1: INTRODUCTION 

 
 

 45 

 

Figure 8. A visual model of reading, after Grainger et al. (2016). 

 

 Summary 

This section has summarised how the cognitive processes that underlie skilled reading 

may be executed within existing neuro-biological architecture. An extensive body of evidence 

from both neuro-imaging and eye-tracking has provided a rich account of biological constraints 

on reading, as well as how neural and visual processing adapts to support this skill. The final 

part of this introduction considers how word recognition processes may be shaped by properties 

of the writing system. I outline the critical role of the text environment in influencing 

orthographic processing, and highlight that appreciating the characteristics of the writing 
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system as an input is essential for understanding the processes that support visual word 

recognition. 

 

 How is reading shaped by properties of the writing system? 

Due to the learned nature of reading, exposure to the writing system leads to fine-tuning of 

reading processes. As discussed previously, reading behaviour is influenced by the statistics of 

natural language. For example, word frequency effects are a prime example of how the salience 

of word-level information is based on prevalence of a stimulus within the print environment. 

Critically, there is also evidence that reading is shaped by characteristics of the writing system 

itself. Skilled readers encounter hundreds of millions of words and billions of letters over their 

lifetime (Pelli et al., 2006), which plays a critical role in refining orthographic knowledge of 

how the writing system represents language as visual symbols. For example, readers adjust 

prioritisation of different visual features as they gain expertise in an unfamiliar alphabet, in 

order to best discriminate between letters (Wiley et al., 2016). This section outlines the critical 

role of the writing system as the input for learning, and how characteristics of the text 

environment influence how orthographic information is extracted. 

 

 Distributional salience 

Statistical learning (the ability to acquire knowledge about patterns in the environment) has 

been established as an important tool for implicit language learning. This has received 

extensive focus in spoken language (see Romberg & Saffran, 2010 for a review), and 

substantial evidence also suggests that readers also demonstrate statistical sensitives in the 

written language environment. Developmental research has shown that children quickly 
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develop understanding of letter distributions. For example, in the first year of reading 

instruction, children gain awareness of common letter doublets (e.g. ll but not ww; Deacon et 

al., 2008). By the first grade (6-7 years old), children are more likely to judge pseudowords as 

more word-like if they conform to letter frequency and co-occurrence statistics of their native 

language (Cassar & Treiman, 1997; Pacton et al., 2001). These statistics are also reflected in 

primary school age spelling behaviour (Pollo et al., 2009). Similar statistical patterns emerge 

when adults are asked to spell pseudowords, as spellings tend to reflect the regularities of letter 

distribution in the reader’s native writing system (see Kessler, 2009 for a review). For example, 

readers imitate patterns of letter-doubling (Treiman & Boland, 2017) and mimic the most 

frequent graphemes that reflect phonemes in written words with similar structures (Treiman, 

2017). 

Recently, Schubert et al. (2020) used machine-leaning to investigate the extent to which 

readers can learn about different characters in their orthography based on the statistics of the 

text environment alone. The authors investigated this question by applying the distributional 

hypothesis, which suggests that we learn about a specific element based on co-occurrences with 

other elements (Harris, 1954). This hypothesis has been used to explore semantic relationships, 

based on the premise that words with similar meanings tend to occur in similar contexts (see 

Boleda, 2020 for a recent review). This is summarised by Firth (1957), “you shall know a word 

by the company it keeps” (p. 11). In line with this hypothesis, Schubert et al. (2020) 

investigated the hypothesis that readers can identify a letter based on the company it keeps. 

After exposure to 12 million words across 44,000+ documents, the neural embedding model 

word2vec (Mikolov et al., 2013) was able to differentiate between letter and non-letter 

characters (numbers and symbols), upper and lower cases, and consonants and vowels. Whilst 

these models are not intended as a theory of how humans extract statistical regularities, they 
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do demonstrate the rich contextual orthographic information available from the environment 

independent of any understanding of semantics or phonology. 

 Readers also demonstrate increased sensitivity to orthographic units that provide salient 

linguistic information about the sounds or meanings of words. For example, evidence outlined 

earlier in this chapter suggests that readers rapidly decompose words into constituent 

graphemes and morphemes (Rey et al., 2000; Rastle et al., 2004). When discussing 

morphology, Rastle et al. (2000) propose that readers capitalise on orthographic “islands of 

regularity” which offer a degree of systematicity in the mapping between printed words and 

their meanings. This can explain why we observe facilitation in morphological (farmer-FARM) 

and morpho-orthographic (corner-CORN) priming, but not in words with equivalent 

orthographic overlap (window-WIND; Rastle et al., 2004). It suggests that orthographic letter 

strings associated with a morpheme have a special status, as morphemes reflect salient 

statistical information within the writing system (Rastle, 2019b). 

 Overall, there is collective evidence to show that the written environment plays a key 

role in shaping orthographic representations. Distributional salience and statistical regularities 

within the writing system have a substantial impact on what orthographic information becomes 

regarded as privileged in order to support optimal word recognition.  

 

 Cross-linguistic differences 

It is clear that reading behaviour is shaped by properties of the language and its 

extended writing system. As a result, the way in which reading is shaped by the environment 

will not be universal across literate populations, as different writing systems will have different 

kinds of salient characteristics (see Frost, 2012b). Frost (2012b) proposed that “every language 
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gets the writing system that it deserves” (p. 267). In other words, the accompanying writing 

systems will be structured to best convey idiosyncratic characteristics of their respective 

languages. One of the ways that writing systems differ is the extent to which the orthography 

reflects phonological or semantic information. However, given the arbitrary relationship 

between phonology and semantics in speech, orthographic regularities in one domain are often 

at some cost to the other (see Frost, 2012b for an overview of five distinct languages). 

Therefore, it is widely agreed that no language has a completely optimal writing system. 

Cross-linguistic comparisons indicate that writing systems evolve to accommodate 

salient characteristics of the language. English has an alphabetic writing system that features 

fairly consistent mappings between orthography and phonology, although there are also many 

irregularities which may be due to preserving other structures, such as morphology (Rastle, 

2019a). In comparison, agglutinative languages such as Finnish tend to have high orthographic 

consistency, as words can be formed by compounding morphemes without changing their 

spelling or pronunciation. This can result in very long words, which may increase processing 

demand. However, Frost (2012b) hypothesizes that the consistency between orthography and 

phonology should reduce this load. Korean Hangul also prioritises transparency between 

orthographic and phonology. Hangul has a predictable CVC syllabic structure; thus, syllables 

are represented orthographically as demarcated blocks (e.g. 햇빛, a two-syllable word meaning 

“sunlight”). Further, consonant characters often illustrate the shape of the vocal organs required 

to produce the corresponding phoneme (Pae et al., 2019). For example, ㄴ (/n/) symbolises the 

front of the tongue raised behind the teeth, whereas ㄱ (/k/) represents the back of the tongue 

raised towards the soft palate. Languages also vary in the phonological information that needs 

to be conveyed orthographically. For example, Thai is a tonal language, therefore the writing 

system features diacritic tone markers to differentiate between homophones. Thai also features 
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classifiers, which are characters appended to groups of nouns that are often semantically related 

(e.g. ลูก denotes a small round object; Hudak, 2016). Therefore, words with shared phonology 

can potentially be disambiguated by their classifiers.  

It is important to note that writing systems do not evolve with the sole purpose of 

providing phonological information. Instead, Frost (2012b) proposes that writing systems 

evolve to optimise cues relating to spoken words and their meanings, whilst maintaining 

minimal orthographic load for ease of processing. This can explain why phonological 

information is often underspecified within writing systems where it does not play a critical role 

in disambiguating between words. For example, Semitic languages (such as Hebrew and 

Arabic) omit the majority of vowel information from print. Frost (2006) attributes this to the 

well-established internal morphological structure of Semitic words. The word meanings are 

expressed via tri-consonantal roots, therefore providing minimal orthographic content elevates 

readers’ abilities to efficiently extract the root structure. As internal word structures are highly 

constrained, accessing the root provides an efficient route for lexical access and unlocking of 

vowel information (Frost, 2006). Some of the most extreme examples are found in logographic 

writing systems, in which words or morphemes are denoted with a single character. An 

example is Chinese, in which most characters first denote a semantic radical followed by a 

phonetic radical. Semantic information appears to take priority over phonological information 

in how words are orthographically conveyed. In fact, Frost (2012b) highlights that Chinese 

dictionary entries are organised by their semantic radicals, with phonological radicals offering 

secondary phonological information. Notably, Chinese words are predominately mono-

morphemic with a strict syllabic structure, which results in a very high prevalence of 

homophones. Therefore, a ‘meaning-first, sound-second’ writing system is arguably more 

suited for optimal word recognition. 
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As orthographic representations are shaped by the written environment, readers of 

different writing systems likely attribute greater weighting to different kinds of orthographic 

information. This has been formally proposed as the orthographic depth hypothesis (Katz & 

Feldman, 1983; Katz & Frost, 1992) and psycholinguistic grain-size theory (Ziegler & 

Goswami, 2005; see also Grainger & Ziegler, 2011), which are both based on the assumption 

that words are recognised via at least two pathways (phonological and orthographic). These 

accounts propose that readers’ reliance on either pathway is weighted by the consistency of 

orthography to phonology mappings within their language. There is some experimental 

evidence to support this; readers of languages with high orthographic consistency have 

routinely shown stronger word length effects (Ellis & Hooper, 2001; Goswami et al., 1998) 

and faster pseudoword reading latencies (Aro & Wimmer, 2003; Frith et al., 1998; Landerl, 

2000; Mann & Wimmer, 2002; Rau et al., 2015; Thorstad, 1991), both of which have been 

interpreted as greater experience with decoding small-unit grapheme-phoneme 

correspondences. There is also evidence that readers of languages with high and low 

orthographic consistency show divergences in reading aloud even when the written input is the 

identical (Ziegler et al, 2001b), however a recent re-analysis has suggested that more evidence 

is required after failure to replicate some of the findings (Schmalz et al., 2017). 

Cross-linguistic differences are not necessarily contingent on the relationship between 

orthography and phonology. Letter position coding provides another striking example of cross-

linguistic differences in the initial stages of orthographic processing. Readers of many Indo-

European languages demonstrate flexibility in letter position coding, as shown by the 

transposed letter effect (Perea & Carreiras, 2008). However, the transposed letter effect is not 

observed in other writing systems, such as Hebrew (Velan & Frost, 2007), Arabic (Boudelaa 

et al., 2019; Perea et al., 2010) and Korean (Lee & Taft, 2009; Lee & Taft, 2011; Rastle et al., 
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2019). Frost (2012b) proposed that letter position coding may be dependent on orthographic 

density, defined by the prevalence of anagrams. This theory was computationally tested by 

Lerner et al. (2014), who found that models were more reliant on positional information in 

training sets with higher proportions of anagrams. However, it is difficult to test this in natural 

languages as writing systems have additional differences over and above orthographic density. 

For example, Hebrew features an embedded morphological structure, and Korean has a strict 

syllabic structure, both of which would also be disrupted by letter transpositions. This issue is 

addressed experimentally in Chapter 5. 

 

 Summary 

The processes that underpin skilled reading are not only shaped by cognitive or 

neurobiological capacities, but also by properties of the writing system itself. Humans are 

highly skilled at detecting patterns in their linguistic environment, which plays a major role in 

learning to read and influencing how orthographic information is optimally weighted long-

term. In order to fully understand the representations that arise during reading, it is fundamental 

to appreciate the nature of the input as a starting point (Rastle, 2019a). As outlined above, the 

learned nature of reading and the critical role of the writing system prevents skilled reading 

from being universal experience across languages. Cross-linguistic comparisons across 

different writing systems can reveal the extent to which specific aspects of visual word 

recognition are due to general cognitive properties, which should occur across all languages, 

and the extent to which they are shaped by the environment, where cross-linguistic differences 

in reading behaviour will occur.  
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 Thesis overview and aims 

Reading is a highly complex learned skill, which is shaped by the constraints of existing 

cognitive and neuro-biological structures, as well as distributional information from the written 

environment. The over-arching aim of this thesis is to advance understanding on how skilled 

readers hierarchically integrate the representations that arise during the early stages visual word 

recognition. The experimental work investigates both the situational factors that influence how 

readers weight orthographic information ‘in the moment’, as well as properties of the writing 

system that shape long-term representations over years of acquisition.  

Chapter 2 outlines some of the methodological considerations that were undertaken 

whilst conducting this research. Chapters 3 and 4 focus on how representations are formed in 

the short-term, by considering how the processes that underpin letter identification may be 

mediated by surrounding orthographic information. Chapters 5 and 6 focus on how readers’ 

sensitivity to various orthographic properties is shaped through long-term learning. Chapter 5 

explores whether the flexibility of letter position coding varies based on orthographic density 

(or number of anagrams) within an artificial writing system. Chapter 6 examines whether 

readers form specific neural representations for letter combinations that reflect salient statistical 

information (such as morphemes), using fMRI and representational similarity analysis. Finally, 

Chapter 7 provides a general discussion of the overall findings, which indicate that word 

recognition is signal-contingent. Readers adapt how various sources of orthographic 

information are weighted and integrated during the initial stages of word recognition, based on 

both salience within the writing system and the immediate context available. Conclusions 

consider how these findings relate to computational theories of reading and how they are 

represented in the brain.
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 CHAPTER TWO: METHODOLOGY 
 

This thesis features four independent studies that investigate the hierarchical 

representations that arise during the initial stages of word recognition. Each study incorporates 

different behavioural and neuroscientific methods, which are outlined within the 

accompanying chapter. Therefore, the current chapter does not serve as a manual for the 

methods employed, but instead outlines some of the broader conceptual and statistical 

considerations that arose whilst this work was conducted.  

 

 Differentiating between influences of short-term context and long-term knowledge 

The representations that arise during reading can broadly be attributed to long-term 

knowledge or temporary online representations that manifest in the moment. However, it is 

important to note that theoretical accounts may dispute the dichotomy of this distinction, and 

provide alternative theories on how long-term knowledge is stored (e.g. connectionist theories, 

see Seidenberg, 2005). This section briefly summarises methodological considerations that 

were undertaken when investigating long-term and short-term representations. Specifically, I 

outline the approaches taken to answer the following questions: 

1) How do readers weight information in the moment? How malleable are the word 

representations that arise and how are they impacted by temporary situational context? 

2) How do readers form weightings over years of acquisition? What information do readers 

pay attention to and encode in long-term representations during learning? 
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 Representations shaped by short-term situational factors 

The studies presented at the beginning of this thesis examine how representations are 

formed within individual instances of visual word recognition, and investigate the situational 

cues that influence how orthographic information is processed. These representations are 

formed as a result of online processing, and provide insight on how various linguistic cues are 

weighted and integrated in an adaptable manner.  

Chapters 3 and 4 investigate how temporary representations are influenced by immediate 

context. Specifically, we tested whether letter identification accuracy varies based on properties 

of the letter string and/or surrounding words within a sentence. These experiments 

implemented a Reicher-Wheeler task (Reicher, 1969; Wheeler, 1970), whereby a participant is 

briefly presented with a letter string and then asked to decide which of two letters appeared in 

a specified position within the string. One of the letters is the target letter (which actually 

appeared within the specified position within the string), whilst the other letter is a foil letter 

(which did not appear in the string at all). The task is designed so that substitution of the target 

letter with the foil letter always results in a string with the same orthographic status in order to 

minimise post-hoc guessing. For example, if the letter string was a word such as crowd, the 

target and foil letters may be d and n respectively, as either letter would result in a real word 

(crown/crowd). Similarly, if the letter string was a pseudoword such as crowl, the target and 

foil letters may be l and b as both would form pseudowords (crowl/crowb). Reicher-Wheeler 

tasks reliably demonstrate the word superiority effect, which refers to readers’ increased ability 

to accurately identify letters in words relative to pseudowords (Reicher, 1969; Wheeler, 1970). 

The word superiority effect is a prime example of how readers adapt based on the 

information available. It demonstrates that the representations that support letter identification 

are not solely contingent on properties of the letters themselves, but also external factors that 
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are likely to change across instances of recognition. In the context of the word superiority 

effect, it is clear that word-level representations are not critical for letter identification, as 

readers are able to recognise letters presented in isolation, or in pseudowords that they have 

not encountered before. However, the word superiority effect shows that word-level 

information still plays a substantial role during letter identification, as accuracy suffers when a 

corresponding word representation isn’t available. By comparing proficiency of a specific 

reading task across different situations, we can assess the importance of the various cues 

supporting these processes. 

 In the current thesis, we used the word superiority effect as a window onto the 

representations that are used to support visual word recognition processes when different 

degrees of context are available. For example, is the strength of the word superiority effect 

modulated by predictability from sentence context? Is task performance impacted by visual 

featural similarity of target and foil letters, and does this have a greater/lesser impact when 

there is a corresponding word level representation? The methodologies for the studies 

presented in Chapters 3 and 4 were partly inspired by the work of Mattys et al. (2005), which 

investigated how various linguistic and acoustic cues are integrated during auditory speech 

perception. In this work, the authors systematically pitted different cues against each other, and 

measured the impact on speech segmentation (the ability to detect word boundaries during 

speech). They found that cues were hierarchically weighted, with descending priorities from 

lexical to acoustic information. Lower level acoustic cues drove segmentations in the absence 

of lexical information, but became redundant when lexical information was available. 

Ultimately, the study demonstrated that the word representations that arise from speech are 

signal-contingent. We took the same approach to investigate whether this is also the case for 

word representations arising from text. This enabled us to develop an account of how readers 



CHAPTER 2: METHODOLOGY 

 
 

 57 

integrate low-level visual information and high-level sentence information during word 

recognition, in situations where cues provided either collaborative or conflicting information. 

  

 Representations formed from long-term knowledge 

In the second half of this thesis, there is a shift in focus from short-term situational 

representations to long-lasting word representations that are typically established over years of 

reading experience. Chapters 5 and 6 examine how long-term word representations are shaped 

by exposure to the writing system, and whether certain aspects of the writing system have 

greater salience as privileged information. For example, certain cues may exert a greater 

influence on word recognition if they play a critical role in disambiguating between multiple 

word representations. Alternatively, long-term representations may be sensitive to information 

based on distributional salience. This could apply to multiple aspects of the writing system, 

such as co-occuring letter combinations, or orthographic information that provides 

systematicity in the links between print and sound or meaning (e.g. morphology). 

 

2.1.2.1 Artificial language learning paradigms 

Chapter 5 focuses upon how readers learn to weight specific cues based on the usefulness 

of their contribution for efficient word recognition. We investigated cross-linguistic differences 

in letter position coding, after a body of literature indicated that letter position is encoded with 

greater flexibility in some languages compared to others (Frost, 2012b). We aimed to test the 

hypothesis proposed by Frost (2012b) that flexibility in position coding emerges in languages 

where it maximises the efficiency of word recognition. However, testing this hypothesis was 

not straight-forward as there are substantial challenges with drawing cross-linguistic 
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comparisons. Most prominently, there are multiple substantial differences across languages, 

which makes it difficult to isolate relevant contributing factors. In addition, there is also likely 

to be substantial variation across readers of different languages. For instance, different reading 

populations will vary in the method of reading instruction received, overall reading proficiency 

and level of reading experience. In light of these differences, it is difficult to draw definitive 

conclusions about the impact of specific factors on the development of orthographic 

representations. 

 We overcame these limitations by using an artificial language learning paradigm to 

investigate how properties of the writing system influence the precision of letter position 

coding. This enabled us to create a tightly-controlled reading acquisition environment in which 

adults were trained to read novel words in unfamiliar scripts over an extended period of time. 

Our artificial language systems were designed to be identical in all dimensions except for the 

factor of interest, which in our case was orthographic density (the prevalence of anagrams). 

We predicted that letter position coding would be less flexible in languages with high 

orthographic density. This was based on the expectation that readers would have greater 

sensitivity to precise positional information, as the risk of identifying another word in error 

would be more likely to outweigh the benefits of position flexibility. This approach not only 

permitted precise control over properties of the writing system, but also the manner in which 

readers were taught to read it. We ensured that participants received the same training in either 

writing system, based on tasks implemented in previous artificial reading acquisition studies 

(see Taylor et al., 2017). 

Previous artificial language learning studies have been highly effective in simulating 

the acquisition of various types of linguistic information (Bowers et al., 2005, Clay et al., 2007; 

Ellis & Schmidt, 1998; Fitch & Friederici, 2012; Gaskell & Dumay, 2003; Hirshorn & Fiez, 
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2014; Rastle et al., 2021; Tamminen, et al., 2015; Taylor et al., 2011; Taylor et al., 2014; Taylor 

et al., 2017). Studies have provided insights on learning new grammar systems (Batterink & 

Paller, 2017; Mirkovic & Gaskell, 2016) and pseudo-morphological relationships (Tamminen 

et al, 2015). Further, completely novel orthographies with unfamiliar symbols have been used 

to study how readers learn print-to-sound and print-to-meaning mappings (Mei et al., 2013; 

Taylor et al, 2017; Rastle et al., 2021), and to validate methods of reading instruction (Taylor 

et al., 2017; Rastle et al., 2021). 

One of the benefits of conducting artificial language learning studies with skilled adult 

readers is that it is highly efficient. Participants often learn quickly and demonstrate high 

proficiency after a single session. However, there is some scepticism over how well artificial 

language learning truly reflects naturalistic reading behaviour (see Pothos, 2007). For example, 

adult readers are already skilled in an existing writing system, which is likely to influence their 

behaviour when learning a novel orthography. Similarities between the native and artificial 

language can provide readers with a blueprint that they might not otherwise have, and 

differences may cause interference. Further, there are questions around the extent to which 

artificial language learning under laboratory conditions reflects strategic problem-solving 

rather than naturalistic reading. In order to perform the task well, participants need to achieve 

proficiency suitable for the short timeframe of the experiment. This may reduce the relevance 

of artificial languages in understanding the formation of long-term abstract knowledge as the 

usefulness of this would fall beyond task demands (Taylor et al., 2017). Despite these concerns, 

there are several factors which provide support that representations that would support long-

term knowledge. For example, artificial languages evoke the same behavioural effects as in 

natural languages, such as frequency and consistency effects (Taylor et al., 2011). Other studies 

have shown that readers can generalise the rules of the artificial language to pronounce or 
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understand the meanings of untrained items (Rastle et al., 2019; Tamminen et al., 2015; Taylor 

et al., 2011; Taylor et al., 2014), and that this knowledge is preserved over a long timeframe 

(Havas et al., 2015; Laine et al., 2014; Merkx et al., 2011; Tamminen & Gaskell, 2008). 

Over the past decade, researchers have also combined artificial language learning with 

neuro-imaging, which have demonstrated similarities in brain activity with naturalistic reading 

(Mei et al., 2013; Taylor et al., 2017; Taylor et al., 2019). For example, Taylor et al. (2017) 

scanned adults before and after learning a new orthography, and found that later scans showed 

ventral stream specialisation during semantic reading tasks, as well as dorsal stream 

specialisation in phonological reading tasks. Further, Taylor et al. (2017) provided quantitative 

evidence that the neural activity elicited by reading aloud artificial stimuli was similar to 

reading aloud English stimuli. Spatial distribution analyses confirmed that activation 

differences for participants reading trained and untrained items in the artificial orthography 

were akin to differences in neural activation for reading words versus pseudowords in English. 

In summary, artificial languages have been a valuable tool for simulating language 

learning and understanding the principal mechanisms behind it. This method provides an 

innovative approach for comparing how long-term representations are shaped in different 

languages, whilst eliminating confounding factors present in naturalistic comparisons. In the 

work presented in Chapter 5 capitalises on this approach to simulate a precisely controlled 

cross-linguistic learning environment, to further understanding on how the environment shapes 

long-term representations around letter position coding. 
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 The neural basis of representations during reading 

Chapter 6 focuses upon whether long-term representations are sensitive to statistically 

salient information within the writing system, and how this manifests as neural activity in 

skilled readers. Specific brain regions develop a specialised sensitivity to various kinds of 

orthographic information (e.g. visual word form area; Cohen et al., 2000; Cohen & Dehaene, 

2004), which provide an indication of the long-term representations forged to support visual 

word recognition. We used magnetic resonance imaging (MRI) and representational similarity 

analysis to characterise the neural representations that occur during visual word recognition. 

Specifically, we sought to investigate whether skilled reading evokes neural representations 

sensitive to morphological information in order to facilitate efficient mapping between print 

and meaning. This section highlights the general methodological benefits of representational 

similarity analysis, and how it can play an important role in understanding the neural basis for 

representations that arise during reading. This can greater inform us on sensitivities to 

particular aspects of the writing system, and provide insight on the types of information 

prioritised in long-term memory. 

Neuro-imaging methods provide insight into the brain regions engaged during specific 

reading processes. In recent years, reading researchers have been able to conduct more fine-

grained analyses on the neural representations that contribute to reading due to advancements 

in multivariate pattern analysis techniques (Baeck et al., 2015; Fischer-Baum et al., 2017; 

Rothlein & Rapp, 2014; Taylor et al., 2019). Representational similarity analysis is a 

multivariate technique based on the principle that stimuli that share similar representations will 

elicit similar neural response patterns in the relevant region (Kriegeskorte et al., 2008). 

Analyses are conducted using the following practical steps. First, researchers strategically 

select stimuli that can be compared for similarity based on particular cognitive theories or 
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representational properties. Each stimulus is compared to one another in a hypothetical matrix 

that predicts how similar neural responses should be in regions that are sensitive to the 

comparison of interest. Hypothetical matrices are often constructed by comparing stimuli 

which are similar along one dimension but not another. For example, PARROT-CARROT 

would be correlated as similar in a hypothetical matrix expressing orthographic similarity, 

whereas PARROT-TOUCAN would be correlated as dissimilar. In contrast, the reverse would 

be true for a hypothetical matrix expressing semantic similarity. Then, researchers record 

participants’ neural response to each of the stimuli included with the hypothetical matrices 

while they are performing a task within the MRI scanner. Next, observed neural dissimilarity 

matrices are constructed. Observed neural dissimilarity matrices include the same stimuli as 

the hypothetical matrices, but in these matrices, correlation coefficients reflect dissimilarity 

between the neural patterns associated with each stimuli comparison. Observed neural 

dissimilarity can be averaged across voxels within a specified region of interest, or calculated 

for each voxel using a searchlight approach (Kriegeskorte et al. 2006). Finally, observed neural 

dissimilarity matrices are correlated with the hypothetical matrices. This enables comparison 

of a region’s BOLD response to hypothesized representational similarity, which allows 

researchers to characterise the neural representations that are processed within a specified 

region based on the fit of each hypothetical matrix. 

Multivariate approaches show greater sensitivity in discriminating between properties 

of word stimuli than traditional univariate approaches, as they compare differences in patterns 

of voxel activity, as opposed to overall levels of neural activation (Oosterhof et al., 2016). 

Whilst univariate methods can broadly identify regions engaged during cognitive processes, 

they are less equipped to answer questions around representational content (Kriegeskorte et al., 

2006). In comparison, representational similarity analysis extends beyond comparing mean 
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levels of neural activation for different stimuli (Raizada & Kriegeskorte, 2010), as this 

technique is able to detect differences in neural patterns even when mean activation levels 

remain constant (Rothlein & Rapp, 2014). By assessing the nature of information encoded 

within different brain regions during word processing, representational similarity analysis can 

provide a stronger link between cognitive and neural theories of reading (Fischer-Baum et al., 

2017). This approach enables researchers to test competing accounts of how information might 

be represented in the brain (Evans & Davis, 2015), or to test theories that rely on multiple levels 

of representation (Fischer-Baum et al., 2017). These insights enable us to contextualise the 

nature of learned representations and better understand how long-term linguistic knowledge is 

represented in the brain. 

 

 Statistical approaches 

The second half of this chapter outlines some of the statistical considerations applied 

when conducting the analyses of behavioural work presented in this thesis. Importantly, I 

discuss differences in approaches across studies. Differences usually arose due to their 

suitability to answer the research question. In other instances, they may reflect ongoing learning 

or recent developments in debates surrounding best practice (see Brysbaert & Stevens, 2018, 

regarding power, or Meteyard & Davies, 2020, regarding reporting of linear mixed-effects 

models). It may be helpful to state here that the studies in this thesis are not presented in the 

order in which the work was conducted.2 

 

                                                
2 The studies were conducted in the following chronological order: Chapter 5, Chapter 6, Chapter 3, Chapter 4. 
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 Linear mixed-effects models 

The majority of behavioural experiments presented in this thesis are analysed using 

generalised linear mixed-effects models. Linear mixed-effects models are run at observational 

level, meaning that analyses include every single response as a data point, assuming that outlier 

removal and other necessary data-cleaning steps have already been completed. Independent 

variables of interest (e.g. experimental manipulations) are included as fixed effects, whereas 

variables that are not of interest (such as participant or item variance) are included as random 

effects (see Meteyard & Davies, 2020, for a more detailed overview). In recent years, linear-

mixed effects models have become state of the art when analysing behavioural data, as they 

offer several advantages over traditional analysis of variance (ANOVA) approaches that have 

historically been used in language research.3 There is no loss of data due to aggregation, which 

results in better statistical power (Brysbaert & Stevens, 2018). Further, linear mixed effects 

models are better suited for unbalanced designs or coping with missing values, as they are able 

to weight how much data a particular subject contributes (Baayen, Davidson & Bates, 2008). 

This is turn provides a better overview of individual differences. 

Critically, the random effects structure of linear mixed-effects models permits 

researchers to measure multiple sources of random variance simultaneously (see Judd et al., 

2017). This is in contrast to ANOVA approaches, which can only consider one at a time. 

ANOVA analyses are performed on aggregated data, which is usually summarised by the 

average response for each participant in each condition. The error term of the ANOVA then 

includes variability between participants, both in terms of overall level of performance and the 

extent to which participants are susceptible to between-condition experimental effects. It is this 

                                                
3 Thank you to Dr. Denis Drieghe for a comprehensive introduction to the concepts discussed here, which were 
outlined in an introductory course on linear mixed-effects models at Southampton University in 2017. 
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variance that enables researchers to infer whether effects observed within an experimental 

sample would be observed at population level. However, one limitation of this approach is that 

it does not account for variability between items. Without considering variability across items, 

it is difficult to statistically infer whether experimental findings apply beyond the specific 

linguistic stimuli selected for an experiment to reflect language in general. This is referred to 

by Clark (1973) as the fixed effects fallacy. In the past, studies have addressed this by including 

ANOVA statistics conducted separately on both participant and item means (termed F1 and F2 

analyses respectively). Under this approach, effects are interpreted as meaningful if statistical 

significance is observed over both F1 and F2 analyses. However, this is an imperfect solution. 

Including an additional test across items introduces further random variance, which increases 

the chance of a false positive, or Type 1 error. Historically, including F1 and F2 analyses was 

proposed an intermediate step prior to calculating a quasi-F ratio (F’), that considers both 

participant and item variability (Clark, 1973). However, this statistic is rarely adopted in 

practice and has been criticised as being overly conservative (Drieghe, 2017).  

Linear mixed-effects models are also more suitable for analysing accuracy data, which 

is the dependent variable for the majority of experiments presented within this thesis. Accuracy 

responses are binary categorical variables, as responses can be correct or incorrect. However, 

this is unsuitable for ANOVA approaches, which are intended for analysis of continuous 

variables. Generally, researchers address this by calculating mean proportion of accuracy for 

each participant or item, resulting in a continuous measure of accuracy performance. However, 

combining two binomially distributed conditions is problematic as the variance within each 

condition will not be homogenous, which violates an assumption of ANOVA (Jaegar, 2008). 

Moreover, using converted proportional values may lead to other statistics falling outside of a 

logically possible range. All proportional data values will fall between the range of 0 and 1, 
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however confidence intervals can extend beyond these values, which could lead to an 

impossible interpretation (e.g. over 100% accuracy). This is particularly likely for data with 

very low or very high mean accuracy rates (known as floor or ceiling effects), which we 

observed in some instances of our data. Linear mixed-effects models are better equipped for 

accuracy data as they operate at the level of single observations, and can be logistically 

constructed to handle binomial data. 

Linear mixed-effects models provide a powerful and highly versatile method to analyse 

data, which has led to their rapid adoption within the behavioural sciences. However, a 

potential downside of this versatility is that it introduces researcher degrees of freedom, and 

there is ambiguity over what is considered best practice. Meteyard and Davies (2020) 

demonstrate the extent to which practices diverge in a recent review paper, which reveals 

“damaging variation” in how models are constructed and reported. The authors highlight that 

this could create future problems around reproducibility if researchers are unable to synthesize 

analyses. For example, there is no standardised procedure for fitting linear mixed-effects 

models to the data. Fitting refers to decisions around which fixed and random effects are 

included within the model, as well as whether to include interaction terms for fixed effects and 

whether to include intercepts and slopes for random effects. Some argue that researchers 

should begin with a maximal structure including all parameters of interest and sources of 

random variance (Barr et al., 2013), which has the benefit of reducing Type 1 error. However, 

others assert that maximal models are costly as they can induce a significant loss of power 

(Matuschek et al., 2017). Including all possible parameters can lead to over-fitting, where the 

model contains more parameters than can be justified by the data. Including too many 

unnecessary parameters can also cause convergence issues, where there is not enough data for 
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the model to run and/or form a reliable estimate. Conversely, under-fitting occurs when the 

model has too few parameters and is too simple to accurately predict effects from the dataset.  

In light of these issues, I took several steps in order to be transparent and consistent 

with our analyses. I defined a maximal structure of our models in advance, with fixed effects 

based upon our experimental conditions and random effects typically including participant and 

item variance. I then determined the structure of the optimal model (i.e. the model most 

appropriate for our data) by systematically adding these random effects, main effects, and 

interaction terms in turn. At each stage, the model was compared to the model specified in the 

previous step using likelihood ratio tests, which indicated whether adding each specific 

element significantly improved the fit of the model. If a specific effect or term did not improve 

the fit, it was not included within the final optimal model. Within each chapter, I have included 

the syntax for both the maximal model and (where different) the final optimal model in text, 

to clearly demonstrate the a priori model specification and whether each element specifically 

contributed to the model fit. I have also made the raw data and scripts available on the Open 

Science Framework, where the steps taken during model construction can be examined in more 

detail. 

 Finally, there is one behavioural study in which linear mixed-effects models were not 

used to analyse behavioural data, presented in Chapter 5. This is because the study was 

conducted prior to receiving training on how to implement and analyse data using this statistical 

method. In this study, behavioural data were analysed using ANOVA instead. One could argue 

that linear mixed-effects would have provided an advantage for analysing this data, particularly 

due to the suitability with ANOVA for analysing accuracy data. However, this study does 

present an interesting case for the importance of modelling both participant and item level 

variance. The study in question used an artificial language learning paradigm, which enabled 
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precise control over item-level properties within the experiment. Due to this, I believe that the 

inability of ANOVA to model both participant-level and item-level variance simultaneously is 

of reduced concern within this study, as the study was investigating reading in an orthography 

with tightly controlled items. Error variance introduced by items can be governed by 

counterbalancing item sets, and matching them on variables that also correlate with the 

dependent variable (Raaijmakers et al., 1999). This enables researchers to rule out the 

possibility that differences in experimental conditions are due to formerly identified 

confounding factors. As our design featured novel artificial stimuli, we were able to ensure that 

stimuli were matched on all factors aside from the critical variable of interest (orthographic 

density). 

 

 Power 

Statistical power refers to the probability that a hypothesis test will detect an effect if 

there is an existing effect to be found. It is dependent upon the effect size, the sample size and 

the significance level used within a test. Insufficient statistical power increases the risk of 

failing to detect an existing effect. This is known as a false negative, or Type II error. Therefore, 

if a study is under-powered, researchers are unable to confidently accept or reject the null 

hypothesis: there may be no effect, or the design may not have had the power to detect it and 

make statistical inferences at population level. Power calculations should always be conducted 

prior to conducting an experiment. Typically, researchers use a hypothetical estimate of the 

expected effect size to calculate the sample size required to reliably observe such effects if they 

do appear in the data. Effect size estimates are usually based on those observed in previous 

literature. The smaller the effect size, the more data required to detect it with adequate power. 

This is because small effect sizes can otherwise be masked by other random variance within 
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the data. Similarly, larger datasets are required for more complex analyses, such as testing for 

interactions between variables. Wherever possible, we used a repeated-measures design to 

reduce participant variance across experimental conditions and thus increase power (see 

Brysbaert, 2019a). 

The studies presented within this thesis take different approaches in terms of power 

calculations, which is largely due to lessons learned over the time course of the work being 

conducted. In earlier studies, sample sizes were calculated using the G*Power analysis 

software for ANOVA (Faul et al., 2007). When conducting these power calculations, I 

estimated effect sizes by taking those observed from previous literature and then conservatively 

reducing the estimate (usually by 0.2) in order to account for likely inflation of the true effect 

size due to publication bias (see Brysbaert, 2019a). I also routinely increased the sample size 

from the minimum number suggested to allow for exclusion of outliers and full rotations of 

counter-balanced stimuli. In some cases, sample size was restricted by practical constraints. 

For example, the sample size for the neuroimaging study presented in Chapter 6 was restricted 

by research costs due to scanning. Further, there is much less guidance on how to conduct 

power analyses for neuroimaging research. Instead, I selected the sample size based on 

previous MRI studies with similar designs, and replaced any excluded participants. I used a 

similar approach for the artificial language learning study presented in Chapter 5, as data 

collection for each participant took around ten hours over the course of a week. As a result, 

data collection was labour intensive and participant compensation was substantial. Sample size 

was based on samples in previous artificial language learning studies which had a similar 

timescale and featured tasks in which I expected to observed similar size effects (Taylor et al., 

2017; Rastle et al., 2021). 
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In later studies, I adopted a different approach that was more suitable for calculating 

power-estimates for linear mixed-effects models. As discussed previously, ANOVA estimates 

generated by G*Power are less suitable as ANOVA analyses are based on aggregated means 

rather than observation-level data. Therefore, these power calculations are a very rough fit for 

analyses conducted by linear mixed-effects models as they do not consider the number of items 

included within each condition. As Brysbaert (2019) outlines, power can be increased in 

psycholinguistic research by extending the number of participants in the sample and also the 

number of items per condition. When analysing at observation-level, a design in which 

participants are presented with one item per condition is going to be substantially less powered 

than a design in which participants view 100 items per conditions. I used advice from Brysbaert 

and colleagues (see Brysbaert & Stevens, 2018; Brysbaert, 2019a and Brysbaert, 2020) as a 

broad guideline when specifying sample sizes for our experiments analysed using linear mixed-

effects models. Brysbaert and Stevens (2018) suggested that 1600 observations for each 

condition is a good rule of thumb for producing a good level power for an estimated medium 

effect size (d = 0.4). 

Later guidance also explains why power calculations should consider how observations 

are distributed across participants and items (Brysbaert, 2019a). Power is affected by both 

participant and item level variance; therefore, it is dependent on how reliably the effect is 

observed across items and participants. Low reliability introduces more variance, which 

reduces the likelihood of detecting the effect. Brysbaert (2019a) suggests that it is good practice 

to measure reliability across both parameters, which can be optimised by increasing the number 

of observations. When designing the studies presented in this thesis, I aimed to ensure that both 

sample sizes and the numbers of stimuli provided a proportional contribution. For this reason, 

I avoided using a small sample size with an overly large stimuli set (or vice versa). This had 
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added benefits, as extending the sample size rather than relying on many repetitions of stimuli 

likely reduced negative influences on task performance, such as fatigue or practice effects. 

In my more recent studies, power calculations were conducted via data simulations, 

using the simr package (Green & MacLeod, 2016) in R (Core Team 2016). This package has 

been specifically designed to perform power calculations for linear mixed-effects models and 

requires the researcher to specify the structure of the model that will be used to analyse the data 

in advance. As a result, power calculations can be tailored to the exact study design, including 

incorporation of anticipated variance from random variance. Using this package, I simulated 

an artificial dataset which included response values for each of our planned experimental 

conditions. This simulated data set was fitted to the specified linear-mixed effects model. I then 

ran a series of Monte Carlo power simulations across a range of effect sizes and sample sizes. 

For each simulation, a statistical test indicated the fit of the model to the data and the observed 

power estimate. I used two different approaches to conduct these power simulations. Firstly, I 

ran simulations where our effect sizes were fixed but sample size was modified, in order to 

determine the required sample size to observe an effect of this size with sufficient power. 

Secondly, I used the reverse approach to estimate the effect sizes that I would have adequate 

power to reliably detect with a specific sample size.  

When conducting power analyses, I regularly found it difficult to find a reliable 

estimated effect size, either due to lack of reporting in previous literature, or because there was 

no clear blueprint to base my study upon. For example, in Chapter 5 I conducted an artificial 

language learning study on the transposed-letter effect. Previously reported transposed-letter 

effects have usually been for masked-priming studies within a reader’s native language; 

therefore, I did not think the effect sizes would be translatable to an unprimed lexical decision 

task in a newly acquired orthography. Going forward, in situations where there is not a clear 
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estimate effect size, I would opt to also use Brysbaert and Steven’s (2018) criteria of at least 

1600 observations per condition as a secondary rule of thumb. 

Simulations were the most effective method for sample estimates, particularly for 

studies using linear mixed-effects models. They enabled specificity based on the exact model 

structure, rather than broad estimates based on number of conditions. This was particularly 

beneficial when conducting power calculations for more complex analyses, such as those 

including interactions. Despite the benefits of power simulations, it was not appropriate to go 

back and perform uniform power simulations across the studies in the thesis post-hoc, as 

conducting power analyses on observed data violates two main assumptions (Dziak et al., 

2018). Firstly, statistical power reflects the probability of rejecting a null hypothesis, based on 

estimates of parameters (e.g. effect sizes and variance) at population level (Cohen, 1992). 

However, power analyses do not predict the probability of a future outcome if they are 

performed on a test that has already been conducted on existing data. Secondly, power 

estimates are calculated using sampling distribution, which forecasts probability over a range 

of possible samples. Post-hoc power analyses are based on a single specific sample rather than 

a sampling distribution. Consequently, post-hoc power estimates can be misleading, and 

provide redundant information at best. Dziak et al. (2018) convey this with a quote by Goldstein 

(1964, p.62): “If the axe chopped down the tree, it was sharp enough”.  

 

 Open science 

Each of the studies presented in this thesis has an accompanying open-access project 

page on the Open Science Framework, which is linked within each chapter. For ease of 

reference, they are also listed below: 
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• Chapter 3: https://osf.io/z8qhv/?view_only=b19d759683e44d5faff524e3da5c5cd4 

• Chapter 4: https://osf.io/p4q9u/?view_only=8485d54437b8473d92d1d50c37512fa0  

• Chapter 5: https://osf.io/g74vp/ (public) 

• Chapter 6: https://osf.io/yczpu/?view_only=59e65836bb6e49c5871a885d4d855efa  

 

For each study, I have included a full list of the stimuli and in the majority of cases I have 

included the scripts or files required to run experimental tasks. I have also included all 

observation-level data for behavioural tasks. This is prior to removing outliers or any 

transformations, although in some instances the raw data output has been combined for easier 

usability. For example, the experimental program DMDX (Forster & Forster, 2003) produces 

an individual .azk file for each participant, in which each trial has a numerical code relating to 

the item number, condition and the correct response. These files have been concatenated into 

a single .csv file, and numerical codes have been converted into meaningful descriptive 

columns. These processing procedures were scripted in R, which allowed the procedure to be 

automated and traceable. I aimed to make our data as open as possible, with the exception of 

raw MRI data in order to preserve participant anonymity. 

Within this thesis, all analyses were scripted where possible. This was prioritised in order 

to promote replicability and transparency as much as possible. Analyses were primarily 

conducted within R, and as with the data, accompanying scripts were published on the Open 

Science Framework. All scripts are fully annotated, and the level of detail has increased as my 

expertise in R has developed. For example, the scripts published with Chapter 5 are standard 

R scripts which contain the lines of code required to reproduce the statistics in the chapter. In 

later studies, I have used R Markdown to provide a more sophisticated commentary of analysis 

decisions made, which also produce a report of the results as an output (see the corresponding 
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OSF page for Chapter 6 as an example). fMRI analyses were conducted in MATLAB, as a 

requirement for fMRI analysis toolboxes in SPM (Friston et al., 1994) and CoSMo MVPA 

(Oosterhof et al., 2016). These analyses are also scripted, and the analysis pipeline is again 

published on the Open Science Framework. 

 

 Pre-registration 

The work presented in Chapters 3 and 4 was also pre-registered on the Open Science 

Framework prior to data collection. Pre-registration is based on the premise that researchers 

publish detailed specifications on their hypotheses, the accompanying experimental design and 

planned analyses prior to viewing the data. Pre-registration is growing in popularity as an open 

science practice as it increases transparency by preventing researchers from under-reporting 

flexibility in data analyses (Nosek et al., 2018). Further, recording hypotheses in advance 

encourages researchers to make sure that hypotheses are specific, and that the experimental 

design is suitable. As a result, pre-registration can reduce instances of researchers HARKing, 

or hypothesizing after the results are known (Kerr, 1998). This can occur intentionally or 

unintentionally for a variety of reasons (see Bishop, 2020). The original hypotheses may not 

have been specific enough, which could lead to ambiguities in interpretation. Alternatively, the 

data may not support the hypothesis but may align with an alternative post-hoc interpretation. 

Importantly, pre-registration does not prohibit researchers from conducting post-hoc analyses 

or forming alternative interpretations of the results. The difference is that deviations from the 

original plans are openly reported, allowing for a clearer distinction between confirmatory and 

exploratory analyses. In previous research, this distinction has often been blurred, which has 

led to issues in reproducibility and replicability (Bishop, 2020).  
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Pre-registration increased accountability and required thorough consideration of how 

each stage of the research pipeline would be conducted. Prior to data collection, I simulated 

data and plotted multiple potential outcomes based on my parameters of interest. This exercise 

was instrumental in scrutinising my hypotheses. As well as ensuring that hypotheses were 

precise and testable, I was able to conceptualise various alternative outcomes and the 

theoretical reasons as to why they may occur. I also used data simulation to script the entire 

analysis pipeline before the data was collected. This allowed exact specification on how the 

data would be cleaned, how statistical models would be constructed and the exact syntax for 

how the data would be analysed. To a certain extent, simulated data enabled me to check for 

any bugs in the scripts and ensure that analyses and visualisations produced the information 

required to optimally test the hypothesis. This reduced the need for modifications to analyses 

after viewing the data. Front-loading this work increased overall efficiency. The time required 

to construct the analysis pipeline provided extra time to reflect on the conceptual validity of 

hypotheses and the experimental design, which enabled improvements which could only have 

been made ahead of data collection. Conversely, the time required for analyses after data 

collection was drastically reduced as the pipeline was already in place. 

Importantly, pre-registration does enable researchers to deviate from original research 

plans if required. For example, in the pre-registration for one of the experiments presented in 

Chapter 3, I stated that I would exclude participants with an overall d’ prime accuracy score 

that was lower than zero. This was equivalent to 50% accuracy, or chance performance, as the 

task had a two-alternative forced choice paradigm. When considering multiple outcomes, I had 

predicted that participants would have lower accuracy in one condition compared to others. 

However, we had not anticipated the observed result: an inhibition effect so large that almost 

all participants were significantly below chance in a particular condition. In fact, the mean 
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accuracy rate for this condition was so low (28%) that it dragged down mean participant 

performance to be at or below chance level for most participants. Clearly in this case, our 

exclusion criteria were unsuitable as overall participant performance was the result of a large 

and highly consistent experimental effect. Therefore, I opted to report the results without 

excluding participants on this basis. 

In some ways, this deviation further highlighted the importance of being transparent 

about the thought process when the study is conceptualised. Once I had observed this very large 

inhibition effect (which then consistently occurred in follow-up studies), it was much harder to 

maintain the mindset of our original predictions. However, our pre-registration served as a 

time-stamped reminder that we had not expected this effect. This was extremely helpful when 

writing up the study, as we ensured that our rationale and hypotheses reflected our thinking 

prior to data collection. Of course, an important part of writing up scientific research is 

providing the reader with a narrative and the appropriate context for the findings later reported. 

However, this runs the risk of setting up the reader for the observed result, rather than outlining 

the original motivation. I believe that pre-registration was especially valuable for reducing this 

bias when reporting our findings.
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 Abstract 

Readers understand sentences by recognizing individual words, and they recognize 

words by analysing constituent letters. Readers rarely encounter words presented in isolation, 

yet there is remarkably poor understanding of how we recognize letters beyond single word 

contexts. Previous research has demonstrated that readers are more accurate at identifying 

letters when they appear in a real word (e.g. plane) compared to a pseudoword (e.g. plave), a 

phenomenon known as the word superiority effect. The present study investigated how the 

word superiority effect manifests within various sentence contexts. Our findings across six 

experiments revealed substantial fluctuations in the size of the word superiority effect across 

sentence contexts. Most importantly, the word superiority effect was abolished when the target 

did not align with readers’ expectations. These findings suggest that the precision of 

orthographic processing depends on the perceived accuracy with which words can be 

anticipated from sentence context. The current work highlights the need for an integrated model 

that considers basic orthographic processes within meaningful sentence contexts. 

 

All experiment materials, data, and analyses are available on the Open Science Framework: 

https://osf.io/z8qhv/?view_only=b19d759683e44d5faff524e3da5c5cd4/.  
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  Introduction 

Readers are more accurate at identifying letters when they appear in the context of a 

real word (e.g. plane) compared to a pseudoword (e.g. plave) (Reicher, 1969; Wheeler, 1970; 

Grainger & Jacobs, 1994; Coch & Mitra, 2010; Kezilas et al., 2016). This word superiority 

effect is demonstrated using a Reicher-Wheeler task (Reicher, 1967; Wheeler, 1970), in which 

participants briefly view a word or pseudoword before deciding which of two letters appeared 

in the string. The task is structured to minimise post-hoc guessing by using foil letters that 

always result in a string with the same lexical status as the target (e.g. letters n or d for target 

word CROWN). The word superiority effect is typically interpreted as evidence that word 

representations enhance letter identification processes.  

The word superiority effect is a cornerstone of theories proposing to explain how we 

recognize single words, including the Interactive Activation Model (McClelland & Rumelhart, 

1981) and the Multiple Read-Out Model (Grainger & Jacobs, 1996). However, we rarely 

encounter words presented in isolation; and there is remarkably poor understanding of how we 

recognize letters beyond single word contexts. In the current work, we sought to bridge the gap 

between single word and sentence level reading by investigating how the word superiority 

effect is influenced by word predictability within a sentence (e.g. the rocket returned from outer 

space/spade). We aimed to establish whether expectations from sentence context influence 

letter-identification processes. 

Our findings across six experiments indicate that the word superiority effect is 

modulated by properties of sentence context. Specifically, in sentence contexts in which 

readers can reliably anticipate the upcoming word, the word superiority effect is abolished if 

the target string does not match the reader’s expectation. In contrast, the word superiority effect 

is obtained when target strings are presented in isolation and in neutral sentence contexts that 
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do not strongly constrain readers’ predictions. Overall, these findings suggest that 

predictability from sentence context influences the precision of orthographic processing within 

individual words. The current work highlights the need for an integrated model that considers 

basic orthographic processes within meaningful sentence contexts.  

 

  The word superiority effect in models of visual word recognition 

Two of the most influential computational models of visual word recognition are the 

Interactive Activation Model (McClelland & Rumelhart, 1981) and the Multiple Read-Out 

Model (Grainger & Jacobs, 1996). Both of these models propose mechanisms to account for 

the word superiority effect. 

The Interactive Activation Model (McClelland & Rumelhart, 1981) consists of three 

interactive processing levels: feature detectors, letter detectors and word detectors. Letter 

detectors are activated through bottom-up input from the feature detectors, and the 

perceptibility of individual letters increases through feedback from top-down word 

representations. Word nodes send excitatory feedback to letter nodes that correspond with 

letters that are present in the word, and inhibitory feedback to letter nodes that are not present 

in the word. Pseudowords, which do not have pre-existing word representations, do not provide 

this top-down activation benefit. This enhanced activation increases the perceptual salience of 

letters occurring within words, and thereby facilitates their selection in the Reicher-Wheeler 

task. In contrast, the Multiple Read-Out Model (Grainger & Jacobs, 1996) proposes that letter 

identification occurs when the activation for an appropriate letter or whole-word representation 

reaches a critical level. According to the Multiple Read-Out Model, the word superiority effect 

arises because shorter durations are required to activate whole word representations compared 
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to individual letter representations. Readers are less accurate at identifying letters in 

pseudowords compared to words, as there is no corresponding word representation; therefore, 

readers can only identify letters once the individual letter representations have been activated. 

 Whilst the Interactive Activation Model and the Multiple Read-Out Model explain the 

word superiority effect in different ways, both propose that letter identification will always be 

superior in words compared to pseudowords because of the activation of word-level 

representations. However, these models refer to words presented in isolation; they have nothing 

to say about how we recognize letters in sentence contexts. This is a major deficiency since 

there is strong evidence that word activation is constrained by sentence-level factors. In the 

next section, we review the literature before considering how sentence context might influence 

the word superiority effect.  

 

 Word recognition in sentence contexts 

There is extensive evidence that readers use sentence level information during word 

recognition. Readers are better at recalling grammatical sentences compared to scrambled lists 

of the same words (Baddeley et al., 2009, Toyota, 2001), and are more accurate at recognising 

words in grammatical sentences compared to ungrammatical sentences (Snell & Grainger, 

2017). Further, readers are less likely to notice transposed word effects if the words can be re-

arranged to form a grammatical sentence (the white was cat big) than if they cannot (the white 

was cat slowly; Mirault et al., 2018). 

Semantic predictability also facilitates word recognition. Asano and Yokosawa (2011) 

reported increased word recognition accuracy when a word appeared in a semantically 

plausible context (I write a column to be published in a newspaper) compared to an implausible 

context (I write a column to be published in a vegetable). Predictability is typically defined by 
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a word’s cloze probability: a metric that describes the likelihood of a word occurring in a 

specific context. This metric may be calculated from sentence corpus data (e.g. Potsdam 

Sentence Corpus; Boston et al., 2008) or from cloze tasks, where participants are given an 

incomplete sentence or phrase, and asked to predict the final word (Taylor, 1953). For example, 

if the sentence frame was “The bartender poured a pint of ____”, and 87 out of 100 people 

responded with “beer”, the cloze probability of “beer” would be 0.87 in this context. 

Word predictability has a reliable influence on eye-movements during reading (see 

Staub, 2015 for a review). Previous eye-tracking studies have found that the eyes are more 

likely to skip over predictable words than unpredictable words (Ehrlich & Rayner, 1981; 

Altarriba et al., 1996; Rayner & Well, 1996; Rayner et al., 2011; Frisson, Rayner & Pickering, 

2005). Predictable words also tend to elicit shorter fixation times than unpredictable words 

(Zola, 1984; Balota et al., 1985; Rayner & Well, 1996; McDonald & Shillcock, 2003; Frisson 

et al., 2005; Rayner et al., 2011). These findings show that readers spend less time looking at 

predictable words, which suggests that they are less effortful to process than unpredictable 

words. 

Predictability also facilitates online word processing in electrophysiological data. ERP 

recordings typically show a negative peak during semantic processing, around 400 ms after the 

onset of a word is presented within a sentence, known as the N400 (see Van Petten & Luka, 

2012; DeLong et al., 2014 for a review). Kutas and colleagues have consistently shown that 

the amplitude of the N400 response is increased (Kutas & Hillyard, 1983; Kutas & Hillyard, 

1984; Federmeier & Kutas, 1999; Federmeier et al., 2007; Kutas & Hillyard, 1984) or delayed 

(Kutas & Hillyard, 1980) in the event of a low cloze probability, or unexpected, word. The 

influence of word predictability on the N400 adds another dimension of evidence. ERP 

recordings not only support a predictability advantage, but also reveal an unpredictability cost. 
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Other ERP studies have demonstrated that it is not just predictable words that benefit from ease 

of processing, but also words that are related to them. For example, Federmeier and Kutas 

(1999) found that N400s were reduced for unpredictable words that were semantically related 

to the predicted target (The captain kicked the baseball), but not for unpredictable words that 

were unrelated to the predicted target (The captain kicked the orange). Similarly, Lazslo and 

Federmeier (2009) found higher N400 amplitudes for neighbours of the predicted word (before 

lunch he has to deposit his pay check at the bank/bark/pank/bxnk) compared to strings with no 

letter overlap (the genie was ready to grant his third and final wish/clam/horm/rqck). 

Remarkably, these effects persisted across pseudowords and illegal consonant strings, which 

indicated that the neighbourhood advantage occurred regardless of lexical status.  

Multiple paradigms provide converging evidence that predictability from sentence 

context facilitates word recognition. Critically, online measures demonstrate that predictability 

influences the earliest stages of word recognition, as shown by eye-movements, such as 

skipping, and ERP data. Staub (2015) proposed that “pre-activation of a potential upcoming 

word may facilitate the extraction of the visual features and letters in that word, and 

identification of a word’s orthographic form” (p. 323). In other words, predictability is likely 

to be a strong contributor in determining the word candidates that inform letter identification. 

 

 Predictability and letter identification 

These findings concerning predictability reveal why it is important to think about letter 

identification processes in the context of sentences as opposed to single words. In single word 

context, the reader does not have a prior expectation as to what the word will be. Therefore, 

the word representations that boost letter identification will be based on the closest match to 

the visual input. In contrast, sentence context offers potential for readers to form predictions 
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and narrow the pool of word candidates prior to recognising a particular word. This impact on 

activation of word candidates is likely to have implications on letter recognition. However, 

letter recognition processes are rarely considered within models of sentence reading, because 

these models tend to see words as the smallest units of representation (Snell et al., 2018). 

One possibility is that predictability boosts activation for expected upcoming word 

representations. This would result in increased feedback from word nodes (and inhibition from 

competitors) to letter nodes in the Interactive Activation Model, and reduced time to activate 

word representations in the Multiple Read-Out Model. Both explanations would predict 

increased letter identification accuracy in predictable words compared to unpredictable words. 

However, both models still predict letter identification to be more accurate in all words 

compared to pseudowords, as even unpredictable words have a pre-existing lexical 

representation that can be activated to support letter identification. In summary, an activation 

account would forecast that predictability may increase the size of the word superiority effect 

in some word candidates over others (i.e. those that are highly predictable from sentence 

context), but we would expect to observe a word superiority effect for all words within a 

sentence context. 

However, the impact of pre-activation on letter identification could be more complex. 

When a predictable word is pre-activated, it is highly likely that competition effects will inhibit 

similar words, such as orthographic neighbours. For example, the Interactive Activation Model 

posits that activated word nodes compete with all other word nodes through excitation and 

inhibition (Rumelhart & McClelland, 1982). An activated word node sends feedback excitation 

to letters that are consistent with it and inhibition to letters that are not. Similarly, the Multiple 

Read-Out Model proposes that multiple orthographic representations compete in the 

identification of a letter string. Grainger and Jacobs (1993) described this as the lexical 
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inhibition hypothesis, as inhibitory connections are used to determine the best match. Pre-

activation has the potential to skew competition effects, providing our first indication that the 

weight assigned to various letter identification cues may shift based on whether a word appears 

in isolation or in sentence context. Pre-activated representations may introduce not only a letter 

identification advantage in predictable words (the calm pilot landed the faulty plane), but also 

a distinct disadvantage for letter identification in unpredictable words (the calm pilot landed 

the faulty plate). Consequently, the word superiority effect may be reduced, or even eliminated, 

when a word is not expected from sentence context.  

Sentence reading models, including the E-Z Reader (Reichle et al., 2003), the SWIFT 

model (Engbert et al. 2002; Engbert et al. 2005), and the OB1 model (Snell et al., 2018) give 

further reason to predict this outcome. These models suggest that predictability not only 

increases the activation of upcoming word representations, but also reduces the threshold of 

evidence required for word recognition. Whilst activation refers to how well an orthographic 

representation aligns with the input, the threshold refers to how accurate the alignment must be 

in order for the representation to be accepted. This is an important criterion in order to ensure 

efficiency in sentence reading. If the threshold is too high, reading is time-consuming and 

effortful. If the threshold is too low, readers are prone to making mistakes.  

The models propose that the threshold required for successful word recognition is based 

upon the cloze probability of potential upcoming words. The E-Z Reader and SWIFT models 

include a stage in which preliminary information on an upcoming target informs the selection 

of potential word representations, which are then used to set the threshold for word recognition. 

The degree of certainty with which the upcoming word can be predicted modulates the 

processing time dedicated to word recognition. Both models assert that more extensive 

processing may even be skipped if predictability cues provide a strong enough prior. In the E-
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Z Reader model, Reichle, Rayner and Pollatsek (2003, p. 452) state that “words that can be 

predicted with complete certainty within a given sentence context will require no time in this 

second stage [….] such cases reflect the situation when top-down information has already fully 

activated the semantic and phonological codes given reasonable corroborating input from 

orthography”. In the SWIFT model, Engbert et al. (2005, p.12) assert that “processing rate is 

decreased during preprocessing […] this assumption is motivated by the fact that for a high-

predictable word there is a high probability that the word can be guessed without (or with 

minimal) visual input”. The OB1 reader does not explicitly include a pre-processing stage, 

although predictability is proposed to influence potential target selection prior to fixation. 

Snell, van Leipsig, Grainger and Meeter (2018, p. 974) state that “recognized words generate 

expectations about upcoming words, through feedback activation of word nodes based on 

cloze-probability” and word recognition occurs when there is a “successful match” under a 

variable recognition threshold based on word frequency and cloze probability. Under these 

assumptions, letter-level processing may be less precise if the reader is able to reliably 

anticipate the upcoming word. 

Each of these models propose that word recognition thresholds are determined by the 

likelihood of predicting a word from other words within the sentence. The likelihood of a 

specific word occurring is described by its cloze probability; however, it is impossible for the 

reader to use this information to set the threshold prior to word recognition, as knowing the 

cloze probability of the actual upcoming word cannot be known ahead of the word being 

recognised. Instead, thresholds can be determined by the cloze probability of the most likely 

word candidate, or contextual constraint, which refers to how many potential words are 

predicted from a sentence frame (Staub, 2015; Staub et al., 2015). High constraint contexts 

tend to predict a single word with high cloze probability (‘the rocket soared into outer space’), 
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whereas low constraint contexts have many plausible low cloze probability forms of 

continuation (the children were learning about space). High constraint contexts predict a single 

or smaller number of potential word candidates; therefore, there is a reduced risk of error from 

a lower evidence threshold. In contrast, low constraint sentences have many possible word 

candidates, therefore readers are expected to use a more stringent threshold in order to 

distinguish between them. As a result, high constraint contexts are likely to evoke a lower 

threshold than low constraint contexts. 

Based on these assumptions, we would expect thresholding to have critical implications 

for letter identification and the word superiority effect. We propose that contextual constraint 

determines how stringent the threshold is, and cloze probability predicts whether letter 

identification under the threshold will be successful. The word superiority effect is consistently 

observed in single word context, as contextual constraint and cloze probability cues are 

unavailable. Therefore, the threshold for word recognition remains at its highest and is based 

upon the closest match to any known word representation. Further, the word superiority effect 

will be consistently observed in low constraint sentences, regardless of cloze probability. 

Because low constraint sentences do not narrow the pool of possible pre-activated targets, the 

threshold must remain high and any known word representation can be used to support letter 

identification, in a similar manner to single word recognition. In contrast, the word superiority 

effect may only be observed in high constraint sentences if the target has high cloze probability. 

This is because high constraint contexts lower the threshold for word recognition to a good 

enough match as the reader has a strong prior for the upcoming word. We would expect to 

observe the word superiority effect in high cloze probability (or predictable) words, as letter 

identification would benefit from the predicted word representation prioritised for the good 

enough match. However, lowering the threshold would have detrimental consequences for 
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letter identification in words with low cloze probability. In the event of this, low cloze 

probability (or unpredictable) words would incur a triple recognition cost. Firstly, word 

representations cannot support letter identification if the target does not correspond with the 

predicted good-enough match. Secondly, the word representation that corresponds with the 

actual target is likely to have received competitive inhibition due to the pre-activation of a more 

predictable representation. Finally, the lower threshold means that readers are more likely to 

miss the fine-grained letter information required for distinguishing between word neighbours. 

Therefore, when there is a clear predictable candidate, the word superiority effect will only be 

observed if the word is predictable from the sentence context. 

 

 Research aims 

The current work explores the word superiority effect beyond single word context, in 

order to investigate how sentence level expectations influence letter recognition. We conducted 

a series of experiments measuring letter identification accuracy in word and pseudoword 

neighbours (e.g. plane-plate-plave). Across each experiment, these neighbours appeared in 

different sentence contexts in order to systematically modify and distinguish between effects 

of cloze probability and contextual constraint. In Experiment 1, we replicated the word 

superiority effect when targets were presented in isolation. In Experiment 2 and 3, we examined 

whether the word superiority effect was dependent on cloze probability, by presenting 

neighbours with high and low cloze probability within the same high constraint sentence 

context (e.g. the calm pilot landed the faulty plane/plate/plave). In Experiment 4, we 

investigated whether predictability effects were diminished when cloze probability and 

contextual constraint were reduced through word order disruption (e.g. landed the pilot the 

faulty calm plane/plate/plave). In Experiments 5 and 6, we presented the target neighbours in 
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sentence contexts where word targets were matched for cloze probability, and instead varied 

contextual constraint. This enabled us to investigate whether the word superiority effect was 

observed in low cloze targets across high and low constraint contexts (e.g. the boy admired the 

smooth white plane/plate/plave vs. the dog ran from the venomous plane/plate/plave). 

We hypothesized that predictability increases activation and reduces the threshold of 

evidence required when an upcoming word is expected from sentence context. As a result, the 

word superiority effect should be observed only if the word has high cloze probability, or 

appears in a low constraint context. In contrast, letter identification accuracy will be reduced 

in low cloze probability words in high constraint contexts, as a less precise threshold would 

increase the likelihood of errors in words that are unexpected from sentence context. Pre-

registration, stimuli, experiment scripts, observation-level data and analysis scripts for all 

experiments are available on the Open Science Framework. 

 

 Experiment 1 

The initial experiment aimed to replicate the word superiority effect in the absence of 

a sentence context. We predicted that readers would be more accurate at identifying letters in 

words compared to pseudowords (Kezilas et al., 2016; Coch & Mitra, 2010; Grainger & Jacobs, 

1994). 

 

 Method 

3.3.1.1 Participants 

Twenty-four monolingual English speakers (17 female, 7 male) completed the 

experiment at Royal Holloway University of London, in exchange for £5. Participants were 
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aged 18-35, with normal or corrected-to-normal vision, and no previous history of reading 

difficulty. The sample size was computed using an a priori G*Power analysis (Faul et al., 

2007). Previous literature regarding the word superiority effect suggested an effect size of 0.6 

(Grainger et al., 2003); we reduced this to 0.4 in order to account for possible publication bias 

(Brysbaert & Stevens, 2018). The parameters of alpha were set to 0.05 and power was set to 

0.95.  

 

3.3.1.2 Stimuli 

Stimuli for the main experimental task consisted of 90 words and 90 pseudoword 

neighbours (e.g. plate – plave). The words were all nouns between four and six letters long, 

with a frequency between 0 and 170 words per million (CELEX Lexical Database; Baayen et 

al., 1995), and with between 2 and 21 neighbours (Coltheart’s N; Coltheart et al., 1977). Target 

pseudowords were pairwise-matched to their word neighbours for word length (4-6 letters) and 

neighbourhood density (2-21). Stimuli for a preliminary staircase-thresholding task consisted 

of an additional 20 words and 20 pseudowords, with the same properties as those used for the 

main task. None of the stimuli presented in the thresholding task were present in the main task.  

 

3.3.1.3 Procedure and apparatus 

Participants provided informed consent prior to completing a Reicher-Wheeler task 

(Reicher, 1969; Wheeler, 1970) consisting of 90 trials, administered using DMDX (Forster & 

Forster, 2003). Participants received a self-paced break halfway through the experiment. 

Participants were tested individually in a quiet room, seated approximately 40cm from an 18-

inch CRT monitor. The screen had a refresh rate of 60 Hz (16.67 ms), and the exposure duration 
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for each stimulus was a multiple of the refresh rate. All stimuli were displayed in white on a 

black background in size 14 Courier New font. 

Within each trial, participants viewed a 500 ms fixation cross, followed by a forward 

mask for 33 ms. A word or pseudoword then appeared for a predetermined duration (see 

below), before a hash symbol (#) backward-masked each letter of the target. For the first 100 

ms duration of the backwards mask, a probe bar (|) appeared above and below one of the 

symbols, which indicated that the participant should identify the letter in the specified position. 

A target letter and a foil letter then replaced the probe bars in the same position above and 

below the backwards mask. The target letter corresponded to the letter that appeared in that 

position within the target stimulus, whereas the foil letter did not appear within the target 

stimulus at all. The participant had 5000 ms to make a button-press response indicating which 

of the two letters they believed was present within the target. Participants completed five 

practice trials prior to completing the main task. Targets were counterbalanced to ensure that 

participants received an equal number of word and pseudoword targets, and that participants 

saw only one of each target pair across word and pseudoword conditions. Foil letters presented 

for word targets always yielded another word, while foil letters presented for pseudoword 

targets always yielded another pseudoword.  

Target exposure duration was determined for each participant based on performance in 

an initial staircase-thresholding task (adapted from Davis, 2001), which used the same trial 

procedure and mask durations as the main task. In the thresholding task, exposure duration 

began at 33 ms, and was adjusted after each response. If the participant correctly identified the 

target letter, exposure duration was reduced by 17 ms (one tick). If the participant incorrectly 

identified the foil letter, exposure duration was increased by 17 ms. Exposure duration was 

held constant after twelve changes in direction, and this value set the target exposure duration 
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for each participant in the main experimental task. Based on performance in the preliminary 

thresholding task, exposure during the main experiment was 33 ms (two ticks) for 11 

participants, 50 ms (three ticks) for 11 participants and 83 ms (five ticks) for two participants. 

These exposure durations were similar to previous Reicher-Wheeler studies with skilled adult 

readers (e.g. Chase & Tallal, 1990; Grainger et al., 2003; Lété & Ducrot, 2008; Coch & Mitra, 

2010; Kezilas et al., 2016). 

 

 Results 

Accuracy data were modelled using the lme4 package (Version 1.1-12, Bates et al., 

2015) in R (Version 3.3.1; R Core Team 2016). We used a logistic general linear mixed-effects 

model (GLMM) with the following structure: glmer(Accuracy ~ Word Status + (1|Participant) 

+ (1|Item) + (1|Exposure), family = binomial). Beta (β) and odds ratios (OR) are used to report 

effect sizes. β is the logit transformed fixed effect coefficient, which refers to the estimated 

difference between conditions having controlled for random effects. OR (derived from β) 

measures the difference in odds of being correct (versus incorrect) in one level of a fixed effect 

compared to another. 

The data are visualised in Figure 1. Accuracy rates were significantly higher for word 

targets relative to pseudoword targets (β = 0.65, OR = 1.91, SE = 0.11, Z = 5.79, p < .001).  

 

  



CHAPTER 3: LETTER IDENTIFICATION IN SENTENCE CONTEXT 

 

 

 93 

 

 

Figure 1. Mean accuracy rates for Experiment 1. Crossbars display mean accuracy rates across 

participants and the surrounding tiles display one standard error from the mean, calculated for 

within-subject designs (Loftus & Masson, 1994). Data points display accuracy rates for 

individual participants and violins demonstrate the distribution of the data. The dotted 

horizontal line indicates chance performance. 

 

 Discussion 

 Experiment 1 replicated the word superiority effect, as participants were more accurate 

at identifying letters in real words compared to pseudowords. The odds ratio demonstrates that 

the odds of selecting the correct letter were 1.91 times more likely in words compared to 

pseudowords. The results support both the Interactive Activation Model and Multiple Read-
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Out Model predictions that in single word contexts, activation for pre-existing word 

representations enables increased letter identification accuracy within a limited timeframe. 

 

 Experiment 2 

In Experiment 2, we investigated the influence of cloze probability on the word 

superiority effect in a sentence context. Orthographic neighbours were presented at the end of 

high constraint sentences, in which one of the neighbours had high cloze probability. We 

expected letter identification accuracy to be higher in predictable words compared to 

unpredictable words, due to increased pre-activation from sentence context. The preceding 

sentence frames predicted a high cloze probability target; therefore, we anticipated that readers 

would use a lower threshold, and accept a good-enough match to the expected word, rather 

than the closest match to any known word. Therefore, we predicted that unpredictable words 

would not show a word superiority effect in highly constrained contexts. 

 

 Method 

3.4.1.1 Participants 

This experiment included 24 participants (19 female, 5 male) from the same population 

as tested in Experiment 1. None of the participants were included in previous or subsequent 

experiments in this series.  
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3.4.1.2 Stimuli 

Stimuli for the main experimental task consisted of the same 90 pairs of words and 

pseudoword neighbours as were used in Experiment 1 (e.g. plate – plave). Each pair was 

extended to include an additional one-letter different word neighbour (e.g. plane – plate – 

plave). These triplets were assigned to a sentence frame, so that the final word of the sentence 

frame was either highly predictable (the calm pilot landed the faulty plane), unpredictable (the 

calm pilot landed the faulty plate) or a pseudoword (the calm pilot landed the faulty plave). 

The target stimuli assigned to the unpredictable and pseudoword conditions of Experiment 2 

were the same target stimuli assigned to the word and pseudoword conditions in Experiment 

1. 

Sentence frames consisted of seven words and 35-40 characters. Targets were group-

wise matched for CELEX frequency (Baayen et al., 1995), neighbourhood density and word 

length (Table 1). Predictable and unpredictable target pairs were checked for semantic 

relatedness using latent semantic analysis (LSA; Landauer & Dumais, 1997), to ensure that 

they did not share a similar meaning (M: 0.08, SE: 0.01). 

 

 

Table 1. 
Stimulus properties for words and pseudowords. 
Property Predictable Unpredictable Pseudoword 

Word length 5.3 (0.05) 5.3 (0.05) 5.3 (0.05) 

CELEX frequency 34.72 (3.43) 35.38 (4.37) -- 

Neighbourhood size 8.58 (0.43) 8.79 (0.49) 7.66 (0.42) 
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We obtained metrics of predictability by running a sentence cloze task. The task was 

administered online using Qualtrics (2019), with an independent sample of 42 participants 

sharing the same characteristics as the main experimental sample. Participants read sentence 

frames one at a time, and predicted the final word of the sentence by typing into a blank text 

box. We measured contextual constraint of the sentence frame by the proportional frequency 

of the most common response. Across each sentence frame, the most common response had a 

mean cloze probability of 0.76 (SE: 0.02). This indicated that the sentence frames had high 

contextual constraint. We measured cloze probability of the targets by the proportional 

frequency of responses that aligned with either word target. Predictable targets had a mean 

cloze probability of 0.76 (SE: 0.01), whereas unpredictable targets had a mean cloze probability 

of 0.00 (SE: 0.00). Participants provided the same word as the predictable target the majority 

of the time and never provided the same word as the unpredictable target. 

 

3.4.1.3 Procedure and apparatus 

Experimental apparatus was identical to that used in Experiment 1. Participants 

completed a rapid serial visual presentation (RSVP) Reicher-Wheeler task consisting of 90 

trials preceded by five practice trials. Each trial began with a 500 ms fixation cross, followed 

by a sentence frame presented one word at a time, with each word presented for 150 ms. 

Participants then viewed a 33 ms forward-mask before the target stimulus appeared. The target 

stimulus was displayed for a variable duration based upon the preliminary thresholding 

procedure. After the duration had elapsed, the target was backward masked by hash symbols. 

A probe bar appeared above and below one of the hash symbols for the first 100 ms, and was 

subsequently replaced by a target letter and a foil letter. The participant then had 5000 ms to 
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make a button-press response indicating which of the two letters they believed was present in 

the target.  

Counterbalanced lists ensured that participants saw an equal number of predictable, 

unpredictable and pseudoword targets, and that each sentence frame was presented only once. 

Foil letters for word targets always corresponded to the non-target word within a triplet. This 

meant that unpredictable targets had foil letters that would result in a predictable construction, 

while predictable targets had foil letters that would result in an unpredictable construction. Foil 

letters for pseudoword targets resulted in another pseudoword. 

Exposure duration for target stimuli was determined for each participant using the same 

initial staircase-thresholding task described in Experiment 1. Exposure duration for participants 

in Experiment 2 was 33 ms (two ticks) for 14 participants, 50 ms (three ticks) for seven 

participants, 67 ms (four ticks) for two participants, and 83 ms (five ticks) for one participant. 

 

 Results 

Accuracy data were modelled using a GLMM with the following structure: 

glmer(Accuracy ~ Predictability + (1|Participant) + (1|Item) + (1|Exposure), family = 

binomial). Data are visualised in Figure 2.  

Accuracy was significantly higher for predictable targets compared to unpredictable 

targets, β = 2.80, OR = 16.49, SE = 0.14, Z = 19.93, p < .001, and pseudoword targets, β = 

1.65, OR = 5.21, SE = 0.13, Z = 12.40, p < .001. Accuracy was significantly lower for 

unpredictable targets compared to pseudoword targets, β = -1.15, OR = 0.32, SE = 0.12, Z = -

10.01, p < .001.  
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Figure 2. Mean accuracy rates for Experiment 2.  

 

 Discussion 

The results show a dramatic effect of word predictability on letter identification. 

Readers identified letters with greater accuracy when the target was predictable from the 

sentence context. The odds of identifying the correct letter were over 16 times higher in 

predictable words compared to unpredictable words. Letter identification in unpredictable 

words was not only lower than in predictable words, but also lower than in pseudowords. This 

is particularly compelling considering the targets used in the unpredictable and pseudoword 

conditions were the same targets that demonstrated a word superiority effect when presented 

in isolation in Experiment 1. Further, letter identification in unpredictable words was not only 

lower than all other conditions, but significantly below chance. Predictability exerted a 

powerful influence over sub-lexical processing, as the word superiority effect was amplified in 
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predictable words, and abolished in unpredictable words. In summary, predictability facilitated 

letter identification accuracy in predictable words and inhibited letter identification in 

unpredictable words relative to pseudowords.  

These results cannot be understood within single word models of reading. Any real 

word is arguably more predictable than a pseudoword, even when it is unlikely to occur within 

a particular sentence context. Further, unpredictable words can still receive activation from 

word level representations whereas pseudowords cannot. In contrast, the results can be 

explained when pre-activation, competition effects and thresholding due to sentence context 

are taken into account. In the case of unpredictable words, the results suggest that readers 

selected the foil letter based on a good enough match to word level expectations. 

 It is important to address a potential limitation in the task methodology, as participants 

received no signal that selecting a letter based on predictability did not guarantee a correct 

response. Despite the careful wording of task instructions, there is a possibility that participants 

ignored the target and made letter-choice judgements solely based on preceding sentence 

context where possible. Participants did not receive feedback on the accuracy of their 

responses; thus, there was potential for participants to complete the task without being aware 

that this was an unreliable strategy. The fact that accuracy in the pseudoword condition was 

above chance provides evidence against this possibility. Nevertheless, we addressed this 

potential limitation by conducting a follow-up experiment to investigate whether the outcomes 

changed when participants received feedback on the accuracy of their responses. 

 

 Experiment 3 

In Experiment 3, participants received feedback on their accuracy at the end of each 

trial to draw attention to the fact that word predictability cues were sometimes in conflict with 
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precise letter information. This enabled us to address potential limitations in the design of 

Experiment 2 and observe whether readers adjust the weight of predictability cues based on 

feedback.  

 

 Method 

3.5.1.1 Participants 

This experiment included 24 participants (14 female, 10 male) from the same 

population as tested in Experiment 1. None of the participants were included in previous or 

subsequent experiments in this series. 

 

3.5.1.2 Stimuli 

Stimuli were identical to those used in Experiment 2.  

 

3.5.1.3 Procedure and apparatus 

The apparatus and procedure for Experiment 3 was the same as Experiment 2, except 

that participants received accuracy feedback immediately after each trial. The word 

“CORRECT” or “WRONG” appeared immediately after each button-press response for two 

seconds. Exposure duration for the target stimuli was determined for each participant using the 

same initial staircase-thresholding task as used in the previous experiments. Target exposure 

duration for the main experiment was 33 ms (two ticks) for 14 participants, 50 ms (three ticks) 

for five participants, 67 ms (four ticks) for three participants, 83 ms (five ticks) for one 

participant, and 100 ms (six ticks) for one participant. 
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 Results 

Accuracy data were modelled using a GLMM with the same fixed and random effect 

structure as Experiment 2. The data are visualised in Figure 3. 

The results followed the same pattern observed for Experiment 2, although the 

differences and odds ratios between conditions were reduced. Accuracy was significantly 

higher for predictable word targets compared to unpredictable targets, β = 1.64, OR = 5.15, SE 

= 0.12, Z = 13.62, p < .001, and pseudoword targets, β = 1.10, OR = 3.00, SE = 0.12, Z = 9.23, 

p < .001. Accuracy rates were significantly lower for unpredictable targets relative to 

pseudoword targets, β = -0.54, OR = 0.58, SE = 0.11, Z = -4.98, p < .001.  

 

 

 

Figure 3. Mean accuracy rates for Experiment 3. 
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We compared Predictability effects across Experiments 2 and 3 by combining the data 

and including Feedback as a fixed effect. The model had the following structure: 

glmer(Accuracy ~ Predictability * Feedback + (1|Participant) + (1|Item) + (1|Exposure), family 

= binomial). The accuracy data showed a significant main effect of Feedback (β = 0.54, OR = 

1.72, SE = 0.16, Z = 3.33, p < .01), as accuracy rates were significantly higher when participants 

received feedback after each response. The fit of the model improved when the interaction term 

was included (χ2(2) = 40.52, p < 0.001), which indicated an interaction between Feedback and 

Predictability. 

 

 Discussion 

The pattern of results replicated those observed in Experiment 2. Once again, we 

observed the word superiority effect for predictable words, but not for unpredictable words. 

We also observed inhibition for unpredictable words, as accuracy was below pseudoword and 

chance performance. These findings address the methodological limitation identified in 

Experiment 2. It is unlikely that those results were obtained simply because participants were 

ignoring the targets because the same pattern is obtained when participants’ attention is drawn 

to the accuracy of their decisions about those targets. Even with feedback, the word superiority 

effect was observed only when targets were predictable from sentence context. The word 

superiority effect was absent in the unpredictable condition, as the target did not align with the 

pre-activated representation, and the lower threshold adopted within the high contextual 

constraint environment hindered analysis of fine-grained letter information. Though feedback 

did not change the overall pattern of results, it did reduce the impact of predictability on the 

word superiority effect. We argue that feedback caused participants to increase the threshold 

for word recognition (thus permitting finer-grained orthographic processing). However, the 
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fact that accuracy for unpredictable targets remained below chance highlights the very 

powerful influence of sentence context on letter identification.  

  The word superiority effect has been a cornerstone of our understanding of visual word 

recognition. Yet, findings across Experiments 1-3 demonstrate the fragility of this effect within 

sentence contexts. The exact same target stimuli were used in the word condition of Experiment 

1 and the unpredictable condition in Experiments 2 and 3. The odds ratios demonstrate that, 

when these targets appeared in isolation, the odds of selecting the correct letter (compared to 

the foil letter) were 91% higher in the word condition than the odds in the pseudoword 

condition. However, when these words were unpredictable from sentence context, the odds of 

the participant selecting the correct letter (compared to the foil letter) were 42-68% lower than 

in the pseudoword condition. The findings indicate that the word superiority effect is not 

guaranteed, and that activation from word representations do not necessarily enhance letter 

identification. 

In the next experiment, we sought to reinstate the word superiority effect by disrupting 

readers’ ability to predict the target. Previous literature demonstrates that readers more readily 

recognise words in grammatical sentences compared to scrambled lists of the same words 

(Baddeley et al., 2009, Toyota, 2001). According to models of sentence reading, this word 

recognition advantage arises from predictability. When word order remains intact, readers are 

more able to predict an upcoming word and lower the evidence threshold to facilitate faster 

word recognition. When word order is disrupted, there is a recognition cost. Readers are unable 

to anticipate the upcoming word and therefore require a higher more stringent threshold to 

differentiate between word candidates, which results in longer recognition times. Higher 

thresholds reduce the speed of word recognition; however, they should provide an advantage 

for letter identification. We predict this because higher thresholds enable readers to process 
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more precise letter information. As a result, disrupting word order within sentences may 

universally increase letter identification accuracy, despite reducing facilitation for word 

recognition. 

Ultimately, disrupting readers’ ability to predict the upcoming word is likely to reinstate 

the word superiority effect. Using a higher threshold enables readers to consult a much wider 

pool of word candidates to inform letter identification, and apply greater precision in 

differentiating between word neighbours. This prediction was tested in Experiment 4. 

 

 Experiment 4 

In Experiment 4, we aimed to disrupt readers’ predictions by jumbling the word order 

of the preceding sentence frames. We predicted that the difference in letter identification 

accuracy between predictable and unpredictable word targets would be smaller when sentence 

word order was disrupted, due to predictability exerting a lesser influence on word recognition. 

As result, letters in predictable words would receive less of a recognition benefit and letters in 

unpredictable words would receive a smaller recognition cost. We also expected letter 

identification accuracy to be universally higher in disrupted sentences, as disrupting 

predictability should increase readers’ threshold of evidence for word identification. 

Consequently, we predicted that disrupted word order would elicit more precise letter 

identification processing, which should reinstate the word superiority effect. 
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 Method 

3.6.1.1 Participants 

This experiment included 24 participants (19 female, 5 male) from the same population 

as tested in Experiment 1. None of the participants were included in previous or subsequent 

experiments in this series. 

 

3.6.1.2 Stimuli 

Stimuli were very similar to those used in Experiment 2. Target words and pseudowords 

followed the same highly predictable sentence frames; however, the words within the sentence 

frames were presented in a pre-randomized order (landed the pilot the faulty calm 

plane/plate/plave). 

 

3.6.1.3 Procedure and apparatus 

The procedure and apparatus were identical to previous experiments. Target stimuli 

exposure duration was 33 ms (two ticks) for 11 participants, 50 ms (three ticks) for 11 

participants, and 67 ms (four ticks) for two participants. 

 

 Results 

Accuracy data were modelled using a GLMM with the same fixed and random effect 

structure as Experiments 2 and 3. The data are visualised in Figure 4. Despite the disruption in 

word order, the results followed the same pattern observed for Experiments 2 and 3. Accuracy 

was significantly higher for predictable word targets compared to unpredictable targets, β = 
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0.96, OR = 2.61, SE = 0.12, Z = 7.82, p < .001, and pseudoword targets, β = 0.73, OR = 2.08, 

SE = 0.12, Z = 5.94, p < .001. Accuracy was significantly lower for unpredictable targets 

relative to pseudowords, β = -0.22, OR = 0.80, SE = 0.11, Z = -1.98, p = .047.  

 

 

Figure 4. Mean accuracy rates for Experiment 4. 

 

We compared the effect of word order across Experiments 2 and 4 by combining the 

data and including Word Order as a fixed effect. The model had the following structure: 

glmer(Accuracy ~ Predictability * Word Order + (1|Participant) + (1|Item) + (1|Exposure), 

family = binomial). The accuracy data showed a significant main effect of Word Order (β = -

0.54, OR = 1.71, SE = 0.17, Z = -3.17, p < .01), as accuracy rates were significantly lower when 

the word order of the sentence was preserved. The fit of the accuracy model improved when 

the interaction term was included (χ2(2) = 107.85, p < 0.001), which indicated an interaction 
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between Word Order and Predictability. The interaction showed that letter identification 

accuracy in unpredictable words was significantly higher when the word order within sentence 

frames was disrupted. 

 

 Discussion 

Predictability effects persisted even when sentence word order was disrupted, albeit 

with reduced effect. Predictable words yielded higher letter identification accuracy compared 

to unpredictable words and pseudowords, and accuracy rates for unpredictable words were still 

lower than for pseudowords. As observed in the previous experiments, the word superiority 

effect remained contingent on the word being predictable. Disrupting word order within 

sentence frames narrowed the gap in accuracy rates between conditions, which indicates that 

predictability exerted a lesser influence. However, this was not enough to reinstate the word 

superiority effect in unpredictable words. 

Strikingly, overall letter identification accuracy was higher when sentence word order 

was disrupted rather than preserved. This finding is in the opposite direction to that observed 

in whole word recognition, in which word recognition accuracy is typically higher when 

sentence order is preserved. For example, Snell and Grainger (2017) reported that readers were 

more accurate at identifying words presented for a short 200 ms duration when they appeared 

in a grammatically valid sequence. We propose that, when sentence order is preserved, 

upcoming words are more predictable. In this situation, the reader can use a low threshold to 

increase the efficiency of word recognition. Consequently, precise letter processing is reduced 

as the reader accepts a good enough match to the pre-activated representation. However, 

disrupting word order within sentences reduces the predictability of the upcoming word. 

Therefore, the reader uses a higher threshold and pays closer attention to precise letter 
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information. This introduces a cost for whole word recognition, but a benefit for letter 

identification.  

According to models of sentence reading, word recognition thresholds are based on the 

cloze probability of the most likely word candidate. Disrupting word order within sentences is 

likely to drastically reduce this metric. To confirm, we conducted a post-hoc online sentence 

cloze task with the jumbled sentence frames to observe whether disrupting word order reduced 

cloze probability in a new sample of 42 participants. The mean cloze probability of the most 

common response was 0.31 (SE: 0.01), reduced from 0.79 when word order was preserved, 

(t(89) = 18.79, p < .001). These results confirm that disrupting word order significantly reduced 

the predictability of upcoming words.  

Thus far, we have observed that the word superiority effect is only observed in sentence 

reading when the word aligns with readers’ expectations. We argue that readers lower the 

threshold of evidence required for word recognition and deprioritize precise letter processing 

when targets are highly predictable. This leads to higher letter identification accuracy in 

predictable words that match cloze probability expectations, and lower letter identification 

accuracy in unpredictable words. Further, we have observed that cloze probability predictions 

inhibit letter identification in unpredictable words if the foil letter aligns with the expected 

word. 

The previous experiments enabled us to compare letter identification in words with 

different cloze probabilities, or predictability from sentence context. In Experiments 1-3, we 

placed these words in contexts that strongly predicted one of the word targets. In Experiment 

4, we disrupted sentence word order in order to reduce readers’ ability to anticipate the 

upcoming target. However, we still observed greater letter identification accuracy in words 

with higher predictability. In the upcoming experiments, we instead manipulated contextual 
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constraint, which refers to how many potential words are predicted from a sentence frame. 

Experiment 5 featured low constraint sentence frames that had many plausible forms of 

continuation (the children were learning about…). Experiment 6 featured high constraint 

sentence frames, which tended to predict a single word (the rocket soared into outer …). Across 

both of these experiments, words in each condition had low cloze probability and were equally 

as likely to occur. 

Despite word targets having matched low predictability, we predicted different 

outcomes for the word superiority effect based on the preceding sentence context. We expected 

to observe the word superiority effect in sentences with many plausible forms of continuation 

(Experiment 5), as we predicted that readers would implement a higher evidence threshold in 

the absence of a predictable word candidate. Consequently, readers would consult a wider 

range of supporting word representations and engage in more precise letter processing in order 

to distinguish between them. This would enable them to differentiate between word neighbours 

within the Reicher-Wheeler task. 

In contrast, we did not expect to observe the word superiority effect in sentence frames 

that predicted a single word (Experiment 6). We predicted that such contexts would evoke a 

low evidence threshold based on the high likelihood of a specific word occurring. As 

established earlier, a low evidence threshold is only beneficial for letter identification if the 

upcoming word aligns with the predicted representation. Otherwise, alternative word 

representations cannot support letter identification and the lower threshold means that readers 

are more likely to miss precise letter information required for distinguishing between word 

neighbours. Consequently, we did not expect to observe the word superiority effect as neither 

of our word targets aligned with the anticipated representation.  
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 Experiment 5 

The aim of Experiment 5 was to investigate letter identification in words placed low 

constraint contexts. We used the same word and pseudoword targets from the previous 

experiments, but re-assigned targets to new low constraint sentence frames, which allowed for 

many plausible forms of continuation (e.g. the children were learning about…). Both word 

targets had low cloze probability, and equal likelihood of occurring within the new sentence 

contexts. 

We expected the word superiority effect to be restored across all word targets, despite 

their low cloze probability. If this were so, letters would be identified with greater accuracy in 

both word conditions compared to the pseudoword condition. We predicted that the word 

superiority effect would be consistently observed, as low constraint contexts would prompt 

readers to maintain a higher threshold of evidence required for word recognition, as the 

upcoming word could come from a large pool of candidates. In this case, readers would attempt 

to match the word to the closest known word representation, rather than a good-enough match 

to the anticipated representation. This would enable a broader range of word representations to 

support letter identification, meaning that the word superiority effect would be more widely 

observed across word targets. In addition, readers would engage in more precise letter 

processing which would provide an advantage for differentiating between word neighbours. 
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 Method 

3.7.1.1 Participants 

 This experiment included 24 participants (17 female, 7 male) from the same population 

as tested in Experiment 1. None of the participants were included in previous or subsequent 

experiments in this series. 

 

3.7.1.2 Stimuli 

Experiment 5 used the same targets as those used in Experiments 2-5. However, targets 

were assigned to new low constraint sentence frames, in which both target words had low cloze 

probability and were equally likely. The sentence frames used in Experiment 5 had the same 

properties as the sentence frames used in other experiments. Sentence frames consisted of 

seven words and 35-40 characters (e.g. the boy admired the smooth white plane/plate/plave). 

We measured contextual constraint of the sentence frame and cloze probability of the 

targets by repeating the online sentence cloze task with the new sentence frames. A new sample 

consisting of 42 participants with the same characteristics as the previous experimental samples 

completed the task. Results demonstrated that sentences had low contextual constraint; on 

average the most common response for each sentence was provided on 0.12 (SE: 0.003) of 

occasions. Targets in the Predictable 1 condition (previously Predictable) had a mean cloze 

probability of 0.003 (SE: 0.001). Targets in the Predictable 2 condition (previously 

Unpredictable) had a mean cloze probability of 0.004 (SE: 0.001). There was no significant 

difference in cloze probability between the two conditions, t(89) = -0.49, p = 0.623.  
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3.7.1.3 Procedure and apparatus 

The apparatus and procedure for Experiment 5 was the same as for Experiment 2. 

Target exposure duration was 33 ms (two ticks) for 12 participants, 50 ms (three ticks) for 10 

participants, and 67 ms (four ticks) for two participants. 

 

 Results 

Accuracy data were modelled using the same fixed and random effect structure as 

Experiments 2 through 4. The data are visualised in Figure 5. Accuracy did not significantly 

differ between the first and second group of word targets (Predictable 1 and Predictable 2), β 

= 0.25, OR = 1.29, SE = 0.13, Z = 1.91, p = .056. However, there was a significant difference 

between the pseudoword targets and the word targets in both conditions (Predictable 1: β = 

0.66, OR = 1.94, SE = 0.13, Z = 5.19, p < .001, Predictable 2: β = 0.41, OR = 1.51, SE = 0.12, 

Z = 3.33, p < .001). 
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Figure 5. Mean accuracy rates for Experiment 5. 

 

 Discussion 

 In Experiment 5, the word superiority effect was restored in low constraint contexts. 

There was no difference in letter identification accuracy between word targets; however, 

accuracy was significantly higher in both word targets compared to pseudowords. These 

findings support the prediction that readers adapt their precision of sub-lexical processing 

based on contextual constraint. In low constraint contexts there is no single high cloze 

probability candidate, therefore participants maintain a high threshold and use precise sub-

lexical processing to match the input to the closest known word representation. When the 

preceding sentence context does not narrow the pool of potential word candidates, readers use 

a similar degree of precision as when words appear in isolation. As a result, readers can 

distinguish between word neighbours and the word superiority effect is observed consistently. 
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Low constraint contexts prompt readers to use higher thresholds for word recognition 

that permit greater precision in letter processing. Readers rely upon the closest known word 

representation in the absence of a good-enough match; therefore letters that appear in any string 

with a corresponding word representation receive a recognition benefit. To confirm this 

interpretation, we used the final experiment to test the reverse. We placed low cloze probability 

targets in unlikely high constraint contexts in which readers were predicted to use a low 

threshold for word recognition. 

 

 Experiment 6 

In Experiment 6, both sets of word targets had equally low cloze probability. Unlike 

the previous experiment, they were placed in high constraint contexts where an alternative high 

cloze probability word was predicted. We used the same high constraint sentence frames and 

targets as Experiments 2-3; however, targets were re-assigned to different sentence frames in 

order to make both word targets have equally low cloze probability. 

We did not expect to observe a difference in letter identification accuracy across word 

targets, due to their equivalent unpredictability. In addition, we did not expect to observe a 

difference between words and pseudowords (as would be expected under the word superiority 

effect). We anticipated that high constraint contexts would pre-activate a single word 

candidate, which would inhibit other word representations and justify the use of a low threshold 

good-enough match to the expected word. For example, when reading “the dog ran from the 

venomous…” not only would readers not expect the final word to be plane or plate, they would 

strongly anticipate the word snake. Consequently, letter identification would only benefit from 

activation from word representations if the target matched the predicted pre-activated word 

representation. Our low cloze probability word targets should not receive this recognition 
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benefit. Therefore, we did not expect to observe the word superiority effect in words with low 

cloze probability in high constraint contexts. 

 

 Method 

3.8.1.1 Participants 

This experiment included 24 participants (21 female, 3 male) from the same population 

as tested in Experiment 1. None of the participants were included in previous experiments in 

this series. 

 

3.8.1.2 Stimuli 

The stimuli used for Experiment 6 were the same as the stimuli used in Experiment 2. 

The 90 highly constrained sentence frames were randomly reassigned to targets, which resulted 

in each target within the triplet being unpredictable (the dog ran from the venomous 

plane/plate/plave). 

  

3.8.1.3 Procedure and apparatus 

The apparatus and procedure for Experiment 6 was the same as for Experiment 2. 

Target exposure duration was 33 ms (two ticks) for 15 participants, 50 ms (three ticks) for six 

participants, and 67 ms (four ticks) for three participants. 
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 Results 

Accuracy data were modelled using the same fixed and random effect structure as 

Experiments 2 through 5. Accuracy did not significantly differ between the two groups of word 

targets (Unpredictable 1 and Unpredictable 2), β = 0.08, OR = 1.08, SE = 0.11, Z = 0.68, p = 

.499. There was also no significant difference between pseudoword targets and either set of 

word targets (Unpredictable 1: β = 0.20, OR = 1.22, SE = 0.11, Z = 1.74, p = .082, 

Unpredictable 2: β = 0.12, OR = 1.13, SE = 0.11, Z = 1.06, p = .287. The data are visualised in 

Figure 6. 

 

 

Figure 6. Mean accuracy rates for Experiment 6. 
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 Discussion 

As expected, there was no difference between targets in either of the word conditions 

and pseudoword targets. The word superiority effect was abolished. These findings further 

support our prediction that the word superiority effect is contingent on the word aligning with 

expectations from contextual constraint. When a high constraint context predicts a word with 

high cloze probability, readers expect to match the target to a specific pre-activated 

representation. As a result, readers use a less precise threshold to facilitate efficient word 

recognition. When the upcoming word does not meet cloze probability expectations, this lower 

threshold is costly. There is no support from corresponding word representations, because the 

pre-activated representation does not corroborate with the target. Readers are unprepared for 

an alternative word and the lower less precise threshold reduces the ability to distinguish 

between one letter different neighbours. This was first observed in Experiments 2 and 3. 

Experiment 6 demonstrates that this persists even in the absence of a foil letter that aligns with 

the cloze probability prediction. 

In conjunction, Experiments 5 and 6 demonstrate that the precision of word recognition 

thresholds varies based on the contextual constraint of the sentence. When contextual constraint 

is high, readers rely on a good-enough match for efficient word processing. In the absence of 

predictability cues, such as in low constraint contexts, readers must pay more attention to 

precise letter information. More broadly, this indicates that letter identification is not 

encapsulated within word recognition. Processes that benefit word recognition do not 

necessarily benefit letter identification. In fact, our results demonstrate that thresholding aimed 

to facilitate efficient word recognition can introduce a cost for letter recognition.  
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 General discussion 

Our work demonstrates that the presence and nature of sentence context impacts 

substantially on letter identification. Previous evidence suggests that certain word 

representations are prioritised over others when a word can anticipated from sentence context 

(Asano & Yokosawa, 2011; Staub, 2015; Van Petten & Luka, 2012; DeLong et al., 2014), but 

very little attention has been given to how this influences sub-lexical processing. 

We used the word superiority effect to explore whether word representations 

consistently support letter identification, or whether support from word representations is 

contingent on the word aligning with sentence level expectations. Participants identified letters 

in words and pseudowords, which appeared in different sentence contexts. Across six 

experiments, sentence frames varied in contextual constraint (the likelihood of accurately 

predicting the upcoming word) and word targets varied in cloze probability (the likelihood that 

a specific word would appear in the preceding sentence frame). The word superiority effect 

was not stable beyond single word context and fluctuated dramatically across experiments, 

despite targets remaining the same (Figure 7). These results indicate that the presence of a 

lexical representation does not provide a golden ticket to more efficient letter identification. 

 



CHAPTER 3: LETTER IDENTIFICATION IN SENTENCE CONTEXT 

 

 

 119 

 

Figure 7. The odds ratio (OR) demonstrates the odds of correctly identifying the target letter 

(versus incorrectly identifying the foil letter) in a word compared to a pseudo-word. The 

colours refer to the same groups of word targets used across each experiment. If OR = 1.00, the 

odds of correctly identifying a letter are equal across words and pseudowords. OR > 1.00 

(beyond the shaded box) indicates a word superiority effect. Bars display 95% confidence 

intervals. The cloze probability for each target condition is shown in brackets. 

  

Our findings demonstrate that predictability not only provides a letter recognition 

advantage for predictable words, but also introduces a recognition cost when letters appear in 

words that do not align with expectations. In these cases, performance on unpredictable word 

targets was lower than that for pseudoword targets. This recognition cost for unexpected word 
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targets was observed even despite the provision of feedback (Experiment 3) and despite 

jumbling word order to reduce participants’ expectations (Experiment 4). These observations 

highlight the very powerful influence of sentence context on letter-level processing. We 

attribute this recognition cost to readers anticipating an alternative predictable word and, given 

the strong likelihood of this word occurring, misjudging the precision of sub-lexical processing 

required. Letter recognition suffers when the target word does not correspond with the expected 

word representation, and shallow sub-lexical processing hinders analysis of fine-grained letter 

information. These findings suggest that text comprehension processes may rely flexibly on a 

hierarchical set of cues. Readers rely preferentially on highly-constraining contextual 

information when it is available (hence abolishing the word superiority effect), but rely on 

lexical information when it is not available (hence reinstating the word superiority effect).  

 If highly-constraining sentence frames lead readers to adopt a lower word identification 

threshold, then the imprecise orthographic processing that results should also impair letter 

identification in pseudowords. Letter identification in pseudoword targets was above chance in 

all experiments, but it too was influenced by sentence context. Performance on pseudowords 

was worst in highly constraining sentences (55%, Experiment 2). Performance increased when 

word order disrupted predictability (65%, Experiment 4), and rose slightly further when 

pseudoword targets appeared in low constraint sentences (68%, Experiment 5). Performance 

was highest in Experiment 1 when pseudowords appeared in isolation (74%). These effects 

seem counterintuitive because informative sentence context might usually be thought to 

enhance processing. Yet, this pattern of data is consistent with the notion that participants 

adopted a lower threshold for word identification (resulting in lower orthographic precision) 

when contextual constraint was high. One question is why letter identification in pseudowords 
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was reliably higher than in unpredictable words in high constraint contexts. We attribute this 

simply to the fact that in the latter case the foil letter corresponded to the predicted target.  

Decades of research have informed computational models that aim to explain how we 

read words in isolation (McClelland & Rumelhart, 1981; Grainger & Jacobs, 1996) and in 

sentences (Reichle et al., 2003; Engbert et al. 2002; Engbert et al. 2005; Snell et al., 2018). 

However, our findings are difficult to interpret within these established models. Models that 

deal with letter identification focus on words presented in isolation (McClelland & Rumelhart, 

1981; Grainger & Jacobs, 1996), and have nothing to say about how letter identification might 

vary based on sentence context. Conversely, models of sentence reading, which do consider 

context, avoid sub-lexical processes described by models of single word recognition. Whole 

words are the largest unit for models of single word reading and the smallest unit for models 

of sentence reading. There is very little crossover between the two. This theoretical gap would 

not be an issue if a model of single word reading could simply be added to a model of sentence 

reading to account for downstream letter identification processes. However, it would appear 

that it is not as simple as integrating the two, or assuming that one line of work can continue 

where the other ends. The dramatic shift that we observed across sentence frames (Figure 7) 

suggests that an additive model of this nature would be unsuccessful.  

Currently, the OB1-Reader is the only known model to incorporate word recognition 

within sentence context and consider letter-level processing.4 The model includes a word 

recognition module where letter information within the visual field activates lexical candidates. 

However, the sub-lexical processes of the OB1-Reader were developed to integrate a letter-

                                                
4 The Glenmore model (Reilly & Radach, 2006) is also a sentence reading model that considers letter level 
processing. However, as Snell et al. (2018) note, sub-lexical processing is assumed a priori rather than modelled. 
Therefore, we are unable to directly interpret how the Glenmore model could account for our findings. 
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position coding scheme, as word nodes are activated through open bigram nodes. The model 

does not provide an explanation for how letters are identified, and as such, it cannot explicitly 

account for why readers are more accurate at identifying letters in words, subject to whether 

the word aligns with sentence expectations. One possibility is that an expected word candidate 

pre-activates specific word representations, and readers make a thresholded judgement based 

on bigram alignment. For example, in a high constraint sentence such as “the calm pilot landed 

the faulty…”, orthographic neighbours “plate” and “plane” would share many of the same 

bigrams (PL, PA, PE, LA, LE, AE). Based on this, we may predict that the reader makes a rapid 

thresholded judgement on whether the bigrams are a good enough match with the expected 

word. As a result, letters in predictable words would receive a recognition benefit, whilst letters 

in unpredictable words (particularly in the case of orthographic neighbours) would receive a 

recognition cost. As a side note, if this were the case then we would also expect to see a letter 

identification cost in transposed-letter neighbours of predictable targets. In summary, the OB-

1 Reader is the closest candidate with the potential to explain our results, as it is able to outline 

how graded word recognition in sentences and sub-lexical processing can be integrated. Whilst 

sub-lexical processing is currently focused on letter position coding, there is scope for how 

such processes could be applied to explain letter identification. 

There are necessary limitations to the current work, which could be addressed with 

future study. Our paradigm used rapid serial visual presentation (RSVP), which is not 

naturalistic of sentence reading. Presenting the words in the sentence frame one word at a time 

enabled us to make the distribution of attention and fixation more consistent across participants. 

However, this presentation format also limited readers’ ability to use processes often 

demonstrated in the eye-tracking literature, such as skipping and regressive saccades (Staub, 

2015). It is also important to note that most sentence reading models, including the E-Z Reader, 
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SWIFT and OB-1 models, assume that the reader is able to see the entire sentence. The E-Z 

Reader proposes that the reader uses parafoveal preview of an upcoming word to make a 

thresholded match of the input and the expected representation, whereas the SWIFT and OB-1 

models assume parallel processing where readers process multiple words at once. The fact that 

predictability effects persisted in the absence of parafoveal preview or parallel word processing 

suggests that these processes are not absolutely necessary for predictability effects. It may be 

that our effects are reduced compared to what we would find with multiple word preview. One 

solution to this would be to conduct a similar study where the entire sentence frame is visible 

prior to the target. A previous study by Jordan and Thomas (2002) found similar predictability 

effects on letter identification when all words in the preceding sentence frame have been visible 

at the same time. They used popular phrases and found that letter identification accuracy was 

greater in the congruent word (born to be wild) compared to the incongruent neighbour (born 

to be mild).  

The current work has demonstrated robust effects of word predictability on letter 

identification, and our manipulations demonstrate how different aspects of the word target and 

the sentence context can be systematically modified to measure the weighting given to various 

predictability and letter level cues. This series of experiments has demonstrated systematic 

consequences of manipulating cloze probability and contextual constraint under a short word 

recognition timeframe in a tightly controlled paradigm. Future work could test the fragility of 

such effects by changing the reading environment, and investigating whether this changes how 

various sub-lexical and contextual cues are hierarchically integrated. For example, empirical 

studies could test whether greater priority is given to letter level processing when the target 

exposure duration is lengthened, or whether predictability effects wane when the forward mask 

is extended. There may also be scope for investigating other contexts where predictability cues 
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are in conflict. For example, in high constraint sentences where word targets that are 

orthographically similar have equally high cloze probability (e.g. the dog was afraid of the 

bark/bath). Corpus analysis could also provide insight on how often this is likely to occur in 

real-life context, or whether language distribution has evolved to prevent such occurrences 

from happening frequently. 

 

 Conclusion 

The current work has considered how sentence context influences letter identification. 

The results demonstrate that readers do not assign the same weight to contextual and sub-

lexical processing within each instance of word recognition. Letter identification processes are 

not consistent across or encapsulated within individual words, nor does the existence of a 

known corresponding word representation guarantee more accurate or efficient letter 

identification. Instead, priority assigned to precise letter processing depends on how accurately 

the whole word can be anticipated from sentence context. Cloze probability (the likelihood of 

a word occurring) and contextual constraint (the number of word candidates likely to occur) 

were established as key determinants of the precision of letter-level processing, and 

consequently, predictors of the word superiority effect occurring within various sentence 

contexts. These findings have critical implications for computational models, due to the 

theoretical gaps between models of sentence and single word reading. Sentence models are 

unable to explain sub-lexical processes such as letter identification, whilst single word models 

are unable to account for how the weight assigned to this processes will fluctuate based on 

surrounding context. These findings highlight the need for an integrated model that considers 

basic orthographic processes within meaningful sentence contexts.
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 Abstract 

Word recognition is facilitated by primes containing visually similar letters (dentjst-

dentist, Marcet & Perea, 2017), suggesting that letter identities are encoded with initial 

uncertainty. Orthographic knowledge also guides letter identification, as readers are more 

accurate at identifying letters in words compared to pseudowords (Reicher, 1969; Wheeler, 

1970). We investigated how higher-level orthographic knowledge and low-level visual feature 

analysis operate in combination during letter identification. We conducted a Reicher-Wheeler 

task to compare readers’ ability to discriminate between visually similar and dissimilar letters 

across different orthographic contexts (words, pseudowords, and consonant strings). 

Orthographic context and visual similarity had independent effects on letter identification. In 

the absence of an interaction, we were unable to establish whether orthographic context 

mediates the effects of visual similarity specifically. However, we did find that higher-level 

orthographic information plays a greater role than lower-level visual feature information in 

letter identification. We propose that readers use orthographic knowledge to refine potential 

letter candidates while visual feature information is accumulated. This refinement may be 

essential in permitting the flexibility required to overcome within-letter feature variation whilst 

maintaining enough precision to tell visually similar letters apart. 

 

All experiment materials, data, and analyses are available on the Open Science Framework: 

https://osf.io/p4q9u/?view_only=8485d54437b8473d92d1d50c37512fa0. 
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 Introduction 

Understanding the processes that underpin letter identification has been a long-standing 

goal within experimental psychology. Readers must maintain enough flexibility to recognise 

that gate and GATE are the same word, but also enough precision to recognise that gate and 

gale are not. Research shows that readers activate letter representations rapidly despite wide-

ranging variability in their physical form (e.g. case and font; Bowers, et al., 1998; Hannagan et 

al., 2012; Kinoshita & Kaplan, 2008). However, existing literature also reveals that this 

flexibility extends beyond letter identity in the initial moments of word recognition. Masked 

priming paradigms demonstrate that word recognition is facilitated by prior presentation of 

stimuli that contain visually similar letters (dentjst-DENTIST vs. dentgst-DENTIST, Marcet & 

Perea, 2017; docurnent–DOCUMENT vs. docusnent–DOCUMENT; Marcet & Perea, 2018), 

numbers (C4BLE-cable vs. C9BLE-cable; Kinoshita et al., 2013; Perea et al., 2008) or symbols 

(C△BLE-CABLE; Perea et al., 2008). ERP data also demonstrate that strings containing letter-

like numbers can facilitate lexical access, as such strings evoke similar N400 semantic 

responses to the words they resemble (4PPL3-APPLE; Lien et al., 2014). These findings 

suggest that the process of letter identification may consist of an accumulation of information 

about visual features. 

Readers draw upon their knowledge of the writing system to support letter identification 

processes. For example, readers adjust prioritisation of different visual features as they gain 

expertise in an unfamiliar alphabet, in order to best discriminate between letters (Wiley et al., 

2016). Letter identification is also guided by orthographic knowledge, such as knowledge of 

legal letter combinations or existing words. Consequently, the contexts in which letters appear 

can significantly alter readers’ ability to discriminate between them. This principle is typically 

demonstrated using a Reicher-Wheeler task (Reicher, 1969; Wheeler, 1970), in which 
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participants are briefly presented with a letter string, and then asked to decide which of two 

letters appeared in a specified position. Readers identify letters more accurately when they 

appear in a real word compared to a pseudoword (Coch & Mitra, 2010; Grainger & Jacobs, 

1994; Kezilas et al., 2016; Reicher, 1969; Wheeler, 1970). This word superiority effect is 

understood as evidence that word representations enrich letter identification processes 

(Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). 

Letter identification is also more accurate in pronounceable pseudowords (pable) compared to 

unpronounceable consonant strings (pkwtj) (Baron & Thurston, 1973; Carr et al., 1978). This 

is described as the pseudoword superiority effect. This effect is proposed to arise from readers’ 

knowledge of orthotactic constraints (i.e. restrictions on how letters combine within a writing 

system; Kezilas et al., 2016). The word and pseudoword superiority effects demonstrate that 

letter identification accuracy varies across contexts. Orthographic knowledge appears to play 

a key role in resolving early uncertainty around letter identity, and may reduce confusability 

from shared letter features. However, this line of research has not generally tested or controlled 

for effects of visual feature similarity. 

Other work has investigated whether orthographic knowledge reduces the precision of 

visual feature information required for letter identification, by obscuring visual feature 

information and measuring readers’ ability to overcome it. Studies have demonstrated that 

feature distortion is more disruptive in single letters (Fiset et al., 2008) and pseudowords (Rosa 

et al., 2016) compared to real words. Therefore, existing research indicates that readers use 

orthographic knowledge to resolve inconsistencies in visual feature information, whether it is 

distortion from visual noise (Fiset et al., 2008; Rosa et al., 2016) or substitution of a visually 

similar letter appearing in a word-like string (e.g. dentjst, Marcet & Perea, 2017). However, 

these scenarios typically involve readers encountering an invalid string and measuring how 
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quickly they recover. Less is known about whether orthographic context reduces ambiguity 

from visual feature similarity if two letters are both valid. Readers often encounter this 

situation, as they must distinguish between word neighbours with similar looking letters (e.g. 

gate-gale). Based on previous findings, we would expect visually similar neighbours (gate-

gale) to be harder to distinguish than visually dissimilar neighbours (gate-game). But how does 

letter confusability change across orthographic contexts? To our knowledge, researchers are 

yet to investigate whether orthographic context mediates readers’ ability to discriminate 

between visually similar letters if they both result in a string with an equivalent word or non-

word status. 

Past work has shown that higher-level orthographic knowledge and low-level visual 

feature analysis both play a key role in letter identification, but less is known about how they 

interact. The visual forms of letters are highly variable; therefore, readers may use orthographic 

context to compensate for inconsistencies in visual feature information. For example, 

orthographic distributional knowledge provides information on how individual characters 

relate to each other by comparing the contexts in which they appear (Schubert et al., 2020). 

This knowledge can reinforce mappings between variable letter shapes and identities, provide 

cues on the expected visual form (such as case and font), and assist in refining potential letter 

candidates while visual feature information is still being accumulated. These orthographic 

context cues not only assist readers in overcoming within-letter visual variability, but also 

reduce the likelihood of confusing visually similar letters. For example, the letters o and c share 

many visual features, but may be less confusable in a word like flow, as competitor c would be 

de-prioritised for failure to comply with a known word or legal letter combination (flcw). 

Therefore, cues from orthographic context may play a role in constraining letter candidates in 

order to manage the balance of flexibility and precision required during letter identification. If 
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so, letter confusability from visual similarity may be reduced when wider orthographic 

information is available, such as when letters appear in known words or legal letter 

combinations. 

The focus of this work was to examine how higher-level orthographic knowledge and 

low-level visual feature analysis work in tandem during letter identification. We investigated 

whether the impact of visual feature similarity on letter confusability is mediated by 

orthographic context. We conducted a Reicher-Wheeler task to compare readers’ ability to 

discriminate between letters with high and low visual feature similarity across words, 

pseudowords and consonant strings. We predicted that readers would be less accurate at 

discriminating between two letters with high visual feature overlap (m-n) relative to two letters 

with low visual overlap (m-t). We also predicted that letter identification would be more 

accurate in words relative to pseudowords, and pseudowords relative to unpronounceable 

consonant strings, in line with word and pseudoword superiority effects. Finally, we predicted 

that letter confusability from visual similarity would be reduced when letter-strings aligned 

with orthographic and orthotactic knowledge, as we proposed that readers use such knowledge 

to narrow down plausible letter candidates. Therefore, we predicted an interaction where 

accuracy differences between letters with high and low visual feature similarity would be 

smaller in words compared to pseudowords, and in pseudowords compared to consonant 

strings. Pre-registration, stimuli, data, and analysis scripts are openly available on the Open 

Science Framework.  
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 Method 

 Participants 

Seventy-two monolingual English speakers completed the experiment at Royal 

Holloway University of London, in exchange for £5. All participants were aged 18-35, with 

normal or corrected-to-normal vision, and no previous history of reading difficulty. The sample 

size was determined alongside the number of items (24 items per condition) in order to meet 

the suggested criterion of 1600 observations per condition for analyses using linear mixed-

effects models (24 ✕ 72 = 1728 observations per condition, Brysbaert & Stevens, 2018). All 

participants provided informed consent prior to taking part. 

 

 Stimuli 

Target stimuli consisted of 48 words, 48 pronounceable pseudowords and 48 

unpronounceable consonant strings. These three target stimuli conditions comprised the 

independent variable of orthographic context. Each target stimulus was assigned a target letter 

that was present within the stimulus, and two possible foil letters that were not present in the 

stimulus at all. Foil letters had either high visual feature overlap or low visual feature overlap 

with the target letter. Visual feature similarity (high versus low) was our second independent 

variable. The critical target and foil letters included in visual similarity comparisons were the 

same across each orthographic context condition. Substitution of the target letter with either of 

the foil letters always resulted in a string with the same orthographic context status as the target 

(e.g. word: snow/show/stow, pseudoword: snum/shum/stum, consonant string: znsq/zhsq/ztsq). 

All letter strings were four to six letters long, and words and pseudowords had a single-syllable 

pronunciation. Word targets (snow) and words with the substituted foil letter (show/stow) were 
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controlled for frequency using the CELEX database (Baayen et al., 1995). Stimuli for a 

preliminary staircase-thresholding task consisted of an additional 20 words, 20 pseudowords 

and 20 consonant strings, with the same control measures as those used for the main task. None 

of the stimuli presented in the thresholding task were present in the main task. 

Visual feature similarity was quantified using seven-point letter similarity ratings from 

over 700 people (Simpson et al., 2013). Target letters had a mean similarity rating of 4.19 with 

foil letters in the high overlap condition compared to 1.22 with foil letters in the low overlap 

condition, t(47)=24.8, p<.001. This difference between high- and low-overlap conditions was 

confirmed with a second, objective measure of visual similarity derived from the Hierarchical 

Model and X (HMAX, Mutch & Lowe, 2008), a biologically motivated computational model 

that mimics properties of the human ventral visual system through a series of simple (S1, S2) 

and complex (C1, C2) layers. We used HMAX S1 layer computations to calculate letter 

similarities, as this layer was modelled upon the earliest instance of feature detection. HMAX 

calculations revealed that target letters had a mean similarity rating of 0.59 with foil letters in 

the high overlap condition compared to 0.50 with foil letters in the low overlap condition, 

t(47)=6.25, p<.001. HMAX and reader ratings were positively correlated, r(323)=.49, p<.001. 

 

 Procedure 

Participants completed a Reicher-Wheeler task consisting of 144 trials, administered 

using DMDX (Forster & Forster, 2003). Within each trial, participants viewed a 500 ms 

fixation cross, followed by a forward mask for 33 ms. A target letter-string (either a word, 

pseudoword or consonant string) then appeared for a predetermined duration (see below), 

before a hash symbol (#) backward-masked each letter of the target for 100 ms. During this 
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time, a probe bar (|) appeared above and below one of the hash symbols, which indicated that 

the participant should identify the letter in the specified position. After 100 ms, a target letter 

and a foil letter replaced the probe bars above and below one of the hash symbols. The foil 

letter had either high visual feature similarity or low visual feature similarity to the target letter. 

Participants then had 5000 ms to make a button-press response to indicate which of the two 

letters was present within the string. Targets were counter-balanced to ensure that participants 

received an equal number of foil letters across high and low visual feature similarity conditions, 

and to ensure that participants saw each target letter-string once. 

Target letter-string exposure duration was determined for each participant based on 

performance in an initial staircase-thresholding task (adapted from Davis, 2001), which used 

the same trial procedure and mask durations as the main task. In the thresholding task, target 

letter-string exposure duration began at 33 ms, and adjusted after each response. If the 

participant correctly identified the target letter, exposure duration was reduced by 17 ms (one 

tick). If the participant incorrectly identified the foil letter, exposure duration increased by 17 

ms. Exposure duration was held constant after twelve changes in direction, and this value set 

target exposure duration for each participant in the main task. Exposure during the main 

experiment was 33 ms (two ticks) for 36 participants, 50 ms (three ticks) for 22 participants, 

67 ms (four ticks) for 13 participants and 83 ms (five ticks) for one participant. The exposure 

durations were similar to previous Reicher-Wheeler studies with skilled adult readers (Chase 

& Tallal, 1990; Coch & Mitra, 2010; Grainger et al., 2003; Kezilas et al., 2016; Lété & Ducrot, 

2008). 
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 Results 

 Accuracy data were analysed using logistic generalized linear mixed-effects models 

with the lme4 package (Version 1.1-12, Bates et al., 2015) in R (Version 4.0.4; R Core Team 

2016). The maximal model was defined as: glmer(Accuracy ~ Visual Feature Similarity * 

Orthographic Context + (1|Participant) + (1|Item) + (1|Exposure Duration), family=binomial). 

The structure of the optimal model was determined using pairwise likelihood ratio tests (LRTs), 

in which random effects, main effects, and the interaction term were systematically added in 

turn. The model fit was improved by random effects of participant (LRT: χ2(1)=293.77, 

p<.001), item (LRT: χ2(1)=553.77, p<.001) and letter string exposure duration (LRT: 

χ2(1)=11.44, p<.001). The random effect of exposure duration referred to the duration each 

letter string was presented for, based on participant performance in the preliminary 

thresholding task. Although exposure duration was consistent within each participant, the 

intercept improved the fit of the model, which suggested that the random effect of exposure 

duration accounted for variance that could not be explained by the random effect of participant. 

Therefore, both random effects were included within the model. The fit of the model 

significantly improved when the fixed effects of visual feature similarity (LRT: χ2(3)=32.70, 

p<.001) and orthographic context (LRT: χ2(4)=102.67, p<.001) were included. However, the 

model fit did not improve when the interaction term was included (LRT: χ2(2)=0.37, p=0.830). 

This indicated that there was no significant interaction between visual feature similarity and 

orthographic context. Therefore, the final optimal model was structured as follows: 

glmer(Accuracy ~ Visual Feature Similarity + Orthographic Context + (1|Participant) + 

(1|Item) + (1|Exposure), family=binomial). 
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Figure 1. Mean accuracy rates for letter identification in the Reicher-Wheeler task. Crossbars 

display mean accuracy rates across participants and tiles display one standard error from the 

mean, calculated for within-subject designs (Loftus & Masson, 1994). Data points display 

accuracy rates for individual participants and violins demonstrate the distribution of the data. 

The dashed horizontal line displays chance performance. 

 

Accuracy results are visualised in Figure 1. Beta (β) and odds ratios (OR) are used to 

report effect sizes. β is the logit transformed fixed effect coefficient, which refers to the 

estimated difference between conditions having controlled for random effects. OR (derived 

from β) measures the difference in odds of being correct (versus incorrect) in one level of a 
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fixed effect compared to another. There was a main effect of visual feature similarity, as 

accuracy rates were significantly higher when the foil letter had low visual overlap with the 

target compared to when the foil letter had high visual overlap with the target, β=0.27, 

OR=1.31, SE=0.05, Z=5.70, p<.001. There was also a main effect of orthographic context. 

Accuracy rates were significantly higher for words compared to pseudowords, β=0.67, 

OR=1.94, SE=0.11, Z=5.91, p<.001, and consonant strings, β=1.33, OR=3.78, SE=0.11, 

Z=11.94, p<.001. Accuracy rates were also significantly higher for pseudowords compared to 

consonant strings, β=0.66, OR=1.94, SE=0.11, Z=11.94, p<.001. 

 

 Discussion 

Our results revealed effects of orthographic context and visual feature similarity on letter 

discrimination in a Reicher-Wheeler task. Performance improved as letter strings became more 

word-like (words > pseudowords > consonant strings), replicating the word superiority effect 

and the pseudoword superiority effect (Baron & Thurston, 1973; Carr et al., 1978; Reicher, 

1969; Wheeler, 1970). Performance was also superior when the discrimination involved letters 

with low visual similarity compared to letters with high visual similarity. There was no 

interaction between the effects of orthographic context and visual feature similarity; visually 

similar targets and foils were more confusable irrespective of how closely the visual input 

aligned with a real word. The odds ratios indicated that effects of orthographic context were 

much larger than effects of visual feature similarity. The large difference in effect sizes 

suggests that top-down orthographic knowledge may be relatively more important than bottom-

up feature information in establishing letter identities.  
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We had predicted that low-level effects of visual feature similarity would be stronger where 

there is less higher-level orthographic information available. However, the interaction between 

orthographic context and visual feature similarity was not significant. Our interpretation of this 

null effect is limited, as despite having a relatively large sample size (N=72) and a repeated-

measures design, our study was probably underpowered to detect this interaction (Brysbaert, 

2019a). We ran Monte Carlo power analyses on simulated datasets to estimate the interaction 

effect sizes that could have been reliably detected with our sample size. Power analyses were 

conducted using the simr package (Version 1.0.5; Green & MacLeod, 2016) in R (Version 

4.0.4; R Core Team 2016). We systematically increased hypothetical interaction effect sizes 

by β = 0.05 and ran 50 simulations for each increment, beginning at β = 0.1. For each 

simulation, we modelled a larger effect between words and consonant strings relative to words 

and pseudowords under our hypothesis that visual similarity effects would have a greater 

impact on letter identification when less orthographic information is available. Our sample size 

(N=72) yielded 80% power to detect an interaction with an effect size of β = 0.3 between visual 

similarity differences in words and pseudowords, and an effect size of β = 0.4 between visual 

similarity differences in words and consonant strings. These are typical simple effect sizes in 

psychology, but large interaction effect sizes. The equivalent odds ratios demonstrate that we 

had the power to detect an interaction if the benefit of having two visually distinct letters was 

at least 1.35 times more likely to improve letter discrimination in pseudowords relative to 

words, and 1.49 times more likely in consonant strings relative to words. These analyses 

suggest that, if there was an undetected interaction between visual similarity and orthographic 

context in our data, it was smaller than the effect sizes stated above. Power analyses and 

measures taken to protect against issues of post-hoc interpretation are reported in further detail 

on the Open Science Framework. 
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Despite power limitations, our investigation provided a new insight into how cues are 

weighted during letter identification. Notably, the influence of orthographic context was much 

larger than the influence of visual feature similarity. This suggests that top-down orthographic 

knowledge may be prioritised over bottom-up feature information during letter identification. 

We did not specify a priori predictions based on relative weighting of main effects; therefore, 

our interpretation is exploratory. This differential weighting may occur because orthographic 

knowledge plays a critical role in filtering letter candidates, enabling readers to maintain the 

balance of flexibility and precision required for letter identification. Readers must incorporate 

a certain degree of flexibility when mapping low-level visual features to letter identities, as the 

visual appearance of letters can be highly variable. However, allowing greater flexibility also 

increases the risk of letter confusability. We propose that orthographic knowledge mitigates 

this risk while visual feature information is still being accumulated, by disregarding unlikely 

letter candidates and prioritising those that would result in a real word or an orthotactically 

legal letter string. Even when multiple letters result in the same degree of word-likeness (as in 

our paradigm), cues from orthographic context still increase overall letter identification 

accuracy by reducing the number of potential letter candidates to discriminate between. Our 

findings provide evidence that overall letter confusability is reduced by orthographic context 

cues, which we attribute to readers disregarding unlikely letter candidates. This may be 

particularly beneficial if visually similar letters are de-prioritised, as they are typically more 

confusable. We originally predicted that this would manifest as an interaction, which we were 

unable confirm due to limited power. In the absence of a detectable interaction, this explanation 

remains speculative and we cannot confirm whether orthographic context mediates effects of 

visual similarity specifically. Further work with sufficient power to detect an interaction would 

be required to test this hypothesis with greater certainty. 
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 Conclusion 

The current study demonstrated that letter identification is supported through a balance 

of information from visual features and higher-level orthographic knowledge. Our results 

showed that visually similar letters are more confusable than dissimilar letters, indicating that 

readers initially encode letter identities with uncertainty, based on feature information. Word 

and pseudoword superiority effects demonstrated that readers use also use orthographic 

knowledge of known words and legal letter combinations to resolve early uncertainty around 

letter identity. We originally predicted that orthographic knowledge might reduce confusability 

from shared letter features. However, we did not find conclusive evidence to suggest that 

orthographic context mediates the effects of visual similarity specifically, as power limitations 

restricted our ability to detect an interaction. We did find that higher-level orthographic 

information plays a greater role than lower-level visual feature information in letter 

identification. We suggest that this is a result of readers using orthographic knowledge to refine 

potential letter candidates efficiently with while visual feature information is still being 

accumulated.  
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 Abstract 

There is substantial debate around the nature of letter position coding in reading. 

Research on a variety of Indo-European languages suggests uncertainty in position coding; for 

example, readers perceive transposed-letter stimuli (jugde) as similar to their base words 

(judge). However, these effects are not apparent for all languages. We developed a powerful 

new method to delineate how specific properties of a writing system shape the representation 

of letter position. Two groups of 24 adults learned to read novel words printed in artificial 

scripts. One group learned a dense orthography (i.e. with many anagrams) and one group 

learned a sparse orthography (i.e. no anagrams). Following four days of training, participants 

showed a larger transposed-letter effect in the sparse orthography than in the dense 

orthography. These results challenge existing models of orthographic processing in reading, 

and support the claim that orthographic representations are shaped by the nature of the writing 

system. 

 

All experiment materials, data, and analyses are available on the Open Science Framework: 

https://osf.io/g74vp/. 
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 Introduction 

There is a broad consensus that printed words in alphabetic languages are recognized 

through the analysis of letters. Information about letter identity helps readers to distinguish 

words like SLAT and SPAT that differ by a single letter, while information about letter position 

permits readers to distinguish anagrams like SLAT and SALT that consist of the same letters 

in different positions. The nature of position coding in visual word recognition has become a 

point of major theoretical debate over the past decade (e.g. Davis, 2010; Grainger & Whitney, 

2004; Gomez et al., 2008). 

Substantial evidence suggests that readers of Indo-European languages are tolerant of 

transposed letters in word identification (e.g., jugde activates judge; Perea & Lupker, 2003). In 

standard visual lexical decision, nonwords that are transposed-letter anagrams of words (e.g. 

silimar) are harder to reject than nonwords that are not (e.g. sitinar; Andrews, 1996; Chambers, 

1979; Lupker et al., 2008; Perea & Lupker, 2004). Similarly, masked priming studies show that 

recognition of a target word is speeded by prior presentation of a transposed-letter prime (e.g. 

sevrice-SERVICE), relative to a substitution prime (e.g. sedlice-SERVICE; Schoonbaert & 

Grainger, 2004). This transposed-letter effect extends to cases in which the transposition 

crosses a syllable boundary (e.g. caniso-CASINO versus caviro-CASINO; Perea & Lupker, 

2003) and to more extreme modifications (e.g. snawdcih-SANDWICH versus skuvgpah-

SANDWICH; Guerrera & Forster, 2008). These findings all suggest that there is a high degree 

of perceptual similarity between stimuli that comprise the same letters in different positions. 

These results highlight a fundamental problem in word recognition. Clearly, we can 

distinguish snawdcih and sandwich, so letters must be coded for position. However, this coding 

must comprise some degree of uncertainty or flexibility; otherwise, these stimuli would not be 

treated as perceptually similar. This insight has inspired a variety of competing theories that 



CHAPTER 5: ORTHOGRAPHIC CONSTRAINTS ON LETTER POSITION CODING  
 

 

 143 

propose to solve this problem, including the SOLAR model (Davis, 2010), the Open Bigram 

model (Grainger & Whitney, 2004), the Noisy Channel model (Norris & Kinoshita, 2012), and 

the Overlap model (Gomez et al., 2008). Though these models have important differences, they 

all assert that letter position is coded in a way that leads to perceptual uncertainty. Further, 

uncertainty in letter position coding is argued to be a general property of the cognitive system 

(Perea & Carreiras, 2012), and caused by low-level visual (e.g. crowding, acuity; Grainger et 

al., 2016) and neurobiological factors (e.g. noisy retinotopic firing, nature of the receptive field 

structure; e.g. Dehaene et al., 2005). 

However, recent evidence suggests that letter position uncertainty does not extend to 

all writing systems. In a series of studies in Hebrew, Velan and Frost (2007, 2011) showed that 

word recognition is not facilitated by prior presentation of a transposed-letter prime relative to 

a substitution control. Frost (2012b) argued that the reason for this can be traced to properties 

of the writing system. Specifically, Hebrew is very dense orthographically, with many 

anagrams. Hebrew readers must therefore develop precise orthographic position coding, as 

tolerance to disruptions of letter order would often result in accessing the meaning of the wrong 

word. Evidence for precise orthographic representations has also been provided in Korean (Lee 

& Taft, 2011; Rastle et al., 2019) – another language with a dense orthography, but which 

otherwise shares little similarity with Hebrew. Frost (2012b) emphasized that reading is a 

learned skill, and that while this process will necessarily be constrained by low-level visual and 

neurobiological processes, flexibility will emerge only where it maximises the efficiency of 

word recognition. This conclusion is supported by simulations showing that distributed-

connectionist networks trained on artificial languages yield more flexible position coding for 

sparse orthographies compared to dense orthographies (Lerner et al., 2014). 
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Though Frost (2012b) presents a compelling argument that orthographic density is a 

major constraint on letter-position coding, it is difficult to draw this conclusion definitively 

from cross-linguistic comparisons since there are substantial differences across languages over 

and above orthographic density. Hebrew is characterised by a non-concatenative 

morphological system comprising tri-consonantal roots, which modify properties of the verb 

such as person, gender and tense. Similarly, Korean is characterised by physically-demarcated 

syllable blocks with a rigid consonant-vowel-consonant structure. In addition, readers of these 

languages almost certainly differ in a myriad of ways (e.g. method of reading instruction, 

language and reading experience). In light of these differences, it is difficult to draw strong 

conclusions about the specific impact of density on the development of orthographic 

representations. 

Our work brings a new dimension to this debate by using an innovative approach that 

has the potential to reveal how flexibility in position coding is influenced by specific properties 

of writing systems. We use a laboratory analogue of reading acquisition in which adults are 

trained on novel words in unfamiliar scripts (Taylor et al., 2011, 2017). This approach allows 

precise control over what participants learn and how they learn in a way that could never be 

achieved using natural language comparisons. We trained participants on novel words from 

artificial writing systems designed to be orthographically sparse or dense, but which otherwise 

were identical in factors relevant to word perception (e.g. syllable structure, morphological 

structure, positional letter frequency). We then used the transposed-letter effect to assess the 

precision of participants’ emerging letter position coding. On the basis of Frost (2012b), we 

predicted that participants who had learned the orthographically dense writing system would 

show a smaller transposed-letter effect, indicating greater precision in letter position coding, 

than those trained on the sparse writing system. 
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 Method 

 Participants 

Forty-eight monolingual English speakers completed the experiment at Royal 

Holloway University of London, in exchange for £60. All participants were aged 18-25 years 

old and had no history of language or reading difficulties. Participants were assigned to one of 

the two writing systems. 

 

 Stimuli 

5.3.2.1 Trained items 

Two artificial writing systems were constructed, each comprising 24 pseudowords 

printed in an unfamiliar script. In both writing systems, each novel word consisted of five letters 

and two syllables, and had a CVCVC structure. These novel words were constructed from 17 

letters (12 consonants, 5 vowels), and the spelling-to-sound relationship in both languages was 

consistent, i.e. each letter had one sound. Critically, both the overall frequency and positional 

frequency of individual symbols was equated across writing systems, with consonants 

appearing 6 times and vowels appearing 8-10 times in the trained novel words. However, one 

writing system was sparse (i.e. no anagrams) while the other writing system was dense (i.e. 

each word was an anagram of another word in the orthography, created by switching the initial 

and final consonant or by switching the initial and middle consonant). Figure 1 presents an 

example of the trained stimuli from the sparse and dense writing systems and their 

pronunciations. 
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SPARSE ORTHOGRAPHY 

24 items (no anagrams) 

 

DENSE ORTHOGRAPHY 

24 items (12 anagram pairs) 

 

 
/metæp/ 

 
/zesɪf/ 

 
/pɪvɒb/ 

 
/fesɪz/ 

 

 

 

/gefʌt/ 
 

 

 

/tɪdæn/ 

 

 

 

 

 

/sɒpek/  

 

 

 

 

/dɪtæn/ 

 

Figure 1. Examples of stimuli in dense and sparse orthographies. 

 

5.3.2.2 Test items 

In addition to the trained items, test tasks (conducted on the fifth day) required 

development of five sets of 24 untrained novel words for each writing system. Untrained words 

all comprised the same CVCVC structure as trained words, and each set was group-wise 

matched to trained words on letter frequency. The first four sets of untrained words were 

created for the visual lexical decision test task. The first set comprised novel words that 

transposed the second and third consonants of a trained word (TL-C), while the second set 

comprised novel words that replaced the second and third consonants of a trained word with 

different consonants from the alphabet (RL-C). The third set comprised novel words that 

transposed the first and second vowels of a trained word (TL-V), while the fourth set comprised 
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novel words that replaced the first and second vowels with different vowels from the alphabet 

(RL-V).5 The fifth set of untrained words was used to assess generalisation performance in 

reading aloud. 

In designing the stimuli, we took great care to make sure that the similarity between 

test stimuli and trained stimuli was equivalent across sparse and dense orthographies. We used 

the Match Calculator (Davis, 1999) to assess the degree of similarity between trained and test 

items on a number of different input coding schemes. Each comparison generated a number 

between 0 and 1, where 0 indicated total dissimilarity and 1 indicated a perfect match. It is 

evident from the average match scores provided in Table 1 that there were no differences in 

trained–test item similarity across the two orthographies. This tight control was essential so 

that any differences in lexical decision performance could be attributed to orthographic density, 

rather than low-level differences in discrimination difficulty across sparse and dense 

orthographies as a result of higher orthographic overlap with trained and untrained items. 

  

                                                
5 We used non-adjacent transpositions of consonants and vowels for the reason that in our alphabets, the symbols 
associated with consonants and vowels only occur in certain positions (e.g. vowel symbols do not occur in the 
third position). We had no predictions about consonant-vowel status on the transposed-letter effect, and note that 
this comparison in any case is confounded with position of disrupted letters.  
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Table 1.      

Match Calculator (Davis, 1999) statistics displaying mean orthographic overlap between trained 

and untrained items 

Orthography  Absolute  
SOLAR 

(Spatial Coding) 

Overlap 

Open Bigram 

SERIOL 

Open Bigram 

Binary 

Open Bigram 

Dense 0.13 0.19 0.04 0.04 0.04 

Sparse 
 

0.13 
 

0.19 
 

0.04 
 

0.03 
 

0.04 
 

 

 Procedure 

Each participant was trained on the novel words from one writing system over four days 

and tested on the fifth day. The correct response was given as feedback on each trial for training 

tasks; no feedback was given on test tasks. 

During Day 1, participants completed three tasks, with each task comprising three runs. 

The first task was phonic training. For two runs, participants were exposed to individual letters 

and their sounds and asked to repeat each sound aloud. In the third run, participants were 

presented with the letter and had to produce the sound. The second task was reading aloud; 

participants saw each novel word and were asked to read it aloud. The third task was 

orthographic search; participants heard a novel word and selected its visual form from a grid 

of all 24 novel words. During Days 2-4, participants completed three blocks of training each 

day. Blocks consisted of three repetitions of reading aloud and one repetition of orthographic 

search. Training on each day took approximately 75 minutes. 
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On the fifth day, participants completed four test tasks in a fixed order. These included 

tasks similar to the reading aloud and orthographic search tasks practiced in training; however, 

each stimulus was presented once per task, and participants received no feedback on the correct 

response. In addition, participants completed visual lexical decision and generalisation. In the 

lexical decision task, participants were presented with letter strings and asked to decide whether 

they were words that they had learned.6 The letter strings included trained words, and the four 

sets of untrained novel words (TL-C, RL-C, TL-V, RL-V). Trained words were repeated four 

times, so that “yes” and “no” responses were balanced. Trained items were included as fillers 

in order to provide a correct “yes” response, and also to measure participants’ overall 

recognition of trained items. Untrained items were included to measure the transposed letter 

effect (shown by the difference in performance for TL and RL foils), reflecting the degree of 

position uncertainty in each orthography. In the generalisation task, participants were asked to 

read the fifth set of untrained novel words aloud. This allowed us to assess the extent to which 

participants had extracted underlying spelling–sound regularities from training on the novel 

words. 

 

 Results 

Data from one participant were removed from all analyses due to poor learning of the 

trained items (63% correct on reading aloud test; 49% correct on “yes” response in lexical 

decision test). Data were analysed using analyses of variance (ANOVA) on accuracy and 

                                                
6 We chose to investigate transposed letter phenomena using standard lexical decision rather than masked priming 
because we judged that this would be more suitable for use with an artificial orthography training paradigm. 
Though there is ample evidence that participants can discriminate trained from untrained stimuli in such 
paradigms (e.g. Taylor et al., 2017), we are unaware of any evidence suggesting that trained items would yield 
masked repetition priming effects.  
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response times (RTs), although we note that previous studies in which adults have learned to 

read in an artificial script have typically focused only on accuracy (e.g. Taylor et al., 2011, 

2017). Spoken responses were hand-marked for accuracy and RT by a research assistant naïve 

to the purpose of the study using CheckVocal software (Protopapas, 2007). Analyses were 

conducted on by-subject (F1) and by-item (F2) means. Results were interpreted as significant 

when effects held across both F1 and F2 analyses. Data and analysis scripts are available in the 

OSF storage for this project. 

 

 Training data (Days 1-4) 

5.4.1.1 Phonic training (Day 1) 

The analysis of phonic training data considered performance in the third run of phonic 

training, and included Orthography (sparse vs dense) as a factor. The analysis of accuracy data 

revealed no difference between sparse (M = 0.47, SE = 0.04) and dense (M = 0.42, SE = 0.04) 

writing systems, F1(1, 45) = 0.62, p = 0.43; F2(1, 32) = 0.71, p = 0.40. Similarly, there was no 

difference in RTs between sparse (M = 2177 ms), and dense (M = 1957 ms) writing systems, 

F1(1, 45) = 1.37, p = 0.25; F2(1, 32) = 1.76, p = 0.19. These data provide confidence that there 

were no initial differences between the language groups on ability to learn the artificial 

alphabets. 

 

5.4.1.2 Reading aloud (Days 1-4)  

The analysis of reading aloud training data considered Orthography (sparse vs dense) 

and Day as factors. Figure 2 provides a visual representation of the data. For accuracy, there 
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was a main effect of Day, F1(3, 135) = 212.53, p < .001; F2(3, 138) = 1531.50, p < .001, with 

performance becoming more accurate over time. Although Figure 2 suggests slightly higher 

accuracy for the dense group, neither the effect of Orthography, F1(1, 45) = 3.17, p =.08; F2(1, 

46) = 16.29, p < .001, nor the interaction between Day and Orthography, F1(3, 135) =0.98, p 

=.41; F2(3, 138) = 6.14, p < .001, was reliable across by-subject and by-item analyses. For RTs, 

there was a main effect of Day, F1(3, 135) = 150.42, p < .001; F2(3, 138) = 881.99, p < .001, 

with faster responses emerging over time. The RT data showed no effect of Orthography, F1(1, 

45) = 0.24, p = .63; F2(1, 46) = 3.53, p = .07, and no interaction between Day and Orthography, 

F1(1, 135) = 0.28, p = .84; F2(1, 138) = 5.09, p < .01. 
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Figure 2. Mean accuracy and response times for each day of the reading aloud training task. 

Error bars display one standard error from the mean, calculated for between-subjects designs. 

Small data points display mean performance for individual participants. Data are averaged 

across three repetitions of the task on Day 1 and nine repetitions of the task on Days 2-4. 
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5.4.1.3 Orthographic search (Days 1-4) 

The analysis of orthographic search training data considered Orthography (sparse vs 

dense) and Day as factors. Figure 3 provides a visual representation of the data. The accuracy 

analysis revealed an effect of Day, F1(3, 133) = 16.62, p < .001; F2(3, 138) = 105.26, p < .001, 

as accuracy increased over time. Although Figure 3 again suggests slightly higher accuracy for 

the dense group, there was no effect of Orthography, F1(1, 43) = 0.54, p = .47; F2(1, 46) = 6.95, 

p < .05, and no interaction between Day and Orthography, F1(3, 133) = 0.49, p = .69; F2(1, 

138) = 3.40, p < .05, that was reliable across by-subject and by-item analyses. For RTs, there 

was a main effect of Day, F1(3, 133) = 100.50, p < .001; F2(3, 138) = 391.89, p < .001, as 

latencies decreased over time. The RT data showed no effect of Orthography, F1(1, 43) = 0.65, 

p = 0.43; F2(1, 46) = 1.16, p = 0.29, and no interaction between Day and Orthography, F1(3, 

133) = 0.77, p = 0.51; F2(3, 138) = 2.12, p = 0.10. Overall, training data suggest that trained 

words were learned to a high degree of accuracy, with no reliable differences across sparse and 

dense orthographies.7 

 

  

                                                
7 We note that there was some indication from by-item analyses that the dense orthography may have been easier 
to learn for some of the participants (although performance converged by the end of training). This may suggest 
that there are meaningful individual differences in how these types of writing systems are learned. Future higher-
powered studies may wish to investigate this possibility.  
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Figure 3. Mean accuracy and response times for each day of the orthographic search training 

task. Error bars display one standard error from the mean, calculated for between-subjects 

designs. Small data points display mean performance for individual participants. The data for 

each day are averaged across three repetitions. 
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 Testing data (Day 5) 

5.4.2.1 Reading aloud 

The analysis of reading aloud test data included Orthography (sparse vs dense) and 

Lexical Status (trained vs untrained) as factors. Figure 4 provides a visual representation of the 

data. The analysis of accuracy revealed a significant effect of Lexical Status, F1(1, 45) = 

139.97, p < .001; F2(1, 92) = 450.67, p < .001, with trained items read aloud more accurately 

than untrained items. There was also a significant effect of Orthography, F1(1, 45) = 12.17, p 

< .01; F2(1, 92) = 50.96, p < .001, with higher accuracy in the dense orthography. However, 

these main effects were qualified by an interaction, F1(1, 45) = 11.63, p < .01; F2(1, 92) = 

37.02, p < .001. This interaction revealed that whilst performance on trained items did not differ 

as a function of Orthography, F1(1, 45) = 0.75, p = .39; F2(1, 46) = 1.54, p = .22, performance 

on untrained items was more accurate for the dense than the sparse orthography, F1(1, 45) = 

13.19, p < .001; F2(1, 46) = 53.32, p < .001. The analysis of RT revealed an effect of Lexical 

Status, F1(1, 44) = 160.38, p < .001, F2(1, 92) = 331.67, p < .001, with longer latencies for 

untrained than trained items. However, there was no effect of Orthography, F1(1, 44) = 0.03, p 

= .87; F2(1, 92) = 0.001, p = 0.98, and no interaction between these factors, F1(1, 44) = 0.01, p 

= .94; F2(1, 92) = 0.20, p = 0.66. 

 

 

 



CHAPTER 5: ORTHOGRAPHIC CONSTRAINTS ON LETTER POSITION CODING  
 

 

 156 

 

 

Figure 4. Mean accuracy and response times for reading aloud trained and untrained stimuli 

on Day 5. Error bars display one standard error from the mean, calculated for between-subjects 

designs. Data points display mean performance for individual participants. 
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5.4.2.2 Orthographic search 

The analysis of orthographic search test data included Orthography (sparse vs dense) 

as a factor. The analysis of accuracy revealed no significant difference between sparse (M = 

0.97, SE = 0.07) and dense (M = 0.98, SE = 0.05) orthographies, F1(1, 45) = 0.17, p = .69; F2(1, 

46) = 0.47, p = 0.50). Similarly, the analysis of RT revealed no significant difference between 

sparse (M=6851) and dense (M=7131) orthographies, F1(1, 45) = 0.28, p = .60; F2(1, 46) = 

0.61, p = 0.44. 

 

5.4.2.3 Lexical decision 

Analysis of the “YES” response included Orthography (sparse vs dense) as a factor. 

The analysis of accuracy revealed no difference in recognition of targets learned in sparse (M 

= 0.95, SE = 0.01) and dense (M = 0.94, SE = 0.02) orthographies, F1(1, 45) = 0.21, p = 0.65; 

F2(1, 46) = 1.07, p = 0.31. Similarly, the analysis of RT revealed no difference in the speed 

with which targets learned in sparse (M = 3502 ms) and dense (M = 3635 ms) orthographies 

were accepted, F1(1, 45) = 0.14, p = 0.72; F2(1, 46) = 0.83, p = 0.37. Analysis of the “NO” 

response included Orthography and TL status (TL vs RL) as factors. Figure 5 provides a visual 

representation of the data. The analysis of accuracy revealed an impact of TL status, with lower 

accuracy in rejecting TL foils than RL foils, F1(1, 45) = 50.29, p < .001; F2(1, 46) = 31.29, p < 

.001. There was also a main effect of Orthography, F1(1, 45) = 5.63, p < .05; F2(1, 46) = 58.72, 

p < .001, with accuracy in the dense orthography higher than in the sparse orthography. 

Critically, however, these main effects were qualified by a significant interaction, F1(1, 45) = 

8.33, p < .01; F2(1, 46) = 5.09, p < .05, which indicated a larger TL effect in the sparse 

orthography than in the dense orthography. The analysis of RT revealed no effect of TL status, 
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F1(1, 45) = 8.11, p < .01; F2(1, 46) = 3.32, p = .07, no effect of Orthography, F1(1, 45) = 0.001, 

p = 0.98; F2(1, 46) = 0.001, p = 0.99, and no interaction between TL status and Orthography, 

F1(1, 45) = 0.41, p = 0.53; F2(1, 46) = 0.09, p = 0.77. 
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Figure 5. Mean accuracy and response times for the visual lexical decision test task on Day 5. 

Error bars display one standard error from the mean, calculated for within-subject designs 

(Loftus & Masson, 1994). Error bars display within-subject variability because the comparison 

of interest is the size of the transposed-letter effect within each orthography. Data points display 

mean performance for individual participants. 
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 Discussion 

Substantial research suggests that letter position is represented flexibly in skilled reading 

(e.g. Perea & Lupker, 2004; Schoonbaert & Grainger, 2004). However, recent research in 

Hebrew (Frost, 2012; Velan & Frost, 2011) and Korean (Rastle et al., 2019) suggests that this 

may not be a universal property of reading, but rather may depend on the orthographic density 

of a writing system. We sought to investigate the impact of orthographic density on the 

emergence of letter position coding using an artificial language learning paradigm. Over four 

days, participants learned to read novel words printed in an artificial orthography that was 

sparse (no anagrams) or dense (many anagrams). On the fifth day, they were tested in a variety 

of ways for their knowledge of the artificial orthographies. We assessed the precision of letter 

position coding through a lexical decision task, in which participants were required to accept 

trained words but to reject transposed-letter and replaced-letter foils. We took the size of the 

transposed-letter effect on rejection decisions as an index of flexibility in position coding (e.g. 

Andrews, 1996), and expected this to be larger in the sparse orthography than in the dense 

orthography. 

Results revealed the predicted difference in the size of the transposed-letter effect on 

rejection decisions across sparse and dense orthographies. Though participants across the two 

writing systems learned trained words to the same high degree of accuracy, the underpinning 

orthographic representations clearly differed. Critically, participants who learned the sparse 

orthography were more likely to accept the transposed-letter foils as trained words (relative to 

a replaced-letter control) than participants who learned the dense orthography. This result 

indicates that participants’ emerging orthographic representations were more precisely coded 

for letter position when they learned to read the dense orthography than the sparse orthography. 

We note that these findings arose on accuracy rather than RT. It is not surprising that findings 
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should be confined to accuracy given the low level of experience that participants had with the 

novel alphabets. Indeed, the fact that “no” decisions in the lexical decision task hovered around 

5000 ms suggests that reading of these alphabets was not fully automatized. The critical point 

is that there is no evidence of a speed-for-accuracy trade-off that would undermine the result 

on accuracy. If anything, the RT data go in the same direction as the accuracy data (i.e. larger 

transposed-letter effect in the sparse orthography). 

These results are consistent with previous cross-linguistic studies demonstrating 

reductions in transposed-letter effects in orthographically-dense scripts such as Hebrew (Velan 

& Frost, 2007, 2011) and Korean (Lee & Taft, 2011; Rastle et al., 2019). However, our findings 

are particularly powerful because the impact of orthographic density on letter position coding 

cannot be attributed to other confounding language characteristics or to variations in participant 

groups across languages. These results support Frost’s (2012b) claim that the flexibility of 

letter position coding in reading arises as a consequence of the statistical structure of a writing 

system. However, a deeper question relates to how theories of reading acquisition might 

account for the impact of orthographic density on flexibility of letter position coding. 

Several theories of reading acquisition highlight the linguistic environment as a key 

factor in forming optimal word representations. The amalgamation theory (Ehri & Wilce, 1980) 

and the lexical tuning hypothesis (Castles et al, 2001) both propose that readers develop more 

precise representations of words with a high neighbourhood density, due to the increased risk 

of confusability. This prediction has been supported in masked-priming studies showing that 

words in dense neighbourhoods show reduced substituted letter priming and transposed letter 

priming than words in sparser neighbourhoods (Castles et al., 2007; Forster et al., 1987; 

Kinoshita, Castles & Davis, 2009; Perea & Rosa, 2000). Our work suggests that the proposals 

of these theories regarding flexible tuning within a language might also be invoked to 
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understand cross-linguistic differences. Readers of dense orthographies may require more 

precise tuning of word representations than readers of sparse orthographies, resulting in lower 

tolerance to transpositions. 

Similarly, while our findings are inconsistent with the proposal that letter position 

flexibility arises solely as a result of low-level visual or neurobiological phenomena, we can 

envisage ways in which these theories might accommodate an influence of orthographic 

density. For example, the local combination detector model (Dehaene et al, 2005) proposes that 

detector sizes are larger for writing systems in which the reader is reliant on larger orthographic 

units (e.g. languages with low grapheme-phoneme transparency). This proposal offers a 

potential way forward for thinking about the impact of orthographic density on position 

flexibility, as in dense orthographies the reader may need to consider positional information 

from a larger window of letters in the word in order to reliably differentiate between anagrams. 

However, we believe that the full range of the results observed are most compatible 

with the dual-pathway model of Grainger and Ziegler (2011). This model proposes that skilled 

readers use coarse- and fine-grained codes in parallel in order to decode written words. The 

coarse-grained route identifies letter combinations in the absence of precise positional 

information to provide a fast-track to semantic information. In contrast, the fine-grained route 

is more sensitive to the precise ordering of letters. The precision of orthographic information 

along the fine-grained pathway permits mapping onto phonological information as well as 

chunking of frequently-occurring contiguous letter combinations, such as morphemes. It seems 

plausible that during reading acquisition, learned representations of words are tuned to reflect 

an optimal balance of coarse-grained and fine-grained processing. If so, then readers of dense 

orthographies may be less able to utilise coarse-grained information, as the lack of position 

specificity would be inefficient for identifying words with many orthographic neighbours. 
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Rather, they would need to develop greater reliance on the fine-grained pathway. In contrast, 

readers of sparse orthographies with few orthographic neighbours would have more weight 

assigned to less precise representations as there is a much lower chance of identifying a 

transposed-letter neighbour in error. The reliance on less precise representations in 

orthographies with fewer orthographic neighbours would result in larger transposed-letter 

effects in sparse orthographies, as observed in the current work. 

This account suggests that reading acquisition is characterised by a process of learning 

the degree of precision that is required for efficient word recognition. The optimal degree of 

precision may vary locally across different types of words, and may vary cross-linguistically 

based on orthographic density, as the present results suggest. This interpretation is supported 

by research suggesting that the magnitude of the transposed-letter effect increases through the 

period of reading acquisition (Ziegler et al., 2014 in French; Colombo et al., 2017 in Italian). 

This evidence stands in contrast to the predictions of the lexical quality hypothesis (Perfetti, 

2007), stating that the process of reading acquisition is characterised by increased fine-tuning 

of representations (i.e. greater precision) through the accumulation of print experience. 

One problem with this account based on the dual-pathway model (Grainger & Ziegler, 

2011) is that seems to allow too many degrees of freedom. That is, one might argue that the 

model allows the researcher to explain any number of effects simply by suggesting posthoc 

that coarse-grained or fine-grained processing dominated. The account would be more 

persuasive if we had additional, independent evidence that participants in our dense 

orthography condition were more reliant on fine-grained processing. Remarkably, data from 

the generalisation test task provides this independent evidence. Results indicated that the 

trained words were learned to the same high degree of accuracy across writing systems. Yet, 

when participants were asked to read aloud untrained words using the same symbols, 
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participants who learned the dense script showed a substantial advantage. This suggests that 

participants who learned the dense orthography developed more componential representations, 

reflecting greater fine-grained letter-to-sound knowledge, than participants who learned the 

sparse orthography. Once again, the evidence indicates that the nature of the writing system 

impacted on how the words were learned. 

The introduction of the artificial orthography training paradigm has allowed us to study 

the unique impact of orthographic density on the acquisition of orthographic representations. 

Due to associations between orthographic density and other factors in existing writing systems, 

this type of highly-controlled study is only possible in a simulated environment. However, 

there are clearly limitations of these paradigms, introduced largely due to constraints on what 

participants are able to learn over a reasonable time period. Further, we have simplified our 

vocabularies in many ways to facilitate the learning task (e.g. use of a strict syllabic structure 

for all items), and to ensure perfect matching across orthographies. These simplifications may 

have had unintended consequences. For example, while participants across orthographies 

differed substantially in their treatment of untrained items in the lexical decision and reading 

aloud tasks, we observed no differences across orthographies in the speed or accuracy with 

which trained items were processed. We believe that the data from untrained items indicates 

that the writing systems were learned in different ways, but we would not like to speculate that 

writing system has no bearing on the speed or accuracy with which words are processed once 

learned. It may be that the null effect of orthography on the processing of trained items reflected 

the very tight, artificial matching across orthographies, or that our tasks were insufficiently 

sensitive to detect effects on trained items (see also Footnote 3). These arguments suggest that 

while artificial language studies of this nature form an important part of the evidence base, they 

must be interpreted as complementary to studies of existing languages and writing systems. 
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Overall, our results provide a strong demonstration of the impact of the orthographic 

density of a writing system on the precision of orthographic representations. Using an artificial 

language approach, we varied orthographic density across two artificial writing systems, while 

controlling all other stimulus and participant factors that confound this comparison in studies 

using natural languages. Our results challenge existing cognitive and neurobiological models 

of position coding in reading, and support the argument put forward by Frost (2012b) that 

orthographic representations are shaped by the statistical structure of the writing system one 

learns to read (see also Lerner et al., 2014). We look forward to using this method to delineate 

how the complex associations between orthographic, phonological and semantic information 

across the world’s writing systems shape the acquisition of the reading skill.  
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 Abstract 

The ventral stream is a hierarchical network in which readers decode orthography to 

access the meanings of words during reading. We used representational similarity analysis to 

investigate whether morphological information mediates the ventral stream print-to-meaning 

transformation. Hypothetical representational dissimilarity matrices expressed precise 

cognitive predictions about word similarities based on orthographic, semantic and 

morphological properties. Participants silently read these words while we recorded neural 

responses using fMRI. Our results indicate a graded hierarchy of abstraction from print to 

meaning within the ventral stream. Neural representations sensitive to orthography were 

located in posterior regions while representations sensitive to semantics were located in 

anterior regions. Readers formed intermittent orthographic representations for letter strings 

associated with morphemes; however, these representations were formed regardless of whether 

the stimulus could be parsed fully into morphemes. We discuss theoretical implications and 

consider how future applications of representational similarity analysis could advance our 

understanding of the neural basis for morphological processing. 

 

All experiment materials, behavioural data, and analyses are available on the Open Science 

Framework: https://osf.io/yczpu/?view_only=59e65836bb6e49c5871a885d4d855efa.   
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 Introduction 

The ability to read is a learned skill rather than an inborn human capacity. Yet, skilled 

readers are able to read over 200 words per minute (Brysbaert, 2019b), accessing the meanings 

of different configurations of arbitrary visual symbols with ease. Therefore, a major question 

within cognitive neuroscience is how the brain transforms representations of visual symbols to 

meaningful linguistic information. Recent research suggests that this transformation involves 

multiple neural levels of representation, including orthographic representations of letters, and 

semantic representations of word meanings (Fischer-Baum et al., 2017, Taylor et al., 2019). 

These processes have been localised to the ventral stream, a neural pathway that reflects 

statistics of natural language (Dehaene et al., 2005; McCandliss et al., 2003; Vinckier et al., 

2007; Woolnough et al., 2020). The current work uses representational similarity analysis 

(Kriegeskorte et al., 2008) to investigate the proposal that morphological knowledge mediates 

the ventral stream transformation of print to meaning (Rastle, 2019b).  

 

 Transformation of print to meaning within the ventral stream 

The ventral stream, located in the left ventral occipito-temporal cortex, has been 

identified as a hierarchical network in which readers decode orthography to access word 

representations during reading (Dehaene et al., 2005; McCandliss et al., 2003; Vinckier et al., 

2007; Woolnough et al., 2020). Dehaene et al. (2005) propose a feedforward account in which 

readers encode increasingly large units of orthographic information (such as letters, bigrams 

and small words) that become progressively more complex. Neural evidence suggests that these 

transformations occur along a posterior-to-anterior gradient within the ventral stream, and that 

the stored representations display sensitivity to linguistic probabilities within the writing 
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system, such as frequency and word-likeness (Vinckier et al., 2007). Dehaene et al. (2005) 

propose that neural word representations are processed in a feed-forward manner, although 

more recently, Woolnough et al. (2020) observed orthographic processing in posterior regions 

before and after more anterior regions showed sensitivity to lexicality. This led the authors to 

suggest that ventral stream processing may incorporate feed-forward and feedback activity. 

Importantly, there is consensus that orthographic processing is influenced by the statistics of 

natural language, and that readers encode sub-lexical units of increasing complexity to access 

meaningful information about printed words. 

In the past fifteen years, our understanding of these processes has been advanced by 

multivariate approaches, such as representational similarity analysis (RSA). RSA is based on 

the premise that stimuli that share similar representations will elicit similar neural response 

patterns in the relevant region (Kriegeskorte et al., 2008). By assessing the nature of 

information encoded within different brain regions, researchers have characterised various 

levels of neural representations that arise during reading within the ventral stream. Fischer-

Baum et al. (2017) and Taylor et al. (2019) provided evidence for a posterior-to-anterior 

gradient in the ventral stream, in which orthographically similar words (bark-dark) showed 

similar patterns of neural activity in posterior regions, while semantically similar words (bark-

howl) showed similar patterns of neural activity in anterior regions. Both studies demonstrate 

that these representations become gradually more abstract from the visual input and become 

increasingly linguistic in nature. For example, word representations become selectively more 

tuned to orthographic similarity independent of visual shape (Fischer-Baum et al., 2017) and 

letter representations are encoded with increasing invariance to position (Taylor et al., 2019). 

Combined, neural evidence suggests that ventral stream processing regions are hierarchically 

organised to reflect statistically salient information in the writing system.  
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 The role of morphology in the ventral stream  

The relationship between printed words and their meanings is often arbitrary in English. 

Printed words that look similar (bark-dark) do not have similar meanings, and printed words 

that mean similar things are spelled differently (bark-howl). However, morphological 

relationships in the writing system provide a degree of systematicity, as stems occur 

consistently in words with similar meanings (unlock, relock, unlockable), and affixes 

consistently modify the meanings of words (unlock, undress, unclog). Skilled readers capitalise 

on these “islands of regularity” (Rastle et al., 2000), accessing the meanings of printed words 

rapidly by decomposing letter strings into their morphemic constituents (un+lock; see Rastle, 

2019b for a review).  

Evidence from masked priming demonstrates that morphologically complex words 

facilitate faster recognition of their stem (teacher-TEACH) compared with non-morphological 

words with equivalent orthographic overlap (window-WIND) (Rastle et al., 2004). Notably, this 

benefit extends to words that appear to be morphologically related but have no semantic 

connection (corner-CORN) (Beyersmann et al., 2012; Beyersman et al., 2016; Meunier & 

Longtin, 2007; Marslen-Wilson et al., 2008; Morris et al., 2007; Rastle & Davis, 2008; Rastle 

et al., 2004). However, this priming advantage is eliminated when prime durations are extended 

(Rastle et al., 2000). This pattern has led to the proposal that an initial morpho-orthographic 

decomposition based on the appearance of morphological structure gives way to morpho-

semantic decomposition in which semantic information constrains the initial segmentations 

(Rastle & Davis, 2008). Support for this characterisation comes from electroencephalography 

(EEG) and magnetoencephalography (MEG) studies demonstrating that changes in neural 

activity occur in two distinct time windows corresponding to morpho-orthographic and 

morpho-semantic processing (Lavric et al., 2007; Lavric et al., 2012; Lavric et al., 2011; Lewis 
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et al., 2011; Morris et al., 2008; Morris et al., 2011; Solomyak & Marantz, 2010; Whiting et 

al., 2014). 

If morphemes reflect salient statistical information along the mapping between print 

and meaning, then neural representations of morphemes should be integrated along the ventral 

stream hierarchy (Rastle, 2019b). Previous work supports this view, as multiple ventral stream 

regions are implicated in morphological processing (Bozic et al., 2007; Cavalli et al., 2016; 

Devlin et al., 2004; Gold & Rastle, 2007; Lewis et al., 2011; Pylkkänen & Marantz, 2003; 

Solomyak & Marantz, 2010; Zweig & Pylkkänen, 2003). Whilst orthographic processing is 

localised posteriorly and semantic processing is localised anteriorly, intermediate regions 

demonstrate sensitivity to morphology that is distinct from these processes (Gold & Rastle, 

2007). Further anterior, the middle and superior temporal gyri display increased levels of 

activation for words with a morphological appearance (corner) relative to genuine 

morphologically complex words (teacher, Whiting et al., 2014). This finding is interpreted as 

semantic constraint, with more effortful processing attributed to semantic inconsistency. 

Further, diffusion tensor imaging has shown that morphological processing skill is associated 

with properties of ventral stream white matter tracts (Yablonski et al., 2019) that support 

information transfer across different cortical regions. Therefore, evidence suggests that 

morphological knowledge is involved in integrating multiple levels of representation along the 

ventral pathway. 

This discussion exposes a limitation in neural proposals of reading, which are 

ambivalent to the regularity that morphology provides to the print-to-meaning mapping. 

Theories advanced by Dehaene et al. (2005) and Woolnough et al. (2020) are both limited to 

substring frequency, as morphemes are not distinguished from other frequent orthographic 

combinations. As a result, existing proposals are unable to explain neural evidence for 
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morphological processing independent of orthographic processing. Neither account considers 

how the hierarchical organization of the ventral stream may be influenced by sub-lexical 

constituents which are not only frequent, but also play a functional linguistic role. 

 

 Research aims 

In the current work, we used RSA to characterise the multiple levels of representations 

that arise in the ventral stream during skilled reading. Specifically, we sought to investigate 

whether morphological representations are integrated within this pathway. Our first aim was to 

localise neural sensitivity to orthography and semantic properties. Words with orthographic 

similarity were predicted to show similar patterns of activation in the most posterior regions, 

whereas words with semantic similarity were predicted to show similar patterns of activation 

in the most anterior regions. Our second aim was to probe for neural representations that were 

specifically morphological in nature, and investigate where they are situated relative to 

orthographic and semantic processes. Such representations can inform us of the functional 

contribution of morphology and establish whether readers form morphological representations 

that are distinct from sensitivities to orthographic or semantic properties. If so, we expected 

morphological representations to arise in intermediate regions between orthographic and 

semantic processing within the ventral stream. Words with morpho-orthographic similarities 

were predicted to display similar patterns of neural activity anterior to regions responsible for 

orthographic processing, as this would reflect early decomposition into recognised substrings. 

We predicted that words with morpho-semantic similarities would display similar patterns of 

neural activation in regions further anterior to those predicted to display morpho-orthographic 

sensitivity, as we predicted that representations would become constrained by semantics. 

Stimuli, data, and analysis scripts are openly available on the Open Science Framework.  
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 Methods 

 Participants 

Twenty-nine monolingual English speakers participated in this study. Participants were 

18-30 years of age, right-handed, and had no history of learning disabilities or hearing or vision 

impairments. This study was approved under the Royal Holloway University Research Ethics 

Committee procedure and all participants provided informed consent prior to taking part. 

Participants were paid £20 in exchange for their time.  

 

 Stimuli 

Ten sets of five words each were selected as targets. Each set shared an embedded letter 

string that featured the same letter sequence as a morpheme. For half of the sets this shared 

letter string was associated with a stem (e.g. act, tract, exact, enact, action); for the other sets it 

was associated with an affix (e.g. regret, reward, refuse, reclaim, refund). Words were 

controlled for frequency using the CELEX database (Baayen et al., 1995). Words within each 

set varied in orthographic, morpho-orthographic and/or morpho-semantic similarity to each 

other. These levels of similarity were cumulative, in the sense that words with morpho-

orthographic similarity also had orthographic similarity as they shared an embedded letter 

string, and words with morpho-semantic similarity also had morpho-orthographic and 

orthographic similarity. Similarities are illustrated in Figure 1. 
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Figure 1. Demonstration of embedded letter string, morpho-orthographic and morpho-

semantic relationships between words within stimuli sets. 

 

Words with a shared embedded letter string contained a letter combination associated 

with a stem or an affix but did not have a viable morphological structure. An example of this 

is tract, which contains the letter sequence for a plausible stem (act) but does not contain a 

plausible affix. Therefore, the relationship of tract with other words within the set is purely 

orthographic, as the word cannot be parsed into constituent morphemes. Words with morpho-

orthographic similarity had an apparent morphological structure (i.e. they contained a plausible 

stem and a plausible affix). These words could be parsed into constituent morphemes based on 

orthographic information; however, they did not have a semantic relationship with other words 

that appeared to contain the same morpheme. For example, exact can be decomposed into 

morphemes defined orthographically (ex-, act), but its meaning is not transparently related to 

the stem act, and it is unrelated in meaning to the genuine morphological words in the set 

(enact, action, act). Words with morpho-semantic similarity had a genuine morphological 

relationship with each other. These words shared a morpheme and had a morphological 

structure whereby some aspects of meaning were shared. Following the example stimuli sets, 
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enact and action share a morpheme (act) that has a consistent meaning and each has a plausible 

affix that systematically modifies the meaning of the stem. We used latent semantic analysis 

ratings (LSA; Landauer & Dumais, 1997) ranging from zero (no semantic relation) to one (the 

same meaning) to confirm that on average, words with morpho-semantic similarity had higher 

semantic relatedness (0.40) than words that only had a shared embedded letter string (.04) or 

morpho-orthographic similarity (.09). 

 

 Representational dissimilarity matrices 

We constructed five a priori representational dissimilarity matrices (RDMs) based on 

hypothesised progressive stages of visual word recognition (Figure 2). We hypothesised that 

each of these matrices would display the best fit at different regions within the ventral stream, 

based on the expectation that representations become increasingly abstract as readers extract 

meaning from print. Firstly, we predicted that words with shared orthography would 

demonstrate similar patterns of neural activation in posterior regions, and that words with 

shared meaning would demonstrate greater neural similarity in the anterior ventral stream. 

Secondly, we expected RDMs expressing morphological properties to best characterise neural 

patterns within intermediate ventral stream regions, as would be predicted if readers utilise 

morphological structure to derive meaning from print (Rastle, 2019b). 

 The first two RDMs predicted word dissimilarity independently of morphology. The 

first RDM predicted orthographic dissimilarity independently of morphological structure (e.g. 

late and act). Orthographic dissimilarity was calculated using Levenshtein distance measures 

(van der Loo, 2014), a continuous position-specific metric which counts how many letter 

additions, deletions and substitutions are required to change one word to another. Higher 
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Levenshtein scores indicated greater orthographic dissimilarity (e.g. late-act; LDM score: 3 vs. 

late-form; LDM score: 5). The second RDM expressed semantic dissimilarity, based on 

overlap in word meaning. Semantic dissimilarity was calculated using continuous inverse LSA 

similarity ratings, which are calculated from how often words co-occur in corpus context 

(Landauer & Dumais, 1997). Higher ratings indicated greater dissimilarity (e.g. plank-

platform; LSA score: 0.44 vs. plank-read; LSA score: 0.97) 

The third, fourth, and fifth RDMs were included to probe representations based on 

internal morphological structure. The purpose of these RDMs was to identify where 

representations based on morphological decomposition occur relative to representations of 

semantic and orthographic information. The third RDM predicted dissimilarity based on 

embedded letter string dissimilarity. In this RDM, words were classified as similar as long as 

they shared a letter combination associated with a stem (act, tract, exact, enact, action) or an 

affix (regret, reward, refuse, reclaim, refund), regardless of whether words had a plausible 

morphological structure that could be decomposed into constituent morphemes. The fourth 

RDM predicted morpho-orthographic dissimilarity, defined by words sharing an embedded 

letter string within a plausible morphological structure. Words classified as similar could be 

parsed as constituent morphemes but did not necessarily have a semantic relationship. Words 

with morpho-orthographic (act-exact) and morpho-semantic (act-action) overlap were coded 

as similar, whereas words with a shared embedded letter string without viable morphological 

structure (act-tract) were coded as dissimilar. The fifth RDM predicted morpho-semantic 

dissimilarity, based on a genuine morphological relationship. Words were coded as similar if 

they had a shared morpheme, a viable morphological structure and a semantic relationship. For 

example, enact and action were coded as similar to each other, but both were coded as 

dissimilar to exact. This is because enact and action are semantically related to the stem act, 
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whereas exact is not. Predicted comparisons within embedded letter string, morpho-

orthographic and morpho-semantic RDMs were binary coded as 0 (similar) or 1 (dissimilar) 

based on the criteria of each RDM. 

All five RDMs were symmetrical, therefore only the lower triangular (diagonal half) 

of each matrix was included within analyses. This ensured that stimuli comparisons were not 

duplicated within each RDM and prevented stimuli from being compared with themselves. 

Each RDM was entered into a linear regression, and the variance of inflation factor (VIF) 

between each RDM was calculated to quantify the degree of multicollinearity between 

matrices. The VIF for each comparison was below 5, indicating a low degree of collinearity 

(Miles, 2014).  

One goal of the current work was to investigate where morphological representations 

occur relative to orthographic and semantic processing in general. To accomplish this goal, we 

first needed a measure of whether a region processes orthographic or semantic information 

about written words independently of the morphological relationship between the words. This 

was achieved using the first two RDMs, which considered the orthographic and semantic 

dissimilarity of all word pairs that are not in the same morphological set. Analyses with these 

RDMs provided a morphology-independent measure of orthographic and semantic processing 

in different regions. The results with these RDMs were then compared to the next three RDMs. 

Morpho-orthographic and morpho-semantic RDMs focused specifically on morphological 

relationships, and did so using only comparisons between items in the same morphological set. 

As a result, non-morphological RDMs (orthographic and semantic dissimilarity) and 

morphological RDMs (morpho-orthographic and morpho-semantic dissimilarity) made use of 

non-overlapping subsets of the data. Therefore, RDMs characterising dissimilarity 

independently of morphology used different brain-based similarity comparisons to RDMs 
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modelling similarity based on morphological properties. Determining whether morphological 

RDMs are correlated with the same regions as non-morphological RDMs can tell us whether 

morpho-orthographic processing and morpho-semantic processing are simply engaging more 

general orthographic and semantic representations, without concerns that the overlap is driven 

by common items in the analysis. The embedded letter string RDM made use of the entire data 

set. This comparison is theoretically relevant to both morphological and non-morphological 

processing. Comparisons between the embedded letter string RDM and the orthographic RDM 

allow us to determine whether specific regions encode word substrings (as suggested by 

Dehaene et al., 2005) as well as individual letters. This would be apparent if the embedded 

letter string RDM and the orthographic RDM were both significantly correlated with neural 

activity within a particular region. Since the embedded letter string RDM does not explicitly 

care about whether there is a morphological relationship between the string and the whole 

word, differences between this RDM and morpho-orthographic and morpho-semantic RDMs 

can reveal whether or not a region is specifically sensitive to morphology. For example, neural 

activity within an ROI was significantly correlated with the morpho-orthographic RDM but 

not the embedded letter string RDM, the results would indicate sensitivity to morphological 

structure. 
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Figure 2. Lower diagonals of the predicted representational dissimilarity matrices (RDMs) 

based on (A) orthography, (B) semantics, (C) embedded letter strings, (D) morpho-

orthographic structure, and (E) morpho-semantic structure. Higher values (in yellow) denote 

greater dissimilarity. 
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 Scanner task 

 Participants completed a recognition task in the MRI scanner, in which they were 

presented with blocks of 30 words displayed in isolation. Participants were instructed to attend 

to the words and read each word silently; they were explicitly asked not to use rehearsal 

strategies. Each block was followed by a test item, and the task was to indicate whether a test 

item had appeared within the previous block by providing a button-press response. Test item 

accuracy was recorded as a measure of attention. Each block consisted of 40 randomised trials, 

which included 25 word stimuli, ten fixation-cross null events (25% of all trials, as 

recommended by Kriegeskorte et al., 2008), and five filler words which changed across each 

block in order to give the appearance of variation and increase the task difficulty. Filler items 

had a morphologically complex appearance and were matched to critical stimuli on frequency. 

Each item was displayed for 750 ms, followed by a fixation cross displayed for an inter-

stimulus interval of 2750 ms (resulting in a stimulus-onset-asynchrony of 3500 ms). At the end 

of each block, participants were presented with a 1000 ms fixation cross, followed by a test 

word for 4000 ms. They were instructed to indicate whether the test word had appeared in the 

previous sequence or not. The test word was either a word that had appeared in the previous 

sequence, or a foil that had not appeared within the task at all. There were twenty-four blocks 

over four functional runs, which resulted in twelve repetitions of each of the stimuli. The 

duration of each run was 15 minutes and 24 seconds. 

 

 fMRI acquisition procedure 

 Functional MRI data were acquired on a 3T Siemens Trio scanner (Siemens Medical 

Systems, Erlangen, Germany) with a 32-channel head coil. Blood oxygenation level-dependent 
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functional MRI images were acquired with a multi-band echo-planar imaging (EPI) sequence 

with a repetition time (TR) of 2000 ms, 2.5 mm isotropic voxels and an inter-slice gap of .625 

mm (25%), flip angle of 78 degrees, echo time (TE) 30 ms and 48 slices with a 78 x 78 data 

matrix. The acquisition was transverse oblique, angled to avoid the eyes and to achieve whole-

brain coverage. The scanning session featured four functional runs, in which 458 volumes were 

acquired for each run. Five dummy scans were added at the start of each functional run and 

excluded from statistical analyses. To assist with anatomical normalization we acquired a T1-

weighted structural volume using a magnetization prepared rapid acquisition gradient echo 

protocol (TR = 2250 ms, TE = 2.98 ms, flip angle of 9 degrees, resolution of 1 mm isotropic, 

256 x 256 x 192 matrix). We acquired field maps after the first two functional runs, in order to 

address signal dropout and correct for spatial distortion. Field maps were acquired using the 

same geometry as the EPI sequence in the functional runs.  

 

 Regions of interest 

Four 10 mm3 spherical ROIs were selected within the left hemisphere (Figure 3). 

Selection of these ROIs was a priori and theoretically driven, based on prior work on reading 

in the ventral stream (Gold & Rastle, 2007; Taylor et al., 2019; Vinckier et al., 2007). From 

posterior to anterior, ROIs were located in the inferior occipital cortex, posterior fusiform 

gyrus, anterior fusiform gyrus and the middle temporal gyrus. The three most posterior ROIs 

were based on the findings of Vinckier et al. (2007), who localised orthographic areas within 

the ventral stream that corresponded with hierarchical orthographic processing during word 

reading. The two most posterior ROIs were based on exact MNI co-ordinates of ROIs used by 

Vinckier et al. (2007). The co-ordinates for the third ROI were averaged across co-ordinates of 

the three most anterior ROIs identified by Vinckier et al. Our ROIs (10 mm3 sphere) were 
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larger than those used by Vinckier et al. (4 mm radius); therefore, averaging was necessary to 

avoid overlap. In line with Fischer-Baum et al. (2017), we decided to increase the size of our 

ROIs as our pre-processing did not include spatial smoothing. By enlarging the ROIs, we aimed 

to account for individual variability within the ventral stream (Glezer & Riesenhuber, 2013). 

The fourth and most anterior ROI was located in the middle temporal gyrus, based on peak co-

ordinates for lexical-semantic activation identified by Gold and Rastle (2007), which were 

converted from Talaraich to MNI space. ROIs were created using MarsBaR (Brett et al., 2002) 

and anatomically labelled using the Automated Anatomic Labelling Atlas (AAL, Tzourio-

Mazoyer et al., 2002). Prior to analyses, ROIs were warped into each participants’ native space 

and overlaid with a grey matter mask using the Automatic Analysis de-normalisation module 

(Cusack et al., 2015).  

 

 

Figure 3. Locations of 10 mm3 spherical regions of interest in MNI space.  
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 fMRI analyses 

 Data pre-processing and the subsequent univariate analyses were conducted using 

the Automatic Analysis pipeline framework (Cusack et al., 2015) based on SPM12 (Friston et 

al., 1994). Pre-processing included motion correction, slice time correction and co-registration 

of the fMRI images to the T1 image, as well as segmentation of the T1 image into tissue types. 

Grey matter masks were created for each participant based on tissue probability being higher 

for grey matter than for any other tissue types. Five participants were excluded from analyses 

due to head movement exceeding 4 mm.  

Whole-brain univariate analyses were conducted to observe whether participants 

elicited typical activation associated with reading during the experiment. Spatial smoothing 

was applied using a 5 mm full width by half-maximum Gaussian kernel prior to the univariate 

analyses. The first-level contrast estimate images were normalised into Montreal Neurological 

Institute (MNI) space using a diffeomorphic anatomic registration through an exponentiated 

lie algebra algorithm (DARTEL, Ashburner, 2007). For each participant we used a model 

including the six motion correction parameters as covariates and a first-level contrast 

comparing activation during reading all word stimuli to null-event trials in which participants 

viewed a fixation cross (Words>Baseline). At group-level, we conducted a one-sample t-test 

to determine whether the mean group-level activation statistically differed from zero at each 

voxel in the brain. 

The representational similarity analyses largely followed the same procedure as that 

used in other visual word recognition studies (Fischer-Baum et al., 2017; Taylor et al., 2019). 

The procedure is depicted in Figure 4. No spatial smoothing or normalisation was applied 

during pre-processing for the RSA analyses, since differences in adjacent voxels may provide 

valuable information for pattern analyses (Kriegeskorte et al., 2008). We constructed a general 
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linear model which included separate regressors for each of the word stimuli versus baseline, 

and the corresponding contrast estimate maps were entered in the ROI-based RSA analyses as 

implemented in the CoSMo MVPA toolbox (Oosterhof et al., 2016). As a result, we obtained 

a measure of the neural response to each word stimuli within each ROI for each participant. 

We then constructed observed neural dissimilarity matrices, which demonstrated how similar 

neural patterns of activation were between each word stimuli within each ROI for each 

participant. These were computed based upon one minus the Spearman rank correlation 

between the neural response for each word and every other word within the stimuli sets. The 

observed neural dissimilarity matrices were then compared to each of the hypothesized RDMs 

for stem and affix sets using a Fisher-transformed Pearson correlation coefficient. Correlation 

co-efficients were averaged across stem and affix sets for each RDM in each ROI. For each 

participant, this resulted in a correlation value for each RDM within each ROI, which expressed 

how well the RDM characterised the observed neural dissimilarity between words. Correlations 

were then analysed at group-level by conducting a one-sample t-test to determine whether 

correlations significantly differed from zero. As ROIs were selected prior to analyses, and RSA 

hypothesis were devised a priori, ROI group-level results were not corrected for multiple 

comparisons. The same procedure was observed in similar published RSA literature 

investigating the neural basis of reading, including Fischer-Baum et al. (2017) and Taylor et 

al. (2019). 
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Figure 4. Illustration of the MVPA–RSA region of interest analyses. BOLD response was 

measured while participants read each word. 

 

 Results 

 Behavioural performance 

 Mean accuracy for the recognition task was 83% (SE: 2%). Performance was 

statistically assessed using signal detection theory (Macmillan, 2002), where d’ = 0 would 

indicate no differences between signal and noise (chance performance). A one-sample t-test 

indicated that participants d’ prime scores significantly differed from chance (d’ = 2.32, t(23) 

= 12.26, p < .001). This result indicates that participants attended to the task and read the words 

presented on screen. 

 

 Univariate results 

 Figure 5 displays group-level activation during word reading, which was computed 

through the contrast Words>Baseline. Table 1 lists clusters of activation after applying an 
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uncorrected threshold set at p < .001 at voxel-level and a threshold set at p < .05 corrected by 

family-wise error (FWE) rate at cluster-level. The threshold for corresponding FWE-corrected 

peaks within clusters was set to p < .01. In the left hemisphere, the Words>Baseline contrast 

was associated with significantly increased activation in the fusiform gyrus, the inferior and 

middle occipito-temporal cortex and the precentral gyrus. In the right hemisphere, activation 

was significantly higher in the lingual gyrus, fusiform gyrus and the inferior and middle 

occipito-temporal cortex. These neural regions overlapped with those that are typically 

engaged during reading. For example, left ventral occipito-temporal cortex contains locations 

identified in the local combination detector model (Dehaene et al., 2005). Therefore, the 

univariate results further confirmed that participants engaged in reading behaviour during the 

task and that the expected neural representations were engaged during reading processes. 
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Figure 5. Univariate activation during word reading vs. viewing a fixation cross, uncorrected 

p = .001 cluster-forming and p = .05 FWE-corrected cluster extent thresholds.  
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Table 1. 

Whole brain univariate group-level results for Words>Baseline contrast. 

Brain Region L/R Peak Voxel k Z Cluster 
p-value 

Peak 

p-value 

Fusiform Gyrus L -35 -50 -18 3206 10.38  < .001  < .001 

   Middle Occipital Cortex L -18 -92 2  9.7   < .001 

   Middle Occipital Cortex L -40 -85 -2  8.98   < .001 

   Lingual Gyrus L -15 -90 -10  8.8   < .001 

   Fusiform Gyrus L -45 -62 -15  8.58  .001 

   Fusiform Gyrus L -45 -40 -18  8.35  .001 

   Inferior Occipital Cortex L -30 -82 -8  8.19  .001 

   Fusiform Gyrus L -40 -70 -12  7.92  .002 

   Middle Temporal Gyrus L -48 -48 5  7.58  .005 

Lingual Gyrus R 20 -88 -5 2928 1.07  < .001  < .001 

   Fusiform Gyrus R 38 -42 -22  8.94   < .001 

   Middle Occipital Cortex R 28 -90 5  8.7   < .001 

   Calcarine R 20 -95 2  8.48  .001 

   Middle Temporal Gyrus R 50 -65 5  7.76  .003 

   Cerebellum R 38 -65 -22  7.35  .009 

Precentral Gyrus L -60 0 25 2349 7.58  < .001 .005 

   Precentral Gyrus L -42 2 30  7.37  .008 

Results show brain regions with activation clusters after applying an uncorrected p = .001 cluster-
forming threshold, which clusters survive a cluster-extent threshold set at FWE-corrected p = .05 and 
a peak-level threshold set at FWE-corrected p = .01. L/R = laterality (left/right); peak voxel co-ordinates 
are reported in Montreal Neurological Institute (MNI) standard space; k = cluster size; Z = z-value for 
peak voxel. 

 

 Representational similarity analysis 

 Figure 6 displays mean correlations between the predicted RDMs and the neural 

dissimilarity observed within each ROI. As expected, the orthographic RDM (based on 

Levenshtein distance measures) was significantly correlated with patterns of neural activation 
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observed in the two posterior ROIs in the left hemisphere: the inferior occipital cortex, t(23) = 

5.42, p < .001, and posterior fusiform gyrus t(23) = 3.11, p < .01 (Figure 6A). The semantic 

dissimilarity RDM was significantly correlated with neural patterns observed in the most 

anterior left ROI, the middle temporal gyrus, t(23) = 2.21, p < .05 (Figure 6B). The embedded 

letter string dissimilarity RDM was also significantly correlated with patterns of neural 

activation observed in the two posterior ROIs within the left hemisphere, the inferior occipito-

temporal cortex, t(23) = 4.56, p < .001, and the posterior fusiform gyrus, t(23) = 3.47, p < .01 

(Figure 6C). Morpho-orthographic and morpho-semantic dissimilarity RDMs (Figures 6D and 

6E) were not significantly correlated with the neural patterns of activation observed in any of 

the ROIs (p-values > .05; Figures 6D-E). 
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Figure 6. Mean correlations between the observed 
neural dissimilarity and predicted RDMs in each ROI. 

Error bars denote one standard deviation from the 
mean, corrected for within-subject comparison (Loftus 

& Masson, 1994). Asterisks indicate whether group-
level one-sample t-tests indicated a correlation that 

was significantly different from zero. 

 

Embedded words 

act tract 
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 Discussion 

Readers form print-to-meaning mappings via multiple hierarchical levels of neural 

representations (Fischer-Baum et al., 2017; Taylor et al., 2019). These representations 

demonstrate sensitivities to the statistics of the writing system, such as legal letter combinations 

or word frequency. Morphological representations are an important intermediate link between 

orthography and meaning and therefore should be integrated within these processes (Rastle, 

2019b). In the current work, we used RSA to characterise the multiple levels of representation 

that arise during reading. First, we localised neural representations sensitive to orthographic 

and semantic information. Following previous work (Fischer-Baum et al., 2017; Taylor et al., 

2019), we predicted that words with similar orthography would elicit similar patterns of 

activation within posterior ventral stream regions and words with similar meanings eliciting 

similar patterns of activation in anterior regions. Then we investigated whether morphological 

representations mediate these levels of representation. 

 

 Transformation of print to meaning within the ventral stream 

Our first research aim was to localise neural representations that were sensitive to 

orthography and semantics. RSA analyses identified neural representations that were sensitive 

to orthographic information in posterior ventral stream regions and semantic information in 

anterior regions, as predicted by our first hypothesis. Neural patterns correlated with 

representations based on orthographic dissimilarity within the two most posterior ROIs, located 

in the left inferior occipital cortex and left posterior fusiform gyrus. These two ROIs were 

correlated with RDMs predicting orthographic dissimilarity from individual letter overlap 

(Figure 2A & Figure 6A. act-late) and embedded letter string dissimilarity (Figure 2C & Figure 
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6C, act-tract). Sensitivity to orthographic structure has been observed in ROIs with similar co-

ordinates in previous work (Taylor et al., 2019; Vinckier et al., 2007). These results align with 

previous findings, which demonstrate that the fusiform gyrus is sensitive to orthographic 

properties such as co-occurring letter probabilities (Binder et al., 2006, McCandliss et al., 2003, 

Vinckier et al., 2007). In addition, these findings support the proposal that the ventral stream 

becomes more attuned to larger fragments of words in a posterior-to-anterior gradient, 

extending from individual letters to frequent substrings (Dehaene et al., 2005). Representations 

based on semantic dissimilarity were correlated with the most anterior ROI, located within the 

middle temporal gyrus (Figure 2B & Figure 6B). This region has been associated with semantic 

processing in previous work (Fischer-Baum et al., 2017; Gold & Rastle, 2007; Taylor et al., 

2019, in which neural activity is similar for words with shared meaning regardless of 

orthographic similarity. 

Our initial findings support the over-arching hypothesis that print-to-meaning mapping 

occurs via multiple levels of neural representation, which are transformed in a posterior-to-

anterior gradient along the ventral stream. Orthographic RDMs were correlated with neural 

activity in posterior regions, and the semantic RDM was correlated with activity in anterior 

regions. Our findings also provide evidence that readers encode progressively large 

orthographic units, as posterior regions were correlated with dissimilarity based on shared 

individual letters and embedded letter strings. This supports the prediction that readers encode 

increasingly large fragments of text within the ventral stream (Dehaene et al., 2005; Vinckier 

et al., 2007, Woolnough et al., 2020). 
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 The role of morphology in the ventral stream  

Our second aim was to investigate whether reading gives rise to neural representations 

that are specifically morphological in nature, and where these representations are situated 

relative to orthographic and semantic representations within the ventral stream. Rastle (2019) 

proposed that neural representations of morphemes should be integrated within the ventral 

stream, as they reflect statistical regularities that promote direct print-to-meaning mapping. 

However, existing neural proposals models of reading (Dehaene et al., 2005; Woolnough et al., 

2020) do not consider morphology beyond substring frequency. By using RSA to compare 

words with morpho-orthographic and morpho-semantic similarities, we were able to 

investigate the representational contribution of morphology beyond providing frequent 

combinations of letters.  

If morphological structure gives rise to neural representations mediating the mapping 

between orthography and semantics, representations should be observed in intermediate ventral 

stream regions. Contrary to our hypotheses, we did not detect neural activity that was sensitive 

to morphological structure. There was no evidence for representations based upon 

morphological structure, as none of the ROIs were significantly correlated with the morpho-

orthographic or morpho-semantic RDMs. In the absence of any significant correlation, there 

are two possibilities: Either reading does not give rise to representations that are specifically 

morphological in nature, or our design did not detect them. We consider methodological 

limitations and theoretical reasons as to why this may be the case. 

Lack of evidence for morphological representations could be attributed to low power. 

One of the key aspects of our design was to investigate the neural basis for morphological 

representations independently of orthographic and semantic representations. To achieve this, it 

was essential to ensure that orthographic and semantic RDMs used different brain-based 
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similarity calculations compared to morphological RDMs. The number of comparisons within 

morphological RDMs (100 comparisons per matrix) were substantially reduced relative to the 

other matrices (500 comparisons per matrix for orthographic and semantic RDMs and 600 

comparisons per matrix for embedded letter string RDM). The number of comparisons was 

also lower than in similar previous studies (Baeck et al., 2015: 180 comparisons; Fischer-Baum 

et al., 2017: 595 comparisons; Rothlein & Rapp, 2014: 264 comparisons; Taylor et al., 2019: 

276 comparisons). This reduction in power may have affected our ability to detect small 

correlations, and future work should ensure a greater number of comparisons to rule out this 

possibility. 

A further consideration is that readers may not have engaged in morphological processing 

due to the nature of the task. Wang et al (2018) demonstrated that semantic processing in the 

visual word form area is dependent on task demands, as correlations of RDMs modelling 

different semantic theories varied based on whether the task required taxonomic (feature-

based) or thematic (situation-based) semantic judgements. We selected a recall task as it 

involved passive viewing of words to reflect naturalistic reading. The task enabled us to include 

a measure to ensure that participants were attending to stimuli, whilst minimising extraneous 

neural activity generated from providing a response. As we were investigating the role of 

morphology in extracting meaning from print, a task that required semantic judgement may 

have been more appropriate. Recording neural behaviour while readers engage with 

morphologically complex words in a range of tasks may provide a clearer picture. 

Alternatively, it is possible that morphological representations did arise, but our 

analyses did not detect them. We opted to use a region-of-interest approach as we had specific 

predictions about the integration of morphological representations within the ventral stream. 

However, this approach depends on the assumption that the regions selected process this type 
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of information and we cannot rule out that neural representations sensitive to morphological 

properties may be situated elsewhere. To investigate this possibility, we conducted exploratory 

analyses using a whole-brain RSA searchlight approach (in which neural patterns are extracted 

from each voxel within the brain and a pre-specified neighbourhood radius of surrounding 

voxels). We applied the same pre-processing steps outlined for the previous RSA analyses. We 

created a grey matter mask (based on voxels exceeding 10% probability of containing grey 

matter) for each participant by de-normalising and co-registering EPI images to grey matter 

tissue segmentation. Searchlight analyses were conducted in each participants’ native space by 

using a 100-voxel spherical searchlight on each voxel within the grey matter mask. This 

produced whole-brain statistical maps demonstrating correlations between each RDM and 

patterns neural activity for each participant. These maps were normalized to MNI space and 

submitted to a one-sample t-test to identify voxels in which correlations were significantly 

larger than zero at group-level. These analyses did not reveal any significant correlations 

between morpho-orthographic and morpho-semantic RDMs, based on uncorrected p = .001 

cluster-forming and p = .05 FWE-corrected cluster extent thresholds. 

We also considered the possibility that morphological representations may occur within 

the ventral stream (or elsewhere in the brain), but our RDMs may not accurately characterise 

them. One of the key features of RSA is that construction of RDMs requires precise predictions 

about the properties of theories being tested (Fischer-Baum et al., 2017). Morphological RDMs 

were modelled upon discrete stages of morpho-orthographic and morpho-semantic processing, 

based upon the theory that readers decompose words into possible constituent morphemes prior 

to lexical access (Rastle et al., 2004). Comparisons within these RDMs were categorically 

coded as either similar or dissimilar, depending on whether they had a shared form-based 

appearance of morphology (morpho-orthographic) and whether words shared a meaningful 
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morphological relationship (morpho-semantic). As Fischer-Baum et al. (2017) outline, the 

successful application of RSA relies upon the assumption that theories underlying RDMs are 

characteristic of the information represented at neuronal level. Hence, it is important to 

consider alternative cognitive theories that may explain why morphological effects arise.  

Connectionist theories propose that readers encode morphology as statistical 

regularities that reflect convergence of orthographic and semantic codes (Joanisse & 

Seidenberg, 1999; McClelland & Patterson, 2002; Plaut & Gonnerman, 2000). According to 

this view, morphological relationships arise from systematic convergence between word forms 

and their meanings. Consequently, connectionist theories would characterise morphological 

relationships on a graded continuous scale rather than through categorical distinctions (such as 

morpho-orthographic and morpho-semantic). Other proposals have suggested that 

morphological processing could arise from statistical regularities in orthography alone. 

Lelonkiewicz et al. (2020) have suggested that morphemes have a statistical orthographic 

advantage over other frequent letter combinations, as they are position-specific (i.e. they 

consistently appear at the beginning or the end of a word). They propose that position-

specificity frequency can explain why divergent priming effects occur between words with 

plausible and implausible morphological structure (corner-CORN vs. window-WIND; Rastle et 

al., 2004) and thus argue that morphological processing can be explained on a purely 

orthographic basis. Future work could use RSA to construct multiple RDMs according to 

alternative morphological theories and compare how well each RDM correlates with neural 

activity within the ventral stream. This would enable researchers to delineate between 

competing accounts of morphological processing and determine the cognitive theory that most 

accurately characterises the neural representations that arise from morphology. 
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To summarise, we did not find evidence for neural representations that were 

morphological in nature. However, we cannot conclude that these representations do not occur 

during skilled reading. Model-based calculations for our theoretical RDMs may not have been 

a good proxy for the neural activity that arises during morphological processing, or 

representations may not have been detected due to limitations in power. We have outlined how 

future work can use RSA to test competing accounts in order to provide clarification on 

unresolved questions around the role of morphology within the ventral stream. 

 

 Conclusion 

Our findings consolidate previous work and support the proposition that readers extract 

meaning from print via hierarchical representations in a posterior-to-anterior direction along 

the ventral stream. There was evidence that readers form representations for embedded letter 

strings that contain letter combinations associated with morphemes; however, these 

representations seem to be formed on an orthographic basis. Neural patterns that arose from 

words that could not be decomposed into constituent morphemes (e.g. regret, tract) elicited 

similar patterns of activation for words with a viable morphological structure (e.g. re-claim, 

en-act). Therefore, we did not find any evidence for any representations that were specifically 

morphological in nature. This work demonstrates an innovative approach to investigating the 

neural basis of multiple representational levels proposed to arise during morphological 

decomposition. We have proposed how RSA can be applied in future research to address 

limitations within the current study, and to delineate between alternative cognitive accounts of 

morphological processing. Understanding the neural representations that underpin these 

processes can greater inform how structural properties within the writing system contribute to 
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the mapping between print and meaning during skilled reading, and how this expertise is 

integrated into wider processes. 
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 CHAPTER SEVEN: DISCUSSION 
 

The processes that contribute to visual word recognition are highly versatile. Successful 

recognition is achieved via a complex set of interacting cognitive processes, which are shaped 

by the written environment. In order to establish a fully integrated account of reading, we must 

first recognise the factors that drive readers’ adaptability. The overarching aim of this work 

was to advance understanding of the nature and deployment of representations arising during 

the early stages of word reading. The studies presented within this thesis investigated how 

representations are shaped by both short-term and long-term factors. Chapters 3 and 4 explored 

how the saliency of different orthographic cues is influenced by immediate context, whereas 

Chapters 5 and 6 examined whether orthographic representations are moulded by long-term 

knowledge of the writing system. This final chapter evaluates the evidence presented within 

this thesis, considers theoretical implications for existing models of reading, and proposes some 

future directions for research. 

 

 How are representations shaped in the short-term by immediate context? 

Identifying a written word requires readers to integrate multiple sources of visual and 

linguistic information simultaneously. There is wide indication that these cues are adaptably 

weighted based on situational factors, including characteristics of the word, relationships with 

other known words, and the context in which the word appears. Consequently, there are 

dynamic differences in how orthographic information is integrated online across individual 

instances of visual word recognition. Past research has investigated how readers integrate cues 

from various different levels of orthographic structures, including feature-level cues (e.g. 
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Kinoshita & Kaplan, 2008; Marcet & Perea, 2017), word-level cues (e.g. Grainger & Jacobs, 

1994; Reicher, 1969; Wheeler, 1970) and sentence-level information (e.g. Federmeier et al., 

2007; Snell & Grainger, 2019; Staub, 2015). However, there has been little cross-investigation 

into how cues at different levels in the processing hierarchy interact with each other. 

The first half of this thesis investigated how letter identification is influenced by 

surrounding orthographic context. Letter identification sits at an interesting mid-point in visual 

word recognition, as individual letters are combinations of low-level visual features, and are 

also assembled alongside other letters to form component parts of a word. From a simple 

perspective, letter identification could thus be considered as both a start and an end point of 

recognising different orthographic constituents. However, previous research indicates that 

these processes are not distinct from each other. Instead, there is evidence that orthographic 

information cascades across hierarchical levels during visual word recognition. The word 

superiority effect serves as a prime example that letter identification is not solely guided by 

properties of the individual letter, but also by orthographic information from surrounding letters 

within the string (Reicher, 1969; Wheeler, 1970). In Chapters 3 and 4, we used the word 

superiority effect as a mechanism to test the scope of influence from surrounding orthographic 

information, and the extent to which this information leaks into the processing of various 

different orthographic structures. This enabled us to develop an account of how readers 

integrate low-level visual information and high-level sentence information during word 

recognition, in situations where cues provided either collaborative or conflicting information. 

Chapter 3 explored whether effects of word level knowledge on letter identification are 

influenced by surrounding sentence context. There was substantial variability in letter 

identification facilitation due to a corresponding word representation, which was dependent 

upon whether the word aligned with predictions from sentence context. The word superiority 
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effect was larger in high constraint sentences where the word was the most predictable 

candidate, compared with low constraint contexts in which many words had an equal likelihood 

of occurring. Critically, word representations did not provide any facilitative advantage for 

letter identification if the word violated sentence predictability expectations. These findings 

suggest that readers neglect precise letter level processing if the higher-level knowledge 

provides a strong enough indication of what the upcoming word will be. In other words, the 

precision of orthographic processing depends on the perceived accuracy with which words can 

be anticipated from sentence context. 

Chapter 4 investigated whether word level cues modulate readers’ dependence on fine-

grained feature level information. Visually similar letters are typically more confusable than 

dissimilar letters (Marcet & Perea, 2017), which suggests that letter identities are encoded with 

initial uncertainty. We proposed that higher-level word cues may enrich letter identification 

processes and subsequently reduce readers’ reliance on low-level visual distinctions. 

Orthographic context (whether letters appeared in a word, pseudoword or consonant string) 

and visual similarity (whether readers discriminated between visually similar or dissimilar 

letters) had independent effects on letter identification. In the absence of an interaction, we 

were unable to establish whether orthographic context mediated the effect of visual similarity 

specifically. However, the magnitude of the effects did indicate that higher-level orthographic 

information plays a greater role than lower-level visual feature information in letter 

identification. We proposed that visual similarity effects were encapsulated within word-level 

effects because readers could use orthographic knowledge to refine potential letter candidates 

while visual feature information is accumulated.  

Across both chapters, the findings consistently indicated that orthographic cues are 

hierarchically integrated, with descending weights allocated to sentence-, word- and letter-level 
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information. Readers had greater difficulty discriminating between visually similar letters (e.g. 

e/c) compared with dissimilar letters (e-k), although visual feature similarity effects were 

eclipsed by differences in word-level information. Overall letter identification was more 

accurate if the letter appeared in a legal orthotactic combination, and further still if the letter 

appeared in a known word (e.g. well/wcll). Thus, in single word recognition, lexical knowledge 

proved to be the driving force in letter identification. Within a sentence, letter identification 

was further facilitated by information from preceding context if it provided additional 

corroboration for the surrounding letter string (e.g. the child fetched water from the well). 

However, conflicting sentence-level information produced an inhibitory effect, whereby the 

lexical advantage was eliminated if the word violated readers’ expectations (e.g. the old man 

was writing his well). This suggested that readers rely preferentially on sentence-level 

contextual information when it is available. 

Overall, the evidence presented in the first half of this thesis indicates that letter 

identification processes are signal-contingent; readers adapt orthographic processing based on 

the information available in order to balance precision with efficiency. Cues from higher-level 

knowledge can cause lower-level cues to become redundant, or they can even have inhibitory 

consequences for word or letter recognition if they contradict information from the bottom-up 

signal. The biased weighting towards higher-level knowledge could reflect the refinement of 

orthographic candidates (such as words, sub-lexical units or letters) whilst lower level 

information is still being accumulated, which can in turn inform the optimal depth of 

orthographic processing required. This provides support for cascaded processing; whereby 

earlier stages of processing do not have to be complete before later stages begin (McClelland, 

1979). Critically, these processes are not encapsulated within individual words, as the influence 

of surrounding orthographic context on letter identification extends beyond word boundaries 
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to other words within a sentence. The theoretical implications of these findings are considered 

later in this chapter. 

  

 How are representations shaped in the long-term by knowledge of the writing 

system? 

The second half of this thesis focused on how the weighting attributed to various 

orthographic cues emerges from long-term experience with the writing system. The 

representations that support visual word recognition are likely to arise in response to the text 

environment (Frost, 2012b). Therefore, a full understanding of visual word recognition requires 

‘deep appreciation’ of the salient characteristics that emerge within a given written language 

(Rastle, 2019a). If reading reflects the writing system, it is important to consider the nature of 

the input (what is read) as well as the processes used to analyse this information (how it is 

read). Based on this premise, Chapters 5 and 6 investigated how representations are shaped by 

statistical regularities within a writing system, and how these are encoded within the brain.  

Chapter 5 investigated whether flexibility in letter position coding is dependent on 

orthographic density. Our artificial language learning paradigm demonstrated that readers 

encode letter position with greater precision in dense orthographies with many anagrams 

relative to sparse languages with very few anagrams. This was shown through greater detection 

of untrained stimuli formed by transposing letters of trained stimuli. The findings provide 

evidence that flexibility in letter position coding is not universal across languages, hence it 

cannot solely be attributed to general cognitive or neurobiological factors. Instead, the results 

indicate that letter position coding is determined through exposure to the written environment. 
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Readers use distributional information to determine the precision of orthographic processing 

required for efficient and accurate word recognition. 

In Chapter 6, we used representational similarity analysis to characterise the neural 

representations that arise during reading of morphologically complex words. We proposed that 

readers might form specialised neural representations based on orthographic and semantic 

properties of morphemes, due to the regularity they provide to the mapping between print to 

meaning (Rastle, 2019b). The results indicated that readers form print-to-meaning mappings 

via multiple hierarchical levels of neural representations along the ventral stream. Neural 

patterns of activity in posterior regions showed sensitivity to orthographic information, 

whereas anterior regions demonstrated sensitivity to semantics. Readers formed intermittent 

orthographic representations for letter strings associated with morphemes; however, these 

representations were formed regardless of whether the stimulus could be parsed fully into 

existing morphemic constituents. Therefore, we were unable to confirm that these 

representations were morphological in nature. Due to limitations in power, follow-up work is 

required to fully understand whether readers form neural representations for morphemes, and 

whether such representations reflect distributional knowledge or discrete stages of 

morphological processing. Our results could also indicate that orthographic representations 

associated with intermediate sub-lexical structures reflect sensitivities to other distributional 

statistics in the writing system, such as bigram frequency.  

Chapters 5 and 6 illustrate that readers form long-term weightings for different sources 

of orthographic information based on statistical salience within the writing system. By 

integrating distributional information, readers can determine the precision of orthographic 

processing required to differentiate between words and develop intermediate representations 

to assist mappings between print, sound and meaning. Chapter 5 in particular provides powerful 
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evidence of how readers of two different writing systems develop comparable proficiency at 

visual word recognition, whilst demonstrating striking differences in their underlying 

representations. Ultimately, these findings show that the nature of the text environment has a 

direct impact on how words are learned, and formation of the corresponding representations 

that support visual word recognition. 

Multiple theories suggest that cross-linguistic differences in visual word recognition are 

due to differences between writing systems. The most distinguished proposals were initially 

developed to explain differences in demands based on consistency between orthography and 

phonology. Examples include the orthographic depth hypothesis (Katz & Frost, 1992; Schmalz 

et al., 2016) and psycholinguistic grain size theory (Ziegler & Goswami, 2005). Both theories 

suggest that readers analyse different size orthographic units in order to achieve maximal 

consistency within the writing system. Under this premise, readers of consistent orthographies 

will more readily decode words via grapheme-phoneme correspondences. In contrast, low 

consistency orthographies prompt greater reliance on whole-word lexical processing, or 

encoding of larger orthographic units such as syllables, rimes and morphemes. These proposals 

therefore include specific predictions that readers form representations for sub-lexical 

structures that provide systematic mappings between meaning, sound and print. Further, their 

principles can be extended to explain differences in letter position coding. Readers of dense 

orthographies with many anagrams may rely on a larger grain size to analyse larger 

combinations of letters in order to tell words apart. 

As our findings suggest that word recognition processes are optimised through gaining 

expertise within a writing system, further insights can be gained from theories of reading 

acquisition. Several accounts of reading development highlight the written environment as a 

central factor in forming optimal word representations. Amalgamation theory (Ehri & Wilce, 
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1983), the lexical quality hypothesis (Perfetti, 2007) and the lexical tuning hypothesis (Castles 

et al., 2007) predict that reading acquisition is characterised by continuous refinement of word 

representations through the accumulation of print experience. Almagamation theory suggests 

that refinement occurs through repeated encounters, as readers build ‘access routes’ to efficient 

word recognition by repeatedly encoding visual symbols with systematic linguistic information 

(e.g. phonemes or morphemes, Ehri & Wilce, 1983). The lexical tuning hypothesis predicts 

that word representations are also shaped through exposure to written information that can be 

differentiated in some way, as this enables word recognition processes to continually adapt to 

meet the requirements of a growing written vocabulary (Castles et al., 2007). For example, 

learning new words may increase neighbourhood size and subsequent competition, hence 

readers must tighten their precision in how these words are identified in order to maintain 

accurate recognition. 

Theories of cross-linguistic processing and reading acquisition provide converging 

arguments for how readers make optimal use of information within the written environment, 

and the fundamental role that learning plays. Hence, they have the scope to explain why readers 

are sensitive to distributional saliences, and why cross-linguistic differences arise. The next 

section outlines how our findings can be accounted for by existing models of visual word 

recognition, and the challenges for interpreting our results if sub-lexical processes are 

constrained to the needs of a specific orthography. Going forward, theories of cross-linguistic 

acquisition could be fundamental in bridging this gap if they can be reconciled with existing 

models of skilled reading in which the role of the written environment is underspecified. 
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 Implications for theoretical models of reading 

The evidence presented within this thesis establishes three broad findings in relation to 

visual word recognition. Firstly, readers hierarchically integrate orthographic information with 

a weighted bias towards higher-level knowledge. Secondly, the influence of surrounding 

orthographic information on sub-lexical processing extends beyond individual word 

boundaries to other words within sentence context. Finally, the weightings assigned to various 

sources of orthographic information are shaped by salient characteristics of the writing system. 

Each of these findings has theoretical implications for cognitive and computational models of 

reading. In this section, I outline the extent to which contemporary models of reading can 

account for these principles. 

 

 Descending hierarchical weightings biased toward top-down knowledge 

The findings presented within this thesis consistently show that readers routinely attribute 

greater weighting to higher-level orthographic knowledge compared to information from 

smaller orthographic units. This suggests that cues are hierarchically integrated, with broader 

contextual cues determining the precision with which readers analyse lower-level sub-lexical 

details. We propose that readers sacrifice precision in lower-level processing if higher-level 

cues provide sufficient evidence of a word’s identity, in order to maintain an optimal balance 

between efficiency and accuracy during visual word recognition. 

These hierarchical weightings are well characterised by cascaded processing, where later 

stages of word processing are implemented before earlier stages are completed (McClelland, 

1979). Cascaded processing is a prominent feature in the interactive activation model 

(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982) and the successors that 
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implement it, including the dual-route cascaded model (Coltheart et al., 2001) and the 

connectionist dual-process models (CDP+; Perry et al., 2007; CDP++; Perry et al., 2010; Perry 

et al., 2013). In these models, nodes representing different size orthographic units are 

dynamically weighted and send excitatory and inhibitory feedback to each other and other 

layers within the network. Interactive activation models are able to explain why the influence 

of larger orthographic units (such as orthographic word status) eclipses the impact of cues from 

smaller orthographic units (such as visual feature similarity). Feature nodes send activation to 

letter nodes, which are simultaneously receiving activation feedback from corresponding word 

nodes in which they are featured. Consequently, feedback from word-nodes play a greater role 

in activating a letter representation compared to bottom-up activation from feature-level 

information alone. Therefore, cascaded processing can account for why effects of visual feature 

similarity are outweighed by cues from lexical information when available. 

Alternatively, readers may generate multiple codes during visual recognition, based on 

orthographic units of various sizes. The greater weighting attributed to higher-level information 

may be a consequence of the representation of a larger orthographic unit being activated in a 

shorter timeframe than that required to activate all of its individual component parts. This 

principle is adopted by the multiple read-out model (MROM; Grainger & Jacobs, 1996), which 

proposes that readers recognise words or word properties via multiple codes with adjustable 

criteria. For example, readers may accept or reject a letter string in a lexical decision task based 

on activation levels for a specific word surpassing a threshold (the M criterion), or if summed 

activation levels for all active word representations surpass a threshold (the Σ criterion). 

Alternatively, a letter string may be rejected as a word if activation does not reach a certain 

level within a timeframe (the T criterion). The MROM explains the word superiority effect as 

activation surpassing the threshold for a larger orthographic unit (the word) prior to its 
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component parts (individual letters). This argument can explain why top-down word level 

information had a relatively larger impact than bottom-up feature information in establishing 

letter identities in Chapter 4, if lexical or orthotactic thresholds are met prior to individual letter 

thresholds from feature information. 

One further possibility is that information from higher-level knowledge assists in 

strengthening reader predictions, which may reduce the depth of fine-grained orthographic 

analysis required. This explanation aligns with Bayesian models of reading, which propose that 

visual word recognition is achieved by readers combining tentative evidence with knowledge 

of prior probability (Norris, 2006; Norris et al., 2010; Norris & Kinoshita, 2012). From a 

Bayesian perspective, one could argue that bottom-up analysis of lower-level orthographic 

features constitutes the tentative evidence and integration of top-down orthographic knowledge 

shapes the priors of the expected visual word representation. Unlike the majority of reading 

models, Bayesian models do not assume that visual word recognition is underpinned by 

specialised orthographic processing, or any processes that are distinct from those used to 

recognise other visual objects (Norris & Kinoshita, 2012). The greater influences of higher-

level orthographic cues (i.e. word status) relative to lower-level visual cues (i.e. feature 

information) may not reflect specialised lexical processing, instead they may be due to readers 

having stronger priors for letter combinations associated with known word representations, 

which requires less detailed analysis of the visual evidence.  

A wide range of models are able to account for the weighting assigned to higher-level 

linguistic cues relative to lower-level orthographic cues, either through cascaded processing, 

generation of multiple codes or through Bayesian predictions of probability. Thus far, I have 

outlined how these different principles can account for descending hierarchical weightings 

when words are read in isolation. However, our work also demonstrates that readers integrate 
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orthographic information beyond single word boundaries, drawn from surrounding words 

within sentence context. In the next section, I consider how existing models of word reading 

can account for the influence of sentence-level information on sub-lexical processing. 

 

 Sentence-level influences on within-word processing 

Past research has indicated that correspondence with an existing word representation 

provides a golden ticket to more accurate and efficient letter identification (Reicher, 1969; 

Wheeler, 1970). However, this work has predominantly focused on words presented in 

isolation. The work presented in Chapter 3 demonstrates striking evidence to the contrary when 

words appear within a sentence. Correspondence with an existing word representation can be 

beneficial if the word representation aligns with the target. However, existing word 

representations are also disruptive if the letter string shares orthographic similarities with 

another word that is more likely to appear within the given context. When a word violates 

sentence-level expectations, there is no evidence to suggest that letter identification is any more 

accurate in words compared to pseudowords. This indicates that readers rely on lexical cues 

only in the absence of constraining sentence information. When words appear in sentences, 

readers preferentially use cues from surrounding context to narrow the pool of potential word 

candidates. In this situation, letter identification is facilitated by correspondence with a 

selective set of context-appropriate words, rather than any known lexical representation. 

Evidence of sentence-level influences on sub-lexical processing poses major theoretical 

implications for cognitive models of word reading, which have typically focused on how 

readers recognise words in isolation (Coltheart et al., 2001; Grainger & Jacobs, 1996; Harm & 

Seidenberg, 2004; McClelland & Rumelhart, 1981; Perry et al., 2007; Perry et al., 2010; Perry 
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et al., 2013; Plaut et al., 1996; Rumelhart & McClelland, 1982; Seidenberg & McClelland, 

1989). Most of the models that include sub-lexical letter-level processes do not consider how 

readers integrate information beyond single-word context, whereas models of sentence reading 

tend to eschew sub-lexical processing and include whole words as the smallest unit of 

representation (Engbert et al., 2002; Engbert et al., 2005; Reichle et al., 2003). As a result, there 

is a substantial disconnect between models of single word and sentence reading. Our findings 

suggest that models of sentence reading and single word reading cannot be additively 

combined, as this would be dependent on modelling words as isolated components that 

individually slot into a larger sentence structure. Due to the influence from surrounding words 

on sub-lexical processes, it is clear that this is not an accurate depiction of reading behaviour. 

Instead, this work highlights the need for an integrated model that considers basic orthographic 

processes within meaningful sentence contexts. 

 As identified in Chapter 3, the OB-1 Reader is the closest candidate with the potential 

to explain sentence context effects on sub-lexical processing, as it is able to outline how graded 

word recognition in sentences and sub-lexical processing can be integrated. The OB-1 Reader 

features a word recognition module where letter information across the visual field (including 

across other words) assists in activating lexical candidates (Snell et al., 2018). Individual words 

are recognised via a combination of bottom-up constituent bigram activity, competition with 

other word representations and top-down contextual predictability. Importantly, Snell and 

Grainger (2019) assert that word recognition should not be segregated into letter-level 

processing and conscious identification. Instead, they propose that readers consider tentative 

representations at various intermediate levels of processing based on information from multiple 

surrounding words within the sentence. The authors further suggest that this behaviour can be 

explained by the broader principles of cascaded processing, whereby a word does not have to 
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be fully recognised in order to activate higher-order features. Therefore, contextual 

predictability effects on sub-lexical processing can be explained by word representations being 

partially activated at various levels based on top-down input from sentence context. This 

account aligns with our empirical findings in Chapter 3, as readers appeared to identify a word 

based on a “good enough” match to the expectation from sentence context, which resulted in 

lower precision for letter-level processing. Under this account, influences from other words on 

sub-lexical processing are an extension of cascaded processing using information from a higher 

multiple-word level within the representational word recognition hierarchy. 

 In theory, Bayesian models are also able to account for sentence-level effects with their 

existing principles, as they assume that word recognition processes are signal-contingent. 

According to Bayesian models, words are recognised by accumulating noisy visual evidence 

and comparing it with expectations from prior probability (Norris, 2006; Norris et al., 2010; 

Norris & Kinoshita, 2012). When identifying a word, readers may use surrounding sentence 

context to adjust the priors used to analyse provisional evidence whilst it is being accumulated. 

This argument can explain why a lexical advantage is narrowed to a predictability advantage 

in sentence context, as only a reduced set of word candidates would have stronger priors 

relative to other letter combinations. Further, stronger priors (driven by predictability from 

sentence context) reduces the precision with which the evidence is analysed. This can explain 

why inhibition effects arise in unpredictable neighbours of predictable targets. 

 

 The role of the writing system 

The final significant finding within this thesis is that the weightings assigned to various 

sources of orthographic information are optimised according to salient characteristics of the 
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writing system. Models of reading should be sensitive to the role of the written environment as 

a key factor in forming optimal word representations, and enable flexibility for processes to 

differ across languages. Previous work has demonstrated how the architecture of existing 

models can be modified to process language-specific properties, for example, alternative letter 

position coding schemes can replace slot-based coding to produce transposed letter effects 

(Davis, 2010; Gomez et al., 2008; Grainger & Whitney, 2004; Whitney, 2001). Similarly, 

model frameworks have been adapted to incorporate morphological processing (see 

Gonnerman et al., 2007; Taft, 1994; Taft, 2006; Taft & Nguyen-Hoan, 2010). However, a full 

theoretical account of visual word recognition must also be able to explain how universal 

cognitive processes interact with salient properties of different writing systems to explain how 

cross-linguistic differences emerge (Frost, 2012a; Frost, 2012b; Share, 2008). 

 Interactive activation models are limited in this respect, as prior knowledge of the 

writing system is assumed and processing is hardwired. Activation and inhibition connections 

are static and based on fixed prespecified metrics such as word frequency (Coltheart et al, 2001; 

Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). 

Consequently, these models have little to say about the role of the writing system as the input, 

and do not model learning, which restricts their ability to explain how reading processes and 

corresponding representations may vary across languages and/or through exposure to a 

particular writing system. 

In contrast, connectionist models incorporate learning, which provides indication of 

how word recognition processes may change through reading experience. The triangle model 

is based on the premise that words are recognised via weighted connections between units 

representing orthographic, phonological and semantic properties (Harm & Seidenberg, 2004). 

Critically, connection weightings are adjusted based on repeated activation and error feedback 
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to reflect salient distributional information within the writing system. This principle entails that 

the triangle model can account for readers using different mechanisms or strategies depending 

on the orthography (Seidenberg, 2011). 

Connectionist dual-process models incorporate learning within the sub-lexical TLA 

network (Perry et al., 2007; Perry et al, 2010), which has been implemented in multiple 

languages including English (Perry et al., 2007; Perry et al, 2010), Italian (Perry et al., 2014a) 

and French (Perry et al., 2014b). However, learning relies heavily on exposure to large training 

sets in which word pronunciations with grapheme-phoneme correspondences are explicitly 

provided. Based on this input, the TLA sub-lexical network learns to extract letter combinations 

as graphemes and insert them into a template, which is predefined and manually modified to 

suit the characteristics of different orthographies. Arguably, learning within connectionist dual-

process models is more indicative of generalisation from existing known rules rather than 

through the emergence of salient characteristics. Previous commentary has criticised these 

models for their reliance on supervised learning, suggesting that the initial explicit provision 

of thousands of correct pronunciations creates an unrealistic learning environment (Zorzi, 

2010). Instead, learning environments could be simulated through unsupervised statistical 

learning, as implemented in models of acquisition (e.g. Dufau et al, 2010; Hutzler et al., 2004). 

These developments would not only improve CDP models’ abilities to demonstrate how 

orthographic weightings emerge, they may also permit the flexibility to demonstrate how 

orthographic information is differentially weighted in different linguistic environments.  

Our findings can be interpreted under Bayesian models of reading, which place notable 

emphasis on the role of the environment. If word recognition is achieved by assessing noisy 

evidence against knowledge of prior probability, then the priors that evidence is compared 

against will be shaped by previous exposure to the writing system. Notably, Bayesian models 
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of reading explicitly account for cross-linguistic differences in visual word recognition, by 

clearly defining the roles of universal perceptual processing and environmental factors from 

the reading environment. Norris and Kinoshita (2012a) propose that ‘orthographic processing 

is universal; it's what you do with it that's different’. They suggest that the same basic 

perceptual processes are applied to processing orthographic information in all languages. 

Cross-linguistic differences then arise based on how readers use this information depending on 

established mappings within the writing system of a given language. For example, Norris and 

Kinoshita (2012a) suggest that letter position is encoded with a degree of perceptual uncertainty 

across all orthographies, which increases in precision specifically during word identification. 

This is dependent on the precision required to achieve optimal word discrimination under the 

demands of the writing system. In recent years, there has been emerging support for this 

argument, as transposed-letter effects have been observed in low-level perceptual tasks (e.g. 

same-different tasks) in orthographies that do not typically show transposed-letter effects in 

lexically driven tasks (e.g. lexical decision), such as Hebrew (Kinoshita et al., 2012) and 

Korean (Lee et al., 2021). 

Finally, the role of the written environment is also addressed in multiple neuro-

biological models of reading, including local combination detector model (Dehaene et al., 

2005) and Grainger and colleagues’ (2016) visual model of reading. According to the local 

combination detector model, readers recognise words using a series of hierarchical detectors 

that increase in size and process increasingly complex orthographic information within the 

ventral stream. There is substantial evidence to suggest that the ventral stream is sensitive to 

the statistics of natural language (Vinckier et al., 2007; Woolnough et al., 2020). Larger 

detectors are proposed to encode frequently recurring substrings, such as morphemes or multi-

letter graphemes, which enable readers to form neural representations based on salient sub-
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lexical units (Dehaene et al., 2005). We proposed that this explanation can be extended to 

explain differences in letter position coding across dense and sparse orthographies, as readers 

may need to consider positional information from a larger window of letters to reliably 

differentiate between words. Alternatively, the visual model of reading proposed by Grainger 

et al. (2016) proposes that skilled readers recognise words by analysing coarse- and fine-

grained codes simultaneously (see also Grainger & Ziegler, 2011). Coarse-grained codes 

rapidly generate whole-word orthographic forms from bigrams, whereas fine-grained codes 

comprise precisely ordered orthographic chunks associated with graphemes and morphemes. 

Reliance across two codes with varying levels of precision provides flexibility to explain how 

readers adapt the precision of orthographic processing across languages, or even across tasks 

or contexts. 

 

 Summary 

 Existing models of visual word recognition vary in the extent to which they can account 

for our findings. Models must incorporate flexibility in the precision of orthographic processing 

as the optimal degree varies locally across different words and contexts, as well as cross-

linguistically across different orthographies. The majority of models of single word reading 

can account for the greater influence of higher-level orthographic knowledge relative to lower-

level orthographic details, either through cascaded processing, generation of multiple 

orthographic codes or Bayesian probabilities. However, the majority of these models are not 

able to explain how sub-lexical processing is modulated by orthographic information from 

surrounding words in sentence context. Conversely, models of sentence reading do consider 

influences on visual word recognition from surrounding context, but sub-lexical processing 

tends to be underspecified. This limitation reduces the classes of models that can account for 



CHAPTER 7: DISCUSSION 
 

 

 217 

our findings to those that consider both sentence-level and sub-lexical processing. The two 

most successful candidates are the OB-1 Reader model and Grainger et al.’s (2016) visual 

model of reading, although the principles of Bayesian models can also be interpreted to provide 

a compatible account. 

When interpreting our findings, one of the main limitations for many existing models 

of reading is that they do not consider how processes are shaped by the written environment. 

Connectionist models incorporate the capacity for learning, but it is unclear how learning 

processes are forged from characteristics of the input. Bayesian models highlight the role of 

the environment in shaping readers’ prior knowledge, however, there is not an explicit 

explanation on how this information is integrated long-term. Notably, neuro-biological models 

show considerable aptitude for explaining how processes are shaped by the written 

environment. Both the local combination detector model (Dehaene et al., 2005) and Grainger 

and colleagues’ (2016) visual model propose that neuro-biological structures can flexibly 

encode orthographic units of different sizes based on optimal structures within the writing 

system. As outlined previously, limitations in existing models of skilled reading could 

potentially be addressed by incorporating principles from models of reading acquisition or 

theories underpinning cross-linguistic differences. However, further work is required to 

understand how these accounts would be integrated. 

 

 Limitations and future directions 

This section considers some general limitations, and proposes how these can be 

addressed in future work. In addition, I consider a future agenda for how research can build 
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upon the current work and further advance our understanding of representations that arise 

during visual word recognition. 

 

 Limitations 

 Each experimental chapter has highlighted individual limitations associated with each 

study. Notably, interpretation of some findings was restricted due to issues with power. This 

was the case in Chapter 4, in which one of the hypotheses was dependent on detecting an 

interaction between feature-level and word-level factors. Whilst we can use power simulations 

to obtain a more specific estimate of the required sample size, practical limitations may persist 

for obtaining a large enough sample to detect smaller effects or interactions. Future research 

could overcome this limitation and increase the practical feasibility of larger sample sizes by 

encouraging data collaboration across research institutions. Adopting this approach would 

enable us to collect rich large sample datasets that capture word recognition behaviour across 

a wide range of different orthographic conditions (see Adelman et al., 2014, for an example 

with masked priming). This resource could enable us to answer complex questions in which 

multiple aspects of the orthographic hierarchy are simultaneously considered. 

A proportion of the neuroimaging analyses presented in Chapter 6 were also potentially 

underpowered. There is still little consensus on how to conduct power calculations for MRI 

analyses, particularly with more recent multivariate techniques (Cremers et al., 2017). We 

based our participant sample sizes on similar previous RSA studies (Fischer-Baum et al., 2017; 

Taylor et al., 2019), however we had not accounted for the reduction in item-based power when 

we removed specific comparisons. Future research designs should pre-empt the number of 

items required for well-powered comparisons and predictions, based on the expected effect size 
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of correlations between hypothetical representational dissimilarity matrices and observed 

neural dissimilarity. It is currently unclear how these estimations would be formed; thus 

methodological clarity is required within the field. 

 

 Future directions 

Each study shared the common aim to understand how specific word recognition 

processes are shaped by the written linguistic environment, whether this refers to immediate 

context or long-standing representations based on properties of the writing system. The 

findings have demonstrated that readers dynamically adjust the weight attributed to different 

sources of orthographic information depending on the cues available. In particular, precise 

scrutiny of low-level features is reduced if higher-level information provides sufficient cues 

for successful word recognition. More broadly, these findings illustrate how specific reading 

processes usually studied in isolation are influenced by other factors. This highlights the 

consequences of studying cognitive processes as component parts and reveals how the overall 

picture might change when we consider how these processes interact. The current work has 

tapped into just some of the aspects of the representational hierarchy when recognising printed 

words. There is ample opportunity to expand and investigate how other processes are 

influenced in light of the orthographic information available. An example could include 

investigating how predictability from sentence context impacts recognition of letter-

transposition neighbours relative to letter-substitution neighbours (e.g. the architect measured 

the angle/angel/ankle). Based on most letter coding schemes, letter-transposition neighbours 

should be more confusable with the target than letter-substitution neighbours. However, this 

difference may be eliminated in sentence contexts where readers may adopt a shallower 

analysis of letter-level information based on predictability expectations. By systematically 
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pitting different cues against each other, we can develop a more comprehensive account of how 

orthographic information is hierarchically integrated. 

On a similar theme, the sentence reading work presented in Chapter 3 could be 

advanced by delineating between sentence-level effects of unpredictability and implausibility 

on sub-lexical processing.8 Our understanding of how sentence expectations modulate sub-

lexical processing could be more nuanced if we had differentiated contexts that were unlikely 

(the football was kicked into the goat) from contexts that referred to semantically incongruent, 

or impossible, situations (the queen wore the sparkling gold crowd). As we did not make this 

distinction, we are unable to conclude definitively whether lower letter identification accuracy 

in unpredictable words was due to the expectation of a more predictable candidate, or due to 

an implausible anomalous word that violates reading expectations entirely. We may expect 

differences in reading behaviour based on this distinction, as effects of predictability deviate 

from effects of plausibility elsewhere in the sentence reading literature. For example, 

implausible words prompt longer overall gaze durations and more regressions than 

unpredictable words (Rayner et al., 2004; Veldre & Andrews, 2018). Unpredictable words 

produce a delayed positive increase in N400 amplitude, whereas truly implausible words do 

not evoke an increased N400 response at all (Van Petten & Luka, 2012). Future work could 

draw the distinction on how unpredictability and implausibility mediate letter recognition 

processes by carefully controlling stimuli in two separate conditions. This would enable 

researchers to understand which factor is driving the effect, and further, whether differences in 

predictability relative to plausibility are simply reduced or qualitatively different. Differences 

could have important theoretical implications for sentence reading models that incorporate 

                                                
8 Thank you to an anonymous reviewer, who made this suggestion when this work was under review at Cognition. 
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multiple stages of word recognition, in which later stages are skipped if an upcoming word 

meets sentence expectations, such as the E-Z Reader (Reichle et al., 2003) and SWIFT model 

(Engbert et al., 2002; Engbert et al., 2005).  

Future work would also benefit from developing a greater understanding of the division 

between biological and environmental constraints. Boundaries between biological and 

environmental influences on visual word recognition are blurred, as there is substantial 

evidence to show that visual and neural processes and structures adapt based on reading 

experience (Dehaene & Cohen, 2007; Grainger et al., 2010; Yablonski et al., 2019). Further, 

past work has shown that cross-linguistic differences can be dependent on task demands 

(Kinoshita et al., 2012; Lee et al., 2021). This latter finding highlights the risk of applying an 

overly dichotomous approach when classifying whether specific aspects of word recognition 

are due to universal cognitive processing or shaped by the written environment. Norris and 

Kinoshita (2012) suggest that the same basic perceptual processes are applied to processing 

orthographic information in all languages, and that readers then use this information differently 

to achieve optimal word discrimination under the demands of a specific writing system. 

Between-task differences provide insight of the depth and nature of processing required, for 

example, whether readers can attend to the task using low-level perceptual processing (e.g. 

same-different), broad lexical knowledge (e.g. lexical decision) or by identifying a specific 

word (e.g. reading aloud). Further work in this area would help to understand which processes 

are specialised to reading, and the influence of the written environment at different levels of 

representation. In turn, this can help delineate between theories of word recognition based on 

the extent to which they rely on specialised orthographic processing compared to domain 

general abilities.  
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As an additional consideration, understanding of the current findings could be enriched 

by investigating individual differences between readers. Despite extensive focus on the role of 

the written environment, the current work has little to say about the role of the reader as a 

navigator. Our results are based on group-level differences within demographically similar 

samples, which implicitly assumes the flawed notion that there is a prototypical reader (Yap et 

al., 2012). This is not ecologically valid, as reading processes are rarely uniform across readers. 

Skilled adult readers show wide variation in aptitude for the skills that underpin visual word 

recognition, such as spelling, vocabulary and grapheme-phoneme awareness (Yap et al., 2012). 

Variation in reading-related skills has been shown to mediate orthographic knowledge, and the 

extent to which processes are optimised based on the written environment. For example, 

readers with low grapheme-phoneme correspondence awareness demonstrate greater reliance 

on context to disambiguate between words with similar letters or pronunciations (Hersch & 

Andrews, 2012). 

Examination of individual differences could provide further insights into the role of the 

reader during hierarchical integration of orthographic information. Readers with lower 

comprehension abilities may form weaker expectations for upcoming words within a sentence, 

which may increase their reliance on precise low-level visual information despite predictability 

from context. Individual reader differences may also have important consequences for the 

underlying neural representations of words, as probed in Chapter 6. There is evidence that 

morphological decomposition is mediated by individual differences in spelling and vocabulary 

(Andrews & Lo, 2013), and individual differences in morphological awareness have been 

shown to correlate with structural properties of white matter pathways in the brain (Yablonski 

et al., 2019). Therefore, individual differences may modulate the robustness of neural 

representations associated with morphemes. This could be addressed by conducting a battery 
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of individual differences measures in order to isolate specific reading skills that are correlated 

with task performance (see Andrews, 2015). By investigating individual differences in the 

integration of bottom-up and top-down information, we can better understand how readers use 

existing cognitive abilities to interact with the written environment (Hersch & Andrews, 2012). 

This can help us to greater establish the role of the reader in theories of lexical representation 

and processing. Further, more could be learned about the role of the reader by collecting data 

from samples with greater diversity in reading skill. This may be more readily achieved by 

conducting data collection online to reach a more varied network of participants. 

Finally, future research should continue to investigate the relationship between short-

term contextual factors and long-term knowledge. This thesis has focused on these two aspects 

of visual word recognition independently, despite the fact that they are inextricably linked. For 

example, there is remaining ambiguity around the long-standing impact of contextual effects. 

Our findings demonstrated that surrounding sentence context has a profound effect on 

individual instances of visual word recognition, as recognition performance fluctuated 

dramatically across sentence frames, despite word targets remaining the same. Based on the 

variation within these results, contextual effects may be presumed to be fleeting and temporary. 

However, reading development research indicates that contextual information also has a long-

term impact on how words are processed (Hsiao & Nation, 2018). Similarly, research 

comparing methods of reading instruction have demonstrated differences in behaviour and 

neural activity based on the manner in which words are taught (Taylor et al., 2017; Rastle et 

al., 2021). Both of these findings highlight the contribution of context in forming long-term 

representations of words. 

In order to understand how word representations are formed, we must not only 

understand what the salient properties of the written environment are, but also the 
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encompassing conditions under which they are learned. Future work could bridge the current 

gap by investigating how contextual information associated with individual instances of word 

recognition accumulates, and how this is integrated into long-standing word representations. 

New insights in this area would be particularly informative for theoretical accounts that 

incorporate statistical learning (e.g. Harm & Seidenberg, 2004; Plaut et al., 1996), as statistics 

used to inform these theories tend to be based on properties of words in isolation. By integrating 

the long-term role of context, this line of work could help develop a more sophisticated 

statistical account of learning that encapsulates both properties of the writing system and 

contextual task-based differences. 

 

 Conclusions 

The aim of this thesis was to investigate how readers hierarchically integrate orthographic 

information during the initial stages of visual word recognition. Our findings indicate that the 

processes that underpin visual word recognition are signal-contingent based on the surrounding 

print environment. The evidence presented aligns with three key conclusions. Firstly, readers 

determine the precision of lower-level processing required based on cues from higher-level 

knowledge. Secondly, sub-lexical processing is not encapsulated within individual words. 

Instead, the influence of surrounding context transcends word boundaries to other words within 

a sentence. Finally, the weightings assigned to various sources of orthographic information 

vary cross-linguistically, as they are shaped by salient characteristics of the written 

environment. Overall, this research demonstrates that word recognition is achieved in a 

variable adaptive manner, as readers dynamically weight different sources of orthographic 

information based on immediate short-term context and long-standing knowledge of the 

writing system. 
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This thesis more broadly highlights the consequences of studying specific reading 

processes in isolation, and how the overall picture might change when we consider how these 

processes vary across different contexts or writing systems. Whilst investigating how 

orthographic information is integrated during visual recognition, we exposed the fragility of 

well-established behavioural phenomena, such as the word superiority and transposed letter 

effects, and challenged the nature of why these effects occur. Future research would benefit 

from an integrated approach that considers both how reading processes emerge from the text 

environment, and how they interact with dynamic changes in surrounding orthographic context. 
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