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Geographic profiling (GP) was originally developed as a statistical tool to help police forces
prioritize lists of suspects in investigations of serial crimes. GP uses the location of related
crime sites to make inferences about where the offender is most likely to live, and has been
extremely successful in criminology. Here, we show how GP is applicable to experimental
studies of animal foraging, using the bumble-bee Bombus terrestris. GP techniques enable us
to simplify complex patterns of spatial data down to a small number of parameters (2–3) for
rigorous hypothesis testing. Combining computer model simulations and experimental
observation of foraging bumble-bees, we demonstrate that GP can be used to discriminate
between foraging patterns resulting from (i) different hypothetical foraging algorithms and
(ii) different food item (flower) densities. We also demonstrate that combining experimental
and simulated data can be used to elucidate animal foraging strategies: specifically that the
foraging patterns of real bumble-bees can be reliably discriminated from three out of nine
hypothetical foraging algorithms. We suggest that experimental systems, like foraging bees,
could be used to test and refine GP model predictions, and that GP offers a useful technique
to analyse spatial animal behaviour data in both the laboratory and field.

Keywords: animal foraging behaviour; bumble-bee Bombus terrestris;
criminology applications; jeopardy surface; spatial foraging strategies;
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1. INTRODUCTION

Geographic profiling (GP) is a statistical technique
originally designed to help police forces to prioritize
large lists of suspects typically generated in cases
involving serial crime, for instance, murder and rape
(Rossmo 2000). The technique uses the location of
related crime sites to make inferences about the most
likely area in which the offender might live (or visit
regularly), and has been extremely successful in this
field (Canter 2003; Santtila et al. 2003; Gore et al. 2005;
Kucera 2005; Sarangi & Youngs 2006; Bennell & Corey
2007; Canter & Hammond 2007). The need for such a
technique arises because investigations of serial crimes
frequently generate too many, rather than too few,
suspects. For example, police investigating the York-
shire Ripper murders amassed a total of 268 000 names
and 4.5 million vehicle registration numbers (Doney
1990; Rossmo 2000). Clearly, lack of time and resources
preclude detailed investigation of every suspect in such
a case, and it is this problem that GP addresses.
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Themethods underlyingGPdepend on two concepts:
(i) distance decay and (ii) the buffer zone surrounding
the anchor point, normally the criminal’s or animal’s
home (Rossmo 2000; Le Comber et al. 2006a). The first
concept relies on the fact that most crimes occur
relatively close to the criminal’s home (e.g. 70% of
arsons occur within 2 miles of the arsonist’s home;
Sapp et al. 1994) because travelling usually incurs costs
in time, effort and/or money. However, the criminal’s
home is also typically surrounded by an area (the buffer
zone) in which offences are relatively rare. This buffer
zone arises partly because of increases in detection risk
related to reduced anonymity within the criminal’s
local neighbourhood, and partly because the number of
criminal opportunities increases geometrically with
distance travelled from home. The size of the buffer
zone is therefore specific to an individual. Criminology
studies suggesting the absence of a buffer zone are the
erroneous attempt to infer individual-level charac-
teristics from an average group characteristic. This is
an ecological fallacy and treating distance data in
this manner distorts the shape of the distribution
(van Koppen & de Keijser 1997). For example, Warren
et al. (1995) failed to find a buffer zone in their first
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analysis of aggregated serial rape journey-to-crime
(JTC) data. However, when they used normalized
individual-level JTC distributions, they observed a
distinct buffer zone (Warren et al. 1998).

GP uses the opposing effects of distance decay and
the buffer zone to calculate the probability of offender
residence for each location within the study area,
producing a three-dimensional probability surface
(called a jeopardy surface). Locations in which it is
more likely that the offender might live are indicated by
higher points on the jeopardy surface. Overlaying the
three-dimensional jeopardy surface onto a search area
map produces a geoprofile. Hence, geoprofiles do not
provide an exact location for the criminal’s home, but
they allow the police to prioritize search locations by
starting with the highest point on the jeopardy surface.
Systematically checking locations in descending order
of their height on the geoprofile probability surface
describes an optimal search process based on decreasing
probability density. Therefore, the better the GPmodel
performs, the shorter the search before the real location
of the offender’s home is found.

The success of GP in criminology (Canter 2003;
Santtila et al. 2003; Gore et al. 2005; Kucera 2005;
Sarangi &Youngs 2006; Bennell & Corey 2007; Canter &
Hammond 2007) has recently led to this technique
being applied to the foraging behaviour of bats
(Le Comber et al. 2006a) and great white sharks
(R. A. Martin et al. 2004, unpublished data). In both
these studies, GP techniques were retrospectively
applied to natural foraging data, originally collected for
different studies, to test the efficacy of this technique on
animal data. As the technique has now been shown to be
useful in such divergent scenarios from those for which it
was originally developed, it raises the intriguing
possibilities that GP could be a useful general tool for
studying animal foraging and also that experimental
manipulation of animal foraging might be usefully used
to refine GP techniques. Therefore, we set out to apply
GP techniques to compare the foraging patterns of
bumble-bees (Bombus terrestris L.) in a laboratory
experiment with simulated patterns produced using a
range of computer foraging algorithms.

The behavioural traits of social bees that make them
model organisms for foraging studies also make them
well suited to tests of GP. It has even been suggested
that colonies could maintain a buffer zone immediately
around their nest entrance, in which they do not
forage, that could act to reduce the chance of predators
and parasites locating the nest (Dramstad 1996; Saville
et al. 1997). The literature on foraging in bees is
extensive (e.g. Heinrich 1979; Schmid-Hempel 1985;
Dramstad 1996; Raine et al. 2006a; Raine & Chittka
2008), and various hypothetical foraging strategies
have been proposed. These include both nearest neigh-
bour movements and linear searches, both of which
have been observed in bees foraging on real (Pyke
1978; Zimmerman 1979) and artificial flowers (Schmid-
Hempel 1985; Pyke & Cartar 1992). One aim of this
paper is to use GP to compare patterns of foraging
in naive B. terrestris workers with patterns produced
by ‘virtual’ bees using different foraging algorithms
(including nearest neighbour movements and linear
J. R. Soc. Interface (2009)
searches), and to determine which of these hypothetical
foraging strategies are compatible with the experi-
mental data.

In this study, we fit model variables to known
anchor points (in criminology, usually the criminal’s
residence or work place, to which they return between
crimes, but in animal foraging the location of a nest,
roost or den) for both experimental and simulated
foraging data. We use these variables as the basis for
hypothesis tests to compare patterns of foraging at
different densities of food items (flowers), and to
compare different foraging algorithms. We go on to
compare actual bee foraging with that expected under
different models of foraging behaviour. Specifically, we
address four questions.

(1) Can GP be used to locate the nest entrance using
the observed patterns of flower visitation by
foraging bees?

(2) Can GP be used to discriminate between patterns
of foraging arising from differences in the densities
of potential food items (flowers), in either (i) real
bees or (ii) computer simulations?

(3) Can GP be used to discriminate between patterns
of foraging arising from different simulated for-
aging strategies?

(4) Can GP be used to compare the actual foraging
behaviour of B. terrestris with that expected under
different hypothetical models of foraging?
2. METHODS

2.1. Experimental study

The bumble-bee (Bombus terrestris canariensis Pérez)
colony, obtained from a commercial bee breeder
(Koppert Biological systems, Berkel en Rodenrijs,
The Netherlands), was housed in a wooden nest-box
(28!16!11 cm) and fed defrosted pollen (Koppert
Biological systems) and artificial nectar (Apiinvert,
E. H. Thornes, UK) ad libitum prior to experiments.
During the experiment, the nest-box was connected to
a wooden flight arena with a colourless transparent
Plexiglas lid (100!100!35 cm), via a colourless
Plexiglas tube opening in the centre of the arena floor.
Bee traffic between the nest and arena was controlled
using shutters within this tube. Initially, bees were
allowed unrestricted access to the flight arena and
presented with a colourless glass feeder (containing ad
libitum 40% sucrose solution (w/w)) placed at a random
location. Bees landing on the feeder were marked with
individually numbered, coloured tags (Opalith tags,
Christian Graze KG, Germany), a standard procedure
to allow experimenters to recognize individual insects
for behavioural observations. The marking procedure
involved capturing a bee with forceps, then transferring
it to a marking cage (E. H. Thornes, UK) in which it is
temporarily immobilized to allow accurate tag appli-
cation on the dorsal thorax region. The tagged bee was
then returned to the nest-box, and appeared to suffer no
long-lasting effects of the procedure. We monitored
which marked bees returned regularly to the feeder to
ensure only motivated foragers were tested. Controlled
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illumination for all experiments was provided by
high-frequency fluorescent lighting (TMS 24F lamps
with HF-B 236 TLD (4.3 kHz) ballasts (Philips, The
Netherlands) fitted with Activa daylight fluorescent
tubes (Osram, Germany)), which simulates natural
daylight above the bee flicker fusion frequency.

Subsequently, the foraging behaviour of each
motivated forager was observed for a single foraging
bout when presented with blue artificial flowers in the
arena. Each flower comprised a plastic square (Perspex
Blue 727: 24!24 mm) standing on a vertical glass
cylinder (diameter 10 mm and height 40 mm). Flowers
each contained 10 ml of 40 per cent sucrose solution
(w/w), placed in the centre of the square, and were
placed at randomly generated coordinates within a
33!33 grid in the arena (grid cell dimensions 30.3!
30.3 mm). After entering the arena via the central hole
in the floor (coordinates 17, 17), each bee could forage
freely and we recorded the coordinates of all the
flowers from which it fed, and the order in which it
visited them. Bee foraging behaviour was observed for
two flower densities (nZ32 or 64 flowers), testing 12
individuals at each density (nZ24 bees). Bees were
tested individually, using different random flower
positions for each individual. As bees were not exposed
to colour stimuli associated with food or the spatial
locations of artificial flowers before the experiment
they can be considered naive with respect to this
foraging task (Raine et al. 2006b; Raine & Chittka
2007a). The 24 bees tested each fed on 10–21 flowers
(median 17.5; mean 16.9). Between tests, the arena
was wiped down with 70 per cent ethanol (v/v) and
then with distilled water, and the flowers replaced with
fresh ones placed in new random positions to prevent
bees using odour cues left by previous foragers to
inform their flower choices (Saleh et al. 2006).
2.2. The model

The model is a modification of the equations given in
Rossmo (2000) and Le Comber et al. (2006a), which
uses Euclidean, rather than Manhattan, distances.
Manhattan distances are commonly used in crimino-
logical applications of GP as movements in urban
environments in the United States follow grid-like
street patterns. In this study, we use Euclidean
distances since there is no a priori reason to assume
that animals will follow particular routes between
locations. As the ratios between the metrics (Man-
hattan or Euclidean distance) vary within a limited
range, the issue will not cause problems, providing of
course that the same metric is used throughout a study.

For each point (coordinates i, j ) within the study
area, the score function p was calculated as follows:

pij Z k
XC
nZ1

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiK xnÞ2 CðyjK ynÞ2

q� �f

2
64

C
ð1KfÞðBgKf Þ

2BK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3
75; ð2:1Þ
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where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiK xnÞ2 CðyjK ynÞ2

q
OBIfZ 1 ð2:2Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiK xnÞ2 CðyjK ynÞ2

q
%BIfZ 0; ð2:3Þ

such that f functions as a weighting factor that is set to
0 for sites within the buffer zone, and 1 for sites outside
the buffer zone. k is an empirically determined scaling
constant (which affects the vertical scale of the
jeopardy surface but not its shape); B is the buffer
zone radius (given as number of grid square units:
1 unitZ30.3 mm as in the experimental study); C is the
number of foraging sites; f and g are empirically
determined exponents that dictate the form of the
curve as it approaches, and then moves away from,
the radius of the buffer zone (figure 1); (xi , yj) are
the coordinates of point (i, j ); and (xn, yn) are the
coordinates of the nth foraging site. Thus, pij describes
the likelihood that the anchor point occurs at point
(i, j ), given the foraging site locations.

The equation describes a two-part curve. Outside
the buffer zone radius, probability of offender residence
drops with distance from the crime location. Within the
buffer zone radius, probability of offender residence
drops with proximity to the crime location. Thus,
probability is maximal at the buffer zone radius:
because the function extends in all directions, in three
dimensions, the function output resembles a volcano
caldera (figure 1).
2.2.1. Model fitting.We set kZ1, and fitted values of B,
f and g for each replicate (bee tested) within the
experimental study (using flower densitiesZ32 and 64),
and for each simulated dataset (see below). The buffer
zone radius, B, was calculated as the mode of the
straight line distances between each selected flower and
the arena entrance for each bee (Rossmo 2000):
distances were rounded to nearest integer to facilitate
this calculation. A mean value of B was then calculated
for each dataset by averaging across the 12 bees in each
dataset. The variables f and g were empirically
determined, with the constraint fZg (this is common
in criminal cases, where f and g are set to 1.2; Rossmo
2000). For each model replicate (bee), we tested f and g
values between 0.1 and 2 in increments of 0.1, and
calculated the model’s hit score percentage (see below)
in each case (note that since fZg, only f values are
reported in the results). Model performance is
measured by the model’s hit score percentage: given
by the ratio of the total number of points (grid squares)
with scores higher than that of anchor point (arena
entrance), plus half the number of points with equal
scores, to the total number of points included within the
search area. The assumption is that, on average, half
the points of equal height would have to be searched
before the anchor point was found. When the jeopardy
(probability) surface is flat (i.e. there is no reason to
prioritize the search to begin at any location, and the
search is essentially uniform), the mean hit score is 50
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Figure 1. The effects of altering the model variables (a) B, (b) f
and (c) g on the shape of the jeopardy surface (shown here as a
two dimensional slice through the caldera-shaped function
output). The x -axis shows the distance (in arbitrary units)
from the anchor point, and the y-axis shows the height of the
jeopardy surface (the probability of offender residence); in each
case, there is a single crime site at point xZ0. Outside the
buffer zone radius (B), probability of offender residence drops
with distance from the crime location. Within the buffer zone
radius, probability of offender residence drops with proximity
to the crime location. Thus, residence probability is highest at
the buffer zone radius. Default values for each panel are BZ5;
kZ1; fZ1; gZ1: (a) B set to 5 (solid line), 10 (dashed line) and
20 (grey line); (b) f set to 1 (solid line), 2 (dashed line)
and 3 (grey line); (c) g set to 1 (solid line), 2 (dashed line) and
3 (grey line).
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per cent. This means that an average search would be
expected to locate the anchor point after covering half
the total search area. Mean hit scores can range from 0
(optimal performance) to 50, the value expected by
chance, or above (worse than random). In all cases,
lower hit score values indicate a more efficient search
process. Fitted f and g values used were those that
described the most efficient search procedure (i.e. those
with the lowest hit score); where two or more f and g
values were equally efficient, the mean value was used.
The hit score produced by model fitting is the learning
hit score (table 1). All foraging algorithms, GP models
and statistical analyses used in this study were carried
J. R. Soc. Interface (2009)
out in MATHEMATICA v. 5.0 (Wolfram Research Inc., IL,
USA) running on a Dual 2 GHz PowerPC G5 Macin-
tosh desktop computer.
2.2.2. Model validation. The model fitting process
yielded values of B, f and g for each replicate (bee),
which we used to derive inputs to validate the model.
For each replicate (bee), the model was tested using
mean B, f and g values derived from the remaining
replicates (bees) for that foraging algorithm (or the
experimental data) and flower density. This ensured
that the testing and learning sets were independent.
For example, when using 12 test bees, we used the B
and f (Zg) values for bees 1 and 3–12 in order to
validate the model fits to bee 2. Hit scores were
recalculated to produce a test hit score (table 1).
Thus, the learning hit score relates to the process when
the model variables are fitted to the data (for one bee),
while (independent) test hit scores are the hit score
percentages when the model was validated using mean
B, f and g values derived from the remaining (nZ11)
bees tested.
2.2.3. Simulation 1. We applied eight different hypo-
thetical foraging algorithms to the same foraging tasks
presented to the real bumble-bees (i.e. simulation condi-
tions matched those of the experimental study). Flower
distributions were simulated by random allocation to
cells within a 33!33 grid in exactly the same way as in
the experimental study (N.B. flowers could not be posi-
tioned at coordinates 17, 17 as this is the arena entrance
hole). Similarly, the replicate number matched those in
the experimental study: for each of the eight foraging
algorithms, we ran 12 replicates (virtual ‘bees’) at each
food density (nZ32 or 64 flowers), and each replicate
(bee) selected 16 flowers from the array. Flower
distributions were re-randomized for each replicate.
Foraging algorithms were defined as follows (figure 2).

(i) Random (R). Bees choose each flower entirely at
random from the array.

(ii) Nearest neighbours (NN ). Bees choose the
16 flowers nearest to the arena entrance (coordi-
nates 17, 17).

(iii) Shortest steps (SS ). Bees first choose the flower
nearest the arena entrance, then choose
the nearest flower not previously selected at
each step.

(iv) Spiral (Sp). Flowers are allocated to constant
width (eight cells) concentric bands surround-
ing the arena entrance, and ordered according
to their angle from the arena entrance.
Starting with the flower nearest the arena
entrance, bees search the innermost band
consecutively from 0 to 3608 before moving to
the nearest flower in the next concentric band
and continuing to search in a clockwise direction.

(v) Linear 1 (Li1). Flowers selected in a randomly
chosen arena sector, such that the selected
flowers describe a ‘wedge’-shaped area.

(vi) Nearest neighbours displaced (NNd). As NN, but
the bee chooses the first flower at random.
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Figure 2. Example patterns of flower choices made by a virtual bee following nine different theoretical foraging algorithms in
simulation 2. In each case, the virtual bee forages in a grid containing 1024 flowers (grey circles), of which it selects 24 (black
circles). The foraging algorithms shown are: (a) random (R); (b) nearest neighbours (NN); (c) shortest steps (SS); (d ) spiral (Sp);
(e) linear 1 (Li1); ( f ) linear 2 (Li2); (g) nearest neighbours displaced (NNd); (h) shortest steps displaced (SSd); and (i) spiral
displaced (Spd). For further details of the foraging algorithms, see §2.
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(vii) Shortest steps displaced (SSd). As SS, but the bee
chooses the first flower at random.

(viii) Spiral displaced (Spd). As Sp, but the bee chooses
the first flower at random.

For each set of replicates (bees, or virtual bees) at
each combination of flower densities and foraging
algorithms, the GP model was fitted and validated
(producing learning and test hit scores, respectively) as
above. Fitted values were compared using t-tests,
Bonferroni corrected for multiple comparisons.
2.2.4. Simulation 2. This simulation used a similar
design as the first, but with a larger foraging arena
(129!129 cells) and higher flower densities (1024 and
2048, respectively); each virtual bee selected 24 flowers
per foraging bout. Arena dimensions for this simulation
J. R. Soc. Interface (2009)
are arbitrary, and were simply chosen to produce a larger
arena size than used in simulation 1 (and the experi-
mental study). We used the same foraging algorithms as
simulation 1, with one addition.
(ix) Linear 2 (Li2). The bee selects the flower nearest
the arena entrance, and its angle from the arena
entrance is calculated. The next flower chosen is
that nearest the previous food item in the same
direction (G308) as the first step. This foraging
algorithm was not used in simulation 1, since the
smaller grid size and lower flower densities meant
that the edge of the arena was generally reached
before the algorithm had identified the required
16 flowers (figure 2).

For each set of replicates (virtual bees), at each
combination of densities and foraging algorithms, the
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Figure 3. Foraging choices made by real bumble-bees in the experimental study. Data presented show the locations of flowers
visited by two example individual bees when foraging at flower densities of (a) 32 and (b) 64 flowers. The positions of all flowers
are indicated by black dots, and the choice sequence of each bee is indicated by the black line (although for simplicity this is
indicated by a straight line between consecutive flower choices, this does not indicate the real path flown between flowers). The
flower choice sequences are shown overlaid for all 12 bees tested at each flower density, i.e. (c) 32 and (d ) 64 flowers (here the
positions of unvisited flowers are not shown for clarity). Each bee entered from the centre of the arena (coordinates 17, 17) and
selected 16 of the flowers available.
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model was fitted and validated as described above.
Fitted values were compared using t-tests, Bonferroni
corrected for multiple comparisons.
3. RESULTS

Fitted values for the buffer zone radius (B) and the curve
exponents (f and g) for the experimental data, and for
each simulation, are shown in table 1, along with the
learning and test hit scores, which provide measures of
performance for the model fitting and validation
processes, respectively. For experimental data, and for
all hypothetical foraging algorithms in simulations
1 and 2, mean test hit scores were significantly lower
than the value that defines a random search (test hit
scoreZ50; i.e. in a random search of all possible locations
in the target area, the actual anchor point is sometimes
found first, sometimes last and on average after 50% of
the list has been searched) at each density, indicating a
very high degree of model validity (Pr!0.001 for all
t-tests, after Bonferroni correction for multiple
comparisons). This indicates that in all cases prioritizing
search locations using the GP model means the arena
entrance (anchor point) is found much more efficiently
than by a random search process (question 1). Test hit
J. R. Soc. Interface (2009)
scores indicate the model’s efficiency in finding the arena
entrance relative to random search. So a test hit score of
25 indicates that the model finds the arena entrance in
half the time, and a test hit score of 0.1 indicates that the
model finds the entrance 500 times faster than a random
search (hit scoreZ50). This confirms that GP can be
used to speed up the process of locating the arena
entrance from the observed patterns of flower visitation
by foraging bees.
3.1. Experimental study

Observing bees foraging on artificial flowers at different
densities (nZ32 and 64 flowers) in a flight arena, we can
see clear differences in their foraging paths (figure 3).
Can GP also reliably discriminate between the flower
visitation patterns of bees foraging at these same two
flower densities (question 2(i))? There were no diffe-
rences in the fitted values of eitherB or f between the two
flower densities in the experimental study, when using
the entrance to the foraging arena (coordinates 17, 17)
as the anchor point (table 1; B: tZ0.209, d.f.Z22,
PrZ0.418; f: tZ0.1566, d.f.Z22, PrZ0.132). Bees chose
their first flower in the arena in an apparently haphazard
fashion, often flying over several other flowers closer to
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the arena entrance on the way. The rank distance of the
first flower selected (ranking the closest flower to the
arena entrance as 1) was 3.5 or 24.5 (median), 7.2 or 28.3
(mean) or between 1–24 and 3–63 (range) at densities of
32 and 64 flowers, respectively (nZ12 bees at each flower
density). We therefore reanalysed these foraging data
using the spatial mean of flower locations visited as the
anchor point to remove the effect of this initial
haphazard movement from the arena entrance. Inter-
estingly, when we considered the spatial mean of the
flower locations visited by each bee as the anchor point,
the buffer zone radius (B) was significantly lower for the
high-density treatment (meanGs.d.: low density, nZ32
flowers: 9.6G1.71; high density, nZ64 flowers: 7.1G
2.02; tZ3.24, d.f.Z22, PrZ0.002), but fitted f values did
not differ between treatments (low density, nZ32
flowers: 1.23G0.187; high density, nZ64 flowers:
1.18G0.058; tZ0.88, d.f.Z22, PrZn.s.). This suggests
that the GP model fitted to real bee foraging data is
sensitive to differences in flower density, and that the
buffer zone radius (B) can be used to discriminate
between them. These differences become apparent when
the effect of each bee’s first flight, between arena
entrance and their first chosen flower, is removed. The
distances flown on these first flights were highly variable
among bees tested at the same flower density, and did
not differ between treatments (meanGs.d. grid square
units: low density, nZ12: 13.38G4.910; high density,
nZ12: 11.63G5.198; tZ0.85, d.f.Z22, PrZ0.41).
3.2. Simulation 1

Can GP also reliably discriminate between hypothetical
patterns of foraging arising from differences in the
density of potential food items in simulation 1 (question
2(ii))? Of the eight hypothetical foraging algorithms run
in simulation 1, three (NN, SS and Sp) revealed
significant differences in B between flower densities
(Pr!0.05 in all cases). However, none of these models
showed significant differences in f values fitted at either
low or high flower density.

CanGP also be used to discriminate between patterns
of foraging arising from different simulated foraging
strategies (question 3)? Results of the comparisons
among the eight hypothetical foraging algorithms and
the foraging data from real bees are shown for fitted
values of B and f in figure 4a–d. At the lower flower
density (nZ32), 14 of the 28 pairwise comparisons
among the eight computer-generated foraging algo-
rithms could be discriminated from one another using
fitted values of either B (figure 4a) or f (figure 4c). B was
more informative than f, successfully differentiating
between 13 algorithm pairs, compared with two pairs
for f (N.B. counts exclude comparisons with the
experimental bee data; see below). At the higher flower
density (nZ64), 12 of 28 pairwise comparisons could be
discriminated using fitted values of B (figure 4b) or f
(figure 4d ). Once again, B was more informative than f,
differentiating between 12 versus 4 algorithm pairs,
respectively. None of the three ‘displaced’ foraging
algorithms (NNd, SSd and Spd) could be discriminated
from one another at either flower density.
J. R. Soc. Interface (2009)
3.3. Simulation 2

Can GP also reliably discriminate between hypothetical
foraging patterns arising from differences in potential
food item density in simulation 2 (question 2(ii))? Of
the nine foraging algorithms in simulation 2, four (NN,
SS, Sp and Li2) revealed significant differences in B
between flower densities (Pr!0.0001 in all cases after
correction for multiple comparisons). Only in Sp was a
significant difference detected in f values fitted at low
and high flower density (Pr!0.0001 after correction for
multiple comparisons).

Can GP be used to discriminate between foraging
patterns produced by different simulated strategies
(question 3)? Results of the comparisons among the
nine hypothetical foraging algorithms are shown for
fitted values of B and f in figure 4e–h. At both the low
(nZ1024) and high flower densities (nZ2048), all of the
foraging algorithms can be discriminated on the basis of
fitted values of B and f, except the three displaced
foraging algorithms (NNd, SSd and Spd). At low flower
density, 28 of 36 pairwise comparisons could be
successfully differentiated using fitted values of B, the
only exceptions being comparisons among the three
displaced foraging algorithms, between R and the
three displaced foraging algorithms, and between Li1
and NNd and Li1 and SSd (figure 4e). Likewise, f values
differentiated between 27 of 36 pairwise comparisons, the
exceptions being comparisons among the three displaced
foraging algorithms and between Li1 and both R and
NN, and between Li2 and both SS and Sp (figure 4g). At
high flower density, 29 of 36 pairwise comparisons could
be successfully differentiated using fitted values of B, the
only exceptions being comparisons among the three
displaced foraging algorithms, between R and the three
displaced foraging algorithms, and between Li1 and NNd

(figure 4 f ). Fitted f values differentiated among 29 of 36
pairwise comparisons, the exceptions being comparisons
among the three displaced foraging algorithms, between
Li1 and both R and NN, and between Li2 and SS
(figure 4h). In contrast to simulation 1, here B and f were
almost equally informative when attempting to discrimi-
nate between foraging algorithms.
3.4. Experimental study versus simulation 1

Can GP be used to compare the actual foraging
behaviour of real bees with that expected under different
hypothetical models of foraging (question 4)? Results of
the comparisons among the eight hypothetical foraging
algorithms and the foraging data from real bees are
shown for fitted values of B and f in figure 4a–d. The
foraging patterns of the real bees can be discriminated
from the hypothetical foraging algorithms R, NN and Sp
at both low and high densities, and from NNd and SSd at
low density, on the basis of either B, f or both.
4. DISCUSSION

Our results indicate that GP can be used to locate the
entrance to the flight arena (i.e. functionally the
colony nest entrance) from foraging data (question 1)
and to discriminate between foraging patterns arising
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from different densities of potential food items in both
experimental (question 2(i)) and simulated (question
2(ii)) data. We also show that GP can be used to
differentiate between hypothetical foraging strategies
(question 3) and to compare actual foraging
behaviour with that expected using different hypo-
thetical foraging algorithms (question 4).

The GP approach offers several advantages over
simpler measures of spatial central tendency for predict-
ing the entrance to the flight arena or location of a
criminal’s home. These measures (e.g. spatial mean) can
only produce a single location. However, the GP model
assigns a likelihood value for every location within the
search area, thereby generating a probability surface
(summarized as the geoprofile). Direct comparisons of
the predictive capability of the spatial mean and the
Criminal Geographic Targeting algorithm used in GP
indicate that the latter approach generates a search
strategy approximately three times as efficient as the
former (Rossmo & Velarde 2008). In addition, the GP
model also copes better than the spatial mean in
instances in which more than one anchor point exists
(e.g. in criminology, the criminal’s home and the place
where they buy drugs; in biology, multiple bat roosts,
aardvark dens or chimpanzee nests).

In this study, GP successfully discriminated among
many different hypothetical foraging algorithms and also
real bee foraging data. The models were robust, with the
results of two simulations being broadly in agreement,
despite large differences in the number of flowers used in
each scenario. In each case, fitting the GP model usually
successfully discriminated among different foraging
algorithms. The principal exceptions were the three
foraging rules in which the initial choice of flower was
displaced from the arena entrance (NNd, SSd and Spd),
meaning that the random component of the initial step
J. R. Soc. Interface (2009)
(the flight from the arena entrance to the first flower)
obscured differences in subsequent steps (flights between
flowers). In general, the higher the flower density, the
better the model performed at differentiating between
pairs of foraging algorithms. This is not surprising, since
at low flower densities, when foragers have fewer choices,
different foraging algorithms will tend to select a similar
set of flowers. In fact, at the two highest flower densities
(1024 and 2048), the model successfully differentiated
between all foraging algorithms except the comparisons
between the displaced strategies (NNd, SSd and Spd).
Similarly, in both simulations, NN, SS and Sp showed
differences in B with flower density, indicating that bees
forage closer to the anchor point at the higher flower
density. The congruence between the results in both
simulations suggests that the model is robust with
respect to such changes.

What does GP tell us about bee foraging strategies?
First, it is encouraging that the model provides a useful
description of bee foraging behaviour, despite obvious
behavioural differences between bees and criminals. For
example, the GP model was originally developed to
describe cases in which criminals return to their
residence between crimes, but foraging bees often visit
hundreds of flowers during each foraging bout before
returning to their nest (Heinrich 1979; Raine et al.
2006a). Thus, although the first flower is selected in a
similar way as a crime site, i.e. with respect to the
animal’s/criminal’s home, the choice of each subsequent
flower visit is influenced more strongly by the locations
of the previous flowers visited than the nest entrance
location. One of the fundamental assumptions of GP
developed for criminology is that ‘the target backcloth is
not patchy’ (Rossmo 2005). While the spatial location of
flowers (artificial and virtual) in these experiments was
non-patchy, in that flower position was generated



316 Geographic profiling and animal foraging N. E. Raine et al.
randomly (in contrast to the work of one of the authors
on foraging in mole-rats; Le Comber et al. 2006b), the
patchiness of real flowers at the landscape scale over
which bees forage is variable and habitat dependent.
Data obtained from the waggle dances of honeybee
(Apis mellifera L.) foragers indicate that the distri-
bution of floral resources is patchier in tropical forests
(Dornhaus & Chittka 2004) compared with temperate
habitats (Visscher & Seeley 1982; Waddington et al.
1994; Beekman & Ratnieks 2000), although temperate
habitats also differ in patchiness depending on the degree
of disturbance. The effect of variation in the degree of
patchiness of potential targets (here flowers) on the
applicability of GP is an obvious extension of the study
described here, since one of the most exciting elements of
applying GP to biological data is that it allows experi-
mental manipulation of conditions in ways that are not
possible in criminology.

The small scale of our flight arena in comparison with
the flight range of foragers from field bumble-bee colonies
(Walther-Hellwig & Frankl 2000; Westphal et al. 2006;
Wolf & Moritz 2008; Osborne et al. 2008) means our
results will be most relevant to foraging strategies on
small spatial scales, such as those observed within flower
patches (Burns & Thomson 2006; Chittka & Raine
2006). Despite these potential limitations, comparing
patterns of foraging in the experimental study with
patterns produced by virtual bees using different
foraging algorithms did allow us to determine which of
these hypothetical foraging strategies were compatible
with the experimental data (however, it did not allow us
to determine which of the remaining hypothetical
algorithms are most consistent with the foraging
patterns of real bees). Patterns of foraging in the
experimental study could be discriminated from the
random, nearest neighbour and spiral algorithms at both
low and high flower densities, and from two of the
displaced foraging algorithms (NNd and SSd) at low
density but not from the remaining algorithms. These
results agree with the literature on bee foraging
strategies at small (within flower patch) spatial scales.
Bees foraging in monospecific flower patches have been
observedusing strategies corresponding to the algorithms
we defined as ‘shortest steps’, ‘linear 1’ and ‘linear 2’,
which could not be discriminated from the foraging
behaviour of real bees in this study. For example,
bees have been reported making sequences of flights
among nearby flowers (Waddington & Heinrich 1981;
Zimmerman 1982; Soltz 1986; Kipp et al. 1989), and/or
maintaining relatively constant flight direction when
making sequences of flower visits (Waddington 1980;
Schmid-Hempel 1985; Pyke & Cartar 1992). Such simple
movement rules could easily increase foraging efficiency
by minimizing the travel time between flowers and also
the chances of revisiting a flower already recently
emptied by the same individual bee (Levin et al. 1971;
Pyke 1978; Zimmerman 1979; Bell 1991).

Interestingly, our results from foraging bees are not
compatible with the spiral or nearest neighbour algo-
rithm. This is surprising, since each of these would mean
that bees would tend to choose flowers relatively close to
the arena entrance. The fact that bees do not appear to
use these strategies might provide support for the idea
J. R. Soc. Interface (2009)
that they maintain a buffer zone around the nest
entrance (Dramstad 1996; Saville et al. 1997), but we
found no difference in the buffer zone radius (B) between
flower densities (nZ32 versus 64) when we used the
arena entrance as the anchor point. However, B was
significantly lower for the high flower density (nZ64)
when the spatial mean of the flower locations chosen by
the bee was taken as the anchor point. This suggests that
differences in foraging patterns between these flower
densities are masked by the initial longer flight between
the arena entrance and the first visited flower when
considering the arena entrance (rather than the spatial
mean of flower locations) to be the anchor point. The
existence of a buffer zone, immediately surrounding the
nest entrance, is also inconsistent with data from other
studies; for example, B. terrestris workers did not
appear to avoid flowers closer to the arena entrance in
laboratory experiments at a similar spatial scale (Raine
et al. 2006b; Saleh et al. 2006), and B. terrestris workers
have also been observed visiting flower patches within
3 m of their nest entrance under natural conditions
(T. C. Ings 2006, personal communication). In addition,
even if workers were not foraging close to the nest
entrance (i.e. maintaining a buffer zone), it seems likely
that predators and parasites would be alerted to general
nest location by regular flow of forager traffic entering
and leaving and would then home in more precisely using
colony scent.

Our results support conclusions drawn from crimino-
logical applications of GP in that altering the buffer zone
radius (B) has significantly more influence on the model
than changing the exponents f and g (Rossmo 2000).
Although B was more informative than f (and g) in
differentiating between potential foraging strategies
when either was considered in isolation (particularly at
the smaller of the two spatial scales used; figure 4), using
both factors in combination produced the best results in
our study. The residual discriminant power of f is high-
lighted when comparing different patterns of foraging
which have the same value of B and which look quite
different, such as when foraging is not radially sym-
metrical around the nest entrance. For example, the GP
model applied to a study of bat foraging in the
field performed well when the anchor point (bat roost)
was positioned well away from the centre of the study
area (Le Comber et al. 2006a), which effectively
skewed the apparent distribution of potential targets
(foraging sites).

Our experimental design imposed potential con-
straints on the possible range of foraging strategies
that bees could use. In comparison with their real
foraging environment, the small arena size constrains the
bees’ use of linear-like strategies. Bees attempting to
visit sequences of flowers while travelling in a more or
less constant direction across the arena (patch) would
quickly arrive at the wall—exactly as we found
when running the linear 2 algorithm under analogous
conditions. The relatively low number of flowers
presented to each bee might also restrict their potential
use of foraging strategies, particularly the low flower
density (nZ32), fromwhich workers selected between 10
and 21 depending on their size. In the wild, a forager’s
choices would be considerably wider both in terms of the



Geographic profiling and animal foraging N. E. Raine et al. 317
number of flowers and species on offer (Chittka et al.
1997; Raine & Chittka 2007b).

However, in spite of the overall simplicity of our
experiment, i.e. presenting bees with a single uniformly
rewarding flower species, and the limitations of spatial
scale, GP allowed us to detect clear differences in
foraging behaviour exhibited by bees offered two
different flower densities, and between real data and
several foraging algorithms. This suggests that future
studies could usefully be extended to examine such
differences at larger, more ecologically realistic, spatial
scales. In this laboratory study, GP appears to work
effectively for foraging data when the values of B and f
(Zg) are invariant. But how applicable are such
techniques in more heterogeneous and complex environ-
ments such as those in which wild animals forage? The
success of applying GP in criminology suggests that the
technique is robust to heterogeneous environments, even
when the subjects (serial criminals) are actively trying to
avoid capture (Rossmo 2000). Radiotelemetry data
collected from two bat (pipistrelle) species foraging in
the wild also suggest that, despite the undoubted
heterogeneity of the natural environment, foraging
patterns are sufficiently consistent within species to
allow differences between species to be reliably detected
using GP (Le Comber et al. 2006a). The natural level of
variation in the spatial distribution of flowers visited by
bees is likely to be similar to that shown by the insect
prey of these bat species, suggesting that GP is likely to
be similarly applicable to study the foraging patterns of
bees in their natural habitat. Furthermore, the patterns
of great white shark attacks on seal colonies also seem
to be well described by GP (R. A. Martin et al. 2004,
unpublished data). Overall, we feel that these diverse
biological examples provide support for the idea that this
technique is generally applicable in ecologically realistic
scenarios. However, given the small number of studies
applying the technique of GP to spatial patterns of
animal foraging, it seems clear more work needs to be
done in an animal context.

In future, GP could be applied to help locate bee
nests, or areas of potential nesting habitat in fragmented
landscapes, from the spatial distribution of observed
foraging sites alone (as opposed to other interesting but
more complex approaches, e.g. Suzuki et al. 2007).
Locating nest sites of wild bees frequently proves
extremely difficult, so any technique which could
improve search success would be very valuable, particu-
larly for the increasing number of rare or endangered
bumble-bee species. In criminology, the GP model
frequently provides very efficient searches when pro-
vided with limited numbers of crime sites (Rossmo 2000
suggests a minimum offive). Tracking down nests of rare
bumble-bees is a similar proposition, as researchers
typically observe only very few foragers within the
colony flight range, and nest membership could be
identified using non-lethal DNA sampling techniques
(Holehouse et al. 2003; Châline et al. 2004). In addition,
GP could be used to compare the foraging strategies of
bumble-bee colonies with known nest sites, such as when
experimental colonies containing individually marked
bees are placed in the field in different habitat types
(Chittka et al. 2004; Ings et al. 2005; Raine & Chittka
J. R. Soc. Interface (2009)
2005). This approach could provide useful information
about how changes in land usage and habitat fragmenta-
tion, both cited as key factors in long-term bumble-bee
declines (Williams 1982, 1986; Osborne & Corbet 1994;
Carvell et al. 2006), affect the patterns of bee foraging on
a landscape scale. It would be interesting to use this
approach to compare the foraging patterns shown by a
given bee species across a range of habitat types/levels of
habitat fragmentation (Osborne et al. 1999; Westphal
et al. 2006), and also to compare the foraging patterns
across bumble-bee species in similar habitats.

The application of GP to biological data is an exciting
and interesting development, and one that is likely to be
applicable to a wide range of disparate areas. Given the
success of the GPmethod applied to serial criminals who
have shifted their anchor points, e.g. the Yorkshire
Ripper, who moved house during the investigation, this
approach may potentially be useful for investigating
animals which have multiple anchor points: for example,
chimpanzee and gorilla groups that regularly shift their
home base to follow seasonal food availability in tropical
forests. Another possible extension would be to use
maximum-likelihood methods to estimate values for B, f
and g simultaneously. Possible future uses of GP are not
confined to tests of foraging behaviour. Currently, the
authors are engaged in studies using GP models to study
the distribution patterns of illegal snares in Zimbabwe,
and also the origin and spread of invasive species and
disease. This technique may also have potential appli-
cations for assisting with estimating local species
abundance and biodiversity in ecological communities.

In conclusion,wenote that experimental systems such
as that described here can be used to test the assump-
tions and predictions of GP in a way that presents
obvious logistical and ethical difficulties in criminology.
We suggest that, given the considerable success of GP
in criminology, where sample sizes are often extremely
small and criminals may actively seek to mislead police,
it will be surprising if the technique does not prove
similarly useful in studying spatial patterns in biology.

We thank Oscar Ramos-Rodrı́guez for help with data collec-
tion, Jonathan Grey for laboratory space and Lars Chittka,
James Cresswell, Steven Gilmour, Tom Ings, David Polly and
Nehal Saleh and five anonymous referees for useful comments.
This work was supported by a combined grant from the
Wellcome Trust, BBSRC and EPSRC (BB/F52765X/1).
REFERENCES

Beekman, M. & Ratnieks, F. L. W. 2000 Long-range foraging
by the honey-bee, Apis mellifera L. Funct. Ecol. 14,
490–496. (doi:10.1046/j.1365-2435.2000.00443.x)

Bell,W. J. 1991 Searching behaviour: the behavioural ecology of
finding resources. London, UK: Chapman & Hall.

Bennell, C. & Corey, S. 2007 Geographic profiling of terrorist
attacks. In Criminal profiling: international theory,
research and practice (ed. R. N. Kocsis), pp. 189–203.
Totowa, NJ: Humana Press.

Burns, J. G. & Thomson, J. D. 2006 A test of spatial memory
and movement patterns of bumblebees at multiple spatial
and temporal scales. Behav. Ecol. 17, 48–55. (doi:10.1093/
beheco/arj002)

Canter, D. V. 2003Mapping murder: the secrets of geographical
profiling. London, UK: Virgin Books.

http://dx.doi.org/doi:10.1046/j.1365-2435.2000.00443.x
http://dx.doi.org/doi:10.1093/beheco/arj002
http://dx.doi.org/doi:10.1093/beheco/arj002


318 Geographic profiling and animal foraging N. E. Raine et al.
Canter, D. V. & Hammond, L. 2007 Prioritizing burglars:
comparing the effectiveness of geographic profilingmethods.
Police Pract. Res. 8, 371–384. (doi:10.1080/15614260701
615086)

Carvell, C., Roy, D. B., Smart, S. M., Pywell, R. F., Preston,
C. D. & Goulson, D. 2006 Declines in forage availability for
bumblebees at a national scale.Biol. Conserv. 132, 481–489.
(doi:10.1016/j.biocon.2006.05.008)
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