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Abstract

Magnetic systems are the cornerstone of contemporary life, with their un-

avoidable use in everyday routines. This fundamental dependency drives

the exploration for materials that exhibit both advantageous and distinctive

magnetic properties. At the same time, familiar materials are subjected to

ever more intelligent experimentation: further understanding the more com-

plex magnetic phenomena present. Additionally, computational advance-

ments have led to an increase in the complexity of theoretical examina-

tions. Thus, first-principles calculations stand uniquely poised, ready with

ever-increasing improvements, to understand the characteristics of these

magnetic materials.

Double-perovskites exhibit complex and beneficial magnetic relationships,

for instance, colossal magnetoresistance. The synthesised Tl2NiMnO6 ex-

perimentally broke the trend by manifesting ferromagnetic insulation. First-

principle calculations using electronic band structures, density of states

and the effective masses of holes and electrons have predicted the ma-

terial to be a ferromagnetic semiconductor. Effective masses of holes and

electrons revealed insight into the transport properties, unveiling anisotropy

potentially linked to the colossal magnetoresistance present in the material.

Molecular magnets are versatile in their application of spintronics, making

them a popular choice for investigating. We complete first-principles cal-

culations on the Cr10(OMe)20(O2CCMe3)10 (Cr10), and Cr8F8(CH3)3CCO2H

(Cr8) molecular rings to investigate the different magnetic states, using

Cr8 as a comparison for the frustrated next-nearest neighbour interaction

in Cr10. We use ionic constraints to enforce D5 symmetry in the Cr10

molecule, allowing for reliable extraction of the exchange interaction pa-
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rameter and comparable spin-densities. The Cr10 molecule possesses a

ferromagnetic ground state with the potential for non-co-linear spin-wave

excitations whose wavelength is commensurate with the ring.

The iron pnictides superconductors, FeAs and FeSe, simultaneously ex-

hibit complex magnetic interactions, forming a spin-wave. We perform elec-

tronic band structure calculations on three competing magnetic arrange-

ments with the meta-GGA, rSCAN, utilising a cold-smearing scheme, re-

vealing, for FeAs, a band gap with Fermi level located inside: completely

different from previous first principle band structures. Further reported is

the dependency of the strength of magnetism exhibited to the number of

magnetic sites present and the direction of the magnetic arrangement.
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Chapter 1

Introduction

1.1 Magnetism

A significant amount of modern-day science depends upon probing mate-

rials with varying particles to discern their microscopic and macroscopic

properties. Of these materials, magnetic ones pose a wide range of excit-

ing and beneficial phenomena. There is an ever-growing number of experi-

mental devices and techniques to achieve this insight, such as Mössbauer,

X-ray, neutron spectroscopies, SQUID magnetometer, electron paramag-

netic resonance and scanning microscopes. A combination of these meth-

ods provides a comprehensive picture of the magnetic behaviour exhibited

by materials. Unfortunately, theoretical works have struggled to catch up

as a result of the computational demand. However, in recent years, com-

puting advancements in speed and memory have increased the complexity

of theoretical calculations. Therefore, allowing theoretical investigations to

support and offer explanations to the magnetic phenomena observed as

well as make predictions for experimental verification.

Magnetism is the physical phenomenon where electrons, with either +1
2

or −1
2

spin, occupy in unequal numbers an orbital (typically d and f orbitals)

in such quantities to generate a magnetic moment.

Magnetism is not a new phenomenon. It has captured the imagination

and sparked the curiosity of humans for thousands of years. From the

combination of both those fundamental blocks of science came magnetic

tools. Since the ancient Greeks, the rare formation of magnetite (Fe3O4)



was used as the famous lodestone to act as a compass or a leading stone

[1].

It is only in the last 100 years or so that the fantastic properties of mag-

netic materials have led to technologies that brought about the most signifi-

cant societal advancements in human history [2]. Therefore, understanding

the ground state properties of the magnetic materials to allow for manipu-

lation is of the utmost importance.

1.2 An Incompatibility with Classical Physics

For the complete description of magnetism, utilising an ad hoc approach

with a classical description and relevant quantum mechanical corrections

is insufficient. It was shown in the 1930s by Bohr and van Leeuwen [3]

that magnetism is unintelligible within the structure of rigorous classical

theory with moving charges. This feature becomes apparent through the

use of thermodynamics and statistical mechanics. A classical Hamiltonian

of N particles possessing charges e and masses m in a magnetic field (A)

takes the form:

H =
3N∑
i=1

1

2m
(pi −

e

c
Ai)

2 + V (q1,q2, · · · ,qN) (1.2.1)

where pi and qi are canonical momenta and coordinates, c is the velocity

of light and V is the interaction potential. The classical partition function

becomes;

Z =

∫ +∞

−∞
eβV

∫ +∞

−∞
exp

(
− β

2m

3N∑
i=1

(pi −
e

c
Ai)

2

)
dq1, · · · , dq3Ndp1, · · · , p3N

(1.2.2)

where β = 1/kBT and kB is the Boltzmann constant. The partition function

is independent of the magnetic field, only when the magnetisation, M , is
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represented as:

M = kBT
∂

∂H
ln(Z) (1.2.3)

disappears. The magnetisation going to zero is incompatible with phys-

ical observations of magnetism and, therefore, classical Physics cannot

explain the phenomenon of magnetism [4]. Therefore only quantum me-

chanical methods can represent magnetic materials; putting importance

on the success and accuracy of those methods.

1.3 The Local Moment Picture

There are two main branches for explaining magnetism within a system:

the local moment picture and itinerancy. These competing models of ex-

planation were the subject of controversy for decades when concerning the

3d- transition metals. However, it was only through probing the Fermi sur-

faces and band structures of the d-electrons [5] in the transition metals that

concluded the controversy: the d-electrons in transition metals are itiner-

ant [6, 7]. The itinerancy of electrons signifies that they can transfer from

one atom to the next. The ground state properties of itinerant magnets are

fairly well-described by band theory, putting importance upon electronic

structure calculations.

The local moments model is, as its namesake suggests, based upon

the principle where the electrons responsible for magnetism are localised

to an ion. Thus, the representation of localised magnetism conforms to the

Heisenberg Model. Furthermore, local moments are usually associated

with magnetic insulators, owing to the Mott mechanism for strong electron-

electron correlation.

In the Heisenberg model for localised moments, meeting the above re-

quirements, the exchange interaction obeys the Anderson-superexchange

[8], favouring a negative sign indicating short-ranged antiferromagnetic or-
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dering.

Another model which describes long-distance exchange is the Ruderman-

Kittel-Kasuya-Yosida interaction [9–11]. This interaction involves localised

4f electrons and conduction electrons, which results in a hybridised narrow

band.

1.4 Itinerant Magnetism

Itinerant magnetism is the contrary behaviour to the local moment picture.

Itinerancy in a system arises from magnetic ions which constitute an alloy

or an intermetallic aggregate. In these instances, the unpaired electrons

are not subject to only accommodate energy levels about a single magnetic

ion. Instead, the unpaired electrons are delocalised as the original energy

levels have broadened to narrow bands. The interatomic separations de-

termine the size of the broadening. There are many well-known cases of

itinerant magnetism from the 3d transition metals, whereby the magnetic

properties are directly caused by the 3d electrons.

1.4.1 Stoner Theory

There are many detailed descriptions of Stoner theory, so this will be a

brief description of the main results and uses of the Stoner criterion [12–

14]. Stoner theory is a means to describe the mechanism behind and

determining if a material is ferromagnetic or will become ferromagnetic.

The theory is based on a simple band model of materials including effective

exchange energy, the energy gained when spins flip from anti-parallel to

parallel and the density of states. From these quantities, the Equation 1.4.1

can be formed and used.

UeffN(EF) > 1 (1.4.1)
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Where N(EF) is the density of states at the Fermi level.

For a 3d transition metal, if [1− UeffN(EF)] > 0, then the lowest energy

state corresponds to no electrons moving from spin-down bands to spin-up

bands and the system is non-magnetic. If [1−UeffN(EF)] < 0, the 3d bands

are exchange-split and the system is ferromagnetic.

Stoner theory still provides computational success and a good descrip-

tion of materials [15].

1.5 Thesis Outline

In this work, we perform first-principles calculations to determine the mag-

netic phenomena in complex magnetic systems1 2. The overviews of the

chapters are as follows:

Chapter 2

The many-body Schrödinger equation is introduced, and the approxima-

tions made to develop it into the density-functional theory framework for

ground state calculations are discussed. The impact of the choice of exchange-

correlation functional and pseudopotential have on the Kohn-sham equa-

tion are mentioned. A brief introduction to the computational format which

the CASTEP code [16] uses to achieve first principles is explored. The

density-functional theory framework is expanded to the ad-hoc format, which

includes magnetism. Core magnetic concepts are discussed and lead into

a description of complex magnetism.

Chapter 3

This chapter details a first-principles investigation into the electronic struc-

ture of the double perovskite, Tl2NiMnO6, to ascertain its conducting and
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magnetic properties. The effect of colossal magnetoresistance on the sys-

tem is explored, and through curve fitting to the band structure, the effective

masses of the carriers are determined.

Chapter 4

The magnetic complexity of the single molecular magnet, Cr10, is investi-

gated in this chapter alongside the Cr8 molecule. First, the symmetry of

the molecule is explored through two branches of C1 and D5 point groups.

Ionic constraints are used to ensure the D5 point group was maintained

while investigating the ground state magnetic arrangement. Next, the effec-

tive exchange interaction is determined through the broken symmetry ap-

proach while exploring the differences between exchange-correlation func-

tionals, LDA, PBE and rSCAN. Using the fixed spin moment constraint on

the DFT calculations allowed for the determination of the ground state mag-

netic structure which disagreed with experiment. Spin density isosurfaces

showed subtle differences between the XC functionals and highlighted the

influence of the frustrated next-nearest neighbour interactions of the Cr10

molecule. Finally, the possibility of magnetostriction within the molecular

magnet was explored through a magnetostrictive force.

The non-frustrated next nearest neighbour exchange interactions of the

Cr8 molecule allowed for a comparison with Cr10 and provided insight into

the suitability of the nearest neighbour Heisenberg model.

Chapter 5

The effects of the different XC functionals, LDA, PBE and rSCAN, on the

complex bond-dependant magnetism in the iron pnictide, FeAs, is inves-

tigated. Through geometric optimisations, the performances of the func-

tionals are compared via the lattice parameters to experiment and other

first-principles investigations. In addition, a variety of antiferromagnetic
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configurations relating to all spin parallel, anti-parallel pairs were exam-

ined. Finally, the band structure of iron arsenide was investigated via two

paths through the Brillouin zone, requiring an evaluation of the smearing

scheme employed. The external code OPTADOS was utilised to determine

the Fermi-level as a verification of the CASTEP determined Fermi-energy

due to band occupation concerns.

Further investigations were conducted on the FeSe iron pnictide, which

experienced similar results to FeAs. The folded band structure using the

PBE and rSCAN functional acted as a good comparison with the experi-

mental ARPES measurements and provided further insights into the mag-

netic dependency on the complexity of the functional used.

Chapter 6

In this chapter, conclusions are presented for the previous chapters, includ-

ing an evaluation of the methods employed.
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Chapter 2

Theory

2.1 Introduction

The wave function is a powerful mathematical and physical construct, which

in principle, contains all the information of a quantum mechanical object.

Solving the many-body Schrödinger equation provides one with a means

of obtaining the wave function . In reality, solving an N-body problem is

computationally and analytically exhaustive, making it impossible to use.

This impracticality requires the use of approximations to find the ground

state solutions. Hohenberg, Kohn and Sham developed these approxima-

tions into the modern form of density-functional theory (DFT). DFT relies

on one main variational parameter, the electron density which allows for

the N-body equation to be re-written as N-one-body equations, simplify-

ing the problem. In this representation, a single electron interacts with all

other electrons via an effective exchange-correlation potential. Pseudopo-

tentials and plane-wave basis sets assist in solving the Kohn-Sham equa-

tions. Ad hoc extensions to the density and Kohn-Sham potential allow

for the inclusion of spin and therefore magnetism within the system. The

spin-polarisation of a system arises in the exchange-correlation functional.



2.2 Ground State Electronic Structure

2.2.1 Many-Body Schrödinger Equation

On the quantum level, gravity ceases to have a dominant influence on ob-

jects, and as such, the non-relativistic Schrödinger equation describes the

interactions, on the proviso that the velocity is significantly smaller than the

speed of light. The time-dependent version of the Schrödinger equation

is far too unmanageable, due to a large number of dimensions associated

with the wave function (3nelectron + 3Nnuclei +1) and the evolution of time. In-

stead of solving the time-dependent equation directly, the use of stationary

states (orbitals) allows for a more straightforward approach. The associ-

ated time-independent many-body Schrödinger equation for this approach

takes the form;

Ĥψ(Xj, rk) = Eψ(Xj, rk) (2.2.1)

Where Ĥ is the Hamiltonian operator, E, the total ground state energy of

the system, Xj are the coordinates of the nuclei and rk are the coordinates

of the electrons. For a system where only the electrons and nuclei are of

interest, the Hamiltonian operator becomes;

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂Ne

=
∑
j

[
− ~2

2Mj

∇2
j +

∑
l>j

VI(Xj −Xl)

]

+
∑
k

[
− ~2

2m
∇2
k +

∑
m>k

e2

|rk − rm|
+
∑
j

Ue−I(rk −Xj)

]
(2.2.2)

Where T̂ is the kinetic energy operator, V̂ are the potentials produced

by the three interactions; nuclear-nuclear, electron-electron and nuclear-

electron. Mj is the mass of the nuclei, and m is the mass of the electron.

The quantity VI(Xj − Xl) is the interaction potential between the nuclei,
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Ue−I(rk − Xj) is the interaction between an electron at rk and and a nu-

cleus at Xj.

The Partial differential nature of Equations 2.2.1 and 2.2.2 generate a

large number of degrees of freedom, 3nelectrons + 3Nnuclei. When Equations

2.2.1 and 2.2.2 are applied to a real system, a numerical solution on a high-

performance computer can only happen for six to seven interacting ions or

electrons. Therefore, approximations are required for Equations 2.2.1 and

2.2.2 to be useful investigative tools.

2.2.2 Born-Oppenheimer Approximation

The discussion proceeds with the separation of the motion of the electrons

from the nuclei. That is, the nuclei are in fixed positions and the electrons

navigate through them. The nuclei move over longer time-scales, and so

the electrons will move into the lowest energy states quicker than the nuclei

can react. This observation, therefore, suggests that the electron distribu-

tion dictates the potential in which the nuclei move.

The Hamiltonian in 2.2.2 is a summation of the nuclear and electronic

contributions to the system,

H = Hn +He (2.2.3)

Where Hn contains the nuclear elements of 2.2.2

Hn =
∑
j

[
− ~2

2Mj

∇2
j +

∑
l>j

VI(Xj −Xl)

]
(2.2.4)

and He contains the electronic.

He =
∑
k

[
− ~2

2m
∇2
k +

∑
m>k

e2

|rk − rm|
+
∑
j

Ue−I(rk −Xj)

]
(2.2.5)
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Applying the separation to the Hamiltonian, the positions of the nuclei

freeze, and the Schrödinger equation is rewritten and solved for travelling

electrons only.

HeψK(X, r) = EK(X)ψK(X, r) (2.2.6)

Use of the single letters X and r indicates the set of all nuclear and elec-

tronic coordinates, respectively. The wave function of the state and the

energy of the system depend upon the nuclear positions,
∑

j Ue−I(rk−Xj).

The evaluation of the impact of the nuclear motion onto the electrons

is accessible through the acceptance of solving Equation 2.2.6 at each in-

stant of the positions of the nuclei (X). The core electrons will move with

the nuclei as they vibrate; however, the influence on the conduction and

valance electrons leads to the phenomenon of electron-phonon coupling,

which is beyond this treatise. Therefore, outside of the electron-phonon

coupling, the Schrödinger equation (Equation 2.2.5) is solved for fixed nu-

clear positions and then solved using electronic wave functions.

Even with the simplification of the Schrödinger equation to only con-

sider the electronic interactions in a fixed nuclear potential still falls short

of being able to handle any complex (real) systems. The dimensionality of

the equation is too complex to be solved. The issue resides within the in-

teraction between the pairs of all the electrons (the electron-electron term).

The term couples the electrons together inducing a correlation between

the electronic states. The current form of the Schrödinger equation is a

1 N-body equation, which still requires further approximation to make it

computationally and mathematically manageable.

2.2.3 Density-Functional Theory

While the appearance of Equation 2.2.5 is relatively simple, the process to

try and solve it is compounding in difficulty. The correlation between elec-

trons makes the equation too complicated for any system more advanced
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than the nearly-free electron model. Density-functional theory (DFT) is the

description of the approximations involved in the simplification of the com-

plex form of the Schrödinger equation; particularly in the separation of the

coupled terms.

2.2.3.1 Hohenberg-Kohn Theorems

The first significant advancement in DFT came in the form of the Hohenberg-

Kohn theorems [4, 17–19] , which provided the computational skeleton of

how to calculate the ground state density and energy. There are two theo-

rems, which state;

1. The total ground state energy of an electronic system is a unique

functional of the total density n(r):

E[n] = F [n] +

∫
n(r)vext(r)dr (2.2.7)

where F [n] is also a unique functional of the electron density but is

independent of the external potential.

2. For an electronic system, the total energy (E[n]) has a minimum equal

to the ground state energy at the actual ground state density.

The first theorem describes the nature of the terms in the Hamiltonian:

functionals of the electronic density of the system. The second theorem

provides means to find the minimum energy by varying the ground state
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density. The density which provides the minimum energy must be the ac-

tual ground state density.

While the Hohenberg-Kohn theorems provide an excellent foundation

for determining the ground state energy and density, they provide no means

for rigorous computation.

2.2.3.2 The Kohn-Sham Method

A prominent advancement came from the Kohn-Sham equations [20, 21].

The treatment described electrons in a non-interacting, fictitious poten-

tial, which produce the same ground state density as the physical system.

The interaction within the fictitious system is only through the total density,

which corresponds on a one-to-one basis with the ground state energy.

Due to this relationship, all the information about the system is contained

within this interaction. The creation of the fictitious system allows for a

massive simplification of the problem into coupled single-particle equations

which only interact through the electron density. To show this, the universal

functional (F[n]) of the Equation 2.2.7 must devolve into three parts;

F [n] = T [n] +

∫∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n] (2.2.8)

with the kinetic, Hartree and exchange-correlation energy respectively as

the first, second and third term.

The Kohn-Sham method uses the variational principle to form;

δE[n]

δn(r)
+ µ

δ(N −
∫
n(r)dr)

δn(r)
= 0 (2.2.9)

where µ is a Lagrange multiplier which deals with the particle conservation.

The kinetic energy is now split up and consists of two parts, one term for the

energy of the non-interacting electrons (T0) and another term to contain the

remainder (Txc) , T = T0 + Txc. It is essential to note this separation of the

kinetic energy as it allows for the determination of the functional derivative
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using the Kohn-Sham orbitals,

n(r) =
N∑
i=1

|φi(r)|2 (2.2.10)

as well as,

T0[n] =
N∑
i=1

∫
∇φ∗i (r)∇φi(r)dr (2.2.11)

where φi(r) represents the single-particle wave functions. For the Equa-

tions 2.2.10 and 2.2.11 the summations extend over the lowest N-occupied

states.

Through varying Equation 2.2.11 and adding a potential energy term,

the Schrödinger equation becomes the Euler-Lagrange equation. The vari-

ance form which Equation 2.2.11 takes is;

T0[n] =
N∑
i=1

εi −
∫
v′(r)n(r)dr (2.2.12)

Achieved from the postulate of the single-particle equation; (−∇2+v′(r))φi(r) =

εiφi(r) and premultiplying with φ∗i (r), integrating and summing up. The

connections in the fictitious system are now of a state where the variation

embodied in Equation 2.2.9 is performable. The potential within Equation

2.2.12 becomes the effective potential, experienced by all electrons;

veff(r) = vext(r) + 2

∫
n(r′)

|r− r′|
dr′ + vxc(r) (2.2.13)

where,

vxc(r) =
δ(Exc + Txc)

δn(r)
(2.2.14)

Which makes the single-particle equation become the Kohn-Sham equa-

tion;

[−∇2 + veff(r)− εi]φi(r) = 0 (2.2.15)

The Kohn-Sham equation is equivalent to the Schrödinger equation with
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the modification of the external potential into the effective potential. The ef-

fective potential still relies upon the electron density, which in turn depends

upon the single-particle states φi. Through this, the Kohn-Sham equation

is a self-consistent field problem and allows for a redefinition of the total

energy.

E[n] =
N∑
i=1,
εi≤EF

εi −
∫∫

n(r)n(r′)

|r− r′|
drdr′ −

∫
vxc(r)n(r)dr + Ẽxc[n] (2.2.16)

Whereby the total energy consists of a sum over the eigenvalues, εi, with

the double counting terms subtracted. The use of Ẽxc permits the inclusion

of exchange-correlation kinetic energy, Txc.

2.2.4 Exchange and Correlation

The Hartree energy of Equation 2.2.15 (
∫∫ n(r)n(r′)

|r−r′| drdr
′) depicts the elec-

trostatic interactions of the system. The representation completely ignores

the discrete nature of the electron by allowing them to interact with them-

selves. The exchange-correlation potential (vxc) contains all the differences

between the time-independent Schrödinger equation and the the Kohn-

Sham equations. In principle, there should be an exact form the exchange-

correlation potential takes, providing exact ground state energy and den-

sity. However, in practice, it is impossible to achieve.

Correlation and exchange personify the discrete nature of electrons.

Firstly, correlation: the primary effect of the Coulomb interaction is to repel

like-charges (electrons). Therefore, the assumption of the uniform elec-

tron cloud is false; the electrons are point charges, and their actual wave

functions will behave in a manner such that the probability of finding two

close together will be much less than if their motion was independent. This

dependance is correlation; their motion is correlated. Secondly, exchange;

true electron wave functions must be entirely anti-symmetric. Two elec-
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trons with the same spin cannot occupy the same space. If the interaction

between parallel spin electrons are monitored within the charge distribu-

tion, as one electron moves and leaves the state then the electrons with

the opposite spin fill this hole. The exchange effect exactly cancels out

the density of electrons of parallel spin at the now filled position. The to-

tal integrated exchange charge is just that of a single electron. Thus, the

electrons experience an exchange energy from the anti-symmetric nature

of the wave functions.

2.2.4.1 Exchange-Correlation Functionals

Due to the computationally exhaustive process required to find the exact

form of the XC potential (the same as solving the many-body Schrödinger

time-independent equation), approximations are required. The local den-

sity approximation (LDA) [20] operates under the scheme of a homoge-

neous, interacting electron gas: modelling the exchange-correlation energy

as;

ELDA
xc [n] =

∫
n(r)εxc(n(r))dr (2.2.17)

whereby Txc is included in Exc[n]. εxc(n) is not the eigenenergy but a func-

tion of the density instead of a functional. Equation 2.2.17 divides the inho-

mogeneous electron system into small ’boxes’, each containing a homoge-

neous interacting electron gas with a density n(r), suitable for the ’box’ at

r. Therefore providing the locality aspect of the approximation. Requiring

a slow varying density, the LDA can only predict isotropic interactions. In a

system where the density varies quickly, LDA would not be valid. The en-

ergy of the approximation depends on spherical averages, which provides

excellent results for many materials.

Increasing in the complexity of XC functionals, while maintaining locality

is the generalised gradient approximation (GGA). This semi-local functional

uses some information about the gradient of the density at r. Introducing
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the gradient of the density into E requires consideration of the shape it

takes. There are many different forms; one popular choice is developed by

Perdew, Burke and Ernzerhof (PBE) [22].

EGGA
xc [n] =

∫
n(r)εxc(n(r),∇n(r))dr (2.2.18)

PBE is computationally simpler than other GGAs while maintaining impor-

tant physical features: not relying on tuning parameters but the fundamen-

tal limits of the exact XC functional.

An extension to the GGA’s can be made by including the Kohn-Sham

orbital kinetic energy densities. The meta-GGA’s are still semi-local but

contain implicit nonlocal functions (n(r)) [23–26]. The semi-local approxi-

mation of the meta-GGAs can be expressed as:

Emeta-GGA
xc [n] =

∫
nεxc(n(r),∇n(r), τ)d3r (2.2.19)

where,

τ =
occ∑
i

1

2
|∇ψi|2

which represents the positive orbital kinetic energy densities. Strongly Con-

strained and Appropriately Normed (SCAN) [27] and subsequently Regu-

larised Strongly Constrained and Appropriately Normed (rSCAN) [28] have

made major improvements as the first meta-GGA which satisfies all known

possible exact constraints [27]. The exact constraints and norms are listed

in full in Sun et al. [27] and so will only be briefly explained here. The pur-

pose of using constraints is to allow the XC functional to adhere to physical

constraints which exact DFT possesses and therefore are necessarily true

for all systems of electrons. The appropriately normed aspect of SCAN re-

lates to modelling a ”system for which semi-local functional can be exact or

extremely accurate” [27]. These were taken to be the exchange and cor-

relation energies of four rare gas atoms (Ne, Ar, Kr and Xe), the exchange

and correlation surface energies of four jellium slabs and the interaction
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energy of Ar2 at repulsive atomic distances. The SCAN functional, how-

ever, suffered from numerical instabilities in the construction of the pseu-

dopotential and the solution to atomic all-electron generalised Kohn-Sham

equation. In order to improve this, rSCAN regularised the SCAN XC func-

tional which controlled the numerical challenges while remaining as close

to the original SCAN functional as possible. The modifications of rSCAN

exist in the isoorbital indicator, which connects different approximations of

the exchange correlation energy. The changes eliminates the unphysical

divergence of the exchange correlation potential.

2.2.5 Pseudopotentials

The valence wave functions oscillate quickly inside the core-region due

to the strong ionic potential; these sustain the orthogonality between the

core and valance electrons. The pseudopotential must be generated such

that no nodes are present within the core-region of the pseudo-wave func-

tion as well as the pseudopotentials and pseudo-wave functions becoming

identical to the all-electron wave function outside a cut-off radius (rc), see

Figure 2.1. When these conditions are not met, non-physical states can

be introduced into the calculations; often referred to as ghost states. Mul-

tiple methods exist to generate pseudopotentials, which are beyond this

treatise. Pseudopotentials speed up calculations due to the reduction in

computational complexity as they decrease the number of electronic states

that must be calculated.

Within this thesis, the ultrasoft pseudopotentials were used instead of

norm-conserving pseudopotentials as they allow for lower plane wave cut

off. This reduces the number of plane waves within the calculation and

reduces the computational demand of the calculations.
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Figure 2.1: Comparison between the pseudo-wave function and pseudopotential (red)
with a coulomb potential representing the all-electron wave function and po-
tential (Blue). Source of image from Wolfram Quester.

2.3 Ground State Electronic Structure Calculations

The previous sections have outlined the framework for DFT calculations,

but the practical element of conducting calculations requires consideration.

2.3.1 Arriving at the Ground State

The main objective of every DFT code is to find the ground state of the

material. Every physical property of a material can be determined from the

ground state total energy and density. These calculations must be efficient

and conducted within a limited amount of memory, and with moderate use

of the CPU time.
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2.3.1.1 The Ground State Density and Total Energy

For the total energy in DFT to be a valid representation, it must be self-

consistent. The approach to generate a quantity must return that quantity

when it is used as an input. Within DFT, the most fundamental example

is the electronic density generated by the occupied Kohn-Sham orbitals,

which depend upon the Kohn-Sham potential, generated from the elec-

tronic density.

The process of self-consistency begins with a trial wave functions, ψi,k,

which in turn generates a trial density, n(r). Calculating the Kohn-Sham

potential, vks, and starting energy, E, use this trial density. From here the

total energy is minimised with respect to the wave functions in the Kohn-

Sham potential, producing a new set of wave functions, ψi,k. These new

wave functions generate new total energy, E, and ground state density,

n(r). The new total energy is compared with the previous iterations, and

the difference is checked with a user-defined tolerance; if the energy has

not fluctuated more than the specified tolerance, it has converged. This

process assumes that the final energy must be the minimum, and there-

fore the ground state based upon little variance between iterations; this

can often not be the case but instead produce a local minimum. For a

visual representation of this process, see Figure 2.2.
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Figure 2.2: Flow-chart showing the process used by CASTEP [16] to calculate the ground
state density and total energy.
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2.3.2 The Basis Sets

At the forefront of any useable DFT code is the concept of efficiency through

computational effort and memory consumption. The electronic states fall

under this scrutiny by using a truncated Fourier expansion to represent

them, Ng.

ψi,k(r) =

Nk∑
G=0

ci,k,Ge
i(k+G)·r (2.3.1)

Following this scrutiny, the Hamiltonian operator is rewritten into a mix-

ture of operators from the normal space and Fourier space coefficients.

Thus, the kinetic energy can be represented as an uncomplicated diagonal

form in Fourier space.

T [ψi,k(r)] =

Nk∑
G=0

ci,k,G
|k + G|2

2
(2.3.2)

Defining a limit to the Fourier series is essential in maintaining a low

memory consumption. Kinetic energy offers a natural way to this solution

by only considering basis states below a specific kinetic energy. Thus, the

limit to the Fourier series becomes; |k + Gmax|2 ≤ Ecut.

The XC potentials are diagonal in real space as they only depend on

r due to their local nature. The operators are employed in real space by

transforming the density into real space, and then the density is trans-

formed back to reciprocal space. While this process sounds lengthy, it

is efficiently performed through fast Fourier transforms (FFTs) owing to the

basis set to be a multiple of small prime numbers.

2.3.2.1 The Wave Functions

The solutions to the single-particle Kohn-Sham Equations are the Kohn-

Sham wave functions, shown in Equation 2.2.15. Upon writing Equation
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2.2.15 in a matrix form, the problem becomes an eigenvector problem and

can be solved via matrix diagonalisation with the limitation of potential en-

ergy degeneracies, represented as eigenvalues. The computational cost to

diagonalise is n3
pw, with the number of basis set elements depicted as npw.

If this process were used, it would cause severe bottlenecks in plane-wave

basis set codes as the number of npw ' 100, 000.

The Hamiltonian as a matrix has a size of n2
pw, making direct diagonali-

sation provides npw wave functionswhich are so big that the order of mag-

nitude is larger than the number of occupied states. This computational

ordeal forces codes to use an iterative technique to minimise the energy of

the wave functionsthrough the Kohn-Sham Hamiltonian [29]. This minimi-

sation produces an arbitrary number of lowest energy wave functionsto be

found.

2.3.2.2 Discretisation of Real Space through Grids

The discretisation of real space is possible through the Nyquist-Shannon

theorem [30], which allows the utilisation of the finite Fourier series, hold-

ing the wave functions, to be represented by a discrete set of points in real

space. Moreover, this discrete set of points can fully embody all the infor-

mation stored within the Fourier series. Allowing the Fourier space to be

represented by a grid of Nx, Ny, Nz components, the real space grid will

have a size of Nx × Ny × Nz. The Fourier expansion within the FFTs con-

verts between the two grids, using a divide-and-conquer algorithm, such

as that constructed by Cooley-Tukey [31].

The density and higher-order Fourier components, which is a product

of the wave functions, are produced up to twice those in the wave function

due to the convolution theorem. This size requires a more significant basis

set and a finer grid in real space to represent it accurately. However, this

fine detail usually has little effect on the density and, subsequently, total

energy, acting as another mechanism to limit the size of the Fourier se-
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ries. Within CASTEP [16], a user-defined flag, the grid-scale is the ratio

for product terms within the Fourier series. For instance, the density of the

wave functions, therefore using a fine grid-scale, is essential for ensuring

the accuracy of calculations.

2.3.2.3 Sampling the Reciprocal Space

Within the density are electronic states, which need to be modelled accu-

rately through sampling at a set number of points. The location of these

points must be within the first Brillouin zone to correctly solve for the wave

function of the infinite crystal. The sampling is performed through the use

of an evenly spaced 3-dimensional grid called the Monkhorst-Pack (MP)

grid [32]. This set is unbiased due to its equidistant points and is beneficial

as an n × n × n grid encapsulates interactions with up to the nearest nth

neighbour unit cells. The importance of using a dense enough MP grid

is imperative to reliable DFT calculations; use too coarse a grid, and the

electronic states will not be well represented, leading to inaccuracies.

2.3.3 Electronic Band Structure

This section will focus on how CASTEP [16] determines the Fermi-level

and the importance of k-point sampling for the higher-order Fourier com-

ponents: bands crossing the Fermi-level.

2.3.3.1 Establishing the Fermi-Level

Fundamentally, statistical mechanics defines the Fermi-level as the highest

occupied state any electron can occupy at T=0K. Thus, populating from the

lowest energy states until the total number of electrons are placed relates

to the Fermi-level. The last electron placed marks the highest occupied

state and signifies the Fermi-level, as made clear from the Fermi-Dirac
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distribution function at T=0K, Equation 2.3.3.

fi,k = (exp(
εi,k − µ
kBT

) + 1)−1 (2.3.3)

In practice, an iterative process, beginning with a trial Fermi-energy,

uses the relationship expressed in Equation 2.3.3 to converge to a Fermi-

energy within a user-defined tolerance. This process relies on the sum of

occupied states equalling the total number of electrons and the discreti-

sation of reciprocal space. Hence, once again, the importance of using a

k-point mesh that is both computationally economical and dense enough

so that it can accurately represent the wave functionsresurfaces. If the

sampling is too coarse, then the wave functionsare not accurately repre-

sented, which will affect the density and, therefore, the occupancy of the

states; see Equation 2.3.4. Which, in turn, will lead to significant errors in

the Fermi-energy.

n(r) =
∑
i

∫
BZ

fi,k|ψi,k(r)|2dk (2.3.4)

Where, the index i represents the states and fi are the occupation num-

bers.

2.3.3.2 Smearing Schemes

The integration over the Brillouin zone in Equation 2.3.4 is conducted by

summing over a finite set of k-points. For metallic systems, where partially

occupied bands cross the Fermi-level, discontinuities arise from the occu-

pation suddenly going from 1 to 0. For these instances, only a computa-

tionally exhaustive set of k-points would provide convergence. Supplanting

the integer occupation numbers, fi,k, with a function that varies smoothly

from 1 to 0 close to the Fermi-level alleviates this issue. Such a function is

the Fermi-Dirac distribution, Equation 2.3.3.
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An advantage of using the Fermi-Dirac smearing scheme is that the

electronic smearing corresponds to a physical, thermal distribution at the

user-defined temperature T. The disadvantage to the Fermi-Dirac smearing

is that the function tails off very slowly, so to capture all of the occupied

states, many slightly occupied conductions bands are needed.

The Gaussian smearing function [33], see Equation 2.3.5, fixes the long

tails issues with a shifted and scaled error function for the state occupancy.

Thus, in Gaussian smearing, the number of partially occupied conduction

states required are significantly lower.

f(ε) =
1

2

(
1− erf

(ε− µ
σ

))
(2.3.5)

Where σ = kBT and represents the broadening, µ is the chemical potential

and erf(x) is the standard error function.

The failings of Gaussian smearing are the unphysical nature of the

smearing width and the contribution to the free energy caused by the broad-

ening, forcing the total energy and forces significantly higher than the ac-

tual value, at T=0K. The total energy can be extrapolated back to T=0K

post hoc calculation; however, the forces and stresses cannot.

Another method commonly used is the cold smearing [34] approach

which incorporates and fixes the long tail issue while simultaneously not

yielding unrealistic negative occupancies such as the Methfessel-Paxon

smearing [35] creates. The cold smearing distribution takes the form:

f(xi) =
1

2

[√
2

π
exp(−x2i −

√
2xi −

1

2
) + 1− erf

(
xi +

1√
2

)]
(2.3.6)

where xi = εi−µ
σ

. A similarity with the Methfessel-Paxon scheme is the

elimination of lower than second-order contributions to the free energy from

the broadening. Therefore, the total energy and forces are very close to

the absolute, zero temperature, values; including substantial values of the
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broadening parameter.

2.4 Spin-Dependant Ground State Electronic Struc-

ture

2.4.1 Dirac Theory

In the previous sections, the spin of the electron is mostly ignored, ex-

cept when invoking the Pauli-exclusion principle. It is readily apparent that

spin, as an observable, is of paramount importance in accurately describ-

ing magnetic materials [4, 36–43]. The Dirac equation is the fully relativistic

formulation of the Kohn-Sham equations;

HDψi = εiψi (2.4.1)

Where ψi is a four-component single-particle wave function and HD is the

Dirac single-particle Hamiltonian;

HD = cα · p + βmc2 + V (2.4.2)

The quantity α is a vector operator with the Pauli spin matrices, σk , as the

components;

αk =

 0 σk

σk 0

 (2.4.3)

With the standard representation of;

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (2.4.4)

Which represent the x,y and z Pauli spin matrices, respectively. The quan-

tity p in Equation 2.4.2 is the momentum operator, which takes the form of
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p = −i~∇.β is a matrix of the form;

β =

1 0

0 −1

 (2.4.5)

With

1 =

1 0

0 1

 (2.4.6)

The last term in Equation 2.4.2, V, represents an effective potential which

we associated with the form of veff from Equation 2.2.13.

There are two main properties from the Dirac theory of the electron

which are relevant for magnetism. The first is a quantum mechanical

derivation of magnetisation which connects the electron spin with Maxwell’s

equations and is referred to as Gordon’s decomposition of the current;

which is not examined here. The second is the classification of spin-orbit

coupling, which directly leads to magneto-crystalline anisotropy.

2.4.2 Spin-Orbit Coupling

The spin-orbit interaction is a relativistic interaction which connects the par-

ticles spin and its motion inside a potential. Due to the relativistic nature

of this interaction, the Dirac Hamiltonian is used along-side radial compo-

nents and spherical harmonics. The spin-orbit correction takes the form;

HDψ̃ = ε′ψ̃ +HSOψ̃ (2.4.7)

where

HSO =
~

(2Mc)2
1

r

dV

dr

(σ · L)1

0

 (2.4.8)
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ψ̃ is the four-component wave function ;

ψ̃ =

φ̃
χ̃

 (2.4.9)

where

φ̃ = g̃YLχS (2.4.10)

YL is the spherical harmonic of order L = (`,m) and χ+ =

1

0

 and χ− =0

1

. χ̃ takes the form of;

χ̃ = i

(
σ · x
r

)(
− f̃ +

1

2Mcr
g̃σ · L

)
YL−χs (2.4.11)

and the approximate radial functions g̃ and f̃ are;

ε′g̃ = − ~2

2M

1

r2
d

dr

(
r2
dg̃

dr

)
+

[
V +

~2

2M

`(`+ 1)

r2

]
g̃ − ~2

4M2c2
dV

dr

dg̃

dr
(2.4.12)

f̃ =
~

2Mc

dg̃

dr
(2.4.13)

with the proper normalisation of;

∫
(g̃2 + f̃ 2)r2dr = 1 (2.4.14)

The form Equation 2.4.8 takes is the spin-orbit coupling operator which

enables a determination for how much the function ψ̃ fails to be an exact

solution of the spherical potential Dirac equation. In most cases, the matrix

element of HSO is computed and then added to the Hamiltonian matrix in a

variational model. This process breaks degeneracy of the spin-degenerate

bands. The spin-orbit treatment is dependant upon the basis used, and

different treatments are required for each basis, for instance, Linear Aug-

mented Plane Waves (LAPW) and Relativistic Augmented Plane Waves
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(RAPW).

2.4.3 Spin-Density-Functional Theory

The spin-density-functional theory operates from the work of von Barth and

Hedin [44] and Rajagopal and Callaway [45], who were the first to orches-

trate the use of matrix formalism to represent the density and external vari-

ables instead of single variables. This formalism allows for better compu-

tational performances and eases the mathematics associated with it. The

most straightforward inclusion of magnetic materials in DFT is to attach two

spinors ( χ+ and χ−) to the wave function . These two-component spinors

require a Hamiltonian of the size of a 2 × 2 matrix. This Hamiltonian has

three parts; the kinetic energy, the external potential and the Coulomb in-

teraction of the electrons. The operators take the following, respective,

form:

Tαβ = −δαβ
N∑
i=1

∇2
i (2.4.15)

Vαβ =
N∑
i=1

vext
αβ(ri) (2.4.16)

Uαβ =
∑

i=1,j=1
i 6=j

δαβ
|ri − rj|

(2.4.17)

Where α and β are the spin indices for up and down, respectively. The

formulation of these interactions comes from the spinor function Hamilto-

nian. The electron-density operator and the determination of the electron

density (Equations 2.4.18 and 2.4.19) remain unchanged from non-spin in-

clusive DFT. However, in this formalism, the spinor function provides the

many-body state.

n̂(r) =
N∑
i=1

δ(r− ri) (2.4.18)
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n(r) = 〈Φ| n̂(r) |Φ〉 (2.4.19)

where |Φ〉 is a many-body state.

Determination of the total energy of the magnetic system begins by re-

defining Equation 2.2.7 in the Hohenberg-Kohn theorem with the function-

als depending on the spin-density matrix, ñ(r); with elements nβα(r)(β =

1, 2 and α = 1, 2) defined by:

nβα(r) = N
∑

σ2,··· ,σN

∫
ρ(rβ, r2σ2, · · · , rNσN |rα, r2σ2, · · · , rNσN)dr2, · · · , drN

(2.4.20)

and

E[ñ] = F [ñ] + V [ñ] (2.4.21)

with

F [ñ] = T [ñ] +

∫∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[ñ] (2.4.22)

V [ñ] = inf
ρ∈M(ñ)

Tr〈ρV 〉 = inf
ρ∈M(ñ)

∑
αβ

∫
vext
αβ(r)nβα(r)dr (2.4.23)

As with non-spin inclusive DFT, the spin-DFT methods are the same with

care taken to include the effects of spin. The density matrix elements

can be simplified, upon the assumption that there exists single-particle

functions,φiα(r), that allow the elements to become;

nβα(r) =
N∑
i=1

εiαεiβ≤EF

φiβ(r)φ∗iα(r) (2.4.24)

where the indices α and β are α = 1, 2 and β = 1, 2 due to the electron

spin.

The kinetic energy splits into the kinetic energy of non-interacting particles,
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T0[ñ], and the remainder, Txc[ñ].

T0[ñ] =
2∑

α=1

N∑
i=1

εiα≤EF

∫
∇φ∗iα(r)∇φiα(r)dr (2.4.25)

The appearance of the Fermi energy follows from the density, as only

eigenvalues below the Fermi energy are required as this is not the finite-

temperature extension to DFT.

n(r) =
2∑

α=1

N∑
i=1

εiα≤EF

|φiα(r)|2 (2.4.26)

The ansatz finishes with the postulation of the spin-Kohn-Sham equation.

∑
β

(
− δαβ∇2 + v′αβ(r)− εiδαβ

)
φiβ(r) = 0 (2.4.27)

Minimisation of the total energy occurs in an attempt to determine the po-

tential matrix. The spin-Kohn-Sham equation allows for the kinetic energy

to be written as;

T0[ñ] =
N∑
i=1

εi −
∑
αβ

∫
v′αβ(r)nβ(r)dr (2.4.28)

This form of the kinetic energy can be substituted into Equation 2.4.22, al-

lowing for the variational energy to be easily determined. Equation 2.4.29

provides means for determining the effective potential matrix Equation 2.4.30.

δE[ñ]

δñαβ(r)
= 0 (2.4.29)

v′αβ(r) ≡ veff
αβ(r) = vext

αβ(r) + 2δαβ

∫
n(r′)

|r− r′|
dr′ + vxc

αβ(r) (2.4.30)

where

vxc
αβ(r) =

δ

δñβα(r)
(Exc[ñ] + Txc[ñ]) (2.4.31)
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Equations 2.4.27, 2.4.30 and 2.4.31 form the Kohn-Sham equations which

are coupled together. The total energy can be reformed in a similar ar-

rangement to Equation 2.2.16;

E[ñ] =
N∑
i=1,
εi≤EF

εi−
∫∫

n(r)n(r′)

|r− r′|
drdr′−

∑
αβ

∫
vxc
αβ(r)nαβ(r)dr+Exc[ñ] (2.4.32)

Most notability, the difference is the inclusion of differentiating between

spin-up and spin-down electrons.

2.4.3.1 Spin-Exchange-Correlation Functionals

The LDA adaption for spin-polarised systems, LSDA, differs as the exchange-

correlation energy functional is written in terms of a uniform spin-density,

n↑, n↓.

ELSDA
xc [n↑, n↓] =

∫
n(r)εxc(n↑(r), n↓(r))dr (2.4.33)

The validity of the LDA exists only in a slowly varying density; the same

is true for LSDA with a slowly varying spin-density. This condition does

not seem appropriate for real atoms, molecules and solids; which have the

ability for excitations. While LSDA may seem inappropriate, an electron

gas exists in which n↑ and n↓ are constant and for which LSDA is exact.

Despite the simplicity of LSDA, there are many real systems in which it

accurately describes the magnetic information.

The semi-local functionals of the GGAs are also adaptable to repre-

senting magnetism within the system. Operating in a similar model to the

non-magnetic case the magnetic-GGAs take, in some essence, the follow-

ing form;

EGGA
xc [n↑, n↓] =

∫
εxc(n↑, n↓,∇n↑,∇n↓)dr (2.4.34)

While the input quantity (εxc(n↑,n↓)) to LSDA is, in principle, unique.

There is no such unique input quantity (εxc(n↑,n↓,∇n↑,∇n↓)) for the GGAs.
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Instead the GGAs adhere to a rigorous ’conservative philosophy of approx-

imations’ which allows for the construct of nearly-unique GGAs possessing

all the known correct formal feature of LSDA [22].

The meta-GGAs are also capable of the ad-hoc adaptation to spin, with

the exchange correlation functional taking the shape:

Emeta-GGA
xc [n↑, n↓] =

∫
εxc(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓)d3r (2.4.35)

with the orbital kinetic energy as:

τσ =
occ∑
i

1

2
|∇ψi,σ|2

Where σ =↑ or ↓ for majority and minority spin channels respectively.

2.5 Complex Magnetism

2.5.1 Co-linear and Non-Co-linear Magnetism

A co-linear magnet has the property of all the magnetic ions aligning along

a common quantisation axis; for mathematical convenience, it is the z-

axis. Ferromagnet’s magnetic moments (Mi = M) have the same moment

value on all of the magnetic sites in the system, with their positions de-

noted at Ri. An antiferromagnet possesses a staggered arrangement of

magnetic moments (Mi= ±M) of the same size, but of opposing direction

to its neighbours. In materials, the magnetic structure can take the form

of more complex antiferromagnetic configurations; for instance, the up-up-

down-down state. Ferrimagnetic arrangement occurs when the magnitude

of the magnetic moments differ from one site to the next. The direction of

the moments in the Ferrimagnetic state still obey the basis of antiferromag-

netism but form sub-lattices. The most excellent examples of ferromag-
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nets and antiferromagnets are the 3d transition metals: hcp-Co, fcc-Ni and

bcc-Fe have ferromagnetic ground-states while bcc-Cr and fcc-Mn can be

antiferromagnetic.

In non-co-linear magnetic structures, the quantisation axis (êM ) is not

the same for all of the magnetic ions. The axis can change direction from

one site to the next. The most typical non-co-linear magnetic structure

is an incommensurate (where the magnetic periodicity exceeds the struc-

tural) spiral spin-density wave. These magnetic structures often occur in

systems with a topologically frustrated antiferromagnetic interaction, for in-

stance antiferromagnetically interacting ions in a triangular lattice. Another

common cause for this magnetic structure is in systems with competing

exchange interactions between neighbours, such as in the case of fcc-Fe.

For the bcc-Cr and fcc-Mn cases, the magnetic states can take on a

more complex, non-co-linear form. Cr exhibits a frozen sinusoidal spin-

density wave. The magnetism, of which, is characterised by a magneti-

sation which varies in space like a wave: integrating over space, leads to

vanishing total magnetism.

m(r) = M cos(qr)

∫
∞
m(r)dr = 0 (2.5.1)

where q is the phase factor or Q-vector of the magnetic spiral, which ex-

perimentally is q ≈ 0.9522π
a

for Cr.

2.5.2 Exchange Interactions

Ions in a system with magnetic moments, within a reasonable range, in-

teract with each other via exchange interactions. An exchange interaction

parameter, J, characterises the strength and type of this magnetic interac-
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tion (antiferromagnetic or ferromagnetic). Exchange mechanisms pose an

insight into the dynamics of those interactions. There are three primary

types of exchange mechanism. Magnetic insulators typically have short-

range order, and so the third mechanism (metallic exchange) is no suitable

explanation for the observed behaviour.

1. Direct or Potential Exchange:

This exchange aims to minimise the potential energy by reducing

the electronic wave function overlap. The reduction in the overlap

is achieved by the addition of nodes to the wave function. These

nodes can occur upon the production of anti-symmetric spatial wave

functions. These wave functions favour symmetric spin arrangement

and thus generate ferromagnetic interactions.

In the instance where the wave functions are localised on different

ions, the minimisation of the potential between the ions leads to sym-

metric spatial wave functions; favouring anti-symmetric spins, gener-

ating antiferromagnetic interactions.

2. Kinetic or Super-Exchange:

Super-exchange, fundamentally, describes the interaction of elec-

trons hopping via an intermediate ion. It originates from the case

in transition metals where the magnetic ions are so far apart that

direct overlap of the wave functions is not possible. However, de-

spite this distance, there is still a robust kinetic exchange. This ex-

change operates through minimising the kinetic energy by reducing

the gradients of the wave functions through delocalisation of the elec-

trons. In an insulating system, the electrons are localised, and so the

kinetic exchange interaction arises from a perturbation of a virtual

electron transfer, generating an antiferromagnetic interaction. Dou-

ble exchange is a form of kinetic exchange in which a real electron

is exchanged between ions of different species and with different ox-

idation states. This kinetic mechanism allows for ferromagnetic or
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antiferromagnetic interactions. For instance, the Mn-O-Mn bond with

an angle of 1800; the Mn eg orbitals are directly interacting with the

2p orbitals from the oxygen. One of the Mn ions has more electrons

than the other. A transfer of one spin-up electron from the oxygen to

the Mn4+ occurs, and the oxygen’s empty orbital is filled by the Mn3+

ion. Electrons have then travelled between the metal ion preserving

the spin, due to Hund’s rules.

3. Metallic-Exchange:

Magnetism is typically introduced in materials through the 3d transition-

metals or the lanthanides. In metallic systems, itinerant electrons are

responsible for probing the lattice and forming the Fermi-Surface. The

hopping of the electrons across the lattice means that the type of ex-

change interaction is long-range. In assisting in the formation of the

Fermi-Surface, the magnetism is interwoven with the electronic struc-

ture of the system. The hopping of the electrons in transition metals

are correlated, meaning that the electron hopping in/out of an atomic

site possess the same spin orientation. Increasing the time-scale of

observation to a value significantly larger than the time it takes for the

electrons to hop (around femtoseconds), a quasi-static local magnetic

moment can be observed at the site.

In the instance of a 4f-system, the exchange interaction between the

4f localised moments is interfered by the 5d and 6s itinerant electrons

and takes the form of the Ruderman-Kittel-Kasuya-Yoshida (RKKY)

interaction.

Magnetic insulators have the electronic property of association with

atomic sites, meaning the magnetism depends on intra-atomic and

local quantities.
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2.5.3 Exchange Interaction Parameter

2.5.3.1 The Heisenberg Model

The determination of the exchange interaction parameter stands upon dif-

ferent Spin-models, the most common, the Heisenberg model. The Heisen-

berg model is an extension to the Ising model, which grants the spins to

point either up or down, with no phase transitions. The Heisenberg model

permits the spins to behave classically with their degrees of freedom and

can point in any three-dimensional direction. It is essential to note the dis-

tinction between the dimensionality of the lattice, d, and the dimensionality

of the spins themselves, D-the order parameter. The Heisenberg Hamilto-

nian can be adapted to allow for discovering the type of magnetic interac-

tions between the nearest, next-nearest and next-next-nearest neighbours

within the system. The nearest-neighbour Heisenberg Hamiltonian takes

the form of:

Ĥ = −
∑
〈ij〉

JijSi · Sj (2.5.2)

Where J is the exchange interaction parameter, and the spins Si are treated

as three-dimensional vectors as the spin is allowed to point in any one of

three-dimensional spaces. The exchange interaction parameter between

the spins is isotropic and in a localised spin system. When J>0 the ar-

rangement of the spins between the nearest neighbours is ferromagnetic

and if J<0 the arrangement is antiferromagnetic.

2.5.3.2 Broken Symmetry Approach

The Broken-Symmetry approach (BS-approach) [46] is one of many strate-

gies to extract the exchange interaction parameter from the system. The

BS-approach relies upon the Heisenberg Hamiltonian. As its namesake

suggests, the BS-approach operates through breaking the magnetic sym-

metry to determine the effective exchange interaction parameter. The BS-
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approach Hamiltonian mirrors the Heisenberg Hamiltonian, with slight dif-

ferences:

H = J
N∑
i<j

Si · Sj (2.5.3)

where Si(Sj) represent the magnetic moment on ion i (j), N is the total

number of magnetic centres and J is the isotropic exchange interaction

parameter for the nearest neighbours.

The total energy of a 1D system with cyclic boundary conditions can be

calculated through:

Etot = J

N∑
i=1

Si · Si+1 + SN · S1 (2.5.4)

The BS-approach extracts the exchange interaction parameter through the

energetic difference of the high-spin ordered (high symmetry) system and

the broken symmetry system (low-spin ordered) as well as the total number

of magnetic sites.

Jij =
EHS − EBS

2SiSj
(2.5.5)

where the ith ion has the jth ion as its nearest neighbour. The exchange

interaction parameter is an effective J as the value is determined via the

interaction of all magnetic sites.

The BS-approach, despite its simplicity, works on a wide range of real

magnetic systems. For more complex systems which require the need to

include the spin-orbit interaction other, more complex, approaches exist but

at a higher computational cost.

2.5.3.3 The Quantum Chemistry Approach

Quantum chemistry offers means to determine exchange interaction pa-

rameters. A multi-configurational scheme allows for a mixture of different
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spin configurations and ascertains the energy eigenvalues corresponding

to different total spin values. For example, with two interacting spins, S1

and S2, we can surmise the total S’=S1+S2. This provides:

2S1S2 = S
′2 − S2

1 − S2
2 (2.5.6)

with the eigenvalues:

[S ′(S ′ + 1)− S1(S1 + 1)− S2(S2 + 1)]

In the case where S1 = 1
2

and S2 = 1
2
, the states produced are a singlet

(S ′=0) and a triplet (S ′=1). The Heisenberg Hamiltonian eigenvalues are 3
2

J and −1
2

J, respectively. Relating this to first-principles, basis functions are

usually pure spin states, with the basis of spin functions |mS1 ,mS2〉, where

our case has S1 = 1
2

and S2 = 1
2
, the Heisenberg Hamiltonian takes for the

shape of:

mS1mS2

∣∣1
2
1
2

〉 ∣∣−1
2
1
2

〉 ∣∣1
2
− 1

2

〉 ∣∣−1
2
− 1

2

〉∣∣1
2
1
2

〉
−J

2∣∣−1
2
1
2

〉
J
2

−J∣∣1
2
− 1

2

〉
−J J

2∣∣−1
2
− 1

2

〉
−J

2

Through mixing the different ms values via basis transformation, diagonali-

sation of the Heisenberg Hamiltonian takes place. Whereby the singlet and

triplet states are represented, respectively, via:

S = 0 E =
3

2
J

1√
2

(∣∣∣∣12 − 1

2

〉
−
∣∣∣∣−1

2

1

2

〉)
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S = 1 E = −1

2
J



∣∣1
2
1
2

〉
1√
2

(∣∣1
2
− 1

2

〉
+
∣∣−1

2
1
2

〉)
∣∣−1

2
− 1

2

〉
The singlet and triplet states eigenvalues (Es and Et, respectively) are

instantly accessible in the above quantum chemistry multi-determinantal

representation. Moreover, this representation offers a direct relationship

with first-principles, letting the results map onto the Heisenberg model.

Es − Et = 2J (2.5.7)

The disadvantage of this method comes from large systems such as

molecular magnets, where the number of interactions exceeds computa-

tional resources and requires reduction. In addition, this method offers

uncertainty about the result as only a tiny portion of the total number of

interactions can be included in the diagonalisation.
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Chapter 3

Colossal Magnetoresistance in

Tl2NiMnO6

3.1 Introduction

Perovskite compounds are notorious for exhibiting unique magnetic be-

haviour, significantly influenced by other characteristics within the material

[47–53] —for example, the multiferroic BiFeO3 exhibits ferroelectricity fer-

romagnetism at room temperature from a lone pair Bi3+ ion [54–59]. The

importance of understanding these behaviours cannot be understated for

their use in spintronics and future technologies.

The perovskite structure follows the form of ABX3, where A and B are

cations, and X (typically oxygen) is an anion, see Figure 3.1a for visu-

alisation. The interesting magnetic behaviour continues to the double per-

ovskites, which, as their namesake suggests, extends the perovskite’s struc-

tural form.

The double perovskite possesses a structure consistent with A2BB’O6, where

A is usually a rare-earth metal (but not exclusively) and B/B’ are two tran-

sition metals, see Figure 3.1b for a visulation.

Double perovskites offer a rich insight into complex magnetic phenom-

ena, such as magnetoresistance, magneto-capacitance and magnetodi-

electric behaviour [60–64]. These magnetism-dependant properties often

emanate from phase changes, half-metalicity or spin-lattice coupling [65–

67]. Of these phenomena, magnetoresistance provides the broadest range



(a)

(b)

Figure 3.1: The perovskite structure as demonstrated by SrTiO3 (a) and the double per-
ovskite structure demonstrated by Sr2TiMoO6 (b).

of occurrence in strength; with a giant- and colossal magnetoresistance ap-

pearance [60, 63, 65–67]. These relate to the intensity of the resistance

caused, with colossal as the more significant phenomenon.

Double perovskites are not limited to a single magnetic configuration

and are found to have ferromagnetism such as La2NiMnO6 [68], Sr2FeMoO6

[69] and Cr2CrReO6 [70] as well as ferrimagnetism, for instance, Cr2CoMnO6

[71] and A2CrOsO6 (A=Sr,Ca) [72], and antiferromagnetism as found in
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Ba2PrRuO6 [73] and Mn2MnReO6 [67]. Of these magnetic configurations

magnetoresistance can manifest with little discrimination, between those

magnetic states, in the frequency of which they appear in nature. For

instance, the antiferromagnetic double perovskite, Sr2CrWO6, shows gi-

ant magnetoresistance [74], as does the ferrimagnetic Mn2FeReO6 [66],

while the ferromagnetic La2NiMnO6 shows room-temperature magnetore-

sistance [75].

In trying to characterise the origins of these elaborate magnetic exhi-

bitions, it is often helpful to look towards the electron-densities around the

Fermi-energy as these contribute towards the Fermi-surface shape, and

ultimately the transport properties.

First-principles investigations can provide insight into the electronic struc-

ture deep inside the material through the electronic density of states and

band structures. For example, DFT calculations have offered explanations

to the complex magnetism observed in double perovskites, such as the

orbital magnetism of Sr2FeMoO6, Sr2FeReO6 and Sr2CrWO6 [76], through

electronic structure investigations. Further, the ab initio investigation into

the electronic transport and magnetotransport of Sr2Fe1+xMo1−xO6 by Car-

vajal et al. [77]. Finally, the systematic DFT investigation performed by

Bartel et al. on the Cs2BB’Cl6 double perovskite determined the suitability

of band gap for optoelectrical applications [78]. These reveal the suitability

of first-principles methods in determining the electronic structure of double

perovskites and their complex magnetic relationships.

This chapter examines the double perovskite, Tl2NiMnO6, electronic

structure, modelling the occupational disorder via the virtual crystal approx-

imation [79, 80]. We shall also examine the band structure and density of

states to gather information on the suspected insulating nature. We will

also observe magnetic interactions and utilise the effective masses of the

electrons and holes to determine transport properties with potential links

the colossal magnetoresistance.

60



3.2 A Disordered Nature

The crystal structure of Tl2NiMnO6 possesses varying degrees of disorder

caused by the occupancy of the Ni2+ and Mn4+ cations. Through quantita-

tive refinement of the neutron diffraction data in the Rietveld plot, Ding et

al. [81] determined the Ni/Mn occupation to be 0.85/0.15 and 0.658/0.342

on the B/B’ sites, respectively. This culminated in the notion of an ordered

(70%) and disordered (31.6%) samples. The degree of ordering was quan-

tified as |PNi−PMn|/(PNi+PMn)×100, where PNi and PMn are the probabilities

of occupying the B and B’- site by the Ni and Mn ions. However, the ex-

perimental analysis, which determined colossal magnetoresistance, was

on the 70% ordered sample. Therefore, the DFT calculations were per-

formed on this structure to allow for maximum experimental comparison

and coherency.

Disordered materials are a computationally challenging area to study

due to the lower symmetry and size of the unit cell. There are two ap-

proaches to consider with disordered materials, the ”direct” approach (a

phrase coined by Vanderbilt) [80] and the computationally inexpensive vir-

tual crystal approximation (VCA) [79, 80].

The direct approach invokes a supercell to study one or more disordered

configurations with artificially imposed periodic boundary conditions. The

calculations involved in this approach are computationally demanding due

to the use of very large supercells to mimic the distribution of local chemi-

cal environments.

The VCA employs the crystal within the primitive periodicity and composes

the cell of fictitious ”virtual” atoms that interpolate between the behaviour

of the atoms with the parent compounds.

Electronic structure calculations using the VCA approach have been

used with a reasonable degree of accuracy [82]. However, the effects of

local distortions around atoms are not considered under the VCA approach

61



and cannot recreate the finer details of disorder in materials [80, 83–85].

Thus, the accuracy of the VCA scheme has limits. Nevertheless, while

it is not appropriate for some semi-metals and soft mode lattice dynam-

ics [86–88], it has shown good accuracy for ferromagnetic materials and

other semi-metals [82, 89–93]. Further to this, Ramer et al. [94] show the

VCA successfully describing ferroelectric perovskite solid solutions. The

remit of this investigation is to use DFT, through electronic band structure,

to provide insight into a ferromagnetic insulating double perovskite and to

use effective masses to indicate transport properties, observing any initial

colossal magnetoresistance effects. Thus, the VCA should provide a good

approach.

3.3 Results

The results for this investigation orientate around the fine-grid sampling;

see section 2.3.2 for more information. The first-principles calculations

utilised a coarse fine-grid and a denser fine-grid, revealing the importance

of converging this parameter for reliable ab initio studies.

3.3.1 Electronic Structure

Table 3.1 reveals the optimised lattice parameters for the coarse and dense

fine-grid scales and compares them to the experimental values of Ding et

al. [81]. The PBE lattice parameters optimised to a=5.31Å, b=5.39Å, and

c=7.71Å, and a=5.25Å, b=5.36Å, and c=7.70Å for the coarse and fine-

grid scales, respectively. We observe slight differences between the grid

densities, with the fine-grid predicting smaller lattice parameters than the

coarse grid. However, both optimisations are within 2% of the experimental

values, which is a good agreement.
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a (Å) B (Å) (Å)
Ding et al. 5.27 5.39 7.67

Coarse Fine Grid
Scale (1.75)

5.31 5.36 7.71

Denser Fine
Grid Scale (4.5)

5.25 5.36 7.70

Table 3.1: The optimised lattice parameters compared to experiment, by Ding et
al.[81]
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Figure 3.2: The partial density of states (PDOS) of Tl2NiMnO6 (a) compared with a close
up around the Fermi-energy (b). PDOS obtained through use of the OPTA-
DOS code [95, 96].The positive and negative regions of the DOS correspond
to the majority and minority spin channels respectively.

Figure 3.2 shows the density of states for the coarse fine-grid scale;

there was no significant visual difference with the denser fine-grid scale

63



The density of states at the Fermi-energy is 0.09 eV−1Å−3 for minority spin

(beta) electrons and 0.67 eV−1Å−3 for majority spin (alpha) electrons for

the coarse fine-grid scale and 0.56eV−1Å−3 and 0.06eV−1Å−3 for majority

and minority spin electrons in the dense fine-grid scale. The density at

the Fermi-level corresponds to a low carrier concentration and thus a poor

conductor.

Further, there is a strong dominance of majority spin electrons below

the Fermi-energy. The difference in occupation between majority and mi-

nority spins at and around the Fermi-level indicates Stoner ferromagnetism.

There is no band gap in the electronic density of states, in contradiction

to the experimentally determined insulating nature of Tl2NiMnO6 [81]. The

ions which contribute most to the density of states around the Fermi-energy

are Ni and Mn. These ions are transition metals, which are well-known

examples of DFT underestimating or failing to predict their band gaps [97].

Therefore, the Hubbard-U on-site correction was introduced.

Figures 3.3a-3.3d show the band structures of the coarse fine-grid and

dense fine-grid scales, with their respective Hubbard-U values, added to

the d-orbitals of the Ni and Mn ions. The central aspect of Figures 3.3a-

3.3d is the difference in the number of valance bands, caused, in part, by

the increased Hubbard-U value and the denser fine-grid scale changing

CASTEPs representation of the charge density through different sampling

rates.

Due to the different sampling rates caused by the fine-grid scale, the

Hubbard-U values are significantly different and are determined via the

plateau method, which involves increases the Hubbard U value and com-

paring the effects on forces, stress or ground state energy. This method is

similar to typical convergence testing, however, the focus is on observing

a plateau in the graph. In the plateau region, the effects of increasing the

Hubbard U value on the properties of the system are similar and so a value

from the region is selected. The difference in Hubbard-U values ultimately
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Figure 3.3: A comparison of the band structure for Tl2NiMnO6 between the coarse fine-
grid (a), (c) and the dense fine gird (b),(d). Hubbard-U values of 1.50(3.00)eV
and 1.25(2.75)eV for Mn and Ni, respectively for the coarse (dense) fine-grid
scale. The distinction between α- and β-bands in (c) and (d) are in colour and
is used to demonstrate the majority spin channels dominance. Path through
the Brillouin zone was chosen via SeeK-Path [98, 99]. The main source of
the difference the bands between (a),(c) and (b),(d) come from effects of the
increased Hubbard-U value.

affects the size of the band gap; however, both fine-grid scales produce a

gap size associated with a semi-conductor and not an insulator.

The electronic band structure and density of states clearly show that
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Magnetic Moment (µB) Ni Mn
Ding et al. 0.99 1.51

Coarse Fine Grid Scale
(1.75)

0.72 1.62

Denser Fine Grid Scale
(4.5)

0.73 1.65

Table 3.2: The magnetic moments on the ions Ni and Mn compared to experimen-
tal values, by Ding et al.[81]

Tl2NiMnO6 possesses a ferromagnetic ground state. Table 3.2 reveals the

magnetic moments associated with the ferromagnetic state for the coarse

and dense fine-grid scales. There is very little difference between the mag-

netic moments of the different samplings, at a mean value of 0.02µB. Both

the coarse and dense fine-grid scales underestimate the magnetic mo-

ments on the Ni ions by around 26%, while simultaneously overestimating

the Mn magnetic moments by around 8% when compared to experimen-

tally determined moments by Ding et al. [81].

There are residual magnetic moments, varying in strength between

0.2µB-0.6µB, for Tl and O. This behaviour indicates itinerancy, which agrees

with the electronic structure and the delocalisation apparent within the den-

sity of states, symbolising metallic behaviour.

Despite the drastic changes in the electronic structure between the

coarse and dense fine-grid scales, the overarching behaviour is the same:

the band gap is insufficient to exhibit insulating behaviour but instead demon-

strates semiconduction, which does not prevent colossal magnetoresis-

tance [100].

3.3.2 Effective Masses of Electrons and Holes

Due to the band structures exhibiting semiconduction, the effective masses

of the charge carriers can be determined.

In semiconduction, electrons will cross the band gap between the valance
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and conductions bands via excitations. Therefore, the minimum of the con-

duction band at Γ will almost exclusively contain electrons, and the max-

ima of the valance band at point A will contain holes (see Figures 3.3b

and 3.3d). Therefore, the energy-wave-vector for the charge carriers can

be approximated using a modelled quadratic equation around the extrema

as they are parabolic in these regions [100]. In this parabolic nature, the

energy-wave-vector diagrams resemble a free electron, as described in the

Kronig-Penney Model [101], the energy is represented by:

E =
~2

2me,h

k2

where
d2E

dk2
=

~2

me,h

∴ m∗e,h = ~2
(d2E
dk2

)−1 (3.3.1)

and m∗e,h is the effective mass of the electron or the hole [102].

The second derivative of energy with respect to the wave-vector is de-

terminable through the quadratic curve fitting of the relevant bands in the

electronic band structure, see Figures 3.3b and 3.3d. The equation de-

scribing that fitted curve represents the energy as a function of the wave-

vector; differentiating this twice provides a value fitting the format of Equa-

tion 3.3.1.

The quadratic fittings in Figure 3.4 reveals a relatively good match for

the conduction bands, partly due to the narrow nature of the parabolas. For

the valance band, the broadness of the parabola in the Γ-A directions has

made it difficult for the curve-fitting software to marry up the two. Through

closer observation of the band, it can be considered two separate curves;

that is, the shape of the parabola in the Γ-A direction is significantly broader

than the shape in the A-E direction.

In principle, these two directions can be modelled through separate curves
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Figure 3.4: The quadratic curve fitting for the parabolic region of the bands. Zoomed in
sections of the band structure shown in Figure 3.3. Figure (a) and (b) relate to
the conduction bands for α- and β-bands, respectively, and (c) relates to the
α valance band.Some bands have been removed for clarity.
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Figure 3.5: The quadratic curve fitting for the α valance band split between the directions
Γ-A (a) and A-E (b). Some bands have been removed for clarity
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fittings to accommodate anisotropy between these directions, as seen in

Figure 3.5.

Symbol
Band minimum at Γ

Minimum Energy Eα,c (eV) 0.0430
Effective Mass m∗e/mo 0.0119

Minimum Energy Eβ,c (eV) 0.0470
Effective Mass m∗e/mo 0.0116

Table 3.3: The effective masses of the electrons as well as the bands minima used
to determine them.

Symbol
Band Maximum at A

Maximum Energy Eα,v (eV) -0.2219
Direction Γ-A
Effective Mass m∗h/mo 0.0673
Direction A-E
Effective Mass m∗h/mo 0.0217

Table 3.4: The effective masses of the holes in direction Γ-A and A-E.

Comparing the curve fitting of the majority spin valance band between

Figures 3.4 and 3.5 shows a significant improvement in curve fitting through

treating the two directions separately, suggesting greater confidence in the

effective masses obtained.

The effective masses for the electrons as seen in Table 3.3, show two

values for the electron masses corresponding to the majority spin (alpha)

and minority spin (beta) electrons. The difference between these conduc-

tion electron masses are slight and can be considered indistinguishable as

they are the band minima energy.

The holes mass found from the valance band, as seen in Table 3.4, are

significantly heavier than the electron masses; this is not alarming given

the shape of the band. The broadness of the valance band and the heavi-

ness of the holes suggest that the holes are mainly responsible for charge-

carrying in the system. The difference between the effective masses of the
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holes in the different directions indicates that there will be different trans-

port properties in these directions. The Γ-A direction effective mass is over

three times heavier than the hole in the A-E direction, suggesting the dif-

ference in transport properties to be significant. The effective masses of

the holes are relatively light when compared to silicon; however, with heav-

ier elements, such as germanium [103], the values become less stark in

contrast.

3.4 Discussion

The significant number of majority spin bands immediately below the Fermi-

energy in Figure 3.3 indicates dominance of that spin channel as charge

carriers. In addition, the elongated band at the Γ point reduces the size

of the band gap and offers the hopping of excited electrons, indicating that

the double perovskite is a semiconductor. While the semi-empirical nature

of Hubbard-U makes it unwise to discuss the size of the band gap quantita-

tively, qualitatively, it is small enough for excitations to overcome and does

not alter the justification of the semiconducting conclusion.

The first-principles calculations converge to a ferromagnetic ground state,

which agrees with Ding et al. [81]. However, there is around a 26% dif-

ference between magnetic moments. This could be related to the VCA

scheme with the mixed occupancy on the magnetic ions but would require

further investigations. Without spin-orbit coupling, the directions of the mo-

ments with respect to the crystal cannot be determined. Itinerancy can be

observed from the broadness in the density of states and valance bands,

as well as the residual magnetic moments on the Tl and O ions.

The difference in the masses of the holes in the valance band indicates

that the Γ-A direction allows for a more straightforward travel than the A-E

direction. This anisotropy could be a possible consequence of the material

exhibiting magnetoresistance, forcing anisotropy on the charge carriers.
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Furthermore, the difference in effective masses between the holes and

the electrons shows that there is a disparity between their contribution to

charge transport; this could assist in explaining the magnitude of the mag-

netoresistance observed in the system, as the holes are heavier and are

exclusively majority spin holes. However, scattering rates have not been

investigated and so determination of which charge transport mechanism

plays a larger role (if any) cannot be stated. Furthermore, the difference in

these masses adds more weight to this material exhibiting semiconducting

behaviour. However, this would require the use of spin-orbit coupling and

modelling an external field to confirm a relationship between the effective

masses of the charge carriers and the colossal magnetoresistance.

The use of the VCA approach to model the occupational disorder ren-

dered different results compared to the experimental. While the optimisa-

tion of the unit cell proved to be within the expected difference associated

with PBE, there was a lack of insulating behaviour. It is unclear whether

this is the shortcoming of VCA or a broader issue facing DFT that would

require further investigations using the direct supercell method.

3.5 Conclusion

In conclusion, the ab initio investigation into the double perovskite, Tl2NiMnO6,

reveals a ferromagnetic semiconducting ground state. Furthermore, the

strong dominance of majority spin bands below the Fermi-energy indicates

polarised charge carriers and dependence of transport properties on ap-

plied magnetic fields at finite temperature.

The difference in effective masses between the electrons and holes in-

dicates an unequal contribution to transport in the system. However, fur-

ther investigations involving scattering times are required to understand

the nature of the divergence. This is incompatible with insulators but not

for semiconductors. Furthermore, the disparity between heavy and light
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holes reveals anisotropy within the material between different directions,

potentially related to the colossal magnetoresistance.

3.6 Future Works

Further work is required with spin-orbit coupling to determine if the differ-

ence in masses for the holes between Γ-A and A-E relates to the direction

of and external field. Spin-orbit coupling would also reveal any split-off hole

valance bands as it would provide the spin-orbit energy introducing hyper-

fine splitting to the valance bands. Further work is also required to gather

a more complete picture of the effective masses with the effective mass

tensor for the majority spin valance bands and reconcile the multiple val-

ues. Further work should look into using different codes and software to

calculate the effective masses of the holes and electrons.

The direct supercell method is needed to determine if the differences

with experimental values emerges from the VCA approach or the level of

theory implemented.
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Chapter 4

Molecular Magnets

4.1 Introduction

Olivier Kahn, who is considered one of the founders of the research topic,

described molecular magnetism as ”dealing with magnetic properties of

isolated molecules and assemblies of molecules” [104]. While the ex-

perimental and theoretical methods for studying molecular magnets has

changed since those words [105], the fundamental defining nature of them

has not. The versatility of synthesis for molecular magnets renders acces-

sibility to a host of experimental probes, characterising the physical and

magnetic attributes, such as optical, X-ray, Mössbauer and neutron spec-

troscopies, SQUID magnetometer, electron paramagnetic resonance and

scanning microscopes [106–109]. The rich experimental basis for investi-

gation birthed multiple theoretical frameworks. Such models included the

isotropic exchange limit (Heisenberg model) and the fully anisotropic ex-

change limit (Ising model) [110]. These models had success in describing

the characteristic magnetic behaviour exhibited by the molecular magnets,

a minimum in the magnetic moment at a given temperature and accompa-

nied by divergence at lower temperatures. The particular success of these

models is orientated around correctly determining the strength and degree

of anisotropy of the exchange coupling between two alternating spins [104,

111–115].

Following the initial success of molecular magnetism, the field grew into

one where chemists designed materials with increasing complexity while

physicists studied the novel magnetic phenomena observed [116]. Two



main classes of molecular magnets emerged through this development:

single-molecule magnets (SSM) and multifunctional magnets [107].

As their namesake suggests, single molecular magnets are versatile

single molecules exhibiting strong ground state magnetism, a negative

zero-field splitting parameter and a spontaneous magnetic moment in line

with the easy axis. SMMs display magnetic bistability at low temperatures

owing to an energy barrier for magnetisation reversal. This means that the

SMMs can become frozen in one of two potential wells; an effective mag-

netic memory [107, 117]. SMMs are often termed molecular nanomagnets

due to their ability to become crystallised and have weak intermolecular

interactions. This feature provides an advantage for experimental probes

as they mainly detect intramolecular interactions [109, 118]. The isolative

nature of SMMs and the prospect of manipulating them makes their use

desirable for classical computer storage systems, future quantum comput-

ing and other spintronic areas [107, 109, 118]. Therefore, understanding

the mechanisms responsible for their magnetism is vital to their widespread

use.

This chapter uses ab initio calculations to understand the underlying

mechanisms that experimentally generate different total magnetism (Stot)

for the single molecular magnet, Cr10. This chapter will also compare

the exchange interaction parameters of the Cr10 molecule with the Cr8

molecule to characterise the effect of the frustrated next-nearest neigh-

bour interactions in Cr10. We also compare the methodology of using crys-

tal symmetry to optimise the Cr8 molecule with linear ionic constraints to

optimise the Cr10 molecule. The main objective for Cr8 is to use it as a

benchmark for comparison with the Cr10 investigation.

The Cr10 molecule has been experimentally observed in both a fer-

romagnetic and antiferromagnetic ground states [106, 108]. The reason

behind this phenomenon is partially related to the distances between the

magnetic sites and the methods employed in synthesis [108], although they
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are not fully understood. We also seek to understand the importance of

symmetry in the phenomenon of Cr10 molecule.

4.2 The Molecular Structures

4.2.1 The Cr10 Structure

The molecule Cr10(OMe)20(O2CCMe3)10, hereon abbreviated to Cr10, con-

sists of a 10 Chromium ion ring as the main edifice, with two sets of Oxygen

bridges and a third bridge consisting of two Oxygens and a Carbon ion,

see Figure 4.1. Cr10 is magnetically bistable with antiferromagnetic and

ferromagnetic ground states, both exhibiting interesting magnetic proper-

ties. We received an experimental configuration of the molecule from T.G.

(ISIS)3, who used neutron diffraction to determine the structure and mag-

netic information. The Cr10 molecule is considerably large with 270 ions,

as seen in Figure 4.1.

Figure 4.1: A visual representation of the Cr10 molecular structure, with side-profile.
Chromium, Carbon, Oxygen and Hydrogen are represented as the blue, grey,
red and white spheres respectively.
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Even with the significant advancements in computing, 270 ions are still

too computationally exhaustive to perform straightforward ab initio calcula-

tions. This limit is due to the even larger number of electrons those 270

ions contribute to the calculation as DFT uses the electron density to find

the ground state. Reducing the size of the molecule, and therefore the

number of electrons is key to performing any calculations which can ex-

plore the magnetic character of Cr10. The alterations ought to leave the

exchange pathways unperturbed. It is clear from Figure 4.1 that only ions

bonded to the core Cr-ring will be involved in magnetic exchanges. The

extended methyl branches (C-C-(CH3)3 (referred to as pivalic groups) and

an additional CH3 (from the inner molecule) contain 180 ions and are not

directly involved in magnetic exchanges. Therefore they would only add to

the complexity of calculations while not providing any helpful insight into

the magnetic workings of the molecule.

Furthermore, the methyl branches contain overlapping ions, which reg-

ister as molecular disorder in the INS data. These methyl branches can be

removed and replaced with single Hydrogens in a process called Hydrogen

saturation.

A pruning process is applied, as shown in Figure 4.2. The interior

methyl groups start from the middle panel (imaging the bond O-CH3 in-

stead of O2C-CH3), and the exterior methyl group follow the pruning as

shown in Figure 4.2 without deviation. The final configuration of the Cr10

molecule contains no methyl groups as they have been replaced with an

isovalent Hydrogen ion.

The justification of this saturation comes from a valency argument; the

number of bonds which the Carbon and Oxygen ions take part in has not

changed. Therefore, the replacement will not change the valency of the

Carbon or Oxygen ions as the number of electrons in the bonds is un-

changed.

The reduced molecule now possesses the chemical formula,
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Figure 4.2: Illustrative representation of the pruning application adopted to approximate
the Cr10 molecule. Here, displaying the process on the outer branches.

Cr10(OH)20(O2CH)10, with a total number of ions at just 90, allowing for a

considerable boost in computational speeds for first-principles calculations.

Notably, the magnetic core of the molecule has been unaltered and re-

mains close to the experimental structure, preserving the magnetic inter-

actions and exchange pathways. From this reasoning, confidence can be

given to accurately representing the full Cr10 molecule in this saturated

state.

4.2.2 The Cr8 Structure

As with Cr10, the molecule Cr8F8(CO2C(CH3)3)16 [119, 120] will be abbre-

viated to Cr8. This ringed molecule, like Cr10, consists of eight Cr ions

as the core structure with Fluorine bridges. Methyl groups stem off the

outer Carbon-Oxygen bridges, see Figure 4.3 where the methyl groups

have been replaced with isovalent Hydrogen ions, forming a de facto for-

mula of Cr8F8(O2CH)16.

The pruning and hydrogen saturation processes applied to the Cr10

molecule, was also used on the Cr8 molecule. For the Cr8 molecule, this

process is a standard computational method with precedence in previous

ab initio calculations [119, 121].
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Figure 4.3: A visual representation of the Hydrogen saturated Cr8 molecular structure.
Chromium, Carbon, Oxygen, Hydrogen and Fluorine are represented as the
blue, grey, red, white and green spheres respectively.

4.3 Symmetry of the Molecules

4.3.1 Cr8 Symmetry

The synthesised structure of Cr8 contains an asymmetric unit cell with two

chromium and two fluorine atoms, bonded to four disordered methyl (pi-

valic) groups. The symmetry of the molecule is D4, which can be repre-

sented through the crystal symmetry space group P4212. This involves

treating the molecule as a crystal, relying on periodic boundaries to com-

plete the ring. The full representation of this space group requires two

formula units per unit cell to meet all the symmetry operations, see Figure

4.4.

In periodic DFT codes, such as CASTEP, crystal symmetry is very

well represented [100]. Therefore, allowing the molecule to be expressed

through crystal symmetry is preferred as it is well established and fully au-

tomated. The input in CASTEP to maintain the crystal symmetry of the ring

during a geometry optimisation is a single line: symmetry generate .
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Figure 4.4: A visual representation of crystal symmetry representation of the Cr8 molec-
ular structure. The molecule is split in half at the unit cell boundary and
utilises periodicity. Chromium, Carbon, Oxygen, Hydrogen and Fluorine are
represented as the blue, grey, red, white and green spheres respectively.

4.3.2 Determining the Cr10 Molecular Symmetry

The isolated Cr10 molecule, however, cannot use crystal symmetry as it

possesses a 2π
5

rotational symmetry operation that is incompatible with any

crystallographic space group (see Appendix A for further details on forbid-

den rotations in crystal symmetry). Therefore, any geometry optimisation

in a periodic DFT code using the supercell approximation will break the

molecular symmetry. The solution requires ionic constraints to maintain

the integrity of the ring during relaxations (see Section 4.4). This section

will show the justification of the D5 symmetry we enforced in our calcula-

tions via ionic constraints.

Previous DFT investigations [106] have used the molecule with the

methyl branches intact, as visualised in Figure 4.1. An issue with this rep-

resentation is that it has no symmetry (C1) resulting from the disordered

methyl groups. Therefore, any optimisation will break the integrity of the

molecular ring.

Removing the disordered methyl groups presented more structural sym-
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Figure 4.5: A visual representation of the Cr10 molecular structure with D5 symmetry
imposed. Also displaying the five C2 axes and the single C5 rotation axes
which form the D5 point group. Chromium, Carbon, Oxygen and Hydrogen
are represented as the blue, grey, red and white spheres respectively.

metry operations such as two rotation operators—one around the principal

Z-axis, of 2π
5

(the C5 subgroup), and the other around the X-axis by 2π

(the C2 subgroup). Other valid symmetry operations are related to vertical

mirror planes around the principal axis. The C5 and C2 subgroups belong

to many different point groups, selecting which one best represents the

molecule focused on two questions:

1. Is the movement of the ions relatively small to match the point group
operations?

2. Is the point group compatible with the magnetic structure?

In answering the first of our questions, the root-mean-square displace-

ment of ions, R-value, characterises how far the molecular structure has

deviated to fit the point group. The smaller the R-value, the smaller the

movement of the ions. There are many different ways of determining the

R-value. In this instance, the R-value is determined by the graphical pro-

gram, Chemcraft [122]. This software determines the R-value through the

square root of the weighted average of the square of all atomic species
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movements to produce a single value. The uncertainty associated with this

operation for a system size of between 50-100 is 1×10−14 Å.

The two point groups which possessed the smallest R-values were the

D5d (R=0.00243) and the D5 (R=0.00252) point groups. The difference be-

tween these point groups is in the five dihedral mirror planes in the D5d

point group. As there is little difference between the R-values of these

point groups, the second question helps determine which point group is

most suitable. The D5d dihedral mirror planes break the antiferromagnetic

structure, which the bistable Cr10 molecule possesses. Therefore, the D5

point group was chosen to be enforced in geometry optimisation (see Fig-

ure 4.5).

4.4 Ionic Constraints

As mentioned in the previous section, the D5 point group is incompatible

with crystal symmetry and cannot be used to optimise the molecule into

bond equilibrium. However, optimisation under the D5 molecular symmetry

can be achieved through the use of linear ionic constraints.

A linear constraint describes a linear relationship between two vari-

ables, or in our case, ions. The linear constraint is a mathematical ex-

pression where linear terms, which are coefficients multiplied by a variable,

are added or subtracted with the resulting expression forced to be greater-

than-or-equal, less-than-or-equal, or exactly equal to the right-hand side

value.

CASTEP [16] uses linear constraints to restrict the movement of ions in

optimisations. The ionic constraints take the following linear form:

Ns∑
k=1

Nk∑
j=1

3∑
i=1

anijkrijk = Cn (4.4.1)
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where anijk is the coefficient to the constraint for that ionic coordinate.

Equation 4.4.1 shows a linear constraint, as described above. The sum-

mations are for computational reasons and run over all the ion species (Ns),

ions in that species (Nk) and all spatial coordinates of those ions (the in-

dex i). Each coordinate is given a coefficient, which are the respective

individual elements of the rotation matrix.

For the Cr10 molecule, implementing linear ionic constraints for the D5

symmetry operations requires the rotation matrices of the C2 and C5 oper-

ations.

The C5 and C2 rotations apply to perpendicular axes, obeying the right-

handed rule, the respective rotation matrices take the following form:

RC5 =


cos (2π

5
) − sin (2π

5
) 0

sin (2π
5

) cos (2π
5

) 0

0 0 1



RC2 =


1 0 0

0 cos (π) − sin (π)

0 sin (π) cos (π)

 (4.4.2)

Applying the rotation matrices to an ion will rotate the ion into a new set

of coordinates. For the Cr10 molecule, each rotation maps an ion onto its

rotation pair. The linear ionic constraint takes the form that the numerical

difference in the coordinates of those two ions must be zero.

Implementing the ionic constraints comes with a limit to the number of

constraints we can execute. That limit is the number of degrees of freedom,

3N; we want the molecule to be optimised and to do so, we must have

fewer constraints than the number of degrees of freedom. Considering

only the planar Cr ions, as seen in Figure 4.6, the limit for the number of
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Initial Ion’s
Number

Rotated Pair

9 9
10 8
1 7
2 6
3 5
4 4

Table 4.1: The rotated pairs of Cr ions following the C2 symmetry operation
around the x-axis.

possible constraints is 3×10=30. However, there is the overall rotation of

the molecule to consider, which requires three constraints to be removed

from each species, resulting in a total number of constraints for the Cr ions

as 27.

Figure 4.6: Illustration representing only the Cr ions within the central ring, exhibiting
the five C2 axes intersecting the Cr ions and the five C2θ axes, bisecting the
space between Cr ions.

In order to maintain the rotational symmetry of the molecule, only the

generators are required in the constraints. The generators for the D5 point

group are the C2 operation, laying on the x-axis and the C5 operation, lay-

ing on the z-axis. The C2 symmetry operation will map the Cr ions in a

rotational pair as displayed in Table 4.1
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The C2 operation, therefore, includes four paired rotations and two ro-

tations that map the ions onto themselves. These would generate 3×6=18

constraints, which is more than half of the total allowed constraints. There-

fore, implementing both C2 and C5 rotations would create enough con-

straints to exceed the limit. Removing certain constraints will not affect

the ring’s integrity and reduce the number of constraints to below 27, thus

overcoming this issue. For example, the 4th and 9th Cr ions are on the C2

operation axis and and map onto themselves after the rotation, as seen in

Table 4.1; thus, those operations can be represented through a reduced

number of constraints. These ions only need to travel along the x-axis to

allow the molecule to pucker. This is achieved by only applying the C2

constraint on the y and z coordinates.

While this reduces the C2 constraints down to 16, the contribution is still

over half of the allowed constraints, requiring the removal of one further

constraint. This process is then repeated for the C5 constraints with the C5

rotation matrix.

It is essential to consider under constraining and linear dependency. As

its namesake suggests, the former is when there are too few constraints

applied to the molecule, and the optimiser detects degrees of freedom that

break the symmetry of the molecule. The latter is caused by the repeti-

tion of constraints. While reducing the number of constraints to below 27

satisfies the degrees of freedom limit, it does not ensure that the molecule

is free from linear dependency or under constraining. Further, arbitrarily

removing constraints might remove some necessary constraints and break

the integrity of the ring through the optimisation.

Implementing the reduced C2 and C5 generator constraints introduces

linear dependency due to an implicit constraint added from the ring’s per-

mutations. This implicit constraint requires the removal of the last set of

constraints. For instance, with the C2 constraints, the last set would be the

ions intersected by the C2 generator on the x-axis. For the C5 constraints,
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this would pertain to the fifth rotation. This, however, under constrains the

system and breaks the circularity of molecule through optimisation.

Another form of constraining the molecule to maintain D5 symmetry is

the idea that using the successive application of rotations can be described

by the multiplication of the rotation matrices. Therefore allowing the C5

rotation to be described in the x-y plane:

RC2θ = RC5 ×RC2 ×RT
C5 (4.4.3)

where RT
C5 is the transpose of the matrix and the multiplication is in reverse

order (right to left) due to the non commutative nature of matrices and the

formalism set out by the Euler treatment of angles. The full D5 symmetry

contains two sets of two fold axes as well as a C5 axes. The two disjoint

C2 subgroups consists of axes which pass through the chromium ions and

one which passes in between them. We chose to use a C10 (RC10) rotation

matrix in Equation 4.4.3 to use the C2 axes which passes in between the

Chromium ions. The C2θ rotation matrix (RC2θ) now has its rotation axes

through the Cr ions, as seen in Figure 4.6, and implicitly applies the C5 ro-

tation while having its axes in the x-y plane. The generator axes for the C2θ

rotation no longer intersect Cr ions, therefore, the treatment for removing

constraints to avoid linear dependency is different.

Removing a set of x,y,z constraints from both C2 and C2θ will leave the Cr

ring under constrained. The solution is removing a single set of x,y,z con-

straints across both C2 and C2θ, therefore not invoking linear dependency

or under constraining; see Appendix B for further examples.

Finally, we have to implement these constraints in the CASTEP for-

malism outlined in Equation 4.4.1. The linear ionic constraints for the C2

rotation (RC2 in Equation 4.4.2), which maps the 10th Cr ion onto the 8th,

takes the form:
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1 Cr 10 1 0 0

1 Cr 8 −1 0 0

2 Cr 10 0 −1 0

2 Cr 8 0 −1 0

3 Cr 10 0 0 −1

3 Cr 8 0 0 −1

The constraints are numbered to allow CASTEP to determine which ions

are rotation pairs, and the elements of the rotation matrix are applied to the

x,y,z coordinates of Cr ions 10 and 8. The linear constraint dictates that

the difference in coordinate values between the original ion (8 from 10s

perspective) and its rotation pair are zero, thus mapping those ions onto

each other.

4.5 Results

4.5.1 The Cr8 Molecule

4.5.1.1 Magnetic Interactions

The Cr8 molecule was optimised using the LDA, PBE and rSCAN XC func-

tionals. All three functionals showed the antiferromagnetic arrangement to

be the ground state of the molecule, which agrees with experiment and

previous first-principles investigations [119]. Table 4.2 reveals the strength

of the magnetic moments of the optimised Cr8 structures. The magnetic

moments in all three XC functionals orientate around 3µB, which are com-

patible with a spin Smag mo=3
2
, resulting from Hund’s rule, with charge 3+ for

each Cr ion. The total magnetism per formula unit vindicates this with a

value of 24µB, corresponding to eight magnetic moments of 3µB. These

values are in good agreement with previous DFT calculations performed

using the PBE GGA and B3LYP hybrid XC functionals [119–121]. The
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Ion Species AFM (µB) FM (µB)

LDA
Cr ± 2.83 +2.98
O ± 0.03 -0.03

PBE
Cr ± 2.89 +3.02
O ± 0.03 -0.02

rSCAN
Cr ± 2.94 +3.05
O ± 0.02 -0.03

Table 4.2: The magnetic moments of the Cr ions and the residual magnetism on the O
ions of the Cr8 molecule in the antiferromagnetic and ferromagnetic states.

excellent agreement with previous, peer-reviewed magnetic moments is

significant, as it provides confidence in the results.

Using the broken symmetry approach the effective exchange interac-

tion parameter can be determined from the difference in final energies of

the ferromagnetic and antiferromagnetic states. This method assumes the

uniformity of interactions as it uses the isotropic Heisenberg model.

Considering only nearest neighbour Heisenberg exchange interactions

between the Cr ions and in the absence of any anisotropy terms, the Hamil-

tonian is:

E tot = J
7∑
i

Si · Si+1 + JS8 · S1 (4.5.1)

where Si = Smag mo = 3
2

for i = 1, · · · , 8, which is the spin moment of the Cr

atoms.

Exchange Interaction Parameter
(meV)

LDA -6.4
PBE -5.2

rSCAN -4.7
EXP. [123] -1.5

DFT (PBE) [119] -5.8
DFT (PBE) [120] -6.3

Table 4.3: The exchange interaction parameters of the Cr8 molecule, using the
LDA, PBE and rSCAN XC functionals as well as comparison with ex-
periment and other ab-initio calculations.
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Therefore, the exchange interaction parameter is:

J =
4

9

E tot
FM − E tot

AFM

16
(4.5.2)

Whereby a negative exchange value indicates an antiferromagnetic inter-

action and a positive exchange value indicates a ferromagnetic interaction.

Table 4.3 shows the exchange interaction parameters for the LDA, PBE

and rSCAN XC functionals, using Equation 4.5.2. While there is a large

discrepancy with experimental, by a factor of three and more, we observe

good agreement with other DFT calculations, with a difference under 10%.

4.5.2 The Cr10 Molecule

4.5.2.1 Broken and Preserved Symmetry Optimisations

The highest symmetry of the Cr10 molecule corresponds to the D5 point

group. However, this symmetry is not present in the experimental molecular

structure, which is extracted from crystal structure data where the molecu-

lar symmetry is necessarily broken. Further, previous ab-initio works have

not implemented D5 symmetry but instead have used no symmetry within

the molecule. Nevertheless, the justification for the D5 point group is strong,

so the absence of this symmetry within the molecule will be considered as

breaking the symmetry of the molecule.

This section presents the results from a series of first-principle investi-

gations pertaining to preserving and breaking the D5 symmetry through ge-

ometry optimisations of the molecule to render information about the mag-

netic structure. The broken symmetry calculations implemented no ionic

constraints, and so the optimisation was not constrained through symme-

try enforcement. Not enforcing the same symmetry group within the opti-

misations will result in different molecular structures. So the comparison of

these structures and magnetic information held within is not scientifically
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Figure 4.7: The Cr10 molecule with C1 symmetry aligned to the cubic cell (a) and the
absolute position representation of the molecule with D5 symmetry (b). Both
(a) and (b) are cubic cells with a=21Å, b=21Å
and c=21Å(10Å) (b).

sound, as this section will show.

While the optimisations preserved the D5 symmetry through ionic con-

straints, different XC functionals will lead to slightly different structures due

to different force representations. Therefore, comparing the ground state

properties of these XC functionals is justifiable against experimental data

but not against each other.

The optimisations used the LDA, PBE and rSCAN XC functionals to

provide a comprehensive understanding of both the molecule and its repre-

sentation provided by the XC functionals. The broken symmetry optimisa-

tions relate to the molecule aligned in a cubic unit cell, while the preserved

symmetry optimisations existed fractionally within the unit cell to maintain

the planar nature of the Cr ions, as seen in Figure 4.7. The molecular opti-

misations were performed for both the nearest neighbour antiferromagnetic

and ferromagnetic co-linear configurations.

Of these two magnetic states, the ferromagnetic arrangement was the

ground state of the molecule in all three XC functionals. The initial ferro-

magnetic and antiferromagnetic configurations were preserved throughout

the geometry optimisations, which is essential for valid results.
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(a)
D5 AFM (eV) FM (eV) Difference

(meV)
LDA -44260.4484 -44260.6208 172.4723
PBE -44302.3427 -44302.5491 206.9976

rSCAN -44119.4785 -44119.5945 116.0099

(b)
C1 AFM (eV) FM (eV) Difference

(meV)
LDA -44267.4109 -44267.4162 5.2405
PBE -44305.6979 -44305.8038 109.9538

rSCAN -44125.6497 -44125.7468 97.0907

Table 4.4: The ground state energies for the antiferromagnetic (AFM) and ferro-
magnetic (FM) arrangements. The energies are calculated from the sep-
arate optimisations of those two states with D5 (a) and C1(b) symmetry
maintained through ionic constraints.

Tables 4.4a and 4.4b show that the ferromagnetic and antiferromagnetic

states energetically differ by hundreds of meV. The difference between

these states is typical of single molecular magnets, for instance, Ni4, Fe6

and Fi-binuclear [109]. However, the difference is significant enough to

have comfortable assurance in the ferromagnetic ground state but small

enough to understand the metastable antiferromagnetic configuration, ex-

perimentally perceived as a bistable state [106, 108].

Tables 4.4a and 4.4b show that the C1 symmetry optimised to a lower

ground state, which is expected as the optimisation process had more en-

ergetic pathways open to minimise the forces which the ionic constraints

forbid. This is made clear in Tables 4.5a and 4.5b, where the C1 optimi-

sation broke the uniformity of the ring, with a substantial deviation from

circularity. The unequal Cr-Cr distances within the molecule also compro-

mise the integrity of the magnetic exchange pathways. By breaking the

ring, the optimisation led to a lower energy ground state. We observe that

with the linear constraints enforcing D5 symmetry, the integrity of the ring

is maintained as well as uniformity in the Cr-Cr distances. Tables 4.5a

and 4.5b show that the two symmetry relaxations reached different bond
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equilibriums and, therefore, different molecules.

(a)
D5 Distance

Measured
Minimum (Å) Maximum (Å)

LDA
Cr-Cr 3.279 3.279
Cr-O 1.971 2.232

Centre dist. 5.300 5.300

PBE
Cr-Cr 3.288 3.281
Cr-O 2.011 2.233

Centre dist. 5.305 5.305

rSCAN
Cr-Cr 3.281 3.281
Cr-O 2.101 2.234

Centre dist. 5.310 5.310

(b)
C1 Distance

Measured
Minimum (Å) Maximum (Å)

LDA
Cr-Cr 3.231 3.294
Cr-O 1.794 1.945

Centre dist. 5.191 5.233

PBE
Cr-Cr 3.211 3.251
Cr-O 1.983 2.251

Centre dist. 5.201 5.231

rSCAN
Cr-Cr 3.091 3.228
Cr-O 1.891 2.223

Centre dist. 5.165 5.291

Table 4.5: The minimum and maximum distances between the same Cr-Cr, Cr-O ions
as well as a measure of the circularity of the optimised D5 (a) and C1(b) Cr10
molecule.
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4.5.2.2 Magnetic Interactions

The interactions between magnetic sites must obey the rules of super-

exchange through the bridging oxygens, as seen in Figure 4.7. This as-

sertion comes from no two magnetic sites possessing direct orbital overlap

and is vindicated in the Mulliken analysis of both symmetries, see Tables

4.6a and 4.6b.

(a)
D5 Ion Species AFM (µB) FM (µB)

LDA
Cr ± 2.95 +3.05
O ± 0.04 -0.03

PBE
Cr ± 3.05 +3.08
O ± 0.03 -0.02

rSCAN
Cr ± 3.05 +3.08
O ± 0.03 -0.02

(b)
C1 Ion Species AFM (µB) FM (µB)

LDA
Cr ± 2.81 +2.87
O ± 0.04 -0.04

PBE
Cr ± 2.88 +2.90
O ± 0.04 -0.02

rSCAN
Cr ± 2.93 +3.01
O ± 0.03 -0.02

Table 4.6: The magnetic moments of the Cr magnetic sites and the bridging O ions for the
antiferromagnetic (AFM) and ferromagnetic (FM) arrangements. The mag-
netic moments originate from the Mulliken analysis of the separate optimisa-
tions of those two states with D5 (a) and C1(b). Symmetry maintained through
ionic constraints.

Both symmetry optimisations reveal similar magnetic site strength of

around 3µB, with rSCAN producing the same or slightly stronger moments

to PBE. From a spin-only view, the Cr (III) ions should possess a magnetic

moment of Smag mo=3
2
, which is in line with Tables 4.6a and 4.6b. In the

ferromagnetic arrangement, the spin-only representation correlates to a

total magnetism of Stot=15, which is on-par with the 30µB found for the

total integrated spin density. This magnetic arrangement is concurrent with

previous calculations [106], although it differs from experimental results
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XC-
Functional

Symmetry Exchange
Interaction
Parameter

(meV)

McInnes
et al.[108]

(meV)

Sharmin
et al.[106]

(meV)

LDA
C1 0.118

-0.5579 0.5084

D5 3.831

PBE
C1 2.353
D5 4.587

rSCAN
C1 2.158
D5 2.578

Table 4.7: The extracted exchange interaction parameter, determined from break-
ing the symmetry of the the optimised antiferromagnetic with a ferro-
magnetic arrangement. Here a negative value indicates an antiferromag-
netic arrangement. Compared with the experimental result of McInnes
[108] and a DFT result computed by McInnes for Sharmin [106].

determining Stot=9, with two anti-parallel spins [106].

The ferromagnetic arrangement produces higher magnetic moments

than the antiferromagnetic ones. This disparity is due to the larger resid-

ual magnetism on the Oxygen ions in the antiferromagnetic arrangement

compared to the ferromagnetic.

Determination of the strength of these interaction comes from Equa-

tion 2.5.5. Only considering the nearest neighbour Heisenberg exchange

interactions and no anisotropy, the Hamiltonian takes the form:

E tot = J
9∑
i=1

Si · Si+1 + JS10 · S1 (4.5.3)

where Si = Smag mo = 3
2

for i = 1, · · · , 9, which is the spin moment of the Cr

atoms, the exchange interaction parameter is :

J =
4

9

E tot
FM − E tot

AFM

20
(4.5.4)

Table 4.7 shows positive exchange interaction parameters, indicating

ferromagnetic exchange and a ferromagnetic arrangement. The broken

symmetry exchange values are lower than the preserved symmetry and
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closer to the experiment. However, little-to-no weight can be given to their

meaning; as Table 4.5 shows, the uniformity of the ring is destroyed and

therefore not an accurate representation of the Cr10 molecule. The de-

viation between the broken and preserved symmetries are larger for the

LDA and PBE functionals. From Table 4.5, we observe that these two XC

functionals also have larger differences in structures. However, the pre-

served symmetry maintained the molecular ring and the uniformity of bond

lengths for the exchange pathways, meaning more weight can be given to

those exchange interaction values.

However, there is a large discrepancy compared to the experimental

value obtained from susceptibility measurements [108], indicating weak

antiferromagnetism. The difference highlights the sizeable final energy dif-

ference between the metastable antiferromagnetic state and the ferromag-

netic ground state. The broken symmetry calculations had a significantly

smaller final energy difference between the high symmetry and broken

symmetry states, which is the reason for the small exchange interaction

parameter.

DFT is known to overestimate the magnitude of the exchange interaction

parameter. However, the size of the difference between the values is un-

likely to be solely the result of the approximations within core DFT, sug-

gesting that the molecule could be unsuitable for the Noodleman broken

symmetry approach [46] , which relies upon the molecule conforming to the

isotropic Heisenberg (Ising) model with ”rigid” magnetic moments. Further

reasons could be the level of approximation of the Noodleman approach;

only nearest neighbour terms were considered, potentially indicating that

next-nearest neighbours play a more vital role.

Addressing the significance of the difference between the exchange

interaction parameter presented in this chapter and those of Sharmin et

al. [106] comes to the point that the exchange interaction of Sharmin

et al. originates from non-peer-reviewed DFT calculations performed by
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McInnes; while useful for comparison, they are not necessarily more mean-

ingful than the ones presented in this chapter.

The exchange interaction parameter presented by McInnes et al. [108]

originates from the quantum chemistry approach using the diagonalisation

of the Heisenberg Hamiltonian. The source of the discrepancy becomes

clear upon consideration of the dimensionality of the diagonalisation. With

ten magnetic sites, the number of magnetic interactions makes the dimen-

sions of the Heisenberg model far too large to diagonalise (see Section

2.5.3.3 and Equation 4.5.5). Therefore, a reduced number of possible

magnetic configurations were considered by McInnes et al.. Unfortunately,

this reduction adds a level of discrepancy and uncertainty between their

experimentally determined and our DFT determined exchange interaction

parameters.

(2Smag mo + 1)N = (2× 3

2
+ 1)10 = 1048576 (4.5.5)

Where N is the number of coupled spins, and Smag mo the magnetic strength

of the site.

Further differences between our DFT results and the experimental pre-

sented by Sharmin et al. [106] are found in the total ground state mag-

netism. The experimental value, determined by MPMS quantum design su-

perconducting quantum interface device magnetometer, Stot=18µB is sig-

nificantly lower than our DFT value of Stot=30µB. Furthermore, Sharmin et

al. indicate that their ground state arrangement has two anti-parallel spins

to the other eight.

It could be the case that the Stot=18µB and the Stot=30µB states are

energetically very close, meV in difference. This could explain the diffi-

culty of the downhill solver in CASTEP to find the Stot=18µB, as the solver

effectively sees a flat energy surface.

A method to converge various metastable spin configurations is to use
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the fixed spin moments (FSM) [124] constraint on the DFT calculations. In

the FSM scheme, the total number of electrons in the majority and minority

spin channels are fixed. This essentially amounts to imposing an effective

external magnetic field, which introduces a difference in the Fermi-energies

for the majority and minority spin channels.

As a result of the inconsistencies brought forward by the optimisation

of the C1 broken symmetry, the rest of the sections will only pertain to the

calculations for the D5 symmetry enforcement.

The FSM scheme relates the total spin, Stot, to the total energy, E, which

can be plotted to show the effect changing the total magnetism of the sys-

tem has on the final energy [109, 124, 125].

Figure 4.8 shows the converged energies for the ground state and meta-

-stable states corresponding to the total magnetism of Stot=0µB ,6µB ,18µB

,24µB, and 30µB, which relates to antiferromagnetic, four-spins anti-parallel,

two spins anti-parallel, one spin anti-parallel and ferromagnetic arrange-

ments.

Figure 4.8a shows that the LDA XC functional maps a linear relation-

ship between the decreasing total magnetism and the increasing total en-

ergy. There is a difference between the Stot=30µB and Stot=18µB of around

50meV, with the Stot=30µB state as the definitive ground state. The differ-

ence in energies of all the different magnetic states comes from the differ-

ent orientations of the magnetic moments, and the linearity results from the

direct effect it has on the energy.

With the removal of S=6µB, this linear behaviour propagates through to the

PBE functional, in Figure 4.8b. However, the S=6µB is more energetically

unfavourable than the antiferromagnetic arrangement. An investigation into

the HOMO-LUMO gap would indicate if it is necessary to include additional

Zeeman energy to stabilise this artificial configuration. However, the PBE

functional still confirms the Stot=30µB ferromagnetic configuration as the

ground state.
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Figure 4.8: The Fixed Spin Moment energy difference between varying magnetic config-
urations for the LDA (a), PBE (b) and rSCAN (c) XC-functionals. Calcula-
tions performed within the imposed D5 symmetry. The energy displayed is
the difference in the total energy for the total spin and the FSM=30µB .98



The rSCAN functional shows no overall linearity between the different mag-

netic arrangements. Whereby the Stot=6µB, 18µB and 24µB is higher in

total energies than the antiferromagnetic arrangement. This shows that

there is no longer a direct relationship between changing the total spin and

the final energy of the system. In addition to the implications mentioned

for PBE, the breakdown in linearity indicates the potential for the frustrated

next-nearest neighbours interaction as more influential in the molecule.

All three XC functionals, under the FSM constraint show that the Stot=30µB

ferromagnetic configuration is the ground state of the molecule, with meV

differences between the experimental Stot=18µB ground state.

In trying to understand the higher energy states exhibited by rSCAN

in Figure 4.8, we observe that the D5 symmetry has been imposed within

the molecule through ionic constraints, and the magnetic arrangements

with total magnetism of Stot=6µB, 18µB and 24µB break the imposed mag-

netic symmetry. The only surviving symmetry within the molecule is the

C2 symmetry. This is a lower symmetry and would be energetically more

favourable than the D5. Therefore, this reduced symmetry is not a direct

cause of the higher energies of these unfavourable states.

The exchange interaction parameter can provide useful insights into the

break from linearity using the PBE and rSCAN functionals. However, the

overall numerical energy difference does not allow for a unique exchange

interaction parameter. Thus, only an estimate of the order of magnitude

for the exchange interaction parameter can be made through the nearest

neighbour Heisenberg model.

Table 4.8 shows the exchange interaction parameters from varying the

total magnetism within the FSM scheme. For the LDA functional, which

exhibits a linear relationship between the total magnetism and the final

energy, the order of magnitude for the exchange interaction parameter is

around 0.7meV-3.8meV. These values vary in the same linear fashion as

seen in Figure 4.8. The nearest neighbour Heisenberg exchange interac-
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XC
functional

Stot=0µB
(meV)

Stot=24µB
(meV)

Stot=18µB
(meV)

Stot=6µB
(meV)

LDA 3.831 0.677 1.189 2.516
PBE 4.587 0.863 1.736 18.540

rSCAN 2.578 4.451 5.068 13.236

Table 4.8: The extracted exchange interaction parameters for the variety of mag-
netic configurations for the fixed spin moment. These values pertain to
the D5 optimised molecule.

tion show a good agreement with the experimental value from Sharmin et

al. [106]

For the PBE functional, with the Stot=6µB excluded, the magnitude of

the exchange interaction parameter is around 0.8meV-4.5meV. These val-

ues are also in agreement with the experimentally determined exchange

values and exhibit the same linearity expressed in the LDA functional.

However, the Stot=6µB state does not conform to the linear relationship,

and the reason for the increased final energy must come from the interac-

tions within the molecule, indicating that the frustration of the next nearest

neighbours is more significant in this state as there are more frustrated

moments.

Figure 4.8c and Table 4.8 reveal the complete breakdown of the rigid

Heisenberg model to describe the magnetic exchange interactions for the

rSCAN functional. This meta-GGA XC functional describes the interaction

between electrons more comprehensively than PBE by including the orbital

kinetic energy and the isoorbital indicator [27, 28]. This greater representa-

tion highlights the two main limitations of the nearest neighbour Heisenberg

model. The first is not including next-nearest neighbour interactions, which

are frustrated as 10
2

= 5. The second is the Ising-like moments the model

uses; as the molecule could have wave excitations that are commensurate

with the length of the ring.

The disparity between the experiment and the DFT results in Table 4.7

can be related, in part, to the significance of optimisation, indicating that
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the molecule possesses a complex energy surface, as partially observed

in Figure 4.8. Magnetic properties are highly susceptible to slight differ-

ences in molecular structures. While the DFT result presented by McInnes

in Sharmin et al. [106] shows weak ferromagnetism, the difference in mag-

nitude between our results is visible. This can result from the next-nearest

neighbour frustration, which we have not accommodated in the Heisen-

berg model. There could also be spin canting from wave excitations within

the system, explaining the difficulty in mapping the Heisenberg exchange

interactions to experiment.

(a) (b)

Figure 4.9: The Fixed Spin Moment spin density for the AFM (S=0µB) (a) and FM
(S=30µB) (b) states for the rSCAN XC-functional. Whereby red isosurfaces
represent spin down densities and green isosurfaces represent spin up densi-
ties.

The isosurfaces representing the spin density throughout the different

magnetic states provide insights into the extent of the influence of the frus-

trated next-nearest neighbour interactions. Figure 4.9 reveals the spin den-

sity for the ferromagnetic (Figure 4.9b) and antiferromagnetic (Figure 4.9a)

states for the rSCAN functional. There was no significant difference be-

tween spin densities of the LDA and PBE functionals for these states, so

only rSCAN has been displayed (See Appendix C for the LDA and PBE XC
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: The Fixed Spin Moment spin density between the S=6µB (a, c and e) and
S=18µB (b, d and f) states for the LDA (a,b), PBE (c,d) and rSCAN (e,f)
XC-functionals. Whereby red isosurfaces represent spin down densities and
green isosurfaces represent spin up densities.

102



(a)

(b)

(c)

Figure 4.11: The Fixed Spin Moment spin density for the S=24µB state for the LDA (a),
PBE (b) and rSCAN (c) XC-functionals. Whereby red isosurfaces represent
spin down densities and green isosurfaces represent spin up densities.
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functionals). From Figure 4.9, there is strict adherence to the D5 symmetry

throughout the magnetic exchanges within the molecule. In addition, the

number of exchange pathways for each Cr ion is six, with three on either

side, indicating that the exterior bond (O-CH-O) plays a more vital role in

the magnetic interactions.

Further differences between these states are the magnetisation of the

Hydrogens, which in the unsaturated molecule would be the methyl groups.

This magnetisation is present in the ferromagnetic states but disappears in

the antiferromagnetic states, except for a small spin density on the outer

Hydrogen above the x-axis on the left-hand side. The magnitude of the spin

density on the Hydrogen in the antiferromagnetic state is small enough

not to appear on the Mulliken analysis. In comparison, the Hydrogens

in the ferromagnetic state possessed a minute but notable magnitude of

0.01µB. This magnetisation value is comparable – and found to be exact

in magnitude– to that on the inner Oxygens, which take part as one of the

three exchange interactions between magnetic sites.

Figure 4.8 indicated that the LDA XC functional would adhere to the

dominance of the nearest neighbour interactions, Figures 4.10a, 4.10b and

4.11a show this through the uniformity of the exchange pathways in the

spin density isosurfaces. There are no distinguishable differences between

comparable exchange interactions through Stot=6µB-24µB. For instance,

the antiferromagnetic exchanges that intersect the x-axis are comparable

and show no differences. Figures 4.10c, 4.10d and 4.11b show the PBE

XC functionals spin density and reveal minor differences in the exchanges

between S=6µB and 18µB/24µB. The most conspicuous is the minor mag-

netisation of the Hydrogen located above the x-axis on the left-hand side of

Figure 4.10c. While this magnetisation is small at 0.008µB, it accentuates

the differences in spin-down density on the Oxygen atom, appearing to be

not as dominant in the bond (immediately below the Hydrogen (Figures

4.10c and 4.10d)).
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Further, the elliptical-shaped spin densities (both spin channels) around

the inner Oxygens (underneath the visible Hydrogen) are not as pronounced

in Figure 4.10c as in Figure 4.10d, indicating fewer spin carriers in this re-

gion. The elliptical-shaped spin-up density differences do not occur in the

LDA XC functional and signify that the semi-local exchange in PBE for the

Stot=6µB state potentially detects the effects of the next-nearest neighbour

frustration and spin canting causing a reduction in the spin density of that

exchange pathway. In Figure 4.10d, the two ferromagnetic sites encapsu-

lated by the unit cell (bottom left) show slight exchange differences on the

inner Oxygens and Hydrogens when compared with Figure 4.10c. This is

a slight reduction in the dominance of spin-down carriers in the region; the

only difference is the next-nearest neighbour, providing further weight that

these interactions are significant within the molecule.

Figure 4.8 shows that the rSCAN XC functional detects the effects of

the frustrated next-nearest neighbour for each magnetic state as there are

changes in the spin density isosurfaces. However, there are little differ-

ences between the Stot=18µB and Stot=24µB states as the final energy dif-

ference between these states is significantly small. Therefore, we expect

to see the same or qualitatively indistinguishable level of spin canting and

deviation of spin-densities within the exchange pathways. Figures 4.10e,

4.10f and 4.11 reveal the same but more pronounced differences in ex-

change pathways observed in the PBE XC functional. This is expected as

both functionals predict S=6µB at a higher final energy in Figure 4.8, so

similar spin-densities are expected.

Comparing Figure 4.10e and 4.10f with 4.10c and 4.10d, we observe

a more substantial presence of spin-down carriers on the top left, outer,

Oxygen-Carbon bond above the x-axis. This characteristic is repeated, on

the same bond, throughout the molecule. Comparing the inner Oxygen

ion to the right of the visible y-axis between Figure 4.10e and 4.10c, we

observe a subtle increase in the spin-down channel with rSCAN.
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Equation 2.2.16 shows the contributing factors to the Kohn-Sham total

energy. Out of those contributors, the XC energy adds a few per cent to

the total energy, so the changes to the spin densities should be small to

demonstrate the effects of the next-nearest neighbour frustration on the

exchange pathways and spin moments.

4.5.2.3 Magnetostriction

Using different synthesis methods, McInnes et al. [108] showed that a dif-

ference in distance of 7mÅ between the Cr ions was enough to go from

weak antiferromagnetism to weak ferromagnetism. This magnetic sensitiv-

ity to bond-length [108] suggests an intrinsic relationship between magnetic

energy and mechanical energy: magnetostriction.

With the molecule starting in the antiferromagnetic configuration, which

is not unrealistic as experimentally demonstrated by McInnes [108] and

shown as a legitimate potential-well through the FSM calculations of Fig-

ure 4.8, an external magnetic field, through reaching a suitable strength,

would force the magnetic moments to align parallel to it. When the ex-

ternal magnetic field is aligned along the z-xis, all magnetic moments are

either parallel or anti-parallel and, through increasing the strength of the

external field, all moments are parallel. This final magnetic configuration is

ferromagnetic.

Through two separate relaxations of the molecule in both the ferromag-

netic and antiferromagnetic arrangements, the difference in those relaxed

Cr10 molecules can be, to an introductory level, categorised through mag-

netostriction. The model employed by the first-principles calculations was

the co-linear spin DFT, whereby the magnetic moments behave like the

Ising model. This, therefore, means that no anisotropy is considered as no

spin-orbit coupling was included in the calculations. A complete picture of

magnetostriction depends upon the magnetocrystalline anisotropy energy

(MAE) [109, 126–128], which is not compatible with the imposed model.
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XC-functional Magnetostrictive force (meV/Å)
LDA 2.015
PBE 2.331

rSCAN 1.315

Table 4.9: The magnetostrictive forces for the different XC-functionals between
two Cr ions.

Only a rudimentary indication of magnetostriction can be granted through

a magnetostrictive force.

Magnetostriction, typically, is documented through the magnetostriction

coefficient, which is defined through directions concerning the unit cell

[109, 126–130]. This format depends on the use of relativistic spin-orbit

coupling. A more fundamental way to measure magnetostriction within

molecules is the differences in molecular structure through bond-lengths

and atomic distances by applying an external magnetic field. In addition,

a magnetostrictive force provides insight into potential magnetostrictive

changes.

Table 4.9 reveals the magnetostrictive force present in the LDA, PBE

and rSCAN XC functionals. The magnitude of these forces is relatively

small compared to atomic force tolerance in geometry optimisation. The

PBE functional exhibits the most significant magnetostrictive force, with

rSCAN producing the least. This difference is most likely a consequence

of the previously mentioned functionals ability to represent the magnetic

exchange interactions. However, it is not certain that this is the definitive

source, and further investigations into magnetic anisotropy are required.
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4.6 Discussion

The purpose of the investigation into the Cr8 molecule was not to pro-

vide new insights but to use it as a benchmark for the Cr10 investigation.

Thus, the comparison with Cr10 begins with the use of crystal symmetry to

maintain the ring, highlighting the necessity of ionic constraints. The fur-

ther comparison comes from the exchange interaction parameter, which is

closer to the experiment for Cr8 than Cr10. The extent of the overestimation

of the exchange interaction parameter between the two comes from what

is different about the molecules. The main difference originates from the

number of magnetic ions in each ring, which changes the number of next-

nearest neighbour interactions. Fundamentally the Cr8 molecule does not

experience frustration through these interactions as 8
2

= 4. However, the

Cr10 molecule does experience a frustrated next-nearest neighbour interac-

tion as 10
2

= 5. This frustration plays an influencing factor in the difference

between the exchange interaction parameters and the magnetic moments.

Further, there are key magnetic differences between the Cr10 and Cr8

ground states. For example, the Cr8 ring converges into an antiferromag-

netic ground state, while the Cr10 ring has a ferromagnetic ground state.

The exchange interaction parameters are larger than experiment. How-

ever, even if they were closer to experiment, it would be surprising if the

super-exchange interaction was due to tail overlap integrals. It is possible

the length of the ring could have an impact on the super-exchange as there

are differences between the optimised bonds of Cr8 and Cr10. Also, the ex-

change paths between the molecules are different, Cr10 just has O (2s2 2p4)

and C (2s2 2p2) ions , while Cr8 also contains F (2s2 2p5) ions. Therefore

further calculations would be needed to understand their full implications

and to provide a definitive answer.

The first-principles investigation into the unusual molecular magnetic,

Cr10, has revealed confidence with implementing ionic constraints to en-
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force a higher symmetry. In combination with Hydrogen saturation, this

symmetry significantly reduced the computational cost of the calculations

and stabilised the molecule in the relaxation process, made visible through

a reduced number of iterations. Furthermore, enforcing the higher symme-

try allowed for the continuity of the relaxed structure for each respective XC

functional, which was essential for more detailed insights into the magnetic

interactions within the molecule. The deviation of the magnetic moments

from 3µB within the broken symmetry calculations highlight this point (see

Table 4.6b).

The effective exchange interaction parameter was extracted using the

isotropic nearest-neighbour Heisenberg model. Unfortunately, this model

used was insufficient to comprehensively capture the magnetic behaviour

in the molecule based on the discrepancy between our DFT results, the

experimental and previous DFT results. For instance, we did not include

the frustrated next-nearest neighbour interaction, which affected the mag-

netic exchange pathways as seen in the spin density isosurfaces. Further,

we did not include relativistic terms to the Hamiltonian to investigating any

wave excitations through non-co-linear DFT calculations. Due to the limited

number of terms included in the Heisenberg model, only the magnitude of

the exchange interaction parameter can be used, which correctly predicted

ferromagnetism.

However, when comparing with the experimentally extracted values of the

exchange interaction parameter, it is essential to note that it is not a phys-

ical observable; therefore, approximations will be introduced. The method

employed by McInnes [108] was to compute the exchange interaction us-

ing a small subset of the larger possible magnetic interactions. While this

method is computationally more straightforward, it becomes unclear which

interactions are chosen. This adds an additional element of uncertainty to

the result and, in part, aids the explanation behind the discrepancy.

In combination with the spin density isosurfaces, the FSM scheme re-
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veals the significant influence of the frustrated next-nearest neighbour in-

teractions on the exchange pathways. The LDA XC functional does not

detect the frustrated next-nearest neighbours. The reasoning behind this

is due to the LDA XC hole. The XC hole is how the electron density within a

region reacts to another electron placed anywhere in space [131]. The LDA

XC hole is spherical and does not react to densities that are fast changing

as it is only local. The spherical nature of the LDA XC hole would prevent it

from modelling the subtle differences in the spin density isosurfaces, which

requires an inhomogeneous XC hole [132]. Further, the local nature of

the exchange would prevent any detection of the influence of the frustrated

next-nearest neighbour interactions.

The XC hole reasoning can extend to the GGAs, specifically the numeri-

cal GGA hole created by Perdew et al. [22], which produced the analytic

PBE XC functional. It has been shown that for the GGA in the local den-

sity environment, exchange dominates correlation [132]. This is because

the cutoff radius for the exchange hole becomes smaller when the change

in density gradient tends to infinity—in turn, forcing the exchange hole to

become deeper and more localised [22]. The contribution from correlation,

however, slowly goes to zero. The GGA exchange energy is more nega-

tive, leading to lower energies than LDA [132], as seen in Tables 4.4a and

4.4b. The meta-GGA, rSCAN, detected the differences in the exchange

pathways caused by the frustrated next-nearest neighbour interactions be-

cause of the increased ability to model types of bonds through the isoorbital

indicator, which can switch to various local approximations of exchange and

correlation energies for the appropriate bonding type [27, 28]; providing a

more complete picture of the bonds.

The frustration of the next-nearest neighbour interaction within the molecule

indicates unsuitability for the employed Heisenberg model, which only con-

cerned nearest neighbour interactions. More terms can be added to the

Heisenberg Hamiltonian to include the next-nearest neighbour interactions.

However, further investigations would be needed so that an accurate char-
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acterisation of the impact of the frustrated nearest-neighbours can be made.

The magnetostrictive force present in the molecule can only be used as

a rough indication of magnetostriction within the molecule. Magnetostric-

tion depends upon models to include anisotropy, not exchange anisotropy

but relating spin to the crystal structure: spin-orbit coupling. However, this

force is likely to become larger upon the inclusion of relativistic effects.

Further investigations would be needed to determine the extent of magne-

tostriction within the molecule.

One further aspect of the C10 ring to consider when understanding the

differences between the work presented in this chapter and experiment is

the potential for non-co-linear wave excitations whose wavelength is com-

mensurate with the ring. Our calculations used co-linear spin-polarised

DFT, which cannot account for wave excitations, therefore to fully under-

stand the magnetic characteristics of Cr10, non-co-linear magnetism and

the use of wave excitations software would be needed.

Within this chapter we have compared the rSCAN XC functional to other

XC functionals and found further insights into the Cr10 SMM. However,

there have been similarities, such as the ground state total magnetism

of the molecule. This consistency is not unique to the chromium based

molecular magnets as researched by Yamamoto et al. [133] who found that

SCAN and rSCAN reached the same ground state total magnetism in Mn12,

Fe4, Ni4 and Co4 as with the respective literature [133–137].

4.7 Conclusion

In conclusion, the complex magnetic phenomena exhibited by the single

molecular magnet, Cr10, requires further investigation to attribute the actual

cause of the bistable phenomena. Initial ab-initio results reveal that the

molecule possesses a complex energy landscape with two potential wells
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competing for the ground state. While the ferromagnetic state is lower

in ground state energy, the antiferromagnetic arrangement is still a stable

convergence. The magnetic moments on the Chromium ions orientates

around 3µB, with the PBE and rSCAN functionals converging on the same

values.

The ionic constraints enforced the D5 symmetry, which assisted with

stabilising the convergence for the geometry optimisations and allowed for

the integrity of the ring to be maintained. The higher symmetry played a

crucial role in determining the finer detailed magnetism, which C1 failed

to exhibit. In addition, the Hydrogen saturation significantly reduced the

computational cost of the first-principle calculations and allowed for a wide

variety of previously inaccessible magnetic configurations.

The exchange interaction parameters for the LDA, PBE and rSCAN XC

functionals overestimated the strength of ferromagnetism compared to the

experiment. We attribute this to an insufficient number of terms included

in the Heisenberg model, nearest neighbour interactions and Ising spin

moments, which fail to capture of the affects of the frustrated next-nearest

neighbour interactions. In addition, through the fixed spin moment DFT

constraint, in conjunction with the spin-density isosurfaces, the molecule

displays significant next-nearest neighbour interactions.

The effect of the frustrated next-nearest neighbour interaction is only

fully present in the rSCAN functional; we believe this to be, in part, the

shape of the XC holes of LDA and PBE. However, further investigation

would be required to have complete confidence in this hypothesis.

A rudimentary approximation of magnetostriction inside the molecule is

provided through a magnetostrictive force. However, this is only an estima-

tion as anisotropy through spin-orbit coupling is required to gain a complete

picture of magnetostriction.

The Cr8 molecule successfully supported the Cr10 investigation by pro-
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viding insight into the frustrated next-nearest neighbour interaction of Cr10

and applying confidence to the methodology of extracting the exchange

interaction parameter.

4.8 Future Works

Fully understanding the authenticity and source of magnetic properties ini-

tially shown in these first-principle calculations would require a more thor-

ough investigation into the Heisenberg model. These future investigations

should include non-co-linear spin polarised DFT calculations to model and

detect any spin canting or wave excitations commensurate with the length

of the ring. Further, the addition of the next-nearest neighbour term into

the Heisenberg Hamiltonian will increase agreement with experiment and

should be investigated.

The magnetostriction force requires further calculations, involving finely

converged calculations involving spin-orbit coupling, to include the mag-

netic anisotropy. This would better grasp the extent of magnetostriction

within the molecule, as indicated by the magnetostriction force.
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Chapter 5

The Iron Pnictide Superconductors

5.1 Introduction

The new class of high-temperature superconductors first discovered in

LaOFeAs sparked a great deal of interest in the Fe-based pnictides [138–

141]. Experiments have revealed crucial differences in the underlying mech-

anism from the earlier cuprate superconductors. The superconductivity of

the cuprates originates from Mott insulator physics; however, the super-

conductivity of the iron-based pnictides come from an instability of the Fe

d-band electrons, producing a spin density wave [139, 142–145]. These

superconductors share a common motif of a Fe-pnictogen in the middle,

with two layers acting as either spacers or charge donors/ acceptors [146].

The experimental and theoretical research conducted over the years indi-

cates that the FeAs layers are the focal point for understanding their super-

conductivity. [143, 147–149].

The magnetic ground state of iron arsenide is unquestionably antifer-

romagnetic. However, the magnetic properties of the metallic antiferro-

magnet are not fully understood. The initial magnetic investigation using

powder neutron diffraction in 1972 showed that the material contained a

simple incommensurate spin spiral with a wave-vector of qs=0.375 and

with the moments laying in the ab-plane [150]. However, this result was

disputed through transport experiments, revealing highly anisotropic mag-

netic properties, whereby susceptibility differed significantly between the a

and b planes [151]. Mössbauer measurements [152] combined with single-

crystal neutron diffraction [153] confirmed this anisotropy.



Of the iron pnictides, the PbO-type FeSe is superconductive below

Tc=8K, making it an area of intense research [154–158]. The supercon-

ductivity within this material is highly tunable; for instance, under 8.9GPa

of applied pressure, Tc increases to a maximum value of 36.7K [159]. Fur-

thermore, FeSe has a complex structure profile, with a structural transi-

tion between a tetragonal P4/nmm and an orthorhombic Cmma crystal

structure [160]. This transition is shown in pressure and resistivity against

temperature experiments by Sun et al. [161] and Kasahara et al. [162],

respectively. Further, X-ray diffraction performed by Margadonna et al.

[160] demonstrates this transition through lattice constant. Unlike other

iron-based superconductors, the structural transition in FeSe is not accom-

panied by long-range striped antiferromagnetic ordering [163]. However,

magnetism still plays a vital role in iron selenide. Wang et al. [164, 165]

used neutron scattering experiments and revealed the presence of local

spin fluctuations in the tetragonal and orthorhombic states, suggesting a

close-lying magnetic phase.

The first-principles investigation into FeAs by Parker and Mazin [145]

cemented the antiferromagnetic ground state magnetic ordering and re-

vealed that, unlike other Fe-based superconductors, it could not be ex-

plained by Fermi surface nesting. They, however, found that the three-

dimensional Fermi surface was consistent with the experimentally reported

anisotropic magnetic behaviour. Later, Griffin and Spaldin [146] investi-

gated the effect of the exchange-correlation functional on the calculated

structure and magnetic properties of the MnP-type structure. They con-

cluded that the LDA performs poorly with the structural calculations and all

functionals overestimate the Fe magnetic moments by a factor of 2. They

further concluded that only the hybrid GGA provides structural values clos-

est to the experiment. However, a negative Hubbard-U calculation would

most likely reproduce the spin spiral as it would increase competition be-

tween the ferromagnetic and antiferromagnetic states. Next, Frawley et al.

[166] performed DFT calculations, combined with experiment, on a vari-
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ety of antiferromagnetic configurations to quantify the relative energies of

different antiferromagnetic states and showed that the origin of the spin

canting effect could be accounted for by spin-orbit coupling.

The shape of the Fermi surface and the electronic structure of tetrago-

nal phase FeSe has been the focal points of many ab initio investigations.

For instance, the investigations by Ma et al. [167] and Subedi et al. [168]

have accurately captured the band dispersions above 90K, allowing for a

good description of the localised electron and hole pockets forming the

Fermi surface. However, comparing with ARPES measurements [169], the

DFT calculations overestimate the energy scale of the band dispersions.

The maxima of the hole pockets and minima of the electron pockets are

hundreds of meV from the Fermi level [170], leaving a rough discrepancy

of ±50meV with experiment [171]. This difference is partly responsible

for DFT calculations predicting a Fermi surface with three hole pockets at

the centre of the Brillouin zone instead of the two experimentally observed

[171].

In this chapter, our investigation centres on the ambition to employ the

XC functional rSCAN, with its regularised isoorbital indicator [27, 28], to

try and gain further insight into the complex bond-dependant magnetism

[166] of FeAs. Further ambitions relate to determining if a difference can

be observed in the intricate band structure around the Fermi level. Finally,

we also investigate the Fermi surface in FeSe with the rSCAN functional to

see if there are any improvements to the number of hole pockets and the

distance of their maxima with respect to the Fermi level [167–171].

116



5.2 Crystal Structure

5.2.1 FeAs

Bulk FeAs crystalises into the orthorhombic MnP-type structure, as seen

in Figure 5.1. The primitive unit cell consists of eight atoms with distorted

FeAs6 octahedra, face-sharing along the a-axis and edge-sharing along

the b- and c-axes. The empirically determined space group is a disputed

point. In 1969, Selte et al. [150, 172] using X-ray diffraction (and later neu-

tron diffraction), performed the first experimental characterisation of the

structure and magnetic properties reporting Pnma symmetry with the MnP

structure. However, Lyman and Prewitt [173] proposed, through compar-

ison of both symmetries via X-ray diffraction, that the structure belongs

to the space group Pna21. The next addition came from Rodriguez et al.

[153], who performed powder and single-crystal neutron diffraction experi-

ments and favoured the Pnma symmetry.

Iron arsenide has similar Fe-Fe affinities found in the layered Fe-based

superconductors; LaFeAsO, BeFe2As2 and NaFeAs [166]. However, the

critical difference is in the six octahedra As ions surrounding the Fe ions

Figure 5.1: A visual representation of the FeAs crystal structure contained within the
unit cell. The atoms are labelled and the a, b, c axes follow red, green, blue
colouring respectively.
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instead of the four tetrahedral As ions. The Fe ions are positioned at the 4c

Wyckoff sites, producing the following four locations in the unit cell, Fe1 at

(x, 1
4
, z), Fe2 at (x̄+ 1

2
, 3
4
, z + 1

2
), Fe3 at (x̄, 3

4
, z̄) and Fe4 at (x+ 1

4
, 1
4
, z̄ + 1

2
)

[153] where x = 0.004 and z=0.199 [166].

First principles calculations in 2017 by Griffin and Spaldin [146] re-

vealed a Pnma crystal symmetry as the ground state structure through

the relaxation of the crystal. This symmetry was quickly confirmed in the

same year by first-principles and experimental results from Frawley et al.

[166].

Due to the consistency in the determined symmetry of experimental and

ab initio results, the Pnma symmetry with MnP-type structure was selected

as the starting ionic configuration, as seen in Figure 5.1.

5.2.2 FeSe

The bulk tetragonal phase of FeSe consists of a 2-D Fe ion plane, bonded

to Se ions and forming a quasi 2-D layer crystal structure (see Figure 5.2).

The Se ions are above and below the Fe planes, and a single unit cell

consists of two Fe ions and two Se ions. The stacks contain edge-sharing

FeSe4 tetrahedral with a packing motif almost identical to the FeAs layers.

Our first-principles investigation will use the supercell approximation with a

size of
√

2 a ×
√

2 a × c. This size will allow us to model the antiferromag-

netic planes effectively.
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(a)

(b)

Figure 5.2: A visual representation of the FeSe tetragonal phase structure with P4/nmm
symmetry. With the top view (a) and a side view (b) demonstrating the 2-D
planes. Whereby the a, b, c axes are represented by red, green, blue respec-
tively.

5.3 Magnetic Structure

5.3.1 FeAs

As previously mentioned, the magnetic ground state of iron arsenide is

antiferromagnetic. However, there is a complexity associated with the mag-

netic configurations; many different meta-stable magnetic states exist. These

meta-stable states are energetically close enough for excitations to reach,

resulting in spin density waves. The spin density wave produced by the

material is a subject of intense research, as its characteristics are highly

debated [150–153]. This investigation will not focus on the spin density

wave but observe the different antiferromagnetic arrangements within the

unit cell. These configurations are outlined and investigated by Frawley et

al. [166] and concern the iron sites which have parallel spins: Fe1 || Fe3

(AFM1), Fe1 || Fe4 (AFM2) and Fe1 || Fe2 (AFM3), as seen in Figure 5.3.

The calculations performed centred on co-linear AFM ordering, with near-

est neighbours antiferromagnetically coupled and next-nearest neighbours
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ferromagnetically coupled.

(a)

(b)

(c)

Figure 5.3: A visual representation of the magnetic configurations, AFM1 (a), AFM2 (b)
and AFM3 (c). Whereby the a, b, c axes are represented by red, green, blue
respectively. The size and direction of the moments are for visualisation only
and are not to scale.
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5.3.2 FeSe

The magnetic ground state for FeSe is significantly more debated than

FeAs. Wang et al. [165] showed, through inelastic neutron scattering, that

there is no long-range magnetic ordering. They further show that FeSe is

an Stot=1 nematic quantum-disordered paramagnet between the Néel and

stripe magnetic instabilities. Baum et al. [174] showed, through Raman

scattering (as a function of temperature and polarisation), that FeSe ex-

hibits stripe-like antiferromagnetism; they further suggest that this ordering

will be frustrated. Our first-principles investigation will use spin polarised

co-linear DFT for the antiferromagnetic tetragonal phase of FeSe. The an-

tiferromagnetic arrangement is such that each 2-D plane is antiferromag-

netic (along the a-axis in Figure 5.2).

5.4 Results

5.4.1 Geometric Optimisations

5.4.1.1 FeAs

For investigating the most appropriate symmetry of the material, a series of

geometry optimisations used the LDA, PBE and rSCAN XC functionals with

the Pnma symmetry imposed and symmetry switched off, with no enforced

symmetry constraints. The Pnma symmetry with MnP-type structure prop-

agates through all three XC functionals, including the relaxations for the

different antiferromagnetic configurations (AFM1, AFM2 and AFM3), fer-

romagnetic and the zero spin configuration. This result is consistent with

both experiments and other ab initio geometric optimisations. [146, 166,

172].

Table 5.1a shows a comparison of our results with experimental and
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(a)
Vol. (Å3) a (Å) b (Å) c (Å)

LDA 100.63 5.203 3.318 5.828
PBE 108.36 5.450 3.290 6.042

rSCAN 112.45 5.521 3.345 6.089
X-ray [172] 110.64 5.442 3.373 6.028
ND [150] 110.37 5.437 3.370 6.023

PND [153] 109.52 5.456 3.323 6.031
LDA [146] 100.33 5.313 3.194 5.912
GGA [146] 108.45 5.469 3.277 6.051
HSE [146] 108.41 5.470 3.276 6.050

(b)
Fe (x) Fe (z) As (x) As(z)

LDA 0.0028 0.2017 0.1990 0.5801
PBE 0.0012 0.2013 0.2002 0.5736

rSCAN 0.0046 0.2033 0.2068 0.5746
X-ray [172] 0.0027 0.1994 0.1992 0.5773
ND [150] 0.0063 0.1975 0.2018 0.5789

LDA [146] 0.0020 0.2020 0.2000 0.5730
GGA [146] 0.0020 0.2020 0.2010 0.5730
HSE [146] 0.0020 0.2020 0.2010 0.5730

(c)
Fe-Fe (a)

(Å)
Fe-Fe (b)

(Å)
Fe-As (1)

(Å)
Fe-As (2)

(Å)
LDA 2.662 2.877 2.280 2.431
PBE 2.788 2.937 2.334 2.497

rSCAN 2.818 2.988 2.359 2.520
X-ray [172] 2.789 2.937 2.347 2.517
LDA [146] 2.725 2.867 2.281 2.428
GGA [146] 2.796 2.941 2.338 2.496
HSE [146] 2.797 2.938 2.358 2.519

Table 5.1: Lattice parameters (a) , atomic fractional coordinates (b) and bond-lengths (c)
obtained from relaxations in the LDA, PBE and rSCAN XC functionals. Com-
pared to experimental X-ray [172], neutron diffraction (ND) [150] and pow-
dered neutron diffraction (PND) [153] data and to the DFT data determined by
Griffin et al.[146]. Where the (a) and (b) bonds are the shortest bonds (Figure
5.3) between the Fe ions in the a-direction and the b-direction, likewise with
the Fe-As columns.
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DFT calculations performed by Griffin et al. [146]. The comparison re-

veals that LDA optimisation underestimates the experimental volumes by

around 9%. This difference is larger than the standard LDA underestima-

tion but appears to align with previous DFT calculations [146]. The PBE

functional agrees better with experiments by underestimating the unit cell

volume roughly between 0.8%(PND)-2%(X-ray). It is usual for PBE to over-

estimate lattice parameters; however, it has underestimated them with iron

arsenide. This divergence from expectation of the PBE functional for iron

arsenide is documented through other DFT calculations [146], and our un-

derestimation is on par with those values .

The rSCAN functional was the only functional we used which overesti-

mated the volume of the unit cell. Compared to all experimental data in

Table 5.1a, it overestimates both the a and c lattice parameters; however, it

slightly underestimates the b lattice parameter. The PBE functional also

shares a slight underestimation of this lattice parameter. This two-out-

of-three overestimation leads to an rSCAN global volume overestimation

between 1.64%(X-ray)-2.68%(PND).

We have determined the shortest and longest distances between the

Fe ions in the a lattice parameter direction and the b lattice parameter di-

rection. These values correspond to the Fe1-Fe2 and Fe2-Fe3 distances,

see Table 5.1c. The LDA functional vastly underestimates the experimen-

tal distances but overall agrees with the DFT determined lengths [146]. On

the other hand, the GGA, PBE, strongly agrees with the experimentally de-

termined values with a discrepancy of 0.001 Å and coincides with previous

DFT findings [146]. Comparing with experimental values, the rSCAN func-

tional overestimates these distances by around 1%. The overestimation

of these distances is expected as the a and b lattice parameters are also

overestimated.
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5.4.1.2 FeSe

Table 5.2 compares the lattice parameters for the optimised tetragonal

phase FeSe with X-ray scattering and other DFT calculations using GGA.

The LDA functional underestimates the a and c lattice parameters by over

10%, which is a similar result to other iron pnictides (see Section 5.4.1.1).

This performance continues to the positioning of the Se ions z-coordinate,

which disagrees with experiment by around 22%.

The PBE functional agrees well with experiment and other GGA calcula-

tions, underestimating the lattice parameter a by less than 1%. The func-

tional overestimates the lattice parameter, c, by around 0.5% which is a

larger discrepancy than the a parameter but still excellent agreement. The

fractional coordinate of the Se ion differs by around 6.5% with both the ex-

perimental positioning and other GGA calculations.

The optimised lattice parameters from using the rSCAN functional are in

good agreement with experimental values. The lattice parameter, a, is

closer to experiment than the PBE functional, with an underestimation of

around 0.05%. For the c lattice parameter, the rSCAN functional underes-

timates the experimental length by around 1.5%, which is more than the

PBE functional. The z coordinate of the Se ions are very close to experi-

ment with a difference of around 1%. This is a 5% improvement over PBE.

a (Å) c (Å) zSe
LDA 3.372 5.356 0.214
PBE 3.766 5.551 0.250

rSCAN 3.769 5.436 0.270
X-ray [163] 3.771 5.521 0.267
Synchrotron
X-ray [160]

3.774 5.525 -

DFT (GGA)
[171]

3.765 5.518 0.241

Table 5.2: A comparison of the lattice parameters and atomic z- fractional coordinates of
Se for the FeSe tetragonal structure. Values obtained from relaxations in the
PBE and rSCAN XC functionals. Compared to experimental X-ray [160, 163]
data and to the DFT data determined by Watson et al. [171].
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5.4.2 Magnetic properties

5.4.2.1 FeAs

We used spin-polarised co-linear DFT, as this investigation did not progress

to include the spin density wave. As a result, the exchange interactions

were not determined due to a large amount of magnetic anisotropy within

the system. Furthermore, previous DFT calculations have revealed a lin-

ear energy dependence on the spin magnitude, which is incompatible with

the Heisenberg and Ising models [166]. Therefore, this section highlights

the fundamental magnetic properties available through non-relativistic co-

linear spin-polarised calculations.

Table 5.4 reveals the magnetic moments located on the iron ions and

any residual magnetism on the arsenide ions. The magnetic moments

show that the magnetism within iron arsenide depends heavily on the choice

of XC functional. For instance, LDA converges to a non-magnetic configu-

ration for all three antiferromagnetic states, revealing the unsuitability of this

XC functional to represent this material accurately. This behaviour propa-

gates to the PBE functional, which exhibits significantly reduced magnetic

moments on the Fe ions and predicting localised moments instead of the

experimentally determined itinerancy [151].

XC-
Functional

Ion Species AFM1 (µB) AFM2 (µB) AFM3 (µB)

LDA
Fe ± 0.00 ± 0.00 ± 0.00
As ± 0.00 ± 0.00 ± 0.00

PBE
Fe ± 1.20 ±0.63 ± 0.93
As ± 0.00 ± 0.00 ± 0.00

rSCAN
Fe ±2.30 ± 2.43 ± 2.27
As ± 0.03 ± 0.06 ± 0.00

Table 5.3: The magnetic moments of the Fe magnetic sites and the As exchange ions
for the antiferromagnetic states, AFM1, AFM2 and AFM3. The magnetic
moments originate from the Mulliken analysis of the separate optimisations.
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However, the magnetic moments of the PBE functional on the Fe ions

appear to be in agreement with the DFT calculations performed by Frawley

et al. [166], acknowledging minor differences most likely due to the geo-

metric optimisation.

The rSCAN functional provides a larger magnetic moment on the iron ions

and predicts itinerancy with residual magnetism on the arsenide ions. rSCAN

only predicts itinerancy for the AFM1 and AFM2 states, indicating that the

number of antiferromagnetic aligned spins plays a role in the spin density

around the arsenide ions.

5.4.2.2 FeSe

This investigation did not focus on the highly debated spin density wave;

therefore, we did not include anisotropy terms through non-co-linear mag-

netism. For that reason, we have not determined exchange interaction

parameters for the FeSe 2D planes.

The LDA functional shows a larger magnetic moment than other LDA

ab initio calculations with a difference of 0.6µB. There is also a residual

magnetic moment on the Se ions of 0.06µB; while this is a small magnetic

moment, it is noticeable. The strength of the residual magnetic moment

on the Se ions is identical for PBE and rSCAN functionals. The PBE and

XC-Functional Ion Species Magnetic Moment (µB)

LDA
Fe ± 1.83
Se ± 0.06

PBE
Fe ± 2.29
Se ± 0.06

rSCAN
Fe ±2.36
Se ± 0.06

DFT (LDA) [168]
Fe ±1.20
Se -

Table 5.4: The magnetic moments of the Fe magnetic sites and the Se exchange ions for
the antiferromagnetic state. The magnetic moments originate from the Mul-
liken analysis of the separate optimisations.
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rSCAN functionals have a larger magnetic moment on the Fe ions, with

a bigger moment from the meta-GGA. The difference in the size of the

magnetic moment between functionals indicates the strong dependence of

the magnetic properties with the functional used. This feature is expected

among the mono iron pnictides [146].

5.4.3 Electronic Band Structure

5.4.3.1 FeAs

This section explores the electronic band structure for the AFM1 state ren-

dered through the different XC functionals; as shown in the previous sec-

tion, LDA converges to a non-magnetic state and will, therefore, not be

included.

We investigated two paths through the Brillouin zone; these relate to the

paths taken by previous DFT calculations [146] and the path suggested by

the python module SeeK-path [98, 99], which obtains and visualises band-

paths through the Brillouin zone. The two paths through the Brillouin zone

are; Γ − X − S − Γ − ∆ − D − Γ and Γ − X − S − Y − Γ − Z − U −

R − T − Z , respectively. The AFM1 magnetic configuration will be shown

in this section because it is the ground state magnetic arrangement and

appears most frequently in literature [145, 146, 166].Therefore, offering

more comparisons to evaluate the results of this investigation.

The electronic band structure of iron arsenide is of particular impor-

tance as there have been many hypotheses relating the bands around the

Fermi-level to the observed spin density wave. Such hypotheses include

Fermi pockets and Fermi surface nesting [145, 146]; both, of which are de-

terminable through the electronic band structure and are subject to heated

debate.

Figure 5.4 reveals the PBE XC functionals rendered band structure
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Figure 5.4: The Band structure of FeAs with the PBE functional and Gaussian smearing
with default width 0.2eV.The difference between (a) and (b) are the different
paths through the Brillouin zone.

through different Brillouin zone paths. A band structure to compare with

literature [146] (Figure 5.4a ) and one recommended by SeeK-Path (Fig-

ure 5.4b) [98, 99].

The band structure in Figure 5.4a shows good agreement with Griffin

et al. [146], with respect to the position of the band maxima and minima

around the Fermi-level. However, the magnitude of those extrema pos-

sesses a significant discrepancy of approximately 25%. Understanding the

source of this discrepancy is essential as it questions the legitimacy of

the other path through the Brillouin zone. The difference is not significant

enough to be accounted for in the minor positional differences. If it were

a matter caused by the positions of the ions, we would expect the band

structure to look significantly different. Therefore, the source of the differ-

ence does not exist in structural variations but the computation of the band

structure.

The shape of first-principle band structure calculations rely on how well

converged the k-point sampling grids are, and the orbital occupations used

to determine the Fermi-level [175, 176]. Unfortunately, this aspect be-
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comes evident in the iron arsenide band structure, which is extremely sen-

sitive to the smearing scheme and broadening.

Figures 5.5a-5.5b show the difference in reducing the density of the

k-point grid on the band structure; particular attention goes to the bands

crossing the Fermi-level as they correspond to the higher-order Fourier

components and are most susceptible to sampling. Reducing the density

of the MP k-point grid from 25×27×21 to 10×10×10 did not appear to

have any significant, if any difference, on the electronic band structure of

the material.

The lack of change in the bands suggests that the k-point are efficiently

converged enough to represent the wave functions and occupations ac-

curately. The immutability between k-point grids is most likely a direct

cause of the high smearing width of 0.2eV used in the Gaussian smear-

ing scheme, allowing for a smaller k-point grid to converge: see Section

2.3.3.2 for more information. This hypothesis is confirmed upon reducing

the smearing width from 0.2eV to 0.05eV, in Figure 5.5c.

We observe a significant reduction in the Fermi-energy of 51meV, which

highlights the importance the smearing width plays in the occupation of

states and, subsequently, the iterative determination of the Fermi-energy.

We see a similar size shift in the conduction and valance bands up, which is

expected from reducing the smearing width and lowering the Fermi-energy.

The significant impact which the smearing scheme has on the band struc-

tures indicates that a different scheme is required. The Gaussian scheme

suffers from the unphysical nature of its smearing width; however, the cold

smearing scheme does not.

Figures 5.6a and 5.6b show the band structure through the cold smear-

ing scheme with a sufficiently dense MP k-point grid of 33×35×31, with a

spacing of 0.001 Å−1, providing confidence in the sampling accuracy with-

out oversampling creating step-like bands. We observe a reduction in the

Fermi-energy, which is expected through the cold smearing scheme [34];
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Figure 5.5: The PBE functional BS using Gaussian smearing, width 0.2eV for (a), (b)
and 0.05eV for (c). A 25×27×21 k-point grid used in (a) and a 10×10×10
grid used for (b) and (c). 130
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Figure 5.6: The Band structure of FeAs with the PBE functional using the cold smear-
ing scheme with smearing width 0.02525eV. The MP k-point grid was
33×35×31 with a path spacing of 0.001Å−1. The differences between (a)
and (b) are different paths through the Brillouin zone.

Figure 5.6a shows excellent agreement with Griffin et al. [146], the Fermi

pockets are easily seen, and the positions and magnitudes of the band

maxima and minima align. There are minor band changes between the

cold smearing and the Gaussian (Figure 5.5c), such as the bands around

the Fermi-energy in the direction of ∆ to D, whereby the valance bands

have shifted up. This slight change results from the shift in Fermi-energies

between the Gaussian and cold smearing schemes, which is ultimately af-

fected by the occupation of states.

Figure 5.6a reveals a large electron pocket and two smaller hole pock-

ets in the direction S-Γ-∆-D. The larger size of the electron pocket at the

Γ point compared to the two hole pockets in the S-Γ and ∆-D directions

indicate that electrons are the main carriers with fewer hole carriers.

The band structure in Figure 5.6a overal agrees with the experimental

Fermi surface from Campbell et al. [177], who used de Haas Van Alphen

oscillations to determine the extreme regions of the Fermi surface. The

de Haas Fermi surface consists of an electron pocket at the Γ point and
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four identical, symmetrically orientated hole pockets. The PBE functional

describes the main edifice of this Fermi surface; the electron pocket at

the Γ point and the hole pockets around it (S-Γ and ∆-D directions), of

course, a 2-D representation of the 3-D reciprocal space cannot determine

if it is two hole pockets or four (two sets of two identical) hole pockets

made to look like two due to the 2-D representation. The PBE functional

does fail to get the shape of the hole pockets, which are described as

roughly ellipsoidal. Specifically, the hole pocket in the ∆-D direction is not

ellipsoidal and breaks the identical nature of the hole pockets. Further, the

size of the pockets agrees with Griffin et al. [146], which Campbell et al.

[177] remark as larger than their de Haas pockets.

Figure 5.6b shows the path suggested by Seek-Path [98, 99], and in the

direction of Γ-X-S, we observe the same bands as in Figure 5.6a, which is

a mark of confidence that two independent calculations converge to the ex-

act occupancies in the same directions. In the direction Y-Γ, there is a slight

band crossing the Fermi-level from the valance bands. Assurance of this

crossing comes from analysing the number of k-points that form the band

above the Fermi-level. The k-point spacing is set to 0.001 Å−1, which pro-

vides 60 k-points to form that band above the Fermi-energy. Upon compar-

ison to a slightly less dense spacing of 0.02 Å−1 (denser than the CASTEP

default 0.1 Å−1), which provides only five k-points above the Fermi-level,

we see the conviction of the accuracy in the band crossing. The number

of bands crossing the Fermi-level orientates around the Γ point in the Bril-

louin zone, indicating localised metallic properties and the ability for the

electrons to become excited and take part in conduction and spin density

waves in the Y-Γ and S-Γ-∆-D directions.

Comparing Figure 5.6b with the de Haas Fermi surface from Camp-

bell et al. [177], the electron pocket is still present at the Γ point with

the same conduction band forming the pocket (the ∆-Γ direction in Figure

5.6a), made clear from the same characteristics of the conduction band in
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Figure 5.6a in the direction Γ-X-S. However, the valance band is not the

same, made clear from the difference in the characteristics of the bands in

the Γ-X-S direction.

Figures 5.7a and 5.7b reveals the electronic band structure generated

through the rSCAN XC functional in the cold smearing scheme with a

broadening of 0.02525eV (293K).

The central aspect of Figures 5.7a and 5.7b is the change in how far

the valance and conduction bands cross the Fermi-level, by only slightly

crossing, it raises questions as to the legitimacy of the occupation of the

conduction bands. Further doubts come from Figure 5.7b, which shows a

band gap below the Fermi-level, adding to the concerns about the position-

ing of the Fermi-level itself. As with the PBE functional, the k-point grid is

sufficiently dense to allow for adequate sampling, with a spacing of 0.001

Å−1 between k-points and a 33×35×31 MP grid. Therefore, the investiga-

tion turned to determine the reliability of the positioning of the Fermi-level;

see Section 2.3.3.1 for more detail on how CASTEP iteratively finds the

Fermi-energy.

In order to test the actual value of the Fermi-energy, the electronic den-

sity of states code, OPTADOS [95, 96], was used as it interacted with

CASTEP output files. OPTADOS focuses on the density of states, requiring

a denser sampling of the Brillouin zone. This sampling is, therefore, better

than CASTEP’s band structure sampling as it would be denser.

Further, to test the location of the Fermi-level, OPTADOS used both a grid

and path sampling of the Brillouin zone in an independent Fermi-energy

calculation. In both DOS calculations, OPTADOS determined the Fermi-

energy 55meV lower than CASTEP, at 6.189eV. Thus, the accuracy of

this value comes from both sampling types providing the same Fermi-

energy. Applying the new Fermi-energy to Figure 5.7b moved the Fermi-

level into the band gap. This positioning was confirmed through a higher

verbosity output in CASTEP which revealed the conduction band occupan-
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Figure 5.7: A comparison of Band structure for FeAs with the rSCAN functional, show-
ing the difference between CASTEP [16] and OPTADOS [95, 96] Fermi-
energies. The electronic band structure calculations used the cold smear-
ing scheme with smearing width 0.02525eV. The MP k-point grid was
33×35×31 with a path spacing of 0.001Å−1.
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cies around the Fermi-level were unoccupied and could not be under the

Fermi-level. Figures 5.7c and 5.7d show the OPTADOS determined Fermi-

level in the band structure. We observe a decrease in occupation in the

direction of Y-Γ and an increase in the direction S-Γ-∆-D-Γ. The uniformity

in decrease and increase in occupancies suggest they are related.

The difference in occupancies around the Fermi-level in Figures 5.7c

and 5.7d show that the transport properties are directional. Conduction of

FeAs will, therefore, be easier in the S-Γ direction than the R-T direction.

This anisotropic nature also relates to the spin density wave; the S-Γ-∆-D

direction is also the direction in which the wave propagates, which agrees

with Griffin et al. [146]. Furthermore, the broadness of the bands cross-

ing the Fermi-level indicates delocalisation of the d-state electrons and ex-

plains the lower Fe d magnetic moments [139, 142–145].

Figure 5.7a agrees reasonably well with the experimental Fermi surface

from Campbell et al. [177], there is a small electron pocket at the Γ point

and small hole pockets in the S-Γ and ∆-D directions. The size of the

pockets are significantly smaller than those presented by Griffin et al. [146];

however, the size of the pockets was the main critique of Campbell et al.

about Fermi surface shown by Griffin et al.. Further, the shape of the two

hole pockets are similar due to the parabolic nature of the bands near the

maximum. However, Campbell et al. describe identical hole pockets, and

the hole pockets in Figure 5.7a are similar but not identical. The small size

of the pockets indicates that there would be few electron and hole carriers,

from a rough integration of the volume of the pockets.

The OPTADOS determined Fermi level, Figure 5.7c, reveals the disap-

pearance of the electron pocket at the Γ point, which disagrees with the

de Haas Fermi surface from Campbell et al. [177]. In addition, the hole

pockets in the S-Γ and ∆-D directions are larger, indicating a bigger Fermi

surface than with the CASTEP Fermi-level. They also reveal that holes

are the main carriers in the crystal, with the potential for more holes than
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Figure 5.7a as the volume of the pocket is larger.

5.4.3.2 FeSe

This section will investigate the antiferromagnetic band structure for FeSe.

The purpose is to compare with FeAs and determine if rSCAN can improve

upon the theoretical description of the band structure, which is in disagree-

ment with ARPES measurements [178]. The path through the Brillouin

zone is taken from Ma et al. [167] as it encompasses most paths found

in the literature. The path is: M - X - Γ - X̄ - M - Γ - Z - R - A - Z -

R̄ - A - M . The electronic band structure is the folded band structure for

the supercell
√

2a ×
√

2a ×c. We used the cold smearing scheme with a

smearing width of 0.02525eV (293K), which is higher than the temperature

where the material is superconducting.
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Figure 5.8: The folded band structure for FeSe with the PBE functional. The electronic
band structure calculations used the cold smearing scheme with smearing
width 0.02525eV. The MP k-point grid was 33×33×30 with a path spacing
of 0.001Å−1.

Figure 5.8 shows the folded band structure for FeSe using the PBE

functional under the cold smearing scheme. There is good agreement with
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the shape and positioning of the bands compared with Ma et al. [167]. The

location and size of the hole pockets at the Z point also agree with Ma

et al. and ARPES measurements from Waston et al. [171]. Further, the

number of hole pockets agree with ARPES measurements by Maletz et al.

[169] . However, the appearance of the electron pocket, with a minimum

of -0.051eV, in the X-Γ direction does not. While the electron pocket is

small, it does not exist in other DFT calculations and ARPES experiments

[167, 169] and is still larger than ARPES electron pockets [169]. There is

a further electron pocket in the Z-R̄ direction, which has decreased in size

compared to Ma et al.. The higher verbosity output from CASTEP show the

occupations of the bands closest the Fermi-level and confirm the electron

pockets as occupied. In the direction Γ-X̄ the electron pocket in Ma et al. is

a hole pocket in Figure 5.8, with a maximum of 0.020eV. However, the num-

ber of k-points forming this hole pocket are just five and so a denser k-point

sampling would be needed to have confidence in claiming the existence of

this hole pocket.
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Figure 5.9: The folded band structure for FeSe with the rSCAN functional. The elec-
tronic band structure calculations used the cold smearing scheme with smear-
ing width 0.02525eV. The MP k-point grid was 33×33×30 with a path spac-
ing of 0.001Å−1.
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Figure 5.9 reveals the folded electronic band structure generated using

the rSCAN functional with the cold smearing scheme and a broadening of

0.02525eV (293K). The most striking feature of the band structure is the

absence of the hole pockets, particularly at symmetry points reported to

have them through ARPES measurements (Z, above Ts) [171]. Further,

there is an increase in the distance between the conduction bands and the

valance bands, even in the Γ-X̄ direction; despite the qualitative appear-

ance of conduction and valance bands meetings, there is a small band gap

of 8meV. Moreover, the direction Γ-X̄ contains a very small electron pocket,

with a minimum of -5.39meV. The number of k-points that form this pocket

is small at just three. Therefore, further calculations on smaller paths are

required to have confidence in this electron pocket. While the band gap is

tiny, the confidence in the conduction band creating the electron pocket is

questioned for the same reasoning with FeAs: the iterative nature of how

CASTEP determines the Fermi-level.

5.5 Discussion

5.5.1 FeAs

The LDA functional compared poorly with experimental results and with the

other XC functionals, underestimating the structural parameters by around

9% and converging to an unrealistic non-magnetic ground state. The failing

of the LDA functional could originate from the homogeneous approximation

of the exchange and correlation [20], failing to model the quickly changing

nature of the spin density. Another possibility for the LDA failure comes

from the determining cause of magnetism within FeAs: instability of the

delocalised Fe d-band electron [139, 142–145]. The delocalisation is diffi-

cult for the strictly local exchange, such as that in LDA, to model. However,

the true nature of this underestimation and poor magnetic representation
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would require further investigation to determine if it is a failure of LDA or

the level of theory used.

The PBE functional produced structural parameters much closer to the

experimental results, underestimating the lattice parameters by a max-

imum of 2%, a trait which has become unique of iron arsenide. Fur-

thermore, the magnetic properties exhibited through the PBE functional

showed a localised moment picture, which contradicted current experi-

mental understanding. A competition between localised and delocalised

magnetism within DFT and experiment is well documented [145, 146, 166,

179]. The discrepancy arises from the material resting between the weakly

and strongly correlated limits.

The differences between LDA and PBE magnetism within iron arsenide

indicates that the XC functional plays a significant role in accurately mod-

elling this system. Therefore, the most likely source of the difference stems

from the variations between those functionals. The magnetism within the

system is known to be quickly varying through spin density waves and

anisotropy [145, 146, 150, 153, 166, 172]. While PBE has a semi-local

exchange, it is still restricted by the slow-varying limit [22], which could be

why it fails to detect itinerancy.

Another reason could be, again, the simplicity of the model employed. The

lack of spin-orbit coupling and non-co-linear magnetism could be enough

of a handicap as not to distinguish between local moments and itiner-

ancy. Typically spin-orbit coupling energy is of meV in magnitude, which

is enough to change the magnetic interactions within the system. As other

DFT calculations have had success with PBE in modelling co-linear mag-

netism within iron arsenide from the inclusion of spin-orbit coupling [145,

146, 166], it becomes apparent that the model employed in this investiga-

tion was likely too unsophisticated.

The rSCAN functional relaxed the material into a structure with a vol-

ume that was in excellent agreement with experiment. The most significant
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discrepancy comes at 2.68%, which is in line with other XC functionals.

Furthermore, through the increased broadness of the d-bands crossing the

Fermi-level in the directions S-Γ and ∆-D, the functional predicts itinerancy

for the AFM1 state, which is the ground state magnetism of iron arsenide.

Only the carriers in the pockets can contribute to itinerancy as they form

the Fermi surface.

The itinerancy is significantly different to the GGA, which predicts lo-

calised moments. The ability for rSCAN to detect the experimentally veri-

fied itinerancy within the system stems from three sources, the inclusion of

the orbital kinetic energy density, the improvement on the PBE-like semi-

local exchange and the isoorbital indicator [27, 28]. These developments

allow for the functional to handle the faster-varying density better and sub-

sequently increases the magnetic moments.

The band structures of iron arsenide reveal that the electronic and mag-

netic structures are highly susceptible to the XC functional used. For in-

stance, the PBE functional predicts metallic behaviour via Fermi-pockets,

whereas rSCAN predicted weak metallic behaviour in the S-Γ direction and

semi-metallic behaviour in the S-Y-Γ direction. In verifying this result, the

Gaussian smearing scheme with its unphysical broadening parameter was

abandoned as it failed to reproduce the PBE band structure from Griffin et

al. [146].

These shortcomings highlighted a fundamental issue with Gaussian smear-

ing: the addition to the total energy and forces, making them higher than

at the real T=0K. The total energy is corrected for post hoc; however, the

forces and stresses cannot be. As a result, the contribution does play a

significant role, as the occupation depends on the smearing scheme used,

which affects the positioning of the Fermi-energy, and the Gaussian smear-

ing can cause very high and unrealistic occupations. Therefore the justifi-

cation for changing smearing schemes is self-evident.

Out of the smearing schemes available, the Methfessel-Paxon [35] scheme
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is a good choice; however, creating unrealistic negative occupancies is

complex to handle, especially as the smearing is closer to 0K, which is the

region negative occupancies typically arise. Thus, the negative occupan-

cies would be even more impactful on the Fermi-level, of which much of this

investigation focused. For those reasons, the cold smearing scheme [34]

is a good choice as it never deviates far from 0K, even with large smearing

widths and has physical occupancies.

The PBE functional shows good agreement with previous DFT elec-

tronic band structure calculations, Griffin et al. [146], achieved by chang-

ing the smearing scheme, reducing the smearing width and increasing the

number of k-points sampling the Brillouin zone. The band structure pro-

duced with the PBE functional reveals delocalised bands around the Fermi-

level, as expected by the low magnetic moment on the Fe ions.

The rSCAN XC functional shows a more complex picture for the band

structure as, depending on the direction of travel, the Fe d-states are ei-

ther somewhat delocalised or localised, made clear from the difference in

broadness of the bands closest the Fermi-level in those directions. For in-

stance, the delocalised d-bands observed in the direction S-Γ and ∆-D in

Figure 5.7c and localised bands in the Y-Γ direction in Figure 5.7d. Com-

pared to the band structure produced by PBE in Figures 5.6a and 5.6b, the

overall trend with rSCAN is more localised bands, which is consistent with

the higher Fe d magnetic moments

Comparing the Fermi surfaces of the two XC functionals with the exper-

imentally determined de Haas Fermi surface reveals that overall the PBE

functional better produces key characteristics of the de Haas Fermi sur-

face from Campbell et al. (see Figure 5.6a). For instance, the location and

general appearance of the electron and hole pockets. However, the PBE

functional overestimates the size of the pockets. The rSCAN functional

with the CASTEP Fermi-level agrees with experimental Fermi surface and

there is similarity with the PBE Fermi surface in relation to the location of
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the pockets, however the shape of the electron pocket differs greatly. The

rSCAN electron pocket is flatter at the minimum with PBE containing two

local minimas. The experimental electron pocket shape most closely re-

sembles the rSCAN electron pocket. With the OPTADOS Fermi-level, the

electron pocket at the Γ point disappears which is not in agreement with the

Fermi surface from Campbell et al., for this Fermi-level the PBE functional

is in better agreement with experiment.

Our results focused on two paths through the Brillouin zone, one with

precedence in the literature and the other from SeeK-Path. The rSCAN

functional highlights the significance of the caution required while using

a 2-D representation of 3-D reciprocal space. Figure 5.7d shows a band

gap; if this 2-D band structure was the only Brillouin space explored, then a

justified claim could be made that FeAs has a band gap which is incorrect.

It is only through the other path (see Figure 5.7c) do we see the Fermi-

pockets and the metallic behaviour.

As suggested by Griffin et al. [146], the bands crossing the Fermi level

could influence the generation and favouring direction of the spin density

wave; we would add that the low occupation of other bands also con-

tributes. However, more sophisticated investigations involving spin-orbit

coupling and non-co-linear magnetism are required. Furthermore, these

calculations will demand tighter energy tolerances between self-consistent

cycles, similar to that needed by phonons (Etol=1×10−10eV and tighter) to

detect the meV differences in magnetic states.

5.5.2 FeSe

The lattice parameters of the optimised unit cell, showed a poor compari-

son with experimental for the LDA functional with an underestimation of the

length of around 10%. This discrepancy is roughly the same as found with

FeAs. The magnetic moments are larger than other first-principles inves-
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tigations using the LDA functional. The difference between these results

could come from the variations in approximations used, as Sudebi et al.

[168] focused on investigating and modelling the spin density wave, which

could account for the decreased magnetic moments.

The geometry optimisations using the PBE and rSCAN functionals con-

verged to a structure closer to experiment with a maximum deviation of

1.5%. The position of the Se ions along the Z-direction differed by about

6%. However, the structures are very close to experiment and should not

be the source of significant disparities with experiment. The strength of the

magnetic moments increases with the complexity of the functional used.

We observe this trend in both FeAs and FeSe, which contain spin density

waves, fast varying densities and anisotropy, all of which are difficult for

local and semi-local exchanges to model.

The folded band structure for FeSe using the PBE functional under the

cold smearing scheme showed minor differences with the band structure

using the same functional from Ma et al. [167]. The shape and position-

ing of the bands, on the whole, agree with their electronic band structure.

However, the main difference is the appearance of the electron hole in the

X-Γ direction. This is not found in other DFT calculations or ARPES mea-

surements [168, 169, 171].

The difference in the size of the hole pockets compared to ARPES mea-

surement could result from the size of the smearing width, which is set to

0.02525eV (293K). The ARPES measurements were conducted at tem-

peratures below 120K [171]. The computational ramifications of using the

equivalent smearing width are SCF cycles which are very difficult to con-

verge. Therefore, further investigations are required to explore the effect of

the smearing width. In addition, confirmation of the existence of the small

hole pocket in the direction Γ-X̄ requires further investigation. The reason-

ing comes from the poor sampling rate of k-points creating the hole. Only

five k-points make this hole pocket; however, the k-point spacing was 0.001
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Å−1 with the MP grid 33 × 33 × 30; therefore, to increase the number of

k-points in this region of the Brillouin zone, a smaller path is required.

Finally, the other possibility to explain the presence of the electron pocket

in the X-Γ direction is the ionic positions of the crystal. The folded band

structure is in good overall agreement with the band structure from Ma

et al., and so it is unlikely that there are significant structural differences.

However, further investigation is required to provide confidence in the sim-

ilarity of the two structures.

The rSCAN functional predicts a small Fermi surface with a single elec-

tron pocket. This prediction is in disagreement with ARPES and de Haas

measurements, which predict two hole pockets and two electron pockets

[171]. Further investigation into the smearing scheme and broadening is

required to fully understand if this is an effect of rSCAN alone or the com-

bined effect of the rSCAN functional and the cold smearing scheme. In ad-

dition, the comparison with the experimental measurements from ARPES

and de Haas techniques were conducted at a temperature below 120K,

which is different to our smearing of 293K. Another aspect to consider is

the positioning of the Fermi-level; the iterative process in CASTEP can in-

correctly place the chemical potential (see Section 2.3.3.1). This would

require the same process with FeAs, using a denser density of states grid

in OPTADOS to better estimate the Fermi-energy. Further, the two hole

pockets at the Z-point measured in ARPES experiments by Watson et al.

are found in their GGA calculation only through consideration of spin-orbit

coupling, which causes a split in the degeneracy of the α and β bands of

an energy scale ∆SO ≈ 20meV. Therefore, requiring further investigations

involving tightly converged calculations to model the effects of spin-orbit

coupling.

Comparing the band structures of the PBE functional for FeAs and

FeSe, we observe that FeAs is closer to the de Haas measurements of

the Fermi surface than FeSe. However, both are in reasonable agreement
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with their respective literature and provide a good platform for comparison

with the rSCAN functional.

The band structures for FeAs and FeSe using the rSCAN functional

show a decrease in conduction and valance band overlap, with a complete

separation in FeSe. The manifestation of this in both materials suggests

that this has transferability across the iron pnictides. However, the elec-

tronic band structures for both materials have more disagreement with ex-

perimental measurements of the Fermi surface than those found with PBE.

With FeAs, the shape of the bands closest and forming the Fermi surface

better agreed with de Haas measurements; however, the electron pocket

is not present. The Z point (the Z-R̄ direction) in FeSe has a slight elon-

gation which also agrees better with experimental measurements of that

band; however, this only occurs because another maximum of the band

emerges at R̄ and it does not contribute to the shape of the Fermi surface.

However, to have confidence in the folded band structure of FeSe, further

investigations into band occupations, the position of the Fermi-level and

spin-orbit coupling are required to better compare to ARPES and de Haas

measurements.

As a final note, our results in this chapter have demonstrated that rSCAN

has overestimated the magnetic moments, reduced the size of the band

gap and produced bands in better qualitative description to experiment.

The strength of the magnetic moment produced by SCAN is not uncom-

mon within the literature as Fu and Singh [180] report. The SCAN XC

functional overestimated the magnetic moments of mono Fe, Co and Ni,

producing a worse fit with experiment than PBE. This is common to the

research in this chapter with rSCAN.
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5.6 Conclusion

In conclusion, the comparison of the XC functionals for FeAs has revealed

the importance of which functional is used as results vary greatly. For

example, the LDA functional performed poorly with underestimating the unit

cell volume by 9% and converging to a non-magnetic state. However, PBE

and rSCAN functionals converged to magnetic states and underestimated

(PBE) and overestimated (rSCAN) the unit cell volume by less than 3%.

In addition, the rSCAN functional was the only XC functional used which

exhibited itinerancy, a physical property of FeAs.

Despite each functional either underestimating or overestimating the

unit cell volume, the system relaxed into the Pnma symmetry, which agrees

with experimental results.

The rSCAN XC functional uniquely showed a difference in the number

of bands crossing the Fermi-level and exhibits a band-gap in the Y-Γ direc-

tion. This band gap has not been detected by any other XC functional.

The position of the Fermi-level was confirmed through OPTADOS, which

positioned it 51meV lower than that calculated through CASTEP. Through

CASTEP’s higher verbosity output, the valance bands above the Fermi-

level were confirmed to be unoccupied and therefore could not be below

the Fermi-energy. Therefore, we propose that the formation of this band-

gap is due to the band crossing elsewhere in the Brillouin zone lowering

the occupation substantially enough to force a band-gap, as seen in Figure

5.7.

For the iron pnictide, FeSe, the comparison of the LDA, PBE and rSCAN

XC functionals shows the LDA functional underestimate the lattice param-

eters the most by around 10%. The PBE and rSCAN functional agree with

experimental lattice parameters with a maximum discrepancy of around

1.5%. We observe the increase in strength of the magnetic moments

with the complexity of the functional used, rSCAN providing the largest
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Fe-site magnetic moment. Further, all three functionals present residual

magnetism on the Se ions of around 0.06µB. There is a difference with

other DFT calculations on the strength of those moments, originating from

the different approximations used.

The PBE functional produced a folded band structure which is in rea-

sonable agreement with experiment but differs significantly in the existence

of an electron pocket in the X-Γ direction. This electron pocket is not found

in ARPES measurements and requires further investigations to discover

the source of the pocket.

Finally, the folded band structure for FeSe calculated from the rSCAN

functional under the cold smearing scheme fails to capture the hole pocket

at the Z point as measured in ARPES experiments [171]. There is an

increase in the gap between the conduction and valance bands, resulting

in a small band gap of 8meV in the Γ-X̄ direction. However, the k-point

sampling rate is too low to attribute confidence in this band gap. Also in

this direction is a small electron pocket, although further calculations are

required to confirm if this band is occupied. Further, to have confidence

in the chemical potential value requires OPTADOS calculations, as rSCAN

predicts a small band gap which could be a consequence of the iterative

nature of CASTEPs Fermi-level. The ARPES measurements from Watson

et al. [171] indicate the significance of spin-orbit in splitting the degeneracy

of the α and β bands at the Z point forming the hole pocket. While rSCAN

does not predict a hole at the Z point, the effects of spin-orbit coupling are

impactful on the band structure and so further calculations are required to

more accurately model the band structure.

5.7 Future Works

In order to truly understand the source of the band gap exhibited by the

rSCAN XC functional and the anisotropy that relates to it, a more detailed
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Hamiltonian is needed. The Hamiltonian would need to include the rela-

tivistic effects of spin-orbit coupling and non-co-linear magnetism to reveal

the implications of the band gap on the spin density wave and vice versa.

The investigation should also include a more thorough understanding of

the transport properties in the different Brillouin directions and their impact

on the magnetic moments. The LDA, PBE and rSCAN XC functionals, to

some extent, underestimate the magnetic properties of the iron pnictides,

so further work is needed to determine if it is a limitation of the functionals

or the level of theory employed.
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Chapter 6

Conclusions

The work presented in this thesis aimed to investigate various magnetic

properties of materials and then review the validity of the methods used.

Chapter 2 contained the theoretical introduction to density-functional the-

ory and the practical computational adaptation, allowing DFT codes to

function. The theoretical basis also included the ad hoc magnetic exten-

sion to the first-principles methods.

Magnetoresistance describes the functional and valuable relationship be-

tween the magnetism and transport properties of a material. This rela-

tionship is usually found within double-perovskites and has previously only

been found in metals or half-metals.

Chapter 3 investigated the unusual insulating double perovskite Tl2NiMnO6,

which exhibited the magnetic phenomenon, magnetoresistance. The in-

vestigation used electronic band structures and effective masses to exam-

ine the relationship between the insulating behaviour and transport proper-

ties. The double perovskite exhibited some level of disorder, and to avoid

computationally expensive methods; the VCA was used to model the oc-

cupational disorder. The material exhibited strong ferromagnetism, with

the majority spin channel dominant under the Fermi-energy. Employing

Hubbard-U for the on-site correction revealed a previously indistinguish-

able band gap. The band gap in both the density of states and the band

structure was sufficiently small enough to show semiconducting behaviour

and not insulating. The broadness of the density of states and residual

magnetism on the non-magnetic sites shows itinerancy within the system.

Itinerancy would be expected in the case where magnetism and transport

properties are intertwined. By fitting parabolas to the maxima and min-



ima of the bands closest the Fermi-level revealed the effective masses of

the electrons and the holes, showing that holes play a predominant part in

transport. There was a difference in the effect masses of the holes between

the Γ-A and A-E directions, indicating anisotropy,and a difference in trans-

port properties between those directions. This is a potential consequence

of the colossal magnetoresistance. However, further investigations involv-

ing relativistic first-principles calculations would be needed to validate this

relationship.

Molecular magnets are at the computational extreme, so numerous in

ions and electrons that only national supercomputers can hope to calculate

their complex ground state properties. Chapter 4 aimed to investigate the

nature of the discrepancy between experimentally determined total mag-

netism and the ab initio values of the molecular magnet, Cr10. This chapter

also investigates the Cr8 molecular magnet to use as a comparison with

the Cr10, highlighting the differences and influence of the number of next-

nearest neighbour interactions. Cr10 has frustrated next-nearest neigh-

bours, while Cr8 does not. The impact of this frustrated is visible in Cr10

spin density isosurfaces. Further differences come from magnetic ground

states which is ferromagnetic fro Cr10 and antiferromagnetic for Cr8.

The investigation, through hydrogen saturation, determined a higher

applicable symmetry to the Cr10 molecule (D5), which allowed for a DFT

approach that did not rely on crystal symmetry (Cr8) but used ionic con-

straints to maintain the D5 point group symmetry.

Comparison of the magnetic properties between the D5 symmetry and

the previous literature C1 symmetry revealed a noticeable difference. For

the D5 symmetry the magnetic moments were closer to experiment and

had more reliable exchange interaction parameters, due to structural con-

sistency. However, the exchange constants were larger in magnitude than

the experimental ones; although similar in size to other ab initio investi-

gations. We are unable to determine the source of this discrepancy. It
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is possible that including non-co-linear magnetism and spin-orbit coupling

could provide excitations in better agreement with experiment. However,

the nearest neighbour Heisenberg model used to fit the experimental data

may be too simplistic and so there is no guarantee of agreement.

The fixed spin moment constraint revealed that the ground state for

the Cr10 molecule is ferromagnetic with Stot=30µB. This is in contrast with

experimental susceptibility measurements which indicated a ground state

magnetism of Stot=18µB, corresponding to two anti-parallel spins to the

other eight. The LDA functional does not predict the next-nearest neigh-

bours influence to the same extent as the PBE and rSCAN functionals,

which visibly show it in the spin density isosurfaces. The magnetic depen-

dency on the XC functional indicates that the XC holes are an influential

factor.

Magnetostriction was also examined on a fundamental level as a magne-

tostrictive force which revealed magnetostriction is possible within the ma-

terial. However, further investigations using very fine and well converged

spin-orbit coupling calculations are needed to reveal the nature of the mag-

netostriction.

Iron pnictides have exhibited complex magnetism through spin density

waves and superconductivity. Chapter 5 aimed to investigate if the rSCAN

XC functional can provide new insights into the band structure and subse-

quently the complex magnetism represented by the spin density waves in

FeAs and FeSe. The investigation into FeAs tested three different co-linear

magnetic configurations relating to all the possible spin parallel-antiparallel

pairs. Comparison of the LDA, PBE and rSCAN XC functionals allowed

for an understanding that the magnetic properties modelled depend highly

upon the XC functional chosen.

Of these functionals, LDA compared the worst with experiment by converg-

ing to non-magnetic states for each of the magnetic arrangements inves-

tigated. This characteristic continued into the geometry optimisation with
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LDA underestimating the lattice parameters and subsequently the unit cell

volume by around 9%. On the other hand, PBE converged to magnetic

states but exhibited localised moments instead of itinerancy, which is ex-

perimentally determined through resistivity measurements. The PBE func-

tional underestimates the lattice parameters and cell volume by 2%, which

is a significant improvement on LDA.

Finally, rSCAN performed well, converging to a magnetic ground state for

each configuration and exhibiting itinerancy. The rSCAN functional per-

forms reasonably well with PBE but overestimates the lattice parameters

and volume by 2.68%. Furthermore, the magnetic moments on the Fe

ions with the rSCAN functional were larger than PBE by a mean value of

1.41µB. For both PBE and rSCAN, the strength of the on-site magnetic

moment depended upon the number of antiferromagnetic pairs. The high

sensitivity of the magnetic moments to the XC functional used suggests

a great deal of sensitivity to spin fluctuations. This suggests the possible

existence of competing electronic states such as orbital ordering which has

been observed in other FeAs based superconductors, such as Sr2VO3FeAs

[181].

For FeSe, the trend in the results appeared similar to FeAs. LDA un-

derestimated the lattice parameters by around 10% while PBE and rSCAN

predicted parameters closer with experiment and other DFT calculations.

However, all three XC functional converged to an antiferromagnetic ground

state with a residual magnetic moment on the Se ions. The strength of

the Fe magnetic moments, as with FeAs, increased in magnitude with the

complexity of the functional used. This observation, provides weight to the

suggestion of orbitally ordered states, which have been mooted in FeSe

[182]. However, as with FeAs, this is beyond the scope of this investiga-

tion and would require more research into the legitimacy of attributing this

behaviour to orbital ordering.

These differences could also be down to the local and semi-local ex-
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change of the LDA, PBE and rSCAN, which ultimately struggle to handle

the fast-varying spin density. However, further research would be needed

to determine whether the fault lays the local and semi-local exchanges or

if it is a failing of the level of theory employed.

The electronic band structures are highly sensitive to the smearing

scheme used. The Gaussian scheme proved unsuitable as it artificially

raised the Fermi-level to give the impression of occupation in empty bands.

The cold smearing schemed reduced this oversight. However, an external

program, OPTADOS, provided a lower Fermi-level through a denser sam-

pling of the Brillouin zone. This caused significant changes in the rSCAN

electronic band structures, whereby a band gap opened in a region of the

Brillouin zone previously modelled as metallic (Y-Γ). In addition, other re-

gions of the Brillouin zone (Y-Γ and ∆-D) have increased density around

the Fermi-level, suggesting a possible cause for the decreased occupancy

elsewhere. The implications this has upon the spin density wave and non-

co-linear behaviours need further investigation.

In comparison with the de Haas measurement to determine the extreme

points of the Fermi surface, the PBE band structure overestimated the size

of the electron and hole pockets, but correctly predicted their positions

in the Brillouin zone. The rSCAN functional predicted the shapes of the

electron and hole pockets in better agreement with experiment, however

upon using the OPTADOS calculated Fermi-level, the electron pocket dis-

appeared.

The FeSe folded band structure using the PBE functional showed that

the behaviour of the bands at the Fermi-level are highly susceptible to the

tuning parameters such as k-point density, smearing scheme and broad-

ening. However, there is good agreement in the positioning of the hole

pockets in comparison to the ARPES measurements from Watson et al..

On the other hand, the band structure calculated using the rSCAN func-

tional showed greater disagreement with the ARPES measurements; fail-
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ing to predict the Z point hole pocket. However, the k-point sampling rate

of the rSCAN band structure is too low to extract meaningful observations

confidently.

We observe similar characteristics from the rSCAN functional in both

the FeSe and FeAs band structures. Both band structures see an increase

in distance (or a decrease in overlap) between the conduction and valance

bands around the Fermi-level. However, in the FeAs band structure, the

shape of the bands forming the electron and hole pockets better resemble

the shape described by de Haas measurements.

The first-principles investigations in this thesis have shown the subtlety

of magnetic phenomena in ab initio results. For instance, we observed

magnetic states with little difference in their final energies, small differences

in the spin densities of different XC functionals and high susceptibility of

electronic structures on computational parameters. There were limitations

to the methods used in this thesis which prevented a comprehensive un-

derstanding of the fundamental magnetic mechanisms responsible for the

observed phenomena. For example, spin-polarised co-linear DFT was un-

able to fully describe any spin fluctuations the systems studied in thesis, as

the magnetic moments were treated as Ising-like.

The overall application of the rSCAN functional to the different systems

in this thesis have shown a greater degree of agreement with experimen-

tal geometries and provided a deeper understanding of the effects of ex-

change interactions. However, rSCAN predicted band structures with key

experimental features missing; as made clear with the iron pnictide super-

conductors electron and hole pockets.

Finally, as a note to a reader starting in magnetic ab initio research: do

not fall into the fallacy of using DFT codes as a ’black box’. Question the

output of the DFT codes; this thesis has shown, through comparing XC

functionals, how complex magnetism is subtle in DFT output.
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Notes

1The computational work conducted in this thesis used the Computing resources pro-

vided by STFC Scientific Computing Department’s SCARF cluster and the UK national

super computer ARCHER and ARCHER2.

2I would like to thank ISIS Neutron and Muon Source and Royal Holloway, University

of London for funding the Doctorate.

3I would like to say a very big thank you to T. Guidi for providing the structure of the

Cr10 molecule!
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134E. Bellido, P. González-Monje, A. Repollés, M. Jenkins, J. Sesé, D. Drung,
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Appendix A

Proof of The Allowed N-Fold axes

Allow the principal axis for rotation to be the Z-axis. The point

r = x̂i + ŷj + zk̂

can rotate by θ to produce the point

r′ = (x cos(θ)− y sin(θ))̂i + (x sin(θ) + y cos(θ))̂j + zk̂.

In matrix formulation, the point r becomes:

r =


x

y

z



The rotation matrix (R) represents the rotation of of the point r by θ:

R =


cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1


to produce the point

r′ =


x cos (θ)− y sin (θ)

x sin (θ) + y cos (θ)

z

 =


x′

y′

z′

 = Rr

The structure of the molecule remains unchanged for any n-fold rotation

axis through the angle θ = 2π
n

.



For a crystal, the î, ĵ, k̂ directions are better suited as the Bravais lattice

vectors a1, a2 and a3 in the directions x, y, z.

a1 = a1x̂i + a1y ĵ + a1zk̂

a2 = a2x̂i + a2y ĵ + a2zk̂

a3 = a3x̂i + a3y ĵ + a3zk̂

These vectors are linearly independent and, therefore, span over all space.

The matrix, A, containing all elements of a1,a2 and a3:

A =


a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


Matrix A has an inverse as det(A) = a1 · (a2× a3) 6= 0 .The position vector

r = x̂i+ ŷj+ zk̂ can then be redefined as c1a1 + c2a2 + c3a3, which satisfies:

A


c1

c2

c3

 =


x

y

z



Applying this redefinition to the rotation R


x

y

z

 =


x′

y′

z′

, the points r, r′

becomes:
r = c1a1 + c2a2 + c3a3

r′ = c′1a1 + c′2a2 + c′3a3
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Therefore,

R


x

y

z

 =


x′

y′

z′

 =⇒ RA


c1

c2

c3

 = A


c′1

c′2

c′3

 =⇒ A−1RA


c1

c2

c3

 =


c′1

c′2

c′3


With

Tr(RA) = 1 + 2cos(θ)

Whereby RA = A−1RA.

For the rotation to keep the crystal unperturbed, the lattice point a1 must

rotate onto a point n1a1 +n2a2 +n3a3 with integer values of a1,a2 and a3. As

a result:

RA =


1

0

0

 =


n1

n2

n3


Where the coefficients c1 = 1, c2 = 0, c3 = 0 and c′1,2,3 = n1,2,3. From this,

the trace of RA is also an integer. The values of cos(θ) are bound between -

1 and 1. Simultaneously, the values of 1+2cos(θ) are only defined between

-1 and 3. Mapping out all the integer values within this interval provides:

− 1 = 1 + 2cos(θ) ∴ θ = π

0 = 1 + 2cos(θ) ∴ θ =
2π

3

1 = 1 + 2cos(θ) ∴ θ =
π

2

2 = 1 + 2cos(θ) ∴ θ =
π

3

3 = 1 + 2cos(θ) ∴ θ = 2π
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Therefore n, respectively, becomes:

n =
2π

π
= 2

n =
2π
2π
3

= 3

n =
2π
π
2

= 4

n =
2π
π
3

= 6

n =
2π

2π
= 1

Thus, the allowed n-fold axes do not include a 5-fold axis.
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Appendix B

Ionic Constraints

Boron Trifluoride The Cr10 molecule is complex, and to determine the method-

ology of ionic constraints, a more straightforward choice of system was the

Boron Trifluoride (BF3) molecule. This system comprises a central Bromine

ion with three Florine ions bonded in a planar triangular fashion, as seen in

Figure B.1. The symmetry of the BF3 molecule is a D3h point group. This

symmetry group encapsulates a C3 rotation, with the z-axis as the primary

axis, running through the Bromine ion and orthogonal to the molecule’s

planar nature.A C2 rotation axis is in line with B-F bonds on each of the

Florine ions, totalling three unique C2 rotations perpendicular to the C3 ro-

tation axis.The molecule rests with the x-axis running through the Bromine

and a Florine ion, as seen in Figure B.1, making the rotation matrices eas-

ier to utilise.

Figure B.1: The BF3 molecule, with the D3h symmetry operations visible. The Boron
ion is pink (displaced to allow for clarity of z-axis) and the Flourine ions are
the green.



The C2 rotation matrix along the x-axis and C3 rotation matrix along the

z-axis, respectively, take the forms:

C2 =


1 0 0

0 cos (π) − sin (π)

0 sin (π) cos (π)

 =


1 0 0

0 −1 0

0 0 −1



C3 =


cos (2π

3
) − sin (2π

3
) 0

sin (2π
3

) cos (2π
3

) 0

0 0 1

 =


−1

2
−
√
3
2

0
√
3
2

−1
2

0

0 0 1

 (B.0.1)

The maximum number of allowed constraints to employ is 4×3=12, due

to the number of degrees of freedom, 3N, and the total number of ions,

four. There are two other C2 rotation axes in the molecule, intersecting the

F ions, four and three; see Figure B.1. Making a total of three C2 axes,

implementing all of the x,y,z constraints would exceed the total number

of constraints allowed. Due to this molecule’s planar nature, there is no

reason to optimise this molecule in the z-direction; therefore, the ions’ z-

coordinates can remain unchanged. Fixing these z-coordinates in place

decreases the number of constraints as they only need to be mentioned

four times. Further to this, the boron ion exists in all three rotation axes as

stationary; therefore, both the x- and y- coordinates do not need to change,

and the boron ion can be constrained not to move. Thus, reducing further

the number of constraints required.

To represent the C2 rotation axes that do not lie on the x-axis but inter-

sect the F ions, three and four, the C3 rotation around the z-axis combined

with the x-axis C2 symmetry operator generates them. The reason for this

rests in the angular difference between the C2 rotation axes (2π
3

rads). This

difference corresponds to a C3 rotation. Multiplying the transpose of the C3

rotation matrix with the C2 matrix and then multiplying the result with the C3
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rotation matrix will provide the shifted C2θCCW rotation axis, Equation B.0.2

(right to left) , which goes through the Florine ion counter-clockwise to the

x-axis (ion three).

C2θCCW = C3 × C2 × CT
3 (B.0.2)

therefore,

C2θCCW =


−1

2

√
3
2

0
√
3
2

1
2

0

0 0 −1


Implicitly included in the new C2θCCW rotation matrix is the C3 rotation due

to the use of the C3 rotation matrix to shift the axis.

Shifting the C2 axis clockwise around the molecule employs the same

method as the counter-clockwise C2θCCW rotation matrix. However, we first

multiple the C2 rotation matrix by the C3 rotation matrix, then multiply the

result by the transpose of the C3 rotation matrix, which provides the clock-

wise shifted C2 rotation matrix, C2θCW – See Equation B.0.3 (right to left).

C2θCW = CT
3 × C2 × C3 (B.0.3)

therefore,

C2θCW =


−1

2
−
√
3
2

0

−
√
3
2

1
2

0

0 0 −1


With the three rotation matrices, all of the symmetry operation in the BF3

molecule are either explicitly or implicitly represented. Enforcing these ro-

tations via constraints requires the correct permutation for each of the sym-

metry axes, see Tables B.1-B.3.

Initial Ion’s Number Rotated Pair
2 2
4 3

Table B.1: The rotated pairs of F ions following the C2 symmetry operation around
the x-axis.
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Initial Ion’s Number Rotated Pair
3 3
4 2

Table B.2: The rotated pairs of F ions following the C2θCCW symmetry operation
around the axes intersecting the third F ion.

Initial Ion’s Number Rotated Pair
4 4
2 3

Table B.3: The rotated pairs of F ions following the C2θCW symmetry operation
around the axes intersecting the fourth F ion.

These permutations allow for the removed constraints not to affect the

same mapped ions, which would under constrain the molecule. Likewise,

it allows for the determination and subsequent removal of any constraints

which describe the same rotation and cause linear dependency. The con-

straints that describe all three of the rotations, C2, C2θCCW and C2θCW , gen-

erate linear dependency due to the two shifted C2 axes’ inclusion. Remov-

ing either one of them removes this and allows for the molecule’s symmetry

to be upheld.
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Appendix C

Isosurfaces of Cr10 Molecule

(a) (b)

Figure C.1: The Fixed Spin Moment spin density for the AFM (S=0µB) (a) and FM
(S=30µB) (b) states for the LDA XC-functional. Whereby red isosurfaces
represent spin down densities and green isosurfaces represent spin up densi-
ties.



(a) (b)

Figure C.2: The Fixed Spin Moment spin density for the AFM (S=0µB) (a) and FM
(S=30µB) (b) states for the PBE XC-functional. Whereby red isosurfaces
represent spin down densities and green isosurfaces represent spin up densi-
ties.
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