Game-theoretic Simulations with Cognitive Agents

Nausheen Saba Shahid, Dan O’Keeffe, Kostas Stathis
Department of Computer Science, Royal Holloway University of London, UK
Nausheen.Shahid.2017 @live.rhul.ac.uk, {daniel.okeeffe, kostas.stathis} @rhul.ac.uk

Abstract—We propose a novel knowledge representation
framework called COGNISIM that supports game theoretic
simulation experiments using cognitive agents. The framework
allows an experimenter to evolve a population of such agents
with strategies expressed teleo-reactively as logic programs.
When agents encounter each other, events take place in the
environment, caused either by agent actions or by environment
processes. Such events change the environment’s internal state,
and these changes are then observed by agents that, in turn,
decide to take new actions that affect the environment. This loop
continues until the terminating conditions of the simulation are
met. Using this framework, we show how to repeat experiments
from the literature based on Axelrod’s tournament. We also
evaluate our platform’s performance in efficiently supporting
large simulations in game theoretic settings.

Index Terms—game-theoretic simulation, cognitive agent sim-
ulation, cognitive simulation platform, cooperation

I. INTRODUCTION

We are concerned with the problem of how to represent exe-
cutable specifications of game-theoretic simulations using cog-
nitive agents. In such simulations agents use pre-programmed
models to play in the environment, constantly review these
models with what they observe, and reason about strategic
decisions that they need to make to maximise their preset
objectives. This is a challenging problem, as representing
game-theoretic strategies that are transparent and amenable
for inspection at any point during or after a simulation, is not
currently readily available. Existing platforms e.g. [1], [2], [3]
and [4], provide little details on how experimenters develop
and inspect the behaviour of players during simulation.

In order to represent the simulation environment, the games
it may contain, and their players, our framework advocates the
use of existing meta-programming techniques that enable us to
manipulate simulation components as program structures that
evolve due to simulation events, as it is customary in existing
frameworks [5]. Our target framework is based on normal
logic programs implemented in Prolog and uses the same data
structures to represent programs as well as data. The novelty
of our approach is that we combine meta-interpreters [6] to
represent simulation components, the Event Calculus (EC) [7]
to represent evolution of these components due to events
happening in them, and an EC extension to deal with agent
interaction within the resulting agent environment [8]. Also,
to formulate player strategies, we use a teleo-reactive model
of execution [9], but re-interpreted within our framework.

This work was supported by the Royal Holloway, University of London,
UK & the Higher Education Commission (HEC), Pakistan.

Our contribution is a practical, symbolic-Al representation
framework and a platform identifying the important parts of
a simulation. These parts are then used to develop game-
theoretic interactions methodologically [10], so that simulation
experiments are easier to repeat. We show how to use the
framework to perform domain specific simulations, by repeat-
ing existing experiments to obtain their original results. We
also report on the computational efficiency of our framework
and the trade offs of strategic reasoning within our platform.

Our work is founded on a series of well-known techniques,
suitably adjusted, and presented in Section II. However, our
framework non-trivially extends this background work in
Section III. The experimental evaluation of our framework is
presented in Section IV. We conclude with Section V, where
we also present our plans for further work.

II. BACKGROUND

We use normal logic programs as components to represent
players and the way they interact in a simulation. Logic
programming rules are specified as assertions of the form:

rule(C, G, [G1,G2,..Gn]),

where C is an explicit name for the component, G is the head
of the rule, and the list [G1,G2,...,Gn] represents the rule’s
body. For instance, to express in a player component p1 the
fact that john knows mike and the rule that X is a friend of Y
if X knows Y and Y is not a defector, we write:

rule(p1, knows(john, mike),[]).
rule(p1, friend(X,Y), [knows(X,Y), not defector(Y)]).

X, Y are variables, john, mike are constants, and not in the
second rule is negation-as-failure [11]. To interpret such
rules, we use the meta-interpreter demo(C,G) [12]:

demo(C, G) <+ rule(C, G, B), demo(C,B).
i.e. a conclusion G holds in component C, if there is a rule

in C with a head G and body B (of the form [G1,..Gn]), and
all elements in the body of the rule hold in C. We also need:

demo(C, [G|Gs]) < demo(C, G), demo(C, Gs).
demo(_, []).

to cater for the body of a rule (first clause, where the list
represents a conjunction), or an empty body (second clause
dealing with facts i.e. the body is the empty list []). The
underscore ‘_’ denotes an anonymous variable. We also need

an extra definition for negation-as-failure:
demo(C, not G) <— not demo(C, G).

and primitives for arithmetic and system operations. Now, to
answer the query who is friend of whom we only need to
specify the component’s name as ?-demo(p1, friend(X,Y)).
Organising rules in components still requires to address how
components change. We use the EC that relies on three basic
constructs to represent change: events, fluents (state variables)
and time points with a linear time model. Many versions of
the EC exist [13], here we use the one in [14], but with
multi-valued fluents [15]. Events happen instantaneously and
represented in terms of the time point when they happen. An
event initiates/terminates the value of a fluent in the state
of interest indexed by a time point. Table I summarises the
ontology of the domain-independent axioms representing state
changes of a component (e.g. the environment or an agent).

TABLE I: Ontology of the Event Calculus used.

Predicate
happens_at(E, T)
holds_at(F=V, T)
holds_for(F=V, [Ts,Te])

Description

Event E happens at time T.

Fluent F has value V at time T.
Fluent F continuously has value V
from time Ts to time Te.

Fluent F has changed value V from
time Ts to time Te.

Event E initiates value V for fluent F
at time T.

Event E terminates value V for fluent
F at time T.

broken(F=V, [Ts,Te])
initiates_at(E, F=V, T)

terminates_at(E, F=V, T)

We can express generically when a fluent F holds at a
time T in terms of whether that fluent holds for an interval in
which T is member of. We can also express what happens at
the initial state and how fluents terminate, for more details
see [14]. These generic axioms can then be combined with
domain specific ones to capture the evolution of a component.
Suppose, for instance, that who is a defector is a fluent i.e. it
changes depending on whether they cooperate or not (defect)
against us. Suppose also that initially i.e. at time 0, meke is
assumed not to be a defector, but as he defects at time 5, i.e.
he is perceived as defector after that. We can specify this as:

happens_at(initially(defector(mike)=false),0).
happens_at(defects(mike),5).

initiates_ at(defects(X), defector(X)=true,T) «
happens_at(defects(X), T).

A generic axiom for terminates_at/2 [15], combined with the
domain independent and the domain dependent EC axioms,
answer queries such as ?- holds_at(defector(X)=false, 1) and
?- holds_for(defector(X)=true, [5,00]). To avoid the problem of

performing reasoning every time from scratch, our use of the
Cached Event Calculus (CEC) [14] maintains a cached internal
representation of fluents with a set of Maximally Validity
Intervals (MVIs), see Fig.1.

GEC
Caching
Mechanism
A

Domain Independent Specification

.................................

Domain Dependent Specification
| A O ¢
initiates_at/3
terminates at/3

What actions do?

Fig. 1: Cached Event Calculus

Incoming
events >
What happens when?

e e le

s

An update_at(Event, T) predicate (see in [14], [16]) caches
the consequences of events by inferring all relevant con-
sequences using the domain definitions for initiate_at/3 and
terminates_at/3, and adding holds_for/2 instances in the cache.
These details we omit due to lack of space.

We are now in a position to use the Event Calculus to
represent state properties that are affected by events happening
within a component C as fluents whose values hold in the
component at a specific time, specified as F=V:T. However,
we now need to add to the meta-interpreter what we might
refer to as a bridge rule:

demo(C, F=V:T) « holds_at(C:F=V, T).

This rule requires that some fluents hold within components,
specified as C:F=V at the holds_at/2 level, making necessary
representational adjustments to event descriptions and
their effects accordingly. And, although this tackles the
problem of how components evolve, it does not say how
components interact. For this we adopt the Ambient Event
Calculus (AEC) [8], an EC extension describing how agents
interact by attempting events using their actuators (via
attempt_at(Event, T) assertions, and allowed to happen only
if they are possible (using possible_at(Event, T) assertions).
These are then combined as:

happens_at(E,T) «+ attempt_at(E,T), possible_at(E,T).

The environment then notifies to all agents sensors that sub-
scribe to an event (using the AEC notify_at(Event, Sensor, T)),
and in this way we simulate interaction. Although the AEC has
focused more on how to distribute the GOLEM platform [17],
an explicit framework on how the environment evolved during
the interaction was missing. In this paper, we show how to
explicitly represent this missing aspect and how to use it to
build a simulation platform.

III. THE COGNISIM PLATFORM
A. The COGNISIM Reference Model

COGNISIM supports an Experimenter to configure
simulations, which are run via the system’s Display, see

Fig. 2. An Experiment Configuration specifies the players
involved in encounters, their strategies and other information
such as the rounds to perform. A simulation is managed by
the Simulation Control module, which creates Player Agents
using the Simulation Component Knowledge Base (SCKB).
SCKB defines components such as agent models, strategies,
rules for updating an agent’s knowledge, and shared rules
such as communication protocols. The Simulation Control
relies upon a Conductor Agent to manage the simulation.
Simulation events are stored in an Event History. For large

Experimenter #

ol Display N
]
8_, Simulation
Component
Experiment Event Knowledge
Configuration History Base
€ [Players Population Y™
2 Players Population)
£ - -
< DS (- P
2 L Rules Conductor
= Agent
fim}
COGNI-SIM Platform
N 7

Fig. 2: COGNISIM Reference Model

simulations, the platform relies on an optimisation step, that
allows for events to be transferred from the simulation to
an external Archive for later use. The predicates of the core
Simulation Control are shown below.

simulate_for([Ti,Te])« initialize_at(Ti, [Ts, Te]),
evolve_for([Ts,Te)).

evolve_for([Ts, Te])«Ts<Te
consume_at(Es, Ts),
display_at(Es, Ts),
optimise_at(Ts),
evolve_for([Ts+1, Te]).
evolve_for([Ts, Te]) +Ts>Te, finalize_at([Ts, Te)).

The clause of simulate_for/1 takes the initial time Ti, deter-
mines the starting and ending times (Ts and Te respectively)
of the simulation, initializes the population of agents using
initialize_at/2, evolves it and returns the end time Te. The
evolution of a tournament is dealt within evolve_for/2, which
takes the starting time Ts and ending time Te, consumes all
the events Es that take place in the environment, displays
the next state to all agents, including the user. If necessary,
a state is optimised and then the simulation moves to the next
cycle until the end time Te is reached. The evolution of the
agent population stops if Te is reached, where the simulation
is finalised and the results are saved.

B. Evolving A Tournament

Once a cognitive agent population is initialized, it goes
through the process of evolution dealt in evolve_for/2. This

starts with a consume_at/2 step, where all the active agents
situated in the environment are asked to attempt an action.
In COGNISIM agents are conceptualized as entities with a
mind that makes decisions and a body that has sensors and
actuators as in [18]. A cycle_at/2 predicate defines a control
cycle [19] to attempt actions. The following specification
represents the definition of consume_at/2.

consume_at(Es, T)«
findall(Ag, active_agent(Ag, T), Ags),
forall(member(A, Ags),cycle_at(A,T)),
findall(E, (attempt_at(E, T),possible_at(E,T)), Es),
forall(member(E, Es), retract(attempt_at(E, T))).

Once all agents have gone through one cycle, the
consume_at/2 collects all generated events via attempt_at/2,
checks if they are possible using possible_at/2, and removes
all previous attempts in preparation for the next cycle. Then
the display_at/2 takes all generated events, executes them and
asserts that they have happened (via happens_at/2) and the
environment’s state is updated (via update_at/2).

display_at(Es, T)« forall(member(E, Es), update_at(E, T)).

C. Cognitive Agents

Fig. 3 shows the architecture of an agent in COGNISIM. An
agent is a component identified by a unique id that contains
the agent’s goals and model of the beliefs this agent has
about the environment, other agents and itself. The agent
also has a strategy triggered by a cycle that is the agent’s
control interpreter for selecting actions to perform via an
action execution module.

r— T —= e |
4@ »| Beliefs Revision [

| (Commor e Joep—
| | o ontrol Interpreter !
A |=
| ‘Actuators I

|
| Strategy J |

Module

Agent
Environment
Agent
Body

Action
Execution

Fig. 3: Agent Architecture

1) The Cycle of Cognitive Agent: An agent evolves with
time via cycle_at/2 as follows:

cycle_at(Ag, T)« observe_at(Ag, Observations, T),
assimilate_at(Ag, Observations, T),
decide_at(Ag, Action, T),
execute_at(Ag, Action, T).

observe_at/2 straightforwardly searches the agent’s Ag
sensors, to extract the Observations notified to them at time
T. Then assimilate_at/3 takes the Observations and caches
their consequences one by one, i.e. by updating the knowledge

of the agent by interpreting initiates_at/3 and terminates_at/3
definitions.

assimilate_at(Ag, [Obs|RestOfObs], T)«+
update_at(in(Ag, observation(Obs)), T-1),
assimilate_at(Ag, RestOfObs, T).
assimilate_at(_, [], _)-

An agent decides an action using the current knowledge and
returns it, as shown below.

decide_at(Ag, Action, T)«+ select_at(Ag, Action, T).

We assume that a decision, vis. selecting an Action,
contributes to a top-level goal G the agent must achieve
(or maintain). Such a selection involves using the demo/2
meta-interpreter to interpret the player’s beliefs and results in
a teleo-reactive behaviour in the sense of [9]. Instantiating
a rule at a time T, treats such a rule as an active intention
for a persisting goal. Depending on how the state of the
environment changes, the agent will adapt its behaviour, as
specified by the ordering and conditions in the rules. The
link between the agent cycle and its reasoning is shown below:

select_at(Ag, Action, T)«+
holds_at(Ag:top_level_goal(G)=true,T),
demo(Ag, [select(G,Action,T)]).

A selected Action is then executed by being directed to a
suitable agent actuator, which packages the action to an
attempt event. The execution of the attempt event E, is done
by asserting it in the simulation’s state at time T:

execute_at(Ag, Action, T)+
return_at(Ag, Action, E, T),
assert(attempt_at(E, T)).

D. Performance Optimisation

Simulations in COGNISIM hold large state histories as
opposed to only mathematical models of the current state.
To improve run-time efficiency, we introduce the concept of
forgetting, where events and knowledge are removed from the
cache and only important events and knowledge are archived
externally for later experimental analysis purposes. Forgetting
of working memory structures like agent knowledge and
notified events is handled in optimise_at/1 that takes the
time T to test whether this is a suitable time to optimise.
When this is the case, it searches for the working memory
for forgettable structures at time T and forgets them. Below
we omit the case when it is not the time to optimise (this
trivially succeeds).

optimise_at(Ts) « is_time_to_optimise(Ts),
findall(WMi, forgettable_at(WMi,Ts), WM),
forall(member(WMi, WM), forget_at(WMi,Ts)).

Ti rlne Co-rﬂzstor layer Player
| P ;
T |
performEnc(Player2) 1 >
T2 - inform(Act1)

performEnc(Playerl)—s
T3 -«—inform(Act2)

resultEnc[PIayerl,Acti,PIayerZ,Ath

T4 resultEnc PIayerl,Actl,TayerZ,Ath} 1

Fig. 4: Flow of an Encounter

I
I
|
|
|
|
|
v

An event E is forgettable if it has happened before T (i.e.
notified and processed), while a fluent F is forgettable if it
holds for [Ti,Tj] and Tj is before T.

forgettable_at(event(E,Ti),T) «+ happens_at(E,Ti),Ti<T.
forgettable_at(fluent(F,[Ti,Tj]), T)«holds_for(F[Ti,Tj]),Tj < T.

forget_at/2 deals with forgetting from the cache information
that is not important. For important information we archive it
first and then we forget it. The details we omit, as they are
beyond the scope of this work.

IV. EXPERIMENTAL EVALUATION
A. Use Case: Axelrod Tournament

We show how to conduct an Axelrod’s [20] round-robin
tournament, using the Prisoner’s Dilemma (PD) game [21]. A
single PD game between two players is an encounter, mediated
by a conductor agent, which selects players to perform a move,
and when they respond, the conductor informs them of the final
result (see Fig. 4). The set of encounters where each strategy
has played against every other strategy (and itself) is called
one round. A tournament consists of a number of rounds. At
the end, the player with the maximum payoff wins.

B. Simulation Experiments

An experiment is described with assertions of the form:
experiment(ld, Configuration).

The Configuration contains statements that instantiate in the
specific experiment Id all the necessary structures for the
agent environment to start evolving, for example:

experiment(exp1, (
set(payoffs(punish:1,sucker:0,reward:3,tempt:5)),
output(trace_in(‘results_exp1.txt)),
make(1,conductor([players(17),rounds(1,10)])),
make(1, player([strategy(titfortat)])),.....)).

As in [22], above we set a payoff matrix, a file name for
storing events and results, a conductor for 17 players and 10
rounds, the player strategies and so on. We describe next how
to build the different simulation components.

C. Making Agents

COGNISIM provides a default agent that observes the
environment and performs communicative acts. Using the
cycle of Section III-C1, the experimenter can extend the
default agent with behaviours to create players or a conductor.
To make agents following a strategy, the make/2 primitive
generates unique agent identifiers, such as ag1, and constructs
the initial state with assertions of the form:

initially(ag1,[strategy(titfortat)]).

Given a strategy, specific rules will be attached to players
made to follow that strategy. An example of such specific
rules for agent ag1 that plays titfortat is given below. This
assumes a top-level goal called strategy(titfortat) that triggers
the behaviour of ag1 at each cycle:

rule(ag1, select(strategy(titfortat), cooperate(ag1,0pp,Enc), T),[
in_encounter(Enc)=true:T,
opponent_in(Enc)=0pp:T,
interacted_before(Opp)=yes:T,
last_move(Opp)=cooperate:T]).

A rule like this will then be meta-interpreted in our framework.

D. Initialising Population

A population of agents is initialized in COGNISIM using
initialize_at/2:

initialize_at(Ti, [Ts, Te])«+ calculate_duration(Ti,Ts,Te),
findall(Prole_of(P,player),Ps),
forall(member(P,Ps),initialize_at(player(P), Ti),
role_of(C,conductor),
initialize_at(conductor(C), Ti).

This way, we initialise all players and the conductor. Initial-
ization of the conductor agent also deals with keeping a record
of all the players and their score, initially set to zero.

E. Agent Evolution

1) Agent Initialisation: Definition of initialize_at/2 specific
to a player or a conductor agent first performs general
initialization for the agent, according to the following rule:

initialize_at(agent(Ag), T)« initially(Ag, List),
forall(member(P,List),update_at(initially(Ag, P),T)).

As in [14], we treat initially/2 terms as events that happen to
construct the knowledge of the agent. We then use a rule of

the form:

initiates_at(initially(Ag,P), Ag:P=true, T)«
happens_at(initially(Ag,P), T).

to initialize the agent beliefs.

2) Belief Updates: Agents hold dynamic knowledge
(beliefs) which is updated according to observations. This is
modeled in the Event Calculus using the domain-specific rules
for initiates_at/3 provided by the calculus. Below we show
a simplified version of how a fluent last_move(Ag2) holding
the last move of Ag2, is updated when Ag2 cooperates with
agent Ag1l at time T:

initiates_at(in(Ag1, cooperate(Ag2, Ag1)),
Ag1:last_move(Ag2)=cooperate, T)+
happens_at(in(Ag1, cooperate(Ag2, Ag1)),T).

The remaining axioms of the Event Calculus perform the
intended update in the knowledge base of Ag1 with the new
value at the next time step.

FE. Experiments

1) Experimental Setup: To validate our platform, we re-
peated the experiments of [22] using 1 conductor agent and
a population of 17 players implementing 17 deterministic
strategies. We varied the rounds from 1 to 1000 for different
experiments, with a round consisting of 153 encounters. All
experiments were conducted on an Intel(R) Xeon(R) CPU E5-
2683 v4 with 2.10GHz and 98GB of RAM.

2) Results Validity: Fig. 5 shows the ranking and ac-
cumulated payoff for every strategy over different rounds.
Initially, cooperation strategies score poorly and defection
strategies score highly. This reverses as the number of rounds
increases and, in the end, HARD TFT, MEM2 and GRADUAL
rank as the top three strategies and ALLD, PERDDC and
PERCD prove to be the three lowest scoring strategies. This
is similar to [22], serving as validation for the correctness of

the COGNISIM platform.

Total payoff scored by different players over a different
number of rounds.

50000
40000
30000
20000
10000

= Payoff(1 round)

perced
tfat

mem2

titfortat
spiteful
perddc
softmajo
hardmajo
hardtf
softtft
gradual
prober

mistrust

alwaysdefect

B Payoff(1 round)
Payoff(500 rounds)
m Payoff(300 rounds)

Payoff(200 rounds)
Payoff(700 rounds)
m Payoff(1000 rounds)

alwayscooperate

Fig. 5: Strategies Ranking

3) Performance Evaluation: We monitored COGNISIM’s
total simulation time, update time, query time and memory us-
age. A round took 612 cycles (~1683 events were processed)
and the execution time and memory usage increased linearly
(Fig. 6 (a) and (b)). Also, when using forgetting the simulation
run more efficiently in terms of both time and memory than
without forgetting; performance deteriorated after 10 rounds.
We, therefore, set the optimisation time to 10 rounds.

Fig. 6 (c) and (d) show the update and query times with
(v') and without (x) forgetting. After 300 rounds ~504,900

Payoff(700 rounds)

I wWith forgetting 6000 With forgetting
EZBOOOO —— Without forgetting 5000 Without forgetting
o 2]
% 200000 % 4000

150000 2
E £ 3000
c
5 100000 = 2000
©
S 50000 =
E 1000

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number Of Rounds Number Of Rounds
(a) Total Simulation Time (b) Memory Usage
30 With fore
. —_ getting
) With forgetting)
g 1000001 Vithout fargeteing g o5 | — Withaut forgetting
S S
ﬁ 80000 ﬁZO
S 60000 Z 15
g T
£ 40000 E 10
aQ
2 >
§ 20000 z s
[=3 3
=] 1] (=4 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Number Of Rounds Number Of Rounds

(c) Update Time (d) Query Time

Fig. 6: Results Of Experiments

events were processed. With forgetting the simulation run time,
update time, query time and memory usage were 6058s, 33ms,
less than a millisecond and 491.5 MB RAM respectively,
clearly suggesting that the underlying event processing is very
efficient for large simulations and temporal reasoning. Table
II shows the summary of performance evaluation results.

TABLE II: Simulation Results

Rounds Total Update Query RAM(MB)
Time(sec) Time(ms) Time(ms)
X v X v X v oox v
1 0.5 0.5 0 0 0 0 983 983
10 100 100 0 0 0 0 196.6 196.6
50 53210 800 41403 9 14 0 983 295
100 86400 1752 57796 13 18 0 2457.5393.2
150 129600 3505 64189 20 22 0 4423 393
200 172800 5945 80582 30 26 0 5406.5491.5
300 276480 6058 106975 33 30 0 6094.6 491.5

V. CONCLUSIONS

We have proposed a systematic knowledge representation
framework for game-theoretic simulations using cognitive
agents. The proposed framework is implemented in COG-
NISIM intended as a proof-of-concept prototype for our
approach. To validate COGNISIM we have shown how to
reproduce the results of existing simulation experiments based
on a state-of-the-art model from the literature. In the future,
we plan to extend the framework with explainable simula-
tions [23] that rely on teleo-reactive strategies for explanation
generation, using concepts that humans use to express their
explanations [24].

REFERENCES

[1] M. Grinberg and E. Todorov, “Cognitive agent based simulation platform
for modeling large-scale multi-level social interactions with experimental
games,” Information Content and Processing, vol. 3, 2016.

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]
[12]
[13]
[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

T. Deutsch, T. Zia, R. Lang, and H. Zeilinger, “A simulation platform
for cognitive agents,” in 2008 6th IEEE International Conference on
Industrial Informatics. 1EEE, 2008, pp. 1086-1091.

J. Hopkins, O. Kafali, and K. Stathis, “Open game tournaments in STAR-
LITE,” in Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, AAMAS’15, G. Weiss, P. Yolum, R. H.
Bordini, and E. Elkind, Eds. ACM, 2015, pp. 1927-1928.

A. Caballero, J. Botia, and A. G6émez-Skarmeta, “Using cognitive
agents in social simulations,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 7, pp. 1098-1109, 2011.

A. Borshchev, S. Brailsford, L. Churilov, and B. Dangerfield, “Multi-
method modelling: Anylogic,” Discrete-event simulation and system
dynamics for management decision making, pp. 248-279, 2014.

A. Brogi and F. Turini, “Metalogic for knowledge representation,”
in Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91). Cambridge, MA,
USA, April 22-25, 1991, J. F. Allen, R. Fikes, and E. Sandewall, Eds.
Morgan Kaufmann, 1991, pp. 61-69.

R. A. Kowalski and M. J. Sergot, “A logic-based calculus of events,”
New Gener. Comput., vol. 4, no. 1, pp. 67-95, 1986.

S. Bromuri and K. Stathis, “Distributed agent environments in the
ambient event calculus,” in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems. ACM, 2009, p. 12.
N. Nilsson, “Teleo-reactive programs for agent control,” Journal of
artificial intelligence research, vol. 1, pp. 139-158, 1993.

K. Stathis and M. J. Sergot, “Games as a Metaphor for Interactive
Systems,” in People and Computers XI (Proceedings of HCI’96), ser.
BCS Conference Series, M. A. Sasse, R. Cunningham, and R. L. Winder,
Eds. London, UK: Springer-Verlag, August 1996, pp. 19-33.

K. L. Clark, “Negation as failure,” in Logic and Data Bases, H. Gallaire
and J. Minker, Eds. New York: Plemum Press, 1977, pp. 293-322.
K. A. Bowen and R. A. Kowalski, Amalgamating language and meta-
language in logic programming. Academic Press, 1982, pp. 153-172.
E. T. Mueller, “Event calculus,” Foundations of Artificial Intelligence,
vol. 3, pp. 671-708, 2008.

L. Chittaro and A. Montanaril, “Efficient temporal reasoning in the
cached event calculus,” Comput. Intell., vol. 12(3), pp. 359-382, 1996.
A. Artikis, M. J. Sergot, and J. V. Pitt, “Specifying norm-governed
computational societies,” ACM Trans. Comput. Log., vol. 10, no. 1, pp.
1:1-1:42, 2009.

0. Kafali, A. Romero, and K. Stathis, “Agent-oriented activity recog-
nition in the event calculus: An application for diabetic patients,”
Computational Intelligence, vol. 33, no. 4, pp. 899-925, 2017.

S. Bromuri and K. Stathis, “Situating cognitive agents in GOLEM,”
in Engineering environment-mediated multi-agent systems. Springer,
2008, pp. 115-134.

K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and
A. Bracciali, “PROSOCS: a platform for programming software agents
in computational logic,” in Proceedings of the Fourth International
Symposium “From Agent Theory to Agent Implementation” (AT2AI-4 —
EMCSR’2004 Session M), J. Miiller and P. Petta, Eds., Vienna, Austria,
April “13-16” 2004, pp. 523-528.

A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni, “Declarative
agent control,” in International Workshop on Computational Logic in
Multi-Agent Systems. Springer, 2004, pp. 96-110.

R. Axelrod, “More effective choice in the prisoner’s dilemma,” Journal
of conflict resolution, vol. 24, no. 3, pp. 379-403, 1980.

A. Rapoport, A. M. Chammabh, and C. J. Orwant, Prisoner’s dilemma: A
study in conflict and cooperation. University of Michigan press, 1965,
vol. 165.

P. Mathieu and J.-P. Delahaye, “New winning strategies for the iterated
prisoner’s dilemma,” Journal of Artificial Societies and Social Simula-
tion, vol. 20, no. 4, p. 12, 2017.

T. Ahlbrecht and M. Winikoff, “Explaining aggregate behaviour in
cognitive agent simulations using explanation,” in International Work-
shop on Explainable, Transparent Autonomous Agents and Multi-Agent
Systems. Springer, 2019, pp. 129-146.

B. F. Malle, “How the mind explains behavior,” Folk Explanation,
Meaning and Social Interaction. Massachusetts: MIT-Press, 2004.

