
Automated Verification of Go Programs via
Bounded Model Checking

Nicolas Dilley
Department of Computing

University of Kent
Canterbury, United Kingdom

nd315@kent.ac.uk

Julien Lange
Department of Computer Science

Royal Holloway, University of London
Egham, United Kingdom
julien.lange@rhul.ac.uk

Abstract—The Go programming language offers a wide range
of primitives to coordinate lightweight threads, e.g., channels,
waitgroups, and mutexes — all of which may cause concurrency
bugs. Static checkers that guarantee the absence of bugs are
essential to help programmers avoid these costly errors before
their code is executed. However existing tools either miss too
many bugs or cannot handle large programs. To address these
limitations, we propose a static checker for Go programs which
relies on performing bounded model checking of their concurrent
behaviours. In contrast to previous works, our approach deals
with large codebases, supports programs that have statically
unknown parameters, and is extensible to additional concurrency
primitives. Our work includes a detailed presentation of the
extraction algorithm from Go programs to models, an algorithm
to automatically check programs with statically unknown param-
eters, and a large scale evaluation of our approach. The latter
shows that our approach outperforms the state-of-the-art.

Index Terms—Go, concurrency, static verification, behavioural
types, model checking

I. INTRODUCTION

Developing concurrent software is particularly difficult be-
cause concurrency-related bugs are often difficult to detect.
Typically these bugs do not occur in every execution (e.g., due
to non-determinism or because they depend on the program’s
arguments) and some may not be easily observable (e.g., they
might only affect the memory footprint of the program).

Message-passing concurrency, as supported natively by the
Go programming language, offers a higher level of abstraction
than traditional shared memory-based concurrency. However
bugs are still a common problem in message-passing soft-
ware [31] and it is thus essential to develop reliable static
checkers that can rule out these bugs. Static verification has
the advantage of ruling out bugs for every execution and to
do this before the code is executed and released.

Amongst recent works on static checkers for Go, we distin-
guish those that aim for soundness, e.g., using a behavioural
type approach [5], [7], [20], [21], [25], and those that aim for
completeness, e.g., GCatch [22]. Existing checkers based on
behavioural types tend to raise too many false alarms, do not
scale to large codebases, and support a very limited subset of
Go. In contrast, GCatch can handle large codebases, has a low
rate of false alarm, but tends to miss many bugs. Additionally,
it is not easy to predict the type of bugs it misses.

In this work, we build on the behavioural types approach
first formalised in [20], where models that represent the com-
munication structure (behavioural types) are extracted from
Go programs. These models over-approximate their programs
and can be verified using an off-the-shelf model checker.

Our work builds on our earlier prototype [5] which uses
Promela as a behaviour type language. Our extension consists
of a combination of four key insights.
(1) To deal with programs whose concurrent structure depends
on arguments that are decided at run-time, we extract pa-
rameterised behavioural types (i.e., models) from programs.
These models can then be verified up-to user-provided bounds.
Tracking parameters that affect the concurrent structure of
programs allows us to decrease the number of false alarms,
which plagued earlier behavioural types-based approaches.
(2) To deal with large codebases, we divide Go programs into
independently verifiable components. This allows us to verify
a large project like Kubernetes [19] (more than 3 million LoC)
in 26 minutes. Most projects are checked under 4 minutes.
(3) Our approach supports programs that coordinate over the
three main concurrency primitives (channels, waitgroups, mu-
texes), and can easily be extended to support more primitives.
(4) Our approach is explicit wrt. the subset of Go it supports,
and which constructs are over-approximated. Additionally,
our tool returns confidence levels when it is applied to pa-
rameterised programs. Hence, it is easier for developers to
understand the risk and potential cause of false alarms.

We describe the technical insights of our approach using a
bug our tool discovered in the wild with Example 1.

Example 1. The program in Figure 1 is adapted from
code found on the GitHub repository of trillian [11], a
verifiable data store developed at Google. At line 10, function
preload() spawns |trees| worker goroutines which send
the result of DoSomeWork() over channel ch. To limit the
number of concurrent threads, each goroutine acquires a token
(receive at line 11) before executing DoSomeWork(), and
returns it (send at line 14) before terminating. Note that the
parent thread fills channel limitCh with tokens at lines 4-5.

At line 18 the parent thread spawns another goroutine that
waits for the worker goroutines to finish using a waitgroup

1

1 func preload(trees []string, n int) {
2 ch := make(chan string, n) // new chan with capacity n
3 limitCh := make(chan int, runtime.NumCPU())
4 for i := 0; i < runtime.NumCPU(); i++ {
5 limitCh <- 1 // send token on chan limitCh
6 }
7 var wg sync.WaitGroup
8 for _, t := range trees {
9 wg.Add(1) // increment wg counter

10 go func(v string) { // spawn goroutine
11 <-limitCh // receive token before starting work
12 s := DoSomeWork(v)
13 ch <- s
14 limitCh <- 1 // return token
15 wg.Done() // decrement wg counter
16 }(t)
17 }
18 go func() { // spawn goroutine
19 wg.Wait() // wait for wg to reach 0
20 close(ch) // set ch to closed
21 }()
22 for s := range ch { // receive message from ch
23 if IsError(s) {
24 return
25 }
26 }
27 }

Fig. 1: Example of a blocking bug, adapted from [11].

(wg). When all goroutines have invoked wg.Done(), opera-
tion wg.Wait() succeeds, and channel ch is closed.

After spawning |trees|+1 goroutines, the parent is ready
to consume the data sent on ch via a range loop on ch
(line 22). This construct iterates over each element sent on ch
until the channel is closed. If a message contains an error
(i.e., isError(s) returns true), preload() returns.

Figure 1 contains a subtle bug that leads to several gorou-
tines becoming permanently stuck. Consider the case where
0<runtime.NumCPU() and 0<n<|trees|−1. The num-
ber of send actions on channel ch is greater than its capacity,
hence some worker goroutines will be blocked at line 13
until the parent thread receives some messages (line 22). If
preload() returns (line 24) before consuming all messages,
it may leave up to |trees|−runtime.NumCPU() gorou-
tines permanently blocked.

Blocked goroutines are problematic even when the program
as a whole is not stuck. They cannot be garbage collected,
hence they silently consume resources until the whole program
terminates. For instance, if function preload is called often
with the “wrong” arguments, this would affect significantly
the memory footprint of the program.

Programs like Example 1 are difficult to reason about
because they use several coordination mechanisms in non-
trivial ways which makes it hard to enumerate all possible
interleavings. This is particularly challenging when the number
of spawned goroutines and/or the capacity of channels are
unknowns, as the programmer has to think of how different
values will affect the possible executions.

Our main insight to verify these programs in a scal-
able way is to first identify the parameters which directly
affect their concurrent structures, e.g., |trees|, n, and
runtime.NumCPU() in Example 1. Given such parameters,
we extract parameterised models from Go code which are

then verified using bounded model checking. We use Spin
as a back-end, but our approach is not necessarily bound
to it. Given a user-defined set of values, we model-check
every possible instantiation of a parameterised model. Our tool
returns the result of each verification, as well as an aggregate
score that helps distinguishing false alarms from real bugs.

Contributions § III describes a novel algorithm to extract
parameterised behavioural types from Go code. § IV de-
scribes a bounded model checking technique to verify these
behavioural types. We have implemented these algorithms in
a tool, GOMELA [6], outlined in § V. In § VI, we give a
thorough experimental evaluation of GOMELA against related
work [7], [22]. Out of 78 real-world buggy programs, we
show that GOMELA detects 46 bugs (at least 1.54× more
than other tools). Additionally, we demonstrate the scalability
of our approach using 99 most starred Go repositories from
GitHub.

II. PRELIMINARIES

We review key aspects of the Go programming language,
and give a brief overview of Spin and Promela (the model
checker and language we use to verify Go programs).

A. Go programs and their properties

A Go program consists of a list of declarations of functions,
structures (struct, on which one can define methods),
and interfaces (i.e., sets of method signatures which can be
implemented by structures). The special function main() is
the entry point of the program.

Go is known for its distinctive support for concurrent pro-
gramming, advocating for message passing instead of shared
memory. Go natively supports channels (chan) over which
lightweight threads (a.k.a. goroutines) coordinate their tasks.
The standard library also offers two popular concurrency
primitives: waitgroups and mutexes.

Figure 2 gives an overview of the control-flow constructs
and concurrency operations of interest in this work. The first
part of the figure lists control-flow constructs. Call f (a) is a
blocking call to function f , while go f (a) spawns function f
in a concurrent thread of execution. By convention we write
a for a (possibly empty) sequence a1, . . . , ak (with k≥0).
Conditionals (if-then-else) and traditional iterations (for loops)
are standard. Note that while loops do not exist in Go. Go
additionally provides constructs to range over collections or
channels. A for i,x := range l {s} block executes s for
each x in l (i is bound to the index of x in the collection). A
for x := range ch {s} block executes s for every message
received from ch , and exits when ch is closed and empty.

Instruction ch := make(chan T, e) creates a new channel
ch of capacity e (an integer expression). A channel carries
a single type (T) of messages. If e evaluates to 0, the
channel is synchronous (both send and receive actions are
blocking), otherwise it is asynchronous (send actions are non-
blocking as long as the channel has not reached full capacity).
Instruction ch <− e sends e on ch , while <− ch receives from
ch . Invoking close(ch) closes ch . Receiving on a closed

2

f (a) Call f with arguments a
go f (a) Spawn f with arguments a
if e then s1 else s2 Conditional
for i := e1; e2; r {s} For loop
for i,x := range l {s} Iteration over collection l

◦ for x := range ch {s} Iteration over channel ch

ch := make(chan T, e) Declare a chan. with capacity e
◦• ch <− e Send e over ch
◦ <− ch Receive on channel ch
• close(ch) Close channel ch
◦ select{case αi : si}i∈I Guarded choice

var wg sync.WaitGroup Declare a waitgroup wg
• wg.Add(e) Add e to wg
• wg.Done() Decrement wg by 1
◦ wg.Wait() Wait until wg reaches 0

var mu sync.Mutex Declare a Mutex mu
var mu sync.RWMutex Declare a RWmutex mu

◦ mu.Lock() Lock mutex/RWmutex
• mu.Unlock() Lock mutex/RWmutex
◦ mu.RLock() Lock for read access
• mu.RUnlock() Unlock read access

Fig. 2: Key statements in Go, some may be blocking (◦) and/or
may trigger a run-time error (•).

channel is non-blocking, but sending on, or closing, a closed
channel triggers a runtime error. A select statement allows
a goroutine to wait for several operations (e.g., send/receive
on a channel). It blocks until one of its cases succeeds, then
executes the corresponding branch. A select statement may
contain a default branch which is executed if all other
branches are blocked.

Instruction var wg sync.WaitGroup creates a new
waitgroup wg . Operation wg .Add(e) adds e (which evaluates
to a positive or negative integer) to the waitgroup’s counter,
while wg .Done() decrements the counter by 1. Operation
wg .Wait() blocks until wg’s counter reaches 0. A waitgroup
whose counter becomes negative triggers a runtime error.

Go’s standard library provides Mutex and RWMutex.
The former is used to protect a critical section with exclu-
sive access, i.e., both writers and readers use mu.Lock()
and mu.Unlock(). The latter allows several readers to
access a critical section (but at most one writer). Read-
ers use mu.RLock() and mu.RUnlock(). Both primitives
trigger a runtime error when invoking mu.Unlock() or
mu.RUnlock() on an unlocked mutex.

Concurrency bugs in Go: We distinguish between blocking
bugs and safety bugs. Blocking bugs occur when a goroutine is
permanently stuck waiting for a blocking operation to succeed,
e.g., a receive waiting for a message to be sent. Potentially
blocking operations are marked with ◦ in Figure 2. Blocking
bugs are often referred to as goroutine leaks in the Go
community. Blocked goroutines may notably cause the whole
program to get stuck (global deadlock) or lead to memory
leaks, as they cannot be garbage collected, see Example 1.

Safety bugs occur when an operation is unexpectedly in-
voked on a concurrency primitive (and triggers a run-time er-
ror), e.g., sending on a closed channel causes a run-time error.
Operations that may trigger a run-time error are marked with

1 func main() {
2 var wg sync.WaitGroup
3 someList := []int{1, 2, 3}
4 for range someList {
5 go func() {
6 wg.Done() // may trigger a run-time error
7 }()
8 wg.Add(1)
9 }

10 wg.Wait()
11 }

Fig. 3: Negative counter bug, adapted from [18].

• in Figure 2. Observe that all three concurrency primitives
we consider can trigger such errors.

Example 2. Figure 3, adapted from kubernetes [18],
shows a typical safety bug. This program spawns several
worker goroutines. Each goroutine invokes wg .Done() once
they have completed their job. However, the parent thread
invokes wg .Add(1) after spawning each goroutine. In an
execution where, e.g., the first worker goroutine finishes its job
quickly, it may decrement wg before it is incremented, thus
may trigger a run-time error (“panic: sync: negative
WaitGroup counter”).

Focus of this work: For the sake of space and clarity, the
core of this paper focuses on the subset of Go identified by
Figure 2. We explain how our tool handles additional features
(e.g., structs, methods, and anonymous functions) in § V.

Our aim is to develop a technique that is sound for a
well-understood subset of Go. The language features our
approach does not currently support are: programs that re-
cursively spawn goroutines or create concurrency primitives,
virtual method calls, higher-order functions, mutable/mutated
concurrency primitives (e.g., channel variables that are re-
assigned), and collections containing concurrency primitives.

B. Promela as a behavioural type language

The crux of our technique is to over-approximate Go pro-
grams with behavioural types [20] — where each Go function
is assigned a type codifying its interactions with concurrency
primitives — thus abstracting away from non-concurrency
related constructs but preserving the concurrent behaviours.
Our approach has three key differences compared to earlier
works. (i) We use a subset of Promela (the language of Spin)
as our behavioural type language. This has the advantage of
giving us a direct implementation strategy, while keeping the
extraction function relatively abstract. (The model extraction
we present in § III can easily be adapted to other modelling
languages that feature processes communicating over chan-
nels.) (ii) While the work in [20] and its extensions [7], [21]
abstract away from all computational aspect, our behavioural
types do keep track of some data when it directly affects the
structure of the concurrent programs. (iii) We support the three
main concurrency primitives of Go.

Spin [14] verifies models specified in Promela wrt. prop-
erties expressed in linear temporal logic (LTL). A Promela

3

model consists of a set of processes that interact over channels.
Promela processes are declared using proctype f (p){S}
where f is the name of the process, p is a list of (typed)
parameters, and S is a list of Promela statements.

Promela statements and expressions include basic Boolean
and arithmetic expressions, as well as declarations and instanti-
ations of variables and structures. Statement run f (e) spawns
a new instance of process f with arguments e. Channels are a
special data-type over which processes can communicate. For
example, chan c [2] of {bool} creates a new channel c
with capacity 2 that can carry Boolean values. Like goroutines
in Go, processes may send expressions 〈e〉 over channel ch
with ch!〈e〉. They can receive messages with ch?〈x〉 which
binds the received values to variables x. We omit the payload
〈e〉 of a send/receive when it is not relevant.

Promela provides two types of control-flow constructs:
loops and branching. Loop for n..m {S} repeats statements
S for m−n+1 iterations. Branching constructs encode (pos-
sibly non-deterministic) choices between several behaviours.
Promela uses if and do constructs to encode choices, but we
use a graphical (automata/statechart-like) notation in this paper
for the sake of readability. The branches of a choice may be
guarded or not. A guarded branch is labelled with [g] or [g]α/S
where g is a guard (Boolean expression), α is either a send
or receive action, and S is a Promela instruction. A guarded
branch is fireable when its guard g holds and a matching event
for α is available (if α is specified). Upon firing, instruction
S is executed. Unguarded branches (labelled with τ) can fire
(silently) at any point.

Spin checks properties of Promela models that are encoded
either via an LTL formula and/or using assertions (error states)
in the model. Spin checks that all possible executions of
the model validate the LTL formula and/or that no execution
reaches an error state. Spin explores all possible states of a
model, hence models must be finite-state, e.g., they cannot
spawn infinitely many processes.

III. EXTRACTING PARAMETERISED MODELS

We describe our approach to extract several models from
a Go program. For each Go function that does not take a
concurrency primitive as parameter we generate a model. Each
function becomes an entry points to a model that can be
verified independently. This strategy allows us to decompose
the verification of large programs into smaller pieces. Besides
the benefit wrt. scalability, this decomposition allows our tool
to detect some partial deadlocks and to give function-level
feedback when a bug is detected by the model checker.

The model extraction is done via three procedures: (i) a
top level procedure translates declarations of Go functions
to Promela processes; (ii) procedure ES(s) identifies the
concurrency parameters in Go statements s; (iii) procedure
TS(s) extracts a (parameterised) model from Go statements s.

The models we generate consists of two types of Promela
processes: a) primitive processes which model concurrency
primitives (channels, waitgroups, mutexes) and b) function
processes which model Go functions and goroutines.

A. Extracting concurrency parameters

Our goal is to identify the computational elements of
a function that affect its concurrent structure, i.e., integer
expressions in the source program that affect the number of
spawned goroutines, the number of exchanged messages, and
the values held in the counters of waitgroups.

We define function EE(e) which extracts the concurrency
parameters from a Go expression e, by computing its free
variables and other unknown references. We give the definition
EE(e) for the key cases below:

EE(e),



∅ if e is an integer literal
{x} if e is an integer variable
EE(e1) ∪ EE(e2) if e=e1⊗e2 with ⊗ ∈ {+,*, . . .}
{l} if e= l or e = len(l)

{f.a} if e= f (a)

The first two cases deal with integer literals and variables. The
third case applies EE(ei) recursively on arithmetic expressions.
The fourth case deals with collections which are abstracted to
the name of the collection itself. The final case deals with
function calls for which we generate a fresh name, based
on the name of the function — these will become global
parameters in the generated models. We extend the definition
of EE(e) to list of expressions in the natural way.

Next, we define ES(s) which extracts concurrency parame-
ters from expressions that occur in selected Go statements.

1) If s = ch := make(chan T, e), then ES(s) , EE(e), i.e.,
the parameters that set the capacity of the channel.
2) If s = wg .Add(e), then ES(s) , EE(e), i.e., we return the
parameters that set the delta added to the waitgroup.
3) If s = for i := e1; e2; r {s}, we apply heuristics
depending on the shape of the loop to identify a variable
that can represent the number of iterations. For instance, if
s = for i := 0; i<e; i++ {s}, then ES(s) , EE(e) ∪ ES(s)
when e is either a variable, a constant, or an integer literal.
4) If s = for i,x := range l {s}, then ES(s) , {l} ∪
ES(s), i.e., we abstract a collection to its size.
5) If s = f (a) or s = go f (a), we first extract the concur-
rency parameter of f . Assume we have func f(x T) T {s}
such that ES(s) = Y . Then we construct the sub-sequence of
arguments whose position match a concurrency parameter of
f , i.e., b = [ai | xi ∈ Y, 1 ≤ i ≤ k]. We have ES(s) , EE(b).
6) For select, conditionals, and range over channels, we apply
EE(s) recursively following the abstract syntax tree, e.g., if
s = if e then s1 else s2, then ES(s) , ES(s1) ∪ ES(s2).

We say that a for loop is dynamic if its body syntactically
(and inter-procedurally) contains a statement of the form
go f (a). We define two families of concurrency parameters:
mandatory and optional. An optional parameter x is only used
as bounds of a non-dynamic for-loop, i.e., Cases (3) or (4)
above when the loop is not dynamic. All other parameters
are mandatory. We will see below that mandatory parameters
must be instantiated to construct models that can be verified

4

I

S

R

A

C

D

X

ch.rcving?
ch.snding?

[n=0]ch.sync!〈1, 0〉

ch.rcving?

ch.snding?,
ch.close?,
ch.enq?


[n<k]ch.enq?/n++

[n>0]ch.deq!〈0, n〉/n--

[n>0]ch.deq!〈0, n〉/n--

[k>0]

[k=0]

ch.close?

ch.close?
W

X

[n+i ≥ 0]wg.update?i/n+=i

[n=0]wg.wait!

[n+i < 0]wg.update?i

U

R

W

X

mu.rlock?/r++
[r=1]mu.runlock?

mu.rlock?/r++ [r>1]mu.runlock?/r--

mu.lock?

mu.unlock?

{mu.unlock?,mu.runlock?}

Fig. 4: Primitive processes for channels (left), waitgroups (middle), and mutexes (right).

effectively. Instantiating optional parameters is not necessary,
but helps discard false alarms (see § IV).

Example 3. Let s be the body of preload() from Figure 1.
We extract three concurrency parameters from these state-
ments, i.e., ES(s) = {n, trees, runtime.NumCPU }. These
are all mandatory parameters. The first two are instantiated at
every invocation to preload, and runtime.NumCPU is a
global (implicit) parameter (instantiated once per model).

B. Primitive processes: channel, waitgroup, and mutex

We describe Promela processes which model the main con-
currency primitives of the Go language (channels, waitgroups,
and mutexes). Each of these processes use several Promela
channels and variables stored in a structured data type. The
declaration of a concurrency primitive in Go is translated to
spawning the corresponding primitive process in Promela.

a) Channels: Figure 4 (left) gives a graphical represen-
tation of the Promela process (channel process) that models a
Go channel. This process monitors all channel interactions: it
keeps track of the state of the channel to detect any safety bug.
Interactions over asynchronous Go channels are fully mediated
by the channel process; interactions over Go synchronous
channels also rely on Promela’s own synchronous channels.

The channel process uses two (local) variables: k represent
the capacity of the buffer (k=0 when the channel is syn-
chronous), and n is the number of messages currently stored
in the buffer (note that n≤k).

The channel process interacts with its environment via
six synchronous Promela channels: sync is a channel which
directly models the corresponding synchronous Go channel;
snding and rcving monitor sending and receive actions on
the synchronous channel; enq and deq model enqueue (send)
and dequeue (receive) operations on asynchronous channels;
close is used to receive closing requests. Only channels sync
and deq carry payloads, i.e., pairs 〈c, n〉 where c represents
the state of the channel (c=1 if the channel is closed, c=0
otherwise) and n is the number of messages in the channel.

The behaviour of the channel process depends on its
capacity (k). If k=0, the channel is synchronous and the
channel process merely monitors sending and receiving actions
on channel ch . Goroutine processes send on snding (resp.
rcving) whenever they send (resp. receive) on channel sync
(see § III-D). If k>0, the channel is asynchronous and all

interactions over that channel are mediated via the channel
process. When the channel is not full (n<k), it is ready to
enqueue more messages (via enq); as long as the channel is
not empty, it is ready to emit messages (via deq).

Synchronous and asynchronous channels behave equiva-
lently once they are closed. Sending on a closed channel
(via sync or enq), or closing it again (via close), leads to
the error state. It is always possible to receive from a closed
channel, the channel process is always ready to match such
requests on ch.sync or ch.deq . In § III-D, we show that all
function processes are always ready to interact with either the
synchronous or asynchronous version of a channel process.

b) Waitgroups: Figure 4 (middle) gives a representa-
tion of the Promela waitgroup process, representing a Go
waitgroup. The process uses one local variable and two
synchronous Promela channels: wait and update . Variable n
represents the current number of threads wg is waiting for.
When n=0, it is ready to fire wg .wait ! (thus unblocking
a process waiting on it). Other processes interact with the
waitgroup by adding value i to n (where i ∈ Z). Any update
that renders n negative leads to the error state.

c) Mutex: Figure 4 (right) gives an automata representa-
tion of the mutex process, representing a mutex mu . We use
the same process to model Go’s Mutex (traditional mutex)
and RWMutex (read/write mutex).

The mutex process models interactions over a Go mutex
using one local variable (r) and four synchronous Promela
channels. Channel lock (resp. unlock) is used to take (resp.
release) the lock of a traditional mutex. Channel rlock (resp.
runlock) is used to take (resp. release) the lock of a read/write
mutex. Variable r keeps track of the number of readers that
have acquired the read-only lock. Unlocking a mutex that is
not locked leads to the error state.

C. Function processes: declaration and call sites

Given a Go program, we generate a Promela model for each
of its functions that does not take any concurrency primitive
as parameter and that initialises at least one concurrency
primitive in its body. For instance the program in Figure 1 will
produce one Promela model, whose entry point corresponds
to function preload(). Given such a function, we analyse
all the functions it invokes (inter-procedurally), and for each
invoked function that takes at least one concurrency primitive,

5

func InnerFunc(ch1 chan int, x map[string]int, y int) { s }
func OuterFunc(...) {

// ...
InnerFunc(ch2, 10, 20)
// ...
go InnerFunc(ch2, z, z*2)
// ...

}

init { // model entry point
// ...

run OuterFunc(...)
}
proctype InnerFunc(ChannelProcess ch1, int x, chan ret) {

TS(s)
ret!0

}
proctype OuterFunc(...) {

// ...
chan ret1 = [1] of {bool}
run InnerFunc(ch2, 10, ret1)
ret1?0
// ...
chan ret2 = [1] of {bool}
run InnerFunc(ch2, z, ret2)
run (ret2?0)
// ...

}

Fig. 5: Blocking vs. concurrent function calls in Go (top) and
their models in Promela (bottom).

we model it with a Promela function process, which we include
in the model of the entry point function.

Function declarations: Our models abstract away from
non-concurrency related aspects, hence definitions of func-
tion processes include only parameters of their corresponding
Go functions that pertain to concurrency. Given a function
signature func ExFunction(..., x T,...) parameter
x is abstracted away if x is not a concurrency parameter
of ExFunction or if T is not the type of a concurrency
primitive. Each parameter x whose type is a concurrency
primitive is mapped to one primitive process. Each parameter
x that is a concurrency parameter is mapped to an integer
parameter, e.g., if the type of x is a collection in Go, it is
mapped to an int in Promela (corresponding to the size of
the collection).

We illustrate the approach with the Go program in Figure 5
(top). Assume OuterFunc does not take any concurrency
primitive as parameter, hence it becomes the entry point
of a Promela model. Because InnerFunc is invoked by
OuterFunc, the model will also contain a (function) process
definition corresponding to its declaration.

Assume x is the only concurrency parameter of
InnerFunc, i.e., y /∈ ES(s). Then, InnerFunc is mapped
to a Promela process which takes three parameters: (i) a
ChannelProcess (ch1) structure which implements the
channel process discussed in § III-B; (ii) an integer (x) which
corresponds to the length of the map parameter; and (iii) the
return channel, i.e., a buffered Promela channel with capacity
1 (ret) which is used to model blocking function calls, as
we explain below. The body of a function process consists
in the translation of the body of its Go counterpart — using
TS(s), see § III-D and § III-E — followed by a send on ret
(notifying that the function has returned).

Call sites: Our translation deals with statements of the form
f (a) or go f (a) as follows. If f is an external function or if it
takes a concurrency primitive as a parameter, the correspond-
ing call site is skipped. In the former case, we optimistically
assume that f is not buggy; in the latter case, f is an entry
point to its own model which is verified independently.

If the declaration of f is available, then we translate both
f (a) and go f (a) to the creation of a new Promela channel
followed by the spawning of a new function process. For
blocking calls, the process spawning is followed by a blocking
reception on the return channel, otherwise we spawn a receiv-
ing process which will garbage collect the send messages, e.g.,
run (ret2?0). We illustrate this aspect with the translation
of calls to InnerFunc in Figure 5.

D. Operations on concurrency primitives

All operations on channels, waitgroups, and mutexes are
translated to Promela operations that interact with one of the
primitive processes. Figure 6 (top half) gives an overview of
the mapping from Go operations to Promela using a graphical
representation of the latter.

Translating channel operations is slightly more involved as
the bounds of Go channels might not be known at compile-
time, hence a function process taking a channel ch as a param-
eter needs to be ready to send or receive on a synchronous or
an asynchronous version of ch . As a consequence, both send
and receive are modelled as composite Promela operations. A
send operation (ch <− e) is translated to a guarded choice
between two branches that represent an operation on a syn-
chronous channel, or an asynchronous one. In the synchronous
case, the process synchronises directly with another by sending
on the (synchronous) Promela channel ch.sync, then notifying
the channel process over ch.snding . The process sends a pair
〈0, 0〉 over ch.sync (where the first 0 means that the channel
is not closed, and second is the number of messages stored
on the channel). In the asynchronous case, the process sends
a message to its corresponding channel process over channel
ch.enq . Notice that in both cases, we abstract away from the
data sent over the channel (expression e is not modelled).

A receive operation (<− ch) is modelled in the dual way.
The process executing the receive operation may either receive
a pair 〈c, n〉 from another process over ch.sync or from the
channel process over ch.deq . We assume that variables c and
n are fresh. They are unused for simple receive operations but
are necessary when channels are ranged over.

Closing a channel (close(ch)) is translated as a Promela
send operation over channel ch.close .

Go operations on waitgroups (wg .Add(e), wg .Done(),
wg .Wait()) are translated to send and receive actions on
the Promela channels of the corresponding waitgroup process
(using channels wg .update or wg .wait). Note that wg .Add(e)
may increment or decrement the waitgroup counter by (the
evaluation of) e, hence it is necessary to translate e to Promela.
Function TE(e) is a partial function from Go expressions to
Promela expressions (when e cannot be translated, it aborts).

6

ch <− e

ch.enq!

ch.sync!〈0, 0〉 ch.snding!

<− ch

ch.deq?〈c, n〉

ch.sync?〈c, n〉 ch.rcving!

close(ch) ch.close!

wg.Add(e) wg.update!TE(e)

wg.Done() wg.update!〈−1〉

wg.Wait() wg.wait?

mu.Lock() mu.lock !

mu.Unlock() mu.unlock !

mu.RLock() mu.rlock !

mu.RUnlock() mu.runlock !

for i := e1; e2; r {s}
with n ∈ ES(i:=e1;e2;r)

for i,x := range l {s}
with n ∈ EE(l)

where s is dynamic

for 1 ..n {TS(s)}τ τ

for i := e1; e2; r {s}
with b ∈ ES(i:=e1;e2;r)

for i,x := range l {s}
with b ∈ EE(l)

where s is not dynamic

TS(s)

for 1 ..n {TS(s)}

[b = ∗]

[b = n] τ
τ

τ

for x := range ch {s}
where s is not dynamic

TS(s)

ch.deq?〈c, n〉

ch.sync?〈c, n〉 ch.rcving!

[c>0 ∧ n=0]

[c=0 ∨ n>0]

τ

if e then s1 else s2
TS(s1)

TS(s2)

τ

τ

select{case αi : si}
where 1 ≤ i ≤ n

TS(α1)

TS(αn)

TS(s1)

TS(sn)

Fig. 6: Overview of the translation function TS(s).

The translation of Go operations on mutexes to Promela is
straightforward. Each operation is mapped to a send on the
corresponding Promela channel of the mutex process.

E. Control flow and branching constructs

The control flow and branching constructs of Go are over-
approximated naturally by Promela’s own constructs. Figure 6
(bottom half) gives an overview of the mapping from Go
constructs to Promela constructs using a graphical notation.

Traditional for loops and loops over collections are trans-
lated differently depending on whether they are dynamic, see
§ III-A. When a loop is dynamic, its number of iterations
must be known before checking the model (e.g., the bounds
are constant or they are instantiated by some concurrency
parameters). Hence such loops are translated to Promela’s own
(finite) iteration constructs. When a loop is not dynamic, then

it behaves as a fixed loop (as above) or as a non-deterministic
loop (i.e., a loop that executes an arbitrary number of times).
To enable this behaviour, we use special value ∗ to flag
a concurrency parameter as unspecified. When a bound is
unspecified, the number of iterations is non-deterministic; if it
is provided at model checking time, a fixed for-loop is used.

A for loop that ranges over a channel ch executes its body
every time a message is received on ch (until the channel
is empty and closed). To encode this behaviour in Promela,
we use a similar technique to the translation of the receive
operation (see second line of Figure 6). After each receive
operation the values of variables c and n are tested, c = 1
means that the channel is closed, while n is the number of
messages held in it. Note that because such a loop might be
executed an arbitrary number of times, they can be translated
only when the loop is not dynamic (we abort otherwise).

Go conditionals are mapped to internal choices with two
branches (i.e., a choice with two unguarded branches). A
select block is translated to a choice in Promela, where each
branch is either unguarded or guarded by the translation of a
send or receive operation, each branch leads to the translation
of the bodies si. For send/receive operations, we use the
construction given in the first two lines of Figure 6. Any
branch of the select block that is default or guarded
by a timeout is mapped to an unguarded branch (τ).

Note that in general the translation of loops, if-then-else,
and select statements over-approximates the behaviour of a Go
program, e.g., while only one branch of a Go if-then-else may
be taken, both branches are fireable in its generated model.

IV. VERIFYING MODELS

We describe our approach to verify the models generated
from Go programs in § III. We break down this description
in two steps: properties of valuated models and automated
generation of valuations.

A. Properties of valuated models

Given a Go program P , we generate several models such
that each model M has a (possibly empty) list of concurrency
parameters that are either mandatory or optional. We say that
a model M is valuated if all its mandatory parameters are
instantiated by values in N and all its optional parameters
are instantiated by values in {∗} ∪ N. Recall that setting a
concurrency parameter to ∗ allows some loops to iterate an
arbitrary number of times, see Figure 6.

Given a model M with mandatory parameters x and op-
tional parameters y, and vectors u ∈ N|x| and v ∈ ({∗}∪N)|y|.
We write M [x := u, y := v] for the valuation of M where
each xi (resp. yi) is replaced by value ui (resp. vi).

Properties: We consider four properties, corresponding to
the types of errors discussed in § II-A. All of these properties
are either specified as Promela processes not reaching their
end states, or reaching an error state. Assume M is a val-
uated model, we define the following properties. M |= φMD

(model deadlock) holds whenever no execution in M leads
to a situation where all goroutine processes are stuck. Since

7

function verify(S, φ,M)
x ← mandatory(M)
y ← optional(M)

V ← {(u, v) | u ∈ S|x|, v ∈ ({∗} ∪ S)|y|}
while V 6= ∅ do

(u, v) ← pickMax (V)
b ← M [x := u, y := v] |= φ
if b ∨ ∗ /∈ v then

∆(u · v) ← b
V ← V \ {(u,w) ∈ V | v�w}

otherwise
V ← V \ {(u, v)}

return ∆
Algorithm 1: Verification of model M with property φ
and values S. Auxiliary function mandatory(M) (resp.
optional(M)) computes the mandatory (resp. optional)
concurrency parameters of M . Function pickMax (V) re-
turns a maximal element of set V wrt. �.

several models may be extracted from a given program, φMD

can identify some partial deadlocks in the source program.
M |= φCS (channel safety) holds whenever no execution
in M leads to a situation where a channel process reaches
its error state (i.e., sending on/closing a closed channel).
M |= φWS (waitgroup safety) holds whenever no execution
in M leads to a situation where a waitgroup process reaches
its error state (i.e., the waitgroup reaches a negative number).
M |= φMS(mutex safety) holds whenever no execution in M
leads to a situation where a mutex process reaches its error
state (i.e., an unlocking operation is invoked on an unlocked
mutex).

We aim for a sound verification approach, i.e., any be-
haviour of the source program can be simulated by the
extracted model (assuming a precise valuation). Since each
Go entry-point function P is over-approximated by its model,
for any of the properties φ above, we should have that M |= φ
implies that P |= φ, whenever the parameters of P and M are
instantiated to the same values. The reverse implication does
not hold, i.e., if M 6|= φ we cannot conclude that P 6|= φ.

B. Automated generations of model valuations

Next we present a technique to perform a bounded verifi-
cation of a parameterised model (up-to a finite set of possible
values). Hereafter we assume a set S ∈ N given by the user,
from which values of concurrency parameters are selected.

We define a partial ordering � on the set ({∗} ∪ S)k (with
k ∈ N) to identify a valuation that subsumes another.

(v1, . . . , vk) � (u1, . . . , uk) ⇐⇒ ∀1 ≤ i ≤ k : vi ∈ {ui, ∗}

Algorithm 1 describes our approach to verify a model M for
a property φ (e.g., absence of deadlock), wrt. values in S.
The algorithm returns a map ∆ that records the result of the
verification by mapping valuations to Booleans. For instance
if ∆(1, 2) = > for a model M with concurrency parameters
x1 and x2, then property φ holds for M [x1 := 1, x2 := 2].

Algorithm 1 starts by computing the list of mandatory and
optional parameters (x and y respectively). Then it computes

the set V of all possible valuations for these parameters (only
optional parameters may be set to ∗). The algorithm then
repetitively checks the property φ on model M where the
parameters are instantiated with a maximal element from V
(wrt. the �-ordering). After each verification the set V is
updated, removing all valuations that are subsumed by the
current valuation if it was successful, or the current valuation
otherwise. We only record in ∆ those verifications that are
successful or that do not involve any optional parameter set to
∗. Indeed when a verification with a parameter y set to ∗ fails,
it is likely to be a false alarm. This will be “compensated”
by further verifications where y is instantiated to values in
S. In contrast, if a verification with a parameter y set to ∗
succeeds, then fewer verifications will be performed (i.e., that
verification subsumes all instantiations of y).

Note that if M does not contain any parameter (x = y = ε)
then V is initialised to {ε}, i.e., the singleton set containing
the empty vector.

For each map ∆ obtained from Algorithm 1, we compute
a score based on the ratio of failed verifications over the total
number of recorded verifications, i.e.,

score(∆) =
|{v ∈ dom(∆) | ∆(v) = ⊥}|

|dom(∆)|
We use this score to indicate a confidence level wrt. results
of the verification. The higher the score, the more likely it is
that we discovered a real bug.

Example 4. Given the program in Figure 1 our translation
will generate one model with three mandatory parameters (cor-
responding to |trees|, m, and runtime.NumCPU()). As-
suming we are checking for φMD and we set S = {0, 1, 2, 3},
Algorithm 1 will perform 43 verifications, 45 of which are
successful (>). Hence we obtain a score of 45/64 ' 0.7.

Example 5. Consider the (correct) program in Figure 7,
which consists of two threads that exchange x messages
over channel a (the value of x is unknown at compile-time).
Our approach generates a unique model M for it, with one
parameter x. Assuming we are checking for φMD and we set
S = {0, 1, 2, 3}, Algorithm 1 performs five verifications, one
for each element in {∗} ∪ S. The case where x := ∗ fails
since both for-loops are modelled as loops that can terminate
(independently) after an arbitrary number of iterations. Hence,
that valuated model contains executions that lead to a deadlock
(where either loops is waiting for a send or receive). However,
when x is given a concrete value both loops iterate the same
number of times, and thus each send/receive action is matched.

Thus we obtain a map ∆ containing four elements, s.t.
∆(i) = > for 0 ≤ i ≤ 3. Hence, we have score(∆) = 0/4 = 0,
i.e., no recorded verification failed.

V. IMPLEMENTATION

We have implemented our approach in a tool (GOMELA)
which extracts models from Go code, and uses Spin as a
backend to automatically verify models up-to user provided

8

1 func sender(a chan int, x int) {
2 for i := 0; i < x; i++ { // sends x times
3 a <- i
4 }
5 }
6 func receiver(a chan int, x int) {
7 for i := 0; i < x; i++ { // receives x times
8 <-a
9 }

10 }
11 func main() {
12 x, _ := strconv.Atoi(os.Args[1])
13 a := make(chan int)
14 go sender(a, x)
15 receiver(a, x)
16 }

Fig. 7: Program with an optional concurrency parameter.

bounds. GOMELA analyses a Go codebase package by pack-
age, and relies on Go’s ast library for the front-end parsing.
Unlike [7], [22], our analysis is done on the surface language,
rather than its lower-level representation (SSA). In addition to
the language constructs listed in Figure 2, our tool handles
structures, methods, and anonymous functions.

Go structures that contain concurrency primitives are anal-
ysed inter-procedurally and flattened into a list of their primi-
tives. We do not support dynamic data-structures (e.g., linked
lists) nor struct embedding.

A method m on struct S, func (x S) m(y T) T {s}, is
processed in two steps. First, they are normalised into a
function named S_m whose parameters are the conjunction
of the primitives contained in receiver x and the parameters
y of method m. Second, the declaration of S_m is dealt
with like a normal function declaration, and each call site
is normalised in a consistent way. GOMELA aborts when it
encounters virtual method calls (when the method parameters
include concurrency primitives). Anonymous functions are
normalised to (freshly) named functions, after computing their
closures (limited to concurrency primitives and concurrency
parameters). Hence they are dealt with like other Go functions.

GOMELA supports break statements and defer state-
ments (when they do not occur under conditionals/loops). Both
constructs are implemented using Promela’s goto instruc-
tions.

We have implemented heuristics to speed up the verification.
Notably we omit loops that do not contain concurrency-related
operations and we model-check all properties (see IV-A) at
once instead of one-by-one, c.f. Algorithm 1.

VI. EMPIRICAL EVALUATION

We structure our evaluation into two research questions that
aim at evaluating the real-world usability of our approach.
RQ1: How does GOMELA compare to the state-of-the-art? To
answer this question we compare our tool against GCatch and
Godel2 on a dataset of 78 buggy Go programs.
RQ2: How does GOMELA scale to real-world programs? To
answer this question we analysed 99 most starred Go projects
on GitHub with GOMELA. We measure the number/parameters

of models generated and the verification run-times. We also
report on the error scores obtained for four properties.

RQ1: How does GOMELA compare to the state-of-the-art?

Here we focus on programs which contain bugs related
to channels, waitgroups, or mutexes. We have collected a
set of buggy programs, that consists of blocking examples
from [7], [33], and six additional programs with intricate
concurrency patterns (all benchmarks are available online [6],
[9]). These programs range from 12 to 298 LoC (mean: 83,
median: 70). We evaluate GOMELA on this set, against the
state-of-the-art static checkers: GCatch [22] and Godel2 [7].
We omit benchmarks from [7] that contain data-races or do
not contain any bugs. We focus on the benchmarks from [33]
that contain blocking bugs as GOMELA does not target other
bugs. To ensure that our experiments are precise, we only use
the bug kernels from [33]. It is not always straightforward
to distinguish false alarms from real bugs raised by these
tools, hence we could not confidently evaluate their respective
performance on the real bugs listed [33].

Figures 8 and 9 give the results of our experiments. For
GOMELA, a program is reported as a true positive if at least one
verification returns false, and false positive if all verifications
return true (no bug found), all properties are checked with S =
{0, 1, 3}. For GCatch and Godel2, a true positive is a correctly
identified buggy program, while a false positive corresponds
to a missed bug. For each tool, an example is unsupported if
the tool aborts or crashes. Overall GOMELA has the highest
rate of true positive (58.97%), followed by GCatch (38.46%)
and Godel2 (19.23%). While GCatch never crashes/aborts, it
misses 61.54% of the bugs. Our experiments show that Godel2
has very limited supports for real-world examples.

Figure 9 shows how the three tools perform wrt. execution
time for true positives. From left to right, the first group of
examples are all four benchmarks that contain a blocking
bug from [7]. The second group of programs include: the
program in Figure 3; a program with a blocking range-over-
channel, see Figure 10 (right); a program (FindAll())
adapted from a bug report in Google’s gops project [10],
[27]; a program with a circular dependency and a bounded
for-loop, see Figure 10 (left); a program invoking function
preload() from Figure 1; and a buggy version of Figure 7
where receiver receives x+1 times.

The third group consists of the 68 blocking programs
from the GoKer benchmark suite [33], which are all adapted
from real-world programs. This suite is mainly aimed at
evaluating run-time bug detectors. We modified 29 of them
to meet limitations of the front-end of GOMELA and Godel2.
Our modifications consists in inlining concurrency primitive
declarations, inlining higher-order functions, and replacing
virtual method calls by static ones.

GCatch is the fastest tool (all processed within 5s) and most
examples are verified by GOMELA within 10s. For readability,
we have omitted GOMELA’s run-time for preload() (120s
for 27 verifications). Observe that GOMELA is the only tool
that can process correctly all programs in the second group of

9

25.64%15.39%

58.97%

Unsupported (20)
False Positive (12)
True Positive (46)

61.54%

38.46%

Unsupported (0)
False Positive (48)
True Positive (30)

74.36%

6.41%
19.23%

Unsupported (58)
False Positive (5)
True Positive (15)

(a) GOMELA (b) GCatch (c) Godel2

Fig. 8: Proportion of true/false positives in 78 buggy programs, unsupported indicates that the tool has aborted or crashed.

0 10 20 30 40 50 60 70 800

10

20

30

40

50

Se
co

nd
s

Gomela GCatch Godel2

Fig. 9: Run-times for true positives in 78 buggy programs.

Figure 9. Godel2 identifies the last program of this group as
buggy, but also raises a false alarm for the non-buggy version,
i.e., the program in Figure 7.

RQ2: How does GOMELA scale to real-world programs?

To evaluate the scalability of our approach we ran GOMELA
on 99 most starred Go projects on GitHub. For each project, we
cloned it locally and generated models for each of its packages.
Each model was then verified, wrt. the properties described in
§ IV-A, using our automated approach with S = {0, 1, 3}.

Our measurements for scalability are in Table I. The key
factors that affect the run-time of GOMELA on a given project
is the number of models it generates and how many parameters
these projects have. GOMELA only generates a model when it
detects at least one concurrency primitive. Table I (top) shows
that most projects and packages only give rise to a single
model, but some produce more than one hundred models. The
table also shows that 75% of these models have at most 3
concurrency parameters (hence they require at most |S|3 veri-
fications). The last row shows the number of states as reported
by Spin when verifying it. This metric is representative of the
number of goroutines and the number concurrency operations
contained in the source program. Overall GOMELA generated
3175 models, out of which 99 were not valid Promela (due to
limitations of our aliasing analysis) and were rejected by Spin,
22 contained >5 concurrency parameters and 70 contained
at least one valuation that took >30 seconds to verify (we
omitted these in the next phase).

Table I (bottom) shows the run-time for the remaining 2984
models we verified. More than 75% of projects can be verified
under 3m26s, and a model valuation is verified under 3.60s on
average (we set a timeout of 30s per valuation). This suggests
that our approach does scale to real-world Go.

TABLE I: Project sizes and verification run-times.

Project sizes mean std 25% 50% 75% max

models per project 42.91 64.24 5 19 50 339
models per package 3.83 8.27 1 1 3 159
parameters per models 2.18 2.29 1 1 3 42
states per valuation 7970 156k 17 45 151 7.8 mil

Run-time

per project 3m48s 7m5s 20s 1m4s 3m26s 35m5s
per model 4.56s 28.78s 2.56s 2.80s 3.33s 19m9s
per valuation 3.60s 1.90s 2.62s 3.11s 3.87s 19s

TABLE II: Verification scores for generated models.

All scores mean std 25% 50% 75% max

model deadlock φMD 0.025 0.15 0 0 0 1
channel safety φCS 0 0 0 0 0 0
mutex safety φMS 0.002 0.048 0 0 0 1
waitgroup safety φWS 0.0006 0.019 0 0 0 0.667

Strictly positive scores (occurrences)

model deadlock (81) 0.89 0.20 0.75 1 1 1
channel safety (0) 0 0 0 0 0 0
mutex safety (9) 0.869 0.15 0.75 1 1 1
waitgroup safety (3) 0.59 0.104 0.45 0.67 0.67 0.67

Table II (top) shows the score computed for the 2984 mod-
els. As expected from mature projects on GitHub, GOMELA
reports few concurrency bugs; this suggests that it has a
reasonable false alarm rate. Table II (bottom) focuses on the
models for which at least one valuation violated a property.
We manually verified a randomly selected sample of these
models. Out of 10 reported model deadlocks we analysed, 6
were real bugs and 4 were false alarms (due to higher-order
functions and tricky aliasing). Out of 9 mutex errors, all were
false alarms (all due to higher-order functions). Finally, the
3 reports of waitgroup error were real bugs.

VII. RELATED WORK

Static checkers are available as part of the Go ecosystem,
e.g., the native go vet command, staticcheck [15],
and tools based on Go’s language server [12], but all these
tools rely on syntactical checks (linters) that cannot detect
concurrency bugs that require a semantic analysis.

The Go library also includes a runtime global deadlock
detector and a runtime data-race detector. Sulzmann and

10

1 func parseFiles(files []os.File) {
2 ch := make(chan string)
3 for file := range files {
4 go parseFile(ch, file)
5 }
6 for v := range ch { // blocked
7 fmt.Println(v)
8 }
9 }

10

11 func parseFile(ch chan string, file os.File) {
12 ch <- parseToken(file)
13 }

1 func main() {
2 a := make(chan int)
3 b := make(chan int)
4 for i := 0; i < 3; i++ {
5 go func() {
6 <-b // blocked
7 a <- 1
8 }()
9 }

10 <-a // blocked
11 b <- 1
12 }

Fig. 10: Examples of buggy programs caught by GOMELA, missed by GCatch [22], and unsupported by Godel2 [7].

Stadtmüller [29], [30] have proposed techniques for run-time
analyses of Go programs based on vector clocks.

GCatch [22] combines several static bug detectors and
includes a novel detector for blocking bugs (BMOC). This
detector relies on approximating possible executions and uses
an SMT-solver to determine whether they lead to blocking
bugs. GCatch is accompanied by GFix which aims at repairing
bugs involving at most two goroutines and a single channel.
GCatch has a better front-end than GOMELA (fewer crashes)
notably because it relies on the SSA representation of Go
program. As a consequence Go programs must be compiled
(all their dependencies met) before fed into GCatch.

Several works propose static checkers based on tech-
niques from programming languages theory, e.g., behavioural
types [7], [20], [21], [25], abstract interpretation [24], and
forkable regular expressions [28]. None of these support
programs with concurrency parameters. The work by Gabet
and Yoshida [7] is the latest in the behavioural type series. It
detects channel and mutex-related bugs and data-races, but it
has limited applicability. Our work builds on our earlier proto-
type [5] which uses Promela as a behaviour type language. In
this work, we have extended it with an inter-procedural extrac-
tion of concurrency parameters, support for more concurrency
primitives (waitgroup and mutex), support for structures and
methods, an automated verification algorithm (Algorithm 1),
and an evaluation of our approach on real-world Go code.

There is a growing body of surveys of Go programs and
tools. Dilley and Lange [4] show that channels are used
often and intensively in Go projects. Tu et al. [31] show
that message-passing concurrency is as error-prone as tradi-
tional shared-memory concurrency. Yuan et al. [33] propose
a benchmark suite of concurrency bugs in Go on which they
compare the performance of goleak [32] (a run-time goroutine
leak detector), go-deadlock [26] (a run-time deadlock detectors
for locks), and Gong [20] (a static checker).

Software model checking has a long history, see [16] for
a comprehensive survey. While other general purpose model
checkers have support for inter-process communication [3],
[23], we found that Spin is closest to Go and thus allows a
nearly one-to-one translation from Go. Spin has notably been
used to verify multi-threaded Java programs [13] and multi-
threaded C programs [34]. Our approach is related to other

specialised bounded model checkers for C, C++, and Java,
e.g., CBMC [1], [17], ESBMC [8], and JBMC [2]. These
checkers use symbolic execution techniques (e.g., unrolling
loops k times) to detect low-level bugs.

VIII. CONCLUSIONS AND FUTURE WORK

We described a novel approach to verifying Go programs
using bounded model checking of parameterised behavioural
types. This approach scales well to real-world Go code,
and outperforms the competition on 78 buggy programs.
Remarkably, all false alarms we discovered were due to
limitations of our front-end rather than over-approximation in
our verification approach.

The key remaining challenges are to develop scalable tech-
niques to deal with virtual method calls, to develop heuristics
to deal with models with high number of parameters, and to
develop techniques to help automate the identification of false
alarms. In the shorter term, we also would like to improve our
front-end analysis so that more Go programs can be analysed
without manual modifications.

ACKNOWLEDGMENT

We thank Rumyana Neykova, Tiago Cogumbreiro, and the
anonymous reviewers for their insightful feedback on earlier
versions of this work.

REFERENCES

[1] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-
C programs. In TACAS, volume 2988 of Lecture Notes in Computer
Science, pages 168–176. Springer, 2004.

[2] L. C. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtík.
JBMC: A bounded model checking tool for verifying java bytecode. In
CAV (1), volume 10981 of Lecture Notes in Computer Science, pages
183–190. Springer, 2018.

[3] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de Vink,
W. Wesselink, and T. A. C. Willemse. An overview of the mCRL2
toolset and its recent advances. In TACAS, volume 7795 of Lecture
Notes in Computer Science, pages 199–213. Springer, 2013.

[4] N. Dilley and J. Lange. An empirical study of messaging passing
concurrency in Go projects. In SANER, pages 377–387. IEEE, 2019.

[5] N. Dilley and J. Lange. Bounded verification of message-passing
concurrency in Go using promela and spin. In PLACES@ETAPS, volume
314 of EPTCS, pages 34–45, 2020.

[6] N. Dilley and J. Lange. Gomela. https://github.com/nicolasdilley/
gomela-ase21/, 2021.

[7] J. Gabet and N. Yoshida. Static race detection and mutex safety and
liveness for Go programs (artifact). Dagstuhl Artifacts Ser., 6(2):12:1–
12:3, 2020.

11

https://github.com/nicolasdilley/gomela-ase21/
https://github.com/nicolasdilley/gomela-ase21/

[8] M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer,
and D. A. Nicole. ESBMC 5.0: an industrial-strength C model checker.
In ASE, pages 888–891. ACM, 2018.

[9] Automated Verification of Go Programs via Bounded Model Checking
(Artifact). Zenodo, 2021.

[10] Google. Findall code. https://github.com/google/gops/blob/
6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29,
2020.

[11] Google. preload code. https://github.com/google/trillian/blob/
c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_
cache.go#L108, 2021.

[12] gopls, the Go language server. https://github.com/golang/tools/tree/
master/gopls.

[13] K. Havelund and T. Pressburger. Model checking JAVA programs using
JAVA pathfinder. STTT, 2(4):366–381, 2000.

[14] G. J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng.,
23(5):279–295, 1997.

[15] D. Honnef. Staticcheck. https://staticcheck.io/.
[16] R. Jhala and R. Majumdar. Software model checking. ACM Comput.

Surv., 41(4):21:1–21:54, 2009.
[17] D. Kroening and M. Tautschnig. CBMC - C bounded model checker -

(competition contribution). In TACAS, volume 8413 of Lecture Notes in
Computer Science, pages 389–391. Springer, 2014.

[18] Kubernetes. Generatenodemap code. https://github.com/kubernetes/
kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/
e2e/storage/vsphere/nodemapper.go#L62, 2021.

[19] Kubernetes. Kubernetes (k8s). https://github.com/kubernetes/kubernetes,
2021.

[20] J. Lange, N. Ng, B. Toninho, and N. Yoshida. Fencing off Go: liveness
and safety for channel-based programming. In POPL, pages 748–761.
ACM, 2017.

[21] J. Lange, N. Ng, B. Toninho, and N. Yoshida. A static verification
framework for message passing in Go using behavioural types. In ICSE,
pages 1137–1148. ACM, 2018.

[22] Z. Liu, S. Zhu, B. Qin, H. Chen, and L. Song. Automatically detecting

and fixing concurrency bugs in Go software systems. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021,
page 616–629, New York, NY, USA, 2021. Association for Computing
Machinery.

[23] J. Magee and J. Kramer. Concurrency - state models and Java programs.
Wiley, 1999.

[24] J. Midtgaard, F. Nielson, and H. R. Nielson. Process-local static analysis
of synchronous processes. In SAS, volume 11002 of Lecture Notes in
Computer Science, pages 284–305. Springer, 2018.

[25] N. Ng and N. Yoshida. Static deadlock detection for concurrent Go by
global session graph synthesis. In CC, pages 174–184. ACM, 2016.

[26] sasha s. go-deadlock. https://github.com/sasha-s/go-deadlock.
[27] C. Siebenmann. Even in Go, concurrency is still not easy (with

an example). https://utcc.utoronto.ca/~cks/space/blog/programming/
GoConcurrencyStillNotEasy, 2020-09.

[28] K. Stadtmüller, M. Sulzmann, and P. Thiemann. Static trace-based
deadlock analysis for synchronous mini-go. In APLAS, volume 10017
of Lecture Notes in Computer Science, pages 116–136, 2016.

[29] M. Sulzmann and K. Stadtmüller. Trace-based run-time analysis of
message-passing Go programs. In Haifa Verification Conference, volume
10629 of Lecture Notes in Computer Science, pages 83–98. Springer,
2017.

[30] M. Sulzmann and K. Stadtmüller. Two-phase dynamic analysis of
message-passing Go programs based on vector clocks. In PPDP, pages
22:1–22:13. ACM, 2018.

[31] T. Tu, X. Liu, L. Song, and Y. Zhang. Understanding real-world
concurrency bugs in Go. In ASPLOS, pages 865–878. ACM, 2019.

[32] Uber. goleak. https://github.com/uber-go/goleak.
[33] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue. Gobench: A benchmark

suite of real-world Go concurrency bugs. In CGO, pages 187–199. IEEE,
2021.

[34] A. Zaks and R. Joshi. Verifying multi-threaded C programs with SPIN.
In SPIN, volume 5156 of Lecture Notes in Computer Science, pages
325–342. Springer, 2008.

12

https://github.com/google/gops/blob/6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29
https://github.com/google/gops/blob/6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://github.com/golang/tools/tree/master/gopls
https://github.com/golang/tools/tree/master/gopls
https://staticcheck.io/
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes
https://github.com/sasha-s/go-deadlock
https://utcc.utoronto.ca/~cks/space/blog/programming/GoConcurrencyStillNotEasy
https://utcc.utoronto.ca/~cks/space/blog/programming/GoConcurrencyStillNotEasy
https://github.com/uber-go/goleak

	Introduction
	Preliminaries
	Go programs and their properties
	Promela as a behavioural type language

	Extracting parameterised models
	Extracting concurrency parameters
	Primitive processes: channel, waitgroup, and mutex
	Function processes: declaration and call sites
	Operations on concurrency primitives
	Control flow and branching constructs

	Verifying models
	Properties of valuated models
	Automated generations of model valuations

	Implementation
	Empirical Evaluation
	Related work
	Conclusions and Future Work
	References

