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Abstract

To what extent is a graph determined by the trees in it? What changes if we
ask this question not for graphs in the abstract, but graphs that are embedded
on surfaces? By considering these questions we will see how a collection of
seemingly disjoint topics in mathematics are brought together through the idea of
a partial dual.
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1 Introduction
Consider two graphs G and H each of which is drawn on a plane so that its edges do
not intersect (or consider two spherical polyhedra if you prefer). Then G and H are
geometric duals if the vertices in one correspond to the faces in the other, and the
edges between vertices in one correspond to the edges between faces in the other. (See
Figure 2 for an example.)
Now consider two graphs𝐺 and𝐻 (not drawn on the plane this time). Each contains

a set of spanning trees, these are the maximal acyclic subgraphs contained in them.
Then 𝐺 and 𝐻 are algebraic duals if their sets of spanning trees correspond through
complementation (i.e., the edge set of a spanning tree of one is the complement of the
edge set of a spanning tree of the other).
It is a classical result of H. Whitney that a graph has an algebraic dual if and only if

it can be drawn on the plane without its edges crossing, in which case the algebraic dual
is exactly a geometric dual. This sets up a fundamental relationship between planarity,
duality and spanning trees.
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But what happens if the graphs cannot be drawn on the plane in this way? It
is this situation we examine here. We shall see that it is inexorably linked to graphs
drawn on surfaces, duals and partial duals, matroids and delta-matroids, principal pivot
transforms of matrices, and pivot-minors of simple graphs.
This exposition is aimed at a general mathematical reader. A familiarity with

elementary graph theory and with orientable surfaces is assumed. We note that graphs
here may have multiple edges (edges that have the same ends) and loops (an edge with
both ends being the same vertex). For simplicity we shall only consider orientable
surfaces, but (almost) everything here can be extended to non-orientable surfaces.

2 Graphs and their spanning trees
We start with a classical question with well-known answer. Recall that a graph is a tree
if it is connected and contains no cycles. A spanning tree of a graph 𝐺 is a subgraph
that is a tree and that contains every vertex of 𝐺. (For example, the bold edges in the
left and right images in Figure 2 define spanning trees.) Only connected graphs have
spanning trees, and to simplify terminology here we shall generally restrict ourselves
to connected graphs. This restriction does not result in any real loss of generality. This
is since most of our results extend trivially and obviously to non-connected graphs
by considering the maximal spanning forests of a graph, which are the subgraphs that
restrict to a spanning tree in each connected component.
Our initial interest is in the question:

Is a graph determined by its spanning trees?

There are a few ways to interpret this question resulting in different answers. Here
we are interested in what happens if the only information you have about any given
spanning tree is the edges that are in it. But since loops will never appear in a spanning
tree, we will also need to know if there are any loops. So our precise question is: If you
know the edge set of each spanning tree of a connected graph as well as any loops in
the graph, do you then know the graph? It is not hard to see that the answer is no. For
example consider the two non-isomorphic trees on three edges. But this “no” is really
a “more or less, yes”.
Consider the moves of vertex identification, vertex cleaving and Whitney twisting

illustrated in Figure 1. Vertex identification is a move that identifies two vertices that
lie in different connected components of a graph, and vertex cleaving is the inverse
operation. For Whitney twisting, suppose 𝑢1 and 𝑣1 are vertices in a graph 𝐺1, and 𝑢2
and 𝑣2 are vertices in a graph 𝐺2. Construct a graph 𝐺 by identifying 𝑢1 and 𝑢2, and
𝑣1 and 𝑣2. Construct also a graph 𝐺 ′ by identifying 𝑢1 and 𝑣2, and 𝑣1 and 𝑢2. Then we
say 𝐺 and 𝐺 ′ are related by Whitney twists. Two graphs are said to be 2-isomorphic if
one can be obtained from the other through isomorphism, vertex identification, vertex
cleaving and Whitney twisting.

Whitney’s 2-Isomorphism Theorem [59] provides an answer to our question. It states
that if you know the edge set of each spanning tree of a graph as well as any loops in
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𝐺2

Figure 1: The moves for 2-isomorphism: vertex identification, vertex cleaving and
Whitney twisting.

the graph, then you know the graph up to 2-isomorphism. Conversely, the collections
of edge sets of spanning trees and loops in two 2-isomorphic graphs are equal. (We
shall give a cleaner statement of Whitney’s 2-Isomorphism Theorem below.)
Thus the spanning tree structure determines the graph up to some simple moves. In

particular, it completely determines 3-connected graphs (ones in which there are three
internally disjoint paths between each pair of vertices) up to isomorphism as the moves
cannot be applied to such graphs. It turns out that many graph properties and results
do not distinguish between 2-isomorphic graphs, and so can be understood in terms
of spanning tree structure. In fact, considering the spanning tree structure of a graph,
rather than the graph itself, turns out to be an extremely fruitful thing to do.

The spanning trees in a connected graph𝐺 have many nice standard properties. For
example, every non-loop edge of 𝐺 is in some spanning tree; all spanning trees have
the same number of edges; and if 𝐺 has 𝑛 vertices, a subgraph is a spanning tree if and
only if it has exactly 𝑛 − 1 edges. Spanning trees also satisfy an exchange property:
if 𝑇 and 𝑇 ′ are spanning trees and 𝑒 is an edge in 𝑇 but not 𝑇 ′, then there is always
some edge 𝑓 in 𝑇 ′ but not 𝑇 such that removing 𝑒 from 𝑇 then adding 𝑓 results in
another spanning tree. (A reader may spot that this exchange property also applies to
the bases of a vector space.) These properties on the collection of spanning trees lead
us to matroids.

Definition 2.1. Let 𝐸 be a finite set, and B be a non-empty collection of subsets of
𝐸 . Then the pair 𝑀 := (𝐸,B) is called a matroid if for distinct 𝐴, 𝐵 ∈ B and for all
𝑎 ∈ 𝐴 \ 𝐵 there exists 𝑏 ∈ 𝐵 \ 𝐴 such that (𝐴 \ 𝑎) ∪ 𝑏 ∈ B.

By the properties of trees mentioned above, if𝐺 is a connected graph with edge set
𝐸 and B is the set consisting of all edge sets of its spanning trees, then𝐶 (𝐺) := (𝐸,B)
is a matroid. It is called the cycle matroid of 𝐺.

Example 2.2. The graph on the left of Figure 2 has cycle matroid (𝐸,B) with 𝐸 =

{1, 2, 3, 4, 5, 6, 7} andB = {{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 3, 5, 7},
{1, 4, 5, 7}, {2, 3, 5, 7}, {2, 4, 5, 7}}.

Our initial question ofwhether the spanning trees determine the graph then becomes
amatroid theoretic one: if you have a cycle matroid, can you determine the graph it came



4 Iain Moffatt

from?We can rephrase our previous answer (for the statement, matroid isomorphism
is defined in the obvious way):

Theorem 2.3 (Whitney’s 2-IsomorphismTheorem). Let𝐺 and𝐻 be connected graphs.
Then𝐶 (𝐺) and𝐶 (𝐻) are isomorphic matroids if and only if𝐺 and𝐻 are 2-isomorphic.

Whitney’s 2-Isomorphism Theorem nails down the connection between cycle ma-
troids and graphs. Cycle matroids give rise to a class of matroids, but almost all
matroids are not cycle matroids [43]. Nevertheless, cycle matroids are important in
matroid theory and graph theory. On one hand, insights from matroid theory can lead
to new results about graphs. On the other hand, graph theory can serve as an excellent
guide for studyingmatroids. A good introduction to the mutually enriching relationship
between graph theory and matroid theory can be found in [45].

Bibliographic remarks. The topics discussed in this section are classical. An ex-
cellent resource for this material is Chapter 5 of J. Oxley’s book [44]. Whitney’s
2-Isomorphism Theorem dates from the 1930’s and is due to H. Whitney, [59] (see
also [52, 56]) and Theorem 2.3 is a modern formulation in terms of matroids.
Our motivational question was whether a graph is determined by its spanning trees

or its cycle matroid. We restrict discussion here to characterising graphs that have the
same cycle matroid, ignoring the algorithmic question about constructing the graphs
from the cycle matroid. Discussion of the latter problem can be found in [55] (for what
will follow, the equivalent problem for quasi-trees can be answered through the circle
graph recognition methods of [32, 36, 48]).
H. Whitney introduced matroids in the 1930’s (see [60]) to capture ideas of de-

pendence common to linear algebra and graph theory. There are many ways to define
matroids and Definition 2.1 provides their definition in terms of “bases”. The cycle
matroid 𝐶 (𝐺) can also be defined through the cycles in a graph (using a “circuit
definition” of a matroid), hence the name. Matroid theory is a major topic of study in
combinatorics. Our encounter with matroids here is extremely brief and we refer the
reader to the books [44, 57] for more on them.
A spectacular illustration of the mutually enriching relationship between graph

theory and matroid theory can be found in J. Geelen, B. Gerards and G. Whittle’s
recent and, at the time of writing, unpublished result that, for any finite field, the class
of matroids that are representable over that field is well-quasi-ordered by the minor
relation. Their results generalise N. Robertson and P. Seymour’s Graph Minors Project
where it is shown that graphs are well-quasi-ordered by the minor relation [47]. In [35]
Geelen, Gerards and Whittle wrote “it would be inconceivable to prove a structure
theorem for matroids without the Graph Minors Structure Theorem as a guide”.

3 The appearance of topology
We want to make contact with topological graph theory, which is the study of graphs
embedded in surfaces. We shall do this by considering duals. Suppose 𝑀 = (𝐸,B) is
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A plane graph G. Placing vertices Its geometric dual G∗.
and edges of G∗.

Figure 2: Forming the geometric dual G∗ of a plane graph G.

a matroid. Define a collection of sets B∗ by taking the complement of each member of
B, so B∗ := {𝐸 \ 𝐵 : 𝐵 ∈ B}. It is not hard to check that the pair (𝐸,B∗) also forms a
matroid. This is called the dual of 𝑀 and is denoted by 𝑀∗.

Example 3.1. The dual of the matroid in Example 2.2 has B∗ = {{4, 6, 7}, {3, 6, 7},
{2, 6, 7}, {1, 6, 7}, {2, 4, 6}, {2, 3, 6}, {1, 4, 6}, {1, 3, 6}}.

If 𝐺 is a graph and 𝐶 (𝐺) its cycle matroid, then the dual matroid 𝐶 (𝐺)∗ is always
a matroid. However, it is not always the cycle matroid of a graph. If 𝐶 (𝐺) = (𝐸,B),
the graph 𝐺 is connected, and 𝐶 (𝐺)∗ = (𝐸,B∗), then B consists of the edge sets of all
the spanning trees of 𝐺. For 𝐶 (𝐺)∗ to be the cycle matroid of a graph we require the
existence of some graph 𝐻 on the edge set 𝐸 such that the sets in B∗ define exactly the
spanning trees of 𝐻. That is, we require 𝐻 to have the property that 𝑇 is a spanning
tree of 𝐺 if and only if 𝐸 \ 𝑇 is a spanning tree of 𝐻. Such a graph 𝐻, if it exists, is
called an algebraic dual (or abstract dual or combinatorial dual) of 𝐺. If it does exist,
it may or may not be unique.
The existence of algebraic duals is tied to the topological properties of a graph.

A connected plane graph consists of a connected graph drawn, or embedded, in the
sphere (or, equivalently, the plane) in such a way that vertices are distinct points and
edges only intersect at their ends. (So each vertex is a point on the sphere, each edge is
simple curve between these points, and these curves do not intersect except when their
ends share a vertex.) Plane graphs are equivalent if there is a homeomorphism of the
sphere taking one graph drawing to the other (i.e., inducing a graph isomorphism). A
plane graph divides the sphere into regions called faces. For example, with the page
representing a portion of the sphere, the left-hand image of Figure 2 shows a plane
graph with four faces. A connected graph is said to be planar if can be drawn in the
sphere in the above way. (So a plane graph is drawn on the sphere, and a planar graph
can be drawn on the sphere.) Inequivalent plane graphs can be drawings of the same
planar graph. These definitions are extended to non-connected graphs by drawing each
graph component in its own copy of the sphere.
Plane graphs have another type of dual. If G is a plane graph then its geometric

dual, denoted G∗, is the plane graph obtained from G by placing one vertex in each
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of its faces, and embedding an edge of G∗ between two of these vertices whenever the
faces of G they lie in meet at an edge. Edges of G∗ are embedded so that they cross
only the corresponding edge of G. An example is given in Figure 2.

For a plane graph G = (𝑉, 𝐸), Euler’s Formula gives that |𝑉 | − |𝐸 | + |𝐹 | = 2,
where |𝐹 | is the number of faces. Thus if 𝐴 is the edge set of a spanning tree in G then
|𝑉 | − |𝐴| = 1 and so |𝐹 | − |𝐸 \ 𝐴| = 1 giving that 𝐸 \ 𝐴 is the edge set of a spanning
tree of G∗. As (G∗)∗ = G it follows that geometric duals of plane graphs are algebraic
duals, and so for plane graphs 𝐶 (G)∗ = 𝐶 (G∗).
The converse is also true: if 𝐺 and 𝐻 are algebraic duals then the correspondence

between their spanning tree structures guarantees there are plane graphG andH that are
embeddings (i.e., drawings) of 𝐺 and 𝐻 that are geometric duals, H = G∗. Collecting
all this together gives the following result of Whitney [58].

Theorem 3.2. Let 𝐺 be a connected graph with cycle matroid 𝐶 (𝐺). Then the dual
matroid 𝐶 (𝐺)∗ is the cycle matroid of a graph if and only if 𝐺 is planar. Moreover, if
𝐺 is planar then

𝐶 (G)∗ = 𝐶 (G∗),
where G is any plane embedding of 𝐺, and G∗ its geometric dual.

In this theorem we see how the spanning tree (or cycle matroid) structure of a
graph captures its topological properties. However, Theorem 3.2 illustrates that many
of these properties are tied to planarity. What if you do not want to restrict yourself
to plane or planar graphs? Let us examine what changes when you consider graphs on
surfaces other than the plane.

As noted above, for expositional simplicity we shall only consider orientable sur-
faces. However (almost) everything here extends to non-orientable surfaces (with vary-
ing degrees of difficulty) and details of how to do this can be found in the references.
We will often omit the work “orientable”, although we shall add it when it is crucial.
We recall that the Classification of Surfaces states that every closed orientable surface
is homeomorphic to a sphere with handles (or 𝑛-torus). Every orientable surface with
boundary is homeomorphic to a sphere with handles with the interiors of some discs
removed from it. In both cases the number of handles is its genus.
An embedded graph G is a graph drawn on a closed surface Σ in such a way that

edges only intersect at their ends, and the drawing divides Σ into regions that are
homeomorphic to discs. (As in the plane case, each vertex is a point on the surface,
each edge is simple curve between these points, and these curves do not intersect except
when their ends share a vertex.) The regions of Σ determined by the graph drawing are
called faces of G. Thus a plane graph is a graph embedded in the sphere. We note that
if G has more than one component, then each component of the graph lies in its own
surface. Figure 3a shows a graph embedded in a torus. It has two faces.
The geometric dual G∗ of an embedded graph G is formed just as in the plane case

by placing vertices in the faces and drawing edges between these vertices when the
faces meet at an edge. Note that G and G∗ are embedded in the same surface.
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(b) A ribbon graph.

Figure 3: Realisations of the same embedded graph.

Suppose G is a connected embedded graph and G∗ its geometric dual. Since the
edge sets of G and G∗ correspond, we may assume that a graph and its geometric
dual have the same edge set 𝐸 . The operation ∗ : 𝐴 ↦→ 𝐸 \ 𝐴 sends edge sets of G
to edge sets of G∗, or equivalently the set of spanning subgraphs of G to the set of
spanning subgraphs of G∗.2 (As an example, the bold edges in Figure 2 indicate a pair
of spanning trees identified under this map.) Theorem 3.2 and the characterisation of
planar graphs in terms of algebraic duals depend upon the fact that if G (and so G∗) is
a plane graph, then ∗ sends spanning trees to spanning trees, and this happens if and
only if G is a plane graph.
If G is embedded in an arbitrary closed surface Σ and 𝐴 is the edge set of one of its

spanning trees T. Let ∗(T) be the spanning subgraph of G∗ on the edge set ∗(𝐴). Then
it is easy to see (e.g., by drawing a picture; as an example consider the bold edges in
the middle image of Figure 2) that Σ can be written as the union of a neighbourhood of
T and a neighbourhood of ∗(T). Since T is a spanning tree its neighbourhood is a disc.
Thus the neighbourhood of ∗(T) consist of a once-punctured copy of Σ. In particular,
it is a subgraph whose neighbourhood has exactly one boundary component. This is
the property that is important to us.
A spanning subgraph of an embedded graph G is said to be a spanning quasi-tree

if its neighbourhood has exactly one boundary component. Notice that every spanning
tree is a spanning quasi-tree, although in general an embedded graph will have many
other spanning quasi-trees. The genus of a quasi-tree is the genus of its neighbourhood
considered as a surface with boundary. (We shall reformulate these definitions in the
next section.) If G is in a surface Σ of genus 𝑛, then it will have spanning quasi-trees
of genus 0, 1, 2, . . . , 𝑛, and the spanning trees are just those of genus zero. The map

2At this point we are glossing over the issue of exactly how a subgraph of G should be considered
as an embedded graph. The difficulty is that restricting the drawing of G to the edges and vertices in
the subgraph may result in faces that are not discs, in which case the surface will need to be altered, by
removing any redundant handles, to obtain an embedded graph. This issue will be resolved in the next
section by switching to the language of ribbon graphs. For the present discussion it is safe, although not
quite correct, to think of restricting the drawing of G to the edges and vertices in the subgraph.
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Figure 4: Neighbourhoods of the subgraphs on {2, 4, 6}, {1, 2, 4, 5, 6}, and
{2, 3, 4, 5, 6}.

∗ then sends a tree to a quasi-tree of maximal genus 𝑛. More generally, ∗ will send a
spanning quasi-tree of genus 𝑔 to a spanning quasi-tree of genus 𝑛 − 𝑔.

Example 3.3. For the embedded graph shown in Figure 3a, each of the sets {2, 4, 6},
{1, 2, 4, 5, 6}, and {2, 3, 4, 5, 6} induces a spanning quasi-tree. The neighbourhoods are
shown in Figure 4. The set {2, 4, 6} defines a spanning quasi-tree of genus zero, and
the other two sets induce spanning quasi-trees of genus one.

We started with the question of whether the spanning trees in a graph determine
the graph itself. Whitney’s Theorem provided a complete answer to this question, and
Theorem 3.2 tied together duality, spanning tree structure and planarity. If instead we
want to work with non-plane embedded graphs, rather than looking at spanning trees,
we should consider quasi-trees. Thus we are led to ask:

Is an embedded graph determined by its spanning quasi-trees?

Just as in the spanning trees case we formalise this by asking: If you know the edge set
of each spanning quasi-tree of ribbon graph, as well as any edges that appear in no
quasi-trees, then do you then know the ribbon graph?
Again the immediate answer is no. For example, if G is a plane ribbon graph then

its set of spanning quasi-trees is exactly its set of spanning trees, and we already know
that these do not necessarily determine a plane embedding. In this plane case, however,
Whitney’s 2-Isomorphism Theorem will provide a way to characterise all plane ribbon
graphs that have the same set of spanning quasi-trees. What if G in non-plane? In this
case Whitney’s 2-Isomorphism Theorem does not help.

Bibliographic remarks. Dual matroids date back to H. Whitney’s foundational work
on matroids [60]. The construction of a geometric dual is classical and can seen in
J. Kepler’s work on dual polyhedra (see p. 181 of his Harmonices mundi dating from
1619). Algebraic duals, as well as their connection with planarity and geometric duals,
are due to to H. Whitney [58]. Theorem 3.2 provides a modern statement of his results.
Embedded graphs are standard objects in graph theory. They have several alterna-

tive names and formulations including combinatorial maps, rotation systems, ribbon
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graphs, graph encoded maps, and so on. Excellent introductions to embedded graphs
and topological graph theory are J. Gross and T. Tucker’s [37], and B. Mohar and
C. Thomassen’s [42].

4 Partial duals
Duality tied spanning tree structure to planarity. For non-plane embedded graphs and
quasi-trees we consider a generalisation of geometric duality called partial duality. For
our discussion of partial duals, it is convenient to describe embedded graphs as ribbon
graphs.
A ribbon graph is a structure that arises by taking a regular neighbourhood of a

graph embedded in a surface, but without throwing away the vertex–edge structure of
the graph. See Figure 3. We can think of them informally as “graphs whose vertices
consist of discs, and whose edges consist of ribbons”, as in Figure 3b. They can be
defined formally as follows.

Definition 4.1. A ribbon graph G = (𝑉, 𝐸) is a surface with boundary represented as
the union of two sets of discs, a set𝑉 of vertices, and a set 𝐸 of edges such that: (1) the
vertices and edges intersect in disjoint line segments; (2) each such line segment lies
on the boundary of precisely one vertex and precisely one edge; (3) every edge contains
exactly two such line segments.

Ribbon graphs are equivalent to embedded graphs. Above we described how a
ribbon graph can be obtained from an embedded graph. In the other direction, given
a ribbon graph, the classification of surfaces with boundary ensures there is a unique
way (up to homeomorphism) to embed it in a closed surface by ‘filling in the holes’.
This gives an embedding of the ribbon graph in a closed surface from which it is
clear how to obtain the embedded graph. Two ribbon graphs are equivalent if there is
a homeomorphism from one to the other that sends vertices to vertices and edges to
edges. Thus ribbon graphs are equivalent preciselywhen their corresponding embedded
graphs are. Thus any result about ribbon graphs is a result about embedded graphs,
and vice versa.
Graph theory terminology is extended to ribbon graphs in the obvious way. A

ribbon subgraph H of G is a ribbon graph obtained from G by removing some of its
vertices and edges. It is spanning if it has the same vertices as G. The spanning ribbon
subgraph obtained from G by deleting an edge 𝑒 is denoted by G\𝑒. Ribbon graphs
have topological parameters in addition to their graph theoretic ones. Here we defined
ribbon graphs to be orientable meaning that they are orientable when considered as
a surface with boundary. (Recall for expositional simplicity we restricted ourselves
to orientable surfaces, and therefore to orientable ribbon graphs.) In general ribbon
graphs may be non-orientable as well, and at times we will comment on this case. The
genus of a ribbon graph is its genus as a surface. A connected ribbon graph is plane
it has genus 0 (i.e., if it corresponds to a graph on a sphere). We are often interested
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(a) G. (b) Sewing in discs. (c) Removing original
vertices to get G∗.

(d) Redrawing G∗.

Figure 5: Forming the geometric dual of a ribbon graph.

in the boundary components of a ribbon graph, which are just the components of its
boundary when it is considered as a surface with boundary. A ribbon graph that has
exactly one vertex is called a bouquet. These form an important class of ribbon graphs.

Geometric duality has a very neat description in terms of ribbon graphs. If G =

(𝑉, 𝐸) is a ribbon graph then its geometric dual G∗ is the ribbon graph formed by
taking one disc for each boundary component of G (these will form the vertices of the
dual); for each boundary component of G (which is topologically a circle), identify
it with the boundary of one of these discs (resulting in a surface without boundary);
finally, in the resulting surface, delete the interiors of the vertex discs in𝑉 . This results
in the ribbon graph G∗. The discs that were added during the construction form the
vertices of G∗, and the edges of G form the edges of G∗ but the parts of their boundary
that are and are not attached to vertices are switched. This construction is illustrated in
Figure 5.
It is not too hard to see our two constructions for geometric duals agree. The

construction of G∗ in terms of embedded graphs is a global construction in the sense
that it applies to the whole of G at the same time. However, once you have switched
to the language of ribbon graphs, the construction is easily adapted to give a local
construction, where local here means that you can form the geometric dual G∗ at
individual edges. Then, with this local construction in hand, we can form the dual at
just some of edges while leaving the remaining edges alone. This observation leads to
the surprising idea of partial duals.
Partial duals arise by modifying the description of geometric duality for ribbon

graphs so that the dual is formed with respect to only a subset of edges. LetG = (𝑉, 𝐸)
be a ribbon graph and 𝐴 ⊆ 𝐸 . The partial dual of G with respect to 𝐴, denoted G𝐴,
is the ribbon graph formed as follows. Consider the spanning ribbon subgraph (𝑉, 𝐴)
as a subset of G. The boundary of (𝑉, 𝐴) defines a set of closed curves on G. For each
of these closed curves, take a disc (which will form a vertex of G𝐴) and identify the
curve and the boundary of this disc. Finally, delete the interior of each vertex disc in
𝑉 . The resulting ribbon graph is G𝐴. This construction is illustrated in Figure 6.
The following properties of partial duals follow directly from the definition: G∗ =



From matrix pivots to graphs in surfaces 11

(a) G = (𝑉, 𝐸)
with the boundary
of (𝑉, 𝐴) high-
lighted.

(b) Adding discs to the
boundary of (𝑉, 𝐴).

(c) Deleting vertices in
𝑉 gives G𝐴.

(d) Redrawing
G𝐴.

Figure 6: Forming a partial dual G𝐴 where 𝐴 consist of the two non-loop edges of G.

G𝐸 (G) ;G∅ = G; (G𝐴)𝐵 = G(𝐴∪𝐵)\(𝐴∩𝐵) and so partial duals can be formed one edge at
a time; partial duality acts disjointly on the connected components of a ribbon graph;
and G𝐴 is orientable if and only if G is. Another useful fact for us is that if H is a
spanning ribbon subgraph of G with exactly one boundary component (for example, if
H is a spanning tree) and 𝐴 is the edge set of H, then G𝐴 is a bouquet (i.e., has exactly
one vertex). This is because the vertices ofG𝐴 correspond to the boundary components
of H (just as the vertices of G∗ correspond to the boundary components of G).

Bibliographic remarks. Aswith embedded graphs, ribbon graphs are standard objects
in graph theory. They arise in several settings and under different names including fat
graphs, dessins d’Enfants, and reduced band decompositions. However it should be
remembered that they are just one of the many descriptions of embedded graphs.
J. Ellis-Monaghan and I. Moffatt’s book [31] offers an introduction to ribbon graphs
and partial duals. Although we described partial duals in terms of ribbon graphs
here, they can, of course, be described in other the models for embedded graphs. In
particular their local nature is prominent when they are defined in the languages of
arrow presentations [18], graph encoded maps [29], or permutation models [22].
Partial duality was introduced by S. Chmutov in [18] in order to reconcile the

various results in [20, 22, 27] which constructed the Jones polynomial of a knot or
link as an evaluation of the Bollobás–Riordan polynomial of a ribbon graph. The
Bollobás–Riordan polynomial of [4, 5] is a graph polynomial that offers an analogue
of the Tutte polynomial [53] for embedded graphs. The connections between ribbon
graphs and knot theory extend Thistlethwaite’s well-known connection [50] between
the Tutte polynomial of a plane graph and the Jones polynomial of an alternating link;
a connection that was integral to his proof of the Tait Conjectures. Chmutov used the
term ‘generalized duality’ in his original paper. Its adopted name ‘partial duality’ was
suggested to the author of the present article by D. Archdeacon and has been used in all
subsequent papers. Partial duality has since entered topological graph theory as a topic
of study in its own right and is proving to be a fundamental operation on embedded
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graphs.

5 Ribbon graphs and their spanning quasi-trees
In the language of ribbon graphs, a quasi-tree is a ribbon graph that has exactly one
boundary component. A ribbon subgraph H is a spanning quasi-tree of G if it is a
quasi-tree that contains all of the vertices of G. A ribbon graph of genus 𝑔 has a
spanning quasi-tree of genus 0, 1, . . . , 𝑔, and its spanning trees are exactly its spanning
quasi-trees of genus zero.
Recall form Section 2 that the set of spanning trees in a graph satisfies an exchange

property: if 𝑇 and 𝑇 ′ are spanning trees and 𝑒 is an edge in 𝑇 but not 𝑇 ′, then there
is always some edge 𝑓 in 𝑇 ′ but not 𝑇 such that removing 𝑒 from 𝑇 then adding 𝑓
results in another spanning tree. This exchange property does not hold for spanning
quasi-trees in general.
However, spanning quasi-trees satisfy amore general symmetric exchange property.

If H and H′ are spanning quasi-trees and 𝑒 is an edge that is in exactly one of H or
H′, then there is always an edge 𝑓 that is in exactly one of H′ or H such that adding
or removing each of 𝑒 and 𝑓 from H results in a spanning quasi-tree. Proving that this
symmetric exchange property holds does require a little work. A proof can be found
in [23] or implicitly in [12], or see Figure 16 of [40] for a pictorial explanation. We
shall return to this symmetric exchange property in the next section.

In Section 2 we used matroids to capture the spanning tree structure of a graph. A
minor modification of the definition of a cycle matroid gives a way to similarly record
the spanning quasi-trees in a ribbon graph.

Definition 5.1. Let G = (𝑉, 𝐸) be a connected ribbon graph, and let

F := {𝐹 ⊆ 𝐸 : 𝐹 is the edge set of a spanning quasi-tree of G}.

We call 𝐷 (G) := (𝐸, F ) the delta-matroid of G.

Example 5.2. LetG be the ribbon graph of Figure 3b. Then𝐷 (G) = (𝐸, F ) where 𝐸 =

{1, 2, . . . , 6} and F = {{2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 4, 6}, {4, 5, 6}, {1, 2, 3, 4, 5},
{1, 2, 3, 4, 6}, {1, 2, 4, 5, 6}, {2, 3, 4, 5, 6}}.

Euler’s Formula gives that if H is an orientable quasi-tree with 𝑣 vertices and 𝑒
edges, then (1− 𝑣 + 𝑒)/2 gives the genus of H (or half its genus if H is non-orientable).
As the spanning quasi-trees ofG have the same number of vertices, this relates the sizes
of the sets in F to the topology of the spanning quasi-trees. In particular, it follows
that: every set in F has the same parity (i.e., is of odd or even size) if and only if G
is orientable; the genus of G is one half of the differences in sizes between the largest
and smallest sets in F ; and for G connected, 𝐷 (G) = 𝐶 (G) if and only if G is plane.
Rephrased in terms of ribbon graphs, the map ∗ from Section 3 sends a spanning

ribbon subgraph (𝑉, 𝐴) of G = (𝑉, 𝐸) to the spanning ribbon subgraph (𝑉∗, 𝐸 \ 𝐴) of
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G∗. Moreover, this map sends a spanning quasi-tree of genus 𝑔 to a spanning quasi-tree
of genus 𝑛 − 𝑔 where 𝑛 here is the genus of G. Thus if 𝐷 (G) = (𝐸, F ) and we define
F ∗ := {𝐸 \ 𝐹 : 𝐹 ∈ F }, then for any ribbon graph G we have that 𝐷 (G∗) = (𝐸, F ∗).
The main insights for quasi-tree structure, however, come from partial duals rather than
geometric duals.

Partial duality preserves the quasi-tree structure of a ribbon graph. Let G = (𝑉, 𝐸)
be a ribbon graph and 𝐵 ⊆ 𝐸 . We shall relate the quasi-trees of G to those of its
partial dual G𝐵. For this recall that the symmetric difference 𝑋 4 𝑌 of sets 𝑋 and 𝑌
is (𝑋 ∪ 𝑌 ) \ (𝑋 ∩ 𝑌 ). Then 𝐴 ⊆ 𝐸 is the edge set of a quasi-tree of G if and only if
𝐴 4 𝐵 is the edge set of a quasi-tree of G𝐵. It is not hard to see why this is the case —
essentially it follows from the observation that the boundary components of G{𝑒} and
G\𝑒 correspond. In terms of the delta-matroids, this means that if 𝐷 (G) = (𝐸, F ) and
we set F 𝐵 := {𝐵 4 𝐹 : 𝐹 ∈ F }, then 𝐷 (G𝐵) = (𝐸, F 𝐵).
The significance of this result is that if we wish to study the spanning quasi-trees of

G, we may equivalently study the spanning quasi-trees of any of its partial duals G𝐵.
The partial duals of a ribbon graph can have quite different properties from each other
and from the original ribbon graph. This means that we have some ability to choose the
ribbon graphs to work with without losing any generality, something we didnot have
much scope to do when working with geometric duals alone. A specific instance of
this principle, and one that we shall make much use of here, is that every ribbon graph
has a partial dual that is a bouquet (i.e., a one-vertex ribbon graph). Thus we only ever
need to consider the spanning quasi-tree structure of bouquets. But to make use of this,
we need a better understanding of 𝐷 (G).

Bibliographic remarks. The definition and approach to the delta-matroids of ribbon
graphs that we follow here is due to C. Chun, I. Moffatt, S. Noble, R. Rueckriemen
[23, 24]. However, these delta-matroids are equivalent to A. Bouchet’s delta-matroids
of maps from [12]. There Bouchet associated a delta-matroid with the 4-regular medial
graph of an embedded graph. The delta-matroid arises from its Eulerian circuits, and
the Eulerian circuits correspond to the quasi-trees of the embedded graph. That 𝐷 (G)
determines genus and orientability can be deduced from [12] through the correspon-
dence ([23] gives the form stated here). The behaviour of 𝐷 (G) under partial duals is
from [23].

6 Delta-matroids and quasi-tree structure
Recall from Section 3 that the dual of a matroid 𝑀 = (𝐸,B) is 𝑀∗ = (𝐸,B∗) where
B∗ = {𝐸 \𝐵 : 𝐵 ∈ B}. We can write B∗ as {𝐸 4 𝐵 : 𝐵 ∈ B}, and, in light of the above,
it becomes obvious that we can form a partial dual of a matroid by replacing 𝐸 with
the subset 𝑋 of 𝐸 . So we can define a partial dual of 𝑀 = (𝐸,B) as 𝑀𝑋 := (𝐸,B𝑋 ),
where, as above, B𝑋 := {𝑋 4 𝐵 : 𝐵 ∈ B}.
For example, if 𝑀 = ({1, 2}, {{1}, {2}}) and 𝑋 = {1} then a partial dual is

𝑀𝑋 = ({1, 2}, {{∅}, {1, 2}}). The difficulty, as can be seen in this example, is that 𝑀𝑋
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may no longer be a matroid. Instead its an example of a more general structure called
a delta-matroid.

Definition 6.1. A delta-matroid 𝐷 consists of a pair (𝐸, F ) where 𝐸 is a finite set and
F a non-empty collection of subsets of 𝐸 . Furthermore, F is required to satisfy the
Symmetric Exchange Axiom which states that:

(∀ 𝑋,𝑌 ∈ F ) (∀ 𝑢 ∈ 𝑋 4 𝑌 ) (∃ 𝑣 ∈ 𝑋 4 𝑌 ) (𝑋 4 {𝑢, 𝑣} ∈ F ) .

Since the collection of spanning quasi-trees of a ribbon graph G satisfies the
symmetric exchange property, it follows that 𝐷 (G), as introduced in Definition 5.1, is
a delta-matroid (and so the name we gave 𝐷 (G) is an honest one). Not every delta-
matroid arises in this way, as the following example shows. In fact, almost all delta-
matroids do not come from ribbon graphs, although those that do play an important
role.

Example 6.2. Let 𝐸 = {1, 2, 3, 4},F = {∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},
and F ′ = {∅, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3, 4}}. Then (𝐸, F ) and (𝐸, F ′) are
both delta-matroids but neither is the delta-matroid of a ribbon graph. This can be
verified by calculating the delta-matroids of the bouquets on four edges.

Matroids are also examples of delta-matroids: 𝑀 is matroid if and only if it is a
delta-matroid in which every member of F has the same size. Most delta-matroids are
not matroids though.

While the class of matroids is not closed under partial duals, the class of delta-
matroids is. Let 𝐷 = (𝐸, F ) be a delta-matroid and 𝐵 ⊆ 𝐸 . The partial dual (or twist)
𝐷𝐵 of 𝐷 is defined as the pair (𝐸, F 𝐵) where F 𝐵 := {𝐹 4 𝐵 : 𝐹 ∈ F }. The dual 𝐷∗
of 𝐷 is 𝐷𝐸 .

Example 6.3. If 𝐷 is the delta-matroid from Example 5.2, then 𝐷 {3,4} = (𝐸, F {3,4})
where 𝐸 = {1, . . . , 6} and F {3,4} = {{2, 3, 5}, {2, 3, 6}, {5}, {6}, {3, 5, 6}, {1, 2, 5},
{1, 2, 6}, {1, 2, 3, 5, 6}, {2, 5, 6}}.

Matroid duality captures the way that the spanning trees of a plane graph G are
transformed into the spanning trees of its geometric dual G∗, giving the identity
𝐶 (G∗) = 𝐶 (G)∗ for plane graphs. Delta-matroid duality captures that the spanning
quasi-trees of any ribbon graph G are transformed into the spanning quasi-trees of any
partial dual G𝐵. Indeed the following result follow from our previous discussion.

Theorem 6.4. Let G be a connected ribbon graph. Then

1. 𝐶 (G∗) = 𝐶 (G)∗ if and only if G is a plane ribbon graph;

2. 𝐷 (G∗) = 𝐷 (G)∗ for any ribbon graph G; and

3. 𝐷 (G𝐵) = 𝐷 (G)𝐵 for any ribbon graph G and any subset of its edges 𝐵.
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Just as with ribbon graphs, we can use partial duality to transform a delta-matroid
into one with desirable properties. A delta-matroid 𝐷 = (𝐸, F ) is said to be normal
if ∅ ∈ F . Every delta-matroid has a normal partial dual: if 𝐷 = (𝐸, F ) and 𝐹 is any
element of F , then 𝐷𝐹 is normal. On the other hand, some properties are preserved
by partial duals. For example, a delta-matroid 𝐷 = (𝐸, F ) is said to be even if every
set in F has the same parity (i.e., they are all of odd size or all of even size). If a
delta-matroid is even then so is each of its partial duals.
By making use of the properties of spanning quasi-trees we observe that for a

connected ribbon graphG, the delta-matroid 𝐷 (G) is even if and only ifG is orientable,
and that 𝐷 (G) is normal if and only ifG is a bouquet. As we are restricting to orientable
ribbon graphs here, we shall focus on even delta-matroids.

Bibliographic remarks. Delta-matroids were introduced in the mid-1980s, indepen-
dently, by A. Bouchet in [6]; R. Chandrasekaran and S. Kabadi, under the name of
pseudo-matroids, in [17]; and A. Dress and T. Havel, under the name of metroids,
in [28]. Delta-matroids are related to many different matroidal-objects, including:
É. Tardos’ 𝑔-matroids [49], J. Kung’s Pfaffian structures [39], L. Qi’s ditroids [46],
A. Bouchet’s symmetric matroids [6], L. Traldi’s transition matroids [51], Bouchet’s
Isotropic systems [7], jump systems [14], and Bouchet’s multimatroids [15]. This list
is indicative, not exhaustive.
The discipline has adopted Bouchet’s terminology and notation (most of the early

development of the topic is due to Bouchet and his collaborators) and it is that we
follow here except in the following instance. What we have called the “partial dual”
and denoted 𝐷𝐵 is usually called a “twist” and denoted 𝐷 ∗ 𝐴, but here we prefer to
keep close to the ribbon graph terminology.
Bouchet, in [6], showed that the partial dual of a delta-matroid is indeed a delta-

matroid. That 𝐷 (G∗) = 𝐷 (G)∗ is implicit in [12] (it was translated into this form
in [23]), and that 𝐷 (G𝐵) = 𝐷 (G)𝐵 is from [23].
Additional background on delta-matroids can be found in the survey [40] or in the

source papers.

7 Matrices and representability
We are interested in the spanning quasi-trees of a connected orientable ribbon graph
G. Since 𝐷 (G𝐵) = 𝐷 (G)𝐵, partial duality preserves the spanning quasi-tree structure
and so, without loss of generality, we may assume that G is a bouquet. Then the ribbon
subgraph ofG induced by any two of its edges forms either a genus one or a genus zero
ribbon graph. We say that two edges of G are interlaced if the ribbon subgraph G they
induce has genus one.
There is a method from algebraic topology (e.g., see Theorem 3 of [3] and its

subsequent exercises) for determining via a matrix if an orientable bouquet is a quasi-
tree. Let G = (𝑉, 𝐸) be an orientable bouquet. Number the edges of G by travelling
around the boundary of the vertex from an arbitrary starting point in either direction
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and assigning the numbers 1, 2, . . . , |𝐸 | in the order that you first encounter one of
their ends. Now construct an |𝐸 | × |𝐸 |-matrix IMO

G
by setting the (𝑖, 𝑗)-entry to be

sgn(𝑖 − 𝑗) if the edges labelled 𝑖 and 𝑗 are interlaced, and 0 otherwise. (Here sgn is the
signum function.) Then det(IMO

G
) = 1 if G is a quasi-tree and is 0 otherwise.

This construction can be simplified by working over the field of two elements,
GF(2). In this case, as we are forgetting the signs, we can construct an |𝐸 | × |𝐸 |-matrix
IMG whose rows and columns are indexed by the edges ofG by setting the (𝑒, 𝑓 )-entry
to be 1 if edges 𝑒 and 𝑓 are interlaced, and to be 0 otherwise. Again det(IMG) = 1 if G
is a quasi-tree and is 0 otherwise, where here we compute the determinant over GF(2).
The matrices IMO

G
and IMG in fact determine the whole spanning quasi-tree struc-

ture of G (although not G itself). This is since we can test if a ribbon subgraph H of G
is a quasi-tree by computing the determinant of the principal submatrix given by the
edges of H (delete any rows and columns of IMO

G
or IMG that correspond to edges not

in H).
Thus the delta-matroid 𝐷 (G) can be recovered from the matrices IMO

G
or IMG by

computing determinants of their principal submatrices over R or GF(2) respectively.
These matrices provide what is known as a representation of the delta-matroid 𝐷 (G).
Before continuing let us highlight one issue with this approach to studying spanning

quasi-trees via matrices. As the matrices are only defined on bouquets, if we are
interested in a ribbon graph G that has more than one vertex then we can obtain a
matrix by choosing a one-vertex partial dual of G and computing a matrix from that.
However, different choices of partial dual will result in different matrices, so we will
need to understand how the matrices change under this choice.
A matrixA is symmetric ifA𝑡 = A, is skew-symmetric ifA𝑡 = −A and the diagonal

entries are zero. (The condition on the diagonal is there for fields of characteristic 2.)
Suppose that A is a symmetric or skew-symmetric matrix over a field k, and that a
set 𝐸 labels its rows and columns (in the same order). For 𝑋 ⊆ 𝐸 , let A[𝑋] denote
the principal submatrix of A given by the rows and columns indexed by 𝑋 . Define a
collection F of subsets of 𝐸 by

𝑋 ∈ F ⇐⇒ A[𝑋] is non-singular,
where A[∅] is considered to be non-singular. Then the pair 𝐷 (A) := (𝐸, F ) forms a
delta-matroid. (This result is due to A. Bouchet [11].)
Since the principal submatrices of IMO

G
or IMG are non-singular precisely when

the corresponding edge sets of G define a quasi-tree, it follows that when G is an
orientable bouquet

𝐷 (G) = 𝐷 (IMO
G ) = 𝐷 (IMG),

where we work over R for the middle expression and GF(2) for the one on the right.
Since A[∅] is non-singular, such a delta-matroid 𝐷 (A) is necessarily normal. We

say a normal delta-matroid is representable if it can be obtained as the delta-matroid
of a matrix. Every delta-matroid is a partial dual of a normal delta-matroid, so we can
extend representability to non-normal delta-matroids by saying that a delta-matroid is
representable if one of its partial duals is the delta-matroid of a matrix.
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Definition 7.1. Let 𝐷 = (𝐸, F ) be a delta-matroid. We say that 𝐷 is representable
over k, if there exists some 𝑋 ⊆ 𝐸 and a symmetric or skew-symmetric matrix A over
a field k such that

𝐷𝑋 = 𝐷 (A).

A delta-matroid is binary if it is representable over GF(2), and is regular if it is
representable over R. Delta-matroids of orientable ribbon graphs are binary since

𝐷 (G)𝑋 = 𝐷 (G𝑋 ) = 𝐷 (IMG𝑋 ),

where 𝑋 is the edge set of any spanning quasi-tree of G. Similarly, the matrix IMO
G𝑋

shows that they are regular. (We note that orientability matters here as delta-matroids
of non-orientable ribbon graphs are not regular, although they are binary.)
The definition of representability for delta-matroids requires a choice of a set

𝑋 to make 𝐷𝑋 normal. In general, there are many such sets to choose from, and
therefore a delta-matroid 𝐷 will have many representing matrices. How do the different
representing matrices of a delta-matroid relate? That is, if 𝐷 (A) = 𝐷 (B)𝑋 what can
you say about the matrices A and B?
The relevant matrix operation predates delta-matroids and can be found in work of

A. Tucker [54] that appeared in 1960. Let A be a square matrix over a field k, whose
rows and columns are labelled (in the same order) by a set 𝐸 . Let 𝑋 ⊆ 𝐸 . Without
loss of generality (reordering if necessary), suppose that 𝑋 labels the first |𝑋 | rows and
columns of the matrix. Then A has a block form

𝑋 𝐸 \ 𝑋[ ]
𝑋 𝛼 𝛽

𝐸 \ 𝑋 𝛾 𝛿
.

Suppose that A[𝑋] is non-singular. Then the principal pivot transform of A with
respect to 𝑋 is the matrix A ∗ 𝑋 with block form

𝑋 𝐸 \ 𝑋[ ]
𝑋 𝛼−1 𝛼−1𝛽

𝐸 \ 𝑋 −𝛾𝛼−1 𝛿 − 𝛾𝛼−1𝛽
.

A. Bouchet, in [11], proved that principal pivot transformations correspond to
partial duals of delta-matroids.

Theorem 7.2. Let A be a symmetric or skew-symmetric matrix over a field k, whose
rows and columns are labelled (in the same order) by a set 𝐸 . Let 𝑋 ⊆ 𝐸 be such that
A[𝑋] is non-singular. Then A ∗ 𝑋 is a symmetric or skew-symmetric matrix (of the
same type as A), and

𝐷 (A ∗ 𝑋) = 𝐷 (A)𝑋 . (7.1)
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Thus ifA is a representingmatrix for a delta-matroid𝐷, thenB is also a representing
matrix for 𝐷 if and only if B is a principal pivot transform of B. Thus we have our
answer to the problem in this section: all of the representing matrices for an orientable
ribbon graph G are principal pivot transformations of one another.

Bibliographic remarks. That 𝐷 (A) is a delta-matroid, that 𝐷 (A ∗ 𝑋) = 𝐷 (A)𝑋 ,
and the definition of representability is due to A. Bouchet and from [11]. The repre-
sentations for 𝐷 (G) can also be deduced from this reference (see also [9] for IMO

G
),

although changes in language are needed (the interpretation in ribbon graph language
is from [23]). However, a different route to showing that 𝐷 (G) = 𝐷 (IMO

G
) = 𝐷 (IMG)

was taken in this section. Here we deduced the result from a theorem on weight systems
of Vassiliev invariants due to D. Bar-Natan and S. Garoufalidis [3]. This knot theory
work seems to be entirely independent of Bouchet’s work.

8 The reappearance of graphs

So far we have seen that the spanning quasi-tree structure of an orientable ribbon graph
G is described by its delta-matroid𝐷 (G), and also by a binary representingmatrix IMH,
where H is any one-vertex partial dual of G. The matrix IMH is a skew-symmetric 0-1
matrix. (Recall that skew-symmetric matrices here must have zeros on their diagonal.)
Thus we can consider it as the adjacencymatrix of a simple graph𝐺. (A graph is simple
if it does not have multiple edges or loops.) In this section we consider the properties
of these simple graphs and what they tell us about ribbon graphs.
The adjacency matrix, AM𝐺 , of a simple graph 𝐺 is the matrix over GF(2) whose

rows and columns correspond to the vertices of 𝐺; and whose (𝑢, 𝑣)-entry is 1 if there
is an edge 𝑢𝑣 in 𝐺 and is 0 otherwise.
Adjacency matrices are skew-symmetric, and every skew-symmetric matrix over

GF(2) is an adjacency matrix of some simple graph. This results in a 1-1 corre-
spondence between skew-symmetric binary matrices and simple graphs. Every skew-
symmetric binary matrix A gives rise to a normal even binary delta-matroid 𝐷 (A).
(The delta-matroid must be even since odd order skew-symmetric matrices are always
singular.) On the other hand, a normal even binary delta-matroid𝐷 determines a unique
skew-symmetric matrix A such that 𝐷 = 𝐷 (A). (Since if 𝐷 = (𝐸, F ) is binary then
it must come from a binary matrix, and the sets of size two in F determine which
entries of this matrix are zero and which are one.) This means that there is a 1-1
correspondence between simple graphs and normal even binary delta-matroids.
However, we want work with all even binary delta-matroids not just normal ones.

Obtaining a representing matrix for an arbitrary binary even delta-matroid 𝐷 requires
choosing a normal partial dual of it. Different choices will result in different matrices,
however, from the results of Section 7, we know that these matrices will be related
through principal pivot transforms. How are the simple graphs corresponding to these
twomatrices related? Once again we can find the relevant operation in the literature in a
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𝑢 𝑣

𝑆𝑢𝑣

𝑆𝑢 𝑆𝑣

toggle

(a) 𝐺

𝑣 𝑢

𝑆𝑢𝑣

𝑆𝑢 𝑆𝑣

(b) 𝐺 ∧ 𝑢𝑣

Figure 7: Pivoting (edges between the three sets, 𝑆𝑢 , 𝑆𝑣 , and 𝑆𝑢,𝑣 , are ‘toggled’, and
the names of 𝑢 and 𝑣 are switched).

move introduced by A. Bouchet in [10, 16] and rediscovered by R. Arratia, B. Bollobás,
and G. Sorkin in [1, 2].

Definition 8.1. Let𝐺 be a simple graph, and 𝑢𝑣 be an edge. Partition the vertices other
than 𝑢 and 𝑣 into four classes: (1) vertices adjacent to 𝑢 but not 𝑣, (2) vertices adjacent
to 𝑣 but not 𝑢, (3) vertices adjacent to both 𝑢 and 𝑣, (4) vertices adjacent to neither 𝑢
nor 𝑣. The pivot of the edge 𝑢𝑣 is the graph,𝐺∧𝑢𝑣, constructed from𝐺 as follows. For
any vertex pair 𝑥, 𝑦 where 𝑥 is in one of the classes (1)–(3), and 𝑦 is in a different class
(1)–(3), “toggle” the pair 𝑥𝑦 in the edge set (so if 𝑥𝑦 was an edge, make it a non-edge;
and if 𝑥𝑦 was a non-edge, make it an edge). Finally, switch the names of the vertices 𝑢
and 𝑣. See Figure 7.

Suppose 𝐺 is a simple graph with adjacency matrix AM𝐺 , and 𝑢𝑣 is an edge of
𝐺. Then the principal submatrix AM𝐺 [{𝑢, 𝑣}] defined by the edge has zeros on the
diagonal and ones elsewhere and is hence non-singular. This means we can form the
principal pivot transform AM𝐺 ∗ {𝑢, 𝑣} of AM𝐺 . This changes the matrix in a very
nice way and its not too hard an exercise (remembering we are working over GF(2))
to track this change through to the corresponding simple graphs: the graphs will be
pivots of one another. Passing to delta-matroids, for an edge 𝑢𝑣 of 𝐺 we have that

𝐷 (AM𝐺) {𝑢,𝑣 } = 𝐷 (AM𝐺 ∗ {𝑢, 𝑣}) = 𝐷 (AM𝐺∧𝑢𝑣 ).

Thus we can identify even binary delta-matroids up to partial duals with simple graphs
up to pivoting:{

even binary delta-matroids
up to partial duals

}
1-1←→

{
simple graphs
up to edge pivots

}
.

As edge pivoting is of interest in graph theory in its own right, this identification
opens up a new body of graph theory for studying delta-matroids, and vice versa.
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Figure 8: Two bouquets.

1 2

34

(a) 𝐺.

2 1

34

(b) 𝐻.

Figure 9: Two simple graphs.

However there is a catch when we want to use simple graphs and edge pivots to study
ribbon graphs and their spanning quasi-trees. Although the delta-matroid 𝐷 (G) of an
orientable ribbon graph is even and binary, not all even and binary delta-matroids arise
from ribbon graphs. This means that the delta-matroids of ribbon graphs correspond
with a proper subclass of simple graphs. We turn our attention to this class in the next
section.

Example 8.2. As an illustration of the discussion from Section 6 onwards, consider
the bouquets G and H of Figure 8. Both are on the edge set 𝐸 = {1, 2, 3, 4}. Their
binary representing matrices are:

IMG =

1 2 3 4


1 0 1 1 1
2 1 0 1 0
3 1 1 0 0
4 1 0 0 0

, and IMH =

1 2 3 4


1 0 1 1 0
2 1 0 1 1
3 1 1 0 1
4 0 1 1 0

.

Now let 𝐺 and 𝐻 be the simple graphs in Figure 9. It is readily checked that AM𝐺 =

IMG and AM𝐻 = IMH.
By direct computation from the bouquets and matrices we see that 𝐷 (G) =
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𝐷 (IMG) = (𝐸, FG) and 𝐷 (H) = 𝐷 (IMH) = (𝐸, FH) where FG = {∅, {1, 2}, {1, 3},
{2, 3}, {1, 4}, {1, 2, 3, 4}} and FH = {∅, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.
The bouquets G and H are partial duals with H = G{1,2}. In addition, the matrices

IMG and IMH can be verified as principal pivot transforms with IMH = IMG ∗ {1, 2},
and 𝐺 and 𝐻 are pivots with 𝐻 = 𝐺 ∧ 12. Thus we can see that

𝐷 (G{1,2}) = 𝐷 (G) {1,2} = 𝐷 (IMG ∗ {1, 2}) = 𝐷 (AM𝐺∧12),

and we can work with spanning quasi-trees in any of the settings.

Bibliographic remarks. Pivoting is a graph operation related to A. Kotzig’s trans-
formations on Eulerian circuits [38]. It was introduced by A. Bouchet in the context
of isotropic systems [10] and multimatroids [16], and rediscovered by R. Arratia,
B. Bollobás, and G. Sorkin when they introduced the interlace polynomial in [1, 2].
Further information on binary delta-matroids can be found in [13]. In particular this

reference contains the result that a normal binary delta-matroid (𝐷, F ) is completely
determined by the members of F of size at most two.
The identification of even binary delta-matroids considered up to partial duals with

simple graphs considered up to edge pivots can be extended to all binary delta-matroids.
They can be identified with looped simple graphs considered up to elementary pivots
which are pivots on edges not adjacent to loops, and a local complementation move
(toggle the edges and non-edges, and loops and non-loops in the neighbourhood of
a looped vertex). This identification was first written down by J. Geelen in [33] (see
also [34]) although he has said that the graph-theoretical point-of-view was used by
both A. Bouchet and W. Cunningham in their discussions with him at the time of
writing that paper.

9 Bringing it all together
A chord diagram consists of a circle in the plane and a number line segments, called
chords, whose end-points lie on the circle. The end-points of chords should all be
distinct. The intersection graph of a chord diagram is the graph 𝐺 = (𝑉, 𝐸) where𝑉 is
the set of chords, and where 𝑢𝑣 ∈ 𝐸 if and only if the chords 𝑢 and 𝑣 intersect. A graph
is a circle graph if it is the intersection graph of a chord diagram. Figure 10 shows a
circle graph and a corresponding chord diagram.
Now suppose thatG is an orientable bouquet. We may regardG as a chord diagram

with the vertex boundary forming the circle and chords defined by where the edges
touch this circle. Let 𝐼G denote the corresponding intersection graph. There is an edge
𝑒 𝑓 of 𝐼G whenever the edges 𝑒 and 𝑓 are interlaced in G. In terms of the delta-matroid
𝐷 (G) = (𝐸, F ) this means that there is an edge 𝑒 𝑓 of 𝐼G whenever {𝑒, 𝑓 } is in F .
Thus, since 𝐷 (G) is binary, we can obtain a binary representing matrix A for 𝐷 (G)
by setting the (𝑒, 𝑓 )-entry to be 1 if 𝑒 𝑓 is an edge in 𝐼G and 0 otherwise, so A is
the adjacency matrix of 𝐼G. Thus the intersection graph 𝐼G of G is exactly the simple
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Figure 10: A circle graph and a corresponding chord diagram.

graph corresponding to the delta-matroid 𝐷 (G). (As an example, it can be checked
that 𝐺 = 𝐼G and 𝐻 = 𝐼H in Example 8.2.)
We can then conclude that circle graphs are exactly the simple graphs that represent

the delta-matroids of orientable ribbon graphs:{
Delta-matroids of orientable ribbon graphs

up to partial duals

}
1-1←→

{
circle graphs
up to edge pivots

}
.

Circle graphs are well-studied in graph theory and their appearance in the present
setting provides access to a large body of work that we can apply to ribbon graphs.
Let us take advantage of this to characterise the delta-matroids that arise from ribbon
graphs.

A minor of a graph is any graph that can be obtained from it by edge deletion
(remove an edge), vertex deletion (remove a vertex and the edges it meets) and edge
contraction (delete the edge then identify its ends). An excluded minor characterisation
of a class of graphs is a result that states that a graph belongs to the class if and only if it
has no minor in a given finite list. Possibly the best-know example of an excludedminor
characterisation is Wagner’s Theorem which states that a graph is planar if and only if
it has no minor isomorphic to 𝐾5 (the graph of five vertices and one edge between each
pair of vertices) or 𝐾3,3 (the graph with two sets of three vertices and an edge between
all pairs of vertices in different sets). (The name Kuratowski’s Theorem, which uses a
different type of minor, is often associated with this result.) The spectacular Robertson–
Seymour Theorem gives that every minor-closed class of graphs has an excluded minor
characterisation [47].
Circle graphs, however, are not closed under the usual graph minor operations, and

so it does not make sense to ask for an excluded minor characterisation of them with
the usual type of graph minor. However, the set of circle graphs is closed under edge
pivots and vertex deletions which leads to a different type of graph minor.
A pivot-minor of a graph is any graph that can be obtained from it by edge pivots

and vertex deletions. Circle graphs have an excluded pivot-minor characterisation.
J. Geelen and S. Oum [34] proved that a graph is a circle graph if and only if it has no
pivot-minor isomorphic to any of the graphs shown in Figure 11.
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Figure 11: Excluded pivot-minors for circle graphs.

We can use the correspondence between delta-matroids and simple graphs to derive
an excludedminor characterisation for the class of delta-matroids that arise from ribbon
graphs. For this we need delta-matroid versions of the vertex minor operations. We
know from Section 8 that the delta-matroid version of an edge pivot is a partial dual.
Vertex deletion corresponds to the standard idea of deletion for delta-matroids.
Let 𝐷 = (𝐸, F ) be a delta-matroid, and 𝑒 ∈ 𝐸 . Then 𝐷 delete 𝑒, denoted 𝐷\𝑒, is

defined as 𝐷\𝑒 := (𝐸\𝑒, F ′), where F ′ = {𝐹 : 𝐹 ∈ F and 𝑒 ∉ 𝐹} when 𝑒 is not in
every member of F ; and F ′ = {𝐹\𝑒 : 𝐹 ∈ F and 𝑒 ∈ 𝐹} 𝑒 is in every member of F .
Although we do not use the fact here, it is worth noting that 𝐷 (G\𝑒) = 𝐷 (G)\𝑒. A
delta-matroid 𝐷 ′ is said to be a minor of a delta-matroid 𝐷 if it can be obtained from
𝐷 through the operations of deletion and partial duality.
By translating the excluded pivot-minor characterisation of circle graphs we obtain

the following characterisation the even delta-matroids that arise from ribbon graphs.

Theorem 9.1. Let 𝐷 be an even delta-matroid. Then 𝐷 = 𝐷 (G) for some ribbon graph
G if and only if has no minor isomorphic to 𝐷 (AM𝐺) where 𝐺 is one of the graphs
shown in Figure 11, or to one of the delta-matroids given in Example 6.2.

The excluded minors from Example 6.2 are included to ensure that an even delta-
matroid is binary and hence comes from a simple graph.

Finally we come to the question from which our journey into delta-matroids began:
Do the spanning quasi-trees of an embedded graph determine it? In terms of delta-
matroids we are asking:

If 𝐷 (G) = 𝐷 (H) then how are the ribbon graphs G and H related?
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vertex split
−−−−−−−−→
←−−−−−−−
vertex cut

G

Figure 12: Vertex joins and vertex splits.

So we are looking for a version of Whitney’s Theorem that applies to ribbon graphs
and their delta-matroids.
Again we can make use of the circle graph literature. There has been extensive work

on recovering chord diagrams from circle graphs, and on determining which chord
diagrams correspond to the same circle graph. Appearing implicitly in [8, 25, 32], and
explicitly in [19], is an operation on chord diagrams called mutation that relates all
chord diagrams that have the same intersection graph. This operation cuts out a certain
substructure in a chord diagram, rotates it then glues it back in (we omit a definition
of the move as we do not use its details here). The result uses Cunningham’s theory
of graph decompositions from [26] to decompose an intersection graph into ‘prime’
graphs that have unique intersection graphs. Mutation then corresponds to the choices
that are made when reassembling a corresponding chord diagram from these prime
graphs.
In the present setting, if two ribbon graphs G and H have equal delta-matroids,

then there must be some set of edges 𝑋 such that the partial duals G𝑋 and H𝑋 are
both bouquets with the same delta-matroid. The delta-matroids 𝐷 (G𝑋 ) and 𝐷 (H𝑋 )
therefore correspond to the same simple graph. As this simple graph can be considered
as the intersection graphs of G𝑋 and H𝑋 , it follows that G𝑋 and H𝑋 must be related
by mutation (technically, a version of mutation for bouquets). Then by analysing how
mutation changes under partial duality, we can pull back the operations to the original
ribbon graphsG andH. This approach results in a characterisation of ribbon graphs that
have the same delta-matroid. We describe the relevant moves then the characterisation.
The first move is the analogue of the vertex identification and vertex cleaving that are
used in Whitney’s Theorem and illustrated in Figure 1.
Suppose thatG1 andG2 are ribbon graphs. For 𝑖 = 1, 2, suppose that 𝛼𝑖 is an arc that

lies on the boundary of G𝑖 and entirely on a vertex boundary. If a ribbon graph G can
be obtained from G1 and G2 by identifying the arc 𝛼1 with 𝛼2 (where the identification
merges the vertices), then we say that G is obtained from G1 and G2 by a vertex join,
and that G1 and G2 are obtained from G by a vertex split. The operations are illustrated
in Figure 12 and are standard operations in ribbon graph theory. It is important to
observe that the definition of a vertex join does not allow for any “interlacing” of the
edges of 𝐺1 and 𝐺2.
The next operation we need is called mutation. It is illustrated in Figure 13. The

figure shows a local change in a ribbon graph (so the ribbon graphs are identical outside
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Figure 13: Mutation for ribbon graphs.

of the region shown) and the two parts of vertices that are shown in it may come from
the same vertex. To define the move, let G1 and G2 be ribbon graphs. For 𝑖 = 1, 2, let
𝛼𝑖 and 𝛽𝑖 be two disjoint directed arcs that lie on the boundary ofG𝑖 and lie entirely on
boundaries of (one or two) vertices. Furthermore suppose thatG is a ribbon graph that is
obtained by identifying the arcs 𝛼1 with 𝛼2, and 𝛽1 with 𝛽2, where both identifications
are consistent with the direction of the arcs. (The identification merges the vertices.)
Suppose further that H is a ribbon graph obtained by either: (1) identifying 𝛼1 with
𝛼2, and 𝛽1 with 𝛽2, where the identifications are inconsistent with the direction of the
arcs; (2) identifying 𝛼1 with 𝛽2, and 𝛽1 with 𝛼2, where the identifications are consistent
with the direction of the arcs; (3) identifying 𝛼1 with 𝛽2, and 𝛽1 with 𝛼2, where the
identifications are inconsistent with the direction of the arcs. Then we say that G and
H are related by mutation.
With these definitions in hand, we can complete our tour with an answer (due to

I. Moffatt and J. Oh [41]) to our original question as to what extend the spanning
quasi-trees determine the ribbon graph.

Theorem 9.2. Let G and H be a connected orientable ribbon graphs, and let 𝐷 (G)
and 𝐷 (H) be their delta-matroids. Then 𝐷 (G) = 𝐷 (H) if and only ifG can be obtained
from H by ribbon graph isomorphism, vertex joins, vertex splits, or mutation.
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Figure 14: Two ribbon graphs with the same delta-matroid.

As an example of Theorem 9.2, the two non-equivalent ribbon graphs in Figure 14
can be obtained from each other by isomorphism, vertex joins, vertex splits, and
mutation. Therefore their delta-matroids are isomorphic.

Bibliographic remarks. The excluded minor characterisation for the delta-matroids
of orientable ribbon graphs stated in Theorem 9.1 is implicit in J. Geelen and S. Oum’s
paper [34]. There it was stated for even Eulerian delta-matroids which, from [23], are
equivalent to the delta-matroids of ribbon graphs. The ribbon graph formulation given
here is from [23]. The characterisation extends to non-orientable ribbon graphs. Again
this was given in for Eulerian delta-matroids in [34] and translated to the ribbon graph
setting in [23]. There are 171 excluded minors in this case.
The excluded minor characterisation of binary delta-matroids alluded to after the

statement of Theorem 9.1 is due to A. Bouchet and A. Duchamp [13]. There are five
excluded minors for binary delta-matroids, and the two appearing in Example 6.2 are
the even ones.
Theorem 9.2 is due to I. Moffatt and J. Oh, and from [41]. It is given there more

generally for non-orientable and non-connected ribbon graphs. Extending to the non-
connected case is straightforward, but additional work is required for the non-orientable
case.

10 Now we can get started...
Weset outwith the classical question ofwhether the spanning trees in a graph determine
the graph itself. This led to a topological version it, if the spanning quasi-trees in a
ribbon graph determine it. In answering this question we were guided by the idea of
partial duality which appeared in different forms and settings. This took us to ribbon
graphs, matroids and delta-matroids, matrices, as well as simple and circle graphs.
Moreover, we saw that delta-matroids provided the central unifying framework for all
of these ideas. It is this common framework that we should really take away from our
journey.
As mentioned earlier, there is a well-known and successful symbiotic relationship

between graph theory and matroid theory, with each area informing the other. As
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reported in [45], W. Tutte famously observed that, “If a theorem about graphs can be
expressed in terms of edges and circuits alone it probably exemplifies a more general
theorem about matroids.” An analogous correspondence between embedded graphs
and delta-matroids was proposed in [23, 24]. This view of delta-matroid is proving to
be successful. It has led implicitly and explicitly to advances in, especially, the topics of
graph polynomials, and the structural theory of both delta-matroids and ribbon graphs.
But we really are only at the beginning of this journey. Many fundamental questions
remain unanswered and directions remain unexplored, but our knowledge is rapidly
advancing.

Acknowledgments. This exposition draws upon work with many collaborators, to whom I am
greatly indebted. These include Carolyn Chun, Rhiannon Hall, Criel Merino, Eunice Mphako-
Banda, Jaeseong Oh, Ralf Rueckriemen, and especially Steven Noble.

References
[1] R. Arratia, B. Bollobás, G. B. Sorkin, The interlace polynomial: a new graph poly-
nomial. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms (San Francisco, CA, 2000), ACM, New York, 237–245 (2000).
dl.acm.org/doi/10.5555/338219.338258

[2] R. Arratia, B. Bollobás, G. B. Sorkin, The interlace polynomial of a graph. J. Combin.
Theory Ser. B 92, 199–233 (2004). doi.org/10.1016/j.jctb.2004.03.003

[3] D. Bar-Natan, S. Garoufalidis, On the Melvin–Morton–Rozansky conjecture. Invent.
Math. 125, 103–133 (1996). doi.org/10.1007/s002220050070

[4] B. Bollobás, O. Riordan, A polynomial of graphs on surfaces. Math. Ann. 323, 81–96
(2002). doi.org/10.1007/s002080100297

[5] B. Bollobás, O. Riordan, A polynomial invariant of graphs on orientable surfaces. Proc.
London Math. Soc. 83, 513–531 (2001). doi.org/10.1112/plms/83.3.513

[6] A. Bouchet, Greedy algorithm and symmetricmatroids.Math. Programming 38, 147–159
(1987). doi.org/10.1007/BF02604639

[7] A. Bouchet, Isotropic systems. European J. Combin. 8, 231–244 (1987).
doi.org/10.1016/S0195-6698(87)80027-6

[8] A. Bouchet, Reducing prime graphs and recognizing circle graphs. Combinatorica 7,
243–254 (1987). doi.org/10.1007/BF02579301

[9] A. Bouchet, Unimodularity and circle graphs. Discrete Math. 66, 203–208 (1987).
doi.org/10.1016/0012-365X(87)90132-4

[10] A. Bouchet, Graphic presentations of isotropic systems. J. Combin. Theory Ser. B 45,
58–76 (1988). doi.org/10.1016/0095-8956(88)90055-X

[11] A. Bouchet, Representability of 4-matroids. In Combinatorics (Eger, 1987), Colloq.
Math. Soc. János Bolyai 52, North-Holland, Amsterdam, 167–182 (1988).

[12] A. Bouchet, Maps and 4-matroids. Discrete Math. 78, 59–71 (1989).
doi.org/10.1016/0012-365X(89)90161-1



28 Iain Moffatt

[13] A. Bouchet, A. Duchamp, Representability of 4-matroids over GF(2). Linear Algebra
Appl. 146, 67–78 (1991). doi.org/10.1016/0024-3795(91)90020-W

[14] A. Bouchet, W. H. Cunningham, Delta-matroids, jump systems, and bisubmodular poly-
hedra. SIAM J. Discrete Math. 8, 17–32 (1995). doi.org/10.1137/S0895480191222926

[15] A. Bouchet, Multimatroids. I. Coverings by independent sets. SIAM J. Discrete Math. 10,
626–646 (1997). doi.org/10.1137/S0895480193242591

[16] A. Bouchet, Multimatroids. III. Tightness and fundamental graphs, European J. Combin.
22, 657–677 (2001). doi.org/10.1006/eujc.2000.0486

[17] R. Chandrasekaran, S. N. Kabadi, Pseudomatroids. Discrete Math. 71, 205–217 (1988).
doi.org/10.1016/0012-365X(88)90101-X

[18] S. Chmutov, Generalized duality for graphs on surfaces and the signed
Bollobás–Riordan polynomial. J. Combin. Theory Ser. B 99, 617–638 (2009).
doi.org/10.1016/j.jctb.2008.09.007

[19] S. Chmutov, S. Lando, Mutant knots and intersection graphs. Algebr. Geom. Topol. 7,
1579–1598 (2007). doi.org/10.2140/agt.2007.7.1579

[20] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás–Riordan poly-
nomial.Mosc. Math. J. 7, 409–418 (2007). mathjournals.org/mmj/vol7-3-2007/chmutov-
pak.pdf

[21] S. Chmutov, J. Voltz, Thistlethwaite’s theorem for virtual links. J. Knot Theory Ramifi-
cations 17, 1189–1198 (2008). doi.org/10.1142/S0218216508006609

[22] S. Chmutov, F. Vignes-Tourneret, Partial duality of hypermaps. arXiv:1409.0632.
[23] C. Chun, I.Moffatt, S. D.Noble, R. Rueckriemen, Matroids, delta-matroids and embedded

graphs. J. Combin. Theory Ser. A 67, 7–59 (2019). doi.org/10.1016/j.jcta.2019.02.023
[24] C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, On the interplay between em-

bedded graphs and delta-matroids. Proc. London Math. Soc. 118, 675–700 (2019).
doi.org/10.1112/plms.12190

[25] B. Courcelle, Circle graphs and monadic second-order logic. J. Appl. Log. 6, 416–442
(2008). doi.org/10.1016/j.jal.2007.05.001

[26] W. H. Cunningham, Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods 3, 214–228 (1982). doi.org/10.1137/0603021

[27] O. T. Dashbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. W. Stoltzfus, The Jones
polynomial and graphs on surfaces. J. Combin. Theory Ser. B 98, 384–399 (2008).
doi.org/10.1016/j.jctb.2007.08.003

[28] A. Dress, T. F. Havel, Some combinatorial properties of discriminants in metric vector
spaces. Adv. in Math. 62, 285–312 (1986). doi.org/10.1016/0001-8708(86)90104-0

[29] M. N. Ellingham and X. Zha, Partial duality and closed 2-cell embeddings. J. Comb. 8,
227–254 (2017). doi.org/10.4310/JOC.2017.v8.n2.a1

[30] J. A. Ellis-Monaghan, I. Moffatt, Twisted duality for embedded graphs. Trans. Amer.
Math. Soc. 364, 1529–1569 (2012). doi.org/10.1090/S0002-9947-2011-05529-7

[31] J. A. Ellis-Monaghan, I. Moffatt, Graphs on surfaces. Springer, New York (2013).
doi.org/10.1007/978-1-4614-6971-1



From matrix pivots to graphs in surfaces 29

[32] C. P. Gabor, K. J. Supowit, W. L. Hsu, Recognizing circle graphs in polynomial time. J.
Assoc. Comput. Mach. 36, 435–473 (1989). doi.org/10.1145/65950.65951

[33] J. F. Geelen, A generalization of Tutte’s characterization of totally unimodular matrices.
J. Combin. Theory Ser. B 70, 101–117 (1997). doi.org/10.1006/jctb.1997.1751

[34] J. Geelen, S. Oum, Circle graph obstructions under pivoting. J. Graph Theory 61, 1–11
(2009). doi.org/10.1002/jgt.20363

[35] J. Geelen, B.Gerards,G.Whittle, Structure inminor-closed classes ofmatroids. In Surveys
in Combinatorics 2013, London Math. Soc. Lecture Notes 409, Cambridge University
Press, Cambridge, 327–362 (2013). doi.org/10.1017/CBO9781139506748.009

[36] E. Gioan, C. Paul, M. Tedder, D. Corneil, Practical and efficient circle graph recognition.
Algorithmica 69, 759–788 (2014). doi.org/10.1007/s00453-013-9745-8

[37] J. L. Gross, T. W. Tucker, Topological graph theory. Dover Publications, Inc., Mineola,
NY (2001).

[38] A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations. In Theory of
Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 219–230 (1968).

[39] J. P. S. Kung, Bimatroids and invariants. Adv. in Math. 30, 238–249 (1978).
doi.org/10.1016/0001-8708(78)90038-5

[40] I. Moffatt, Delta-matroids for graph theorists. In Surveys in combinatorics 2019, London
Math. Soc. Lecture Note Ser. 446, Cambridge Univ. Press, Cambridge, 167–220 (2019).
doi.org/10.1017/9781108649094.007

[41] I. Moffatt. J. Oh, A 2-isomorphism theorem for delta-matroids. Adv. Appl. Math. 126,
paper 102133 (2021). doi.org/10.1016/j.aam.2020.102133

[42] B.Mohar, C. Thomassen,Graphs on surfaces. Johns Hopkins University Press, Baltimore
(2001).

[43] P. Nelson, Almost all matroids are non-representable. arXiv:1605.04288.
[44] J. Oxley, Matroid theory. Oxford University Press, New York (1992).
[45] J. Oxley, On the interplay between graphs and matroids. In Surveys in combinatorics

2001, London Math. Soc. Lecture Note Ser. 288 Cambridge Univ. Press, Cambridge,
199–239 (2001). doi.org/10.1017/CBO9780511721328.010

[46] L. Q. Qi, Directed submodularity, ditroids and directed submodular flows. Math. Pro-
gramming 42, 579–599 (1988). doi.org/10.1007/BF01589420

[47] N. Robertson, P. Seymour, Graph Minors XX, Wagner’s conjecture. J. Combin. Theory
Ser. B 92, 325–357 (2004). doi.org/10.1016/j.jctb.2004.08.001

[48] J. Spinrad, Recognition of circle graphs. J. Algorithms 16 264–282 (1994).
doi.org/10.1006/jagm.1994.1012

[49] É. Tardos, Generalizedmatroids and supermodular colourings. InMatroid theory (Szeged,
1982), Colloq. Math. Soc. János Bolyai 40, North-Holland, Amsterdam, 359–382 (1985).

[50] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial. Topology 26,
297–309 (1987). doi.org/10.1016/0040-9383(87)90003-6

[51] L. Traldi, The transition matroid of a 4-regular graph: an introduction. European J.
Combin. 50, 180–207 (2015). doi.org/10.1016/j.ejc.2015.03.016



30 Iain Moffatt

[52] K. Truemper, On Whitney’s 2-isomorphism theorem for graphs. J. Graph Theory 4,
43–49 (1980). doi.org/10.1002/jgt.3190040106

[53] W. T. Tutte, A ring in graph theory. Proc. Cambridge Philos. Soc. 43, 26–40 (1947).
doi.org/10.1017/S0305004100023173

[54] A. W.Tucker, A combinatorial equivalence of matrices. In Proc. Sympos. Appl. Math. 10,
American Mathematical Society, Providence, R.I., 129–140 (1960).

[55] W. T. Tutte, An algorithm for determiningwhether a given binarymatroid is graphic.Proc.
Am. Math. Soc. 11, 905–917 (1961). doi.org/10.1090/S0002-9939-1960-0117173-5

[56] D. K. Wagner, On theorems of Whitney and Tutte. Discrete Math. 57, 147–154 (1985).
doi.org/10.1016/0012-365X(85)90163-3

[57] D. J. A. Welsh,Matroid Theory. Academic Press, London, New York (1976).
[58] H. Whitney, Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–362

(1932). doi.org/10.1090/S0002-9947-1932-1501641-2
[59] H. Whitney, 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933).

doi.org/10.2307/2371127
[60] H. Whitney, On the abstract properties of linear dependence. Am. J. Math. 57, 509–533

(1935). doi.org/10.2307/2371182


	Introduction
	Graphs and their spanning trees
	The appearance of topology
	Partial duals
	Ribbon graphs and their spanning quasi-trees
	Delta-matroids and quasi-tree structure
	Matrices and representability
	The reappearance of graphs
	Bringing it all together
	Now we can get started...

