
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2021 1

Informed Autonomous Exploration of Subterranean
Environments

Aliakbar Akbari1 and Sara Bernardini1

Abstract—Autonomous exploration is highly challenging in
subterranean applications due to the constraints imposed by the
nature of the environments (e.g., dead-end branches, unstruc-
tured regions, narrow passages and bifurcations). Robots need
to constantly balance their exploration objectives with measures
to ensure safety. We present an informed exploration approach
to address these challenges, which exploits a reachability graph
to represent the environment’s structure and adaptive navigation
to find collision-free motions. Our system makes the inspection
task tractable and maximizes the information acquired about the
environment while preserving safety. We evaluate our navigation
and exploration techniques against several challenging cave
scenarios reconstructed using real data. Our experimental results
demonstrate that our method enables the robot to make informed
decisions and perform exploration more efficiently than existing
techniques in confined spaces.

Index Terms—Robotics in Hazardous Fields, Mining Robotics,
AI-Based Methods, AI-Enabled Robotics, Aerial Systems: Per-
ception and Autonomy.

I. INTRODUCTION

ROBOTIC inspection of subterranean spaces is a challeng-
ing problem because of the presence of hazards such as

vapors, fumes, and gases and due to the configuration of such
spaces, which often present voids as well as unstructured and
possibly dead-end branches (see Figure 1, measures refer to
the bounding box around the mine). There are also challenges
associated with the robot’s health system; for instance, battery
life imposes limitations on the available exploration time.
To deal with all those factors, the robots should be fully
autonomous and capable of robustly mapping and exploring
the environment beyond visual line of sight.

Aerial robots are considered promising to carry out inspec-
tion of subterranean environments [1], [2]. To be effective in
sensing and mapping the environment, the robot needs to mea-
sure the information it can gain by visiting areas not yet seen.
We call this ability informed exploration. Since exploration
consists in continuously moving the robot towards unknown
spaces, the robot also needs to be equipped with adaptive
navigation, which allows it to move between chosen points in
the environment. This paper presents an integrated, informed
exploration and adaptive navigation system that allows an
aerial robot to safely and autonomously inspect confined

Manuscript received: February, 23, 2021; Revised May, 27, 2021; Accepted
July, 13, 2021.

This paper was recommended for publication by Editor Pauline Pounds
upon evaluation of the Associate Editor and Reviewers’ comments. This work
is partially supported by the Innovate UK.

1Aliakbar Akbari and Sara Bernardini are with Department of Com-
puter Science, Royal Holloway University of London, Egham, UK.
ali.akbari@rhul.ac.uk, sara.bernardini@rhul.ac.uk

Digital Object Identifier (DOI): see top of this page.

Fig. 1: A big mine in the UK (96× 95× 15 m, Network Rail).

spaces. Our notion of safety encompasses two aspects, which
reflect two crucial requirements of underground operations:
i) the robot must avoid collision with the environment at all
times to preserve its own and the environment’s safety; and
ii) the aerial robot needs to exit the confined space at the
end of the mission. Since confined spaces such as abandoned
mines often present only one entry point (home), the second
constraint requires that the robot navigates back to such point
and exit the space before running out of battery [2].

To achieve safe and autonomous inspection, we put forward
the following contributions. As for navigation, we modify the
algorithm RRT-Connect [3], which is one of the most effi-
cient approaches to single-query path planning to account for
sensing actions and look for safe paths based on 3D map infor-
mation. The algorithm ensures that the robot avoids collisions
and is able to go back to the entry point when it is about to run
out of battery. Furthermore, we combine the planner with a re-
planning mechanism that regenerates real-time motions once
a collision is detected. Regarding exploration, we introduce a
double weighted reachability graph that represents information
about the structure of the environment and the unfolding of
the exploration process. The graph is constructed automatically
and dynamically. It ensures efficient exploration by enabling
the robot to detect dead-ends, spaces already visited and areas
that need further exploration. We also formulate a utility
function that incorporates not only information gain and path
length as state-of-the-art techniques but also safety constraints
(e.g. distance to obstacles). Our utility function drives the robot
towards regions where it can maximize its knowledge of the
environment while preserving safety. Finally, we devise an
exploration manager that combines all the above components
in a hierarchical structure. The manager exploits a frontier
sampling mechanism and a set of lower-level reasoners, which
are used by the robot to choose the best course of action when
considering the environmental challenges. After describing our
contributions, we present extensive experiments on several
challenging real-world scenarios, which demonstrate the power
of our approach.

II. RELATED WORKS

The frontier-based approach to exploration was pioneered
by Yamauchi [4]. Following that, various advancements have



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2021

been proposed to effectively drive the robot towards unknown
regions [5], [6], with the use of utility metrics being particu-
larly successful. The approach by Almadhoun et al. [7] present
a function that factors in information theory, model density,
traveled distance, and predictive measures. Stachniss et al. [8]
offer information gain-based utility functions for exploration,
mapping, and localization, while Palazzolo et al. [9] present
an approach to cope with unknown 3D environments. Frontier-
based approaches have also been proposed for underwater
exploration [10], [11]. Recent work by Dai et al. [12]
reports a utility function which is calculated based on the
robot’s candidate pose and the total path travel time. All
these approaches are not designed to tackle the challenges
of subterranean settings. They do not deal with large voids,
narrow passages, and dead-end branches, which are instead
common in underground scenarios.

Differently from related techniques, our utility function
measures the distance of the chosen frontier node from the
nearest obstacle and tries to maintain the robot at the centre
of narrow passages, keeping it safe while it explores the envi-
ronment. Furthermore, our function computes the information
gain not only for the selected frontier node, as the other
techniques, but also for the full motion from the robot’s current
state to the frontier node, which reflects the total information
acquired by the robot via its motion.

Other approaches to deal with the exploration of subter-
ranean environments exist ([13], [14]). In this direction, several
authors ([15], [16]) offer different versions of multi–modal
mapping and sensing techniques combined with exploration
planning. Dang et al. [17] present graph-based exploration
path planning in subterranean environments. Akbari et al. [1]’s
approach presents an intelligent exploration technique with
semantic knowledge to tackle confined spaces. Despite these
approaches address the subterranean challenges, they do not
implement an informed strategy to efficiently guide the search,
which is particularly detrimental in large environments. Com-
pared to these approaches, we present an original informed
exploration technique, which employs a reachability graph and
a sampling-based mechanism that lead the robot to find unex-
plored regions and sample promising frontier nodes. Moreover,
we offer a navigation module that is able to find safe plans
(i.e. plans unfolding in known areas) whenever possible.

III. PROBLEM FORMULATION AND SOLUTION OVERVIEW

We tackle the challenge of an aerial robot inspecting and
mapping an unknown subterranean environment with no prior
information and no human intervention. We identify two
problems that need to be solved to address this challenge,
exploration and navigation, which are defined below.

We denote the robot’s configuration by its 3D position and
yaw angle relative to the world frame, q = [x, y, z, ψ]. We
assume that the robot’s 3D sensing system Ω has a 360◦ range
rΩ varying from dmin to dmax and ∆ = dmax−dmin ≥ 1 m.
We also assume that the robot is powered by a battery with
limited energy capacity and can always access information
regarding its remaining flight time. It can also access its
accurate location, acquired by using a localization system (see
Section VIII for details).

Fig. 2: Main components of our informed exploration approach.

Based on sensing data, the robot incrementally constructs a
3D occupancy map [18] M, which represents the real-world
environment as divided into equally sized units of 3D space
called voxels. Each point in R3 lies in exactly one voxel, and
we identify each voxel with the point at the center of it. Voxels
that correspond to known points in space are classified into free
and occupied, depending on whether they are free or occupied
by obstacles. They are indicated as Mfree and Moccupied.
We put Mknown = Mfree ∪Moccupied. For any point that
is still unknown to the robot, we say that the corresponding
voxel is also unknown (unexplored space is not voxelized yet).
Unknown voxels are indicated asMunknown. We call frontier
the set of free voxels that are adjacent to the unknown space
and frontier candidate a voxel sampled from the frontier.

Exploration Problem Given an unknown 3D space U , the
exploration problem Pe consists in constructing a 3D occu-
pancy map of known voxels,Mknown, of the largest 3D space
E ⊆ U , given the robot’s flying time. Our exploration algorithm
works by continuously looking for the best frontier candidate
to visit and then moving the robot from its current position
to the candidate’s position until the robot has run out of
resources. Hence, to solve the exploration problem, the robot
also needs to solve the navigation problem, which involves
being able to move from an initial to a goal configuration. The
robot must be capable of computing a collision-free trajectory
in the presence of obstacles and, then, executing it.

Navigation Problem A navigation problem is a tuple Pn =
〈C, qinit, qgoal〉, where C is the configuration space built based
on a 3D map M, qinit ∈ Mfree is the initial configuration
and qgoal ∈ Mfree ∪ Munknown is the goal configuration
of the robot. A solution for a navigation problem Pn is a
motion plan Q = 〈q0, ..., qk〉, which is a sequence of robot’s
configurations where q0 = qinit and qk = qgoal and each
qi ∈Mfree ∪Munknown.

We tackle problems Pn and Pe via a system of inter-
acting components (Figure 2), which, taken together, form
our informed exploration approach. The exploration man-
ager (Section VII) generates frontier candidates based on
the information contained in the double weighted reachability
graph (Section V), which is a dynamically constructed data
structure that represents the structure of the environment
and the progress of the exploration process. The candidates
sampled by the manager are passed to the adaptive navigation
module (Section IV), which looks for motion solutions from
the robot’s current position to the candidates’ positions and
send the solutions back to the manager. The manager calls
the utility function module (Section VI), which computes the
utility value of each frontier candidate based on information
gain, path length, and safety distance to the obstacles. The



AKBARI et al.: INFORMED AUTONOMOUS EXPLORATION OF SUBTERRANEAN ENVIRONMENTS 3

manager then picks the candidate with the highest utility and
pass it to navigation for execution. As part of execution,
the navigation module constructs the 3D map Mknown and
verifies the motion plan against safety constraints. Once the
robot reaches the chosen frontier voxel, the entire process
starts again until the space is fully explored or the robot goes
back to the initial position having exhausted its resources.

IV. ADAPTIVE NAVIGATION

In a known environment, navigation deals with finding a
collision-free motion plan. In our scenario, we have the addi-
tional challenge that the frontier between known and unknown
space changes dynamically while the mission unfolds. We also
need to ensure that, when the robot is running out of battery,
it can safely get back to the home position.

We build on the RRT-Connect sampling-based motion plan-
ner [3] to implement our navigation strategy, which has
two sides: motion planning and motion execution with re-
planning. We choose RRT-Connect because it is one of the
most efficient single-query algorithms, which usually offer
better performance in the context of exploration. They remain
focused on a given query in visiting the configuration space,
even when the environment changes as a result of the ex-
ploration process. The original version of the planner grows
two trees (Ta and Tb) inMfree, rooted at the initial and goal
configurations. The two trees try to meet while growing. When
they become connected, a path is found between the initial and
goal configurations.

We modify the RRT-Connect planner to reason about the
known and unknown space. In particular, if the goal con-
figuration lies in the unknown area, the planner follows
the original procedure for the tree extension by exploiting
both Mfree and Munknown. More specifically, the plan-
ner selects qi ∈ Mfree ∪ Munknown to obtain the plan:
Q = 〈q0, ..., qn〉 ∈ Mfree ∪Munknown. However, if the goal
configuration lies in the known space, the motion planner tries
to find a path within the known areas only, i.e., Q ∈ Mfree.
This is done by sampling the robot’s positions inside the
known regions and by growing the two trees within these
regions rather than the whole space. Our technique prioritizes
finding paths in the known space because they allow the robot
to make accurate calculations of the battery needed to follow
them. Based on such calculations, the robot can return home
when it is running out of battery and be retrieved. Avoiding
the unknown space might lead to suboptimal paths but satisfies
the robot’s constraint of being able to navigate back home by
the end of the mission.

We also augment the RRT-Connect planner with an ex-
ecutive and replanning mechanism. In executing a plan Q,
the system keeps monitoring the configurations found and,
for plans that unfold in Mfree ∪ Munknown, if a collision
with a newly observed obstacle is detected (qi ∈ Q and
qi ∈ Moccupied), the system replans from scratch, looking
for a new path from the current position to the goal. To
ensure safety in the intermediate parts of the path, our planner
uses a cost function, which tracks if a minimum distance
between the robot’s position and the closest obstacles is kept.

Fig. 3: Two navigation problems. The robot first plans to move from
Init to Goal-1 within the known area (green) and, then, from Goal-1
to Goal-2 within the unknown area (white). Obstacles in brown color
are known to the robot, those in black are not.

This cost function is applied when the planner evaluates the
configurations and adds them to the trees. In this way, we can
always keep the robot at a safe distance from obstacles.

Figure 3 shows an example of our technique. Suppose that
a robot is located at Init and is required to move to Goal-1.
The proposed planner identifies that the goal is located within
the known area,Mfree (region in green color). Therefore, the
trees are grown inside this safe region, Ta, Tb ∈ Mfree. The
visible obstacle space (shown in brown color) is avoided. The
second motion planning problem is to find a path from Goal-
1 to Goal-2. Since the second goal configuration is placed in
the unknown area, the planner considers the whole space to
extend the two trees. The planner does not detect the invisible
obstacle space (the black regions) from the initial state due
to limitations in sensor coverage and creates a plan that goes
through one of the obstacles. When the robot starts executing
the planned path and gets closer to the obstacle, it detects the
collision, so it stops and triggers re-planning, which looks for
a new path from the current configuration to Goal-2.

V. DOUBLE WEIGHTED REACHABILITY GRAPH

We propose a data structure that we call Double Weighted
Reachability Graphs because labels are assigned to both
vertices and edges. The graph is used by the robot to keep
track of seen and unseen areas of the environment and reason
about what frontier voxel to explore next.

The graph G is a tuple (V,E,F , C). The vertices V and
edges E are added incrementally during navigation as follows.
Whenever the robot executes a motion plan, the algorithm
considers voxels over the path equally spaced by the sensor’s
range dmax. We use bounding boxes to collect the frontier
around a path. Starting from the first voxel c in the path, the
algorithm creates a bounding box around it, with fixed side
corresponding to 2dmax, and considers the voxels which lie
in the box. If there are frontier voxels within the bounding
box, a vertex v corresponding to c is added to the graph.
The vertex indicates that the area around c needs further
exploration. A vertex for the goal is always added to the
graph. When a vertex v is created, it is labelled by the function
F(v) = 〈W, exp〉, where W represents the collected frontier
voxels in the bounding box associated with c (with their
distances to the nearest obstacles) and exp is a binary flag,
initially set to false, that is used to indicate whether the area
around c has been fully explored (i.e. all frontier voxels in the
box for c have been explored) or not.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2021

Fig. 4: Insertion of a vertex and an edge in the graph (2D view).

While collecting the frontier voxels associated with the next
voxel c′ and generating the vertex v′, the algorithm also iden-
tifies whether some frontier voxels associated with an existing
vertex v do not belong to the frontier any longer (because
the robot has now observed some of the unknown voxels
beyond it). Vertices with this characteristic are called observed
vertices. The algorithm adds an edge (e, v, v′) between the
new vertex v′ and each observed vertex v, which indicates that
going from v to v′ has allowed the robot to explore previously
unseen space. The edge e ∈ E is labelled with a cost C(e),
which is the path length between the corresponding vertices.
The example in Figure 4 shows how this process is performed.
The robot is located at v1 and the frontier voxels around this
vertex are highlighted in grey. When the robot navigates to
the selected frontier voxel (in yellow), the algorithm creates
v2, which corresponds to the new voxel, and identifies that
some of the frontier voxels associated with v1 do not belong
to the frontier any longer. v1 becomes an observed vertex, and
an edge is created between the two vertices. The dashed line
includes the visited and new frontier voxels identified when
the robot is at v2. The graph supports the following operations:
• Insert(e, v, v′): inserts the edge (e, v, v′), along with the

related information, to G;
• Query(e, v, v′): retrieves the latest information about

(e, v, v′) by applying the functions F and C;
• Update(v): updates the information about vertex v.
The graph is equipped with an implementation of the A*

algorithm, which is a heuristic method to find the cheapest path
between two nodes [19]. The Euclidean distance between the
voxels corresponding to the vertices is used as the heuristic
function. We implement a query P(v, v′) to compute the
cheapest path between a start vertex v and the goal vertex
v′ based on the graph information.

The example in Figure 5 illustrates how some components
of the reachability graph are dynamically constructed. The
robot starts navigating the environment from v1. The other
vertices are added to the graph incrementally during the robot’s
motion towards v11. A vertex v is red when the flag exp
is false (i.e. there are unexplored frontier voxels associated
with v), while it is green when exp is true (i.e. the frontier
voxels associated with v have been completely explored). The
arrows represent the direction of the robot’s motion. When the
robot reaches v2, v1 becomes an observed vertex because the
robot has now visited some of the frontier voxels previously
associated with v1. An edge is added between v1 and v2.
Both vertices are red because there are still unexplored frontier
voxels associated with them (corresponding to regions Rgn1
and Rgn2). When adding v11, the robot identifies that the
unexplored frontier voxels associated with v5 are now all
visited and there is also no frontier left corresponding to vertex

Fig. 5: Double Weighted Reachability Graph construction.

v11. So, an edge is added between v5 and v11, they become
green and the robot detects that it has fully visited this part
of the graph. However, vertices v1, v2, v3 and v7 are still red
(i.e. flagged as not fully explored). At this point, the robot
looks for the next best region to explore among those around
v1, v2, v3 and v7 (i.e. Rgn1, Rgn2, Rgn3, and Rgn4) by using
the approach that we will describe in Section VII. The example
shows that a key feature of our graph-based reasoning is that
it detects regions that do not need further exploration. When
the robot has fully explored the current vertex and there is no
frontier left around it, it concludes that it has reached a dead
end or a visited branch and moves on.

VI. UTILITY FUNCTION

We use a utility function that measures the amount of
information corresponding to frontier voxels and the paths
to them to choose the best one to visit next. The function
takes into consideration information gain, safety constraints,
and path length. The information gain is computed using Shan-
non’s entropy [20], which is a popular approach to measure
uncertainty. Given a discrete random variable X with possible
outcomes x1, ..., xn having probability p(x1), ..., p(xn), the
entropy of X is given by:

(1)H(X) = −
n∑

i=1

p(xi) log p(xi)

with logarithm base 2. If X is a binary random variable, the
function becomes 1 with probability p and 0 with probability
1 − p. In the 3D occupancy map, a voxel c is represented
by a random variable, which assumes probability p(c) < 0.5
when it is free (c ∈ Mfree), and p(c) > 0.5 when occupied
(c ∈Moccupied). The entropy of a voxel c is minimized when
p(c) = 0 or p(c) = 1 (no more information can be gained) and
has its greatest value when p(c) = 0.5 (the voxel is unknown).
For a configuration q, the uncertainty of the map, using the
binary entropy, is expressed as:

(2)H(q) = −
∑

c∈Mrc

{p(c) log p(c) + (1− p(c)) log (1− p(c))}

where Mrc are the voxels along the rays casting outward
from the position of the robot, 360° around it, with the length
of the ray corresponding to dmax. For the voxels in each
direction, the function keeps considering them until the first
voxel assumes a probability greater than 0.5, which indicates
that the voxel is occupied and the robot cannot see beyond it
in that direction. Figure 6 displays a frontier candidate and the
ray-casting mechanism when dmax = 4m. The figure shows
that, when a ray hits an occupied voxel c where p(c) > 0.5,
it stops there. The approach computes the information gain
of the frontier candidates given the probability values of the
voxels hit by the rays.



AKBARI et al.: INFORMED AUTONOMOUS EXPLORATION OF SUBTERRANEAN ENVIRONMENTS 5

(a) (b)

Fig. 6: (a) Frontier candidate; (b) Corresponding ray-casting proce-
dure (a red dot is shown in every voxel that a ray passes through).

We compute a total entropy function Htotal based on the
following information: i) a frontier voxel c; ii) its correspond-
ing position, indicated as c.q; and iii) a subset Q′ of the path Q
from the initial position to c.q, with Q′ being of length L(Q′)
and containing only those positions that maintain a distance of
dmax between each other. We use dmax because, in Eq. (2),
the entropy is computed on voxels at a maximum distance
dmax from the frontier candidate. The total entropy function
Htotal(c), which returns a numeric value indicating how much
new relevant information about the space can be acquired by
visiting c, is defined as:

(3)Htotal(c) = αH(c.q) + β

L(Q′)−2∑
i=0

H(Q′.qi)

where Q′.qi are the configurations along the path Q′ and
α, β ∈ R are customizable factors that can be use to give more
weight to the frontier voxel at the end of the path (first term)
or the entire motion (second term).

Lastly, we define the utility function of a frontier voxel c:

(4)U(c) = δHtotal(c) exp(−γL(Q)) (1 + ζD)

where L(Q) is the length of the path Q and D is the distance
between c and the nearest occupied voxel. The parameters
δ, γ, ζ ∈ R can be tuned according to the user’s preferences to
give more or less importance to the various parts of the utility
function, which combines the total information gain with the
length of the motion and the safety distance from the obstacles.
We can set ζ to a high value when the robot navigates within
narrow areas to maintain it in the centre of those areas. The
function U(c) is called by the exploration manager to measure
the utility value of frontier candidates.

VII. EXPLORATION MANAGER

We use a high-level exploration manager to integrate all
the system’s components together and choose the best frontier
candidate to visit next. The manager exploits a set of reasoners
and a sampling-based mechanism as follows.

The region-based reasoner Rrgn aims to identify the type
of region in which the robot is currently located using a ray-
casting technique. It casts rays along the coordinate frame of
the robot. If the rays hit occupied voxels along the x−axis and
z−axis or the y−axis and z−axis up to a threshold distance,
the robot detects that it is surrounded by obstacles and, in
consequence, it is exploring a narrow region. This region is
labelled as a branch. If close obstacles are not detected, the
region is labelled as a void.

The contextual reasoner Rcr computes whether the robot
has enough time to execute the motion plan and go back
home. Given the information in the reachability graph G, Rcr

estimates the flight time to home by considering the cost of
the current path and the velocity of the robot. If there seems
to be no sufficient time to go back home, Rcr calls the motion
planner to see if there is a shorter path to go back home that
satisfies the time. If not, the robot goes back home immediately
by following a motion plan that satisfies the energy constraints.

The frontier sampler SF samples the current frontier voxels
to generate a subset of them. This is done to reduce complexity
as the system performs several calculations based on the
frontier. A minimum distance ds between two samples is
chosen and a candidate sample is discarded if its distance
from one of the previously selected samples is less than ds.
SF employs a collision detection module to confirm that the
candidates are geometrically feasible. The sampler mechanism
is based on the environmental features. If the robot is in a
void, the sampler considers the whole frontier set. If the robot
is exploring a branch, the sampler is biased to consider the
frontier voxels located in the centre of the area for safety
and stability reasons. The bias is achieved as follows. While
collecting the frontier voxels, the algorithm computes their
distance from the nearest occupied voxel. It then calculates the
average and maximum distances of the frontier voxels from the
obstacles and, based on them, it sets a higher rate of sampling
for the frontier voxels that lie between the average and the
maximum distance.

The sampling density depends on the reachability graph’s
information. Given a vertex v, the sampler finds the neighbor-
ing vertices of v, N (v) = {v0, ..., vi}, and samples the frontier
by choosing the same number of samples in the frontiers
associated with each of the vertices v0, ..., vi. If the number
of voxels in the frontiers of all vertices in N (v) is below
a given threshold or there are no unexplored vertices, the
sampler concludes that the robot is back to a known area or
has arrived to a dead-end area. In this case, the algorithm uses
a ranking function Rank(G, v) to sort the graph’s vertices that
are not fully explored based on the shortest distance between
them and the current vertex v by using the A* query P (see
Section V). The sampler selects the i nearest candidates and,
for each candidate, calculates the samples in its frontier. The
sampling rate fs is higher for the vertices that are closer to v:

(5)Rank(G, v) = 〈v′0, ..., v′i〉 =⇒ fs(v
′
0) > ... > fs(v

′
i)

This mechanism provides an efficient way to sample the
frontier where it is useful instead of in the whole environment.
For instance, when the robot is at v11 in Figure 5, all the
neighboring vertices are fully explored. Vertices v1, v2, v3,
and v7, which are not fully explored yet, are the vertices
where sampling occurs. Vertices v1 and v7 lead the robot
towards big regions similar in size, and vertices v2 and v3

guide the robot towards small regions similar in size. The
sampling rate is higher for v7 and v3 than for v2 and v1

(fs(v7) > fs(v3) > fs(v2) > fs(v1)), because they are closer
to the current position of the robot.

Algorithm 1 describes our informed exploration planner,
which integrates all the modules together. The algorithm
gets the sensing data as a point cloud PC and outputs the
occupancy map M. The functions GetInitMap [line 2] and
InitGraph [line 3] construct the initial map and the reachability



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2021

graph, respectively. An iterative process is implemented to
explore the environment [lines 4-17]. The mission is completed
if there are no frontier voxels to explore, which is detected
by EndMission [line 5], or if ContReas, which implements Rcr,
returns false [line 10] (i.e. the robot has no sufficient resources
to explore further). In both cases, GoHome [line 16] brings the
robot back to the home position.

At each iteration, the robot reasons about the current en-
vironmental features by calling RgnReasoning [line 6], which
uses Rrgn, and samples the frontier by calling the sampler
SF (Sample [line 7]). Then, the motion planner is triggered
(MotionPlanning [line 8]) to find if collision-free motions exist
from the current position to the frontier samples. The planner
discards samples with non collision-free motions. The function
BestAct chooses the best frontier candidate [line 9]. This pro-
cedure performs two tasks: i) it calculates the utility function
in Eq. (4) for each sample; and ii) it selects the one that
maximizes the value s∗ = arg maxs∈S U(s). Then, if there
is enough battery, the robot traverses the path via the function
Navigate, which implements the navigation module described
in Section IV [line 11]. The reachability graph is expanded
using ExpGraph [line 14], which uses the functions Insert to
add a new edge, Query to retrieve the latest graph information,
and Update to update it.

Algorithm 1: Informed exploration
inputs : Point cloud PC
outputs: Occupancy map M

1 Mission← False
2 M = GetInitMap(PC)
3 G = InitGraph(M)
4 while !Mission do
5 if !EndMission(G) then
6 κ = RgnReasoning(M)
7 S = Sample(M, G, κ)
8 S = MotionPlanning(M, S)
9 s = BestAct(M, S, κ)

10 if ContReas(M, G, s) then
11 M = Navigate(M, P, s)

12 else
13 break

14 G = ExpGraph(M, s)

15 else
16 GoHome(M, G)
17 Mission← True

18 return {M, G}

VIII. EXPERIMENTAL RESULTS

We evaluate our approach against several navigation and
exploration problems. We developed our motion planning
algorithms using Open Motion Planning Library (OMPL) [21].
We use the simplification method offered by OMPL to shorten
and smooth paths. We integrated Octomap [18] into our
system for the 3D mapping. All modules are implemented
in Robot Operating System (ROS). All experiments were run
on an Intel Core i9-9980HK 2.40 GHz CPU machine with
32 GB memory. We use 360° LiDAR sensors to capture

Fig. 7: Final map and solu-
tion of the two-shaft exam-
ple. The dimensions of each
shaft are 2.5× 2.5× 4 m.

Fig. 8: Room scenario (40 ×
30× 4 m). Path from current
pose to home (our approach
in red; RRT-Connect in blue);

the environment. We use the Prometheus drone [2] to run
our experiments, which is a reconfigurable platform that can
reduce its diameter to fit through boreholes. Our system is
however independent from the platform used as long as the
assumptions laid out in Section III are verified.

We use the following values for the parameters, which are
based on our practical experience with running exploration
missions in mines: a) maximum robot’s velocity of 0.25 m/s;
b) dmin = 0.1 m and dmax = 4.0 m; c) maximum motion
planning time 10.0 s; d) α = 1.0, β = 0.2, δ = 1, γ = 0.5,
ζ = 0.2 in wide areas and ζ = 0.6 in narrow passages.

A. Results on Navigation

We consider several challenging navigation scenarios to
study the benefits of our navigation components. Figure 7
shows the final map and solutions of a two-shaft scenario.
The robot is required to navigate from shaft-1, on the right, to
shaft-2, on the left. The initial robot’s knowledge is limited to
the parts of shaft-1 surrounding its initial position. Given the
unknown goal region, the navigation planner looks for a path
Q ∈ Mfree ∪Munknown. The planner re-plans as soon as a
collision is detected. Figure 8 illustrates a complex room with
35 walls. From the current position, the robot needs to go back
home to be able to exit the space by the end of the mission. As
the home position is known, our adaptive navigation planner
tries to find Q ∈Mfree. The motion solution is shown in red
color. The path in blue color indicates the motion’s solution
found by the original RRT-Connect planner augmented with
re-planning; in the latter case, the robot maps a bigger area to
reach home.

Considering the scenarios above, we perform experiments
on the following classes of problems: a) 2-SHAFT: the two-
shaft example solved by our planner; b) X-OBS: the room
examples with an increasing number X of obstacles (walls
with various dimensions that make the problems challenging
by blocking straight-line paths between the initial and goal
locations), with X ∈ {15, 25, 35}; c) MINE: the massive
mine represented in Figure 1, which has been reconstructed
by using real data collected by Network Rail in the UK.
Table I reports the average navigation performance for all the
problems for five trials. We compare our adaptive navigation,
A-NAV, with the original RRT-Connect, R-NAV. For the 2-
SHAFT scenario, our planner re-plans several times because
the goal is located in an unknown area. For the same reason, in
this case, our technique and the original RRT-Connect with re-
planning have the same performance, which however indicates
that our modifications of the RRT-Connect do not introduce



AKBARI et al.: INFORMED AUTONOMOUS EXPLORATION OF SUBTERRANEAN ENVIRONMENTS 7

inefficiencies. On the other hand, for the room examples (X-
OBS), our approach reduces motion planning time, execution
time and number of replanning occurrences. It also provides
shorter paths than the original RRT-Connect in all cases. This
is due to the fact that our approach exploits the known space
whenever possible and so avoids triggering replanning due to
unobserved obstacles. Figure 9 compares the total navigation
time (sum of motion planning and execution times) of our
planner against the original one for the room trials. In all
cases, our planner is more time-efficient than the original one.
For the MINE problem, we decrease the sensing range dmax

from to 4m to 2m to make the problem more challenging as
the robot cannot easily identify walls. Although both planners
need to re-plan, our planner is more efficient than R-NAV.

Fig. 9: Comparison on navigation time between our adaptive naviga-
tion (A-NAV) and RRT-Connect (R-NAV) for the X-OBS problems.

To deal with unreliable state estimation, in our experiments,
while the robot is executing a path, the re-planning module
keeps comparing the robot’s pose, computed by the localiza-
tion system, with the pose of the waypoint where the robot
is navigating to, which is calculated by the planner. If the
deviation between the two poses becomes higher than a given
threshold, the re-planning conclude that the robot is drifting
and is not following the path properly. Accordingly, the plan
fails and the planner re-plans from the current pose to the
waypoint of interest to make the robot converge to the path.

Problem MP (s) Execution (s) Re-plan Path L (m)
2-SHAFT 0.62 125.30 17.80 19.66
A-NAV,15-OBS 0.04 51.40 0.0 6.61
R-NAV,15-OBS 0.11 76.80 3.80 8.74
A-NAV,25-OBS 0.10 166.20 0.0 21.63
R-NAV,25-OBS 1.50 269.00 14.40 27.97
A-NAV,35-OBS 0.19 527.60 0.0 33.19
R-NAV,35-OBS 3.07 743.49 20.60 74.00
A-NAV, MINE 0.08 98.95 2.20 17.50.
R-NAV, MINE 0.63 156.66 14.6 25.98

TABLE I: The average performance of navigation in terms of motion
planning (MP) time, execution time, number of re-planning calls, and
path length for the navigation problems.

B. Results on Exploration

We tested our approach against several cave and mine
scenarios whose CAD models have been generated using real
data. Figures 10 and 11 represent the map of two caves,
cave-1 and cave-2, whose models have been provided to us
by Network Rail (UK). These are challenging environments
due to the presence of uneven structures, long paths, narrow
passages, multiple loops, and dead-end branches. To explore
them, the robot needs to cope with these challenges and
accounts for battery constraints.

Fig. 10: The cave-1 map. Fig. 11: The cave-2 map.

We define several problems for both caves with different
exploration time and map resolutions (r). The problems that
correspond to Figure 10 are: a) Problem-1 with 600 s and
r = 0.1 m; and b) Problem-2 with 1500 s and r = 0.2 m.
The problems that correspond to Figure 11 are: c) Problem-3
with 600 s and r = 0.1 m; and d) Problem-4 with 1900 s
and r = 0.2 m. Table II reports the performance for all these
problems. For each scenario, more exploration time allows
the robot to map larger unknown spaces, which also results
in increasing the size of the reachability graphs. When a
maximum exploration time is set, the robot needs not only
to explore but also to verify that there is enough time to get
back home while mapping new areas.

Problem V E Nav. (s) Exp. (s) Vol. (m3)
Problem-1 32 52 508 595 858
Problem-2 90 161 1306 1434 2604
Problem-3 55 109 452 591 859
Problem-4 207 553 1603 1853 3062

TABLE II: The performance of the problems in terms of number
of vertices and edges in the reachability graph, navigation time,
exploration time, and explored volume.

We compared our informed exploration (IE) approach
against several state-of-the-art techniques. The first is an
implementation of the frontier-based exploration (FE) by
Yamauchi et al. [4]. The FE technique goes through the entire
3D map to collect frontier voxels and then selects the nearest
frontier candidate to explore unknown areas. To evaluate our
utility function, we developed an approach (indicated as UE) in
which we switch off our reachability graph, use the complete
map to reason about the frontier and implement the utility
function proposed by Dai et al. [12]. Figure 12 shows explored
volume versus time for all the approaches and different map
resolutions. For r = 0.2 m, the voxels are bigger and our
approach maps larger unknown areas. The problems become
more challenging when r = 0.1 m. All approaches need more
time to collect frontier voxels and find collision-free paths as
the voxels’ size gets smaller. Our approach explores the space
much more effectively than the other ones in all cases.

(a) (b)

Fig. 12: Comparison on total explored volume between our approach
(IE), the frontier-based exploration (FE) and the utility-based ap-
proach (UE) by Dai et al. [12].



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2021

We also tested IE against UE for a large mine (bounding
box of 225× 117× 62 m) located in Snailbeach (UK), which
has been reconstructed using real data collected by Geoterra
(UK). Figure 13 depicts the 3D map (800s and r = 0.1 m) of
the mine after exploration by our approach. Figure 14 shows
the performance of the techniques in terms of time, explored
volume, and distance to the nearest obstacle. Our approach
explores larger areas in the mine than UE, while maintaining
a higher distance from the obstacles, which reflects its safety.

Fig. 13: 3D map of Snailbeach
mine (UK) after exploration.

Fig. 14: A comparison between
IE and UE on Snailbeach mine.

Finally, we evaluated our exploration approach on the big
mine represented in Figure 1 and compared our solution
with another state-of-the-art technique, indicated as (GE) [17].
Figure 15 plots the results of the exploration tasks with
different sensing ranges and when r = 0.2 m. In all cases,
our planner efficiently explores bigger areas than GE.

Fig. 15: A comparison between IE and GE on the mine in Figure 1.

IX. CONCLUSION

We present an autonomous exploration and navigation ap-
proach for subterranean environments. Our approach enables
the robot to maximize information gain while preserving
safety. Our experimental results show the power of our tech-
niques and their superiority over related methods.

In future work, we will investigate the use of asymptotically
optimal planners (e.g. RRT* [22]) for navigation as they have
been successfully employed in underwater exploration [23].
We also intend to work on efficient frontier detection for 3D
SLAM based on occupancy grid sub-maps [24]. Finally, we
plan to conduct extensive real-world experiments using the
Prometheus drone [2] in real mines in the UK as soon as
COVID-19 restrictions for confined spaces are lifted.

REFERENCES

[1] A. Akbari, P. Chhabra, U. Bhandari, and S. Bernardini, “Intelligent
exploration and autonomous navigation in confined spaces,” in Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2020.

[2] L. Brown, R. Clarke, A. Akbari, U. Bhandari, S. Bernardini, P. Chhabra,
O. Marjanovic, T. Richardson, and S. Watson, “The design of
prometheus: A reconfigurable uav for subterranean mine inspection,”
Robotics, vol. 9, 2020.

[3] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE international conference on
robotics and automation (ICRA), vol. 2. IEEE, 2000.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration.”
in cira, vol. 97, 1997.

[5] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,” in
International Conference on Intelligent Robots and Systems, 2017.

[6] M. Faria, I. Maza, and A. Viguria, “Applying frontier cells based
exploration and Lazy Theta* path planning over single grid-based world
representation for autonomous inspection of large 3D structures with an
UAS,” J. of Intelligent & Robotic Systems, vol. 93, 2019.

[7] R. Almadhoun, A. Abduldayem, T. Taha, L. Seneviratne, and Y. Zweiri,
“Guided next best view for 3d reconstruction of large complex struc-
tures,” Remote Sensing, vol. 11, 2019.

[8] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using rao-blackwellized particle filters.” in Robotics: Science
and Systems, vol. 2, 2005.

[9] E. Palazzolo and C. Stachniss, “Information-driven autonomous explo-
ration for a vision-based mav,” ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 4, 2017.

[10] E. Vidal, N. Palomeras, K. Istenič, J. D. Hernández, and M. Carreras,
“Two-dimensional frontier-based viewpoint generation for exploring and
mapping underwater environments,” Sensors, vol. 19, 2019.

[11] E. Vidal, N. Palomeras, K. Istenič, N. Gracias, and M. Carreras, “Multi-
sensor online 3d view planning for autonomous underwater exploration,”
Journal of Field Robotics, vol. 37, 2020.

[12] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leuteneg-
ger, “Fast frontier-based information-driven autonomous exploration
with an mav,” arXiv preprint, 2020.

[13] D. Silver, D. Ferguson, A. Morris, and S. Thayer, “Topological explo-
ration of subterranean environments,” Journal of Field Robotics.

[14] A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, C. Baker,
S. Thayer, C. Whittaker, and W. Whittaker, “Recent developments in
subterranean robotics,” Journal of Field Robotics.

[15] F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis, “A multi-modal
mapping unit for autonomous exploration and mapping of underground
tunnels,” in IEEE aerospace conference, 2018.

[16] C. Papachristos, S. Khattak, F. Mascarich, T. Dang, and K. Alexis,
“Autonomous aerial robotic exploration of subterranean environments
relying on morphology–aware path planning,” in International Confer-
ence on Unmanned Aircraft Systems. IEEE, 2019.

[17] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in International Conference on Intelligent
Robots and Systems. IEEE, 2019.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous robots, vol. 34, 2013.

[19] S. Russell and P. Norvig, Artificial intelligence: a modern approach.
Prentice Hall, 2002.

[20] R. M. Gray, Entropy and information theory. Springer Science &
Business Media, 2011.

[21] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, 2012.

[22] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, 2011.

[23] J. D. Hernandez, E. Vidal, M. Moll, N. Palomeras, M. Carreras, and
L. E. Kavraki, “Online motion planning for unexplored underwater
environments using autonomous underwater vehicles,” J. Field Rob.,
vol. 36, no. 2, 2019.

[24] J. Orsulic, D. Miklic, and Z. Kovacic, “Efficient dense frontier detection
for 2-d graph slam based on occupancy grid submaps,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, 2019.


	Introduction
	Related Works
	Problem Formulation and Solution Overview
	Adaptive Navigation
	Double Weighted Reachability Graph
	Utility function
	Exploration Manager
	Experimental Results
	Results on Navigation
	Results on Exploration

	Conclusion
	References

