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Summary: The roll-out of the new generation smart meter with artificial intelligence 

(AI)-based data mining algorithms causes serious privacy issues for consumers. By 

detecting appliance usages, an adversary can easily monitor the behaviour patterns of 

residents. In this paper, a privacy-preserving smart metering model is proposed; the 

system utilizes a data aggregator to aggregate the readings of neighbouring smart 

meters and a data down-sampler to reduce the sensitive information in the load profiles. 

An AI-based adversary is introduced to simulate the adversarial process. Four state-of-

the-art deep learning/machine learning algorithms (convolutional neural network–long 

short-term memory (CNN-LSTM); gated recurrent unit (GRU); k-nearest neighbours 

(KNN); and CNN) are employed as data mining algorithms. By tuning the variables 

(aggregation size α and interval resolution σ), the detectability boundaries of particular 

appliances are evaluated. Based on the appliance detectability, a three-level privacy 

boundary (real-time surveillance, presence/absence detection, and complete protection) 

is obtained. The result shows that to achieve complete data protection, the aggregation 

size should exceed 40, and the interval resolution should exceed 8 hours. 

KEYWORDS: Smart metering infrastructure, privacy benchmark, privacy-preserving 

computing, energy disaggregation, deep learning, artificial intelligence. 

List of Symbols and Abbreviations: AI, artificial intelligence; LSTM, long short-term 

memory; GRU, Gated Recurrent Units; RNN, recurrent neural network; KNN, k-

nearest neighbours; CNN, convolutional neural network; GAN, generative adversarial 

network; NILM, non-intrusive load monitoring; MO, microwave oven; STO, stove; AC, 

air conditioner; FUR, furnace; EV, electric vehicle; REF, refrigerator; WH, water heater; 

DRY, dryer; DW, dishwasher; HVAC, heating, ventilation, and air conditioning; 𝑡 , 

time slice of the smart meter; 𝑇, the total number of time slices; 𝑗, smart meter series 



number; 𝑋𝑡
𝑗
, the power consumption of smart meter 𝑗 at time slice 𝑡; 𝑋𝑇 , load profile 

sequence; 𝜏 , original interval resolution; 𝑖 , electricity appliance series number; 𝑁 , 

total appliance categories; 𝑌𝑡
𝑖 , power consumption of appliance 𝑖  at time slice 𝑡 ; 

𝑌𝑁×𝑇, appliance profile sequence matrix; 𝑀𝑇, modified load sequence; 𝒜, adversary 

model; 𝒫 , privacy-preserving model; 𝑓𝒫  , privacy-preserving functions; 𝑓𝒜(𝑡) , 

adversary function; 𝛼, aggregation size; 𝜎, downsampled interval resolution; 𝛾, the 

ratio of modified interval resolution and original interval resolution; 𝑟𝑡, reset gate; 𝑧𝑡, 

update gate; ℎ𝑡−1, previous cell state; ℎ𝑡, current cell state; ℎ̃𝑡, candidate cell state; 

𝑔𝑡 , input node, 𝑖𝑡 , input gate, 𝑐𝑡 , internal gate, 𝑓𝑡 , forget gate, 𝑜𝑡 , output gate; 𝜌 , 

Pearson correlation coefficient; 𝜙, tanh activation.   

1. INTRODUCTION 

1.1 Motivation 

The smart meter is a new generation electricity measurement device that enables real-

time communication between the demand side and the utility. This meter also provides 

high-granularity electricity data (high-interval resolution data on real-time energy 

consumption, bills, time-of-use tariffs, etc.) 1. Moreover, the high granularity of data 

boosts artificial intelligence (AI) applications in smart grids. AI data analysis and data 

mining tools (such as machine learning/deep learning) have been widely adopted in 

smart grid applications, such as short-term load forecasts, renewable energy 

management, and nonintrusive load monitoring (NILM) 2. However, smart meter and 

AI applications are double-edged swords since they introduce severe privacy issues to 

consumers. By adopting AI mining algorithms on smart meter data (such as NILM), 

the adversary can easily infer personal information from smart meter data 3. 

1.2 Literature review 

To protect private information in smart meter data, two categories of approaches are 

proposed in the literature: demand shaping and data manipulation. Demand shaping 

techniques mask the ground truth load profiles by utilising extra energy storage 

facilities (such as a rechargeable battery and renewable energy system). The energy 

management unit (EMU) controls the energy storage device charge/discharge to fill the 

gap between the “average daily demand” and “instantaneous demand” to minimise 

information leakage 4. 

Data manipulation modifies the original smart meter data with informatics 

techniques before sending the data to the utility 3. Among all informatic techniques, the 

data aggregation approach, data distortion approach, and data down-sampling approach 



are widely discussed in the literature. The data aggregation approach (or spatial 

aggregation) envisages sending aggregate power measures for a group of smart meters 

to prevent the utility from distinguishing individual power consumption 5. The data 

aggregation scheme introduces a data aggregator (DA) with/without a trusted third 

party (TTP). To guarantee security during data communication, encryption mechanisms 

such as homomorphic encryption (HE) 6 and multiparty computation (MPC) 7 are 

introduced. These advanced encryption algorithms enable third parties to operate the 

data without knowing the details of the data. The data down-sampling approach (or 

temporal aggregation) aggregates the data from neighbouring timestamps 8. As the 

interval spans, the sensitive information in the load profile also decreases 9. 

 Empirical methods to quantify the privacy boundary are discussed by N. Buescher 

et al. 10 and EA Technology 11. A naïve statistical analysis is implemented in 11, and 

three privacy metrics, visual inspection, correlation analysis, and clustering analysis, 

are proposed in this work to determine the optimum aggregation size. Their result 

shows that two houses are enough to achieve high-level anonymity. However, another 

study by N. Buescher shows that challengers can still obtain an advantage with a 

minimum aggregation size of 100 houses 10. These conventional methods can only 

measure the similarity between the individual power consumption and aggregated 

power consumption rather than privacy leakage; the adversarial model is also not 

introduced. 

Relevant work that utilises AI adversaries to protect privacy includes the 

differential privacy NILM algorithm, generative adversarial privacy model, and NILM 

adversarial model. In differential privacy NILM, a differential private stochastic 

gradient descent (DP-SGD) mechanism is employed 12. Random Gaussian noise is 

added to the gradient of every training step, achieving (ε, δ) differential privacy 13. M. 

Shateri et al. 14 introduce an adversarial modelling framework that consists of a data 

releaser and an adversary. Both the releaser and the adversary utilise recurrent neural 

networks against each other. The privacy performance of the releaser is improved 

because of competition. G. Eibl and D. Engel 15 discuss the relationship between 

interval resolution and privacy in edge detection-based NILM technology. They find 

that with intervals under 15 min, which is the sampling frequency adopted by most EU 

manufacturers, most appliances are still detectable. 



Although many works have proposed different privacy-preserving smart metering 

schemes, few studies demonstrate the process of how the adversary obtains valuable 

information from the load profile. Moreover, there is a lack of information on the 

correlation of data granularity (e.g., interval resolution, aggregation size) with the 

sensitivity information. 

1.3 Contributions 

Inspired by the generative adversarial network (GAN) proposed by I. Goodfellow in 

2014 16, this work trains an artificial intelligence adversarial model to improve the 

performance of the privacy-preserving model and further detect the boundary of the 

privacy-preserving model. The main novelties of this paper are listed as follows: 

(1) A privacy-preserving smart metering system that combines a data aggregation 

approach and a data down-sampling approach is proposed. The system enables 

functionalities (billing, grid management and operation) and simultaneously 

protects private information. 

(2) This work employs an AI-based adversary model to demonstrate the adversarial 

process. The adversary can use state-of-the-art convolutional neural network–

long short-term memory (CNN-LSTM), gated recurrent unit (GRU), CNN, and 

k-nearest neighbours (KNN) deep neural networks to detect appliance usages 

and further infer the behaviour patterns of the residents. 

(3) The influence of two parameters, aggregation size α and interval resolution σ, 

on the appliance detectability is investigated by simulation. Nine typical 

appliances that represent three load categories (continuous load, intermittent 

load, and active load) are included in the study. 

(4) A three-level privacy boundary (real-time surveillance, presence/absence 

detection, complete protection) is presented based on the simulation results. 

This benchmark would either benefit consumers to better understand how safe 

smarts are installed in their homes or contribute to policymakers in regulating 

smart meter markets. 

1.4 Organisation of the paper 

The remainder of the paper is organised as follows: The problem formulation is 

demonstrated in Section 2. In Section 3, the privacy-preserving model, as well as the 

AI adversary model, is introduced. In Section 4, the implantation process, which 



includes dataset construction, data preprocessing, and privacy metrics, is illustrated. 

Three case studies are designed in Section 5 to determine the privacy boundaries of 

smart meter data, including aggregation size, interval resolution, and the combined 

effect of these two factors. The conclusion and future works are drawn in the last section. 

2. PROBLEM FORMULATION 

Referring to X. Zhang et al. 17, the privacy intrusion issues raised by smart meters 

include data sensitivity and algorithm sensitivity. For data sensitivity, real-time high-

resolution data (active/reactive power, voltage, time-of-use tariff, etc.) collected by the 

new generation smart meter provides rich information for adversaries. The adversaries 

can access the collected smart meter data (e.g., purchase from the energy suppliers or 

hack into the smart metering system). State-of-the-art data-driven deep learning-based 

NILM algorithms enable adversaries to extract behaviour patterns based on high 

granularity data (refer to Figure 1). 

In this paper, we denote the power consumption recorded by the smart meter at time 

slice 𝑡 ∈ 𝒯: = {1,2, ⋯ , 𝑇} as 𝑋𝑡, and the original interval resolution is denoted as 𝜏. 

In conventional smart metering systems, 𝑋𝑡  can be decomposed into individual 

appliance signals via the NILM algorithm implemented by a third party: 

𝑋𝑡 = ∑ 𝑌𝑖,𝑡
𝑁
1      (𝑖 ∈ {1,2 ⋯ 𝑁})        (1) 

where 𝑌𝑡
𝑖 is the power consumption of electrical appliance 𝑖 (ranging from 1 to 𝑁) 

at time slice 𝑡. The load profile sequence is denoted as 𝑋𝑇 . The appliance profile 

sequence matrix is denoted as 𝑌𝑁×𝑇: 

𝑌𝑁×𝑇 = [

𝑌1,1 ⋯ 𝑌1,𝑇

⋮ ⋱ ⋮
𝑌𝑁,1 ⋯ 𝑌𝑁,𝑇

]         (2) 

 
Figure 1 Example of household load profile, with detailed appliance usages (Data source: Pecan Street 



Dataport) 

 The mathematical model that shows the data privacy preservation and adversary 

inference process is presented in Figure 2. Since 𝑌𝑁×𝑇 contains sensitive information 

that can be used for behaviour pattern identification, the purpose of the privacy-

preserving model 𝒫 is to modify the original load profile 𝑋𝑇  into a modified load 

sequence 𝑀𝑇  to hide sensitive information 𝑌𝑁×𝑇 . In this paper, two privacy-

preserving functions 𝑓𝒫  are thoroughly investigated: the data aggregation function and 

the data down-sampling function, as shown in Section 3. Moreover, the difference 

between 𝑋𝑇  and 𝑀𝑇  is measured by mutual information (MI). In contrast, the 

purpose of the adversary model 𝒜 is to infer information about 𝑌𝑁×𝑇 from 𝑀𝑡 as 

much as possible (𝑝(𝑌𝑖,𝑡|𝑀𝑡)) at the real-time base, and the adversary function 𝑓𝒜(𝑡) 

is expressed as: 

𝑓𝒜 (𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑌𝑖,𝑡|𝑀𝑡)        (3) 

 

Figure 2 Mathematical model of the privacy-preserving and adversary inference process 

3. PRIVACY-PRESERVING SMART METERING FRAMEWORK 

3.1 Privacy-preserving model 

The conventional smart meter has a fixed sampling frequency and directly sends 

the power consumption data to the utility without any modification. This single-channel 

smart metering system has a high risk of revealing private information to the energy 

supplier or third parties. To overcome the drawbacks of the existing smart metering 

system, a two-channel smart metering system is proposed (refer to Figure 3). The main 

structure of the proposed system is an aggregator and a data down-sampler. The purpose 

of the data aggregator is to concurrently aggregate the smart meter data of neighbouring 

smart meters and send the aggregated data to the grid operator; then, the grid operator 

sends commands to manage and operate the grid. The data down-sampler channel 

down-samples the data for billing purposes only. 



 

Figure 3 Privacy-preserving smart metering framework 

3.1.1 Data aggregation scheme 

In the data aggregation scheme, the privacy-preserving function 𝑓𝒫  is the data 

aggregation function. In this scheme, a data aggregator that aggregates all smart meters 

under the aggregator is constructed. It is meaningful to quantify the aggregation size 

that can satisfy the privacy requirement to minimise investments. Encryption methods 

such as HE 18, zero-knowledge protocols 19, and MPC 20 are applied to guarantee 

communication between smart meters and the aggregator. Detailed encryption 

algorithms are beyond the scope of this paper. 

As shown in Figure 4, 𝑋𝑡
𝑗
 is the reading of smart meter 𝑗 (1 ≪ 𝑗 ≪ 𝛼), where 𝛼 

is the total number of smart meters under the aggregator. At each timestep 𝑡 , an 

aggregator synchronously aggregates readings from all smart meters: 

𝑓𝒫
𝑎𝑔𝑔(𝑡) = ∑ 𝑋𝑡

𝑗
; 𝑡 =𝛼

𝑗=1 1,2, ⋯ , 𝑇        (4) 

 

Figure 4 Privacy-preserving data aggregation channel 

3.1.2 Data down-sampling scheme 



The interval resolution 𝜏 of the existing smart meter ranges from 5 seconds to 15 

minutes depending on the manufacturer 21. Current NILM algorithms achieve high 

accuracy even with a low sampling rate 22. Hence, as a vital variable that influences 

private information leakage, the privacy boundary of 𝜏  should be quantified. The 

down-sampling channel aims to reduce sensitive information by reducing the interval 

resolution of the metered data. A simplified down-sampling scheme is shown in Figure 

5; the original curve is flattened by taking the average power consumption of several 

sampling points. We define a down-sampled interval resolution 𝜎, which is an integer 

multiple of the original interval resolution 𝜏 (𝛾 = 𝜎/𝜏). At the end of each 𝛾 time 

slice, the down-sampler takes the average value of all data within the time window: 

𝑓𝒫
𝑑𝑜𝑤𝑛(𝑗, 𝑡) =

∑ 𝑋𝑡
𝑗
  

𝛾
𝑡=1

𝛾
; 𝑗 = 1,2, ⋯ , 𝛼       (5) 

 

 

Figure 5 Privacy-preserving down-sampling channel 

3.2 Deep Learning Adversary Model 

3.2.1 Long Short-Term Memory (LSTM) 

Unlike conventional recurrent neural networks (RNNs), which are designed for short-

term memory and have poor performance for long sequences (vanishing gradient), 

LSTM retains both long-term and short-term information without much loss by 

introducing a memory cell. Moreover, LSTM has gates to help memory cells regulate 

information from the past. 

LSTM has recurrent edges that connect adjacent time steps, enabling LSTM to 

selectively pass information across sequence steps. The structure of a typical LSTM 



block is shown in Figure 6. As demonstrated in (6-8), the components inside the block 

include an input node 𝑔𝑡, input gate 𝑖𝑡, internal gate 𝑐𝑡, forget gate 𝑓𝑡, output gate 𝑜𝑡, 

and output ℎ𝑡. The gate's nature is a sigmoid unit (output range between [0, 1]); it can 

recognise and pass important information and block unimportant information. Once the 

input and output gates are closed, the flow will be blocked inside the memory cell and 

will not affect the following time steps until the gate reopens. 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖)        (6) 

𝑓𝑡 = 𝜎(𝑊𝑡 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)        (7) 

𝑜𝑡 = 𝜎 (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)        (8) 

Both 𝑔𝑡, 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 are the functions of data in the current time step input 𝑥𝑡  

and the output of the previous time step ℎ𝑡−1, and 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 are the bias parameters of 

nodes. After the values of the gates are determined, the candidate value 𝑐𝑡̃ is calculated 

and compared with the previous cell state 𝑐𝑡−1. With the gate status 𝑖𝑡 and 𝑓𝑡, the 

memory cell determines whether to update its value. By regulating the current cell state 

𝑐𝑡 with the tanh activation function 𝜙 and multiplying by the output gate, the output 

value is calculated; refer to (9-11): 

𝑐̃𝑡 = 𝜙 (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)       (9) 

𝑐𝑡 = 𝑐̃𝑡 ⊙ 𝑖𝑡 + 𝑐𝑡−1 ⊙ 𝑓𝑡        (10) 

ℎ𝑡 = 𝜙(𝑐𝑡) ⊙ 𝑜𝑡         (11) 

 

Figure 6 Structure of LSTM-RNN 

3.2.2 NILM-based adversary model 

In this paper, a 1DCNN-LSTM NILM model is adopted as the adversary 𝒜. Based on 

the previous formulation, a deep neural network is constructed; detailed 

hyperparameter settings are listed in Table 1. The adversary takes the modified data 

sequence 𝑀𝑇 from the privacy-preserving model 𝒫 as input, and the target of 𝒜 is 

to identify the behaviour patterns 𝑌𝑁×𝑇; refer to Figures 4 and 5. The performance of 



𝒜 on a single house and original interval resolution is shown in Table 2, which shows 

that the AI adversary achieves an average accuracy of 83%, which shows that the 

adversary has a high computation ability in detecting behaviour patterns. The 

aggregation size 𝛼  and down-sampling resolution 𝜎  increase steadily until the 

adversary action of 𝒜 fails to 𝑀𝑇. 

(1) Input Data: The collected data are pre-processed and fed into the model. 

(2) 1st 1D Convolutional Layer: The 1D convolutional layer is effective in extracting 

features from one-dimensional data, especially time-series data. Sixteen filters 

with a kernel size of 4 are designed to allow the first layer to learn 16 different 

features from the inputs. 

(3) 2nd 1D Convolutional Layer: The output of the first 1D CNN layer is then fed to 

the second 1D CNN layer. Thirty-two filters with a kernel size of 4 are defined. 

(4) Max Pooling Layer: A max-pooling layer is typically employed after CNN layers 

to avoid overfitting problems raised by the CNN layer. The size of the pooling 

layer is chosen as 3 to reduce the output matrix size to one-third of the input 

matrix, and the complexity of the output is reduced as a result. 

(5) 1st Bidirectional LSTM Layer: Compared to the conventional LSTM layer, 

bidirectional LSTM has better performance for time-series data since it can learn 

the inputs from both the forward direction and backward direction. In this layer, 

we define 512 LSTM units. 

(6) 2nd Bidirectional LSTM Layer: In this layer, we define 512 LSTM units. 

(7) Dropout Layer: Dropout is an effective regularization method that is employed 

in neural networks to avoid overfitting. The dropout layer will randomly set the 

weight of neurons to zero during the training process. In this model, we set the 

dropout rate to 0.5, which means that 50% of neurons obtain a zero weight. 

(8) Fully Connected Layer: The final layer will reduce the output matrix to a single 

value between 0 and 1, which is the estimated active power of the targeted 

household appliance. 

Table 1 Adversary network settings. 
Hyperparameters Value Description 

Learning rate𝜖 0.05 Steps to minimise error. 

Optimiser Adam  

Number of LSTM/GRU layers 4  

LSTM/GRU units per RNN layer 512  

Number of 1D CNN layers 1 Extracting features from time-series data 

Kernel size of 1D CNN layer 5 Sliding window size of the 1D CNN 

Batch size B 128 Number of training examples utilised in one iteration. 

Activation function for hidden 

layers 
ReLU 𝑓𝑅𝑒𝐿𝑈 = max [0, z]. 



Activation function for the output 

layer 
ReLU Positive Output. 

Epoch number 100 One cycle through the entire training dataset. 

Loss function MSE Minimise the error between ground truth and prediction 

Dropout 0.5 Reduce overfitting 

4 IMPLEMENTATION 

4.1 Dataset construction 

The data adopted in this paper are The Reference Energy Disaggregation Data Set 

(REDD) 23 and Pecan Street Dataport (Dataport) 24; refer to Table 3. Both datasets 

contain appliance-level and house-level power consumption data. Hence, not only the 

load profiles but also the appliance signatures can be obtained from the datasets. We 

select nine typical household appliances for this research: air conditioner (AC), 

microwave oven (MO), electric vehicle (EV), water heater (WH), dishwasher (DW), 

dryer (DRY), stove (STO), furnace (FUR), and refrigerator (REF). Three variables 

related to the appliance—the power rating, minimum duration, and power threshold—

are described in Table 2. The power threshold in the table represents the minimum 

power to operate the appliance. The threshold is the minimum power to start the device; 

when the power is larger than the power threshold, we regard the appliance as “on”. 

Minimum duration represents the minimum operating hours of a particular appliance 

throughout the day. The rated power is the highest power input allowed through a 

particular device. 

Aggregation Size Dataset: Referring to Section 3.1.1 and (4), the houses inside an 

aggregation group are selected randomly from two datasets to make up the new dataset. 

The new dataset is split into training/testing datasets (90% for training and 10% for 

testing). The input data of the model are the aggregated power consumption 𝑓𝒫
𝑎𝑔𝑔(𝑡), 

and the output of the model is the power consumption of a particular appliance 𝑌𝑖,𝑡 in 

house 𝑖. 

Interval Resolution Dataset: The original dataset is down-sampled using the down-

sampling method mentioned in the previous section. The new dataset is generated by 

taking the average values of 𝛾  time slices. The new dataset is also divided into 

training/testing datasets; both the input (household power consumption) and the output 

(appliance consumption) are obtained from the same house 𝑖. 

Table 2 Property of appliances  

Appliance Rating (kW) Threshold (kW) Min Drn (h) Adversary Acc. (%) 

Microwave Oven (MO) 1.5 0.30 0.025 0.77 

Stove (STO) 1.2 0.24 2 0.89 



Air Condition (AC) 2.0 0.40 12 0.85 

Furnace (FUR) 1.0 0.20 8 0.91 

Electric Vehicle (EV) 3.0 0.50 4 1.00 

Refrigerator (REF) 

Water Heater (WH) 

Dryer (DRY) 

Dishwasher (DW) 

0.055 

3.5 

2.1 

1.2 

0.01 

1.00 

0.7 

0.15 

24 

2.5 

1 

2 

0.94 

0.75 

0.76 

0.90 

Table 3 Dataset description 

Dataset Interval Resolution NUM. of Houses NUM. of 

Submeters 

Duration 

Dataport24 1 min ≫ 1000 75 4 years 

REDD23 3 s 6 20 30 days 

4.2 Data preprocessing 

The purpose of data pre-processing is to make the input data more amendable to the 

model. Typically, data pre-processing consists of vectorization, missing data detection, 

and data normalisation. Since the input data are already vectorised, only normalisation 

and missing data detection are required. 

4.2.1 Missing data detection 

There are some missing values in the original data for some reason; these missing 

values will influence the performance of the model. In this study, we replace all missing 

values with ‘0’. 

4.2.2 Data normalisation 

Normalisation is vital to the neural network to prevent it from converging. In this work, 

max-min normalisation is adopted to guarantee that all input values range between 0 

and 1. The equation of max-min normalisation is shown in (12): 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−min  (𝑥)

max(𝑥)−min (𝑥)
      (12) 

where max (x) and min (x) represent the maximum value of the data and minimum 

value of the data, respectively. 

4.3 Hardware & software platform 

The simulation and computation are implemented on a Dell laptop equipped with a 

Core i7-7700HQ CPU, NVIDIA GTX 1060 GPU, and 8 GB RAM. The deep learning 

algorithm runs on Python 3.7, and the TensorFlow 2 framework is adopted to train the 

DNN model. 

4.4 Privacy metrics for appliance detection 



Once the adversary model is designed, the performance of the adversary should be 

evaluated and quantified. In this section, we introduce two performance metrics that 

assess the performance of DNNs. 

4.5.2 F-measure (F1 score) 

The F-measure is a performance measurement for classification adopted in NILM 

works and privacy measures 15. As shown in Table 4, there are four combinations of 

the confusion matrix (TP, FP, FN, and TN); each element represents one estimation 

condition (whether the estimation is correct or incorrect). 

Table 4 Confusion Matrix. 

 Actual Positive Actual Negative 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

Based on the matrix, the F-measure can be calculated (refer to (13)). Usually, when the 

F-measure is smaller than 0.5, the classifier is inadequate. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
1

1+(𝐹𝑁+𝐹𝑃)/2𝑇𝑃
      (13) 

4.5.3 Correlation analysis 

The Pearson correlation coefficient 𝜌  is used to measure whether two continuous 

variables are linearly associated. The value of 𝜌 ranges from -1 to 1 (a positive value 

indicates a positive correlation, while a negative value indicates a negative correlation); 

the larger is 𝜌, the stronger is the correlation between two variables. The expression of 

the Pearson correlation coefficient is shown in (14): 

ρ =
∑ (𝑥𝑡−𝑥̅)(𝑦𝑡−𝑦̅)𝑛

𝑡=1

√∑ (𝑥𝑡−𝑥̅)2 ∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡=1

𝑛
𝑡=1

       (14) 

where n is the sample size, 𝑥𝑡 is the appliance power consumption at time t and 𝑦𝑡  is 

the power consumption generated by the adversary; 𝑥̅ and  𝑦̅ are the mean values of 

𝑥𝑡 and 𝑦𝑡 , respectively. A benchmark is presented for the following analysis process; 

refer to Table 5. We define an appliance as measurable when two metrics, the F-

measure and ρ, are lower than 0.2. 

Table 5 Benchmarks of privacy metrics in appliance detection 

Performance F-measure Pearson correlation coefficient (ρ) 

Poor privacy protection 0.5–1 0.5–1 

Fine privacy 0.2–0.49 0.2–0.49 

Good privacy 0.01–0.19 0.01–0.19 

Perfect privacy <0.01 <0.01 

5 RESULTS AND DISCUSSION 



This section quantifies the privacy boundary influenced by aggregation size α and 

interval resolution σ. Two case studies are designed for each parameter; both the 

detectability of particular appliances and algorithm sensitivity in two privacy-

preserving schemes are thoroughly investigated. A discussion based on the results is 

also presented to demonstrate the proposed three-level privacy benchmarks. 

5.1 Privacy boundary level based on electrical events 

Household appliances can be divided into three categories, loads depending on the 

characteristics and operating duration of the loads 25. Detailed classifications are 

described as follows: 

 Continuous load: A continuous load means that the device consumes energy 

throughout the day, such as the refrigerator and freezer, as well as the computer and 

printer in “standby” mode. Since continuous loads are not influenced by residents’ 

activities, these loads contain minimal sensitive information.  

Intermittent load: These appliances are not always on but are active enough to be 

recorded by the lowest hourly smart meters, such as air conditioners, electric vehicles, 

furnaces, and water heaters. 

 Active load: Power use of appliances in an active house, such as microwave ovens, 

dishwashers, stoves, and dryers. 

Based on the previously introduced load categories, three-level privacy boundaries are 

defined: 

Level I (Real-Time Surveillance): All loads, including continuous loads, intermittent 

loads, and active loads, are detected by 𝒜 . 𝒜  knows the entire life cycles of all 

residents (sleeping pattern, number of residents, when people leave their home, etc.). 

Private information of residents is at high risk at this level. 

Level II (Presence/Absence Detection): Both continuous loads and intermittent loads 

are detected by 𝒜 . At this privacy level, 𝒜  knows whether residents are 

inside/outside the house, but 𝒜 cannot monitor all electrical activities inside a house. 

Level III (complete protection): No event is detected by the adversary, or only 

continuous loads are detected by 𝒜. At this level of protection, 𝒜 cannot infer any 

sensitive information from given data. 

5.2 Privacy boundary of aggregation size α 



This case study focuses on the privacy-preserving aggregation channel illustrated in 

Section 3.1.1. Recalling 𝑓𝒫
𝑎𝑔𝑔(𝑡) in (4), the aggregation size α is an essential variable 

that influences the performance of 𝒫. The purpose of 𝒜 is to detect appliance usage 

given 𝑀𝑇. As demonstrated in Figures 3 and 4, the precision of detection is evaluated 

when α increases steadily. 

5.2.1 Detectability of particular appliances in an aggregation scheme 

𝒜 has high accuracy in appliance detection in a single house, which raises privacy 

issues related to smart meters. Recall the threshold identified in Table 5; an appliance 

is defined as detectable when both the F-measure and ρ are higher than 0.2. In this case, 

study, nine typical appliances, which are introduced in Table 2, are investigated. These 

appliances represent continuous load (REF), intermittent load (AC, EV, WH, and FUR), 

and activate load (MO, DW, STO, and DRY), respectively. A 1DCNN-LSTM model 

with four LSTM layers is adopted as 𝑓𝒜 (𝑡). The model achieves high efficiency in 

detecting appliances in a single house (refer to Table 2). By steadily increasing α from 

1 to 100, the number of smart meters inside an aggregator is enlarged. The mutual 

information between 𝑀𝑇  and 𝑋𝑇  also decreases with an increase in α, which 

increases the difficulty of 𝒜’s inference process. 

 Figure 7 presents a heat map to show the performance of 𝒜 in appliance detection 

given different α. As expected, the detectability of 𝒜 is high with a small aggregation 

size (𝛼 < 5). By a continuously increasing 𝛼, both the F-score and ρ consequently 

decrease, which means that the appliance detectability is also reduced. Appliances such 

as EV, DW, and WH become undetectable when 𝛼  reaches 10. Most of these 

appliances operate during peak periods, and load components under the aggregation 

scheme are extremely complex during this duration, so the inference process of 𝒜 is 

easily blocked. As 𝛼 reaches 20, MO, STO, DRY, and REF become undetectable. It 

should be noted that heating, ventilation, and air conditioning (HVAC) devices, such 

as AC and FUR, remain detectable even for 𝛼 = 40 as HVAC devices have a long 

operational duration (8–12 hours per day) and high power rating (1–2 kW). To blind 

𝒜 for these HVAC devices, a minimum number of 50 houses is required. Figure 8 

takes MO, DW, REF, and AC as examples to compare the information inferred by 𝒜 

and the ground truth data under the aggregation scheme with 𝛼 = 1, 2, 5, 50. 



Figure 7 Heatmap of the adversary on particular appliances with different aggregation sizes: (a) Pearson 

correlation coefficient and (b) F-measure. 

 

Figure 8 Examples of information inferred from the adversary and ground truth data in the 

aggregation scheme 

Since different appliances have different characteristic properties (rating, threshold, 

and minimum duration), the performance of 𝒜 on different appliances varies greatly. 

Based on the results shown in Figure 7, a correlation analysis between appliance 

characteristic properties and adversary detectability is implemented (shown in Table 6). 

It is observed that the three characteristics show almost equal correlations with 

adversary detectability (0.44 for Rating, 0.50 for Threshold, and 0.53 for Minimum 

Duration). To summarise, appliances with high ratings, high threshold, and long 

duration (such as AC, FUR, and DRY) require larger α to blind 𝒜. 



Table 6 Correlation between appliance characteristic properties and adversary detectability 

 Rating Threshold Minimum Duration 

α 0.44 0.50 0.53 

σ 0.34 0.26 0.74 

 

5.2.2 Sensitivity of algorithms in an aggregation scheme 

Rather than the CNN-LSTM algorithm adopted in the previous sections, 𝒜 can also 

adopt different deep learning algorithms. In this case, the sensitivity of the algorithms 

in an aggregation scheme is discussed. Apart from the proposed algorithm, three 𝒜s 

that adopt state-of-the-art algorithms, such as(GRU) 26, CNN 27, and the neighbour 

KNN 28 NILM algorithms, are well analysed, referring to previous works. In Figure 9, 

each bar represents the average values of the F-measure/ρ of all appliances with a 

particular algorithm. All algorithms have desirable detectability on a single house (F-

measure>0.77, and ρ>0.78), and CNN-LSTM has the best performance among all 

algorithms, followed by the GRU, while CNN and KNN have similar performances. 

The machine learning algorithm, KNN, is the most sensitive to the parameter α, as 𝒜 

with KNN becomes blind when α>10, while the other three 𝒜s can still infer private 

information with high accuracy at this level. Moreover, CNN-LSTM and GRU have 

similar characteristics throughout the whole simulation. Both 𝒜  with CNN-LSTM 

and 𝒜 with GRU lose general detectability when α>30 (it should be noted that the 

general detectability only represents the average privacy metrics of all appliances, and 

some specific appliances are still detectable, as stated in Section 5.2.1). In summary, 

the proposed aggregation scheme is efficient for all algorithms discussed in this section, 

as the detectability of the four algorithms decreases to nearly zero with high aggregation 

sizes (α>50). 

 

Figure 9 Comparison of different adversary algorithms in the aggregation scheme: (a) Pearson 

correlation coefficient and (b) F-measure 

5.3 Identifying the boundary of interval resolution 



The privacy boundary of another critical parameter, interval resolution σ, is discussed 

in this section. Similar to Section 5.2, two case studies are implemented to investigate 

the appliance detectability and algorithm sensitivity. The original interval resolution of 

the dataset is 3 s. By implementing the down-sampling formula in (5), a new dataset 

with a larger σ is obtained. 

5.3.1 Detectability of particular appliances in a data down-sampling scheme 

Similar to Section 5.2.1, the detectability of α on appliances regarding different σ is 

discussed in this section. As shown in Figure 5, high granularity smart meter data with 

a small α contain more detailed features of the load profile, and 𝒜 can easily apply 

the NILM algorithm and infer private information. From Figure 10, all appliances are 

highly detectable when σ<5 min, with the exception of MO. Appliances such as MO 

have a very high rating (1.5 kW), but the operation duration is short (0.025 hours). 

Hence, when the interval resolution increases, MO becomes challenging to detect. 

Referring to Table 6, appliance detectability in the data down-sampling scheme has a 

high correlation with a minimum duration (0.72), followed by a rating (0.34). 

Appliances with long operation durations require significant σ values to hide sensitive 

information. For instance, AC requires at least 1 h interval resolution to blind 𝒜, and 

σ>5 h is required by EV. For continuous loads, such as REF, which operates all day, σ 

should be larger than 10 h. In summary, σ>10 h is required to provide complete privacy. 

Figure 11 takes MO, DW, and REF as examples to compare the information inferred 

by 𝒜  and the ground truth data under the data down-sampling scheme with 𝜎 =

3𝑠, 5𝑚𝑖𝑛, 0.5ℎ, 2ℎ. 

 

Figure 10 Performance of the adversary on particular appliances with different interval resolutions: (a) 

Pearson correlation coefficient and (b) F-measure 



  

Figure 11 Examples of information inferred by the adversary and ground truth data in the data down-

sampling scheme 

5.3.2 Sensitivity of algorithms in a data down-sampling scheme 

Similar to Section 5.2.2, four adversaries with different algorithms (CNN-LSTM, GRU, 

CNN, and KNN) are introduced to determine the sensitivity of algorithms in a data 

down-sampling scheme. As shown in Figure 12, the increase in σ substantially weakens 

the detectability of all four adversaries. It is essential to note that all adversaries still 

maintain a high inference ability when σ ranges from 15 to 30 min, while the sample 

frequencies of most smart meters in the UK are in this scope. This result demonstrates 

our argument that the current smart metering system in the UK is highly vulnerable and 

can be abused by 𝒜 . A benchmark of σ=10 h is a safe threshold for the privacy-

preserving model against the attack from 𝒜. 

 

Figure 12 Comparison of different adversary algorithms in the data down-sampling scheme: (a) Pearson 

correlation coefficient and (b) F-measure 

5.4  Combined Effect of Interval Resolution and Aggregation Size 



In this section, the combined effect of two parameters, α and σ, on the adversary 

computing ability is demonstrated. The aggregation size α and interval resolution σ are 

changed synchronously, and the dynamic variation of two privacy metrics, the F-

measure and ρ, are observed. The simulation results are presented in Figure 13, which 

uses 3D models to show dynamic changes. The detectability recedes rapidly, and both 

the F-measure and ρ decrease to zero given 𝛼 > 10, and 𝜎 > 30 𝑚𝑖𝑛. 

 

Figure 13 3D model of the privacy performance of the adversary with two parameters: (a) Pearson 

correlation coefficient and (b) F-measure 

5.5 Discussion 

Based on the simulation results and quantification of appliance detectability obtained 

in the previous sections, three-level privacy boundaries are concluded in Table 7. When  

𝛼 < 20  or 𝜎 < 5ℎ, consumers are at privacy level I, which represents consumers under 

real-time surveillance at this level. By detecting appliance signatures of active loads 

(MO, DW, STO, and DRY), 𝒜 can have knowledge of detailed behaviour patterns of 

residents inside the house. When 20 ≤ 𝛼 < 40 or 5ℎ ≤ 𝜎 < 8ℎ, the consumers are at 

privacy level II, and 𝒜 can infer presence/absence information from intermittent loads 

(AC, EV, WH, and FUR) but cannot understand complex behaviours inside the house. 

When 40 ≤ 𝛼 or 8ℎ ≤ 𝜎 , the consumers are at privacy level III; at this level, 

consumers are protected entirely and free of privacy concern. In addition, when we take 

the co-effects of the two parameters, the detectability of 𝒜 decreases dramatically 

compared to a single parameter. When 10 ≤ 𝛼 and 30𝑚𝑖𝑛 ≤ 𝜎, privacy level III is 

already achieved. 

Table 7 Quantification of three-level privacy boundaries 

Privacy level Appliance to detect Quantification (Single 

parameter) 

Quantification (Co-effects of two 

parameters) 



Level I MO, DW, STO, DRY 𝛼 < 20 𝑜𝑟 𝜎 < 5ℎ 𝛼 < 2 𝑎𝑛𝑑 𝜎 < 5𝑚𝑖𝑛 

Level II AC, EV, WH, FUR 20 ≤ 𝛼 < 40 𝑜𝑟 5ℎ ≤ 𝜎 < 8ℎ 2 ≤ 𝛼 < 10 𝑎𝑛𝑑 5𝑚𝑖𝑛 ≤ 𝜎 < 30𝑚𝑖𝑛 

Level III All appliances 40 ≤ 𝛼 𝑜𝑟 8ℎ ≤ 𝜎 10 ≤ 𝛼 𝑎𝑛𝑑 30𝑚𝑖𝑛 ≤ 𝜎 

6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this paper, a privacy-preserving smart metering model is proposed; the model adopts 

a data aggregation scheme and data down-sampling scheme to better protect sensitive 

information from inference. An AI adversary is then introduced to quantify the privacy 

boundary (aggregation size and interval resolution) of the smart meter data. The 

adversary can implement cut edge CNN-LSTM NILM algorithms to detect appliance 

usage from the demand load curve and further identify the behaviour patterns of 

consumers. Three case studies are employed to investigate the influence of parameters 

α and σ and the co-effect of α and σ on the appliance 𝒜’s detectability. From the 

simulation, three-level privacy boundaries are quantified, showing that to achieve Level 

III privacy (complete protection), the following conditions must be met: (1) 40 ≤

𝛼 𝑜𝑟 8ℎ ≤ 𝜎; (2) 10≤α and 30 min≤σ. 

6.2 Implications for Policy 

The conclusion obtained in this paper, especially the three-level privacy boundaries, is 

fundamental to stakeholders in the smart metering system, including consumers, 

manufacturers, power system operators, and policymakers from the government. As 

privacy is abstract and hard to quantify, privacy boundaries are easily understandable 

and provide an insight for people to classify privacy-free and privacy-concerned smart 

meter data. New generation smart meters can make further improvements based on 

privacy boundaries. In addition, for smart meter data granularity under privacy 

boundaries, extra encryption techniques should be adopted by the utility to guarantee 

the safety of private information. 

6.3 Future work 

In the future, this work can be extended to the following directions: (1) a combination 

of the proposed smart metering system with encryption techniques would provide better 

security and privacy guarantees to consumers; and (2) continuous updating of the 

privacy boundaries by considering advanced NILM algorithms. 
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